+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Defect a-theorem and a-maximization

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 08 February 2022
  • Volume 2022, article number 61, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Defect a-theorem and a-maximization
Download PDF
  • Yifan Wang  ORCID: orcid.org/0000-0001-9965-97771,2 
  • 430 Accesses

  • 30 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Conformal defects describe the universal behaviors of a conformal field theory (CFT) in the presence of a boundary or more general impurities. The coupled critical system is characterized by new conformal anomalies which are analogous to, and generalize those of standalone CFTs. Here we study the conformal a- and c-anomalies of four dimensional defects in CFTs of general spacetime dimensions greater than four. We prove that under unitary defect renormalization group (RG) flows, the defect a-anomaly must decrease, thus establishing the defect a-theorem. For conformal defects preserving minimal supersymmetry, the full defect symmetry contains a distinguished U(1)R subgroup. We derive the anomaly multiplet relations that express the defect a- and c-anomalies in terms of the defect (mixed) ’t Hooft anomalies for this U(1)R symmetry. Once the U(1)R symmetry is identified using the defect a-maximization principle which we prove, this enables a non-perturbative pathway to the conformal anomalies of strongly coupled defects. We illustrate our methods by discussing a number of examples including boundaries in five dimensions and codimension-two defects in six dimensions. We also comment on chiral algebra sectors of defect operator algebras and potential conformal collider bounds on defect anomalies.

Article PDF

Download to read the full article text

Similar content being viewed by others

Surface defect, anomalies and b-extremization

Article Open access 17 November 2021

Conformal anomaly c-coefficients of superconformal 6d theories

Article Open access 04 January 2016

Anyonic Chains, Topological Defects, and Conformal Field Theory

Article Open access 05 October 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Neural Tube Defects
  • Rare variants
  • Topological Groups and Lie Groups
  • Congenital heart defects
  • Critical Theory
  • Group Theory and Generalizations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

  2. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. H. Casini, E. Testé and G. Torroba, Markov property of the conformal field theory vacuum and the a theorem, Phys. Rev. Lett. 118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. H. Elvang, D. Z. Freedman, L.-Y. Hung, M. Kiermaier, R. C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. H. Elvang and T. M. Olson, RG flows in d dimensions, the dilaton effective action, and the a-theorem, JHEP 03 (2013) 034 [arXiv:1209.3424] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. C. Cordova, T. T. Dumitrescu and X. Yin, Higher derivative terms, toroidal compactification, and Weyl anomalies in six-dimensional (2, 0) theories, JHEP 10 (2019) 128 [arXiv:1505.03850] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. C. Cordova, T. T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080 [arXiv:1506.03807] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. K. Jensen and A. O’Bannon, Constraint on defect and boundary renormalization group flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y. Wang, Surface defect, anomalies and b-extremization, JHEP 11 (2021) 122 [arXiv:2012.06574] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. N. Andrei et al., Boundary and defect CFT: open problems and applications, J. Phys. A 53 (2020) 453002 [arXiv:1810.05697] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. C. R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. M. Henningson, Surface observables and the Weyl anomaly, hep-th/9908183 [INSPIRE].

  19. S. N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016) 131 [arXiv:1510.04566] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. J. Speranza, Geometrical tools for embedding fields, submanifolds, and foliations, arXiv:1904.08012 [INSPIRE].

  21. M. Henningson and K. Skenderis, Weyl anomaly for Wilson surfaces, JHEP 06 (1999) 012 [hep-th/9905163] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Y. Zhang, Graham-Witten’s conformal invariant for closed four dimensional submanifolds, arXiv:1703.08611 [INSPIRE].

  23. C. R. Graham and N. Reichert, Higher-dimensional Willmore energies via minimal submanifold asymptotics, Asian J. Math. 24 (2020) 571 [arXiv:1704.03852] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Mondino and H. T. Nguyen, Global conformal invariants of submanifolds, Ann. Inst. Fourier 68 (2018) 2663.

