-
When to Think and When to Look: Uncertainty-Guided Lookback
Authors:
Jing Bi,
Filippos Bellos,
Junjia Guo,
Yayuan Li,
Chao Huang,
Yunlong,
Tang,
Luchuan Song,
Susan Liang,
Zhongfei,
Zhang,
Jason J. Corso,
Chenliang Xu
Abstract:
Test-time thinking (that is, generating explicit intermediate reasoning chains) is known to boost performance in large language models and has recently shown strong gains for large vision language models (LVLMs). However, despite these promising results, there is still no systematic analysis of how thinking actually affects visual reasoning. We provide the first such analysis with a large scale, c…
▽ More
Test-time thinking (that is, generating explicit intermediate reasoning chains) is known to boost performance in large language models and has recently shown strong gains for large vision language models (LVLMs). However, despite these promising results, there is still no systematic analysis of how thinking actually affects visual reasoning. We provide the first such analysis with a large scale, controlled comparison of thinking for LVLMs, evaluating ten variants from the InternVL3.5 and Qwen3-VL families on MMMU-val under generous token budgets and multi pass decoding. We show that more thinking is not always better; long chains often yield long wrong trajectories that ignore the image and underperform the same models run in standard instruct mode. A deeper analysis reveals that certain short lookback phrases, which explicitly refer back to the image, are strongly enriched in successful trajectories and correlate with better visual grounding. Building on this insight, we propose uncertainty guided lookback, a training free decoding strategy that combines an uncertainty signal with adaptive lookback prompts and breadth search. Our method improves overall MMMU performance, delivers the largest gains in categories where standard thinking is weak, and outperforms several strong decoding baselines, setting a new state of the art under fixed model families and token budgets. We further show that this decoding strategy generalizes, yielding consistent improvements on five additional benchmarks, including two broad multimodal suites and math focused visual reasoning datasets.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
IPR-1: Interactive Physical Reasoner
Authors:
Mingyu Zhang,
Lifeng Zhuo,
Tianxi Tan,
Guocan Xie,
Xian Nie,
Yan Li,
Renjie Zhao,
Zizhu He,
Ziyu Wang,
Jiting Cai,
Yong-Lu Li
Abstract:
Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. We study this in a Game-to-Unseen (G2U) setting, curating 1,000+ heterogeneous games with diverse physical and causal mechanisms, and evaluate at three human-like…
▽ More
Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. We study this in a Game-to-Unseen (G2U) setting, curating 1,000+ heterogeneous games with diverse physical and causal mechanisms, and evaluate at three human-like levels: Survival, Curiosity, Utility, from primitive intuition to goal-driven reasoning. Our analysis reveals complementary failures: VLM/VLA agents reason but lack look-ahead in interactive settings, while world models imagine but imitate visual patterns rather than analyze physics and causality. We therefore propose IPR (Interactive Physical Reasoner), using world-model rollouts to score and reinforce a VLM's policy, and introduce PhysCode, a physics-centric action code aligning semantic intent with dynamics to provide a shared action space for prediction and reasoning. Pretrained on 1,000+ games, our IPR performs robustly on three levels, matches GPT-5 overall, and surpasses it on Curiosity. We find that performance improves with more training games and interaction steps, and that the model also zero-shot transfers to unseen games. These results support physics-centric interaction as a path to steadily improving physical reasoning.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
Octopus: Agentic Multimodal Reasoning with Six-Capability Orchestration
Authors:
Yifu Guo,
Zishan Xu,
Zhiyuan Yao,
Yuquan Lu,
Jiaye Lin,
Sen Hu,
Zhenheng Tang,
Yingchao Li,
Huacan Wang,
Ronghao Chen
Abstract:
Existing multimodal reasoning models and frameworks suffer from fundamental architectural limitations: most lack the human-like ability to autonomously explore diverse reasoning pathways-whether in direct inference, tool-driven visual exploration, programmatic visual manipulation, or intrinsic visual imagination. Consequently, they struggle to adapt to dynamically changing capability requirements…
▽ More
Existing multimodal reasoning models and frameworks suffer from fundamental architectural limitations: most lack the human-like ability to autonomously explore diverse reasoning pathways-whether in direct inference, tool-driven visual exploration, programmatic visual manipulation, or intrinsic visual imagination. Consequently, they struggle to adapt to dynamically changing capability requirements in real-world tasks. Meanwhile, humans exhibit a complementary set of thinking abilities when addressing such tasks, whereas existing methods typically cover only a subset of these dimensions. Inspired by this, we propose Octopus: Agentic Multimodal Reasoning with Six-Capability Orchestration, a new paradigm for multimodal agentic reasoning. We define six core capabilities essential for multimodal reasoning and organize a comprehensive evaluation benchmark, Octopus-Bench, accordingly. Octopus is capable of autonomously exploring during reasoning and dynamically selecting the most appropriate capability based on the current state. Experimental results show that Octopus achieves the best performance on the vast majority of tasks in Octopus-Bench, highlighting the crucial role of capability coordination in agentic multimodal reasoning.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
FaultDiffusion: Few-Shot Fault Time Series Generation with Diffusion Model
Authors:
Yi Xu,
Zhigang Chen,
Rui Wang,
Yangfan Li,
Fengxiao Tang,
Ming Zhao,
Jiaqi Liu
Abstract:
In industrial equipment monitoring, fault diagnosis is critical for ensuring system reliability and enabling predictive maintenance. However, the scarcity of fault data, due to the rarity of fault events and the high cost of data annotation, significantly hinders data-driven approaches. Existing time-series generation models, optimized for abundant normal data, struggle to capture fault distributi…
▽ More
In industrial equipment monitoring, fault diagnosis is critical for ensuring system reliability and enabling predictive maintenance. However, the scarcity of fault data, due to the rarity of fault events and the high cost of data annotation, significantly hinders data-driven approaches. Existing time-series generation models, optimized for abundant normal data, struggle to capture fault distributions in few-shot scenarios, producing samples that lack authenticity and diversity due to the large domain gap and high intra-class variability of faults. To address this, we propose a novel few-shot fault time-series generation framework based on diffusion models. Our approach employs a positive-negative difference adapter, leveraging pre-trained normal data distributions to model the discrepancies between normal and fault domains for accurate fault synthesis. Additionally, a diversity loss is introduced to prevent mode collapse, encouraging the generation of diverse fault samples through inter-sample difference regularization. Experimental results demonstrate that our model significantly outperforms traditional methods in authenticity and diversity, achieving state-of-the-art performance on key benchmarks.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
BBox DocVQA: A Large Scale Bounding Box Grounded Dataset for Enhancing Reasoning in Document Visual Question Answer
Authors:
Wenhan Yu,
Wang Chen,
Guanqiang Qi,
Weikang Li,
Yang Li,
Lei Sha,
Deguo Xia,
Jizhou Huang
Abstract:
Document Visual Question Answering (DocVQA) is a fundamental task for multimodal document understanding and a key testbed for vision language reasoning. However, most existing DocVQA datasets are limited to the page level and lack fine grained spatial grounding, constraining the interpretability and reasoning capability of Vision Language Models (VLMs). To address this gap, we introduce BBox DocVQ…
▽ More
Document Visual Question Answering (DocVQA) is a fundamental task for multimodal document understanding and a key testbed for vision language reasoning. However, most existing DocVQA datasets are limited to the page level and lack fine grained spatial grounding, constraining the interpretability and reasoning capability of Vision Language Models (VLMs). To address this gap, we introduce BBox DocVQA a large scale, bounding box grounded dataset designed to enhance spatial reasoning and evidence localization in visual documents. We further present an automated construction pipeline, Segment Judge and Generate, which integrates a segment model for region segmentation, a VLM for semantic judgment, and another advanced VLM for question answer generation, followed by human verification for quality assurance. The resulting dataset contains 3.6 K diverse documents and 32 K QA pairs, encompassing single and multi region as well as single and multi page scenarios. Each QA instance is grounded on explicit bounding boxes, enabling fine grained evaluation of spatial semantic alignment. Benchmarking multiple state of the art VLMs (e.g., GPT 5, Qwen2.5 VL, and InternVL) on BBox DocVQA reveals persistent challenges in spatial grounding and reasoning accuracy. Furthermore, fine tuning on BBox DocVQA substantially improves both bounding box localization and answer generation, validating its effectiveness for enhancing the reasoning ability of VLMs. Our dataset and code will be publicly released to advance research on interpretable and spatially grounded vision language reasoning.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
TiCAL:Typicality-Based Consistency-Aware Learning for Multimodal Emotion Recognition
Authors:
Wen Yin,
Siyu Zhan,
Cencen Liu,
Xin Hu,
Guiduo Duan,
Xiurui Xie,
Yuan-Fang Li,
Tao He
Abstract:
Multimodal Emotion Recognition (MER) aims to accurately identify human emotional states by integrating heterogeneous modalities such as visual, auditory, and textual data. Existing approaches predominantly rely on unified emotion labels to supervise model training, often overlooking a critical challenge: inter-modal emotion conflicts, wherein different modalities within the same sample may express…
▽ More
Multimodal Emotion Recognition (MER) aims to accurately identify human emotional states by integrating heterogeneous modalities such as visual, auditory, and textual data. Existing approaches predominantly rely on unified emotion labels to supervise model training, often overlooking a critical challenge: inter-modal emotion conflicts, wherein different modalities within the same sample may express divergent emotional tendencies. In this work, we address this overlooked issue by proposing a novel framework, Typicality-based Consistent-aware Multimodal Emotion Recognition (TiCAL), inspired by the stage-wise nature of human emotion perception. TiCAL dynamically assesses the consistency of each training sample by leveraging pseudo unimodal emotion labels alongside a typicality estimation. To further enhance emotion representation, we embed features in a hyperbolic space, enabling the capture of fine-grained distinctions among emotional categories. By incorporating consistency estimates into the learning process, our method improves model performance, particularly on samples exhibiting high modality inconsistency. Extensive experiments on benchmark datasets, e.g, CMU-MOSEI and MER2023, validate the effectiveness of TiCAL in mitigating inter-modal emotional conflicts and enhancing overall recognition accuracy, e.g., with about 2.6% improvements over the state-of-the-art DMD.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
DEVAL: A Framework for Evaluating and Improving the Derivation Capability of Large Language Models
Authors:
Yifan Li,
Qin Li,
Min Zhang,
Min Zhang,
Peixin Wang
Abstract:
Assessing the reasoning ability of Large Language Models (LLMs) over data remains an open and pressing research question. Compared with LLMs, human reasoning can derive corresponding modifications to the output based on certain kinds of changes to the input. This reasoning pattern, which relies on abstract rules that govern relationships between changes of data, has not been comprehensively descri…
▽ More
Assessing the reasoning ability of Large Language Models (LLMs) over data remains an open and pressing research question. Compared with LLMs, human reasoning can derive corresponding modifications to the output based on certain kinds of changes to the input. This reasoning pattern, which relies on abstract rules that govern relationships between changes of data, has not been comprehensively described or evaluated in LLMs. In this paper, we formally define this reasoning pattern as the Derivation Relation (DR) and introduce the concept of Derivation Capability (DC), i.e. applying DR by making the corresponding modification to the output whenever the input takes certain changes. To assess DC, a systematically constructed evaluation framework named DEVAL is proposed and used to evaluate five popular LLMs and one Large Reasoning Model in seven mainstream tasks. The evaluation results show that mainstream LLMs, such as GPT-4o and Claude3.5, exhibit moderate DR recognition capabilities but reveal significant drop-offs on applying DR effectively in problem-solving scenarios. To improve this, we propose a novel prompt engineering approach called Derivation Prompting (DP). It achieves an average improvement of 15.2% in DC for all tested LLMs, outperforming commonly used prompt engineering techniques.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
OTCR: Optimal Transmission, Compression and Representation for Multimodal Information Extraction
Authors:
Yang Li,
Yajiao Wang,
Wenhao Hu,
Zhixiong Zhang,
Mengting Zhang
Abstract:
Multimodal Information Extraction (MIE) requires fusing text and visual cues from visually rich documents. While recent methods have advanced multimodal representation learning, most implicitly assume modality equivalence or treat modalities in a largely uniform manner, still relying on generic fusion paradigms. This often results in indiscriminate incorporation of multimodal signals and insuffici…
▽ More
Multimodal Information Extraction (MIE) requires fusing text and visual cues from visually rich documents. While recent methods have advanced multimodal representation learning, most implicitly assume modality equivalence or treat modalities in a largely uniform manner, still relying on generic fusion paradigms. This often results in indiscriminate incorporation of multimodal signals and insufficient control over task-irrelevant redundancy, which may in turn limit generalization. We revisit MIE from a task-centric view: text should dominate, vision should selectively support. We present OTCR, a two-stage framework. First, Cross-modal Optimal Transport (OT) yields sparse, probabilistic alignments between text tokens and visual patches, with a context-aware gate controlling visual injection. Second, a Variational Information Bottleneck (VIB) compresses fused features, filtering task-irrelevant noise to produce compact, task-adaptive representations. On FUNSD, OTCR achieves 91.95% SER and 91.13% RE, while on XFUND (ZH), it reaches 91.09% SER and 94.20% RE, demonstrating competitive performance across datasets. Feature-level analyses further confirm reduced modality redundancy and strengthened task signals. This work offers an interpretable, information-theoretic paradigm for controllable multimodal fusion in document AI.
