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Abstract 

This study investigates the strategic and epistemically responsible integration of AI-powered 
chatbots into physics teacher education by employing a TPACK-guided SWOT framework across 
three structured learning activities. Conducted within a university-level capstone course on 
innovative tools for physics instruction, the activities targeted key intersections of technological, 
pedagogical, and content knowledge (TPACK) through chatbot-assisted tasks: simplifying abstract 
physics concepts, constructing symbolic concept maps, and designing instructional scenarios. 
Drawing on participant reflections, classroom artifacts, and iterative feedback, the results highlight 
internal strengths such as enhanced information-seeking behavior, scaffolded pedagogical 
planning, and support for symbolic reasoning. At the same time, internal weaknesses emerged, 
including domain-specific inaccuracies, symbolic limitations (e.g., LaTeX misrendering), and 
risks of overreliance on AI outputs. External opportunities were found in promoting inclusive 
education, multilingual engagement, and expanded zones of proximal development (ZPD), while 
external threats included prompt injection risks, institutional access gaps, and cybersecurity 
vulnerabilities. By extending existing TPACK-based models with constructs such as AI literacy, 
prompt-crafting competence, and epistemic verification protocols, this research offers a 
theoretically grounded and practically actionable roadmap for embedding AI in STEM teacher 
preparation. The findings affirm that, when critically scaffolded, AI chatbots can support 
metacognitive reflection, ethical reasoning, and instructional innovation in physics education if 
implementation is paired with digital fluency training and institutional support. 
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1. Introduction 

1.1 Background and Motivation 

In recent years, university-level physics education has faced increasing demands for innovation in 
teaching methodologies, particularly in response to the growing diversity of student needs, 
learning styles, and technological expectations. Traditional didactic approaches often struggle to 
keep pace with the evolving demands of modern physics curricula, which require not only 
conceptual understanding but also symbolic reasoning, computational modeling, and real-world 
application (Redish, 2003). The integration of digital tools into the physics classroom has become 
a strategic imperative, particularly as students enter higher education with prior exposure to 
interactive and adaptive technologies in their secondary education experiences (Lai, 2022). These 
learners, often referred to as "digital natives," expect educational environments to mirror the 
interactivity and personalization they encounter in digital platforms outside academia. 

Moreover, the nature of physics itself—as a discipline rooted in abstraction, mathematical 
formalism, and conceptual modeling (Asheghi Mehmandari, 2023)—presents unique pedagogical 
challenges that demand more dynamic forms of instruction. Students frequently struggle with 
translating physical phenomena into symbolic representations and with making meaningful 
connections between theory, mathematics, and experimental data (Docktor & Mestre, 2014). In 
response, educators and researchers have increasingly turned toward technology-enhanced 
learning tools to foster visualization, engagement, and active inquiry. While simulations, online 
laboratories, and learning management systems (Kermani et al., 2023) have become more 
prevalent, these tools often function as static repositories of content or rigid instructional 
sequences, limiting opportunities for spontaneous, dialogic learning. 

Against this backdrop, artificial intelligence (AI)—particularly in the form of generative language 
models—has emerged as a promising frontier in educational technology. Unlike conventional 
tools, AI chatbots offer interactive, responsive, and adaptive communication that mirrors aspects 
of human tutoring. These systems have the potential to provide real-time feedback, support 
exploratory questioning, and promote metacognitive reflection, all of which are essential for 
mastering the conceptual and mathematical complexity of physics (Rastgoo et al., 2022; Zarchi et 
al., 2024, Moshiri et al., 2023). As such, investigating how these AI tools can be meaningfully 
integrated into university-level physics instruction is not only timely but also essential for 
preparing the next generation of educators to engage with evolving technological and 
epistemological landscapes. 

 

1.2 The Rise of AI Chatbots in Education   

One of the most transformative technological developments in recent educational discourse is the 
emergence of AI-powered chatbots built on large language models (LLMs). These systems—such 
as OpenAI’s ChatGPT, Google Gemini, or Anthropic's Claude—leverage transformer-based 
architectures trained on massive datasets to generate human-like text, respond to natural language 



prompts, and simulate reasoning across a wide range of subjects (OpenAI, 2023). Unlike 
traditional educational software, AI chatbots offer flexible, conversational interfaces that enable 
learners to pose questions, explore follow-ups, clarify concepts, and receive immediate, adaptive 
responses. Their capacity to mimic tutorial-style dialogue has positioned them as powerful tools 
for both formal instruction and informal learning environments (Qadir, 2023). 

In the context of education, particularly at the tertiary level, AI chatbots are being increasingly 
explored for applications ranging from automated writing support and reading comprehension 
assistance to STEM content generation and formative assessment (Zawacki-Richter et al., 2019). 
Their appeal lies in their ability to break the limitations of static instructional content by allowing 
students to interact with knowledge dynamically. Within science and engineering education, LLM-
based chatbots have shown potential to explain complex processes, generate analogies, and even 
assist with code writing or mathematical problem-solving (Belda-Medina, & Kokošková, 2023). 
However, their effectiveness varies depending on domain complexity, task type, and the level of 
conceptual abstraction required—challenges that are particularly pronounced in fields like physics, 
where symbolic logic and mathematical precision are central.  

