+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Global analysis of leptophilic Z′ bosons

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 June 2021
  • Volume 2021, article number 68, (2021)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Global analysis of leptophilic Z′ bosons
Download PDF
  • Andrzej J. Buras1,
  • Andreas Crivellin2,3,4,
  • Fiona Kirk  ORCID: orcid.org/0000-0002-2234-52163,4,
  • Claudio Andrea Manzari3,4 &
  • …
  • Marc Montull3,4 
  • 518 Accesses

  • 59 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

New neutral heavy gauge bosons (Z′) are predicted within many extensions of the Standard Model. While in case they couple to quarks the LHC bounds are very stringent, leptophilic Z′ bosons (even with sizable couplings) can be much lighter and therefore lead to interesting quantum effects in precision observables (like (g − 2)μ) and generate flavour violating decays of charged leptons. In particular, \( \mathrm{\ell}\to \mathrm{\ell}^{\prime }v\overline{v} \) decays, anomalous magnetic moments of charged leptons, ℓ → ℓ′γ and ℓ → 3ℓ′ decays place stringent limits on leptophilic Z′ bosons. Furthermore, in case of mixing Z′ with the SM Z, Z pole observables are affected. In light of these many observables we perform a global fit to leptophilic Z′ models with the main goal of finding the bounds for the Z′ couplings to leptons. To this end we consider a number of scenarios for these couplings. While in generic scenarios correlations are weak, this changes once additional constraints on the couplings are imposed. In particular, if one considers an Lμ − Lτ symmetry broken only by left-handed rotations, or considers the case of τ − μ couplings only. In the latter setup, on can explain the (g − 2)μ anomaly and the hint for lepton flavour universality violation in \( \tau \to \mu v\overline{v}/\tau \to ev\overline{v} \) without violating bounds from electroweak precision observables.

Article PDF

Download to read the full article text

Similar content being viewed by others

Prospects for a flavour violating \(Z^\prime \) explanation of \(\Delta a_{\mu ,e}\)

Article Open access 28 September 2022

Top-philic Z′ forces at the LHC

Article Open access 13 March 2018

Diboson at the LHC vs LEP

Article Open access 05 March 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Elementary Particles, Quantum Field Theory
  • Field Theory and Polynomials
  • Matter-Antimatter Interactions
  • Metrology and Fundamental Constants
  • Particle Physics
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search of the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a New Boson at a Mass of 125GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. ATLAS collaboration, Search for new phenomena in dijet events using 37 fb−1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].

  4. CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions at \( \sqrt{s} \) = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130 [arXiv:1806.00843] [INSPIRE].

  5. ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].

  6. CMS collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb−1 of data at \( \sqrt{s} \) = 13 TeV, CMS-PAS-EXO-19-019 (2019).

  7. CMS collaboration, Search for resonant and nonresonant new phenomena in high-mass dilepton final states at \( \sqrt{s} \) = 13 TeV, arXiv:2103.02708 [INSPIRE].

  8. P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z′ boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].

  9. P. Langacker, The Physics of Heavy Z′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. J. Buras, F. De Fazio and J. Girrbach, The Anatomy of Z′ and Z with Flavour Changing Neutral Currents in the Flavour Precision Era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  11. W. Altmannshofer and I. Yavin, Predictions for lepton flavor universality violation in rare B decays in models with gauged Lμ − Lτ, Phys. Rev. D 92 (2015) 075022 [arXiv:1508.07009] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Crivellin, L. Hofer, J. Matias, U. Nierste, S. Pokorski and J. Rosiek, Lepton-flavour violating B decays in generic Z′ models, Phys. Rev. D 92 (2015) 054013 [arXiv:1504.07928] [INSPIRE].

    Article  ADS  Google Scholar 

  13. B. C. Allanach, J. M. Butterworth and T. Corbett, Collider constraints on Z′ models for neutral current B-anomalies, JHEP 08 (2019) 106 [arXiv:1904.10954] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Buras, Gauge Theory of Weak Decays, Cambridge University Press, Cambridge U.K. (2020) [INSPIRE].

  15. ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

  16. F. del Aguila, M. Chala, J. Santiago and Y. Yamamoto, Collider limits on leptophilic interactions, JHEP 03 (2015) 059 [arXiv:1411.7394] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  18. P. J. Mohr, D. B. Newell and B. N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys. 88 (2016) 035009 [arXiv:1507.07956] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

  20. Muon g-2 collaboration, Magnetic-field measurement and analysis for the Muon g – 2 Experiment at Fermilab, Phys. Rev. A 103 (2021) 042208 [arXiv:2104.03201] [INSPIRE].

  21. Muon g-2 collaboration, Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g − 2 Experiment, Phys. Rev. D 103 (2021) 072002 [arXiv:2104.03247] [INSPIRE].

  22. Muon g-2 collaboration, Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab, Phys. Rev. Accel. Beams 24 (2021) 044002 [arXiv:2104.03240] [INSPIRE].

  23. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Foot, X.G. He, H. Lew and R. R. Volkas, Model for a light Z′ boson, Phys. Rev. D 50 (1994) 4571 [hep-ph/9401250] [INSPIRE].