△ Less
Submitted 17 September, 2025;
originally announced November 2025.
-
Apo2Mol: 3D Molecule Generation via Dynamic Pocket-Aware Diffusion Models
Authors:
Xinzhe Zheng,
Shiyu Jiang,
Gustavo Seabra,
Chenglong Li,
Yanjun Li
Abstract:
Deep generative models are rapidly advancing structure-based drug design, offering substantial promise for generating small molecule ligands that bind to specific protein targets. However, most current approaches assume a rigid protein binding pocket, neglecting the intrinsic flexibility of proteins and the conformational rearrangements induced by ligand binding, limiting their applicability in pr…
▽ More
Deep generative models are rapidly advancing structure-based drug design, offering substantial promise for generating small molecule ligands that bind to specific protein targets. However, most current approaches assume a rigid protein binding pocket, neglecting the intrinsic flexibility of proteins and the conformational rearrangements induced by ligand binding, limiting their applicability in practical drug discovery. Here, we propose Apo2Mol, a diffusion-based generative framework for 3D molecule design that explicitly accounts for conformational flexibility in protein binding pockets. To support this, we curate a dataset of over 24,000 experimentally resolved apo-holo structure pairs from the Protein Data Bank, enabling the characterization of protein structure changes associated with ligand binding. Apo2Mol employs a full-atom hierarchical graph-based diffusion model that simultaneously generates 3D ligand molecules and their corresponding holo pocket conformations from input apo states. Empirical studies demonstrate that Apo2Mol can achieve state-of-the-art performance in generating high-affinity ligands and accurately capture realistic protein pocket conformational changes.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
IMSE: Efficient U-Net-based Speech Enhancement using Inception Depthwise Convolution and Amplitude-Aware Linear Attention
Authors:
Xinxin Tang,
Bin Qin,
Yufang Li
Abstract:
Achieving a balance between lightweight design and high performance remains a significant challenge for speech enhancement (SE) tasks on resource-constrained devices. Existing state-of-the-art methods, such as MUSE, have established a strong baseline with only 0.51M parameters by introducing a Multi-path Enhanced Taylor (MET) transformer and Deformable Embedding (DE). However, an in-depth analysis…
▽ More
Achieving a balance between lightweight design and high performance remains a significant challenge for speech enhancement (SE) tasks on resource-constrained devices. Existing state-of-the-art methods, such as MUSE, have established a strong baseline with only 0.51M parameters by introducing a Multi-path Enhanced Taylor (MET) transformer and Deformable Embedding (DE). However, an in-depth analysis reveals that MUSE still suffers from efficiency bottlenecks: the MET module relies on a complex "approximate-compensate" mechanism to mitigate the limitations of Taylor-expansion-based attention, while the offset calculation for deformable embedding introduces additional computational burden. This paper proposes IMSE, a systematically optimized and ultra-lightweight network. We introduce two core innovations: 1) Replacing the MET module with Amplitude-Aware Linear Attention (MALA). MALA fundamentally rectifies the "amplitude-ignoring" problem in linear attention by explicitly preserving the norm information of query vectors in the attention calculation, achieving efficient global modeling without an auxiliary compensation branch. 2) Replacing the DE module with Inception Depthwise Convolution (IDConv). IDConv borrows the Inception concept, decomposing large-kernel operations into efficient parallel branches (square, horizontal, and vertical strips), thereby capturing spectrogram features with extremely low parameter redundancy. Extensive experiments on the VoiceBank+DEMAND dataset demonstrate that, compared to the MUSE baseline, IMSE significantly reduces the parameter count by 16.8\% (from 0.513M to 0.427M) while achieving competitive performance comparable to the state-of-the-art on the PESQ metric (3.373). This study sets a new benchmark for the trade-off between model size and speech quality in ultra-lightweight speech enhancement.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Unified Defense for Large Language Models against Jailbreak and Fine-Tuning Attacks in Education
Authors:
Xin Yi,
Yue Li,
Dongsheng Shi,
Linlin Wang,
Xiaoling Wang,
Liang He
Abstract:
Large Language Models (LLMs) are increasingly integrated into educational applications. However, they remain vulnerable to jailbreak and fine-tuning attacks, which can compromise safety alignment and lead to harmful outputs. Existing studies mainly focus on general safety evaluations, with limited attention to the unique safety requirements of educational scenarios. To address this gap, we constru…
▽ More
Large Language Models (LLMs) are increasingly integrated into educational applications. However, they remain vulnerable to jailbreak and fine-tuning attacks, which can compromise safety alignment and lead to harmful outputs. Existing studies mainly focus on general safety evaluations, with limited attention to the unique safety requirements of educational scenarios. To address this gap, we construct EduHarm, a benchmark containing safe-unsafe instruction pairs across five representative educational scenarios, enabling systematic safety evaluation of educational LLMs. Furthermore, we propose a three-stage shield framework (TSSF) for educational LLMs that simultaneously mitigates both jailbreak and fine-tuning attacks. First, safety-aware attention realignment redirects attention toward critical unsafe tokens, thereby restoring the harmfulness feature that discriminates between unsafe and safe inputs. Second, layer-wise safety judgment identifies harmfulness features by aggregating safety cues across multiple layers to detect unsafe instructions. Finally, defense-driven dual routing separates safe and unsafe queries, ensuring normal processing for benign inputs and guarded responses for harmful ones. Extensive experiments across eight jailbreak attack strategies demonstrate that TSSF effectively strengthens safety while preventing over-refusal of benign queries. Evaluations on three fine-tuning attack datasets further show that it consistently achieves robust defense against harmful queries while maintaining preserving utility gains from benign fine-tuning.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
ATLAS: A High-Difficulty, Multidisciplinary Benchmark for Frontier Scientific Reasoning
Authors:
Hongwei Liu,
Junnan Liu,
Shudong Liu,
Haodong Duan,
Yuqiang Li,
Mao Su,
Xiaohong Liu,
Guangtao Zhai,
Xinyu Fang,
Qianhong Ma,
Taolin Zhang,
Zihan Ma,
Yufeng Zhao,
Peiheng Zhou,
Linchen Xiao,
Wenlong Zhang,
Shijie Zhou,
Xingjian Ma,
Siqi Sun,
Jiaye Ge,
Meng Li,
Yuhong Liu,
Jianxin Dong,
Jiaying Li,
Hui Wu
, et al. (11 additional authors not shown)
Abstract:
The rapid advancement of Large Language Models (LLMs) has led to performance saturation on many established benchmarks, questioning their ability to distinguish frontier models. Concurrently, existing high-difficulty benchmarks often suffer from narrow disciplinary focus, oversimplified answer formats, and vulnerability to data contamination, creating a fidelity gap with real-world scientific inqu…
▽ More
The rapid advancement of Large Language Models (LLMs) has led to performance saturation on many established benchmarks, questioning their ability to distinguish frontier models. Concurrently, existing high-difficulty benchmarks often suffer from narrow disciplinary focus, oversimplified answer formats, and vulnerability to data contamination, creating a fidelity gap with real-world scientific inquiry. To address these challenges, we introduce ATLAS (AGI-Oriented Testbed for Logical Application in Science), a large-scale, high-difficulty, and cross-disciplinary evaluation suite composed of approximately 800 original problems. Developed by domain experts (PhD-level and above), ATLAS spans seven core scientific fields: mathematics, physics, chemistry, biology, computer science, earth science, and materials science. Its key features include: (1) High Originality and Contamination Resistance, with all questions newly created or substantially adapted to prevent test data leakage; (2) Cross-Disciplinary Focus, designed to assess models' ability to integrate knowledge and reason across scientific domains; (3) High-Fidelity Answers, prioritizing complex, open-ended answers involving multi-step reasoning and LaTeX-formatted expressions over simple multiple-choice questions; and (4) Rigorous Quality Control, employing a multi-stage process of expert peer review and adversarial testing to ensure question difficulty, scientific value, and correctness. We also propose a robust evaluation paradigm using a panel of LLM judges for automated, nuanced assessment of complex answers. Preliminary results on leading models demonstrate ATLAS's effectiveness in differentiating their advanced scientific reasoning capabilities. We plan to develop ATLAS into a long-term, open, community-driven platform to provide a reliable "ruler" for progress toward Artificial General Intelligence.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
SAM-Fed: SAM-Guided Federated Semi-Supervised Learning for Medical Image Segmentation
Authors:
Sahar Nasirihaghighi,
Negin Ghamsarian,
Yiping Li,
Marcel Breeuwer,
Raphael Sznitman,
Klaus Schoeffmann
Abstract:
Medical image segmentation is clinically important, yet data privacy and the cost of expert annotation limit the availability of labeled data. Federated semi-supervised learning (FSSL) offers a solution but faces two challenges: pseudo-label reliability depends on the strength of local models, and client devices often require compact or heterogeneous architectures due to limited computational reso…
▽ More
Medical image segmentation is clinically important, yet data privacy and the cost of expert annotation limit the availability of labeled data. Federated semi-supervised learning (FSSL) offers a solution but faces two challenges: pseudo-label reliability depends on the strength of local models, and client devices often require compact or heterogeneous architectures due to limited computational resources. These constraints reduce the quality and stability of pseudo-labels, while large models, though more accurate, cannot be trained or used for routine inference on client devices. We propose SAM-Fed, a federated semi-supervised framework that leverages a high-capacity segmentation foundation model to guide lightweight clients during training. SAM-Fed combines dual knowledge distillation with an adaptive agreement mechanism to refine pixel-level supervision. Experiments on skin lesion and polyp segmentation across homogeneous and heterogeneous settings show that SAM-Fed consistently outperforms state-of-the-art FSSL methods.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Let Language Constrain Geometry: Vision-Language Models as Semantic and Spatial Critics for 3D Generation
Authors:
Weimin Bai,
Yubo Li,
Weijian Luo,
Zeqiang Lai,
Yequan Wang,
Wenzheng Chen,
He Sun
Abstract:
Text-to-3D generation has advanced rapidly, yet state-of-the-art models, encompassing both optimization-based and feed-forward architectures, still face two fundamental limitations. First, they struggle with coarse semantic alignment, often failing to capture fine-grained prompt details. Second, they lack robust 3D spatial understanding, leading to geometric inconsistencies and catastrophic failur…
▽ More
