+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Weyl anomalies of four dimensional conformal boundaries and defects

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 February 2022
  • Volume 2022, article number 166, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Weyl anomalies of four dimensional conformal boundaries and defects
Download PDF
  • Adam Chalabi1,
  • Christopher P. Herzog2,
  • Andy O’Bannon1,
  • Brandon Robinson3 &
  • …
  • Jacopo Sisti1,4 
  • 473 Accesses

  • 30 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Motivated by questions about quantum information and classification of quantum field theories, we consider Conformal Field Theories (CFTs) in spacetime dimension d ≥ 5 with a conformally-invariant spatial boundary (BCFTs) or 4-dimensional conformal defect (DCFTs). We determine the boundary or defect contribution to the Weyl anomaly using the standard algorithm, which includes imposing Wess-Zumino consistency and fixing finite counterterms. These boundary/defect contributions are built from the intrinsic and extrinsic curvatures, as well as the pullback of the ambient CFT’s Weyl tensor. For a co-dimension one boundary or defect (i.e. d = 5), we reproduce the 9 parity-even terms found by Astaneh and Solodukhin, and we discover 3 parity-odd terms. For larger co-dimension, we find 23 parity-even terms and 6 parity-odd terms. The coefficient of each term defines a “central charge” that characterizes the BCFT or DCFT. We show how several of the parity-even central charges enter physical observables, namely the displacement operator two-point function, the stress-tensor one-point function, and the universal part of the entanglement entropy. We compute several parity-even central charges in tractable examples: monodromy and conical defects of free, massless scalars and Dirac fermions in d = 6; probe branes in Anti-de Sitter (AdS) space dual to defects in CFTs with d ≥ 6; and Takayanagi’s AdS/BCFT with d = 5. We demonstrate that several of our examples obey the boundary/defect a-theorem, as expected.

Article PDF

Download to read the full article text

Similar content being viewed by others

Holography of a novel codimension-2 defect CFT

Article Open access 11 September 2025

Casimir effect, Weyl anomaly and displacement operator in boundary conformal field theory

Article Open access 17 July 2019

Deformed Heisenberg charges in three-dimensional gravity

Article Open access 30 March 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Crystal Field Theory
  • Field Theory and Polynomials
  • Neural Tube Defects
  • Rare variants
  • String Theory
  • Congenital heart defects
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

  2. M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].

  10. A. Cappelli, D. Friedan and J.I. Latorre, C-theorem and spectral representation, Nucl. Phys. B 352 (1991) 616 [INSPIRE].

  11. H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Z. Komargodski, The Constraints of Conformal Symmetry on RG Flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J.L. Cardy, Is There a c-Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

  14. H. Osborn, Derivation of a Four-dimensional c-Theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].

  15. I. Jack and H. Osborn, Analogs for the c-Theorem for Four-dimensional Renormalizable Field Theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

  16. H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].

  17. Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. H. Casini, E. Testé and G. Torroba, Markov Property of the Conformal Field Theory Vacuum and the a-Theorem, Phys. Rev. Lett. 118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].

  19. H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

  20. M.R. Douglas, Spaces of Quantum Field Theories, J. Phys. Conf. Ser. 462 (2013) 012011 [arXiv:1005.2779] [INSPIRE].

  21. O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2007) [DOI] [INSPIRE].

  23. D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].

  24. C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Henningson and K. Skenderis, Weyl anomaly for Wilson surfaces, JHEP 06 (1999) 012 [hep-th/9905163] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Gustavsson, On the Weyl anomaly of Wilson surfaces, JHEP 12 (2003) 059 [hep-th/0310037] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Asnin, Analyticity Properties of Graham-Witten Anomalies, Class. Quant. Grav. 25 (2008) 145013 [arXiv:0801.1469] [INSPIRE].

  28. A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Cvitan, P. Dominis Prester, S. Pallua, I. Smolić and T. Štemberga, Parity-odd surface anomalies and correlation functions on conical defects, arXiv:1503.06196 [INSPIRE].

  30. K. Jensen, A. O’Bannon, B. Robinson and R. Rodgers, From the Weyl Anomaly to Entropy of Two-Dimensional Boundaries and Defects, Phys. Rev. Lett. 122 (2019) 241602 [arXiv:1812.08745] [INSPIRE].