  25. D. Rodriguez-Gomez and J. G. Russo, Boundary conformal anomalies on hyperbolic spaces and Euclidean balls, JHEP 12 (2017) 066 [arXiv:1710.09327] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. D. Rodriguez-Gomez and J. G. Russo, Free energy and boundary anomalies on 𝕊a × ℍb spaces, JHEP 10 (2017) 084 [arXiv:1708.00305] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. T. Nishioka and Y. Sato, Free energy and defect C -theorem in free scalar theory, JHEP 05 (2021) 074 [arXiv:2101.02399] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. K. A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. D. Anselmi, D. Z. Freedman, M. T. Grisaru and A. A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge l theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  30. D. Kutasov, A. Parnachev and D. A. Sahakyan, Central charges and U(1)R symmetries in N = 1 super-Yang-Mills, JHEP 11 (2003) 013 [hep-th/0308071] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. D. Kutasov, New results on the ‘a theorem’ in four-dimensional supersymmetric field theory, hep-th/0312098 [INSPIRE].

  32. E. Barnes, E. Gorbatov, K. A. Intriligator, M. Sudano and J. Wright, The exact superconformal R-symmetry minimizes τRR, Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. E. Barnes, K. A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. D. V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, arXiv:0907.3987 [INSPIRE].

  38. H. Osborn, Derivation of a four-dimensional c theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. I. Jack and H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Z. Freedman and H. Osborn, Constructing a c function for SUSY gauge theories, Phys. Lett. B 432 (1998) 353 [hep-th/9804101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  42. M. A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, JHEP 01 (2013) 184 [arXiv:1208.3674] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Y. Nakayama, Scale invariance vs. conformal invariance, Phys. Rept. 569 (2015) 1 [arXiv:1302.0884] [INSPIRE].

  45. A. Bzowski and K. Skenderis, Comments on scale and conformal invariance, JHEP 08 (2014) 027 [arXiv:1402.3208] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Dymarsky, Z. Komargodski, A. Schwimmer and S. Theisen, On scale and conformal invariance in four dimensions, JHEP 10 (2015) 171 [arXiv:1309.2921] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. A. Dymarsky, K. Farnsworth, Z. Komargodski, M. A. Luty and V. Prilepina, Scale invariance, conformality, and generalized free fields, JHEP 02 (2016) 099 [arXiv:1402.6322] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. K. Yonekura, Unitarity, locality, and scale versus conformal invariance in four dimensions, arXiv:1403.4939 [INSPIRE].

  49. A. Naseh, Scale versus conformal invariance from entanglement entropy, Phys. Rev. D 94 (2016) 125015 [arXiv:1607.07899] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Schwimmer and S. Theisen, Spontaneous breaking of conformal invariance and trace anomaly matching, Nucl. Phys. B 847 (2011) 590 [arXiv:1011.0696] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. E. C. Marino, L. O. Nascimento, V. S. Alves and C. M. Smith, Unitarity of theories containing fractional powers of the d’Alembertian operator, Phys. Rev. D 90 (2014) 105003 [arXiv:1408.1637] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Heydeman, C. B. Jepsen, Z. Ji and A. Yarom, Renormalization and conformal invariance of non-local quantum electrodynamics, JHEP 08 (2020) 007 [arXiv:2003.07895] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. M. Levitin, Dirichlet and Neumann heat invariants for Euclidean balls, Diff. Geom. Appl. 8 (1998) 35.

  54. V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  55. A. D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].

    Article  ADS  Google Scholar 

  57. F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  58. C. Córdova, T. T. Dumitrescu and K. Intriligator, 𝒩 = (1, 0) anomaly multiplet relations in six dimensions, JHEP 07 (2020) 065 [arXiv:1912.13475] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. L. Bianchi and M. Lemos, Superconformal surfaces in four dimensions, JHEP 06 (2020) 056 [arXiv:1911.05082] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. A. Chalabi, A. O’Bannon, B. Robinson and J. Sisti, Central charges of 2d superconformal defects, JHEP 05 (2020) 095 [arXiv:2003.02857] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. N. B. Agmon and Y. Wang, Classifying superconformal defects in diverse dimensions part II: superconformal defects of dimension p > 1, to appear.

