+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Standard model O(α) renormalization of gA and its impact on new physics searches

Leendert Hayen*

  • Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA; Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA; and Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
  • *lmhayen@ncsu.edu

Phys. Rev. D 103, 113001 – Published 1 June, 2021

DOI: https://doi.org/10.1103/PhysRevD.103.113001

Abstract

We present an O(α) Standard Model calculation of the inner radiative corrections to Gamow-Teller β decays. We find that a priori contributions arise from the photonic vertex correction and γW box diagram. Upon evaluation most elastic contributions vanish due to crossing symmetry or cancellation between isoscalar and isovector photonic contributions, leaving only the polarized parity-odd contribution, i.e., the Gamow-Teller equivalent of the well-known axial γW box contribution for Fermi decays. We show that weak magnetism contributes significantly to the Born amplitude, and consider additional hadronic contributions at low energy using a holomorphic continuation of the polarized Bjorken sum rule constrained by experimental data. We perform the same procedure for the Fermi inner radiative correction through a combination of the running of Bjorken and Gross-Llewellyn Smith sum rules. We discuss heavy flavor, higher-twist, and target mass corrections and find a significant increase at low momentum from the latter. We find ΔRA=0.02532(22) and ΔRV=0.02473(27) for axial and vector inner radiative corrections, respectively, resulting in ΔRAΔRV=0.60(5)×103, which allows us to extract gA0 for the first time to our knowledge. We discuss consequences for comparing experimental data to lattice calculations in beyond Standard Model fits. Further, we show how some traditional β decay calculations contain part of this effect but fail to account for cancellations in the full O(α) result. Finally, we correct for a double-counting instance in the isospin T=1/2 mirror decay extraction of |Vud|, the up-down matrix element of the Cabibbo-Kobayashi-Maskawa matrix element, resolving a long-standing tension and leading to increased precision.

Physics Subject Headings (PhySH)

Article Text

References (122)