  31. C.P. Herzog, K.-W. Huang and K. Jensen, Universal Entanglement and Boundary Geometry in Conformal Field Theory, JHEP 01 (2016) 162 [arXiv:1510.00021] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. C. Herzog, K.-W. Huang and K. Jensen, Displacement Operators and Constraints on Boundary Central Charges, Phys. Rev. Lett. 120 (2018) 021601 [arXiv:1709.07431] [INSPIRE].

  33. A. Faraji Astaneh and S.N. Solodukhin, Boundary conformal invariants and the conformal anomaly in five dimensions, Phys. Lett. B 816 (2021) 136282 [arXiv:2102.07661] [INSPIRE].

  34. C.P. Herzog and K.-W. Huang, Boundary Conformal Field Theory and a Boundary Central Charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. Prochazka, The Conformal Anomaly in bCFT from Momentum Space Perspective, JHEP 10 (2018) 170 [arXiv:1804.01974] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a C -theorem in defect CFT, JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. K. Jensen and A. O’Bannon, Constraint on Defect and Boundary Renormalization Group Flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160] [INSPIRE].

  38. H. Casini, I. Salazar Landea and G. Torroba, Irreversibility in quantum field theories with boundaries, JHEP 04 (2019) 166 [arXiv:1812.08183] [INSPIRE].

  39. Y. Wang, Defect a-theorem and a-maximization, JHEP 02 (2022) 061 [arXiv:2101.12648] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

  41. D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

  42. H. Casini, I. Salazar Landea and G. Torroba, The g-theorem and quantum information theory, JHEP 10 (2016) 140 [arXiv:1607.00390] [INSPIRE].

  43. G. Cuomo, Z. Komargodski and A. Raviv-Moshe, Renormalization Group Flows on Line Defects, Phys. Rev. Lett. 128 (2022) 021603 [arXiv:2108.01117] [INSPIRE].

  44. W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].

  45. J.J. Heckman and T. Rudelius, Top Down Approach to 6D SCFTs, J. Phys. A 52 (2019) 093001 [arXiv:1805.06467] [INSPIRE].

  46. J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].

  47. D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  49. J.J. Heckman, More on the Matter of 6D SCFTs, Phys. Lett. B 747 (2015) 73 [Erratum ibid. 808 (2020) 135675] [arXiv:1408.0006] [INSPIRE].

  50. M. Del Zotto, J.J. Heckman, D.R. Morrison and D.S. Park, 6D SCFTs and Gravity, JHEP 06 (2015) 158 [arXiv:1412.6526] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. L. Bhardwaj, Classification of 6d \( \mathcal{N} \) = (1, 0) gauge theories, JHEP 11 (2015) 002 [arXiv:1502.06594] [INSPIRE].

  53. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  54. C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].

  55. C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].

  56. K. Jensen, E. Shaverin and A. Yarom, ’t Hooft anomalies and boundaries, JHEP 01 (2018) 085 [arXiv:1710.07299] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. R. Thorngren and Y. Wang, Anomalous symmetries end at the boundary, JHEP 09 (2021) 017 [arXiv:2012.15861] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  58. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. V.E. Korepin, Universality of Entropy Scaling in One Dimensional Gapless Models, Phys. Rev. Lett. 92 (2004) 096402 [cond-mat/0311056] [INSPIRE].

  60. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  61. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: A Non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193].

    Article  MATH  Google Scholar 

  62. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. L.-Y. Hung, R.C. Myers and M. Smolkin, On Holographic Entanglement Entropy and Higher Curvature Gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  64. B.R. Safdi, Exact and Numerical Results on Entanglement Entropy in (5 + 1)-Dimensional CFT, JHEP 12 (2012) 005 [arXiv:1206.5025] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. Y. Nakayama, CP-violating CFT and trace anomaly, Nucl. Phys. B 859 (2012) 288 [arXiv:1201.3428] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. J.S. Dowker and R. Critchley, The Stress Tensor Conformal Anomaly for Scalar and Spinor Fields, Phys. Rev. D 16 (1977) 3390 [INSPIRE].

  68. S.M. Christensen and M.J. Duff, Axial and Conformal Anomalies for Arbitrary Spin in Gravity and Supergravity, Phys. Lett. B 76 (1978) 571 [INSPIRE].