Despite these challenges, AI chatbots have already made meaningful inroads into teacher 
education. For instance, recent research by Pernaa et al. (2023) demonstrated that AI chatbots 
could meaningfully support chemistry teacher candidates in information-seeking tasks, prompting 
critical thinking and fostering digital literacy skills. Such studies highlight the pedagogical 
potential of integrating conversational AI into teacher training programs—both as a tool for 
content support and as a medium for developing reflective, critical engagement with technology. 
Yet, the success of these implementations hinges on context-sensitive adaptation. Physics 
education, which often relies on advanced symbolic reasoning, experimental interpretation, and 
problem-solving, poses distinct demands that cannot be directly inferred from studies in other 
disciplines. This underscores the need for targeted research to investigate how AI chatbots can be 
responsibly and effectively utilized in physics teacher preparation. 

 

1.3 Challenges in University-Level Physics Education 

Physics at the university level is widely regarded as one of the most intellectually demanding 
disciplines, requiring students to integrate conceptual understanding, mathematical reasoning, and 
experimental interpretation. Despite years of pedagogical reform, significant learning obstacles 
persist. A large body of research has shown that students—even at advanced levels—often harbor 
deeply rooted misconceptions about fundamental physical principles, such as Newtonian 
mechanics, thermodynamics, or electromagnetism (McDermott & Redish, 1999). These 
misconceptions are not easily corrected through traditional lecture-based instruction, which tends 
to emphasize formalism over conceptual dialogue. As a result, students may learn to manipulate 
equations without fully grasping the physical meaning behind them, leading to superficial learning 
and performance gaps.  

Another critical challenge is the symbolic and mathematical complexity inherent in university-
level physics. From tensor calculus in relativity to eigenvalue problems in quantum mechanics, 



students are required to fluently move between natural language, diagrams, equations, and abstract 
representations. This multimodal cognitive demand often overwhelms learners who lack prior 
exposure to such integrative thinking. Furthermore, many students struggle with translating 
physical scenarios into mathematical formalisms and vice versa—skills essential for modeling and 
problem-solving (Tuminaro & Redish, 2007). Although textbooks and simulations can offer some 
support, they are frequently limited to static formats that do not respond adaptively to student 
confusion. 

Additionally, there is a growing recognition that physics instruction must evolve in tandem with 
technological and epistemological changes in science itself. As physics becomes increasingly data-
driven and interdisciplinary—intersecting with computational science, artificial intelligence, and 
engineering—educators are challenged to prepare students not only to understand foundational 
theories but also to engage critically with modern tools and digital environments (Wood, et al., 
2016). However, integrating such technologies into the curriculum is complicated by infrastructure 
limitations, instructor preparedness, and pedagogical inertia. These factors make it difficult for 
departments to modernize instruction while preserving disciplinary rigor. In this context, the 
strategic adoption of emerging technologies—such as AI chatbots—offers a potential avenue for 
addressing both cognitive and institutional barriers in university-level physics education. 

 

1.4 Purpose of the Study 

The primary purpose of this study is to explore the strategic and responsible integration of AI-
powered chatbots into university-level physics teacher education, with a specific focus on their 
potential to support information seeking, conceptual understanding, instructional planning, and 
epistemically safe pedagogical reasoning (Figure 1). As large language models (LLMs) such as 
GPT-4, Claude, and Gemini become increasingly embedded in educational environments, it is 
essential to move beyond surface-level functionality and interrogate how these systems are 
actually perceived, evaluated, and utilized by future physics educators—particularly within 
cognitively rigorous and symbolically complex domains like physics.  



 

Figure 1 illustrates the contextual framework of this study, grounded in the TPCK model. It 
highlights the integration of AI chatbots (technological knowledge), physics-related information 
seeking, instructional planning, and critical evaluation (pedagogical knowledge), and advanced 
university physics content (content knowledge). The intersection of these three domains represents 
the zone of effective teaching with AI: where digital tools are aligned with both disciplinary rigor 
and pedagogical purpose. This structure guides our design of learning tasks and our subsequent 
SWOT-based evaluation. 

 

 

While previous studies have examined the use of generative AI tools in general education or in 
adjacent STEM fields such as chemistry (Pernaa et al., 2023), limited research has addressed the 
discipline-specific demands of physics education—such as vector calculus, symbolic 
representation (e.g., LaTeX), and the causal reasoning structures embedded in physical models. 
Moreover, physics teacher education uniquely intersects both content mastery and pedagogical 
competence, positioning it as an ideal context for investigating the multifaceted affordances and 
constraints of AI-supported instruction. 