  25. S. N. Gninenko and N. V. Krasnikov, The Muon anomalous magnetic moment and a new light gauge boson, Phys. Lett. B 513 (2001) 119 [hep-ph/0102222] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. Murakami, The Impact of lepton flavor violating Z′ bosons on muon g − 2 and other muon observables, Phys. Rev. D 65 (2002) 055003 [hep-ph/0110095] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Baek, N. G. Deshpande, X. G. He and P. Ko, Muon anomalous g − 2 and gauged Lμ – Lτ models, Phys. Rev. D 64 (2001) 055006 [hep-ph/0104141] [INSPIRE].

  28. E. Ma, D. P. Roy and S. Roy, Gauged Lμ − Lτ with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos, Phys. Lett. B 525 (2002) 101 [hep-ph/0110146] [INSPIRE].

  29. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Heeck and W. Rodejohann, Gauged Lμ − Lτ Symmetry at the Electroweak Scale, Phys. Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].

    Article  ADS  Google Scholar 

  31. H. Davoudiasl, H.-S. Lee and W. J. Marciano, Dark Side of Higgs Diphoton Decays and Muon g-2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. D. Carone, Flavor-Nonuniversal Dark Gauge Bosons and the Muon g-2, Phys. Lett. B 721 (2013) 118 [arXiv:1301.2027] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  33. K. Harigaya, T. Igari, M.M. Nojiri, M. Takeuchi and K. Tobe, Muon g − 2 and LHC phenomenology in the Lμ − Lτ gauge symmetric model, JHEP 03 (2014) 105 [arXiv:1311.0870] [INSPIRE].

    Article  ADS  Google Scholar 

  34. W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in Lμ – Lτ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Tomar and S. Mohanty, Muon anomalous magnetic moment and positron excess at AMS-02 in a gauged horizontal symmetric model, JHEP 11 (2014) 133 [arXiv:1403.6301] [INSPIRE].

    Article  ADS  Google Scholar 

  36. W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H.-S. Lee, Muon g − 2 anomaly and dark leptonic gauge boson, Phys. Rev. D 90 (2014) 091702 [arXiv:1408.4256] [INSPIRE].

    Article  ADS  Google Scholar 

  38. B. Allanach, F. S. Queiroz, A. Strumia and S. Sun, Z′ models for the LHCb and g − 2 muon anomalies, Phys. Rev. D 93 (2016) 055045 [Erratum ibid. 95 (2017) 119902] [arXiv:1511.07447] [INSPIRE].

  39. J. Heeck, Lepton flavor violation with light vector bosons, Phys. Lett. B 758 (2016) 101 [arXiv:1602.03810] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Patra, S. Rao, N. Sahoo and N. Sahu, Gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model in light of muon g − 2 anomaly, neutrino mass and dark matter phenomenology, Nucl. Phys. B 917 (2017) 317 [arXiv:1607.04046] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  41. W. Altmannshofer, C.-Y. Chen, P. S. Bhupal Dev and A. Soni, Lepton flavor violating Z′ explanation of the muon anomalous magnetic moment, Phys. Lett. B 762 (2016) 389 [arXiv:1607.06832] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Iguro, K. A. Mohan and C. P. Yuan, Detecting a μτ-philic Z′ boson via photon initiated processes at the LHC, Phys. Rev. D 101 (2020) 075011 [arXiv:2001.09079] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Iguro, Y. Omura and M. Takeuchi, Probing μτ flavor-violating solutions for the muon g − 2 anomaly at Belle II, JHEP 09 (2020) 144 [arXiv:2002.12728] [INSPIRE].

    Article  ADS  Google Scholar 

  44. X.G. He, G. C. Joshi, H. Lew and R. R. Volkas, New Z′ phenomenology, Phys. Rev. D 43 (1991) 22 [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Foot, New Physics From Electric Charge Quantization?, Mod. Phys. Lett. A 6 (1991) 527 [INSPIRE].

    Article  ADS  Google Scholar 

  46. X.-G. He, G. C. Joshi, H. Lew and R. R. Volkas, Simplest Z′ model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].

    Article  ADS  Google Scholar 

  47. P. Binetruy, S. Lavignac, S. T. Petcov and P. Ramond, Quasidegenerate neutrinos from an Abelian family symmetry, Nucl. Phys. B 496 (1997) 3 [hep-ph/9610481] [INSPIRE].

    Article  ADS  Google Scholar 

  48. N. F. Bell and R. R. Volkas, Bottom up model for maximal ντ − ντ mixing, Phys. Rev. D 63 (2001) 013006 [hep-ph/0008177] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Choubey and W. Rodejohann, A Flavor symmetry for quasi-degenerate neutrinos: Lμ − Lτ, Eur. Phys. J. C 40 (2005) 259 [hep-ph/0411190] [INSPIRE].

  50. G. Dutta, A. S. Joshipura and K. B. Vijaykumar, Leptonic flavor violations in the presence of an extra Z, Phys. Rev. D 50 (1994) 2109 [hep-ph/9405292] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining h → μ± τ ∓, B → K∗ μ+ μ− and B → K μ+ μ−/B → K e+ e− in a two-Higgs-doublet model with gauged Lμ − Lτ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs → μτ in Abelian and non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281 [arXiv:1412.3671] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  53. W. Altmannshofer, M. Carena and A. Crivellin, Lμ − Lτ theory of Higgs flavor violation and (g − 2)μ, Phys. Rev. D 94 (2016) 095026 [arXiv:1604.08221] [INSPIRE].

