Computer Science > Computation and Language
[Submitted on 17 Feb 2025]
Title:CLASS: Enhancing Cross-Modal Text-Molecule Retrieval Performance and Training Efficiency
View PDF HTML (experimental)Abstract:Cross-modal text-molecule retrieval task bridges molecule structures and natural language descriptions. Existing methods predominantly focus on aligning text modality and molecule modality, yet they overlook adaptively adjusting the learning states at different training stages and enhancing training efficiency. To tackle these challenges, this paper proposes a Curriculum Learning-bAsed croSS-modal text-molecule training framework (CLASS), which can be integrated with any backbone to yield promising performance improvement. Specifically, we quantify the sample difficulty considering both text modality and molecule modality, and design a sample scheduler to introduce training samples via an easy-to-difficult paradigm as the training advances, remarkably reducing the scale of training samples at the early stage of training and improving training efficiency. Moreover, we introduce adaptive intensity learning to increase the training intensity as the training progresses, which adaptively controls the learning intensity across all curriculum stages. Experimental results on the ChEBI-20 dataset demonstrate that our proposed method gains superior performance, simultaneously achieving prominent time savings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.