这是indexloc提供的服务,不要输入任何密码
Skip to content

hotfix:fix test failure in cuda environment #289

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Feb 9, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions examples/atari/runnable/pong_a2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,8 @@ def test_a2c(args=get_args()):
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = Actor(net, args.action_shape).to(args.device)
critic = Critic(net).to(args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(set(
actor.parameters()).union(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
Expand Down
4 changes: 2 additions & 2 deletions examples/atari/runnable/pong_ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,8 @@ def test_ppo(args=get_args()):
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = Actor(net, args.action_shape).to(args.device)
critic = Critic(net).to(args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(set(
actor.parameters()).union(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
Expand Down
6 changes: 3 additions & 3 deletions test/discrete/test_a2c_with_il.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,8 @@ def test_a2c_with_il(args=get_args()):
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = Actor(net, args.action_shape).to(args.device)
critic = Critic(net).to(args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(set(
actor.parameters()).union(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
Expand Down Expand Up @@ -113,7 +113,7 @@ def stop_fn(mean_rewards):
env.spec.reward_threshold = 190 # lower the goal
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
net = Actor(net, args.action_shape).to(args.device)
net = Actor(net, args.action_shape, device=args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(net, optim, mode='discrete')
il_test_collector = Collector(
Expand Down
4 changes: 2 additions & 2 deletions test/discrete/test_ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,8 @@ def test_ppo(args=get_args()):
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = Actor(net, args.action_shape).to(args.device)
critic = Critic(net).to(args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
Expand Down
9 changes: 6 additions & 3 deletions test/discrete/test_sac.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,15 +62,18 @@ def test_discrete_sac(args=get_args()):
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = Actor(net, args.action_shape, softmax_output=False).to(args.device)
actor = Actor(net, args.action_shape,
softmax_output=False, device=args.device).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
critic1 = Critic(net_c1, last_size=args.action_shape).to(args.device)
critic1 = Critic(net_c1, last_size=args.action_shape,
device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
critic2 = Critic(net_c2, last_size=args.action_shape).to(args.device)
critic2 = Critic(net_c2, last_size=args.action_shape,
device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

# better not to use auto alpha in CartPole
Expand Down
11 changes: 7 additions & 4 deletions tianshou/utils/net/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,8 @@ def __init__(
self.output_dim = np.prod(action_shape)
input_dim = getattr(preprocess_net, "output_dim",
preprocess_net_output_dim)
self.last = MLP(input_dim, self.output_dim, hidden_sizes)
self.last = MLP(input_dim, self.output_dim,
hidden_sizes, device=self.device)
self._max = max_action

def forward(
Expand Down Expand Up @@ -98,7 +99,7 @@ def __init__(
self.output_dim = 1
input_dim = getattr(preprocess_net, "output_dim",
preprocess_net_output_dim)
self.last = MLP(input_dim, 1, hidden_sizes)
self.last = MLP(input_dim, 1, hidden_sizes, device=self.device)

def forward(
self,
Expand Down Expand Up @@ -164,10 +165,12 @@ def __init__(
self.output_dim = np.prod(action_shape)
input_dim = getattr(preprocess_net, "output_dim",
preprocess_net_output_dim)
self.mu = MLP(input_dim, self.output_dim, hidden_sizes)
self.mu = MLP(input_dim, self.output_dim,
hidden_sizes, device=self.device)
self._c_sigma = conditioned_sigma
if conditioned_sigma:
self.sigma = MLP(input_dim, self.output_dim, hidden_sizes)
self.sigma = MLP(input_dim, self.output_dim,
hidden_sizes, device=self.device)
else:
self.sigma_param = nn.Parameter(torch.zeros(self.output_dim, 1))
self._max = max_action
Expand Down
10 changes: 8 additions & 2 deletions tianshou/utils/net/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,13 +40,16 @@ def __init__(
hidden_sizes: Sequence[int] = (),
softmax_output: bool = True,
preprocess_net_output_dim: Optional[int] = None,
device: Union[str, int, torch.device] = "cpu",
) -> None:
super().__init__()
self.device = device
self.preprocess = preprocess_net
self.output_dim = np.prod(action_shape)
input_dim = getattr(preprocess_net, "output_dim",
preprocess_net_output_dim)
self.last = MLP(input_dim, self.output_dim, hidden_sizes)
self.last = MLP(input_dim, self.output_dim,
hidden_sizes, device=self.device)
self.softmax_output = softmax_output

def forward(
Expand Down Expand Up @@ -91,13 +94,16 @@ def __init__(
hidden_sizes: Sequence[int] = (),
last_size: int = 1,
preprocess_net_output_dim: Optional[int] = None,
device: Union[str, int, torch.device] = "cpu",
) -> None:
super().__init__()
self.device = device
self.preprocess = preprocess_net
self.output_dim = last_size
input_dim = getattr(preprocess_net, "output_dim",
preprocess_net_output_dim)
self.last = MLP(input_dim, last_size, hidden_sizes)
self.last = MLP(input_dim, last_size,
hidden_sizes, device=self.device)

def forward(
self, s: Union[np.ndarray, torch.Tensor], **kwargs: Any
Expand Down