Text-to-3D generation has advanced rapidly, yet state-of-the-art models, encompassing both optimization-based and feed-forward architectures, still face two fundamental limitations. First, they struggle with coarse semantic alignment, often failing to capture fine-grained prompt details. Second, they lack robust 3D spatial understanding, leading to geometric inconsistencies and catastrophic failures in part assembly and spatial relationships. To address these challenges, we propose VLM3D, a general framework that repurposes large vision-language models (VLMs) as powerful, differentiable semantic and spatial critics. Our core contribution is a dual-query critic signal derived from the VLM's Yes or No log-odds, which assesses both semantic fidelity and geometric coherence. We demonstrate the generality of this guidance signal across two distinct paradigms: (1) As a reward objective for optimization-based pipelines, VLM3D significantly outperforms existing methods on standard benchmarks. (2) As a test-time guidance module for feed-forward pipelines, it actively steers the iterative sampling process of SOTA native 3D models to correct severe spatial errors. VLM3D establishes a principled and generalizable path to inject the VLM's rich, language-grounded understanding of both semantics and space into diverse 3D generative pipelines.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
PathMind: A Retrieve-Prioritize-Reason Framework for Knowledge Graph Reasoning with Large Language Models
Authors:
Yu Liu,
Xixun Lin,
Yanmin Shang,
Yangxi Li,
Shi Wang,
Yanan Cao
Abstract:
Knowledge graph reasoning (KGR) is the task of inferring new knowledge by performing logical deductions on knowledge graphs. Recently, large language models (LLMs) have demonstrated remarkable performance in complex reasoning tasks. Despite promising success, current LLM-based KGR methods still face two critical limitations. First, existing methods often extract reasoning paths indiscriminately, w…
▽ More
Knowledge graph reasoning (KGR) is the task of inferring new knowledge by performing logical deductions on knowledge graphs. Recently, large language models (LLMs) have demonstrated remarkable performance in complex reasoning tasks. Despite promising success, current LLM-based KGR methods still face two critical limitations. First, existing methods often extract reasoning paths indiscriminately, without assessing their different importance, which may introduce irrelevant noise that misleads LLMs. Second, while many methods leverage LLMs to dynamically explore potential reasoning paths, they require high retrieval demands and frequent LLM calls. To address these limitations, we propose PathMind, a novel framework designed to enhance faithful and interpretable reasoning by selectively guiding LLMs with important reasoning paths. Specifically, PathMind follows a "Retrieve-Prioritize-Reason" paradigm. First, it retrieves a query subgraph from KG through the retrieval module. Next, it introduces a path prioritization mechanism that identifies important reasoning paths using a semantic-aware path priority function, which simultaneously considers the accumulative cost and the estimated future cost for reaching the target. Finally, PathMind generates accurate and logically consistent responses via a dual-phase training strategy, including task-specific instruction tuning and path-wise preference alignment. Extensive experiments on benchmark datasets demonstrate that PathMind consistently outperforms competitive baselines, particularly on complex reasoning tasks with fewer input tokens, by identifying essential reasoning paths.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
TailCue: Exploring Animal-inspired Robotic Tail for Automated Vehicles Interaction
Authors:
Yuan Li,
Xinyue Gui,
Ding Xia,
Mark Colley,
Takeo Igarashi
Abstract:
Automated vehicles (AVs) are gradually becoming part of our daily lives. However, effective communication between road users and AVs remains a significant challenge. Although various external human-machine interfaces (eHMIs) have been developed to facilitate interactions, psychological factors, such as a lack of trust and inadequate emotional signaling, may still deter users from confidently engag…
▽ More
Automated vehicles (AVs) are gradually becoming part of our daily lives. However, effective communication between road users and AVs remains a significant challenge. Although various external human-machine interfaces (eHMIs) have been developed to facilitate interactions, psychological factors, such as a lack of trust and inadequate emotional signaling, may still deter users from confidently engaging with AVs in certain contexts. To address this gap, we propose TailCue, an exploration of how tail-based eHMIs affect user interaction with AVs. We first investigated mappings between tail movements and emotional expressions from robotics and zoology, and accordingly developed a motion-emotion mapping scheme. A physical robotic tail was implemented, and specific tail motions were designed based on our scheme. An online, video-based user study with 21 participants was conducted. Our findings suggest that, although the intended emotions conveyed by the tail were not consistently recognized, open-ended feedback indicated that the tail motion needs to align with the scenarios and cues. Our result highlights the necessity of scenario-specific optimization to enhance tail-based eHMIs. Future work will refine tail movement strategies to maximize their effectiveness across diverse interaction contexts.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Breaking the Passive Learning Trap: An Active Perception Strategy for Human Motion Prediction
Authors:
Juncheng Hu,
Zijian Zhang,
Zeyu Wang,
Guoyu Wang,
Yingji Li,
Kedi Lyu
Abstract:
Forecasting 3D human motion is an important embodiment of fine-grained understanding and cognition of human behavior by artificial agents. Current approaches excessively rely on implicit network modeling of spatiotemporal relationships and motion characteristics, falling into the passive learning trap that results in redundant and monotonous 3D coordinate information acquisition while lacking acti…
▽ More
Forecasting 3D human motion is an important embodiment of fine-grained understanding and cognition of human behavior by artificial agents. Current approaches excessively rely on implicit network modeling of spatiotemporal relationships and motion characteristics, falling into the passive learning trap that results in redundant and monotonous 3D coordinate information acquisition while lacking actively guided explicit learning mechanisms. To overcome these issues, we propose an Active Perceptual Strategy (APS) for human motion prediction, leveraging quotient space representations to explicitly encode motion properties while introducing auxiliary learning objectives to strengthen spatio-temporal modeling. Specifically, we first design a data perception module that projects poses into the quotient space, decoupling motion geometry from coordinate redundancy. By jointly encoding tangent vectors and Grassmann projections, this module simultaneously achieves geometric dimension reduction, semantic decoupling, and dynamic constraint enforcement for effective motion pose characterization. Furthermore, we introduce a network perception module that actively learns spatio-temporal dependencies through restorative learning. This module deliberately masks specific joints or injects noise to construct auxiliary supervision signals. A dedicated auxiliary learning network is designed to actively adapt and learn from perturbed information. Notably, APS is model agnostic and can be integrated with different prediction models to enhance active perceptual. The experimental results demonstrate that our method achieves the new state-of-the-art, outperforming existing methods by large margins: 16.3% on H3.6M, 13.9% on CMU Mocap, and 10.1% on 3DPW.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
DiverseClaire: Simulating Students to Improve Introductory Programming Course Materials for All CS1 Learners
Authors:
Wendy Wong,
Yuchao Jiang,
Yuekang Li
Abstract:
Although CS programs are booming, introductory courses like CS1 still adopt a one-size-fits-all formats that can exacerbate cognitive load and discourage learners with autism, ADHD, dyslexia and other neurological conditions. These call for compassionate pedagogies and Universal Design For Learning (UDL) to create learning environments and materials where cognitive diversity is welcomed. To addres…
▽ More
Although CS programs are booming, introductory courses like CS1 still adopt a one-size-fits-all formats that can exacerbate cognitive load and discourage learners with autism, ADHD, dyslexia and other neurological conditions. These call for compassionate pedagogies and Universal Design For Learning (UDL) to create learning environments and materials where cognitive diversity is welcomed. To address this, we introduce DiverseClaire a pilot study, which simulates students including neurodiverse profiles using LLMs and diverse personas. By leveraging Bloom's Taxonomy and UDL, DiverseClaire compared UDL-transformed lecture slides with traditional formats. To evaluate DiverseClaire controlled experiments, we used the evaluation metric the average score. The findings revealed that the simulated neurodiverse students struggled with learning due to lecture slides that were in inaccessible formats. These results highlight the need to provide course materials in multiple formats for diverse learner preferences. Data from our pilot study will be made available to assist future CS1 instructors.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
DoGCLR: Dominance-Game Contrastive Learning Network for Skeleton-Based Action Recognition
Authors:
Yanshan Li,
Ke Ma,
Miaomiao Wei,
Linhui Dai
Abstract:
Existing self-supervised contrastive learning methods for skeleton-based action recognition often process all skeleton regions uniformly, and adopt a first-in-first-out (FIFO) queue to store negative samples, which leads to motion information loss and non-optimal negative sample selection. To address these challenges, this paper proposes Dominance-Game Contrastive Learning network for skeleton-bas…
▽ More
Existing self-supervised contrastive learning methods for skeleton-based action recognition often process all skeleton regions uniformly, and adopt a first-in-first-out (FIFO) queue to store negative samples, which leads to motion information loss and non-optimal negative sample selection. To address these challenges, this paper proposes Dominance-Game Contrastive Learning network for skeleton-based action Recognition (DoGCLR), a self-supervised framework based on game theory. DoGCLR models the construction of positive and negative samples as a dynamic Dominance Game, where both sample types interact to reach an equilibrium that balances semantic preservation and discriminative strength. Specifically, a spatio-temporal dual weight localization mechanism identifies key motion regions and guides region-wise augmentations to enhance motion diversity while maintaining semantics. In parallel, an entropy-driven dominance strategy manages the memory bank by retaining high entropy (hard) negatives and replacing low-entropy (weak) ones, ensuring consistent exposure to informative contrastive signals. Extensive experiments are conducted on NTU RGB+D and PKU-MMD datasets. On NTU RGB+D 60 X-Sub/X-View, DoGCLR achieves 81.1%/89.4% accuracy, and on NTU RGB+D 120 X-Sub/X-Set, DoGCLR achieves 71.2%/75.5% accuracy, surpassing state-of-the-art methods by 0.1%, 2.7%, 1.1%, and 2.3%, respectively. On PKU-MMD Part I/Part II, DoGCLR performs comparably to the state-of-the-art methods and achieves a 1.9% higher accuracy on Part II, highlighting its strong robustness on more challenging scenarios.