To fill this gap, the current study designed a series of structured chatbot-assisted activities that 
simulate authentic tasks in physics teaching—ranging from simplifying complex concepts, to 
constructing symbolic concept maps, to generating lesson plans using AI assistance. These 
activities were framed and analyzed through a TPACK-guided SWOT framework, enabling a 
strategic evaluation of how AI tools mediate technological (TK), pedagogical (PK), and content 
(CK) knowledge in pre-service physics teacher development. In adapting the TPACK model, we 
extend the framework introduced by Pernaa et al. (2023) in chemistry education to capture the 
distinctive epistemological, cognitive, and representational demands of physics instruction. 



In addition to traditional TPACK elements, this study introduces AI literacy, cybersecurity 
resilience, and epistemic responsibility as new critical variables. These dimensions reflect the 
emerging need for future educators to understand how LLMs work (e.g., prompt engineering, 
hallucination risk), how to protect against misuse (e.g., prompt injection, adversarial behavior), 
and how to verify AI-generated content (e.g., triangulation with authoritative sources). By 
foregrounding these variables, the study contributes to a broader rethinking of what it means to 
prepare teachers in the age of generative AI—not just as content deliverers, but as critical 
evaluators, ethical practitioners, and digitally literate facilitators of learning. 

The overarching research inquiry guiding the study is: 

In what ways do AI-supported information seeking, instructional planning, and critical 
reasoning influence the development of pedagogical practices in university-level physics 
teacher preparation? 

To address this question, the study employed a qualitative methodology based on thematic analysis 
of participant reflections, and a structured SWOT assessment to surface key internal and external 
factors influencing chatbot adoption. Section 4 of the paper presents findings categorized as 
strengths, weaknesses, opportunities, and threats, while also cross-referencing these results with 
conceptual constructs such as ZPD, symbolic fluency, prompt-crafting, and AI verification 
protocols. Section 5 then synthesizes these findings into practical and policy-relevant insights for 
curriculum developers, teacher educators, and institutional stakeholders. 

Ultimately, this study positions AI chatbots not merely as digital tools for instruction, but as 
catalysts for reconfiguring knowledge construction, reasoning practices, and pedagogical ethics in 
physics education. It provides theoretical grounding and practical direction for embedding AI in 
teacher preparation programs in ways that are strategically adaptive, epistemically robust, and 
ethically grounded. 

 

1.5 Research Questions 

Grounded in the need to explore the pedagogical, ethical, and cybersecurity implications of 
artificial intelligence in physics education, this study is guided by the following central research 
question: 

RQ1: 
How do university-level physics teacher candidates perceive and experience the use of AI chatbots 
in physics-related information seeking, conceptual exploration, instructional planning, and 
prompt-based engagement? 

To support a deeper understanding of this overarching inquiry, the study also addresses the 
following sub-questions: 



• RQ1.1: 
What strengths and weaknesses do participants identify in using AI chatbots for 
understanding, simplifying, and teaching advanced physics concepts—especially in terms 
of conceptual clarity, symbolic accuracy, and instructional alignment? 

• RQ1.2: 
What opportunities and threats do participants perceive in the integration of AI chatbots 
into physics teacher education programs, particularly regarding inclusivity, institutional 
readiness, and cybersecurity vulnerabilities (e.g., prompt injection)? 

• RQ1.3: 
How do participants evaluate the pedagogical usefulness, scientific reliability, and ethical 
and epistemic safety of chatbot-generated physics content, including issues of 
misinformation, overreliance, and content verification? 

These refined questions aim to capture not only the cognitive and instructional affordances of AI 
tools, but also their strategic, ethical, and technical implications within evolving physics education 
frameworks. They serve as the analytical foundation for the study’s TPACK-guided SWOT 
evaluation and contribute to developing actionable insights for curriculum designers, teacher 
educators, and policymakers in AI-enhanced STEM education. 

 
2. Literature review 

2.1 Advances in AI: LLMs, Optimization, and Security Challenges 

Large Language Models (LLMs) represent a transformative advancement in neural-network-
driven natural language processing (NLP), capable of producing coherent, context-aware, and 
human-like text (Mahdavi, 2022a). Models such as OpenAI’s GPT-4, Google’s Gemini, and 
Anthropic’s Claude are built using transformer architectures and are trained on massive text 
datasets followed by fine-tuning via supervised learning and reinforcement learning (Zarchi, & 
Attaran, 2017) from human feedback (e.g., PPO) to optimize for human-like responses (Hu et al., 
2023). Efficient fine-tuning techniques—such as Low-Rank Adaptation (LoRA) and parameter-
efficient tuning—enable domain-specific customization that enhances model precision while 
reducing computational overhead (Hu et al., 2023). 

