这是indexloc提供的服务,不要输入任何密码
Skip to content

fix docs build failure and a bug in a2c/ppo optimizer #428

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Aug 29, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ jobs:
if: "!contains(github.event.head_commit.message, 'ci skip')"
strategy:
matrix:
python-version: [3.6, 3.7, 3.8]
python-version: [3.6, 3.7, 3.8, 3.9]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
Expand Down
7 changes: 4 additions & 3 deletions docs/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
gym
tqdm
torch
numba
tensorboard
numpy>=1.20
sphinx<4
sphinxcontrib-bibtex
tensorboard
torch
tqdm
4 changes: 2 additions & 2 deletions test/continuous/test_ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,12 +81,12 @@ def test_ppo(args=get_args()):
args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device
), device=args.device).to(args.device)
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
for m in set(actor.modules()).union(critic.modules()):
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(
list(actor.parameters()) + list(critic.parameters()), lr=args.lr)
set(actor.parameters()).union(critic.parameters()), lr=args.lr)

# replace DiagGuassian with Independent(Normal) which is equivalent
# pass *logits to be consistent with policy.forward
Expand Down
2 changes: 1 addition & 1 deletion test/discrete/test_a2c_with_il.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def test_a2c_with_il(args=get_args()):
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(
list(actor.parameters()) + list(critic.parameters()), lr=args.lr)
set(actor.parameters()).union(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
policy = A2CPolicy(
actor, critic, optim, dist,
Expand Down
4 changes: 2 additions & 2 deletions test/discrete/test_ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,12 +72,12 @@ def test_ppo(args=get_args()):
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
for m in set(actor.modules()).union(critic.modules()):
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(
list(actor.parameters()) + list(critic.parameters()), lr=args.lr)
set(actor.parameters()).union(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
policy = PPOPolicy(
actor, critic, optim, dist,
Expand Down
2 changes: 1 addition & 1 deletion test/discrete/test_qrdqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
Expand Down
2 changes: 1 addition & 1 deletion tianshou/policy/modelfree/a2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def learn( # type: ignore
loss.backward()
if self._grad_norm: # clip large gradient
nn.utils.clip_grad_norm_(
list(self.actor.parameters()) + list(self.critic.parameters()),
set(self.actor.parameters()).union(self.critic.parameters()),
max_norm=self._grad_norm)
self.optim.step()
actor_losses.append(actor_loss.item())
Expand Down
2 changes: 1 addition & 1 deletion tianshou/policy/modelfree/ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ def learn( # type: ignore
loss.backward()
if self._grad_norm: # clip large gradient
nn.utils.clip_grad_norm_(
list(self.actor.parameters()) + list(self.critic.parameters()),
set(self.actor.parameters()).union(self.critic.parameters()),
max_norm=self._grad_norm)
self.optim.step()
clip_losses.append(clip_loss.item())
Expand Down