Computer Science > Computers and Society
[Submitted on 20 Jul 2025]
Title:Strategic Integration of AI Chatbots in Physics Teacher Preparation: A TPACK-SWOT Analysis of Pedagogical, Epistemic, and Cybersecurity Dimensions
View PDFAbstract:This study investigates the strategic and epistemically responsible integration of AI-powered chatbots into physics teacher education by employing a TPACK-guided SWOT framework across three structured learning activities. Conducted within a university-level capstone course on innovative tools for physics instruction, the activities targeted key intersections of technological, pedagogical, and content knowledge (TPACK) through chatbot-assisted tasks: simplifying abstract physics concepts, constructing symbolic concept maps, and designing instructional scenarios. Drawing on participant reflections, classroom artifacts, and iterative feedback, the results highlight internal strengths such as enhanced information-seeking behavior, scaffolded pedagogical planning, and support for symbolic reasoning. At the same time, internal weaknesses emerged, including domain-specific inaccuracies, symbolic limitations (e.g., LaTeX misrendering), and risks of overreliance on AI outputs. External opportunities were found in promoting inclusive education, multilingual engagement, and expanded zones of proximal development (ZPD), while external threats included prompt injection risks, institutional access gaps, and cybersecurity vulnerabilities. By extending existing TPACK-based models with constructs such as AI literacy, prompt-crafting competence, and epistemic verification protocols, this research offers a theoretically grounded and practically actionable roadmap for embedding AI in STEM teacher preparation. The findings affirm that, when critically scaffolded, AI chatbots can support metacognitive reflection, ethical reasoning, and instructional innovation in physics education if implementation is paired with digital fluency training and institutional support.
Submission history
From: Naser Mohammadipour [view email][v1] Sun, 20 Jul 2025 08:04:07 UTC (4,033 KB)
Current browse context:
cs.CY
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.