Alongside these breakthroughs, the integration of LLMs into real-world systems has highlighted 
critical cybersecurity vulnerabilities. Notable are prompt-injection attacks, where adversarial 
inputs manipulate model behavior—risking misinformation, data exposure, or unauthorized 
command execution (Liu et al., 2023). These vulnerabilities are increasingly relevant in 
educational applications when relying on conversational AI, necessitating robust defenses such as 
polymorphic prompts or layered input sanitization and continuous log monitoring to maintain trust 
and reliability (Mirnajafizadeh, 2024). 

Furthermore, LLMs are now being utilized in cybersecurity operations, from anomaly detection 
to malware classification (Mirnajafizadeh, 2024), showing the potential for intelligent 
collaboration in threat workflows. However, adversarial behaviors—like deploying AI-powered 



worms or malicious prompt payloads—demonstrate the need for secure deployment protocols, 
especially in pedagogical environments (Sunkara, 2021). 

By merging advancements in neural optimization (Mahdavi, 2022b, Ahmadi, 2023) and 
cybersecurity resilience (Mirnajafizadeh, 2024), this study situates AI chatbots within a framework 
that prioritizes not only pedagogical value but also scientific reliability and ethical safety. For 
physics teacher education, this means chatbot integration should be accompanied by prompt-
crafting skills, content verification procedures, and safeguards against potential AI-driven 
misinformation or adversarial misuse.   

 
2.2 Large Language Models and Educational Chatbots 

Large Language Models (LLMs) represent a significant breakthrough in natural language 
processing (NLP), enabling machines to generate coherent, contextually relevant, and often 
human-like responses. These models—such as OpenAI’s GPT-4, Google’s Gemini, and 
Anthropic’s Claude—are trained on massive corpora of internet data and fine-tuned using 
supervised learning and reinforcement learning (Mahdavi et al., 2024; Toloeia et al., 2017) from 
human feedback (RLHF) to simulate complex human dialogue (OpenAI, 2023). The emergence 
of LLM-powered chatbots has opened new frontiers in education by enabling human-AI 
interaction that is responsive, adaptive, and scalable.  

In educational contexts, chatbots based on LLMs have been increasingly adopted as support tools 
for learners, offering features such as summarizing content, generating practice quizzes, 
simplifying difficult concepts, and simulating tutoring conversations (Zawacki-Richter et al., 
2019). Their accessibility and responsiveness make them particularly valuable for informal and 
self-regulated learning environments, allowing students to engage with content on-demand. 
Empirical studies across diverse fields—including language learning, medical education, and 
business studies—report mixed but promising outcomes, with domain complexity and user 
prompting skill playing critical roles in chatbot effectiveness (Belda-Medina, & Kokošková, 
2023). 

In recent years, STEM education has emerged as a key domain for LLM experimentation, 
particularly because of the discipline’s demand for logical reasoning, symbolic fluency, and 
structured problem-solving. Some studies have shown that LLMs can facilitate concept-level 
explanations in mathematics, chemistry, and engineering (Qadir, 2023; Pernaa et al., 2023). 
However, physics poses unique challenges due to its reliance on abstract mathematical 
representations (e.g., LaTeX formatting, vector calculus, differential operators) and causal 
modeling. While chatbots may assist in generating definitions or initial analogies, they frequently 
struggle with precise symbolic interpretation and accurate scientific reasoning (Gaur, & Saunshi, 
2023; Birhane, 2023).  

At a technical level, ongoing research has highlighted structural limitations and emerging risks 
associated with LLMs in educational contexts. Despite their fluency, these models are prone to 
hallucinations, where plausible-sounding but false or misleading content is generated. This 



introduces epistemic risk in high-stakes subjects like physics, where misinformation can lead to 
conceptual errors (Gilson et al., 2023; Van Dis et al., 2023). Moreover, prompt engineering—the 
practice of crafting specific inputs to optimize chatbot output—has become an essential skill for 
educators and students alike, but also introduces vulnerabilities. Sophisticated prompt injection 
attacks can manipulate chatbot responses to bypass guardrails, reveal confidential data, or 
introduce bias into learning interactions (Liu et al., 2023). 

To address these challenges, researchers have proposed technical safeguards, including 
polymorphic prompting and LoRA-based fine-tuning, which allows educators to adapt general-
purpose LLMs to specific subject domains using lightweight training methods (Hu et al., 2023). 
However, integrating such measures into educational practice requires not only technological 
expertise but also pedagogical foresight and cybersecurity literacy. 

In summary, while LLM-based educational chatbots offer substantial promise for enhancing 
learning engagement and access, particularly in STEM fields, their effective use requires a nuanced 
understanding of both their capabilities and limitations. As this study shows, embedding LLMs 
into teacher education—particularly physics—demands deliberate scaffolding of AI literacy, 
critical evaluation skills, and awareness of the evolving technical landscape that shapes these tools. 

