-
Voxtral
Authors:
Alexander H. Liu,
Andy Ehrenberg,
Andy Lo,
Clément Denoix,
Corentin Barreau,
Guillaume Lample,
Jean-Malo Delignon,
Khyathi Raghavi Chandu,
Patrick von Platen,
Pavankumar Reddy Muddireddy,
Sanchit Gandhi,
Soham Ghosh,
Srijan Mishra,
Thomas Foubert,
Abhinav Rastogi,
Adam Yang,
Albert Q. Jiang,
Alexandre Sablayrolles,
Amélie Héliou,
Amélie Martin,
Anmol Agarwal,
Antoine Roux,
Arthur Darcet,
Arthur Mensch,
Baptiste Bout
, et al. (81 additional authors not shown)
Abstract:
We present Voxtral Mini and Voxtral Small, two multimodal audio chat models. Voxtral is trained to comprehend both spoken audio and text documents, achieving state-of-the-art performance across a diverse range of audio benchmarks, while preserving strong text capabilities. Voxtral Small outperforms a number of closed-source models, while being small enough to run locally. A 32K context window enab…
▽ More
We present Voxtral Mini and Voxtral Small, two multimodal audio chat models. Voxtral is trained to comprehend both spoken audio and text documents, achieving state-of-the-art performance across a diverse range of audio benchmarks, while preserving strong text capabilities. Voxtral Small outperforms a number of closed-source models, while being small enough to run locally. A 32K context window enables the model to handle audio files up to 40 minutes in duration and long multi-turn conversations. We also contribute three benchmarks for evaluating speech understanding models on knowledge and trivia. Both Voxtral models are released under Apache 2.0 license.
△ Less
Submitted 17 July, 2025;
originally announced July 2025.
-
Aligned Query Expansion: Efficient Query Expansion for Information Retrieval through LLM Alignment
Authors:
Adam Yang,
Gustavo Penha,
Enrico Palumbo,
Hugues Bouchard
Abstract:
With the breakthroughs in large language models (LLMs), query generation techniques that expand documents and queries with related terms are becoming increasingly popular in the information retrieval field. Such techniques have been shown to improve the effectiveness of traditional lexical retrieval methods by dealing with the vocabulary mismatch problem. Recent work has found that generating quer…
▽ More
With the breakthroughs in large language models (LLMs), query generation techniques that expand documents and queries with related terms are becoming increasingly popular in the information retrieval field. Such techniques have been shown to improve the effectiveness of traditional lexical retrieval methods by dealing with the vocabulary mismatch problem. Recent work has found that generating queries with a greedy decoding strategy can produce sub-optimal queries, including hallucinations, and proposed to filter out queries before expansion. This `generate-then-filter' approach is costly, as it requires generating multiple queries and applying a relevance model to all of them and does not teach the LLM which of the generated queries is more effective for expansion. To overcome such limitations, we propose Aligned Query Expansion (AQE), a novel approach to enhance query expansion for passage retrieval in open-domain question answering. AQE leverages recent techniques in LLM alignment to fine-tune models for generating query expansions that directly optimize the effectiveness of the retrieval task, eliminating the need for additional filtering steps. This alignment ensures that queries are more relevant, reducing computational costs while improving retrieval effectiveness. Empirical evaluations show that AQE outperforms baseline models for query expansion in both in-domain and out-of-domain settings, demonstrating significant improvements in retrieval effectiveness.
△ Less
Submitted 15 July, 2025;
originally announced July 2025.
-
Prediction of Lane Change Intentions of Human Drivers using an LSTM, a CNN and a Transformer
Authors:
Francesco De Cristofaro,
Felix Hofbaur,
Aixi Yang,
Arno Eichberger
Abstract:
Lane changes of preceding vehicles have a great impact on the motion planning of automated vehicles especially in complex traffic situations. Predicting them would benefit the public in terms of safety and efficiency. While many research efforts have been made in this direction, few concentrated on predicting maneuvers within a set time interval compared to predicting at a set prediction time. In…
▽ More
Lane changes of preceding vehicles have a great impact on the motion planning of automated vehicles especially in complex traffic situations. Predicting them would benefit the public in terms of safety and efficiency. While many research efforts have been made in this direction, few concentrated on predicting maneuvers within a set time interval compared to predicting at a set prediction time. In addition, there exist a lack of comparisons between different architectures to try to determine the best performing one and to assess how to correctly choose the input for such models. In this paper the structure of an LSTM, a CNN and a Transformer network are described and implemented to predict the intention of human drivers to perform a lane change. We show how the data was prepared starting from a publicly available dataset (highD), which features were used, how the networks were designed and finally we compare the results of the three networks with different configurations of input data. We found that transformer networks performed better than the other networks and was less affected by overfitting. The accuracy of the method spanned from $82.79\%$ to $96.73\%$ for different input configurations and showed overall good performances considering also precision and recall.
△ Less
Submitted 11 July, 2025;
originally announced July 2025.
-
Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
Authors:
Gheorghe Comanici,
Eric Bieber,
Mike Schaekermann,
Ice Pasupat,
Noveen Sachdeva,
Inderjit Dhillon,
Marcel Blistein,
Ori Ram,
Dan Zhang,
Evan Rosen,
Luke Marris,
Sam Petulla,
Colin Gaffney,
Asaf Aharoni,
Nathan Lintz,
Tiago Cardal Pais,
Henrik Jacobsson,
Idan Szpektor,
Nan-Jiang Jiang,
Krishna Haridasan,
Ahmed Omran,
Nikunj Saunshi,
Dara Bahri,
Gaurav Mishra,
Eric Chu
, et al. (3284 additional authors not shown)
Abstract:
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal unde…
▽ More
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal understanding and it is now able to process up to 3 hours of video content. Its unique combination of long context, multimodal and reasoning capabilities can be combined to unlock new agentic workflows. Gemini 2.5 Flash provides excellent reasoning abilities at a fraction of the compute and latency requirements and Gemini 2.0 Flash and Flash-Lite provide high performance at low latency and cost. Taken together, the Gemini 2.X model generation spans the full Pareto frontier of model capability vs cost, allowing users to explore the boundaries of what is possible with complex agentic problem solving.
△ Less
Submitted 22 July, 2025; v1 submitted 7 July, 2025;
originally announced July 2025.
-
Towards Spatially-Varying Gain and Binning
Authors:
Anqi Yang,
Eunhee Kang,
Wei Chen,
Hyong-Euk Lee,
Aswin C. Sankaranarayanan
Abstract:
Pixels in image sensors have progressively become smaller, driven by the goal of producing higher-resolution imagery. However, ceteris paribus, a smaller pixel accumulates less light, making image quality worse. This interplay of resolution, noise, and the dynamic range of the sensor and their impact on the eventual quality of acquired imagery is a fundamental concept in photography. In this paper…
▽ More
Pixels in image sensors have progressively become smaller, driven by the goal of producing higher-resolution imagery. However, ceteris paribus, a smaller pixel accumulates less light, making image quality worse. This interplay of resolution, noise, and the dynamic range of the sensor and their impact on the eventual quality of acquired imagery is a fundamental concept in photography. In this paper, we propose spatially-varying gain and binning to enhance the noise performance and dynamic range of image sensors. First, we show that by varying gain spatially to local scene brightness, the read noise can be made negligible, and the dynamic range of a sensor is expanded by an order of magnitude. Second, we propose a simple analysis to find a binning size that best balances resolution and noise for a given light level; this analysis predicts a spatially-varying binning strategy, again based on local scene brightness, to effectively increase the overall signal-to-noise ratio. % without sacrificing resolution. We discuss analog and digital binning modes and, perhaps surprisingly, show that digital binning outperforms its analog counterparts when a larger gain is allowed. Finally, we demonstrate that combining spatially-varying gain and binning in various applications, including high dynamic range imaging, vignetting, and lens distortion.
△ Less
Submitted 5 July, 2025;
originally announced July 2025.
-
scikit-package -- software packaging standards and roadmap for sharing reproducible scientific software
Authors:
S. Lee,
C. Myers,
A. Yang,
T. Zhang,
S. J. L. Billinge
Abstract:
Scientific advancement relies on the ability to share and reproduce results. When data analysis or calculations are carried out using software written by scientists there are special challenges around code versions, quality and code sharing. scikit-package provides a roadmap to facilitate code reuse and sharing with minimal effort through tutorials coupled with automated and centralized reusable w…
▽ More
Scientific advancement relies on the ability to share and reproduce results. When data analysis or calculations are carried out using software written by scientists there are special challenges around code versions, quality and code sharing. scikit-package provides a roadmap to facilitate code reuse and sharing with minimal effort through tutorials coupled with automated and centralized reusable workflows. The goal of the project is to provide pedagogical and practical tools for scientists who are not professionally trained software engineers to write more reusable and maintainable software code. Code reuse can occur at multiple levels of complexity-from turning a code block into a function within a single script, to publishing a publicly installable, fully tested, and documented software package scikit-package provides a community maintained set of tools, and a roadmap, to help scientists bring their software higher levels of reproducibility and shareability.
△ Less
Submitted 8 July, 2025; v1 submitted 4 July, 2025;
originally announced July 2025.