  69. S.M. Christensen and M.J. Duff, New Gravitational Index Theorems and Supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

  70. L. Bonora, S. Giaccari and B. Lima de Souza, Trace anomalies in chiral theories revisited, JHEP 07 (2014) 117 [arXiv:1403.2606] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  71. L. Bonora, A.D. Pereira and B. Lima de Souza, Regularization of energy-momentum tensor correlators and parity-odd terms, JHEP 06 (2015) 024 [arXiv:1503.03326] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. L. Bonora and B. Lima de Souza, Pure contact term correlators in CFT, Bled Workshops Phys. 16 (2015) 22 [arXiv:1511.06635] [INSPIRE].

  73. F. Bastianelli and R. Martelli, On the trace anomaly of a Weyl fermion, JHEP 11 (2016) 178 [arXiv:1610.02304] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. L. Bonora, M. Cvitan, P. Dominis Prester, A. Duarte Pereira, S. Giaccari and T. Štemberga, Axial gravity, massless fermions and trace anomalies, Eur. Phys. J. C 77 (2017) 511 [arXiv:1703.10473] [INSPIRE].

  75. Y. Nakayama, Realization of impossible anomalies, Phys. Rev. D 98 (2018) 085002 [arXiv:1804.02940] [INSPIRE].

  76. L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, M. Paulišić and T. Štemberga, Axial gravity: a non-perturbative approach to split anomalies, Eur. Phys. J. C 78 (2018) 652 [arXiv:1807.01249] [INSPIRE].

  77. F. Bastianelli and M. Broccoli, On the trace anomaly of a Weyl fermion in a gauge background, Eur. Phys. J. C 79 (2019) 292 [arXiv:1808.03489] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  78. M.B. Fröb and J. Zahn, Trace anomaly for chiral fermions via Hadamard subtraction, JHEP 10 (2019) 223 [arXiv:1904.10982] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. L. Bonora and R. Soldati, On the trace anomaly for Weyl fermions, arXiv:1909.11991 [INSPIRE].

  80. F. Bastianelli and M. Broccoli, Axial gravity and anomalies of fermions, Eur. Phys. J. C 80 (2020) 276 [arXiv:1911.02271] [INSPIRE].

    Article  ADS  Google Scholar 

  81. K. Nakagawa and Y. Nakayama, CP-violating super Weyl anomaly, Phys. Rev. D 101 (2020) 105013 [arXiv:2002.01128] [INSPIRE].

  82. S. Abdallah, S.A. Franchino-Viñas and M.B. Fröb, Trace anomaly for Weyl fermions using the Breitenlohner-Maison scheme for γ*, JHEP 03 (2021) 271 [arXiv:2101.11382] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  83. C.R. Graham and N. Reichert, Higher-dimensional Willmore energies via minimal submanifold asymptotics, Asian J. Math. 24 (2020) 571 [arXiv:1704.03852] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  84. T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

  85. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

  87. I. Affleck, Universal Term in the Free Energy at a Critical Point and the Conformal Anomaly, Phys. Rev. Lett. 56 (1986) 746 [INSPIRE].

  88. L. Bonora, P. Pasti and M. Bregola, Weyl COCYCLES, Class. Quant. Grav. 3 (1986) 635 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2,0) tensor multiplet in six-dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080 [arXiv:1506.03807] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. B. Grinstein, D. Stone, A. Stergiou and M. Zhong, Challenge to the a-Theorem in Six Dimensions, Phys. Rev. Lett. 113 (2014) 231602 [arXiv:1406.3626] [INSPIRE].

  95. J.J. Heckman and T. Rudelius, Evidence for C-theorems in 6D SCFTs, JHEP 09 (2015) 218 [arXiv:1506.06753] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. J.A. Gracey, I. Jack and C. Poole, The a-function in six dimensions, JHEP 01 (2016) 174 [arXiv:1507.02174] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. A. Stergiou, D. Stone and L.G. Vitale, Constraints on Perturbative RG Flows in Six Dimensions, JHEP 08 (2016) 010 [arXiv:1604.01782] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. J.J. Heckman, S. Kundu and H.Y. Zhang, Effective field theory of 6D SUSY RG Flows, Phys. Rev. D 104 (2021) 085017 [arXiv:2103.13395] [INSPIRE].

  99. M. Beccaria and A.A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d theories, JHEP 01 (2016) 001 [arXiv:1510.02685] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. F. Bastianelli, S. Frolov and A.A. Tseytlin, Three point correlators of stress tensors in maximally supersymmetric conformal theories in D = 3 and D = 6, Nucl. Phys. B 578 (2000) 139 [hep-th/9911135] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Renyi entropy, JHEP 01 (2015) 080 [arXiv:1407.8171] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  102. L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  103. A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

  104. M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  105. T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. C.P. Herzog and I. Shamir, On Marginal Operators in Boundary Conformal Field Theory, JHEP 10 (2019) 088 [arXiv:1906.11281] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. C.P. Herzog and I. Shamir, How a-type anomalies can depend on marginal couplings, Phys. Rev. Lett. 124 (2020) 011601 [arXiv:1907.04952] [INSPIRE].