 
2.3 AI in Physics Education 

The integration of artificial intelligence (AI) into physics education has gained considerable 
traction, driven by the need to enhance students’ conceptual understanding, symbolic reasoning, 
and instructional creativity. While early applications focused on adaptive learning platforms and 
automated grading systems, recent advances in generative AI—particularly large language models 
(LLMs)—have expanded the scope of possibilities for interactive and personalized learning (Roll 
& Wylie, 2016). In physics education, which demands both conceptual clarity and formal 
precision, AI chatbots offer unique opportunities for real-time feedback, conversational 
exploration, and personalized scaffolding of complex content. 

One promising application of AI in physics education lies in facilitating conceptual explanations 
and addressing misconceptions. AI chatbots can translate abstract topics such as electromagnetic 
induction, quantum tunneling, or entropy into accessible language, generate analogies, and offer 
varied representations of the same concept. These affordances are especially valuable in early 
stages of learning, where understanding often hinges on the ability to explore and reframe ideas 
from multiple angles (Marshman, & Singh, 2015). Importantly, these tools can support learners’ 
Zone of Proximal Development (ZPD) by providing just-in-time prompts and feedback, which can 
extend cognitive reach and encourage metacognitive reflection (Belda-Medina, & Kokošková, 
2023). 

However, significant limitations remain—particularly in tasks requiring symbolic reasoning, such 
as interpreting vector calculus, manipulating mathematical expressions, or rendering physics 
content in LaTeX. Studies have shown that LLMs often struggle with syntax-sensitive content, 
producing errors in operations like ∇×𝐁 = μ₀𝐉 or misrepresenting symbolic units and differential 



forms (Gaur, & Saunshi, 2023; Birhane, 2023). These deficiencies can undermine learning if users 
uncritically adopt AI-generated solutions without proper verification. Moreover, because symbolic 
fluency and formal accuracy are foundational to physics expertise, reliance on AI for symbolic 
tasks raises concerns about superficial understanding and cognitive offloading. 

In addition, the inherently multimodal nature of physics instruction—requiring coordination of 
graphs, equations, simulations, and verbal explanations—poses challenges for current AI tools, 
which remain largely text-based. While some AI systems can now support basic image generation 
or equation rendering, their capacity to synthesize and align these modalities with coherent 
instructional narratives remains limited (Nazaretsky et al., 2022). This gap further emphasizes the 
importance of embedding AI use within a framework that promotes critical thinking, cross-
referencing, and pedagogical design. 

Despite these constraints, AI systems have demonstrated value in supporting instructional design 
and resource generation for both teachers and students. Chatbots have been used to develop 
example problems, suggest laboratory investigations, or even co-construct lesson plans aligned 
with national curricula. As physics education increasingly incorporates computational elements, 
AI can also assist with coding simulations or analyzing sensor-based data from experiments—
bridging the divide between theory and practice (Wood, et al., 2016). 

Ultimately, while AI holds significant promise for enriching physics education, its use must be 
framed by epistemic responsibility, scientific rigor, and pedagogical intentionality. Rather than 
replacing disciplinary reasoning, AI tools should be positioned as assistive partners that support 
learners’ exploration, prompt ethical reflection, and enhance access to disciplinary practices—
without compromising the depth or integrity of scientific learning. 

 

2.4 Pedagogical Frameworks for AI Adoption 

The successful integration of artificial intelligence (AI) tools in education—especially generative 
AI chatbots—requires more than access to sophisticated technology; it demands a rethinking of 
pedagogical frameworks, teacher competencies, and ethical responsibilities. One of the most 
widely recognized models for guiding technology-enhanced teaching is the Technological 
Pedagogical Content Knowledge (TPACK) framework, which underscores the interconnectedness 
of content knowledge (CK), pedagogical knowledge (PK), and technological knowledge (TK) in 
effective instruction (Mishra & Koehler, 2006). Within this model, the incorporation of AI into 
physics education involves more than technical proficiency—it entails the orchestration of AI tools 
in ways that align with instructional objectives, cognitive development, and domain-specific 
epistemologies. 

Generative AI systems like large language models (LLMs) introduce unique interactional 
dynamics: they simulate human dialogue, co-construct content, and respond to learner queries in 
real-time. These affordances make them potentially transformative for inquiry-based learning and 
formative assessment. However, their educational value hinges on AI literacy—defined as the 
capacity to critically engage with AI-generated content, understand model limitations, and 
responsibly deploy these systems in educational contexts (Belda-Medina, & Kokošková, 2023). 



Pre-service teachers must be equipped not only with prompt-crafting and tool manipulation skills, 
but also with an understanding of how AI systems generate, approximate, or hallucinate 
knowledge. 

This shift necessitates the development of epistemic responsibility among educators and learners. 
Given that AI chatbots may present inaccurate or decontextualized responses, teachers must help 
students evaluate AI output through triangulation, cross-referencing, and domain-specific 
reasoning. These practices align with broader educational goals of fostering metacognitive 
regulation, reflective judgment, and scientific literacy—core elements of responsible teaching in 
the age of generative technologies (Ertmer et al., 2012). In physics education, where epistemic 
trust is closely tied to formal reasoning and empirical validation, AI tools should be framed as 
probabilistic guides rather than authoritative sources. This view supports a more nuanced and 
critical engagement with technology, one that promotes inquiry rather than automation. 