-
2024 NASA SUITS Report: LLM-Driven Immersive Augmented Reality User Interface for Robotics and Space Exploration
Authors:
Kathy Zhuang,
Zixun Huang,
Yukun Song,
Rui Li,
Yinuo Zhou,
Allen Y. Yang
Abstract:
As modern computing advances, new interaction paradigms have emerged, particularly in Augmented Reality (AR), which overlays virtual interfaces onto physical objects. This evolution poses challenges in machine perception, especially for tasks like 3D object pose estimation in complex, dynamic environments. Our project addresses critical issues in human-robot interaction within mobile AR, focusing…
▽ More
As modern computing advances, new interaction paradigms have emerged, particularly in Augmented Reality (AR), which overlays virtual interfaces onto physical objects. This evolution poses challenges in machine perception, especially for tasks like 3D object pose estimation in complex, dynamic environments. Our project addresses critical issues in human-robot interaction within mobile AR, focusing on non-intrusive, spatially aware interfaces. We present URSA, an LLM-driven immersive AR system developed for NASA's 2023-2024 SUITS challenge, targeting future spaceflight needs such as the Artemis missions. URSA integrates three core technologies: a head-mounted AR device (e.g., HoloLens) for intuitive visual feedback, voice control powered by large language models for hands-free interaction, and robot tracking algorithms that enable accurate 3D localization in dynamic settings. To enhance precision, we leverage digital twin localization technologies, using datasets like DTTD-Mobile and specialized hardware such as the ZED2 camera for real-world tracking under noise and occlusion. Our system enables real-time robot control and monitoring via an AR interface, even in the absence of ground-truth sensors--vital for hazardous or remote operations. Key contributions include: (1) a non-intrusive AR interface with LLM-based voice input; (2) a ZED2-based dataset tailored for non-rigid robotic bodies; (3) a Local Mission Control Console (LMCC) for mission visualization; (4) a transformer-based 6DoF pose estimator (DTTDNet) optimized for depth fusion and real-time tracking; and (5) end-to-end integration for astronaut mission support. This work advances digital twin applications in robotics, offering scalable solutions for both aerospace and industrial domains.
△ Less
Submitted 1 July, 2025;
originally announced July 2025.
-
Reconstructing Tornadoes in 3D with Gaussian Splatting
Authors:
Adam Yang,
Nadula Kadawedduwa,
Tianfu Wang,
Maria Molina,
Christopher Metzler
Abstract:
Accurately reconstructing the 3D structure of tornadoes is critically important for understanding and preparing for this highly destructive weather phenomenon. While modern 3D scene reconstruction techniques, such as 3D Gaussian splatting (3DGS), could provide a valuable tool for reconstructing the 3D structure of tornados, at present we are critically lacking a controlled tornado dataset with whi…
▽ More
Accurately reconstructing the 3D structure of tornadoes is critically important for understanding and preparing for this highly destructive weather phenomenon. While modern 3D scene reconstruction techniques, such as 3D Gaussian splatting (3DGS), could provide a valuable tool for reconstructing the 3D structure of tornados, at present we are critically lacking a controlled tornado dataset with which to develop and validate these tools. In this work we capture and release a novel multiview dataset of a small lab-based tornado. We demonstrate one can effectively reconstruct and visualize the 3D structure of this tornado using 3DGS.
△ Less
Submitted 23 June, 2025;
originally announced June 2025.
-
These Are Not All the Features You Are Looking For: A Fundamental Bottleneck in Supervised Pretraining
Authors:
Xingyu Alice Yang,
Jianyu Zhang,
Léon Bottou
Abstract:
Transfer learning is a cornerstone of modern machine learning, promising a way to adapt models pretrained on a broad mix of data to new tasks with minimal new data. However, a significant challenge remains in ensuring that transferred features are sufficient to handle unseen datasets, amplified by the difficulty of quantifying whether two tasks are "related". To address these challenges, we evalua…
▽ More
Transfer learning is a cornerstone of modern machine learning, promising a way to adapt models pretrained on a broad mix of data to new tasks with minimal new data. However, a significant challenge remains in ensuring that transferred features are sufficient to handle unseen datasets, amplified by the difficulty of quantifying whether two tasks are "related". To address these challenges, we evaluate model transfer from a pretraining mixture to each of its component tasks, assessing whether pretrained features can match the performance of task-specific direct training. We identify a fundamental limitation in deep learning models -- an "information saturation bottleneck" -- where networks fail to learn new features once they encode similar competing features during training. When restricted to learning only a subset of key features during pretraining, models will permanently lose critical features for transfer and perform inconsistently on data distributions, even components of the training mixture. Empirical evidence from published studies suggests that this phenomenon is pervasive in deep learning architectures -- factors such as data distribution or ordering affect the features that current representation learning methods can learn over time. This study suggests that relying solely on large-scale networks may not be as effective as focusing on task-specific training, when available. We propose richer feature representations as a potential solution to better generalize across new datasets and, specifically, present existing methods alongside a novel approach, the initial steps towards addressing this challenge.
△ Less
Submitted 26 June, 2025; v1 submitted 22 June, 2025;
originally announced June 2025.
-
Knee-Deep in C-RASP: A Transformer Depth Hierarchy
Authors:
Andy Yang,
Michaël Cadilhac,
David Chiang
Abstract:
It has been observed that transformers with greater depth (that is, more layers) have more capabilities, but can we establish formally which capabilities are gained with greater depth? We answer this question with a theoretical proof followed by an empirical study. First, we consider transformers that round to fixed precision except inside attention. We show that this subclass of transformers is e…
▽ More
It has been observed that transformers with greater depth (that is, more layers) have more capabilities, but can we establish formally which capabilities are gained with greater depth? We answer this question with a theoretical proof followed by an empirical study. First, we consider transformers that round to fixed precision except inside attention. We show that this subclass of transformers is expressively equivalent to the programming language C-RASP and this equivalence preserves depth. Second, we prove that deeper C-RASP programs are more expressive than shallower C-RASP programs, implying that deeper transformers are more expressive than shallower transformers (within the subclass mentioned above). These results are established by studying a form of temporal logic with counting operators, which was shown equivalent to C-RASP in previous work. Finally, we provide empirical evidence that our theory predicts the depth required for transformers without positional encodings to length-generalize on a family of sequential dependency tasks.
△ Less
Submitted 19 June, 2025;
originally announced June 2025.
-
Magistral
Authors:
Mistral-AI,
:,
Abhinav Rastogi,
Albert Q. Jiang,
Andy Lo,
Gabrielle Berrada,
Guillaume Lample,
Jason Rute,
Joep Barmentlo,
Karmesh Yadav,
Kartik Khandelwal,
Khyathi Raghavi Chandu,
Léonard Blier,
Lucile Saulnier,
Matthieu Dinot,
Maxime Darrin,
Neha Gupta,
Roman Soletskyi,
Sagar Vaze,
Teven Le Scao,
Yihan Wang,
Adam Yang,
Alexander H. Liu,
Alexandre Sablayrolles,
Amélie Héliou
, et al. (76 additional authors not shown)
Abstract:
We introduce Magistral, Mistral's first reasoning model and our own scalable reinforcement learning (RL) pipeline. Instead of relying on existing implementations and RL traces distilled from prior models, we follow a ground up approach, relying solely on our own models and infrastructure. Notably, we demonstrate a stack that enabled us to explore the limits of pure RL training of LLMs, present a s…
▽ More
We introduce Magistral, Mistral's first reasoning model and our own scalable reinforcement learning (RL) pipeline. Instead of relying on existing implementations and RL traces distilled from prior models, we follow a ground up approach, relying solely on our own models and infrastructure. Notably, we demonstrate a stack that enabled us to explore the limits of pure RL training of LLMs, present a simple method to force the reasoning language of the model, and show that RL on text data alone maintains most of the initial checkpoint's capabilities. We find that RL on text maintains or improves multimodal understanding, instruction following and function calling. We present Magistral Medium, trained for reasoning on top of Mistral Medium 3 with RL alone, and we open-source Magistral Small (Apache 2.0) which further includes cold-start data from Magistral Medium.
△ Less
Submitted 12 June, 2025;
originally announced June 2025.
-
Follow-Your-Motion: Video Motion Transfer via Efficient Spatial-Temporal Decoupled Finetuning
Authors:
Yue Ma,
Yulong Liu,
Qiyuan Zhu,
Ayden Yang,
Kunyu Feng,
Xinhua Zhang,
Zhifeng Li,
Sirui Han,
Chenyang Qi,
Qifeng Chen
Abstract:
Recently, breakthroughs in the video diffusion transformer have shown remarkable capabilities in diverse motion generations. As for the motion-transfer task, current methods mainly use two-stage Low-Rank Adaptations (LoRAs) finetuning to obtain better performance. However, existing adaptation-based motion transfer still suffers from motion inconsistency and tuning inefficiency when applied to larg…
▽ More
Recently, breakthroughs in the video diffusion transformer have shown remarkable capabilities in diverse motion generations. As for the motion-transfer task, current methods mainly use two-stage Low-Rank Adaptations (LoRAs) finetuning to obtain better performance. However, existing adaptation-based motion transfer still suffers from motion inconsistency and tuning inefficiency when applied to large video diffusion transformers. Naive two-stage LoRA tuning struggles to maintain motion consistency between generated and input videos due to the inherent spatial-temporal coupling in the 3D attention operator. Additionally, they require time-consuming fine-tuning processes in both stages. To tackle these issues, we propose Follow-Your-Motion, an efficient two-stage video motion transfer framework that finetunes a powerful video diffusion transformer to synthesize complex motion.Specifically, we propose a spatial-temporal decoupled LoRA to decouple the attention architecture for spatial appearance and temporal motion processing. During the second training stage, we design the sparse motion sampling and adaptive RoPE to accelerate the tuning speed. To address the lack of a benchmark for this field, we introduce MotionBench, a comprehensive benchmark comprising diverse motion, including creative camera motion, single object motion, multiple object motion, and complex human motion. We show extensive evaluations on MotionBench to verify the superiority of Follow-Your-Motion.
△ Less
Submitted 5 June, 2025;
originally announced June 2025.
-
Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models
Authors:
Yanzhao Zhang,
Mingxin Li,
Dingkun Long,
Xin Zhang,
Huan Lin,
Baosong Yang,
Pengjun Xie,
An Yang,
Dayiheng Liu,
Junyang Lin,
Fei Huang,
Jingren Zhou
Abstract:
In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training…
▽ More
In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training with supervised fine-tuning on high-quality datasets. Effective model merging strategies further ensure the robustness and adaptability of the Qwen3 Embedding series. During the training process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role in synthesizing high-quality, rich, and diverse training data across multiple domains and languages, thus enhancing the training pipeline. The Qwen3 Embedding series offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks, addressing diverse deployment scenarios where users can optimize for either efficiency or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the multilingual evaluation benchmark MTEB for text embedding, as well as in various retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval. To facilitate reproducibility and promote community-driven research and development, the Qwen3 Embedding models are publicly available under the Apache 2.0 license.