    Article  ADS  Google Scholar 

  54. BaBar collaboration, Measurements of Charged Current Lepton Universality and |Vus| using Tau Lepton Decays to \( {e}^{-}{\overline{v}}_e{v}_{\tau } \), \( {\mu}^{-}{\overline{v}}_{\mu }{v}_{\tau } \), π− ντ, and K − ντ, Phys. Rev. Lett. 105 (2010) 051602 [arXiv:0912.0242] [INSPIRE].

  55. HFLAV collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C 81 (2021) 226 [arXiv:1909.12524] [INSPIRE].

  56. B. Belfatto, R. Beradze and Z. Berezhiani, The CKM unitarity problem: A trace of new physics at the TeV scale?, Eur. Phys. J. C 80 (2020) 149 [arXiv:1906.02714] [INSPIRE].

    Article  ADS  Google Scholar 

  57. Y. Grossman, E. Passemar and S. Schacht, On the Statistical Treatment of the Cabibbo Angle Anomaly, JHEP 07 (2020) 068 [arXiv:1911.07821] [INSPIRE].

    Article  ADS  Google Scholar 

  58. K. Shiells, P. G. Blunden and W. Melnitchouk, Electroweak axial structure functions and improved extraction of the Vud CKM matrix element, arXiv:2012.01580 [INSPIRE].

  59. C.-Y. Seng, X. Feng, M. Gorchtein and L.-C. Jin, Joint lattice QCD–dispersion theory analysis confirms the quark-mixing top-row unitarity deficit, Phys. Rev. D 101 (2020) 111301 [arXiv:2003.11264] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. M. Coutinho, A. Crivellin and C. A. Manzari, Global Fit to Modified Neutrino Couplings and the Cabibbo-Angle Anomaly, Phys. Rev. Lett. 125 (2020) 071802 [arXiv:1912.08823] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Crivellin and M. Hoferichter, β Decays as Sensitive Probes of Lepton Flavor Universality, Phys. Rev. Lett. 125 (2020) 111801 [arXiv:2002.07184] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C. A. Manzari, A. M. Coutinho and A. Crivellin, Modified lepton couplings and the Cabibbo-angle anomaly, PoS(LHCP2020)242 (2021) [arXiv:2009.03877] [INSPIRE].

  63. B. Capdevila, A. Crivellin, C. A. Manzari and M. Montull, Explaining b → sℓ+ ℓ− and the Cabibbo angle anomaly with a vector triplet, Phys. Rev. D 103 (2021) 015032 [arXiv:2005.13542] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Crivellin, F. Kirk, C. A. Manzari and M. Montull, Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly, JHEP 12 (2020) 166 [arXiv:2008.01113] [INSPIRE].

    Article  ADS  Google Scholar 

  65. M. Kirk, Cabibbo anomaly versus electroweak precision tests: An exploration of extensions of the Standard Model, Phys. Rev. D 103 (2021) 035004 [arXiv:2008.03261] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A. K. Alok, A. Dighe, S. Gangal and J. Kumar, The role of non-universal Z couplings in explaining the Vus anomaly, arXiv:2010.12009 [INSPIRE].

  67. A. Crivellin, C. A. Manzari, M. Alguero and J. Matias, Combined Explanation of the Z → \( b\overline{b} \) Forward-Backward Asymmetry, the Cabibbo Angle Anomaly, τ → μνν and b → sℓ+ ℓ− Data, arXiv:2010.14504 [INSPIRE].

  68. A. Crivellin, F. Kirk, C. A. Manzari and L. Panizzi, Searching for lepton flavor universality violation and collider signals from a singly charged scalar singlet, Phys. Rev. D 103 (2021) 073002 [arXiv:2012.09845] [INSPIRE].

    Article  ADS  Google Scholar 

  69. A. Crivellin and L. Schnell, Combined Constraints on First Generation Leptoquarks, arXiv:2104.06417 [INSPIRE].

  70. A. Crivellin, M. Hoferichter and C. A. Manzari, The Fermi constant from muon decay versus electroweak fits and CKM unitarity, arXiv:2102.02825 [INSPIRE].

  71. A. Crivellin, C. A. Manzari and M. Montull, Correlating Non-Resonant Di-Electron Searches at the LHC to the Cabibbo-Angle Anomaly and Lepton Flavour Universality Violation, arXiv:2103.12003 [INSPIRE].

  72. A. J. Buras and J. Girrbach, Left-handed Z′ and Z FCNC quark couplings facing new b → sμ+ μ− data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].

    Article  ADS  Google Scholar 

  73. R. Gauld, F. Goertz and U. Haisch, On minimal Z′ explanations of the B → K ∗ μ+ μ− anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].

    Article  ADS  Google Scholar 

  74. R. Gauld, F. Goertz and U. Haisch, An explicit Z′-boson explanation of the B → K ∗ μ+ μ− anomaly, JHEP 01 (2014) 069 [arXiv:1310.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].

    Article  ADS  Google Scholar 

  76. C. Niehoff, P. Stangl and D. M. Straub, Violation of lepton flavour universality in composite Higgs models, Phys. Lett. B 747 (2015) 182 [arXiv:1503.03865] [INSPIRE].

    Article  ADS  Google Scholar 

  77. D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the b → s anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Carmona and F. Goertz, Lepton Flavor and Nonuniversality from Minimal Composite Higgs Setups, Phys. Rev. Lett. 116 (2016) 251801 [arXiv:1510.07658] [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Falkowski, M. Nardecchia and R. Ziegler, Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model, JHEP 11 (2015) 173 [arXiv:1509.01249] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Celis, W.-Z. Feng and D. Lüst, Stringy explanation of b → sℓ+ ℓ− anomalies, JHEP 02 (2016) 007 [arXiv:1512.02218] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Celis, J. Fuentes-Martin, M. Jung and H. Serodio, Family nonuniversal Z′ models with protected flavor-changing interactions, Phys. Rev. D 92 (2015) 015007 [arXiv:1505.03079] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].