Equally important are the ethical and institutional dimensions of AI adoption. As AI systems 
become embedded in curricula, concerns emerge around bias amplification, over-reliance, 
academic integrity, and the automation of pedagogical judgment. Without careful design, AI tools 
risk replacing rather than supporting human-centered teaching. Holstein et al. (2019) argue that 
the successful integration of AI in classrooms depends on aligning system behavior with teachers’ 
goals, values, and classroom realities. To that end, digital ethics—including privacy, transparency, 
and equitable access—must be central to any framework guiding AI deployment in teacher 
education programs. 

In this light, pedagogical frameworks like TPACK must evolve to incorporate dimensions of AI 
literacy, cybersecurity awareness, and ethical reflection. Preparing future teachers for the 
complexities of AI-rich classrooms involves not just technical and content knowledge, but a 
commitment to epistemic integrity, pedagogical intentionality, and institutional responsibility. 
Only then can AI tools like chatbots function as meaningful partners in the educational process—
amplifying rather than distorting the values of teaching and learning. 

 

2.4.1 Information Seeking in Physics Education 
While information seeking has been widely studied in fields such as library sciences and chemistry 
education, comparatively little research has focused specifically on discipline-based information-
seeking practices in university-level physics. Physics, like other scientific domains, presents 
unique challenges for learners due to its reliance on multi-representational formats, including 
symbolic equations, graphical interpretations, computational simulations, experimental data, and 
increasingly, algorithmic code-based modeling (Figure 2). These diverse information types 
demand not only technical understanding but also cognitive agility—the ability to shift fluidly 
between conceptual, mathematical, and empirical frameworks while maintaining internal 
coherence. This complexity mirrors the "triplet model" in chemistry education (macro, symbolic, 
submicro), but in physics, it often spans verbal (explanatory), graphical (e.g., motion graphs or 
vector fields), symbolic (equations and derivations), and numerical (data and computation) 
dimensions (Tuminaro & Redish, 2007). 



 

Figure 2. Diverse representations of projectile motion from multiple perspectives, illustrating the 
multifaceted nature of information in physics education. 

Engaging with physics content across these modalities can result in cognitive overload, especially 
when students are tasked with connecting abstract theoretical constructs with empirical data or 
simulations. For example, understanding electromagnetic induction may require learners to 
synthesize a Faraday simulation, a sinusoidal current graph, and a multivariable formula—all 
while interpreting real-world implications. Without structured guidance, students often default to 
surface-level information-seeking strategies, such as keyword searching or formula memorization, 
rather than engaging critically with the underlying concepts. As Tuminaro and Redish (2007) 
observe, such learners often engage in “epistemic games”—procedural heuristics that may yield 
solutions but do not foster deep conceptual understanding. These issues underscore the need for 
explicit instruction in strategic and reflective information-seeking practices as a foundational part 
of physics teacher education.   

The advent of AI chatbots powered by large language models (LLMs) introduces new possibilities 
for supporting these learning processes. Chatbots like ChatGPT offer conversational interfaces 
through which students can pose conceptual or procedural physics questions, receive step-by-step 
derivations, clarify distinctions (e.g., electric field vs. electric potential), or request help in 
constructing lesson materials. This interactive engagement enables learners to build personalized 
learning environments that are available on demand and adaptable to their zone of proximal 
development (ZPD), a concept rooted in Vygotskian constructivist theory. Importantly, such AI-
supported inquiry can foster higher-order cognitive skills (HOCS) such as explanation, analysis, 
and evaluation—skills vital for future educators tasked with teaching complex scientific content. 



However, AI-enhanced information seeking in physics is not without its risks. While LLMs are 
trained on vast datasets, they are not domain-specific experts and may produce responses with 
subtle but critical inaccuracies, such as misuse of physical constants, unit errors, or flawed 
symbolic logic. These challenges are compounded by the fact that chatbot responses often appear 
fluent and persuasive, making it difficult for novice users to detect errors. As a result, the 
integration of AI into physics education must be paired with robust training in information literacy, 
including prompt engineering, source verification, and cross-referencing with validated materials. 
Students should be encouraged to treat AI as a supportive scaffold, not as an authoritative source. 

When integrated thoughtfully, AI-assisted information seeking has the potential to promote 
educational equity, support lifelong learning, and align with global education goals such as SDG4 
(quality education for all). However, its success depends on how well teacher education programs 
prepare pre-service physics educators to use such tools critically and ethically. Embedding AI-
based information seeking within physics education coursework—and aligning it with pedagogical 
frameworks such as TPACK—can empower future teachers to engage with emerging technologies 
in ways that enhance, rather than compromise, scientific rigor and instructional integrity. 