△ Less
Submitted 10 June, 2025; v1 submitted 5 June, 2025;
originally announced June 2025.
-
Follow-Your-Creation: Empowering 4D Creation through Video Inpainting
Authors:
Yue Ma,
Kunyu Feng,
Xinhua Zhang,
Hongyu Liu,
David Junhao Zhang,
Jinbo Xing,
Yinhan Zhang,
Ayden Yang,
Zeyu Wang,
Qifeng Chen
Abstract:
We introduce Follow-Your-Creation, a novel 4D video creation framework capable of both generating and editing 4D content from a single monocular video input. By leveraging a powerful video inpainting foundation model as a generative prior, we reformulate 4D video creation as a video inpainting task, enabling the model to fill in missing content caused by camera trajectory changes or user edits. To…
▽ More
We introduce Follow-Your-Creation, a novel 4D video creation framework capable of both generating and editing 4D content from a single monocular video input. By leveraging a powerful video inpainting foundation model as a generative prior, we reformulate 4D video creation as a video inpainting task, enabling the model to fill in missing content caused by camera trajectory changes or user edits. To facilitate this, we generate composite masked inpainting video data to effectively fine-tune the model for 4D video generation. Given an input video and its associated camera trajectory, we first perform depth-based point cloud rendering to obtain invisibility masks that indicate the regions that should be completed. Simultaneously, editing masks are introduced to specify user-defined modifications, and these are combined with the invisibility masks to create a composite masks dataset. During training, we randomly sample different types of masks to construct diverse and challenging inpainting scenarios, enhancing the model's generalization and robustness in various 4D editing and generation tasks. To handle temporal consistency under large camera motion, we design a self-iterative tuning strategy that gradually increases the viewing angles during training, where the model is used to generate the next-stage training data after each fine-tuning iteration. Moreover, we introduce a temporal packaging module during inference to enhance generation quality. Our method effectively leverages the prior knowledge of the base model without degrading its original performance, enabling the generation of 4D videos with consistent multi-view coherence. In addition, our approach supports prompt-based content editing, demonstrating strong flexibility and significantly outperforming state-of-the-art methods in both quality and versatility.
△ Less
Submitted 4 June, 2025;
originally announced June 2025.
-
GenTT: Generate Vectorized Codes for General Tensor Permutation
Authors:
Yaojian Chen,
Tianyu Ma,
An Yang,
Lin Gan,
Wenlai Zhao,
Guangwen Yang
Abstract:
Tensor permutation is a fundamental operation widely applied in AI, tensor networks, and related fields. However, it is extremely complex, and different shapes and permutation maps can make a huge difference. SIMD permutation began to be studied in 2006, but the best method at that time was to split complex permutations into multiple simple permutations to do SIMD, which might increase the complex…
▽ More
Tensor permutation is a fundamental operation widely applied in AI, tensor networks, and related fields. However, it is extremely complex, and different shapes and permutation maps can make a huge difference. SIMD permutation began to be studied in 2006, but the best method at that time was to split complex permutations into multiple simple permutations to do SIMD, which might increase the complexity for very complex permutations. Subsequently, as tensor contraction gained significant attention, researchers explored structured permutations associated with tensor contraction. Progress on general permutations has been limited, and with increasing SIMD bit widths, achieving efficient performance for these permutations has become increasingly challenging. We propose a SIMD permutation toolkit, \system, that generates optimized permutation code for arbitrary instruction sets, bit widths, tensor shapes, and permutation patterns, while maintaining low complexity. In our experiments, \system is able to achieve up to $38\times$ speedup for special cases and $5\times$ for general gases compared to Numpy.
△ Less
Submitted 4 June, 2025;
originally announced June 2025.
-
Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning
Authors:
Shenzhi Wang,
Le Yu,
Chang Gao,
Chujie Zheng,
Shixuan Liu,
Rui Lu,
Kai Dang,
Xionghui Chen,
Jianxin Yang,
Zhenru Zhang,
Yuqiong Liu,
An Yang,
Andrew Zhao,
Yang Yue,
Shiji Song,
Bowen Yu,
Gao Huang,
Junyang Lin
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning perf…
▽ More
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning performance. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways. Furthermore, studying how entropy patterns evolve during RLVR training reveals that RLVR largely adheres to the base model's entropy patterns, primarily adjusting the entropy of high-entropy tokens. These findings highlight the significance of high-entropy tokens (i.e., forking tokens) to RLVR. We ultimately improve RLVR by restricting policy gradient updates to forking tokens and uncover a finding even beyond the 80/20 rule: utilizing only 20% of the tokens while maintaining performance comparable to full-gradient updates on the Qwen3-8B base model and significantly surpassing full-gradient updates on the Qwen3-32B (+11.04 on AIME'25 and +7.71 on AIME'24) and Qwen3-14B (+4.79 on AIME'25 and +5.21 on AIME'24) base models, highlighting a strong scaling trend. In contrast, training exclusively on the 80% lowest-entropy tokens leads to a marked decline in performance. These findings indicate that the efficacy of RLVR primarily arises from optimizing the high-entropy tokens that decide reasoning directions. Collectively, our results highlight the potential to understand RLVR through a token-entropy perspective and optimize RLVR by leveraging high-entropy minority tokens to further improve LLM reasoning.
△ Less
Submitted 2 June, 2025;
originally announced June 2025.
-
Rationales Are Not Silver Bullets: Measuring the Impact of Rationales on Model Performance and Reliability
Authors:
Chiwei Zhu,
Benfeng Xu,
An Yang,
Junyang Lin,
Quan Wang,
Chang Zhou,
Zhendong Mao
Abstract:
Training language models with rationales augmentation has been shown to be beneficial in many existing works. In this paper, we identify that such a prevailing view does not hold consistently. We conduct comprehensive investigations to thoroughly inspect the impact of rationales on model performance as well as a novel perspective of model reliability. The results lead to several key findings that…
▽ More
Training language models with rationales augmentation has been shown to be beneficial in many existing works. In this paper, we identify that such a prevailing view does not hold consistently. We conduct comprehensive investigations to thoroughly inspect the impact of rationales on model performance as well as a novel perspective of model reliability. The results lead to several key findings that add new insights upon existing understandings: 1) Rationales can, at times, deteriorate model performance; 2) Rationales can, at times, improve model reliability, even outperforming their untrained counterparts; 3) A linear correspondence exists in between the performance and reliability improvements, while both are driven by the intrinsic difficulty of the task. These findings provide informative regulations on the broad utilization of rationales and raise critical implications on the procedure of explicitly aligning language models with implicit human thoughts. Codes can be found at https://github.com/Ignoramus0817/rationales.
△ Less
Submitted 29 May, 2025;
originally announced May 2025.
-
Adversarial Reasoning for Repair Based on Inferred Program Intent
Authors:
He Ye,
Aidan Z. H. Yang,
Chang Hu,
Yanlin Wang,
Tao Zhang,
Claire Le Goues
Abstract:
Automated program repair (APR) has shown promising results, particularly with the use of neural networks. Currently, most APR tools focus on code transformations specified by test suites, rather than reasoning about the program intent and the high-level bug specification. Without a proper understanding of program intent, these tools tend to generate patches that overfit incomplete test suites and…
▽ More
Automated program repair (APR) has shown promising results, particularly with the use of neural networks. Currently, most APR tools focus on code transformations specified by test suites, rather than reasoning about the program intent and the high-level bug specification. Without a proper understanding of program intent, these tools tend to generate patches that overfit incomplete test suites and fail to reflect the developers intentions. However, reasoning about program intent is challenging. In our work, we propose an approach called AdverIntent-Agent, based on critique and adversarial reasoning. Our approach is novel to shift the focus from generating multiple APR patches to inferring multiple potential program intents. Ideally, we aim to infer intents that are, to some extent, adversarial to each other, maximizing the probability that at least one aligns closely with the developers original intent. AdverIntent-Agent is a multi-agent approach consisting of three agents: a reasoning agent, a test agent, and a repair agent. First, the reasoning agent generates adversarial program intents along with the corresponding faulty statements. Next, the test agent produces adversarial test cases that align with each inferred intent, constructing oracles that use the same inputs but have different expected outputs. Finally, the repair agent uses dynamic and precise LLM prompts to generate patches that satisfy both the inferred program intent and the generated tests. AdverIntent-Agent was evaluated on two benchmarks: Defects4J 2.0 and HumanEval-Java. AdverIntent-Agent correctly repaired 77 and 105 bugs in both benchmarks, respectively.
△ Less
Submitted 20 June, 2025; v1 submitted 19 May, 2025;
originally announced May 2025.
-
WorldPM: Scaling Human Preference Modeling
Authors:
Binghai Wang,
Runji Lin,
Keming Lu,
Le Yu,
Zhenru Zhang,
Fei Huang,
Chujie Zheng,
Kai Dang,
Yang Fan,
Xingzhang Ren,
An Yang,
Binyuan Hui,
Dayiheng Liu,
Tao Gui,
Qi Zhang,
Xuanjing Huang,
Yu-Gang Jiang,
Bowen Yu,
Jingren Zhou,
Junyang Lin
Abstract:
Motivated by scaling laws in language modeling that demonstrate how test loss scales as a power law with model and dataset sizes, we find that similar laws exist in preference modeling. We propose World Preference Modeling$ (WorldPM) to emphasize this scaling potential, where World Preference embodies a unified representation of human preferences. In this paper, we collect preference data from pub…
▽ More
Motivated by scaling laws in language modeling that demonstrate how test loss scales as a power law with model and dataset sizes, we find that similar laws exist in preference modeling. We propose World Preference Modeling$ (WorldPM) to emphasize this scaling potential, where World Preference embodies a unified representation of human preferences. In this paper, we collect preference data from public forums covering diverse user communities, and conduct extensive training using 15M-scale data across models ranging from 1.5B to 72B parameters. We observe distinct patterns across different evaluation metrics: (1) Adversarial metrics (ability to identify deceptive features) consistently scale up with increased training data and base model size; (2) Objective metrics (objective knowledge with well-defined answers) show emergent behavior in larger language models, highlighting WorldPM's scalability potential; (3) Subjective metrics (subjective preferences from a limited number of humans or AI) do not demonstrate scaling trends. Further experiments validate the effectiveness of WorldPM as a foundation for preference fine-tuning. Through evaluations on 7 benchmarks with 20 subtasks, we find that WorldPM broadly improves the generalization performance across human preference datasets of varying sizes (7K, 100K and 800K samples), with performance gains exceeding 5% on many key subtasks. Integrating WorldPM into our internal RLHF pipeline, we observe significant improvements on both in-house and public evaluation sets, with notable gains of 4% to 8% in our in-house evaluations.