    Article  ADS  Google Scholar 

  84. A. Crivellin, J. Fuentes-Martin, A. Greljo and G. Isidori, Lepton Flavor Non-Universality in B decays from Dynamical Yukawas, Phys. Lett. B 766 (2017) 77 [arXiv:1611.02703] [INSPIRE].

    Article  ADS  Google Scholar 

  85. I. Garcia Garcia, LHCb anomalies from a natural perspective, JHEP 03 (2017) 040 [arXiv:1611.03507] [INSPIRE].

    Article  ADS  Google Scholar 

  86. G. Faisel and J. Tandean, Connecting b → \( s\mathrm{\ell}\overline{\mathrm{\ell}} \) anomalies to enhanced rare nonleptonic \( {\overline{B}}_s^0 \) decays in Z′ model, JHEP 02 (2018) 074 [arXiv:1710.11102] [INSPIRE].

    Article  ADS  Google Scholar 

  87. S. F. King, Flavourful Z′ models for \( {R}_{K^{\left(\ast \right)}} \), JHEP 08 (2017) 019 [arXiv:1706.06100] [INSPIRE].

    Article  ADS  Google Scholar 

  88. C.-W. Chiang, X.-G. He, J. Tandean and X.-B. Yuan, \( {R}_{K^{\left(\ast \right)}} \) and related b → \( s\mathrm{\ell}\overline{\mathrm{\ell}} \) anomalies in minimal flavor violation framework with Z boson, Phys. Rev. D 96 (2017) 115022 [arXiv:1706.02696] [INSPIRE].

  89. S. Di Chiara et al., Minimal flavor-changing Z′ models and muon g − 2 after the \( {R}_{K^{\ast }} \) measurement, Nucl. Phys. B 923 (2017) 245 [arXiv:1704.06200] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  90. P. Ko, Y. Omura, Y. Shigekami and C. Yu, LHCb anomaly and B physics in flavored Z′ models with flavored Higgs doublets, Phys. Rev. D 95 (2017) 115040 [arXiv:1702.08666] [INSPIRE].

    Article  ADS  Google Scholar 

  91. F. Sannino, P. Stangl, D. M. Straub and A. E. Thomsen, Flavor Physics and Flavor Anomalies in Minimal Fundamental Partial Compositeness, Phys. Rev. D 97 (2018) 115046 [arXiv:1712.07646] [INSPIRE].

    Article  ADS  Google Scholar 

  92. S. Raby and A. Trautner, Vectorlike chiral fourth family to explain muon anomalies, Phys. Rev. D 97 (2018) 095006 [arXiv:1712.09360] [INSPIRE].

    Article  ADS  Google Scholar 

  93. A. Falkowski, S. F. King, E. Perdomo and M. Pierre, Flavourful Z′ portal for vector-like neutrino Dark Matter and \( {R}_{K^{\left(\ast \right)}} \), JHEP 08 (2018) 061 [arXiv:1803.04430] [INSPIRE].

    Article  ADS  Google Scholar 

  94. R. H. Benavides, L. Muñoz, W. A. Ponce, O. Rodríguez and E. Rojas, Minimal Z′ models for flavor anomalies, J. Phys. G 47 (2020) 075003 [arXiv:1812.05077] [INSPIRE].

    Article  ADS  Google Scholar 

  95. P. Maji, P. Nayek and S. Sahoo, Implication of family non-universal Z′ model to rare exclusive b → \( s\left(l\overline{l},v\overline{v}\right) \) transitions, PTEP 2019 (2019) 033B06 [arXiv:1811.03869] [INSPIRE].

  96. S. Singirala, S. Sahoo and R. Mohanta, Exploring dark matter, neutrino mass and \( {R}_{K^{\left(\ast \right)},\phi } \) anomalies in Lμ − Lτ model, Phys. Rev. D 99 (2019) 035042 [arXiv:1809.03213] [INSPIRE].

    Article  ADS  Google Scholar 

  97. D. Guadagnoli, M. Reboud and O. Sumensari, A gauged horizontal SU(2) symmetry and \( {R}_{K^{\left(\ast \right)}} \), JHEP 11 (2018) 163 [arXiv:1807.03285] [INSPIRE].

    Article  ADS  Google Scholar 

  98. B. C. Allanach and J. Davighi, Third family hypercharge model for \( {R}_{K^{\left(\ast \right)}} \) and aspects of the fermion mass problem, JHEP 12 (2018) 075 [arXiv:1809.01158] [INSPIRE].

    Article  ADS  Google Scholar 

  99. M. Kohda, T. Modak and A. Soffer, Identifying a Z′ behind b → sℓℓ anomalies at the LHC, Phys. Rev. D 97 (2018) 115019 [arXiv:1803.07492] [INSPIRE].

    Article  ADS  Google Scholar 

  100. S. F. King, \( {R}_{K^{\left(\ast \right)}} \) and the origin of Yukawa couplings, JHEP 09 (2018) 069 [arXiv:1806.06780] [INSPIRE].