 

2.5 Epistemic Safety, AI Literacy, and Cybersecurity in Educational 
AI  

As generative AI systems—particularly large language models (LLMs)—become increasingly 
embedded in educational settings, a new set of pedagogical, epistemological, and cybersecurity 
responsibilities emerge. While AI tools offer powerful new ways to support inquiry, explanation, 
and design in teaching and learning, their adoption must be guided by critical awareness of their 
limitations, risks, and ethical implications. This section synthesizes emerging research across three 
interconnected dimensions: AI literacy, cybersecurity in generative AI, and epistemic 
responsibility in educational practice. 

2.5.1 AI Literacy and Prompt-Crafting in Teacher Education 

AI literacy refers not just to the technical ability to use AI tools, but to a deeper understanding of 
how these systems operate, what they can (and cannot) reliably do, and how to engage them 
responsibly within pedagogical workflows. For teacher education, this includes developing 
prompt-crafting skills—the ability to generate precise, contextually appropriate queries that elicit 
meaningful responses from AI chatbots. 

Pre-service teachers must also understand the probabilistic nature of LLM outputs, which are 
generated based on statistical patterns in training data rather than true comprehension. This 
awareness helps mitigate overreliance and encourages users to treat chatbot outputs as suggestions 
rather than truths. Effective AI literacy involves knowing how to assess the appropriateness of a 
model for a given task, recognizing potential hallucinations or oversimplifications, and identifying 
when alternative tools or human expertise should take precedence. Embedding such literacy into 



teacher training programs ensures that AI use enhances rather than undermines instructional 
quality. 

2.5.2 Cybersecurity Concerns in Generative AI 

The integration of AI into education also introduces a range of cybersecurity concerns. Prompt 
injection attacks, where malicious input manipulates an LLM’s behavior, can compromise the 
integrity of both content and learner interaction. Adversarial misuse, including the generation of 
inappropriate, biased, or misleading outputs, represents a growing challenge in AI ethics and 
digital safety (Mirnajafizadeh et al., 2024). 

For educational contexts, these risks are especially critical: AI models may inadvertently expose 
learners to misinformation, reinforce stereotypes, or become vectors for academic dishonesty. 
Teachers must be aware of these vulnerabilities—not only to protect student data and learning 
outcomes, but to model safe, critical digital engagement. Institutions must also consider the 
infrastructural implications, including secure access, monitoring systems, and usage policies 
(Zarchi, & Shahgholi, 2023; Mehmandari, 2024) for AI deployment in classrooms. 

Recent research has emphasized the importance of polymorphic prompt techniques and output 
verification layers to harden educational AI systems against manipulation and misuse (Liu et al., 
2023). Incorporating these practices into teacher preparation programs contributes to broader 
digital resilience and safeguards academic integrity.  

2.5.3 Epistemic Responsibility and Verification Protocols 

Beyond technical literacy and cybersecurity, a central concern in AI-assisted education is 
epistemic responsibility—the ethical obligation to treat knowledge claims with scrutiny, especially 
when they are generated by non-human agents. In disciplines like physics, where accuracy, logical 
consistency, and empirical coherence are essential, educators and learners must develop robust 
habits of content verification. 

These include: 

• Triangulating AI-generated content with textbooks, academic sources, or expert 
opinions; 

• Identifying signs of oversimplification or symbolic inaccuracy, particularly in 
mathematical or representational contexts; 

• Encouraging students to question, revise, or reject AI outputs that fail to meet 
disciplinary standards. 

Such verification behaviors are not only protective but pedagogically productive—they promote 
critical thinking, scientific reasoning, and meta-cognitive awareness, all of which are core goals 
of modern education. By training pre-service teachers to engage AI outputs with skepticism and 
precision, institutions can cultivate epistemically safe classrooms, where digital tools are used to 
support—not replace—judgment, inquiry, and reflection. 



 

2.6 The SWOT Framework in Educational Research 

The SWOT framework—which analyzes internal Strengths and Weaknesses, alongside external 
Opportunities and Threats—originated in strategic business planning but has since been adopted 
across various fields, including education, for evaluating programs, technologies, and institutional 
practices (Helms & Nixon, 2010). In educational research, SWOT provides a structured yet 
flexible lens to assess the implementation of new innovations, particularly when those innovations 
intersect with complex pedagogical, technological, and ethical considerations. Its utility lies in its 
ability to synthesize qualitative insights, stakeholder perspectives, and contextual variables into a 
coherent strategic evaluation—making it especially relevant in studies that explore the integration 
of emerging technologies like artificial intelligence. 