△ Less
Submitted 18 May, 2025; v1 submitted 15 May, 2025;
originally announced May 2025.
-
Qwen3 Technical Report
Authors:
An Yang,
Anfeng Li,
Baosong Yang,
Beichen Zhang,
Binyuan Hui,
Bo Zheng,
Bowen Yu,
Chang Gao,
Chengen Huang,
Chenxu Lv,
Chujie Zheng,
Dayiheng Liu,
Fan Zhou,
Fei Huang,
Feng Hu,
Hao Ge,
Haoran Wei,
Huan Lin,
Jialong Tang,
Jian Yang,
Jianhong Tu,
Jianwei Zhang,
Jianxin Yang,
Jiaxi Yang,
Jing Zhou
, et al. (35 additional authors not shown)
Abstract:
In this work, we present Qwen3, the latest version of the Qwen model family. Qwen3 comprises a series of large language models (LLMs) designed to advance performance, efficiency, and multilingual capabilities. The Qwen3 series includes models of both dense and Mixture-of-Expert (MoE) architectures, with parameter scales ranging from 0.6 to 235 billion. A key innovation in Qwen3 is the integration…
▽ More
In this work, we present Qwen3, the latest version of the Qwen model family. Qwen3 comprises a series of large language models (LLMs) designed to advance performance, efficiency, and multilingual capabilities. The Qwen3 series includes models of both dense and Mixture-of-Expert (MoE) architectures, with parameter scales ranging from 0.6 to 235 billion. A key innovation in Qwen3 is the integration of thinking mode (for complex, multi-step reasoning) and non-thinking mode (for rapid, context-driven responses) into a unified framework. This eliminates the need to switch between different models--such as chat-optimized models (e.g., GPT-4o) and dedicated reasoning models (e.g., QwQ-32B)--and enables dynamic mode switching based on user queries or chat templates. Meanwhile, Qwen3 introduces a thinking budget mechanism, allowing users to allocate computational resources adaptively during inference, thereby balancing latency and performance based on task complexity. Moreover, by leveraging the knowledge from the flagship models, we significantly reduce the computational resources required to build smaller-scale models, while ensuring their highly competitive performance. Empirical evaluations demonstrate that Qwen3 achieves state-of-the-art results across diverse benchmarks, including tasks in code generation, mathematical reasoning, agent tasks, etc., competitive against larger MoE models and proprietary models. Compared to its predecessor Qwen2.5, Qwen3 expands multilingual support from 29 to 119 languages and dialects, enhancing global accessibility through improved cross-lingual understanding and generation capabilities. To facilitate reproducibility and community-driven research and development, all Qwen3 models are publicly accessible under Apache 2.0.
△ Less
Submitted 14 May, 2025;
originally announced May 2025.
-
Multivariate Conformal Selection
Authors:
Tian Bai,
Yue Zhao,
Xiang Yu,
Archer Y. Yang
Abstract:
Selecting high-quality candidates from large datasets is critical in applications such as drug discovery, precision medicine, and alignment of large language models (LLMs). While Conformal Selection (CS) provides rigorous uncertainty quantification, it is limited to univariate responses and scalar criteria. To address this issue, we propose Multivariate Conformal Selection (mCS), a generalization…
▽ More
Selecting high-quality candidates from large datasets is critical in applications such as drug discovery, precision medicine, and alignment of large language models (LLMs). While Conformal Selection (CS) provides rigorous uncertainty quantification, it is limited to univariate responses and scalar criteria. To address this issue, we propose Multivariate Conformal Selection (mCS), a generalization of CS designed for multivariate response settings. Our method introduces regional monotonicity and employs multivariate nonconformity scores to construct conformal p-values, enabling finite-sample False Discovery Rate (FDR) control. We present two variants: mCS-dist, using distance-based scores, and mCS-learn, which learns optimal scores via differentiable optimization. Experiments on simulated and real-world datasets demonstrate that mCS significantly improves selection power while maintaining FDR control, establishing it as a robust framework for multivariate selection tasks.
△ Less
Submitted 1 May, 2025;
originally announced May 2025.
-
LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
Authors:
Peijian Zeng,
Feiyan Pang,
Zhanbo Wang,
Aimin Yang
Abstract:
Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects. Traditional methods such as feature embedding and reconstruction-based approaches require large datasets and struggle with scalability. Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations, leading to high implement…
▽ More
Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects. Traditional methods such as feature embedding and reconstruction-based approaches require large datasets and struggle with scalability. Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations, leading to high implementation costs and false positives. Additionally, industrial datasets like MVTec-AD and VisA suffer from severe class imbalance, with defect samples constituting only 23.8% and 11.1% of total data respectively. To address these challenges, we propose a reward function that dynamically prioritizes rare defect patterns during training to handle class imbalance. We also introduce a mask-free reasoning framework using Chain of Thought (CoT) and Group Relative Policy Optimization (GRPO) mechanisms, enabling anomaly detection directly from raw images without annotated masks. This approach generates interpretable step-by-step explanations for defect localization. Our method achieves state-of-the-art performance, outperforming prior approaches by 36% in accuracy on MVTec-AD and 16% on VisA. By eliminating mask dependency and reducing costs while providing explainable outputs, this work advances industrial anomaly detection and supports scalable quality control in manufacturing. Code to reproduce the experiment is available at https://github.com/LilaKen/LR-IAD.
△ Less
Submitted 28 April, 2025;
originally announced April 2025.
-
OmniSage: Large Scale, Multi-Entity Heterogeneous Graph Representation Learning
Authors:
Anirudhan Badrinath,
Alex Yang,
Kousik Rajesh,
Prabhat Agarwal,
Jaewon Yang,
Haoyu Chen,
Jiajing Xu,
Charles Rosenberg
Abstract:
Representation learning, a task of learning latent vectors to represent entities, is a key task in improving search and recommender systems in web applications. Various representation learning methods have been developed, including graph-based approaches for relationships among entities, sequence-based methods for capturing the temporal evolution of user activities, and content-based models for le…
▽ More
Representation learning, a task of learning latent vectors to represent entities, is a key task in improving search and recommender systems in web applications. Various representation learning methods have been developed, including graph-based approaches for relationships among entities, sequence-based methods for capturing the temporal evolution of user activities, and content-based models for leveraging text and visual content. However, the development of a unifying framework that integrates these diverse techniques to support multiple applications remains a significant challenge.
This paper presents OmniSage, a large-scale representation framework that learns universal representations for a variety of applications at Pinterest. OmniSage integrates graph neural networks with content-based models and user sequence models by employing multiple contrastive learning tasks to effectively process graph data, user sequence data, and content signals. To support the training and inference of OmniSage, we developed an efficient infrastructure capable of supporting Pinterest graphs with billions of nodes. The universal representations generated by OmniSage have significantly enhanced user experiences on Pinterest, leading to an approximate 2.5% increase in sitewide repins (saves) across five applications. This paper highlights the impact of unifying representation learning methods, and we make the model code publicly available at https://github.com/pinterest/atg-research/tree/main/omnisage.
△ Less
Submitted 11 June, 2025; v1 submitted 22 April, 2025;
originally announced April 2025.
-
VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models
Authors:
Weiye Xu,
Jiahao Wang,
Weiyun Wang,
Zhe Chen,
Wengang Zhou,
Aijun Yang,
Lewei Lu,
Houqiang Li,
Xiaohua Wang,
Xizhou Zhu,
Wenhai Wang,
Jifeng Dai,
Jinguo Zhu
Abstract:
Visual reasoning is a core component of human intelligence and a critical capability for advanced multimodal models. Yet current reasoning evaluations of multimodal large language models (MLLMs) often rely on text descriptions and allow language-based reasoning shortcuts, failing to measure genuine vision-centric reasoning. To address this, we introduce VisuLogic: a benchmark of 1,000 human-verifi…
▽ More
Visual reasoning is a core component of human intelligence and a critical capability for advanced multimodal models. Yet current reasoning evaluations of multimodal large language models (MLLMs) often rely on text descriptions and allow language-based reasoning shortcuts, failing to measure genuine vision-centric reasoning. To address this, we introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories (e.g., quantitative shifts, spatial relations, attribute comparisons). These various types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives. We evaluate leading MLLMs on this benchmark and analyze their results to identify common failure modes. Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans-revealing significant gaps in visual reasoning. Furthermore, we provide a supplementary training dataset and a reinforcement-learning baseline to support further progress.
△ Less
Submitted 21 April, 2025;
originally announced April 2025.
