+

RU2361269C9 - Method of logical differentiation of analogue signals equivalent to binary code and device to this end - Google Patents

Method of logical differentiation of analogue signals equivalent to binary code and device to this end Download PDF

Info

Publication number
RU2361269C9
RU2361269C9 RU2006144611/09A RU2006144611A RU2361269C9 RU 2361269 C9 RU2361269 C9 RU 2361269C9 RU 2006144611/09 A RU2006144611/09 A RU 2006144611/09A RU 2006144611 A RU2006144611 A RU 2006144611A RU 2361269 C9 RU2361269 C9 RU 2361269C9
Authority
RU
Russia
Prior art keywords
logical
binary code
functional
signals equivalent
analogue signals
Prior art date
Application number
RU2006144611/09A
Other languages
Russian (ru)
Other versions
RU2006144611A (en
RU2361269C2 (en
Inventor
Лев Петрович Петренко (UA)
Лев Петрович Петренко
Original Assignee
Лев Петрович Петренко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лев Петрович Петренко filed Critical Лев Петрович Петренко
Priority to RU2006144611/09A priority Critical patent/RU2361269C9/en
Publication of RU2006144611A publication Critical patent/RU2006144611A/en
Application granted granted Critical
Publication of RU2361269C2 publication Critical patent/RU2361269C2/en
Publication of RU2361269C9 publication Critical patent/RU2361269C9/en

Links

Images

Landscapes

  • Complex Calculations (AREA)
  • Logic Circuits (AREA)

Abstract

FIELD: physics; computer engineering.
SUBSTANCE: invention relates to computer engineering and can be used in making arithmetic units and carrying out arithmetic operations, particularly summation and subtraction processes in position-sign codes. The device contains four AND elements, two OR elements, and three NOT elements.
EFFECT: more functional capabilities.
3 dwg

Description

Текст описания приведен в факсимильном виде.

Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
The text of the description is given in facsimile form.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017

Claims (1)

Функциональная структура логического дифференцирования аргументов аналоговых сигналов, эквивалентных двоичному коду, условно «i» разряд которого содержит две логические функции
Figure 00000018
и функцию f1(&)-И, первая функциональная связь функции f1(&)-И является выходной функциональной связью логической функции
Figure 00000019
функциональная входная связь которой является входом приема аналогового сигнала ni «i» разряда, отличающаяся тем, что в условно «i» разряд введены три дополнительные логические функции f2(&)-И, f3(&)-И, f4(&)-И и две логические функции f1(})-ИЛИ и f2(})-ИЛИ, при этом функциональные связи в функциональной структуре логического дифференцирования выполнены в соответствии с математической моделью вида
Figure 00000020

Figure 00000021
Functional structure of logical differentiation of arguments of analog signals equivalent to binary code, conditionally “i” bit of which contains two logical functions
Figure 00000018
and the function f 1 (&) - And, the first functional relationship of the function f 1 (&) - And is the output functional relationship of the logical function
Figure 00000019
a functional input connection of which is an input for receiving an analog signal of the ni “i” discharge, characterized in that three additional logical functions f 2 (&) - And, f 3 (&) - And, f 4 (& ) -And and two logical functions f 1 (}) - OR and f 2 (}) - OR, while the functional relationships in the functional structure of logical differentiation are made in accordance with a mathematical model of the form
Figure 00000020

Figure 00000021
RU2006144611/09A 2006-12-15 2006-12-15 Method of logical differentiation of analogue signals equivalent to binary code and device to this end RU2361269C9 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006144611/09A RU2361269C9 (en) 2006-12-15 2006-12-15 Method of logical differentiation of analogue signals equivalent to binary code and device to this end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006144611/09A RU2361269C9 (en) 2006-12-15 2006-12-15 Method of logical differentiation of analogue signals equivalent to binary code and device to this end

Publications (3)

Publication Number Publication Date
RU2006144611A RU2006144611A (en) 2008-06-20
RU2361269C2 RU2361269C2 (en) 2009-07-10
RU2361269C9 true RU2361269C9 (en) 2010-03-10

Family

ID=41045991

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006144611/09A RU2361269C9 (en) 2006-12-15 2006-12-15 Method of logical differentiation of analogue signals equivalent to binary code and device to this end

Country Status (1)

