- Open Access
Lepton Flavor and Nonuniversality from Minimal Composite Higgs Setups
Phys. Rev. Lett. 116, 251801 – Published 21 June, 2016
DOI: https://doi.org/10.1103/PhysRevLett.116.251801
Abstract
We present a new class of models of lepton flavor in the composite Higgs framework. Following the concept of minimality, they lead to a rich phenomenology in good agreement with the current experimental picture. Because of a unification of the right-handed leptons, our scenario is very predictive and can naturally lead to a violation of lepton-flavor universality in neutral current interactions. We will show that, in particular, the anomaly in , found by LHCb, can be addressed, while other constraints from quark- and lepton-flavor physics are met. In fact, the minimal structure of the setup allows for the implementation of a very powerful flavor protection, which avoids the appearance of new sources of flavor-changing neutral currents to very good approximation. Finally, the new lepton sector provides a parametrically enhanced correction to the Higgs mass, such that the need for ultralight top partners is weakened considerably, linking the mass of the latter with the size of the neutrino masses.
Physics Subject Headings (PhySH)
Article Text
References (30)
- D. B. Kaplan and H. Georgi, Phys. Lett. 136B, 183 (1984).
- H. Georgi and D. B. Kaplan, Phys. Lett. 145B, 216 (1984).
- S. Dimopoulos and J. Preskill, Nucl. Phys. B199, 206 (1982).
- R. Contino, Y. Nomura, and A. Pomarol, Nucl. Phys. B671, 148 (2003).
- K. Agashe, R. Contino, and A. Pomarol, Nucl. Phys. B719, 165 (2005).
- R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 113, 151601 (2014).
- G. Hiller and F. Kruger, Phys. Rev. D 69, 074020 (2004).
- A. Carmona and F. Goertz, J. High Energy Phys. 05 (2015) 002.
- J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv. Theor. Math. Phys. 2, 231 (1998).
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).
- E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
- N. Arkani-Hamed, M. Porrati, and L. Randall, J. High Energy Phys. 08 (2001) 017.
- A. L. Fitzpatrick, G. Perez, and L. Randall, Phys. Rev. Lett. 100, 171604 (2008).
- G. Perez and L. Randall, J. High Energy Phys. 01 (2009) 077.
- C. Csaki, A. Falkowski, and A. Weiler, J. High Energy Phys. 09 (2008) 008.
- R. Barbieri and G. Giudice, Nucl. Phys. B306, 63 (1988).
- B. Gripaios, M. Nardecchia, and S. A. Renner, J. High Energy Phys. 05 (2015) 006.
- C. Niehoff, P. Stangl, and D. M. Straub, Phys. Lett. B 747, 182 (2015).
- A. Crivellin, G. D’Ambrosio, and J. Heeck, Phys. Rev. Lett. 114, 151801 (2015).
- A. Crivellin, G. D’Ambrosio, and J. Heeck, Phys. Rev. D 91, 075006 (2015).
- D. A. Sierra, F. Staub, and A. Vicente, Phys. Rev. D 92, 015001 (2015).
- A. Celis, J. Fuentes-Martin, M. Jung, and H. Serodio, Phys. Rev. D 92, 015007 (2015).
- A. Falkowski, M. Nardecchia, and R. Ziegler, J. High Energy Phys. 11 (2015) 173.
- M. Raidal et al., Eur. Phys. J. C 57, 13 (2008).
- M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays), Eur. Phys. J. C 69, 399 (2010).
- A. Greljo, G. Isidori, and D. Marzocca, J. High Energy Phys. 07 (2015) 142.
- D. Ghosh, M. Nardecchia, and S. Renner, J. High Energy Phys. 12 (2014) 131.
- C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou, and M. Steinhauser, Phys. Rev. Lett. 112, 101801 (2014).
- V. Khachatryan et al. (LHCb, CMS Collaborations), Nature (London) 522, 68 (2015).
- A. Bevan et al., arXiv:1411.7233.