-
Impact of Environmental Colors on Human Aggressiveness: Insights from a Minecraft-Based Behavioral Study
Authors:
Austin Deng-Yao Yang,
Shih-Jen Tsai,
Hsin-Jung Tsai
Abstract:
This study explores the influence of environmental colors on human behavior, specifically focusing on aggressiveness and passiveness. Color is widely regarded as an influential environmental factor shaping human behavior, yet existing studies present conflicting evidence regarding its impact on aggressiveness and passiveness. This study employed Minecraft as a controlled digital platform to invest…
▽ More
This study explores the influence of environmental colors on human behavior, specifically focusing on aggressiveness and passiveness. Color is widely regarded as an influential environmental factor shaping human behavior, yet existing studies present conflicting evidence regarding its impact on aggressiveness and passiveness. This study employed Minecraft as a controlled digital platform to investigate whether exposure to different colors influences both the frequency and nature of participant interactions (aggressive versus non-aggressive), and whether prolonged exposure amplifies these effects. Anonymous online participants were exposed to various colors before interacting with non-player characters simulating human-like encounters. Three key outcomes were measured: (1) total interactions per color, (2) ratios of aggressive to non-aggressive interactions per color, and (3) the effect of varying exposure durations on aggressiveness. While no significant overall differences in interaction frequency were observed among the colors, post-hoc analyses revealed that Red and Black elicited significantly more interactions compared to Green. Additionally, Red, Yellow, and Black were associated with higher ratios of aggressive behavior relative to Green or White. Prolonged exposure to Red also appeared to intensify aggressive responses. These findings underscore the potential role of environmental color in shaping online social behaviors and highlight the importance of environmental settings in areas ranging from online communication platforms to digital marketing strategies.
△ Less
Submitted 22 March, 2025;
originally announced April 2025.
-
A 120 lines code for isogeometric topology optimization and its extension to 3D in MATLAB
Authors:
Xianda Xie,
Zhihui Ou,
Aodi Yang,
Xiaobing Li,
Shuting Wang
Abstract:
In this paper, a compact and efficient code implementation is presented for isogeometric topology optimization (ITO) approach. With the aid of Bėzier extraction technique, a derived explicit stiffness matrix computation formula is applied to all B-spline IGA elements with rectangular shape under linear elasticity assumption. Using the aforementioned explicit formula, the stiffness matrix calculati…
▽ More
In this paper, a compact and efficient code implementation is presented for isogeometric topology optimization (ITO) approach. With the aid of Bėzier extraction technique, a derived explicit stiffness matrix computation formula is applied to all B-spline IGA elements with rectangular shape under linear elasticity assumption. Using the aforementioned explicit formula, the stiffness matrix calculation and updating of IGA are significantly simplified, which leads to the current ITO code implemented only in one main function without calling subroutines, such as IGA mesh generation and Gaussian quadrature. Both two-dimensional (2D) and three-dimensional (3D) cases are taken into consideration, which result into iga_top120 and iga_top3D257 MATLAB codes for 2D and 3D design problems. Numerical examples validate the effectiveness of our open-source codes, with several user-defined input parameters basically identical to those used in top88 and top3D. Therefore, iga_top120 and iga_top3D257 provide an effective entry for the code transforming from FEM-based TO into ITO.
△ Less
Submitted 10 April, 2025;
originally announced April 2025.
-
PiCo: Jailbreaking Multimodal Large Language Models via $\textbf{Pi}$ctorial $\textbf{Co}$de Contextualization
Authors:
Aofan Liu,
Lulu Tang,
Ting Pan,
Yuguo Yin,
Bin Wang,
Ao Yang
Abstract:
Multimodal Large Language Models (MLLMs), which integrate vision and other modalities into Large Language Models (LLMs), significantly enhance AI capabilities but also introduce new security vulnerabilities. By exploiting the vulnerabilities of the visual modality and the long-tail distribution characteristic of code training data, we present PiCo, a novel jailbreaking framework designed to progre…
▽ More
Multimodal Large Language Models (MLLMs), which integrate vision and other modalities into Large Language Models (LLMs), significantly enhance AI capabilities but also introduce new security vulnerabilities. By exploiting the vulnerabilities of the visual modality and the long-tail distribution characteristic of code training data, we present PiCo, a novel jailbreaking framework designed to progressively bypass multi-tiered defense mechanisms in advanced MLLMs. PiCo employs a tier-by-tier jailbreak strategy, using token-level typographic attacks to evade input filtering and embedding harmful intent within programming context instructions to bypass runtime monitoring. To comprehensively assess the impact of attacks, a new evaluation metric is further proposed to assess both the toxicity and helpfulness of model outputs post-attack. By embedding harmful intent within code-style visual instructions, PiCo achieves an average Attack Success Rate (ASR) of 84.13% on Gemini-Pro Vision and 52.66% on GPT-4, surpassing previous methods. Experimental results highlight the critical gaps in current defenses, underscoring the need for more robust strategies to secure advanced MLLMs.
△ Less
Submitted 21 June, 2025; v1 submitted 2 April, 2025;
originally announced April 2025.
-
Flexible and Explainable Graph Analysis for EEG-based Alzheimer's Disease Classification
Authors:
Jing Wang,
Jun-En Ding,
Feng Liu,
Elisa Kallioniemi,
Shuqiang Wang,
Wen-Xiang Tsai,
Albert C. Yang
Abstract:
Alzheimer's Disease is a progressive neurological disorder that is one of the most common forms of dementia. It leads to a decline in memory, reasoning ability, and behavior, especially in older people. The cause of Alzheimer's Disease is still under exploration and there is no all-inclusive theory that can explain the pathologies in each individual patient. Nevertheless, early intervention has be…
▽ More
Alzheimer's Disease is a progressive neurological disorder that is one of the most common forms of dementia. It leads to a decline in memory, reasoning ability, and behavior, especially in older people. The cause of Alzheimer's Disease is still under exploration and there is no all-inclusive theory that can explain the pathologies in each individual patient. Nevertheless, early intervention has been found to be effective in managing symptoms and slowing down the disease's progression. Recent research has utilized electroencephalography (EEG) data to identify biomarkers that distinguish Alzheimer's Disease patients from healthy individuals. Prior studies have used various machine learning methods, including deep learning and graph neural networks, to examine electroencephalography-based signals for identifying Alzheimer's Disease patients. In our research, we proposed a Flexible and Explainable Gated Graph Convolutional Network (GGCN) with Multi-Objective Tree-Structured Parzen Estimator (MOTPE) hyperparameter tuning. This provides a flexible solution that efficiently identifies the optimal number of GGCN blocks to achieve the optimized precision, specificity, and recall outcomes, as well as the optimized area under the Receiver Operating Characteristic (AUC). Our findings demonstrated a high efficacy with an over 0.9 Receiver Operating Characteristic score, alongside precision, specificity, and recall scores in distinguishing health control with Alzheimer's Disease patients in Moderate to Severe Dementia using the power spectrum density (PSD) of electroencephalography signals across various frequency bands. Moreover, our research enhanced the interpretability of the embedded adjacency matrices, revealing connectivity differences in frontal and parietal brain regions between Alzheimer's patients and healthy individuals.
△ Less
Submitted 1 April, 2025;
originally announced April 2025.
-
Chapter-Llama: Efficient Chaptering in Hour-Long Videos with LLMs
Authors:
Lucas Ventura,
Antoine Yang,
Cordelia Schmid,
Gül Varol
Abstract:
We address the task of video chaptering, i.e., partitioning a long video timeline into semantic units and generating corresponding chapter titles. While relatively underexplored, automatic chaptering has the potential to enable efficient navigation and content retrieval in long-form videos. In this paper, we achieve strong chaptering performance on hour-long videos by efficiently addressing the pr…
▽ More
We address the task of video chaptering, i.e., partitioning a long video timeline into semantic units and generating corresponding chapter titles. While relatively underexplored, automatic chaptering has the potential to enable efficient navigation and content retrieval in long-form videos. In this paper, we achieve strong chaptering performance on hour-long videos by efficiently addressing the problem in the text domain with our 'Chapter-Llama' framework. Specifically, we leverage a pretrained large language model (LLM) with large context window, and feed as input (i) speech transcripts and (ii) captions describing video frames, along with their respective timestamps. Given the inefficiency of exhaustively captioning all frames, we propose a lightweight speech-guided frame selection strategy based on speech transcript content, and experimentally demonstrate remarkable advantages. We train the LLM to output timestamps for the chapter boundaries, as well as free-form chapter titles. This simple yet powerful approach scales to processing one-hour long videos in a single forward pass. Our results demonstrate substantial improvements (e.g., 45.3 vs 26.7 F1 score) over the state of the art on the recent VidChapters-7M benchmark. To promote further research, we release our code and models at our project page.
△ Less
Submitted 31 March, 2025;
originally announced April 2025.
-
Refining Time Series Anomaly Detectors using Large Language Models
Authors:
Alan Yang,
Yulin Chen,
Sean Lee,
Venus Montes
Abstract:
Time series anomaly detection (TSAD) is of widespread interest across many industries, including finance, healthcare, and manufacturing. Despite the development of numerous automatic methods for detecting anomalies, human oversight remains necessary to review and act upon detected anomalies, as well as verify their accuracy. We study the use of multimodal large language models (LLMs) to partially…
▽ More
Time series anomaly detection (TSAD) is of widespread interest across many industries, including finance, healthcare, and manufacturing. Despite the development of numerous automatic methods for detecting anomalies, human oversight remains necessary to review and act upon detected anomalies, as well as verify their accuracy. We study the use of multimodal large language models (LLMs) to partially automate this process. We find that LLMs can effectively identify false alarms by integrating visual inspection of time series plots with text descriptions of the data-generating process. By leveraging the capabilities of LLMs, we aim to reduce the reliance on human effort required to maintain a TSAD system
△ Less
Submitted 26 March, 2025;
originally announced March 2025.
-
Gemma 3 Technical Report
Authors:
Gemma Team,
Aishwarya Kamath,
Johan Ferret,
Shreya Pathak,
Nino Vieillard,
Ramona Merhej,
Sarah Perrin,
Tatiana Matejovicova,
Alexandre Ramé,
Morgane Rivière,
Louis Rouillard,
Thomas Mesnard,
Geoffrey Cideron,
Jean-bastien Grill,
Sabela Ramos,
Edouard Yvinec,
Michelle Casbon,
Etienne Pot,
Ivo Penchev,
Gaël Liu,
Francesco Visin,
Kathleen Kenealy,
Lucas Beyer,
Xiaohai Zhai,
Anton Tsitsulin
, et al. (191 additional authors not shown)
Abstract:
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achie…
▽ More
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
△ Less
Submitted 25 March, 2025;
originally announced March 2025.