△ Less
Submitted 19 November, 2025; v1 submitted 18 November, 2025;
originally announced November 2025.
-
Selective Weak-to-Strong Generalization
Authors:
Hao Lang,
Fei Huang,
Yongbin Li
Abstract:
Future superhuman models will surpass the ability of humans and humans will only be able to \textit{weakly} supervise superhuman models. To alleviate the issue of lacking high-quality data for model alignment, some works on weak-to-strong generalization (W2SG) finetune a strong pretrained model with a weak supervisor so that it can generalize beyond weak supervision. However, the invariable use of…
▽ More
Future superhuman models will surpass the ability of humans and humans will only be able to \textit{weakly} supervise superhuman models. To alleviate the issue of lacking high-quality data for model alignment, some works on weak-to-strong generalization (W2SG) finetune a strong pretrained model with a weak supervisor so that it can generalize beyond weak supervision. However, the invariable use of weak supervision in existing methods exposes issues in robustness, with a proportion of weak labels proving harmful to models. In this paper, we propose a selective W2SG framework to avoid using weak supervision when unnecessary. We train a binary classifier P(IK) to identify questions that a strong model can answer and use its self-generated labels for alignment. We further refine weak labels with a graph smoothing method. Extensive experiments on three benchmarks show that our method consistently outperforms competitive baselines. Further analyses show that P(IK) can generalize across tasks and difficulties, which indicates selective W2SG can help superalignment.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
MoMoE: A Mixture of Expert Agent Model for Financial Sentiment Analysis
Authors:
Peng Shu,
Junhao Chen,
Zhengliang Liu,
Hanqi Jiang,
Yi Pan,
Khanh Nhu Nguyen,
Zihao Wu,
Huaqin Zhao,
Yiwei Li,
Enze Shi,
ShaoChen Xu
Abstract:
We present a novel approach called Mixture of Mixture of Expert (MoMoE) that combines the strengths of Mixture-of-Experts (MoE) architectures with collaborative multi-agent frameworks. By modifying the LLaMA 3.1 8B architecture to incorporate MoE layers in each agent of a layered collaborative structure, we create an ensemble of specialized expert agents that iteratively refine their outputs. Each…
▽ More
We present a novel approach called Mixture of Mixture of Expert (MoMoE) that combines the strengths of Mixture-of-Experts (MoE) architectures with collaborative multi-agent frameworks. By modifying the LLaMA 3.1 8B architecture to incorporate MoE layers in each agent of a layered collaborative structure, we create an ensemble of specialized expert agents that iteratively refine their outputs. Each agent leverages an MoE layer in its final attention block, enabling efficient task decomposition while maintaining computational feasibility. This hybrid approach creates specialized pathways through both the model architecture and the agent collaboration layers. Experimental results demonstrate significant improvements across multiple language understanding and generation benchmarks, highlighting the synergistic benefits of combining expert routing at both the neural and agent levels.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Uncovering and Aligning Anomalous Attention Heads to Defend Against NLP Backdoor Attacks
Authors:
Haotian Jin,
Yang Li,
Haihui Fan,
Lin Shen,
Xiangfang Li,
Bo Li
Abstract:
Backdoor attacks pose a serious threat to the security of large language models (LLMs), causing them to exhibit anomalous behavior under specific trigger conditions. The design of backdoor triggers has evolved from fixed triggers to dynamic or implicit triggers. This increased flexibility in trigger design makes it challenging for defenders to identify their specific forms accurately. Most existin…
▽ More
Backdoor attacks pose a serious threat to the security of large language models (LLMs), causing them to exhibit anomalous behavior under specific trigger conditions. The design of backdoor triggers has evolved from fixed triggers to dynamic or implicit triggers. This increased flexibility in trigger design makes it challenging for defenders to identify their specific forms accurately. Most existing backdoor defense methods are limited to specific types of triggers or rely on an additional clean model for support. To address this issue, we propose a backdoor detection method based on attention similarity, enabling backdoor detection without prior knowledge of the trigger. Our study reveals that models subjected to backdoor attacks exhibit unusually high similarity among attention heads when exposed to triggers. Based on this observation, we propose an attention safety alignment approach combined with head-wise fine-tuning to rectify potentially contaminated attention heads, thereby effectively mitigating the impact of backdoor attacks. Extensive experimental results demonstrate that our method significantly reduces the success rate of backdoor attacks while preserving the model's performance on downstream tasks.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
THD-BAR: Topology Hierarchical Derived Brain Autoregressive Modeling for EEG Generic Representations
Authors:
Wenchao Yang,
Weidong Yan,
Wenkang Liu,
Yulan Ma,
Yang Li
Abstract:
Large-scale pre-trained models hold significant potential for learning universal EEG representations. However, most existing methods, particularly autoregressive (AR) frameworks, primarily rely on straightforward temporal sequencing of multi-channel EEG data, which fails to capture the rich physiological characteristics inherent to EEG signals. Moreover, their time-centered modeling approach also…
▽ More
Large-scale pre-trained models hold significant potential for learning universal EEG representations. However, most existing methods, particularly autoregressive (AR) frameworks, primarily rely on straightforward temporal sequencing of multi-channel EEG data, which fails to capture the rich physiological characteristics inherent to EEG signals. Moreover, their time-centered modeling approach also limits the effective representation of the dynamic spatial topology of brain activity. To address these challenges and fully exploit the potential of large-scale EEG models, we propose a novel Topology Hierarchical Derived Brain Autoregressive Modeling (THD-BAR) for EEG generic representations. The core innovation of THD-BAR lies in the introduction of the Brain Topology Hierarchy (BTH), which establishes a multi-scale spatial order for EEG channels. This hierarchical structure enables a redefinition of autoregressive learning as a "next-scale-time prediction" problem, effectively capturing both spatial and temporal dynamics. Based on BTH, we design a Topology-Hierarchical Vector Quantized-Variational Autoencoder (THVQ-VAE) for multi-scale tokenization and develop an enhanced Brain Autoregressive (BAR) module with specialized masking strategies for prediction. Through extensive large-scale pre-training on 17 datasets, followed by rigorous validation on 10 downstream datasets spanning 5 distinct tasks, THD-BAR consistently outperforms existing methods. These results highlight the superior generalization and modeling capabilities of our proposed approach.
△ Less
Submitted 5 November, 2025;
originally announced November 2025.