  101. G. H. Duan, X. Fan, M. Frank, C. Han and J. M. Yang, A minimal U(1)′ extension of MSSM in light of the B decay anomaly, Phys. Lett. B 789 (2019) 54 [arXiv:1808.04116] [INSPIRE].

    Article  ADS  Google Scholar 

  102. P. Rocha-Moran and A. Vicente, Lepton flavor violation in a Z′ model for the b → s anomalies, Phys. Rev. D 99 (2019) 035016 [arXiv:1810.02135] [INSPIRE].

    Article  ADS  Google Scholar 

  103. S. Dwivedi, D. Kumar Ghosh, A. Falkowski and N. Ghosh, Associated Z′ production in the flavorful U(1) scenario for \( {R}_{K^{\left(\ast \right)}} \), Eur. Phys. J. C 80 (2020) 263 [arXiv:1908.03031] [INSPIRE].

    Article  ADS  Google Scholar 

  104. P. Foldenauer, Phenomenology of Extra Abelian Gauge Symmetries, Ph.D. Thesis, Heidelberg University, Heidelberg Germany (2019).

  105. P. Ko, T. Nomura and C. Yu, b → sμ+ μ− anomalies and related phenomenology in \( \mathrm{U}{(1)}_{B_3-{x}_{\mu }{L}_{\mu }-{x}_{\tau }{L}_{\tau }} \) flavor gauge models, JHEP 04 (2019) 102 [arXiv:1902.06107] [INSPIRE].

  106. B. C. Allanach and J. Davighi, Naturalising the third family hypercharge model for neutral current B-anomalies, Eur. Phys. J. C 79 (2019) 908 [arXiv:1905.10327] [INSPIRE].

    Article  ADS  Google Scholar 

  107. J. Kawamura, S. Raby and A. Trautner, Complete vectorlike fourth family and new U(1)′ for muon anomalies, Phys. Rev. D 100 (2019) 055030 [arXiv:1906.11297] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  108. W. Altmannshofer, J. Davighi and M. Nardecchia, Gauging the accidental symmetries of the standard model, and implications for the flavor anomalies, Phys. Rev. D 101 (2020) 015004 [arXiv:1909.02021] [INSPIRE].

    Article  ADS  Google Scholar 

  109. L. Calibbi, A. Crivellin, F. Kirk, C. A. Manzari and L. Vernazza, Z′ models with less-minimal flavour violation, Phys. Rev. D 101 (2020) 095003 [arXiv:1910.00014] [INSPIRE].

    Article  ADS  Google Scholar 

  110. J. Aebischer, A. J. Buras, M. Cerdà-Sevilla and F. De Fazio, Quark-lepton connections in Z′ mediated FCNC processes: gauge anomaly cancellations at work, JHEP 02 (2020) 183 [arXiv:1912.09308] [INSPIRE].

    Article  ADS  Google Scholar 

  111. J. Kawamura, S. Raby and A. Trautner, Complete vectorlike fourth family with U(1)′: A global analysis, Phys. Rev. D 101 (2020) 035026 [arXiv:1911.11075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  112. B. C. Allanach, \( \mathrm{U}{(1)}_{B_3-{L}_2} \) explanation of the neutral current B-anomalies, Eur. Phys. J. C 81 (2021) 56 [Erratum ibid. 81 (2021) 321] [arXiv:2009.02197] [INSPIRE].

  113. A. Greljo, P. Stangl and A. E. Thomsen, A Model of Muon Anomalies, arXiv:2103.13991 [INSPIRE].

  114. LHCb collaboration, Test of lepton universality with B0 → K∗0 ℓ+ ℓ− decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  115. LHCb collaboration, Search for lepton-universality violation in B+ → K + ℓ+ ℓ− decays, Phys. Rev. Lett. 122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].

  116. B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in b → sℓ+ ℓ− transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].

    Article  ADS  Google Scholar 

  117. W. Altmannshofer, P. Stangl and D. M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].

    Article  ADS  Google Scholar 

  118. G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{\ast }} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].

    Article  ADS  Google Scholar 

  119. M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].

    Article  Google Scholar 

  120. G. Hiller and I. Nisandzic, RK and \( {R}_{K^{\ast }} \) beyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].

    Article  ADS  Google Scholar 

  121. L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of b → sℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].

    Article  ADS  Google Scholar 

  122. T. Hurth, F. Mahmoudi, D. Martinez Santos and S. Neshatpour, Lepton nonuniversality in exclusive b→sℓℓ decays, Phys. Rev. D 96 (2017) 095034 [arXiv:1705.06274] [INSPIRE].

    Article  ADS  Google Scholar 

  123. M. Algueró et al., Emerging patterns of New Physics with and without Lepton Flavour Universal contributions, Eur. Phys. J. C 79 (2019) 714 [Addendum ibid. 80 (2020) 511] [arXiv:1903.09578] [INSPIRE].

  124. J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl and D. M. Straub, B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80 (2020) 252 [arXiv:1903.10434] [INSPIRE].

    Article  ADS  Google Scholar 

  125. M. Ciuchini et al., New Physics in b → sℓ+ ℓ− confronts new data on Lepton Universality, Eur. Phys. J. C 79 (2019) 719 [arXiv:1903.09632] [INSPIRE].

    Article  ADS  Google Scholar 

  126. A. Arbey, T. Hurth, F. Mahmoudi, D. M. Santos and S. Neshatpour, Update on the b → s anomalies, Phys. Rev. D 100 (2019) 015045 [arXiv:1904.08399] [INSPIRE].