-
StyleSpeaker: Audio-Enhanced Fine-Grained Style Modeling for Speech-Driven 3D Facial Animation
Authors:
An Yang,
Chenyu Liu,
Pengcheng Xia,
Jun Du
Abstract:
Speech-driven 3D facial animation is challenging due to the diversity in speaking styles and the limited availability of 3D audio-visual data. Speech predominantly dictates the coarse motion trends of the lip region, while specific styles determine the details of lip motion and the overall facial expressions. Prior works lack fine-grained learning in style modeling and do not adequately consider s…
▽ More
Speech-driven 3D facial animation is challenging due to the diversity in speaking styles and the limited availability of 3D audio-visual data. Speech predominantly dictates the coarse motion trends of the lip region, while specific styles determine the details of lip motion and the overall facial expressions. Prior works lack fine-grained learning in style modeling and do not adequately consider style biases across varying speech conditions, which reduce the accuracy of style modeling and hamper the adaptation capability to unseen speakers. To address this, we propose a novel framework, StyleSpeaker, which explicitly extracts speaking styles based on speaker characteristics while accounting for style biases caused by different speeches. Specifically, we utilize a style encoder to capture speakers' styles from facial motions and enhance them according to motion preferences elicited by varying speech conditions. The enhanced styles are then integrated into the coarse motion features via a style infusion module, which employs a set of style primitives to learn fine-grained style representation. Throughout training, we maintain this set of style primitives to comprehensively model the entire style space. Hence, StyleSpeaker possesses robust style modeling capability for seen speakers and can rapidly adapt to unseen speakers without fine-tuning. Additionally, we design a trend loss and a local contrastive loss to improve the synchronization between synthesized motions and speeches. Extensive qualitative and quantitative experiments on three public datasets demonstrate that our method outperforms existing state-of-the-art approaches.
△ Less
Submitted 12 March, 2025;
originally announced March 2025.
-
Chameleon: On the Scene Diversity and Domain Variety of AI-Generated Videos Detection
Authors:
Meiyu Zeng,
Xingming Liao,
Canyu Chen,
Nankai Lin,
Zhuowei Wang,
Chong Chen,
Aimin Yang
Abstract:
Artificial intelligence generated content (AIGC), known as DeepFakes, has emerged as a growing concern because it is being utilized as a tool for spreading disinformation. While much research exists on identifying AI-generated text and images, research on detecting AI-generated videos is limited. Existing datasets for AI-generated videos detection exhibit limitations in terms of diversity, complex…
▽ More
Artificial intelligence generated content (AIGC), known as DeepFakes, has emerged as a growing concern because it is being utilized as a tool for spreading disinformation. While much research exists on identifying AI-generated text and images, research on detecting AI-generated videos is limited. Existing datasets for AI-generated videos detection exhibit limitations in terms of diversity, complexity, and realism. To address these issues, this paper focuses on AI-generated videos detection and constructs a diverse dataset named Chameleon. We generate videos through multiple generation tools and various real video sources. At the same time, we preserve the videos' real-world complexity, including scene switches and dynamic perspective changes, and expand beyond face-centered detection to include human actions and environment generation. Our work bridges the gap between AI-generated dataset construction and real-world forensic needs, offering a valuable benchmark to counteract the evolving threats of AI-generated content.
△ Less
Submitted 9 March, 2025;
originally announced March 2025.
-
LLM-driven Effective Knowledge Tracing by Integrating Dual-channel Difficulty
Authors:
Jiahui Cen,
Jianghao Lin,
Weixuan Zhong,
Dong Zhou,
Jin Chen,
Aimin Yang,
Yongmei Zhou
Abstract:
Knowledge Tracing (KT) is a fundamental technology in intelligent tutoring systems used to simulate changes in students' knowledge state during learning, track personalized knowledge mastery, and predict performance. However, current KT models face three major challenges: (1) When encountering new questions, models face cold-start problems due to sparse interaction records, making precise modeling…
▽ More
Knowledge Tracing (KT) is a fundamental technology in intelligent tutoring systems used to simulate changes in students' knowledge state during learning, track personalized knowledge mastery, and predict performance. However, current KT models face three major challenges: (1) When encountering new questions, models face cold-start problems due to sparse interaction records, making precise modeling difficult; (2) Traditional models only use historical interaction records for student personalization modeling, unable to accurately track individual mastery levels, resulting in unclear personalized modeling; (3) The decision-making process is opaque to educators, making it challenging for them to understand model judgments. To address these challenges, we propose a novel Dual-channel Difficulty-aware Knowledge Tracing (DDKT) framework that utilizes Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) for subjective difficulty assessment, while integrating difficulty bias-aware algorithms and student mastery algorithms for precise difficulty measurement. Our framework introduces three key innovations: (1) Difficulty Balance Perception Sequence (DBPS) - students' subjective perceptions combined with objective difficulty, measuring gaps between LLM-assessed difficulty, mathematical-statistical difficulty, and students' subjective perceived difficulty through attention mechanisms; (2) Difficulty Mastery Ratio (DMR) - precise modeling of student mastery levels through different difficulty zones; (3) Knowledge State Update Mechanism - implementing personalized knowledge acquisition through gated networks and updating student knowledge state. Experimental results on two real datasets show our method consistently outperforms nine baseline models, improving AUC metrics by 2% to 10% while effectively addressing cold-start problems and enhancing model interpretability.
△ Less
Submitted 29 April, 2025; v1 submitted 27 February, 2025;
originally announced February 2025.
-
CLASS: Enhancing Cross-Modal Text-Molecule Retrieval Performance and Training Efficiency
Authors:
Hongyan Wu,
Peijian Zeng,
Weixiong Zheng,
Lianxi Wang,
Nankai Lin,
Shengyi Jiang,
Aimin Yang
Abstract:
Cross-modal text-molecule retrieval task bridges molecule structures and natural language descriptions. Existing methods predominantly focus on aligning text modality and molecule modality, yet they overlook adaptively adjusting the learning states at different training stages and enhancing training efficiency. To tackle these challenges, this paper proposes a Curriculum Learning-bAsed croSS-modal…
▽ More
Cross-modal text-molecule retrieval task bridges molecule structures and natural language descriptions. Existing methods predominantly focus on aligning text modality and molecule modality, yet they overlook adaptively adjusting the learning states at different training stages and enhancing training efficiency. To tackle these challenges, this paper proposes a Curriculum Learning-bAsed croSS-modal text-molecule training framework (CLASS), which can be integrated with any backbone to yield promising performance improvement. Specifically, we quantify the sample difficulty considering both text modality and molecule modality, and design a sample scheduler to introduce training samples via an easy-to-difficult paradigm as the training advances, remarkably reducing the scale of training samples at the early stage of training and improving training efficiency. Moreover, we introduce adaptive intensity learning to increase the training intensity as the training progresses, which adaptively controls the learning intensity across all curriculum stages. Experimental results on the ChEBI-20 dataset demonstrate that our proposed method gains superior performance, simultaneously achieving prominent time savings.
△ Less
Submitted 17 February, 2025;
originally announced February 2025.
-
FuncGenFoil: Airfoil Generation and Editing Model in Function Space
Authors:
Jinouwen Zhang,
Junjie Ren,
Aobo Yang,
Yan Lu,
Lu Chen,
Hairun Xie,
Jing Wang,
Miao Zhang,
Wanli Ouyang,
Shixiang Tang
Abstract:
Aircraft manufacturing is the jewel in the crown of industry, in which generating high-fidelity airfoil geometries with controllable and editable representations remains a fundamental challenge. Existing deep learning methods, which typically rely on predefined parametric representations (e.g., Bézier) or discrete point sets, face an inherent trade-off between expressive power and resolution adapt…
▽ More
Aircraft manufacturing is the jewel in the crown of industry, in which generating high-fidelity airfoil geometries with controllable and editable representations remains a fundamental challenge. Existing deep learning methods, which typically rely on predefined parametric representations (e.g., Bézier) or discrete point sets, face an inherent trade-off between expressive power and resolution adaptability. To tackle this challenge, we introduce FuncGenFoil, a novel function-space generative model that directly reconstructs airfoil geometries as function curves. Our method inherits the advantages of arbitrary-resolution sampling and smoothness from parametric functions, as well as the strong expressiveness of discrete point-based representations. Empirical evaluations demonstrate that FuncGenFoil improves upon state-of-the-art methods in airfoil generation, achieving a relative 74.4% reduction in label error and a 23.2% increase in diversity on the AF-200K dataset. Our results highlight the advantages of function-space modeling for aerodynamic shape optimization, offering a powerful and flexible framework for high-fidelity airfoil design.
△ Less
Submitted 23 May, 2025; v1 submitted 15 February, 2025;
originally announced February 2025.
-
Qwen2.5-1M Technical Report
Authors:
An Yang,
Bowen Yu,
Chengyuan Li,
Dayiheng Liu,
Fei Huang,
Haoyan Huang,
Jiandong Jiang,
Jianhong Tu,
Jianwei Zhang,
Jingren Zhou,
Junyang Lin,
Kai Dang,
Kexin Yang,
Le Yu,
Mei Li,
Minmin Sun,
Qin Zhu,
Rui Men,
Tao He,
Weijia Xu,
Wenbiao Yin,
Wenyuan Yu,
Xiafei Qiu,
Xingzhang Ren,
Xinlong Yang
, et al. (3 additional authors not shown)
Abstract:
We introduce Qwen2.5-1M, a series of models that extend the context length to 1 million tokens. Compared to the previous 128K version, the Qwen2.5-1M series have significantly enhanced long-context capabilities through long-context pre-training and post-training. Key techniques such as long data synthesis, progressive pre-training, and multi-stage supervised fine-tuning are employed to effectively…
▽ More
We introduce Qwen2.5-1M, a series of models that extend the context length to 1 million tokens. Compared to the previous 128K version, the Qwen2.5-1M series have significantly enhanced long-context capabilities through long-context pre-training and post-training. Key techniques such as long data synthesis, progressive pre-training, and multi-stage supervised fine-tuning are employed to effectively enhance long-context performance while reducing training costs.