-
Part-X-MLLM: Part-aware 3D Multimodal Large Language Model
Authors:
Chunshi Wang,
Junliang Ye,
Yunhan Yang,
Yang Li,
Zizhuo Lin,
Jun Zhu,
Zhuo Chen,
Yawei Luo,
Chunchao Guo
Abstract:
We introduce Part-X-MLLM, a native 3D multimodal large language model that unifies diverse 3D tasks by formulating them as programs in a structured, executable grammar. Given an RGB point cloud and a natural language prompt, our model autoregressively generates a single, coherent token sequence encoding part-level bounding boxes, semantic descriptions, and edit commands. This structured output ser…
▽ More
We introduce Part-X-MLLM, a native 3D multimodal large language model that unifies diverse 3D tasks by formulating them as programs in a structured, executable grammar. Given an RGB point cloud and a natural language prompt, our model autoregressively generates a single, coherent token sequence encoding part-level bounding boxes, semantic descriptions, and edit commands. This structured output serves as a versatile interface to drive downstream geometry-aware modules for part-based generation and editing. By decoupling the symbolic planning from the geometric synthesis, our approach allows any compatible geometry engine to be controlled through a single, language-native frontend. We pre-train a dual-encoder architecture to disentangle structure from semantics and instruction-tune the model on a large-scale, part-centric dataset. Experiments demonstrate that our model excels at producing high-quality, structured plans, enabling state-of-the-art performance in grounded Q\&A, compositional generation, and localized editing through one unified interface. Project page: https://chunshi.wang/Part-X-MLLM/
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
P1: Mastering Physics Olympiads with Reinforcement Learning
Authors:
Jiacheng Chen,
Qianjia Cheng,
Fangchen Yu,
Haiyuan Wan,
Yuchen Zhang,
Shenghe Zheng,
Junchi Yao,
Qingyang Zhang,
Haonan He,
Yun Luo,
Yufeng Zhao,
Futing Wang,
Li Sheng,
Chengxing Xie,
Yuxin Zuo,
Yizhuo Li,
Wenxauan Zeng,
Yulun Wu,
Rui Huang,
Dongzhan Zhou,
Kai Chen,
Yu Qiao,
Lei Bai,
Yu Cheng,
Ning Ding
, et al. (3 additional authors not shown)
Abstract:
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to a…
▽ More
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
VVS: Accelerating Speculative Decoding for Visual Autoregressive Generation via Partial Verification Skipping
Authors:
Haotian Dong,
Ye Li,
Rongwei Lu,
Chen Tang,
Shu-Tao Xia,
Zhi Wang
Abstract:
Visual autoregressive (AR) generation models have demonstrated strong potential for image generation, yet their next-token-prediction paradigm introduces considerable inference latency. Although speculative decoding (SD) has been proven effective for accelerating visual AR models, its "draft one step, then verify one step" paradigm prevents a direct reduction of the forward passes, thus restrictin…
▽ More
Visual autoregressive (AR) generation models have demonstrated strong potential for image generation, yet their next-token-prediction paradigm introduces considerable inference latency. Although speculative decoding (SD) has been proven effective for accelerating visual AR models, its "draft one step, then verify one step" paradigm prevents a direct reduction of the forward passes, thus restricting acceleration potential. Motivated by the visual token interchangeability, we for the first time to explore verification skipping in the SD process of visual AR model generation to explicitly cut the number of target model forward passes, thereby reducing inference latency. Based on an analysis of the drafting stage's characteristics, we observe that verification redundancy and stale feature reusability are key factors to retain generation quality and speedup for verification-free steps. Inspired by these two observations, we propose a novel SD framework VVS to accelerate visual AR generation via partial verification skipping, which integrates three complementary modules: (1) a verification-free token selector with dynamical truncation, (2) token-level feature caching and reuse, and (3) fine-grained skipped step scheduling. Consequently, VVS reduces the number of target model forward passes by a factor of $2.8\times$ relative to vanilla AR decoding while maintaining competitive generation quality, offering a superior speed-quality trade-off over conventional SD frameworks and revealing strong potential to reshape the SD paradigm.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
MedDCR: Learning to Design Agentic Workflows for Medical Coding
Authors:
Jiyang Zheng,
Islam Nassar,
Thanh Vu,
Xu Zhong,
Yang Lin,
Tongliang Liu,
Long Duong,
Yuan-Fang Li
Abstract:
Medical coding converts free-text clinical notes into standardized diagnostic and procedural codes, which are essential for billing, hospital operations, and medical research. Unlike ordinary text classification, it requires multi-step reasoning: extracting diagnostic concepts, applying guideline constraints, mapping to hierarchical codebooks, and ensuring cross-document consistency. Recent advanc…
▽ More
Medical coding converts free-text clinical notes into standardized diagnostic and procedural codes, which are essential for billing, hospital operations, and medical research. Unlike ordinary text classification, it requires multi-step reasoning: extracting diagnostic concepts, applying guideline constraints, mapping to hierarchical codebooks, and ensuring cross-document consistency. Recent advances leverage agentic LLMs, but most rely on rigid, manually crafted workflows that fail to capture the nuance and variability of real-world documentation, leaving open the question of how to systematically learn effective workflows. We present MedDCR, a closed-loop framework that treats workflow design as a learning problem. A Designer proposes workflows, a Coder executes them, and a Reflector evaluates predictions and provides constructive feedback, while a memory archive preserves prior designs for reuse and iterative refinement. On benchmark datasets, MedDCR outperforms state-of-the-art baselines and produces interpretable, adaptable workflows that better reflect real coding practice, improving both the reliability and trustworthiness of automated systems.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Personalized Federated Learning with Bidirectional Communication Compression via One-Bit Random Sketching
Authors:
Jiacheng Cheng,
Xu Zhang,
Guanghui Qiu,
Yifang Zhang,
Yinchuan Li,
Kaiyuan Feng
Abstract:
Federated Learning (FL) enables collaborative training across decentralized data, but faces key challenges of bidirectional communication overhead and client-side data heterogeneity. To address communication costs while embracing data heterogeneity, we propose pFed1BS, a novel personalized federated learning framework that achieves extreme communication compression through one-bit random sketching…
▽ More
Federated Learning (FL) enables collaborative training across decentralized data, but faces key challenges of bidirectional communication overhead and client-side data heterogeneity. To address communication costs while embracing data heterogeneity, we propose pFed1BS, a novel personalized federated learning framework that achieves extreme communication compression through one-bit random sketching. In personalized FL, the goal shifts from training a single global model to creating tailored models for each client. In our framework, clients transmit highly compressed one-bit sketches, and the server aggregates and broadcasts a global one-bit consensus. To enable effective personalization, we introduce a sign-based regularizer that guides local models to align with the global consensus while preserving local data characteristics. To mitigate the computational burden of random sketching, we employ the Fast Hadamard Transform for efficient projection. Theoretical analysis guarantees that our algorithm converges to a stationary neighborhood of the global potential function. Numerical simulations demonstrate that pFed1BS substantially reduces communication costs while achieving competitive performance compared to advanced communication-efficient FL algorithms.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Synthetic Forgetting without Access: A Few-shot Zero-glance Framework for Machine Unlearning
Authors:
Qipeng Song,
Nan Yang,
Ziqi Xu,
Yue Li,
Wei Shao,
Feng Xia
Abstract:
Machine unlearning aims to eliminate the influence of specific data from trained models to ensure privacy compliance. However, most existing methods assume full access to the original training dataset, which is often impractical. We address a more realistic yet challenging setting: few-shot zero-glance, where only a small subset of the retained data is available and the forget set is entirely inac…
▽ More
Machine unlearning aims to eliminate the influence of specific data from trained models to ensure privacy compliance. However, most existing methods assume full access to the original training dataset, which is often impractical. We address a more realistic yet challenging setting: few-shot zero-glance, where only a small subset of the retained data is available and the forget set is entirely inaccessible. We introduce GFOES, a novel framework comprising a Generative Feedback Network (GFN) and a two-phase fine-tuning procedure. GFN synthesises Optimal Erasure Samples (OES), which induce high loss on target classes, enabling the model to forget class-specific knowledge without access to the original forget data, while preserving performance on retained classes. The two-phase fine-tuning procedure enables aggressive forgetting in the first phase, followed by utility restoration in the second. Experiments on three image classification datasets demonstrate that GFOES achieves effective forgetting at both logit and representation levels, while maintaining strong performance using only 5% of the original data. Our framework offers a practical and scalable solution for privacy-preserving machine learning under data-constrained conditions.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Unidirectional-Road-Network-Based Global Path Planning for Cleaning Robots in Semi-Structured Environments
Authors:
Yong Li,
Hui Cheng
Abstract:
Practical global path planning is critical for commercializing cleaning robots working in semi-structured environments. In the literature, global path planning methods for free space usually focus on path length and neglect the traffic rule constraints of the environments, which leads to high-frequency re-planning and increases collision risks. In contrast, those for structured environments are de…
▽ More
Practical global path planning is critical for commercializing cleaning robots working in semi-structured environments. In the literature, global path planning methods for free space usually focus on path length and neglect the traffic rule constraints of the environments, which leads to high-frequency re-planning and increases collision risks. In contrast, those for structured environments are developed mainly by strictly complying with the road network representing the traffic rule constraints, which may result in an overlong path that hinders the overall navigation efficiency. This article proposes a general and systematic approach to improve global path planning performance in semi-structured environments. A unidirectional road network is built to represent the traffic constraints in semi-structured environments and a hybrid strategy is proposed to achieve a guaranteed planning result.Cutting across the road at the starting and the goal points are allowed to achieve a shorter path. Especially, a two-layer potential map is proposed to achieve a guaranteed performance when the starting and the goal points are in complex intersections. Comparative experiments are carried out to validate the effectiveness of the proposed method. Quantitative experimental results show that, compared with the state-of-art, the proposed method guarantees a much better balance between path length and the consistency with the road network.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
APP: A* Post-Processing Algorithm for Robots with Bidirectional Shortcut and Path Perturbation
Authors:
Yong Li,
Hui Cheng
Abstract:
Paths generated by A* and other graph-search-based planners are widely used in the robotic field. Due to the restricted node-expansion directions, the resulting paths are usually not the shortest. Besides, unnecessary heading changes, or zig-zag patterns, exist even when no obstacle is nearby, which is inconsistent with the human intuition that the path segments should be straight in wide-open spa…
▽ More
Paths generated by A* and other graph-search-based planners are widely used in the robotic field. Due to the restricted node-expansion directions, the resulting paths are usually not the shortest. Besides, unnecessary heading changes, or zig-zag patterns, exist even when no obstacle is nearby, which is inconsistent with the human intuition that the path segments should be straight in wide-open space due to the absence of obstacles. This article puts forward a general and systematic post-processing algorithm for A* and other graph-search-based planners. The A* post-processing algorithm, called APP, is developed based on the costmap, which is widely used in commercial service robots. First, a bidirectional vertices reduction algorithm is proposed to tackle the asymm- etry of the path and the environments. During the forward and backward vertices reduction, a thorough shortcut strategy is put forward to improve the path-shortening performance and avoid unnecessary heading changes. Second, an iterative path perturbation algorithm is adopted to locally reduce the number of unnecessary heading changes and improve the path smooth- ness. Comparative experiments are then carried out to validate the superiority of the proposed method. Quantitative performance indexes show that APP outperforms the existing methods in planning time, path length as well as the number of unnecessary heading changes. Finally, field navigation experiments are carried out to verify the practicability of APP.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Mitigating Recommendation Biases via Group-Alignment and Global-Uniformity in Representation Learning
Authors:
Miaomiao Cai,
Min Hou,
Lei Chen,
Le Wu,
Haoyue Bai,
Yong Li,
Meng Wang
Abstract:
Collaborative Filtering~(CF) plays a crucial role in modern recommender systems, leveraging historical user-item interactions to provide personalized suggestions. However, CF-based methods often encounter biases due to imbalances in training data. This phenomenon makes CF-based methods tend to prioritize recommending popular items and performing unsatisfactorily on inactive users. Existing works a…
▽ More
Collaborative Filtering~(CF) plays a crucial role in modern recommender systems, leveraging historical user-item interactions to provide personalized suggestions. However, CF-based methods often encounter biases due to imbalances in training data. This phenomenon makes CF-based methods tend to prioritize recommending popular items and performing unsatisfactorily on inactive users. Existing works address this issue by rebalancing training samples, reranking recommendation results, or making the modeling process robust to the bias. Despite their effectiveness, these approaches can compromise accuracy or be sensitive to weighting strategies, making them challenging to train. In this paper, we deeply analyze the causes and effects of the biases and propose a framework to alleviate biases in recommendation from the perspective of representation distribution, namely Group-Alignment and Global-Uniformity Enhanced Representation Learning for Debiasing Recommendation (AURL). Specifically, we identify two significant problems in the representation distribution of users and items, namely group-discrepancy and global-collapse. These two problems directly lead to biases in the recommendation results. To this end, we propose two simple but effective regularizers in the representation space, respectively named group-alignment and global-uniformity. The goal of group-alignment is to bring the representation distribution of long-tail entities closer to that of popular entities, while global-uniformity aims to preserve the information of entities as much as possible by evenly distributing representations. Our method directly optimizes both the group-alignment and global-uniformity regularization terms to mitigate recommendation biases. Extensive experiments on three real datasets and various recommendation backbones verify the superiority of our proposed framework.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
APT: Affine Prototype-Timestamp For Time Series Forecasting Under Distribution Shift
Authors:
Yujie Li,
Zezhi Shao,
Chengqing Yu,
Yisong Fu,
Tao Sun,
Yongjun Xu,
Fei Wang
Abstract:
Time series forecasting under distribution shift remains challenging, as existing deep learning models often rely on local statistical normalization (e.g., mean and variance) that fails to capture global distribution shift. Methods like RevIN and its variants attempt to decouple distribution and pattern but still struggle with missing values, noisy observations, and invalid channel-wise affine tra…
▽ More
Time series forecasting under distribution shift remains challenging, as existing deep learning models often rely on local statistical normalization (e.g., mean and variance) that fails to capture global distribution shift. Methods like RevIN and its variants attempt to decouple distribution and pattern but still struggle with missing values, noisy observations, and invalid channel-wise affine transformation. To address these limitations, we propose Affine Prototype Timestamp (APT), a lightweight and flexible plug-in module that injects global distribution features into the normalization-forecasting pipeline. By leveraging timestamp conditioned prototype learning, APT dynamically generates affine parameters that modulate both input and output series, enabling the backbone to learn from self-supervised, distribution-aware clustered instances. APT is compatible with arbitrary forecasting backbones and normalization strategies while introducing minimal computational overhead. Extensive experiments across six benchmark datasets and multiple backbone-normalization combinations demonstrate that APT significantly improves forecasting performance under distribution shift.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
Text2Traffic: A Text-to-Image Generation and Editing Method for Traffic Scenes
Authors:
Feng Lv,
Haoxuan Feng,
Zilu Zhang,
Chunlong Xia,
Yanfeng Li
Abstract:
With the rapid advancement of intelligent transportation systems, text-driven image generation and editing techniques have demonstrated significant potential in providing rich, controllable visual scene data for applications such as traffic monitoring and autonomous driving. However, several challenges remain, including insufficient semantic richness of generated traffic elements, limited camera v…
▽ More
With the rapid advancement of intelligent transportation systems, text-driven image generation and editing techniques have demonstrated significant potential in providing rich, controllable visual scene data for applications such as traffic monitoring and autonomous driving. However, several challenges remain, including insufficient semantic richness of generated traffic elements, limited camera viewpoints, low visual fidelity of synthesized images, and poor alignment between textual descriptions and generated content. To address these issues, we propose a unified text-driven framework for both image generation and editing, leveraging a controllable mask mechanism to seamlessly integrate the two tasks. Furthermore, we incorporate both vehicle-side and roadside multi-view data to enhance the geometric diversity of traffic scenes. Our training strategy follows a two-stage paradigm: first, we perform conceptual learning using large-scale coarse-grained text-image data; then, we fine-tune with fine-grained descriptive data to enhance text-image alignment and detail quality. Additionally, we introduce a mask-region-weighted loss that dynamically emphasizes small yet critical regions during training, thereby substantially enhancing the generation fidelity of small-scale traffic elements. Extensive experiments demonstrate that our method achieves leading performance in text-based image generation and editing within traffic scenes.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
TOPP-DWR: Time-Optimal Path Parameterization of Differential-Driven Wheeled Robots Considering Piecewise-Constant Angular Velocity Constraints
Authors:
Yong Li,
Yujun Huang,
Yi Chen,
Hui Cheng
Abstract:
Differential-driven wheeled robots (DWR) represent the quintessential type of mobile robots and find extensive appli- cations across the robotic field. Most high-performance control approaches for DWR explicitly utilize the linear and angular velocities of the trajectory as control references. However, existing research on time-optimal path parameterization (TOPP) for mobile robots usually neglect…
▽ More
Differential-driven wheeled robots (DWR) represent the quintessential type of mobile robots and find extensive appli- cations across the robotic field. Most high-performance control approaches for DWR explicitly utilize the linear and angular velocities of the trajectory as control references. However, existing research on time-optimal path parameterization (TOPP) for mobile robots usually neglects the angular velocity and joint vel- ocity constraints, which can result in degraded control perfor- mance in practical applications. In this article, a systematic and practical TOPP algorithm named TOPP-DWR is proposed for DWR and other mobile robots. First, the non-uniform B-spline is adopted to represent the initial trajectory in the task space. Second, the piecewise-constant angular velocity, as well as joint velocity, linear velocity, and linear acceleration constraints, are incorporated into the TOPP problem. During the construction of the optimization problem, the aforementioned constraints are uniformly represented as linear velocity constraints. To boost the numerical computational efficiency, we introduce a slack variable to reformulate the problem into second-order-cone programming (SOCP). Subsequently, comparative experiments are conducted to validate the superiority of the proposed method. Quantitative performance indexes show that TOPP-DWR achieves TOPP while adhering to all constraints. Finally, field autonomous navigation experiments are carried out to validate the practicability of TOPP-DWR in real-world applications.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
Towards High-Consistency Embodied World Model with Multi-View Trajectory Videos
Authors:
Taiyi Su,
Jian Zhu,
Yaxuan Li,
Chong Ma,
Zitai Huang,
Hanli Wang,
Yi Xu
Abstract:
Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied wor…
▽ More
Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied world model that introduces Multi-view Trajectory-Video control for precise visuomotor prediction. Specifically, instead of directly using low-level actions for control, we employ trajectory videos obtained through camera intrinsic and extrinsic parameters and Cartesian-space transformation as control signals. However, projecting 3D raw actions onto 2D images inevitably causes a loss of spatial information, making a single view insufficient for accurate interaction modeling. To overcome this, we introduce a multi-view framework that compensates for spatial information loss and ensures high-consistency with physical world. MTV-World forecasts future frames based on multi-view trajectory videos as input and conditioning on an initial frame per view. Furthermore, to systematically evaluate both robotic motion precision and object interaction accuracy, we develop an auto-evaluation pipeline leveraging multimodal large models and referring video object segmentation models. To measure spatial consistency, we formulate it as an object location matching problem and adopt the Jaccard Index as the evaluation metric. Extensive experiments demonstrate that MTV-World achieves precise control execution and accurate physical interaction modeling in complex dual-arm scenarios.
△ Less
Submitted 19 November, 2025; v1 submitted 16 November, 2025;
originally announced November 2025.
-
Connectivity-Guided Sparsification of 2-FWL GNNs: Preserving Full Expressivity with Improved Efficiency
Authors:
Rongqin Chen,
Fan Mo,
Pak Lon Ip,
Shenghui Zhang,
Dan Wu,
Ye Li,
Leong Hou U
Abstract:
Higher-order Graph Neural Networks (HOGNNs) based on the 2-FWL test achieve superior expressivity by modeling 2- and 3-node interactions, but at $\mathcal{O}(n^3)$ computational cost. However, this computational burden is typically mitigated by existing efficiency methods at the cost of reduced expressivity. We propose \textbf{Co-Sparsify}, a connectivity-aware sparsification framework that elimin…
▽ More
Higher-order Graph Neural Networks (HOGNNs) based on the 2-FWL test achieve superior expressivity by modeling 2- and 3-node interactions, but at $\mathcal{O}(n^3)$ computational cost. However, this computational burden is typically mitigated by existing efficiency methods at the cost of reduced expressivity. We propose \textbf{Co-Sparsify}, a connectivity-aware sparsification framework that eliminates \emph{provably redundant} computations while preserving full 2-FWL expressive power. Our key insight is that 3-node interactions are expressively necessary only within \emph{biconnected components} -- maximal subgraphs where every pair of nodes lies on a cycle. Outside these components, structural relationships can be fully captured via 2-node message passing or global readout, rendering higher-order modeling unnecessary. Co-Sparsify restricts 2-node message passing to connected components and 3-node interactions to biconnected ones, removing computation without approximation or sampling. We prove that Co-Sparsified GNNs are as expressive as the 2-FWL test. Empirically, on PPGN, Co-Sparsify matches or exceeds accuracy on synthetic substructure counting tasks and achieves state-of-the-art performance on real-world benchmarks (ZINC, QM9). This study demonstrates that high expressivity and scalability are not mutually exclusive: principled, topology-guided sparsification enables powerful, efficient GNNs with theoretical guarantees.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
Optimal Look-back Horizon for Time Series Forecasting in Federated Learning
Authors:
Dahao Tang,
Nan Yang,
Yanli Li,
Zhiyu Zhu,
Zhibo Jin,
Dong Yuan
Abstract:
Selecting an appropriate look-back horizon remains a fundamental challenge in time series forecasting (TSF), particularly in the federated learning scenarios where data is decentralized, heterogeneous, and often non-independent. While recent work has explored horizon selection by preserving forecasting-relevant information in an intrinsic space, these approaches are primarily restricted to central…
▽ More
Selecting an appropriate look-back horizon remains a fundamental challenge in time series forecasting (TSF), particularly in the federated learning scenarios where data is decentralized, heterogeneous, and often non-independent. While recent work has explored horizon selection by preserving forecasting-relevant information in an intrinsic space, these approaches are primarily restricted to centralized and independently distributed settings. This paper presents a principled framework for adaptive horizon selection in federated time series forecasting through an intrinsic space formulation. We introduce a synthetic data generator (SDG) that captures essential temporal structures in client data, including autoregressive dependencies, seasonality, and trend, while incorporating client-specific heterogeneity. Building on this model, we define a transformation that maps time series windows into an intrinsic representation space with well-defined geometric and statistical properties. We then derive a decomposition of the forecasting loss into a Bayesian term, which reflects irreducible uncertainty, and an approximation term, which accounts for finite-sample effects and limited model capacity. Our analysis shows that while increasing the look-back horizon improves the identifiability of deterministic patterns, it also increases approximation error due to higher model complexity and reduced sample efficiency. We prove that the total forecasting loss is minimized at the smallest horizon where the irreducible loss starts to saturate, while the approximation loss continues to rise. This work provides a rigorous theoretical foundation for adaptive horizon selection for time series forecasting in federated learning.