  1. P. Renton, Electroweak Interactions: An Introduction to the Physics of Quarks and Leptons (Cambridge University Press, Cambridge, England, 1990).
  2. E. D. Commins and P. H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, England, 1983).
  3. B. R. Holstein, J. Phys. G 41, 110301 (2014).
  4. V. Cirigliano and M. J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 71, 2 (2013).
  5. M. González-Alonso, O. Naviliat-Cuncic, and N. Severijns, Prog. Part. Nucl. Phys. 104, 165 (2019).
  6. A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D 70, 093006 (2004).
  7. A. Sirlin and A. Ferroglia, Rev. Mod. Phys. 85, 263 (2013).
  8. H. Abele, M. Astruc Hoffmann, S. Baessler, D. Dubbers, F. Glück, U. Müller, V. Nesvizhevsky, J. Reich, and O. Zimmer, Phys. Rev. Lett. 88, 211801 (2002).
  9. I. S. Towner and J. C. Hardy, Rep. Prog. Phys. 73, 046301 (2010).
  10. A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. Lett. 120, 202002 (2018).
  11. A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D 101, 091301 (2020).
  12. C.-Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018).
  13. C. Y. Seng, M. Gorchtein, and M. J. Ramsey-Musolf, Phys. Rev. D 100, 013001 (2019).
  14. M. Gorchtein, Phys. Rev. Lett. 123, 042503 (2019).
  15. C. Y. Seng, X. Feng, M. Gorchtein, and L. C. Jin, Phys. Rev. D 101, 111301 (2020).
  16. W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006).
  17. A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D 100, 073008 (2019).
  18. R. W. Pattie et al., Science 360, 627 (2018).
  19. M. A. Brown et al., Phys. Rev. C 97, 035505 (2018).
  20. B. Märkisch, H. Mest, H. Saul, X. Wang, H. Abele, D. Dubbers, M. Klopf, A. Petoukhov, C. Roick, T. Soldner, and D. Werder, Phys. Rev. Lett. 122, 242501 (2019).
  21. M. Beck, F. Ayala Guardia, M. Borg, J. Kahlenberg, R. Muñoz Horta, C. Schmidt, A. Wunderle, W. Heil, R. Maisonobe, M. Simson, T. Soldner, R. Virot, O. Zimmer, M. Klopf, G. Konrad, S. Baeßler, F. Glück, and U. Schmidt, Phys. Rev. C 101, 055506 (2020).
  22. J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015).
  23. J. C. Hardy and I. S. Towner, Phys. Rev. C 102, 045501 (2020).
  24. M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264 (1964).
  25. C. C. Chang, A. N. Nicholson, E. Rinaldi, E. Berkowitz, N. Garron, D. A. Brantley, H. Monge-Camacho, C. J. Monahan, C. Bouchard, M. A. Clark, B. Joó, T. Kurth, K. Orginos, P. Vranas, and A. Walker-Loud, Nature (London) 558, 91 (2018).
  26. R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano, and T. Bhattacharya, Phys. Rev. D 98, 034503 (2018).
  27. S. Aoki et al., Eur. Phys. J. C 80, 113 (2020).
  28. S. Alioli, V. Cirigliano, W. Dekens, J. de Vries, and E. Mereghetti, J. High Energy Phys. 05 (2017) 086.
  29. A. Sirlin, Phys. Rev. 176, 1871 (1968).
  30. A. García and A. Queijeiro, Phys. Rev. D 27, 2101 (1983).
  31. A. Kurylov, M. J. Ramsey-Musolf, and P. Vogel, Phys. Rev. C 65, 055501 (2002).
  32. A. Kurylov, M. J. Ramsey-Musolf, and P. Vogel, Phys. Rev. C 67, 035502 (2003).
  33. M. Fukugita and T. Kubota, Phys. Lett. B 598, 67 (2004).
  34. A. Sirlin, Rev. Mod. Phys. 50, 573 (1978).
  35. D. Wilkinson, Nucl. Phys. A377, 474 (1982).
  36. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res., Sect. A 365, 497 (1995).
  37. D. Wilkinson, Nucl. Instrum. Methods Phys. Res., Sect. A 401, 275 (1997).
  38. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res., Sect. A 406, 89 (1998).
  39. T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959).
  40. A. Sirlin, Nucl. Phys. B71, 29 (1974).