To promote the use of long-context models among a broader user base, we present and open-source our inference framework. This framework includes a length extrapolation method that can expand the model context lengths by at least four times, or even more, without additional training. To reduce inference costs, we implement a sparse attention method along with chunked prefill optimization for deployment scenarios and a sparsity refinement method to improve precision. Additionally, we detail our optimizations in the inference engine, including kernel optimization, pipeline parallelism, and scheduling optimization, which significantly enhance overall inference performance. By leveraging our inference framework, the Qwen2.5-1M models achieve a remarkable 3x to 7x prefill speedup in scenarios with 1 million tokens of context. This framework provides an efficient and powerful solution for developing applications that require long-context processing using open-source models.
The Qwen2.5-1M series currently includes the open-source models Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, as well as the API-accessed model Qwen2.5-Turbo. Evaluations show that Qwen2.5-1M models have been greatly improved in long-context tasks without compromising performance in short-context scenarios. Specifically, the Qwen2.5-14B-Instruct-1M model significantly outperforms GPT-4o-mini in long-context tasks and supports contexts eight times longer.
△ Less
Submitted 25 January, 2025;
originally announced January 2025.
-
Baichuan-Omni-1.5 Technical Report
Authors:
Yadong Li,
Jun Liu,
Tao Zhang,
Tao Zhang,
Song Chen,
Tianpeng Li,
Zehuan Li,
Lijun Liu,
Lingfeng Ming,
Guosheng Dong,
Da Pan,
Chong Li,
Yuanbo Fang,
Dongdong Kuang,
Mingrui Wang,
Chenglin Zhu,
Youwei Zhang,
Hongyu Guo,
Fengyu Zhang,
Yuran Wang,
Bowen Ding,
Wei Song,
Xu Li,
Yuqi Huo,
Zheng Liang
, et al. (68 additional authors not shown)
Abstract:
We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pip…
▽ More
We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
△ Less
Submitted 25 January, 2025;
originally announced January 2025.
-
AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding
Authors:
Zikun Li,
Zhuofu Chen,
Remi Delacourt,
Gabriele Oliaro,
Zeyu Wang,
Qinghan Chen,
Shuhuai Lin,
April Yang,
Zhihao Zhang,
Zhuoming Chen,
Sean Lai,
Xinhao Cheng,
Xupeng Miao,
Zhihao Jia
Abstract:
Modern large language model (LLM) applications exhibit diverse service-level objectives (SLOs), from low-latency requirements in interactive coding assistants to more relaxed constraints in data wrangling tasks. Existing LLM serving systems, which rely on uniform batching and scheduling strategies, often fail to meet these heterogeneous SLOs concurrently. We present AdaServe, the first LLM serving…
▽ More
Modern large language model (LLM) applications exhibit diverse service-level objectives (SLOs), from low-latency requirements in interactive coding assistants to more relaxed constraints in data wrangling tasks. Existing LLM serving systems, which rely on uniform batching and scheduling strategies, often fail to meet these heterogeneous SLOs concurrently. We present AdaServe, the first LLM serving system designed to support efficient multi-SLO serving through SLO-customized speculative decoding. AdaServe formulates multi-SLO serving as a constrained optimization problem and introduces a hardware-aware algorithm that constructs a speculation tree tailored to each request's latency target. It features a speculate-select-verify pipeline that enables fine-grained control over decoding speed while maximizing system throughput. AdaServe further adapts to workload variation by dynamically adjusting speculation parameters. Evaluations across diverse workloads show that AdaServe reduces SLO violations by up to 4.3$\times$ and improves goodput by up to 1.9$\times$ compared to the best performing baselines, highlighting its effectiveness in multi-SLO serving.
△ Less
Submitted 17 May, 2025; v1 submitted 21 January, 2025;
originally announced January 2025.
-
Adaptive Homophily Clustering: Structure Homophily Graph Learning with Adaptive Filter for Hyperspectral Image
Authors:
Yao Ding,
Weijie Kang,
Aitao Yang,
Zhili Zhang,
Junyang Zhao,
Jie Feng,
Danfeng Hong,
Qinhe Zheng
Abstract:
Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels. Currently, some deep graph clustering methods have been successfully explored for HSI due to their outstanding performance in effective spatial structural information encoding. Nevertheless, insufficient structural information utilization, poor feature presentation ability, and weak graph up…
▽ More
Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels. Currently, some deep graph clustering methods have been successfully explored for HSI due to their outstanding performance in effective spatial structural information encoding. Nevertheless, insufficient structural information utilization, poor feature presentation ability, and weak graph update capability limit their performance. Thus, in this paper, a homophily structure graph learning with an adaptive filter clustering method (AHSGC) for HSI is proposed. Specifically, homogeneous region generation is first developed for HSI processing and constructing the original graph. Afterward, an adaptive filter graph encoder is designed to adaptively capture the high and low frequency features on the graph for subsequence processing. Then, a graph embedding clustering self-training decoder is developed with KL Divergence, with which the pseudo-label is generated for network training. Meanwhile, homophily-enhanced structure learning is introduced to update the graph according to the clustering task, in which the orient correlation estimation is adopted to estimate the node connection, and graph edge sparsification is designed to adjust the edges in the graph dynamically. Finally, a joint network optimization is introduced to achieve network self-training and update the graph. The K-means is adopted to express the latent features. Extensive experiments and repeated comparative analysis have verified that our AHSGC contains high clustering accuracy, low computational complexity, and strong robustness. The code source will be available at https://github.com/DY-HYX.
△ Less
Submitted 7 January, 2025; v1 submitted 2 January, 2025;
originally announced January 2025.
-
CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
Authors:
Shanghaoran Quan,
Jiaxi Yang,
Bowen Yu,
Bo Zheng,
Dayiheng Liu,
An Yang,
Xuancheng Ren,
Bofei Gao,
Yibo Miao,
Yunlong Feng,
Zekun Wang,
Jian Yang,
Zeyu Cui,
Yang Fan,
Yichang Zhang,
Binyuan Hui,
Junyang Lin
Abstract:
With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of…
▽ More
With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 25 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.
△ Less
Submitted 3 January, 2025; v1 submitted 2 January, 2025;
originally announced January 2025.
-
Enhancing Unsupervised Feature Selection via Double Sparsity Constrained Optimization
Authors:
Xianchao Xiu,
Anning Yang,
Chenyi Huang,
Xinrong Li,
Wanquan Liu
Abstract:
Unsupervised feature selection (UFS) is widely applied in machine learning and pattern recognition. However, most of the existing methods only consider a single sparsity, which makes it difficult to select valuable and discriminative feature subsets from the original high-dimensional feature set. In this paper, we propose a new UFS method called DSCOFS via embedding double sparsity constrained opt…
▽ More
Unsupervised feature selection (UFS) is widely applied in machine learning and pattern recognition. However, most of the existing methods only consider a single sparsity, which makes it difficult to select valuable and discriminative feature subsets from the original high-dimensional feature set. In this paper, we propose a new UFS method called DSCOFS via embedding double sparsity constrained optimization into the classical principal component analysis (PCA) framework. Double sparsity refers to using $\ell_{2,0}$-norm and $\ell_0$-norm to simultaneously constrain variables, by adding the sparsity of different types, to achieve the purpose of improving the accuracy of identifying differential features. The core is that $\ell_{2,0}$-norm can remove irrelevant and redundant features, while $\ell_0$-norm can filter out irregular noisy features, thereby complementing $\ell_{2,0}$-norm to improve discrimination. An effective proximal alternating minimization method is proposed to solve the resulting nonconvex nonsmooth model. Theoretically, we rigorously prove that the sequence generated by our method globally converges to a stationary point. Numerical experiments on three synthetic datasets and eight real-world datasets demonstrate the effectiveness, stability, and convergence of the proposed method. In particular, the average clustering accuracy (ACC) and normalized mutual information (NMI) are improved by at least 3.34% and 3.02%, respectively, compared with the state-of-the-art methods. More importantly, two common statistical tests and a new feature similarity metric verify the advantages of double sparsity. All results suggest that our proposed DSCOFS provides a new perspective for feature selection.
△ Less
Submitted 1 January, 2025;
originally announced January 2025.
-
Qwen2.5 Technical Report
Authors:
Qwen,
:,
An Yang,
Baosong Yang,
Beichen Zhang,
Binyuan Hui,
Bo Zheng,
Bowen Yu,
Chengyuan Li,
Dayiheng Liu,
Fei Huang,
Haoran Wei,
Huan Lin,
Jian Yang,
Jianhong Tu,
Jianwei Zhang,
Jianxin Yang,
Jiaxi Yang,
Jingren Zhou,
Junyang Lin,
Kai Dang,
Keming Lu,
Keqin Bao,
Kexin Yang,
Le Yu
, et al. (19 additional authors not shown)
Abstract:
In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This pr…
▽ More
In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.
△ Less
Submitted 2 January, 2025; v1 submitted 19 December, 2024;
originally announced December 2024.
-
Jailbreaking? One Step Is Enough!
Authors:
Weixiong Zheng,
Peijian Zeng,
Yiwei Li,
Hongyan Wu,
Nankai Lin,
Junhao Chen,
Aimin Yang,
Yongmei Zhou
Abstract:
Large language models (LLMs) excel in various tasks but remain vulnerable to jailbreak attacks, where adversaries manipulate prompts to generate harmful outputs. Examining jailbreak prompts helps uncover the shortcomings of LLMs. However, current jailbreak methods and the target model's defenses are engaged in an independent and adversarial process, resulting in the need for frequent attack iterat…
▽ More
Large language models (LLMs) excel in various tasks but remain vulnerable to jailbreak attacks, where adversaries manipulate prompts to generate harmful outputs. Examining jailbreak prompts helps uncover the shortcomings of LLMs. However, current jailbreak methods and the target model's defenses are engaged in an independent and adversarial process, resulting in the need for frequent attack iterations and redesigning attacks for different models. To address these gaps, we propose a Reverse Embedded Defense Attack (REDA) mechanism that disguises the attack intention as the "defense". intention against harmful content. Specifically, REDA starts from the target response, guiding the model to embed harmful content within its defensive measures, thereby relegating harmful content to a secondary role and making the model believe it is performing a defensive task. The attacking model considers that it is guiding the target model to deal with harmful content, while the target model thinks it is performing a defensive task, creating an illusion of cooperation between the two. Additionally, to enhance the model's confidence and guidance in "defensive" intentions, we adopt in-context learning (ICL) with a small number of attack examples and construct a corresponding dataset of attack examples. Extensive evaluations demonstrate that the REDA method enables cross-model attacks without the need to redesign attack strategies for different models, enables successful jailbreak in one iteration, and outperforms existing methods on both open-source and closed-source models.