△ Less
Submitted 17 November, 2025; v1 submitted 16 November, 2025;
originally announced November 2025.
-
Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
Authors:
Yunxin Li,
Xinyu Chen,
Shenyuan Jiang,
Haoyuan Shi,
Zhenyu Liu,
Xuanyu Zhang,
Nanhao Deng,
Zhenran Xu,
Yicheng Ma,
Meishan Zhang,
Baotian Hu,
Min Zhang
Abstract:
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressi…
▽ More
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
PID-controlled Langevin Dynamics for Faster Sampling of Generative Models
Authors:
Hongyi Chen,
Jianhai Shu,
Jingtao Ding,
Yong Li,
Xiao-Ping Zhang
Abstract:
Langevin dynamics sampling suffers from extremely low generation speed, fundamentally limited by numerous fine-grained iterations to converge to the target distribution. We introduce PID-controlled Langevin Dynamics (PIDLD), a novel sampling acceleration algorithm that reinterprets the sampling process using control-theoretic principles. By treating energy gradients as feedback signals, PIDLD comb…
▽ More
Langevin dynamics sampling suffers from extremely low generation speed, fundamentally limited by numerous fine-grained iterations to converge to the target distribution. We introduce PID-controlled Langevin Dynamics (PIDLD), a novel sampling acceleration algorithm that reinterprets the sampling process using control-theoretic principles. By treating energy gradients as feedback signals, PIDLD combines historical gradients (the integral term) and gradient trends (the derivative term) to efficiently traverse energy landscapes and adaptively stabilize, thereby significantly reducing the number of iterations required to produce high-quality samples. Our approach requires no additional training, datasets, or prior information, making it immediately integrable with any Langevin-based method. Extensive experiments across image generation and reasoning tasks demonstrate that PIDLD achieves higher quality with fewer steps, making Langevin-based generative models more practical for efficiency-critical applications. The implementation can be found at \href{https://github.com/tsinghua-fib-lab/PIDLD}{https://github.com/tsinghua-fib-lab/PIDLD}.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
Fine-Grained Representation for Lane Topology Reasoning
Authors:
Guoqing Xu,
Yiheng Li,
Yang Yang
Abstract:
Precise modeling of lane topology is essential for autonomous driving, as it directly impacts navigation and control decisions. Existing methods typically represent each lane with a single query and infer topological connectivity based on the similarity between lane queries. However, this kind of design struggles to accurately model complex lane structures, leading to unreliable topology predictio…
▽ More
Precise modeling of lane topology is essential for autonomous driving, as it directly impacts navigation and control decisions. Existing methods typically represent each lane with a single query and infer topological connectivity based on the similarity between lane queries. However, this kind of design struggles to accurately model complex lane structures, leading to unreliable topology prediction. In this view, we propose a Fine-Grained lane topology reasoning framework (TopoFG). It divides the procedure from bird's-eye-view (BEV) features to topology prediction via fine-grained queries into three phases, i.e., Hierarchical Prior Extractor (HPE), Region-Focused Decoder (RFD), and Robust Boundary-Point Topology Reasoning (RBTR). Specifically, HPE extracts global spatial priors from the BEV mask and local sequential priors from in-lane keypoint sequences to guide subsequent fine-grained query modeling. RFD constructs fine-grained queries by integrating the spatial and sequential priors. It then samples reference points in RoI regions of the mask and applies cross-attention with BEV features to refine the query representations of each lane. RBTR models lane connectivity based on boundary-point query features and further employs a topological denoising strategy to reduce matching ambiguity. By integrating spatial and sequential priors into fine-grained queries and applying a denoising strategy to boundary-point topology reasoning, our method precisely models complex lane structures and delivers trustworthy topology predictions. Extensive experiments on the OpenLane-V2 benchmark demonstrate that TopoFG achieves new state-of-the-art performance, with an OLS of 48.0 on subsetA and 45.4 on subsetB.
△ Less
Submitted 18 November, 2025; v1 submitted 16 November, 2025;
originally announced November 2025.
-
Self-Supervised Visual Prompting for Cross-Domain Road Damage Detection
Authors:
Xi Xiao,
Zhuxuanzi Wang,
Mingqiao Mo,
Chen Liu,
Chenrui Ma,
Yanshu Li,
Smita Krishnaswamy,
Xiao Wang,
Tianyang Wang
Abstract:
The deployment of automated pavement defect detection is often hindered by poor cross-domain generalization. Supervised detectors achieve strong in-domain accuracy but require costly re-annotation for new environments, while standard self-supervised methods capture generic features and remain vulnerable to domain shift. We propose \ours, a self-supervised framework that \emph{visually probes} targ…
▽ More
The deployment of automated pavement defect detection is often hindered by poor cross-domain generalization. Supervised detectors achieve strong in-domain accuracy but require costly re-annotation for new environments, while standard self-supervised methods capture generic features and remain vulnerable to domain shift. We propose \ours, a self-supervised framework that \emph{visually probes} target domains without labels. \ours introduces a Self-supervised Prompt Enhancement Module (SPEM), which derives defect-aware prompts from unlabeled target data to guide a frozen ViT backbone, and a Domain-Aware Prompt Alignment (DAPA) objective, which aligns prompt-conditioned source and target representations. Experiments on four challenging benchmarks show that \ours consistently outperforms strong supervised, self-supervised, and adaptation baselines, achieving robust zero-shot transfer, improved resilience to domain variations, and high data efficiency in few-shot adaptation. These results highlight self-supervised prompting as a practical direction for building scalable and adaptive visual inspection systems. Source code is publicly available: https://github.com/xixiaouab/PROBE/tree/main
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
GenSIaC: Toward Security-Aware Infrastructure-as-Code Generation with Large Language Models
Authors:
Yikun Li,
Matteo Grella,
Daniel Nahmias,
Gal Engelberg,
Dan Klein,
Giancarlo Guizzardi,
Thijs van Ede,
Andrea Continella
Abstract:
In recent years, Infrastructure as Code (IaC) has emerged as a critical approach for managing and provisioning IT infrastructure through code and automation. IaC enables organizations to create scalable and consistent environments, effectively managing servers and development settings. However, the growing complexity of cloud infrastructures has led to an increased risk of misconfigurations and se…
▽ More
In recent years, Infrastructure as Code (IaC) has emerged as a critical approach for managing and provisioning IT infrastructure through code and automation. IaC enables organizations to create scalable and consistent environments, effectively managing servers and development settings. However, the growing complexity of cloud infrastructures has led to an increased risk of misconfigurations and security vulnerabilities in IaC scripts. To address this problem, this paper investigates the potential of Large Language Models (LLMs) in generating security-aware IaC code, avoiding misconfigurations introduced by developers and administrators.
While LLMs have made significant progress in natural language processing and code generation, their ability to generate secure IaC scripts remains unclear. This paper addresses two major problems: 1) the lack of understanding of security weaknesses in IaC scripts generated by LLMs, and 2) the absence of techniques for enhancing security in generating IaC code with LLMs.
