这是indexloc提供的服务,不要输入任何密码
Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/01_tutorials/03_batch.rst
Original file line number Diff line number Diff line change
Expand Up @@ -475,12 +475,12 @@ Miscellaneous Notes
.. raw:: html

<details>
<summary>Batch.to_torch and Batch.to_numpy</summary>
<summary>Batch.to_torch_ and Batch.to_numpy_</summary>

::

>>> data = Batch(a=np.zeros((3, 4)))
>>> data.to_torch(dtype=torch.float32, device='cpu')
>>> data.to_torch_(dtype=torch.float32, device='cpu')
>>> print(data.a)
tensor([[0., 0., 0., 0.],
[0., 0., 0., 0.],
Expand Down
2 changes: 1 addition & 1 deletion docs/02_notebooks/L1_Batch.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@
"source": [
"batch_cat.to_numpy_()\n",
"print(batch_cat)\n",
"batch_cat.to_torch()\n",
"batch_cat.to_torch_()\n",
"print(batch_cat)"
]
},
Expand Down
30 changes: 27 additions & 3 deletions test/base/test_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,7 @@ def test_batch_over_batch_to_torch() -> None:
b=Batch(c=np.ones((1,), dtype=np.float32), d=torch.ones((1,), dtype=torch.float64)),
)
batch.b.__dict__["e"] = 1 # bypass the check
batch.to_torch()
batch.to_torch_()
assert isinstance(batch.a, torch.Tensor)
assert isinstance(batch.b.c, torch.Tensor)
assert isinstance(batch.b.d, torch.Tensor)
Expand All @@ -391,7 +391,7 @@ def test_batch_over_batch_to_torch() -> None:
assert batch.b.e.dtype == torch.int32
else:
assert batch.b.e.dtype == torch.int64
batch.to_torch(dtype=torch.float32)
batch.to_torch_(dtype=torch.float32)
assert batch.a.dtype == torch.float32
assert batch.b.c.dtype == torch.float32
assert batch.b.d.dtype == torch.float32
Expand Down Expand Up @@ -477,7 +477,7 @@ def test_batch_from_to_numpy_without_copy() -> None:
batch = Batch(a=np.ones((1,)), b=Batch(c=np.ones((1,))))
a_mem_addr_orig = batch.a.__array_interface__["data"][0]
c_mem_addr_orig = batch.b.c.__array_interface__["data"][0]
batch.to_torch()
batch.to_torch_()
batch.to_numpy_()
a_mem_addr_new = batch.a.__array_interface__["data"][0]
c_mem_addr_new = batch.b.c.__array_interface__["data"][0]
Expand Down Expand Up @@ -727,6 +727,30 @@ def test_to_numpy_() -> None:
assert isinstance(batch.c.d, np.ndarray)


class TestToTorch:
"""Tests for `Batch.to_torch()` and its in-place counterpart `Batch.to_torch_()` ."""

@staticmethod
def test_to_torch() -> None:
batch = Batch(a=1, b=np.arange(5), c={"d": np.array([1, 2, 3])})
new_batch: Batch = Batch.to_torch(batch)
assert id(batch) != id(new_batch)
assert isinstance(batch.b, np.ndarray)
assert isinstance(batch.c.d, np.ndarray)

assert isinstance(new_batch.b, torch.Tensor)
assert isinstance(new_batch.c.d, torch.Tensor)

@staticmethod
def test_to_torch_() -> None:
batch = Batch(a=1, b=np.arange(5), c={"d": np.array([1, 2, 3])})
id_batch = id(batch)
batch.to_torch_()
assert id_batch == id(batch)
assert isinstance(batch.b, torch.Tensor)
assert isinstance(batch.c.d, torch.Tensor)


if __name__ == "__main__":
test_batch()
test_batch_over_batch()
Expand Down
22 changes: 21 additions & 1 deletion tianshou/data/batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,16 @@ def to_numpy_(self) -> None:
"""Change all torch.Tensor to numpy.ndarray in-place."""
...

@staticmethod
def to_torch(
batch: TBatch,
dtype: torch.dtype | None = None,
device: str | int | torch.device = "cpu",
) -> TBatch:
"""Change all numpy.ndarray to torch.Tensor and return a new Batch."""
...

def to_torch_(
self,
dtype: torch.dtype | None = None,
device: str | int | torch.device = "cpu",
Expand Down Expand Up @@ -641,7 +650,18 @@ def to_numpy_(self) -> None:
elif isinstance(obj, Batch):
obj.to_numpy_()

@staticmethod
def to_torch(
batch: TBatch,
dtype: torch.dtype | None = None,
device: str | int | torch.device = "cpu",
) -> TBatch:
new_batch = Batch(batch, copy=True)
new_batch.to_torch_(dtype=dtype, device=device)

return new_batch # type: ignore[return-value]

def to_torch_(
self,
dtype: torch.dtype | None = None,
device: str | int | torch.device = "cpu",
Expand All @@ -662,7 +682,7 @@ def to_torch(
else:
self.__dict__[batch_key] = obj.to(device)
elif isinstance(obj, Batch):
obj.to_torch(dtype, device)
obj.to_torch_(dtype, device)
else:
# ndarray or scalar
if not isinstance(obj, np.ndarray):
Expand Down
2 changes: 1 addition & 1 deletion tianshou/data/utils/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def to_torch(
return to_torch(np.asanyarray(x), dtype, device)
if isinstance(x, dict | Batch):
x = Batch(x, copy=True) if isinstance(x, dict) else deepcopy(x)
x.to_torch(dtype, device)
x.to_torch_(dtype, device)
return x
if isinstance(x, list | tuple):
return to_torch(_parse_value(x), dtype, device)
Expand Down