  62. B. Zumino, Chiral anomalies and differential geometry: lectures given at Les Houches, august 1983, in the proceedings of the Les Houches Summer School on Theoretical Physics: Relativity, Groups and Topology, June 27–August 4, Les Houches, France (1983).

  63. L. Álvarez-Gaumé and P. H. Ginsparg, The structure of gauge and gravitational anomalies, Annals Phys. 161 (1985) 423 [Erratum ibid. 171 (1986) 233] [INSPIRE].

  64. J. Manes, R. Stora and B. Zumino, Algebraic study of chiral anomalies, Commun. Math. Phys. 102 (1985) 157 [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. L. Bonora, P. Pasti and M. Tonin, Cohomologies and anomalies in supersymmetric theories, Nucl. Phys. B 252 (1985) 458 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. I. L. Buchbinder and S. M. Kuzenko, Matter superfields in external supergravity: Green functions, effective action and superconformal anomalies, Nucl. Phys. B 274 (1986) 653 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. I. Buchbinder and S. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, (1998).

  68. S. J. Gates, M. T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

    MATH  Google Scholar 

  69. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. T. T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. L. Bonora and S. Giaccari, Weyl transformations and trace anomalies in N = 1, D = 4 supergravities, JHEP 08 (2013) 116 [arXiv:1305.7116] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  72. B. Assel, D. Cassani and D. Martelli, Supersymmetric counterterms from new minimal supergravity, JHEP 11 (2014) 135 [arXiv:1410.6487] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  73. Y. Nakayama, Realization of impossible anomalies, Phys. Rev. D 98 (2018) 085002 [arXiv:1804.02940] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. H. Osborn and A. C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  75. N. B. Agmon and Y. Wang, Classifying superconformal defects in diverse dimensions part I: superconformal lines, arXiv:2009.06650 [INSPIRE].

  76. P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  77. P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. T. Dimofte, D. Gaiotto and N. M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP 05 (2018) 060 [arXiv:1712.07654] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  79. E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  80. F. Bonetti, T. W. Grimm and S. Hohenegger, One-loop Chern-Simons terms in five dimensions, JHEP 07 (2013) 043 [arXiv:1302.2918] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  81. D. S. Freed, Anomalies and invertible field theories, Proc. Symp. Pure Math. 88 (2014) 25 [arXiv:1404.7224] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Monnier, A Modern Point of View on Anomalies, Fortsch. Phys. 67 (2019) 1910012 [arXiv:1903.02828] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  83. C. G. Callan, Jr. and J. A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. T. Dimofte and D. Gaiotto, An E7 surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].

    Article  ADS  Google Scholar 

  85. C. Cordova, T. T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  86. C. Behan, L. Di Pietro, E. Lauria and B. C. Van Rees, Bootstrapping boundary-localized interactions, JHEP 12 (2020) 182 [arXiv:2009.03336] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  87. C. Herzog, K.-W. Huang and K. Jensen, Displacement Operators and Constraints on Boundary Central Charges, Phys. Rev. Lett. 120 (2018) 021601 [arXiv:1709.07431] [INSPIRE].

    Article  ADS  Google Scholar 

  88. N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. D. R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  90. M. R. Douglas, S. H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  91. K. A. Intriligator, D. R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  92. H.-C. Kim, S.-S. Kim and K. Lee, 5-dim superconformal index with enhanced en global symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  93. D. Bashkirov, A comment on the enhancement of global symmetries in superconformal SU(2) gauge theories in 5D, arXiv:1211.4886 [INSPIRE].

  94. V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-base duality and global symmetry enhancement, JHEP 04 (2015) 052 [arXiv:1411.2450] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  95. Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].

  96. C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, charges, instantons, and bootstrap: a five-dimensional odyssey, JHEP 03 (2018) 123 [arXiv:1710.08418] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  97. C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans supergravity from five-dimensional holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  98. D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d 𝒩 = 1 theories, JHEP 01 (2017) 019 [arXiv:1506.03871] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. E. Witten, An SU(2) Anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  100. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  101. K. A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. B Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [INSPIRE].