    Article  ADS  Google Scholar 

  127. J. Matias, F. Mescia, M. Ramon and J. Virto, Complete Anatomy of \( {\overline{B}}_d\to {\overline{K}}^{\ast 0}\left(\to K\pi \right){l}^{+}{l}^{-} \) and its angular distribution, JHEP 04 (2012) 104 [arXiv:1202.4266] [INSPIRE].

    Article  ADS  Google Scholar 

  128. S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of B → K ∗ll observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].

    Article  ADS  Google Scholar 

  129. LHCb collaboration, Angular analysis of the B0 → K ∗0 μ+ μ− decay using 3 fb−1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].

  130. LHCb collaboration, Measurement of C P -Averaged Observables in the B0 → K ∗0 μ+ μ− Decay, Phys. Rev. Lett. 125 (2020) 011802 [arXiv:2003.04831] [INSPIRE].

  131. M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, Lessons from the B0,+ → K ∗0,+ μ+ μ− angular analyses, Phys. Rev. D 103 (2021) 015030 [arXiv:2011.01212] [INSPIRE].

    Article  ADS  Google Scholar 

  132. A. Carvunis, F. Dettori, S. Gangal, D. Guadagnoli and C. Normand, On the effective lifetime of Bs → μμγ, arXiv:2102.13390 [INSPIRE].

  133. W. Altmannshofer and P. Stangl, New Physics in Rare B Decays after Moriond 2021, arXiv:2103.13370 [INSPIRE].

  134. C. Bobeth, A. J. Buras, A. Celis and M. Jung, Patterns of Flavour Violation in Models with Vector-Like Quarks, JHEP 04 (2017) 079 [arXiv:1609.04783] [INSPIRE].

    Article  ADS  Google Scholar 

  135. J. De Blas et al., HEPfit: a code for the combination of indirect and direct constraints on high energy physics models, Eur. Phys. J. C 80 (2020) 456 [arXiv:1910.14012] [INSPIRE].

    Article  ADS  Google Scholar 

  136. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].

    Article  MATH  Google Scholar 

  137. J. de Blas, J. M. Lizana and M. Pérez-Victoria, Combining searches of Z′ and W′ bosons, JHEP 01 (2013) 166 [arXiv:1211.2229] [INSPIRE].

    Article  ADS  Google Scholar 

  138. R. Alonso, A. Carmona, B. M. Dillon, J. F. Kamenik, J. Martin Camalich and J. Zupan, A clockwork solution to the flavor puzzle, JHEP 10 (2018) 099 [arXiv:1807.09792] [INSPIRE].

    Article  ADS  Google Scholar 

  139. A. Smolkovič, M. Tammaro and J. Zupan, Anomaly free Froggatt-Nielsen models of flavor, JHEP 10 (2019) 188 [arXiv:1907.10063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  140. J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Models for Flavour Anomalies, Eur. Phys. J. C 78 (2018) 238 [arXiv:1705.03447] [INSPIRE].

    Article  ADS  Google Scholar 

  141. W. J. Marciano and A. Sirlin, Improved calculation of electroweak radiative corrections and the value of V(ud), Phys. Rev. Lett. 96 (2006) 032002 [hep-ph/0510099] [INSPIRE].

  142. C.-Y. Seng, M. Gorchtein, H. H. Patel and M. J. Ramsey-Musolf, Reduced Hadronic Uncertainty in the Determination of Vud, Phys. Rev. Lett. 121 (2018) 241804 [arXiv:1807.10197] [INSPIRE].

    Article  ADS  Google Scholar 

  143. C. Y. Seng, M. Gorchtein and M. J. Ramsey-Musolf, Dispersive evaluation of the inner radiative correction in neutron and nuclear β decay, Phys. Rev. D 100 (2019) 013001 [arXiv:1812.03352] [INSPIRE].

    Article  ADS  Google Scholar 

  144. M. Gorchtein, γW Box Inside Out: Nuclear Polarizabilities Distort the Beta Decay Spectrum, Phys. Rev. Lett. 123 (2019) 042503 [arXiv:1812.04229] [INSPIRE].

    Article  ADS  Google Scholar 

  145. A. Czarnecki, W. J. Marciano and A. Sirlin, Radiative Corrections to Neutron and Nuclear Beta Decays Revisited, Phys. Rev. D 100 (2019) 073008 [arXiv:1907.06737] [INSPIRE].

    Article  ADS  Google Scholar 

  146. L. Hayen, Standard Model \( \mathcal{O}\left(\alpha \right) \) renormalization of gA and its impact on new physics searches, Phys. Rev. D 103 (2021) 113001 [arXiv:2010.07262] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  147. J. C. Hardy and I. S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity, Phys. Rev. C 102 (2020) 045501 [INSPIRE].

    Article  ADS  Google Scholar 

  148. M. Moulson, Experimental determination of Vus from kaon decays, PoS(CKM2016)033 (2017) [arXiv:1704.04104] [INSPIRE].

  149. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  150. A. J. Buras, L. Merlo and E. Stamou, The Impact of Flavour Changing Neutral Gauge Bosons on \( \overline{B} \) → Xsγ, JHEP 08 (2011) 124 [arXiv:1105.5146] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  151. A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,e and implications for a large muon EDM, Phys. Rev. D 98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].