  110. L. Bianchi, Marginal deformations and defect anomalies, Phys. Rev. D 100 (2019) 126018 [arXiv:1907.06193] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  111. M. Nozaki, T. Takayanagi and T. Ugajin, Central Charges for BCFTs and Holography, JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. D.V. Fursaev and S.N. Solodukhin, Anomalies, entropy and boundaries, Phys. Rev. D 93 (2016) 084021 [arXiv:1601.06418] [INSPIRE].

  113. L. Bianchi and M. Lemos, Superconformal surfaces in four dimensions, JHEP 06 (2020) 056 [arXiv:1911.05082] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. Y. Wang, Surface defect, anomalies and b-extremization, JHEP 11 (2021) 122 [arXiv:2012.06574] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  115. F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].

  116. F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  117. J.S. Dowker and J.P. Schofield, Conformal Transformations and the Effective Action in the Presence of Boundaries, J. Math. Phys. 31 (1990) 808 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. D. Fursaev, Conformal anomalies of CFT’s with boundaries, JHEP 12 (2015) 112 [arXiv:1510.01427] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  119. S.N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016) 131 [arXiv:1510.04566] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  120. J. Melmed, Conformal Invariance and the Regularized One Loop Effective Action, J. Phys. A 21 (1988) L1131.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. I.G. Moss, Boundary Terms in the Heat Kernel Expansion, Class. Quant. Grav. 6 (1989) 759 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. J.M. Martin-Garcia, xAct, Efficient Tensor Computer Algebra for Mathematica, http://www.xact.es (2004).

  123. T.P. Branson and B. Ørsted, Explicit functional determinants in four dimensions, Proc. Am. Math. Soc. 113 (1991) 669.

    Article  MathSciNet  MATH  Google Scholar 

  124. D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: A New method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  125. D. Deutsch and P. Candelas, Boundary Effects in Quantum Field Theory, Phys. Rev. D 20 (1979) 3063 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  126. R.-X. Miao and C.-S. Chu, Universality for Shape Dependence of Casimir Effects from Weyl Anomaly, JHEP 03 (2018) 046 [arXiv:1706.09652] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The Background Field Method and the Ultraviolet Structure of the Supersymmetric Nonlinear Sigma Model, Annals Phys. 134 (1981) 85 [INSPIRE].

    Article  ADS  Google Scholar 

  128. R. Rodgers, Holographic entanglement entropy from probe M-theory branes, JHEP 03 (2019) 092 [arXiv:1811.12375] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. D.V. Fursaev, Quantum Entanglement on Boundaries, JHEP 07 (2013) 119 [arXiv:1305.2334] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  130. A. Faraji Astaneh, C. Berthiere, D. Fursaev and S.N. Solodukhin, Holographic calculation of entanglement entropy in the presence of boundaries, Phys. Rev. D 95 (2017) 106013 [arXiv:1703.04186] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  131. S. Giombi, E. Helfenberger, Z. Ji and H. Khanchandani, Monodromy defects from hyperbolic space, JHEP 02 (2022) 041 [arXiv:2102.11815] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  132. L. Bianchi, A. Chalabi, V. Procházka, B. Robinson and J. Sisti, Monodromy defects in free field theories, JHEP 08 (2021) 013 [arXiv:2104.01220] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. J.S. Dowker, Renyi entropy for spherical monodromy of free scalar fields in even dimensions, arXiv:2112.09031 [INSPIRE].

  134. E. Lauria, P. Liendo, B.C. Van Rees and X. Zhao, Line and surface defects for the free scalar field, JHEP 01 (2021) 060 [arXiv:2005.02413] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. C.P. Herzog and A. Shrestha, Two point functions in defect CFTs, JHEP 04 (2021) 226 [arXiv:2010.04995] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. C.P. Herzog and Y. Wang, Estimation for Entanglement Negativity of Free Fermions, J. Stat. Mech. 1607 (2016) 073102 [arXiv:1601.00678] [INSPIRE].