  102. O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-brane webs, symmetry enhancement, and duality in 5d supersymmetric gauge theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].

    Article  ADS  Google Scholar 

  103. I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  104. I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  105. D. Xie, M5 brane and four dimensional N = 1 theories I, JHEP 04 (2014) 154 [arXiv:1307.5877] [INSPIRE].

    Article  ADS  Google Scholar 

  106. T. Dimofte, N. Garner, M. Geracie and J. Hilburn, Mirror symmetry and line operators, JHEP 02 (2020) 075 [arXiv:1908.00013] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  107. E. Lauria, P. Liendo, B. C. Van Rees and X. Zhao, Line and surface defects for the free scalar field, JHEP 01 (2021) 060 [arXiv:2005.02413] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  108. O. Aharony, M. Berkooz and S.-J. Rey, Rigid holography and six-dimensional 𝒩 = (2, 0) theories on AdS5 × 𝕊1, JHEP 03 (2015) 121 [arXiv:1501.02904] [INSPIRE].

    Article  ADS  Google Scholar 

  109. O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  110. I. Bah and E. Nardoni, Structure of Anomalies of 4d SCFTs from M5-branes, and Anomaly Inflow, JHEP 03 (2019) 024 [arXiv:1803.00136] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  111. I. Bah, F. Bonetti, R. Minasian and E. Nardoni, Class S Anomalies from M-theory Inflow, Phys. Rev. D 99 (2019) 086020 [arXiv:1812.04016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  112. I. Bah, F. Bonetti, R. Minasian and E. Nardoni, Anomalies of QFTs from M-theory and Holography, JHEP 01 (2020) 125 [arXiv:1910.04166] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  113. I. Bah, F. Bonetti, R. Minasian and E. Nardoni, Anomaly Inflow for M5-branes on Punctured Riemann Surfaces, JHEP 06 (2019) 123 [arXiv:1904.07250] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  114. Y. Tachikawa, On W-algebras and the symmetries of defects of 6d N = (2, 0) theory, JHEP 03 (2011) 043 [arXiv:1102.0076] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  115. S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].

  116. I. Bah, F. Bonetti, R. Minasian and P. Weck, Anomaly inflow methods for SCFT constructions in Type IIB, JHEP 02 (2021) 116 [arXiv:2002.10466] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  117. G. Bonelli, K. Maruyoshi and A. Tanzini, Wild quiver gauge theories, JHEP 02 (2012) 031 [arXiv:1112.1691] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  118. D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  119. D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  120. Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D 94 (2016) 065012 [arXiv:1509.00847] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  121. D. Xie and K. Ye, Argyres-Douglas matter and S-duality: Part II, JHEP 03 (2018) 186 [arXiv:1711.06684] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  122. T. Nishinaka and T. Uetoko, Argyres-Douglas theories and Liouville irregular states, JHEP 09 (2019) 104 [arXiv:1905.03795] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  123. Y. Tachikawa, N = 2 S-duality via outer-automorphism twists, J. Phys. A 44 (2011) 182001 [arXiv:1009.0339] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  124. O. Chacaltana, J. Distler and Y. Tachikawa, Gaiotto duality for the twisted A2N−1 series, JHEP 05 (2015) 075 [arXiv:1212.3952] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  125. O. Chacaltana, J. Distler and A. Trimm, A family of 4D 𝒩 = 2 interacting SCFTs from the twisted A2N series, arXiv:1412.8129 [INSPIRE].

  126. O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the twisted E6 theory, arXiv:1501.00357 [INSPIRE].

  127. Y. Tachikawa, Y. Wang and G. Zafrir, Comments on the twisted punctures of Aeven class S theory, JHEP 06 (2018) 163 [arXiv:1804.09143] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  128. Y. Wang and D. Xie, Codimension-two defects and Argyres-Douglas theories from outer-automorphism twist in 6d (2, 0) theories, Phys. Rev. D 100 (2019) 025001 [arXiv:1805.08839] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  129. C. Beem and W. Peelaers, Argyres-Douglas theories in class S without irregularity, arXiv:2005.12282 [INSPIRE].