  152. M. Lindner, M. Platscher and F. S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  153. SINDRUM II collaboration, A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].

  154. BaBar collaboration, Searches for Lepton Flavor Violation in the Decays τ ± → e± γ and τ ± μ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].

  155. MEG collaboration, Search for the lepton flavour violating decay μ+ → e+ γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].

  156. Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

  157. MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].

  158. D. Hanneke, S. Fogwell and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].

    Article  ADS  Google Scholar 

  159. T. Aoyama, T. Kinoshita and M. Nio, Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment, Phys. Rev. D 97 (2018) 036001 [arXiv:1712.06060] [INSPIRE].

    Article  ADS  Google Scholar 

  160. S. Laporta, High-precision calculation of the 4-loop contribution to the electron g − 2 in QED, Phys. Lett. B 772 (2017) 232 [arXiv:1704.06996] [INSPIRE].

    Article  ADS  Google Scholar 

  161. R. H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191 [arXiv:1812.04130] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  162. L. Morel, Z. Yao, P. Cladé and S. Guellati-Khélifa, Determination of the fine-structure constant with an accuracy of 81 parts per trillion, Nature 588 (2020) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  163. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].

    Article  ADS  Google Scholar 

  164. T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms 7 (2019) 28 [INSPIRE].

    Article  ADS  Google Scholar 

  165. A. Czarnecki, W. J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].

  166. C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].

    Article  ADS  Google Scholar 

  167. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and \( \alpha \left({m}_Z^2\right) \) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].

    Article  ADS  Google Scholar 

  168. A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and \( \alpha \left({M}_Z^2\right) \): a new data-based, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].

    Article  ADS  Google Scholar 

  169. G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].

    Article  ADS  Google Scholar 

  170. M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].

    Article  ADS  Google Scholar 

  171. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \( \alpha \left({m}_Z^2\right) \), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

  172. A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, \( \alpha \left({M}_Z^2\right) \), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].

  173. A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].

    Article  ADS  Google Scholar 

  174. K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].

    Article  ADS  Google Scholar 

  175. P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].

    Article  ADS  Google Scholar 

  176. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  177. M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S. P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].

    Article  ADS  Google Scholar 

  178. A. Gérardin, H. B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].

    Article  ADS  Google Scholar 

  179. J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].

    Article  Google Scholar 

  180. G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].

    Article  ADS  Google Scholar 

  181. T. Blum et al., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].

    Article  ADS  Google Scholar 

  182. G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g−2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].

    Article  ADS  Google Scholar 

  183. S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

    Article  ADS  Google Scholar 

  184. M. Passera, W. J. Marciano and A. Sirlin, The Muon g-2 and the bounds on the Higgs boson mass, Phys. Rev. D 78 (2008) 013009 [arXiv:0804.1142] [INSPIRE].

    Article  ADS  Google Scholar 

  185. J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer and J. Stelzer, Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J. C 78 (2018) 675 [arXiv:1803.01853] [INSPIRE].

    Article  ADS  Google Scholar 

  186. A. Crivellin, M. Hoferichter, C. A. Manzari and M. Montull, Hadronic Vacuum Polarization: (g − 2)μ versus Global Electroweak Fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].

    Article  ADS  Google Scholar 

  187. A. Keshavarzi, W. J. Marciano, M. Passera and A. Sirlin, Muon g − 2 and ∆α connection, Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].

    Article  ADS  Google Scholar 

  188. B. Ananthanarayan, I. Caprini and D. Das, Pion electromagnetic form factor at high precision with implications to \( {a}_{\mu}^{\pi \pi} \) and the onset of perturbative QCD, Phys. Rev. D 98 (2018) 114015 [arXiv:1810.09265] [INSPIRE].

    Article  ADS  Google Scholar 

  189. Muon (g-2) collaboration, An Improved Limit on the Muon Electric Dipole Moment, Phys. Rev. D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].

  190. ACME collaboration, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].

  191. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  192. Belle collaboration, Search for the electric dipole moment of the tau lepton, Phys. Lett. B 551 (2003) 16 [hep-ex/0210066] [INSPIRE].

  193. DELPHI collaboration, Study of tau-pair production in photon-photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J. C 35 (2004) 159 [hep-ex/0406010] [INSPIRE].

  194. S. Eidelman and M. Passera, Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett. A 22 (2007) 159 [hep-ph/0701260] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  195. A. Adelmann et al., Search for a muon EDM using the frozen-spin technique, arXiv:2102.08838 [INSPIRE].

  196. SINDRUM collaboration, Search for the Decay μ+ → e+ e+ e−, Nucl. Phys. B 299 (1988) 1 [INSPIRE].

  197. K. Hayasaka et al., Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced τ + τ − Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].

    Article  ADS  Google Scholar 

  198. BaBar collaboration, Limits on tau Lepton-Flavor Violating Decays in three charged leptons, Phys. Rev. D 81 (2010) 111101 [arXiv:1002.4550] [INSPIRE].

  199. LHCb collaboration, Search for the lepton flavour violating decay τ − → μ− μ+ μ−, JHEP 02 (2015) 121 [arXiv:1409.8548] [INSPIRE].

  200. A. Cerri et al., Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 867 [arXiv:1812.07638] [INSPIRE].

    Google Scholar 

  201. A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μ → eee, arXiv:1301.6113 [INSPIRE].

  202. Mu3e collaboration, Status of the Mu3e Experiment at PSI, EPJ Web Conf. 118 (2016) 01028 [arXiv:1605.02906] [INSPIRE].