  41. W. Marciano and A. Sirlin, Nucl. Phys. B93, 303 (1975).
  42. V. Tishchenko et al., Phys. Rev. D 87, 052003 (2013).
  43. A. Sirlin, Phys. Rev. 164, 1767 (1967).
  44. W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986).
  45. A. Sirlin, Nucl. Phys. B196, 83 (1982).
  46. C.-Y. Seng, D. Galviz, and U.-G. Meißner, J. High Energy Phys. 02 (2020) 069.
  47. C.-y. Seng, X. Feng, M. Gorchtein, L.-c. Jin, and U.-G. Meißner, J. High Energy Phys. 10 (2020) 179.
  48. S. L. Adler and R. F. Dashen, Current Algebras and Applications to Particle Physics (W. A. Benjamin, Inc., New York, NY, 1968).
  49. S. B. Treiman, R. Jackiw, and D. J. Gross, Lectures on Current Algebra and Its Applications (Princeton University Press, Princeton, NJ, 1972).
  50. T. D. Lee and C. N. Yang, Nuovo Cimento (1955–1965) 3, 749 (1956).
  51. S. Weinberg, Phys. Rev. 112, 1375 (1958).
  52. D. Wilkinson, Nucl. Instrum. Methods Phys. Res., Sect. A 455, 656 (2000).
  53. S. Triambak, L. Phuthu, A. García, G. C. Harper, J. N. Orce, D. A. Short, S. P. R. Steininger, A. Diaz Varela, R. Dunlop, D. S. Jamieson, W. A. Richter, G. C. Ball, P. E. Garrett, C. E. Svensson, and C. Wrede, Phys. Rev. C 95, 035501 (2017).
  54. C.-Y. Seng (private communication).
  55. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill Book Company, New York, 1964).
  56. K. Johnson and F. E. Low, Prog. Theor. Phys. Suppl. 37, 74 (1966).
  57. Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Phys. Lett. B 777, 8 (2018).
  58. E. S. Abers, R. E. Norton, and D. A. Dicus, Phys. Rev. Lett. 18, 676 (1967).
  59. E. S. Abers, D. A. Dicus, R. E. Norton, and H. R. Quinn, Phys. Rev. 167, 1461 (1968).
  60. W. J. Marciano and A. Sirlin, Phys. Rev. D 29, 75 (1984).
  61. X. Ji, Nucl. Phys. B402, 217 (1993).
  62. M. Maul, B. Ehrnsperger, E. Stein, and A. Schäfer, Z. Phys. A 356, 443 (1997).
  63. J. Blümlein and N. Kochelev, Nucl. Phys. B498, 285 (1997).
  64. Particle Data Group et al., Prog. Theor. Exp. Phys. (2020) 083C01.
  65. I. S. Towner, Nucl. Phys. A542, 631 (1992).
  66. X. Ji, Phys. Lett. B 309, 187 (1993).
  67. A. Deur, P. Bosted, V. Burkert, D. Crabb, V. Dharmawardane, G. E. Dodge, T. A. Forest, K. A. Griffioen, S. E. Kuhn, R. Minehart, and Y. Prok, Phys. Rev. D 78, 032001 (2008).
  68. S. Larin and J. Vermaseren, Phys. Lett. B 259, 345 (1991).
  69. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett. 104, 132004 (2010).
  70. P. Baikov, K. Chetyrkin, J. Kühn, and J. Rittinger, Phys. Lett. B 714, 62 (2012).
  71. J. Blümlein, G. Falcioni, and A. De Freitas, Nucl. Phys. B910, 568 (2016).
  72. K. Abe et al., Phys. Rev. D 58, 112003 (1998).
  73. E. Shuryak and A. Vainshtein, Nucl. Phys. B199, 451 (1982).
  74. G. G. Ross and R. Roberts, Phys. Lett. B 322, 425 (1994).
  75. M. Anselmino, A. Efremov, and E. Leader, Phys. Rep. 261, 1 (1995).
  76. E. Stein, P. Górnicki, L. Mankiewicz, and A. Schäfer, Phys. Lett. B 353, 107 (1995).
  77. A. L. Kataev, A. V. Kotikov, G. Parente, and A. V. Sidorov, Phys. Lett. B 417, 374 (1998).
  78. A. L. Kataev, Mod. Phys. Lett. A 20, 2007 (2005).
  79. A. Deur, S. J. Brodsky, and G. F. de Téramond, Prog. Part. Nucl. Phys. 90, 1 (2016).
  80. C. Ayala, G. Cvetič, and L. González, Phys. Rev. D 101, 094003 (2020).
  81. C. Ayala, G. Cvetič, A. V. Kotikov, and B. G. Shaikhatdenov, Eur. Phys. J. C 78, 1002 (2018).
  82. C. Ayala, G. Cvetič, A. V. Kotikov, and B. G. Shaikhatdenov, Int. J. Mod. Phys. A 33, 1850112 (2018).
  83. S. J. Brodsky, G. F. de Téramond, and A. Deur, Phys. Rev. D 81, 096010 (2010).