  130. J. J. Heckman, P. Jefferson, T. Rudelius and C. Vafa, Punctures for theories of class \( {\mathcal{S}}_{\Gamma} \), JHEP 03 (2017) 171 [arXiv:1609.01281] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  131. S. S. Razamat, C. Vafa and G. Zafrir, 4d 𝒩 = 1 from 6d (1, 0), JHEP 04 (2017) 064 [arXiv:1610.09178] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  132. H.-C. Kim, S. S. Razamat, C. Vafa and G. Zafrir, E-string theory on Riemann surfaces, Fortsch. Phys. 66 (2018) 1700074 [arXiv:1709.02496] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  133. F. Hassler and J. J. Heckman, Punctures and dynamical systems, Lett. Math. Phys. 109 (2019) 449 [arXiv:1711.03973] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  134. H.-C. Kim, S. S. Razamat, C. Vafa and G. Zafrir, D-type conformal matter and SU/USp quivers, JHEP 06 (2018) 058 [arXiv:1802.00620] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  135. H.-C. Kim, S. S. Razamat, C. Vafa and G. Zafrir, Compactifications of ADE conformal matter on a torus, JHEP 09 (2018) 110 [arXiv:1806.07620] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  136. D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques, and applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  137. D. Poland and A. Stergiou, Exploring the minimal 4D 𝒩 = 1 SCFT, JHEP 12 (2015) 121 [arXiv:1509.06368] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  138. D. Xie and K. Yonekura, Search for a minimal N = 1 superconformal field theory in 4D, Phys. Rev. Lett. 117 (2016) 011604 [arXiv:1602.04817] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  139. M. Buican and T. Nishinaka, Small deformation of a simple 𝒩 = 2 superconformal theory, Phys. Rev. D 94 (2016) 125002 [arXiv:1602.05545] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  140. D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in 4D 𝒩 = 1 SCFTs, JHEP 07 (2017) 029 [arXiv:1702.00404] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  141. K. Maruyoshi, E. Nardoni and J. Song, Landscape of simple superconformal field theories in 4D, Phys. Rev. Lett. 122 (2019) 121601 [arXiv:1806.08353] [INSPIRE].

    Article  ADS  Google Scholar 

  142. D. M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  143. D. M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

  144. C. P. Herzog and K.-W. Huang, Boundary conformal field theory and a boundary central charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  145. C. P. Herzog and A. Shrestha, Two point functions in defect CFTs, JHEP 04 (2021) 226 [arXiv:2010.04995] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  146. C. P. Herzog and N. Kobayashi, The O(N) model with ϕ6 potential in ℝ2 × ℝ+, JHEP 09 (2020) 126 [arXiv:2005.07863] [INSPIRE].

    Article  ADS  Google Scholar 

  147. S. Guha and B. Nagaraj, Correlators of mixed symmetry operators in defect CFTs, JHEP 10 (2018) 198 [arXiv:1805.12341] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  148. C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B. C. van Rees, Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  149. C. Beem, L. Rastelli and B. C. van Rees, 𝒲 symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  150. D. M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  151. D. M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A proof of the conformal collider bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  152. D. Zwillinger, V. Moll, I. Gradshteyn and I. Ryzhik, Table of integrals, series, and products, eighth edition, Academic Press, U.S.A. (2014).

Download references

Author information

Authors and Affiliations

  1. Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA, 02138, USA

    Yifan Wang

  2. Jefferson Physical Laboratory, Harvard University, Cambridge, MA, 02138, USA

    Yifan Wang

Authors
  1. Yifan Wang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Yifan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.12648

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Defect a-theorem and a-maximization. J. High Energ. Phys. 2022, 61 (2022). https://doi.org/10.1007/JHEP02(2022)061

Download citation

  • Received: 17 December 2021

  • Accepted: 25 January 2022

  • Published: 08 February 2022

  • Version of record: 08 February 2022

  • DOI: https://doi.org/10.1007/JHEP02(2022)061

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anomalies in Field and String Theories
  • Boundary Quantum Field Theory
  • Conformal Field Theory
  • Supersymmetric Gauge Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载