△ Less
Submitted 17 December, 2024;
originally announced December 2024.
-
On Adversarial Robustness and Out-of-Distribution Robustness of Large Language Models
Authors:
April Yang,
Jordan Tab,
Parth Shah,
Paul Kotchavong
Abstract:
The increasing reliance on large language models (LLMs) for diverse applications necessitates a thorough understanding of their robustness to adversarial perturbations and out-of-distribution (OOD) inputs. In this study, we investigate the correlation between adversarial robustness and OOD robustness in LLMs, addressing a critical gap in robustness evaluation. By applying methods originally design…
▽ More
The increasing reliance on large language models (LLMs) for diverse applications necessitates a thorough understanding of their robustness to adversarial perturbations and out-of-distribution (OOD) inputs. In this study, we investigate the correlation between adversarial robustness and OOD robustness in LLMs, addressing a critical gap in robustness evaluation. By applying methods originally designed to improve one robustness type across both contexts, we analyze their performance on adversarial and out-of-distribution benchmark datasets. The input of the model consists of text samples, with the output prediction evaluated in terms of accuracy, precision, recall, and F1 scores in various natural language inference tasks.
Our findings highlight nuanced interactions between adversarial robustness and OOD robustness, with results indicating limited transferability between the two robustness types. Through targeted ablations, we evaluate how these correlations evolve with different model sizes and architectures, uncovering model-specific trends: smaller models like LLaMA2-7b exhibit neutral correlations, larger models like LLaMA2-13b show negative correlations, and Mixtral demonstrates positive correlations, potentially due to domain-specific alignment. These results underscore the importance of hybrid robustness frameworks that integrate adversarial and OOD strategies tailored to specific models and domains. Further research is needed to evaluate these interactions across larger models and varied architectures, offering a pathway to more reliable and generalizable LLMs.
△ Less
Submitted 13 December, 2024;
originally announced December 2024.
-
Simulating Hard Attention Using Soft Attention
Authors:
Andy Yang,
Lena Strobl,
David Chiang,
Dana Angluin
Abstract:
We study conditions under which transformers using soft attention can simulate hard attention, that is, effectively focus all attention on a subset of positions. First, we examine several subclasses of languages recognized by hard-attention transformers, which can be defined in variants of linear temporal logic. We demonstrate how soft-attention transformers can compute formulas of these logics us…
▽ More
We study conditions under which transformers using soft attention can simulate hard attention, that is, effectively focus all attention on a subset of positions. First, we examine several subclasses of languages recognized by hard-attention transformers, which can be defined in variants of linear temporal logic. We demonstrate how soft-attention transformers can compute formulas of these logics using unbounded positional embeddings or temperature scaling. Second, we demonstrate how temperature scaling allows softmax transformers to simulate general hard-attention transformers, using a temperature that depends on the minimum gap between the maximum attention scores and other attention scores.
△ Less
Submitted 26 June, 2025; v1 submitted 13 December, 2024;
originally announced December 2024.
-
A Multimodal Approach to The Detection and Classification of Skin Diseases
Authors:
Allen Yang,
Edward Yang
Abstract:
According to PBS, nearly one-third of Americans lack access to primary care services, and another forty percent delay going to avoid medical costs. As a result, many diseases are left undiagnosed and untreated, even if the disease shows many physical symptoms on the skin. With the rise of AI, self-diagnosis and improved disease recognition have become more promising than ever; in spite of that, ex…
▽ More
According to PBS, nearly one-third of Americans lack access to primary care services, and another forty percent delay going to avoid medical costs. As a result, many diseases are left undiagnosed and untreated, even if the disease shows many physical symptoms on the skin. With the rise of AI, self-diagnosis and improved disease recognition have become more promising than ever; in spite of that, existing methods suffer from a lack of large-scale patient databases and outdated methods of study, resulting in studies being limited to only a few diseases or modalities. This study incorporates readily available and easily accessible patient information via image and text for skin disease classification on a new dataset of 26 skin disease types that includes both skin disease images (37K) and associated patient narratives. Using this dataset, baselines for various image models were established that outperform existing methods. Initially, the Resnet-50 model was only able to achieve an accuracy of 70% but, after various optimization techniques, the accuracy was improved to 80%. In addition, this study proposes a novel fine-tuning strategy for sequence classification Large Language Models (LLMs), Chain of Options, which breaks down a complex reasoning task into intermediate steps at training time instead of inference. With Chain of Options and preliminary disease recommendations from the image model, this method achieves state of the art accuracy 91% in diagnosing patient skin disease given just an image of the afflicted area as well as a patient description of the symptoms (such as itchiness or dizziness). Through this research, an earlier diagnosis of skin diseases can occur, and clinicians can work with deep learning models to give a more accurate diagnosis, improving quality of life and saving lives.
△ Less
Submitted 21 November, 2024;
originally announced November 2024.
-
Context Parallelism for Scalable Million-Token Inference
Authors:
Amy Yang,
Jingyi Yang,
Aya Ibrahim,
Xinfeng Xie,
Bangsheng Tang,
Grigory Sizov,
Jeremy Reizenstein,
Jongsoo Park,
Jianyu Huang
Abstract:
We present context parallelism for long-context large language model inference, which achieves near-linear scaling for long-context prefill latency with up to 128 H100 GPUs across 16 nodes. Particularly, our method achieves 1M context prefill with Llama3 405B model in 77s (93% parallelization efficiency, 63% FLOPS utilization) and 128K context prefill in 3.8s. We develop two lossless exact ring at…
▽ More
We present context parallelism for long-context large language model inference, which achieves near-linear scaling for long-context prefill latency with up to 128 H100 GPUs across 16 nodes. Particularly, our method achieves 1M context prefill with Llama3 405B model in 77s (93% parallelization efficiency, 63% FLOPS utilization) and 128K context prefill in 3.8s. We develop two lossless exact ring attention variants: pass-KV and pass-Q to cover a wide range of use cases with the state-of-the-art performance: full prefill, persistent KV prefill and decode. Benchmarks on H100 GPU hosts inter-connected with RDMA and TCP both show similar scalability for long-context prefill, demonstrating that our method scales well using common commercial data center with medium-to-low inter-host bandwidth.
△ Less
Submitted 20 April, 2025; v1 submitted 3 November, 2024;
originally announced November 2024.
-
A Practical and Privacy-Preserving Framework for Real-World Large Language Model Services
Authors:
Yu Mao,
Xueping Liao,
Wei Liu,
Anjia Yang
Abstract:
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding and generation, and they are increasingly being utilized across various domains to enhance productivity. However, due to the high costs of training and maintaining these models, coupled with the fact that some LLMs are proprietary, individuals often rely on online AI as a Service (AIaaS) provided by LLM c…
▽ More
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding and generation, and they are increasingly being utilized across various domains to enhance productivity. However, due to the high costs of training and maintaining these models, coupled with the fact that some LLMs are proprietary, individuals often rely on online AI as a Service (AIaaS) provided by LLM companies. This business model poses significant privacy risks, as service providers may exploit users' trace patterns and behavioral data. In this paper, we propose a practical and privacy-preserving framework that ensures user anonymity by preventing service providers from linking requests to the individuals who submit them. Our framework is built on partially blind signatures, which guarantee the unlinkability of user requests. Furthermore, we introduce two strategies tailored to both subscription-based and API-based service models, ensuring the protection of both users' privacy and service providers' interests. The framework is designed to integrate seamlessly with existing LLM systems, as it does not require modifications to the underlying architectures. Experimental results demonstrate that our framework incurs minimal computation and communication overhead, making it a feasible solution for real-world applications.
△ Less
Submitted 3 November, 2024;
originally announced November 2024.
-
Language Models can Self-Lengthen to Generate Long Texts
Authors:
Shanghaoran Quan,
Tianyi Tang,
Bowen Yu,
An Yang,
Dayiheng Liu,
Bofei Gao,
Jianhong Tu,
Yichang Zhang,
Jingren Zhou,
Junyang Lin
Abstract:
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to process long contexts, yet a notable gap remains in generating long, aligned outputs. This limitation stems from a training gap where pre-training lacks effective instructions for long-text generation, and post-training data primarily consists of short query-response pairs. Current approaches, such as…
▽ More
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to process long contexts, yet a notable gap remains in generating long, aligned outputs. This limitation stems from a training gap where pre-training lacks effective instructions for long-text generation, and post-training data primarily consists of short query-response pairs. Current approaches, such as instruction backtranslation and behavior imitation, face challenges including data quality, copyright issues, and constraints on proprietary model usage. In this paper, we introduce an innovative iterative training framework called Self-Lengthen that leverages only the intrinsic knowledge and skills of LLMs without the need for auxiliary data or proprietary models. The framework consists of two roles: the Generator and the Extender. The Generator produces the initial response, which is then split and expanded by the Extender. This process results in a new, longer response, which is used to train both the Generator and the Extender iteratively. Through this process, the models are progressively trained to handle increasingly longer responses. Experiments on benchmarks and human evaluations show that Self-Lengthen outperforms existing methods in long-text generation, when applied to top open-source LLMs such as Qwen2 and LLaMA3. Our code is publicly available at https://github.com/QwenLM/Self-Lengthen.
△ Less
Submitted 31 October, 2024;
originally announced October 2024.