Country Link
RU (1) RU2361269C9 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2417430C1 (en) * 2009-08-03 2011-04-27 Лев Петрович Петренко METHOD FOR LOGIC DIFFERENTIATION d/dn OF POSITIONAL ANALOGUE SIGNALS ±[ni]f(2n) TAKING INTO ACCOUNT LOGICAL SIGN n(±) THEREOF (RUSSIAN LOGIC VERSIONS)
RU2417431C1 (en) * 2009-08-03 2011-04-27 Лев Петрович Петренко METHOD FOR SELECTIVE LOGIC DIFFERENTIATION d*/dn OF POSITIONAL ANALOGUE SIGNALS ±[mj]f(2n) TAKING INTO ACCOUNT LOGICAL SIGN m(±) THEREOF AND FUNCTIONAL STRUCTURE FOR IMPLEMENTATION THEREOF (RUSSIAN LOGIC VERSIONS)
RU2413988C1 (en) * 2009-08-03 2011-03-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE FOR LOGIC DIFFERENTIATION d/dn OF ANALOGUE SIGNALS ±[ni]f(2n) TAKING INTO ACCOUNT LOGIC SIGN n(±) THEREOF (VERSIONS)
RU2417432C1 (en) * 2009-08-24 2011-04-27 Лев Петрович Петренко METHOD OF TRANSFORMING POSITION-SIGN ARGUMENTS ±[nj]f(+/-) INTO STRUCTURE OF ARGUMENTS ±[nj]f(+/-)min WITH MINIMISED NUMBER OF ACTIVE ARGUMENTS AND FUNCTIONAL STRUCTURE FOR IMPLEMENTING SAID METHOD (RUSSIAN LOGIC VERSIONS)
RU2428738C2 (en) * 2009-10-05 2011-09-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE OF PROCEDURE OF LOGICAL DIFFERENTIATION OF d/dn POSITIONAL ARGUMENTS [mj]f(2n) WITH ACCOUNT OF THEIR SIGN m(±) TO FORM POSITIONAL-SIGN STRUCTURE ±[mj]f(+/-)min WITH MINIMISED NUMBER OF ACTIVE ARGUMENTS (VERSIONS)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1169172A1 (en) * 1983-06-01 1985-07-23 Киевский институт автоматики им.ХХУ съезда КПСС Binary code-to-ternary code translator
EP0180100A2 (en) * 1984-10-29 1986-05-07 International Business Machines Corporation Apparatus and method for recording and recovering a binary symbol sequence using an intermediate step of converting the binary sequence into a ternary sequence
SU1438005A1 (en) * 1987-01-29 1988-11-15 Предприятие П/Я В-2201 Binary code to position-sign code converter
SU1656686A1 (en) * 1989-05-31 1991-06-15 Винницкий политехнический институт Binary-to-position-sign code converter
GB2237482B (en) * 1989-10-19 1993-11-17 Stc Plc Digital binary to ternary converter circuit
RU2022337C1 (en) * 1990-01-30 1994-10-30 Научно-исследовательский институт специальных информационно-измерительных систем Parallel sign-digit code/additional binary code converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1169172A1 (en) * 1983-06-01 1985-07-23 Киевский институт автоматики им.ХХУ съезда КПСС Binary code-to-ternary code translator
EP0180100A2 (en) * 1984-10-29 1986-05-07 International Business Machines Corporation Apparatus and method for recording and recovering a binary symbol sequence using an intermediate step of converting the binary sequence into a ternary sequence
SU1438005A1 (en) * 1987-01-29 1988-11-15 Предприятие П/Я В-2201 Binary code to position-sign code converter
SU1656686A1 (en) * 1989-05-31 1991-06-15 Винницкий политехнический институт Binary-to-position-sign code converter
GB2237482B (en) * 1989-10-19 1993-11-17 Stc Plc Digital binary to ternary converter circuit
RU2022337C1 (en) * 1990-01-30 1994-10-30 Научно-исследовательский институт специальных информационно-измерительных систем Parallel sign-digit code/additional binary code converter

Also Published As

Publication number Publication date
RU2006144611A (en) 2008-06-20
RU2361269C2 (en) 2009-07-10