  84. I. Schienbein, V. A. Radescu, G. P. Zeller, M. E. Christy, C. E. Keppel, K. S. McFarland, W. Melnitchouk, F. I. Olness, M. H. Reno, F. Steffens, and J.-Y. Yu, J. Phys. G 35, 053101 (2008).
  85. H. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829 (1976).
  86. O. Nachtmann, Nucl. Phys. B63, 237 (1973).
  87. S. Wandzura, Nucl. Phys. B122, 412 (1977).
  88. S. Matsuda and T. Uematsu, Nucl. Phys. B168, 181 (1980).
  89. J. H. Kim et al., Phys. Rev. Lett. 81, 3595 (1998).
  90. F. Herren and M. Steinhauser, Comput. Phys. Commun. 224, 333 (2018).
  91. F. D. B. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge, England, 1977).
  92. B. Stech and L. Schülke, Z. Phys. 179, 314 (1964).
  93. L. Schülke, Z. Phys. 179, 331 (1964).
  94. H. Behrens and W. Bühring, Nucl. Phys. A162, 111 (1971).
  95. H. Behrens and W. Bühring, Electron Radial Wave Functions and Nuclear Beta-Decay (Clarendon Press, Oxford, 1982).
  96. B. Holstein, Rev. Mod. Phys. 46, 789 (1974).
  97. B. R. Holstein, Phys. Rev. C 19, 1467 (1979).
  98. T. Bhattacharya, V. Cirigliano, S. D. Cohen, A. Filipuzzi, M. González-Alonso, M. L. Graesser, R. Gupta, and H.-W. Lin, Phys. Rev. D 85, 054512 (2012).
  99. V. Cirigliano, M. González-Alonso, and M. L. Graesser, J. High Energy Phys. 02 (2013) 046.
  100. O. Naviliat-Cuncic and M. González-Alonso, Ann. Phys. (Amsterdam) 525, 600 (2013).
  101. A. Walker-Loud, E. Berkowitz, A. S. Gambhir, D. Brantley, P. Vranas, C. Bouchard, M. Clark, N. Garron, C. C. Chang, B. Joo, T. Kurth, H. Monge-Camacho, A. Nicholson, K. Orginos, C. Monahan, and E. Rinaldi, in The 9th International workshop on Chiral Dynamics (CD2018) (2020), p. 020, https://doi.org/10.22323/1.317.0020.
  102. A. Falkowski, M. González-Alonso, and K. Mimouni, J. High Energy Phys. 08 (2017) 123.
  103. A. Efrati, A. Falkowski, and Y. Soreq, J. High Energy Phys. 07 (2015) 018.
  104. The ATLAS and CMS Collaborations, J. High Energy Phys. 08 (2016) 045.
  105. L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, and X. Mougeot, Rev. Mod. Phys. 90, 015008 (2018).
  106. B. R. Holstein, Phys. Rev. C 19, 1544 (1979).
  107. A. Bottino, G. Ciocchetti, and C. W. Kim, Phys. Rev. C 9, 2052 (1974).
  108. B. R. Holstein, Phys. Rev. C 10, 1215 (1974).
  109. L. Hayen and A. R. Young, arXiv:2009.11364.
  110. O. Naviliat-Cuncic and N. Severijns, Phys. Rev. Lett. 102, 142302 (2009).
  111. N. Severijns, M. Tandecki, T. Phalet, and I. S. Towner, Phys. Rev. C 78, 055501 (2008).
  112. J. C. Hardy and I. S. Towner, Phys. Rev. C 79, 055502 (2009).
  113. I. S. Towner and J. C. Hardy, Phys. Rev. C 91, 015501 (2015).
  114. N. Severijns, L. Hayen, V. D. Leebeeck, S. Vanlangendonck, K. Bodek, D. Rozpedzik, and I. S. Towner (to be published).
  115. D. Combs, G. Jones, W. Anderson, F. Calaprice, L. Hayen, and A. Young, arXiv:2009.13700.
  116. P. a. Vetter, J. R. Abo-Shaeer, S. J. Freedman, and R. Maruyama, Phys. Rev. C 77, 035502 (2008).
  117. G. S. Masson and P. A. Quin, Phys. Rev. C 42, 1110 (1990).
  118. P. D. Shidling, D. Melconian, S. Behling, B. Fenker, J. C. Hardy, V. E. Iacob, E. McCleskey, M. McCleskey, M. Mehlman, H. I. Park, and B. T. Roeder, Phys. Rev. C 90, 032501 (2014).
  119. B. Fenker, A. Gorelov, D. Melconian, J. A. Behr, M. Anholm, D. Ashery, R. S. Behling, I. Cohen, I. Craiciu, G. Gwinner, J. McNeil, M. Mehlman, K. Olchanski, P. D. Shidling, S. Smale, and C. L. Warner, Phys. Rev. Lett. 120, 062502 (2018).
  120. S. Weinberg, Phys. Rev. 115, 481 (1959).
  121. I. Towner, Nucl. Phys. A540, 478 (1992).
  122. B. Bhattacharya, R. J. Hill, and G. Paz, Phys. Rev. D 84, 073006 (2011).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载