- Letter
- Open Access
Method of images in defect conformal field theories
Phys. Rev. D 106, L081701 – Published 7 October, 2022
DOI: https://doi.org/10.1103/PhysRevD.106.L081701
Abstract
We propose a prescription for describing correlation functions in higher-dimensional defect conformal field theories (DCFTs) by those in ancillary conformal field theories (CFTs) without defects, which is a vast generalization of the image method in two-dimensional boundary CFTs. A correlation function of operators inserted away from a defect in a DCFT is represented by a correlation function of operators in the ancillary CFT, each pair of which is placed symmetrically with respect to the defect. We establish the correspondence by matching the constraints on correlation functions imposed by conformal symmetry on both sides. Our method has the potential to shed light on new aspects of DCFTs from the viewpoint of conventional CFTs.
Physics Subject Headings (PhySH)
Article Text
References (51)
- X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Science 323, 1184 (2009).
- J. L. Cardy, Nucl. Phys. B240, 514 (1984).
- A. W. W. Ludwig and I. Affleck, Phys. Rev. Lett. 67, 3160 (1991).
- I. Affleck, Acta Phys. Pol. B 26, 1869 (1995), https://www.actaphys.uj.edu.pl/R/26/12/1869
- M. Oshikawa and I. Affleck, Nucl. Phys. B495, 533 (1997).
- J. Polchinski, String Theory. Vol. 1: An Introduction to the Bosonic String, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 2007).
- A. Recknagel and V. Schomerus, Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 2013).
- P. Calabrese and J. L. Cardy, Phys. Rev. Lett. 96, 136801 (2006).
- P. Calabrese and J. Cardy, J. Stat. Mech. 06 (2016) 064003.
- P. Liendo, L. Rastelli, and B. C. van Rees, J. High Energy Phys. 07 (2013) 113.
- D. Gaiotto, D. Mazac, and M. F. Paulos, J. High Energy Phys. 03 (2014) 100.
- A. Antunes, J. High Energy Phys. 10 (2021) 057.
- P. Liendo, Y. Linke, and V. Schomerus, J. High Energy Phys. 08 (2020) 163.
- C. P. Herzog, K.-W. Huang, and K. Jensen, J. High Energy Phys. 01 (2016) 162.
- C. Herzog, K.-W. Huang, and K. Jensen, Phys. Rev. Lett. 120, 021601 (2018).
- C. P. Herzog and K.-W. Huang, J. High Energy Phys. 10 (2017) 189.
- A. Faraji Astaneh and S. N. Solodukhin, Phys. Lett. B 816, 136282 (2021).
- K. Jensen, A. O’Bannon, B. Robinson, and R. Rodgers, Phys. Rev. Lett. 122, 241602 (2019).
- A. Chalabi, C. P. Herzog, A. O’Bannon, B. Robinson, and J. Sisti, J. High Energy Phys. 02 (2022) 166.
- N. Kobayashi, T. Nishioka, Y. Sato, and K. Watanabe, J. High Energy Phys. 01 (2019) 039.
- K. Jensen and A. O’Bannon, Phys. Rev. Lett. 116, 091601 (2016).
- G. Cuomo, Z. Komargodski, and A. Raviv-Moshe, Phys. Rev. Lett. 128, 021603 (2022).
- Y. Wang, J. High Energy Phys. 02 (2022) 061.
- S. Giombi and S. Komatsu, J. Phys. A 52, 125401 (2019).
- S. Giombi and S. Komatsu, J. High Energy Phys. 05 (2018) 109; 11 (2018) 123(E).
- N. Andrei et al., J. Phys. A 53, 453002 (2020).
- M. Billò, V. Gonçalves, E. Lauria, and M. Meineri, J. High Energy Phys. 04 (2016) 091.
- A. Gadde, J. High Energy Phys. 01 (2020) 038.
- N. Kobayashi and T. Nishioka, J. High Energy Phys. 09 (2018) 134.
- S. Guha and B. Nagaraj, J. High Energy Phys. 10 (2018) 198.
- C. P. Herzog and A. Shrestha, J. High Energy Phys. 04 (2021) 226.
- L.-F. Ko, H. Au-Yang, and J. H. H. Perk, Phys. Rev. Lett. 54, 1091 (1985).
- A. Bissi, T. Hansen, and A. Söderberg, J. High Energy Phys. 01 (2019) 010.
- P. Dey and A. Söderberg, J. High Energy Phys. 07 (2021) 013.
- A. Kapustin, Phys. Rev. D 74, 025005 (2006).
- D. Poland, S. Rychkov, and A. Vichi, Rev. Mod. Phys. 91, 015002 (2019).
- T. Nishioka, Y. Okuyama, and S. Shimamori (to be published).
- M. S. Costa, J. Penedones, D. Poland, and S. Rychkov, J. High Energy Phys. 11 (2011) 154.
- M. S. Costa, J. Penedones, D. Poland, and S. Rychkov, J. High Energy Phys. 11 (2011) 071.
- R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, J. High Energy Phys. 12 (2008) 031.
- T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, J. High Energy Phys. 09 (2016) 038.
- T. Hartman, S. Kundu, and A. Tajdini, J. High Energy Phys. 07 (2017) 066.
- D. M. Hofman and J. Maldacena, J. High Energy Phys. 05 (2008) 012.
- P. Kravchuk and D. Simmons-Duffin, J. High Energy Phys. 11 (2018) 102.
- S. Caron-Huot, J. High Energy Phys. 09 (2017) 078.
- D. Simmons-Duffin, D. Stanford, and E. Witten, J. High Energy Phys. 07 (2018) 085.
- S. Kundu, J. High Energy Phys. 11 (2020) 138.
- M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, J. High Energy Phys. 01 (2021) 128.
- M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, J. High Energy Phys. 11 (2020) 096.
- C.-H. Chang, M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, J. High Energy Phys. 05 (2022) 059.
- C.-H. Chang and D. Simmons-Duffin, arXiv:2202.04090.