Similar Documents

Publication Publication Date Title
RU2378682C2 (en) INPUT STRUCTURE FOR PARALLEL ADDER IN POSITION-SIGN CODES f(+/-)(VERSIONS)
RU2361269C9 (en) Method of logical differentiation of analogue signals equivalent to binary code and device to this end
RU2008119742A (en) LOGIC CONVERTER
RU2375749C2 (en) Method of boolean differentiation of analogue signals equivalent to binary code and device for realising said method
MY150120A (en) Efficient multiplication-free computation for signal and data processing
Jambek et al. Performance comparison of Huffman and Lempel-Ziv Welch data compression for wireless sensor node application
RU2429522C1 (en) FUNCTIONAL STRUCTURE OF ADDER fi(Σ) OF ARBITRARY "i" BIT FOR LOGIC-DYNAMIC PROCESS OF SUMMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) and [mi]f(2n) USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)
RU2386162C2 (en) FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)
RU2378684C1 (en) FUNCTIONAL INPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER OF POSITION-SIGN SYSTEM f(+/-) FORMAT
RU2443052C1 (en) FUNCTIONAL STRUCTURE OF A TRANSFORMER OF POSITIONAL SYMBOLIC STRUCTURE OF ANALOG SIGNALS ARGUMENTS «±»[ni]f(-1\+1,0,…+1) "ADDITIONAL CODE" INTO FUNCTIONAL STRUCTURE OF CONDITIONALLY NEGATIVE ANALOG SINGALS ARGUMENTS «-»[ni]f(2n) USING ARITHMETICAL ACSIOMS OF TERNARY NOTATION f(+1,0,-1) (VARIANTS)
RU2363978C2 (en) Device for parallel boolean summation of analogue signals of terms equivalent to binary number system
RU2375742C2 (en) Method of parallel boolean summation of analogue signals of terms equivalent to binary number system and device for realising said method
RU2373563C9 (en) FUNCTIONAL STRUCTURE OF MULTIPLIER, IN WHICH INPUT ARGUMENTS HAVE FORMAT OF BINARY NUMERATION SYSTEM f(2n), AND OUTPUT ARGUMENTS ARE FORMMED IN FORMAT OF POSITION-SIGN NUMERATION SYSTEM f(+/-)
RU2362205C2 (en) Method parallel boolean summation of analogue signals of components equivalent to binary number system and device to this end
RU2381545C2 (en) Functional structure for parallel adder with pre-entered carry bits (versions)
Ullrich A simple elementary proof of Hilbert's inequality
CN103699353B (en) An a kind of full subtracter circuit
RU2422881C1 (en) FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS)
RU2450325C2 (en) FUNCTIONAL STRUCTURE FOR LOGIC-DYNAMIC PROCESS OF SERIAL END-TO-END ACTIVATION OF INACTIVE ARGUMENTS "0" OF SECOND INTERMEDIATE SUM +[S2 i]f(&) -AND IN ADDER f(Σ) WITH TRANSFORMATION OF POSITIONAL ARGUMENTS OF TERMS [ni]f(2n) AND [mi]f(2n) (VERSIONS)
RU2480817C1 (en) FUNCTIONAL STRUCTURE OF ADDER f2(ΣCD) OF CONDITIONAL "k" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF INPUT STRUCTURES OF ARGUMENTS OF TERMS [1,2Sj h1]f(2n) AND [1,2Sj h2]f(2n) OF "COMPLEMENTARY CODE RU" POSITIONAL FORMAT BY APPLYING ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn OF ARGUMENTS IN COMBINED STRUCTURE THEREOF (VERSIONS OF RUSSIAN LOGIC)
RU2422879C1 (en) FUNCTIONAL STRUCTURE FOR PRE-ADDER OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) WITH MULTIPLICAND ARGUMENTS [mj]f(2n) AND MULTIPLIER ARGUMENTS [ni]f(2n) IN POSITION FORMAT (VERSIONS)
RU2429523C1 (en) METHOD FOR LOGIC-DYNAMIC PROCESS OF CONVERTING POSITION CONDITIONALLY NEGATIVE ARGUMENTS OF ANALOGUE SIGNALS «-»[ni]f(2n) TO POSITION-SIGN STRUCTURE OF ARGUMENTS «±»[ni]f(-1\+1,0,…+1) "COMPLEMENTARY CODE" USING ARITHMETIC AXIOMS OF TERNARY NUMBER SYSTEM f(+1, 0,-1) (VERSIONS OF RUSSIAN LOGIC)
RU2362204C1 (en) FUNCTIONAL DESIGN FOR UPDATING ARGUMENTS OF INTERMEDIATE SUM ±[S"i] OF PARALLEL ADDER IN POSITION-SIGN CODES f(+/-)
RU2455760C2 (en) METHOD FOR CONVERSION OF POSITION-SYMBOLIC STRUCTURES OF +[ni]f(2n) AND -[ni]f(2n) ANALOG SIGNAL ARGUMENTS INTO ±[ni]f(2n) ANALOG SIGNAL ARGUMENTS STRUCTURE OF "ADDITIONAL CODE" USING ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1, 0,-1) (VERSIONS OF RUSSIAN LOGIC)
RU2390050C2 (en) FUNCTIONAL DESIGN OF PARALLEL POSITION-SIGN ADDER OF ARGUMENTS OF TERMS OF TWO FORMATS OF BINARY NUMBER SYSTEM f(2n) AND POSITION-SIGN NUMBER SYSTEM f(+/-) (VERSIONS)

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载