To assess the extent to which LLMs contain security knowledge, we first conduct a comprehensive evaluation of base LLMs in recognizing major IaC security weaknesses during the generation and inspection of IaC code. Then, we propose GenSIaC, an instruction fine-tuning dataset designed to improve LLMs' ability to recognize potential security weaknesses. Leveraging GenSIaC, we fine-tune LLMs and instruct models to generate security-aware IaC code. Our evaluation demonstrates that our models achieve substantially improved performance in recognizing and preventing IaC security misconfigurations, e.g., boosting the F1-score from 0.303 to 0.858. Additionally, we perform ablation studies and explore GenSIaC's generalizability to other LLMs and its cross-language capabilities.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
AttackVLA: Benchmarking Adversarial and Backdoor Attacks on Vision-Language-Action Models
Authors:
Jiayu Li,
Yunhan Zhao,
Xiang Zheng,
Zonghuan Xu,
Yige Li,
Xingjun Ma,
Yu-Gang Jiang
Abstract:
Vision-Language-Action (VLA) models enable robots to interpret natural-language instructions and perform diverse tasks, yet their integration of perception, language, and control introduces new safety vulnerabilities. Despite growing interest in attacking such models, the effectiveness of existing techniques remains unclear due to the absence of a unified evaluation framework. One major issue is t…
▽ More
Vision-Language-Action (VLA) models enable robots to interpret natural-language instructions and perform diverse tasks, yet their integration of perception, language, and control introduces new safety vulnerabilities. Despite growing interest in attacking such models, the effectiveness of existing techniques remains unclear due to the absence of a unified evaluation framework. One major issue is that differences in action tokenizers across VLA architectures hinder reproducibility and fair comparison. More importantly, most existing attacks have not been validated in real-world scenarios. To address these challenges, we propose AttackVLA, a unified framework that aligns with the VLA development lifecycle, covering data construction, model training, and inference. Within this framework, we implement a broad suite of attacks, including all existing attacks targeting VLAs and multiple adapted attacks originally developed for vision-language models, and evaluate them in both simulation and real-world settings. Our analysis of existing attacks reveals a critical gap: current methods tend to induce untargeted failures or static action states, leaving targeted attacks that drive VLAs to perform precise long-horizon action sequences largely unexplored. To fill this gap, we introduce BackdoorVLA, a targeted backdoor attack that compels a VLA to execute an attacker-specified long-horizon action sequence whenever a trigger is present. We evaluate BackdoorVLA in both simulated benchmarks and real-world robotic settings, achieving an average targeted success rate of 58.4% and reaching 100% on selected tasks. Our work provides a standardized framework for evaluating VLA vulnerabilities and demonstrates the potential for precise adversarial manipulation, motivating further research on securing VLA-based embodied systems.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
High-Performance N-Queens Solver on GPU: Iterative DFS with Zero Bank Conflicts
Authors:
Guangchao Yao,
Yali Li
Abstract:
The counting of solutions to the N-Queens problem is a classic NP-complete problem with extremely high computational complexity. As of now, the academic community has rigorously verified the number of solutions only up to N <= 26. In 2016, the research team led by PreuBer solved the 27-Queens problem using FPGA hardware, which took approximately one year, though the result remains unverified indep…
▽ More
The counting of solutions to the N-Queens problem is a classic NP-complete problem with extremely high computational complexity. As of now, the academic community has rigorously verified the number of solutions only up to N <= 26. In 2016, the research team led by PreuBer solved the 27-Queens problem using FPGA hardware, which took approximately one year, though the result remains unverified independently. Recent studies on GPU parallel computing suggest that verifying the 27-Queens solution would still require about 17 months, indicating excessively high time and computational resource costs. To address this challenge, we propose an innovative parallel computing method on NVIDIA GPU platform, with the following core contributions: (1) An iterative depth-first search (DFS) algorithm for solving the N-Queens problem; (2) Complete mapping of the required stack structure to GPU shared memory; (3) Effective avoidance of bank conflicts through meticulously designed memory access patterns; (4) Various optimization techniques are employed to achieve optimal performance. Under the proposed optimization framework, we successfully verified the 27-Queens problem in just 28.4 days using eight RTX 5090 GPUs, thereby confirming the correctness of PreuBer's computational results. Moreover, we have reduced the projected solving time for the next open case-the 28-Queens problem-to approximately 11 months, making its resolution computationally feasible. Compared to the state-of-the-art GPU methods, our method achieves over 10x speedup on identical hardware configurations (8 A100), while delivering over 26x acceleration when utilizing 8 RTX 5090 GPUs, and brings fresh perspectives to this long-stagnant problem.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
WITNESS: A lightweight and practical approach to fine-grained predictive mutation testing
Authors:
Zeyu Lu,
Peng Zhang,
Chun Yong Chong,
Shan Gao,
Yibiao Yang,
Yanhui Li,
Lin Chen,
Yuming Zhou
Abstract:
Existing fine-grained predictive mutation testing studies predominantly rely on deep learning, which faces two critical limitations in practice: (1) Exorbitant computational costs. The deep learning models adopted in these studies demand significant computational resources for training and inference acceleration. This introduces high costs and undermines the cost-reduction goal of predictive mutat…
▽ More
Existing fine-grained predictive mutation testing studies predominantly rely on deep learning, which faces two critical limitations in practice: (1) Exorbitant computational costs. The deep learning models adopted in these studies demand significant computational resources for training and inference acceleration. This introduces high costs and undermines the cost-reduction goal of predictive mutation testing. (2) Constrained applicability. Although modern mutation testing tools generate mutants both inside and outside methods, current fine-grained predictive mutation testing approaches handle only inside-method mutants. As a result, they cannot predict outside-method mutants, limiting their applicability in real-world scenarios. We propose WITNESS, a new fine-grained predictive mutation testing approach. WITNESS adopts a twofold design: (1) With collected features from both inside-method and outside-method mutants, WITNESS is suitable for all generated mutants. (2) Instead of using computationally expensive deep learning, WITNESS employs lightweight classical machine learning models for training and prediction. This makes it more cost-effective and enabling straightforward explanations of the decision-making processes behind the adopted models. Evaluations on Defects4J projects show that WITNESS consistently achieves state-of-the-art predictive performance across different scenarios. Additionally, WITNESS significantly enhances the efficiency of kill matrix prediction. Post-hoc analysis reveals that features incorporating information from before and after the mutation are the most important among those used in WITNESS. Test case prioritization based on the predicted kill matrix shows that WITNESS delivers results much closer to those obtained by using the actual kill matrix, outperforming baseline approaches.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
VULPO: Context-Aware Vulnerability Detection via On-Policy LLM Optimization
Authors:
Youpeng Li,
Fuxun Yu,
Xinda Wang
Abstract:
The widespread reliance on open-source software dramatically increases the risk of vulnerability exploitation, underscoring the need for effective and scalable vulnerability detection (VD). Existing VD techniques, whether traditional machine learning-based or LLM-based approaches like prompt engineering, supervised fine-tuning, or off-policy preference optimization, remain fundamentally limited in…
▽ More
The widespread reliance on open-source software dramatically increases the risk of vulnerability exploitation, underscoring the need for effective and scalable vulnerability detection (VD). Existing VD techniques, whether traditional machine learning-based or LLM-based approaches like prompt engineering, supervised fine-tuning, or off-policy preference optimization, remain fundamentally limited in their ability to perform context-aware analysis: They depend on fixed inputs or static preference datasets, cannot adaptively explore repository-level dependencies, and are constrained by function-level benchmarks that overlook critical vulnerability context.
This paper introduces Vulnerability-Adaptive Policy Optimization (VULPO), an on-policy LLM reinforcement learning framework for context-aware VD. To support training and evaluation, we first construct ContextVul, a new dataset that augments high-quality function-level samples with lightweight method to extract repository-level context information. We then design multi-dimensional reward structuring that jointly captures prediction correctness, vulnerability localization accuracy, and the semantic relevance of vulnerability analysis, thereby guiding the model toward comprehensive contextual reasoning. To address the asymmetric difficulty of different vulnerability cases and mitigate reward hacking, VULPO incorporates label-level and sample-level difficulty-adaptive reward scaling, encouraging the model to explore challenging cases while maintaining balanced reward distribution. Extensive experiments demonstrate the superiority of our VULPO framework in context-aware VD: Our VULPO-4B substantially outperforms existing VD baselines based on prompt engineering and off-policy optimization, improving F1 by 85% over Qwen3-4B and achieving performance comparable to a 150x larger-scale model, DeepSeek-R1-0528.
△ Less
Submitted 18 November, 2025; v1 submitted 14 November, 2025;
originally announced November 2025.
-
Target-Balanced Score Distillation
Authors:
Zhou Xu,
Qi Wang,
Yuxiao Yang,
Luyuan Zhang,
Zhang Liang,
Yang Li
Abstract:
Score Distillation Sampling (SDS) enables 3D asset generation by distilling priors from pretrained 2D text-to-image diffusion models, but vanilla SDS suffers from over-saturation and over-smoothing. To mitigate this issue, recent variants have incorporated negative prompts. However, these methods face a critical trade-off: limited texture optimization, or significant texture gains with shape disto…
▽ More
Score Distillation Sampling (SDS) enables 3D asset generation by distilling priors from pretrained 2D text-to-image diffusion models, but vanilla SDS suffers from over-saturation and over-smoothing. To mitigate this issue, recent variants have incorporated negative prompts. However, these methods face a critical trade-off: limited texture optimization, or significant texture gains with shape distortion. In this work, we first conduct a systematic analysis and reveal that this trade-off is fundamentally governed by the utilization of the negative prompts, where Target Negative Prompts (TNP) that embed target information in the negative prompts dramatically enhancing texture realism and fidelity but inducing shape distortions. Informed by this key insight, we introduce the Target-Balanced Score Distillation (TBSD). It formulates generation as a multi-objective optimization problem and introduces an adaptive strategy that effectively resolves the aforementioned trade-off. Extensive experiments demonstrate that TBSD significantly outperforms existing state-of-the-art methods, yielding 3D assets with high-fidelity textures and geometrically accurate shape.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
AnchorDS: Anchoring Dynamic Sources for Semantically Consistent Text-to-3D Generation
Authors:
Jiayin Zhu,
Linlin Yang,
Yicong Li,
Angela Yao
Abstract:
Optimization-based text-to-3D methods distill guidance from 2D generative models via Score Distillation Sampling (SDS), but implicitly treat this guidance as static. This work shows that ignoring source dynamics yields inconsistent trajectories that suppress or merge semantic cues, leading to "semantic over-smoothing" artifacts. As such, we reformulate text-to-3D optimization as mapping a dynamica…
▽ More
Optimization-based text-to-3D methods distill guidance from 2D generative models via Score Distillation Sampling (SDS), but implicitly treat this guidance as static. This work shows that ignoring source dynamics yields inconsistent trajectories that suppress or merge semantic cues, leading to "semantic over-smoothing" artifacts. As such, we reformulate text-to-3D optimization as mapping a dynamically evolving source distribution to a fixed target distribution. We cast the problem into a dual-conditioned latent space, conditioned on both the text prompt and the intermediately rendered image. Given this joint setup, we observe that the image condition naturally anchors the current source distribution. Building on this insight, we introduce AnchorDS, an improved score distillation mechanism that provides state-anchored guidance with image conditions and stabilizes generation. We further penalize erroneous source estimates and design a lightweight filter strategy and fine-tuning strategy that refines the anchor with negligible overhead. AnchorDS produces finer-grained detail, more natural colours, and stronger semantic consistency, particularly for complex prompts, while maintaining efficiency. Extensive experiments show that our method surpasses previous methods in both quality and efficiency.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
Doubly Debiased Test-Time Prompt Tuning for Vision-Language Models
Authors:
Fei Song,
Yi Li,
Rui Wang,
Jiahuan Zhou,
Changwen Zheng,
Jiangmeng Li
Abstract:
Test-time prompt tuning for vision-language models has demonstrated impressive generalization capabilities under zero-shot settings. However, tuning the learnable prompts solely based on unlabeled test data may induce prompt optimization bias, ultimately leading to suboptimal performance on downstream tasks. In this work, we analyze the underlying causes of prompt optimization bias from both the m…
▽ More
Test-time prompt tuning for vision-language models has demonstrated impressive generalization capabilities under zero-shot settings. However, tuning the learnable prompts solely based on unlabeled test data may induce prompt optimization bias, ultimately leading to suboptimal performance on downstream tasks. In this work, we analyze the underlying causes of prompt optimization bias from both the model and data perspectives. In terms of the model, the entropy minimization objective typically focuses on reducing the entropy of model predictions while overlooking their correctness. This can result in overconfident yet incorrect outputs, thereby compromising the quality of prompt optimization. On the data side, prompts affected by optimization bias can introduce misalignment between visual and textual modalities, which further aggravates the prompt optimization bias. To this end, we propose a Doubly Debiased Test-Time Prompt Tuning method. Specifically, we first introduce a dynamic retrieval-augmented modulation module that retrieves high-confidence knowledge from a dynamic knowledge base using the test image feature as a query, and uses the retrieved knowledge to modulate the predictions. Guided by the refined predictions, we further develop a reliability-aware prompt optimization module that incorporates a confidence-based weighted ensemble and cross-modal consistency distillation to impose regularization constraints during prompt tuning. Extensive experiments across 15 benchmark datasets involving both natural distribution shifts and cross-datasets generalization demonstrate that our method outperforms baselines, validating its effectiveness in mitigating prompt optimization bias.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.