  203. R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

  204. T. Suzuki, D. F. Measday and J. P. Roalsvig, Total Nuclear Capture Rates for Negative Muons, Phys. Rev. C 35 (1987) 2212 [INSPIRE].

    Article  ADS  Google Scholar 

  205. A. Baldini et al., A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET, MEG, Mu2e and Mu3e collaborations, arXiv:1812.06540 [INSPIRE].

  206. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  207. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  208. U. Haisch and S. Westhoff, Massive Color-Octet Bosons: Bounds on Effects in Top-Quark Pair Production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].

    Article  ADS  Google Scholar 

  209. ATLAS collaboration, Measurement of the Higgs boson mass in the H → ZZ ∗ → 4ℓ and H → γγ channels with \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Phys. Lett. B 784 (2018) 345 [arXiv:1806.00242] [INSPIRE].

  210. CMS collaboration, A measurement of the Higgs boson mass in the diphoton decay channel, Phys. Lett. B 805 (2020) 135425 [arXiv:2002.06398] [INSPIRE].

  211. CDF and D0 collaborations, Combination of CDF and D0 results on the mass of the top quark using up 9.7 fb−1 at the Tevatron, arXiv:1608.01881 [INSPIRE].

  212. ATLAS collaboration, Measurement of the top quark mass in the \( t\overline{t} \) → lepton+jets channel from \( \sqrt{s} \) = 8 TeV ATLAS data and combination with previous results, Eur. Phys. J. C 79 (2019) 290 [arXiv:1810.01772] [INSPIRE].

  213. CMS collaboration, Measurement of the top quark mass in the all-jets final state at \( \sqrt{s} \) = 13 TeV and combination with the lepton+jets channel, Eur. Phys. J. C 79 (2019) 313 [arXiv:1812.10534] [INSPIRE].

  214. ATLAS collaboration, Charged-lepton-flavour violation at the LHC: a search for Z → eτ/μτ decays with the ATLAS detector, arXiv:2010.02566 [INSPIRE].

  215. OPAL collaboration, A Search for lepton flavor violating Z0 decays, Z. Phys. C 67 (1995) 555 [INSPIRE].

  216. DELPHI collaboration, Search for lepton flavor number violating Z0 decays, Z. Phys. C 73 (1997) 243 [INSPIRE].

  217. ATLAS collaboration, Search for the lepton flavor violating decay Z → eμ in pp collisions at \( \sqrt{s} \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 072010 [arXiv:1408.5774] [INSPIRE].

  218. CHARM-II collaboration, First observation of neutrino trident production, Phys. Lett. B 245 (1990) 271 [INSPIRE].

  219. CCFR collaboration, Neutrino tridents and WZ interference, Phys. Rev. Lett. 66 (1991) 3117 [INSPIRE].

  220. NuTeV collaboration, Neutrino trident production from NuTeV, in 29th International Conference on High-Energy Physics, 7, 1998 [hep-ex/9811012] [INSPIRE].

  221. A. Caldwell, D. Kollar and K. Kroninger, BAT: The Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  222. A. Crivellin, S. Davidson, G. M. Pruna and A. Signer, Renormalisation-group improved analysis of μ → e processes in a systematic effective-field-theory approach, JHEP 05 (2017) 117 [arXiv:1702.03020] [INSPIRE].

    Article  ADS  Google Scholar 

  223. G. M. Pruna and A. Signer, The μ → eγ decay in a systematic effective field theory approach with dimension 6 operators, JHEP 10 (2014) 014 [arXiv:1408.3565] [INSPIRE].

    Article  ADS  Google Scholar 

  224. J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard Model at One Loop: Complete Renormalization Group Evolution below the Electroweak Scale, JHEP 09 (2017) 158 [arXiv:1704.06639] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. TUM Institute for Advanced Study, Lichtenbergstr. 2a, D–85747, Garching, Germany

    Andrzej J. Buras

  2. Theory Division, CERN, CH–1211, Geneva 23, Switzerland

    Andreas Crivellin

  3. Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH–8057, Zürich, Switzerland

    Andreas Crivellin, Fiona Kirk, Claudio Andrea Manzari & Marc Montull

  4. Paul Scherrer Institut, CH–5232, Villigen PSI, Switzerland

    Andreas Crivellin, Fiona Kirk, Claudio Andrea Manzari & Marc Montull

Authors
  1. Andrzej J. Buras
    View author publications

    Search author on:PubMed Google Scholar

  2. Andreas Crivellin
    View author publications

    Search author on:PubMed Google Scholar

  3. Fiona Kirk
    View author publications

    Search author on:PubMed Google Scholar

  4. Claudio Andrea Manzari
    View author publications

    Search author on:PubMed Google Scholar

  5. Marc Montull
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Fiona Kirk.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.07680

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buras, A.J., Crivellin, A., Kirk, F. et al. Global analysis of leptophilic Z′ bosons. J. High Energ. Phys. 2021, 68 (2021). https://doi.org/10.1007/JHEP06(2021)068

Download citation

  • Received: 22 April 2021

  • Revised: 26 May 2021

  • Accepted: 27 May 2021

  • Published: 09 June 2021

  • Version of record: 09 June 2021

  • DOI: https://doi.org/10.1007/JHEP06(2021)068

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Gauge Symmetry
  • Neutrino Physics

Profiles

  1. Andreas Crivellin View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载