  137. C.P. Herzog and M. Spillane, Thermal corrections to Rényi entropies for free fermions, JHEP 04 (2016) 124 [arXiv:1506.06757] [INSPIRE].

    ADS  MATH  Google Scholar 

  138. Y. Zhang, Graham-Witten’s conformal invariant for closed four dimensional submanifolds, arXiv:1703.08611 [INSPIRE].

  139. T.J. Willmore, Note on embedded surfaces, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 11B (1965) 493.

  140. K. Jensen and A. O’Bannon, Holography, Entanglement Entropy, and Conformal Field Theories with Boundaries or Defects, Phys. Rev. D 88 (2013) 106006 [arXiv:1309.4523] [INSPIRE].

    Article  ADS  Google Scholar 

  141. A. Karch and C.F. Uhlemann, Generalized gravitational entropy of probe branes: flavor entanglement holographically, JHEP 05 (2014) 017 [arXiv:1402.4497] [INSPIRE].

    Article  ADS  Google Scholar 

  142. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  143. A. Chalabi, S.P. Kumar, A. O’Bannon, A. Pribytok, R. Rodgers and J. Sisti, Holographic entanglement entropy of the Coulomb branch, JHEP 04 (2021) 153 [arXiv:2012.05188] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  144. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  146. D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement entropy in AdS4/BCFT3, JHEP 11 (2017) 076 [arXiv:1708.05080] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  147. R.-X. Miao, Casimir Effect, Weyl Anomaly and Displacement Operator in Boundary Conformal Field Theory, JHEP 07 (2019) 098 [arXiv:1808.05783] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  148. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  149. A. Faraji Astaneh and S.N. Solodukhin, Holographic calculation of boundary terms in conformal anomaly, Phys. Lett. B 769 (2017) 25 [arXiv:1702.00566] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  150. R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary conformal field theory, Phys. Rev. D 96 (2017) 046005 [arXiv:1701.04275] [INSPIRE].

  151. C.-S. Chu, R.-X. Miao and W.-Z. Guo, On New Proposal for Holographic BCFT, JHEP 04 (2017) 089 [arXiv:1701.07202] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. R.-X. Miao, Holographic BCFT with Dirichlet Boundary Condition, JHEP 02 (2019) 025 [arXiv:1806.10777] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  153. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  154. E. D’Hoker, J. Estes, M. Gutperle, D. Krym and P. Sorba, Half-BPS supergravity solutions and superalgebras, JHEP 12 (2008) 047 [arXiv:0810.1484] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  155. A. Chalabi, A. O’Bannon, B. Robinson and J. Sisti, Central charges of 2d superconformal defects, JHEP 05 (2020) 095 [arXiv:2003.02857] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions, JHEP 10 (2016) 012 [arXiv:1412.2781] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. M. Gutperle and C.F. Uhlemann, Surface defects in holographic 5d SCFTs, JHEP 04 (2021) 134 [arXiv:2012.14547] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. STAG Research Centre, Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

    Adam Chalabi, Andy O’Bannon & Jacopo Sisti

  2. Mathematics Department, King’s College London, The Strand, London, WC2R 2LS, UK

    Christopher P. Herzog

  3. Instituut voor Theoretische Fysica, K.U. Leuven, Celestijnenlaan 200D, BE-3001, Leuven, Belgium

    Brandon Robinson

  4. Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden

    Jacopo Sisti

Authors
  1. Adam Chalabi
    View author publications

    Search author on:PubMed Google Scholar

  2. Christopher P. Herzog
    View author publications

    Search author on:PubMed Google Scholar

  3. Andy O’Bannon
    View author publications

    Search author on:PubMed Google Scholar

  4. Brandon Robinson
    View author publications

    Search author on:PubMed Google Scholar

  5. Jacopo Sisti
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Adam Chalabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2111.14713

Supplementary Information

ESM 1

(NB 44750 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalabi, A., Herzog, C.P., O’Bannon, A. et al. Weyl anomalies of four dimensional conformal boundaries and defects. J. High Energ. Phys. 2022, 166 (2022). https://doi.org/10.1007/JHEP02(2022)166

Download citation

  • Received: 16 December 2021

  • Accepted: 03 February 2022

  • Published: 21 February 2022

  • Version of record: 21 February 2022

  • DOI: https://doi.org/10.1007/JHEP02(2022)166

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anomalies in Field and String Theories
  • Boundary Quantum Field Theory
  • Conformal Field Theory
  • Field Theories in Higher Dimensions
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载