SWOT has been increasingly applied in science education to evaluate digital learning 
environments, curriculum reform, and teacher development. For instance, Zawacki-Richter et al. 
(2019) used SWOT to analyze systemic barriers and enablers to AI adoption in higher education, 
identifying issues such as institutional inertia, lack of digital literacy, and potential for pedagogical 
innovation. More recently, Pernaa et al. (2023) employed the SWOT approach in chemistry teacher 
education to assess how AI chatbots support information seeking and reflection. Their findings 
revealed that while chatbots offered flexible access to information and supported the development 
of modern information literacy skills, they also presented challenges related to content accuracy, 
multimodal limitations, and ethical risks. The SWOT method allowed for a nuanced understanding 
of both technical affordances and educational implications.  

In the context of this study, the SWOT framework is adopted to assess the strategic potential of AI 
chatbot integration in university-level physics teacher education. Unlike purely descriptive or 
experimental methods, SWOT enables a holistic evaluation that incorporates participant 
experiences, pedagogical reflections, and systemic concerns. This is particularly important in 
physics education, where the introduction of AI chatbots intersects with deeply held epistemic 
norms around precision, logic, and human reasoning. The SWOT framework thus provides an ideal 
structure to capture the complex interplay between innovation and discipline-specific constraints, 
helping inform future implementation, training, and policy development.  

2.7 Research Gap and Contribution 

While there is growing interest in the integration of artificial intelligence (AI) in higher education, 
existing research has largely focused on generalized educational applications such as automated 
writing support, language translation, and predictive analytics (Zawacki-Richter et al., 2019; Roll 
& Wylie, 2016). In STEM education, much of the attention has centered on adaptive platforms or 
data-driven tutoring systems rather than dialogic AI tools like chatbots, which engage users in real-
time reasoning, iterative querying, and conversational content generation. These dialogic 
interactions raise unique epistemological and pedagogical questions—especially in physics 
education, where abstraction, precision, symbolic logic (e.g., LaTeX, vector calculus), and causal 
coherence are paramount.  



Despite the emergence of a few subject-specific studies—such as Pernaa et al. (2023) in chemistry 
teacher education—there remains a clear gap in discipline-focused empirical research on AI 
chatbot integration within physics teacher preparation. Physics poses distinct challenges due to its 
reliance on mathematically rigorous representations and deep conceptual reasoning. Current 
language models often struggle with these representational forms, and little is known about how 
pre-service physics teachers critically engage with chatbot outputs, verify their epistemic validity, 
and incorporate them into instructional planning. Furthermore, emerging concerns around prompt-
injection attacks (Mirnajafizadeh, 2024), AI misinformation, and content manipulation highlight 
the urgent need to address cybersecurity resilience and epistemic responsibility in teacher 
education contexts—concerns rarely explored in existing literature. 

This study addresses these gaps by implementing a TPACK-guided SWOT analysis across three 
structured AI-assisted activities—focused on conceptual simplification, symbolic mapping, and 
instructional design. Through this framework, we not only examined pedagogical affordances and 
limitations of AI chatbots but also systematically assessed their scientific trustworthiness, 
cybersecurity vulnerabilities (Mirnajafizadeh, 2024), and ethical implications. Additionally, by 
embedding AI literacy, prompt-crafting skills, and verification strategies into the activity design, 
the study moves beyond techno-enthusiasm to critically interrogate what it means to responsibly 
integrate generative AI into the epistemic and pedagogical practices of future physics educators. 

Thus, the study makes three key contributions: 

1. Theoretical: It extends existing models of information seeking and TPACK by 
incorporating domains of AI literacy, cybersecurity resilience, and epistemic verification, 
offering a holistic evaluative lens for AI in education. 

2. Empirical: It provides data-driven insights into how pre-service physics teachers interact 
with chatbots to construct, critique, and apply knowledge in symbolically dense and 
epistemologically complex domains. 

3. Practical and Policy-Oriented: It informs curriculum design, educator training, and 
institutional policy by offering implementation strategies for AI in teacher education that 
balance innovation with pedagogical integrity and ethical safeguards. 

In doing so, this study contributes to a growing body of AI-in-education research while advancing 
the disciplinary understanding of physics education in the age of generative AI. 



 

Figure 3. Research model 
 
 
 

3. Methodology 

3.1 Research Design and Theoretical Framework 

This study employs a qualitative research design guided by a SWOT (Strengths, Weaknesses, 
Opportunities, Threats) analysis framework, enriched through the Technological Pedagogical 



Content Knowledge (TPACK) model (Mishra & Koehler, 2006). The methodology was designed 
to explore how AI-powered chatbots can be integrated into physics teacher education, specifically 
through activities targeting information seeking, instructional planning, and conceptual 
understanding. By overlaying TPACK dimensions within each SWOT category, the study ensures 
both analytical depth and theoretical alignment. 

 

3.1 Theoretical Framework: TPACK in Physics Education 

This research is theoretically grounded in the TPACK framework (Mishra & Koehler, 2006), 
which provides a multidimensional structure (Zarchi, & Attaran, 2019) for understanding the 
intersection of technology, pedagogy, and subject content in teacher education. In the context of 
physics education, the framework is applied as follows: 

• Technological Knowledge (TK): Refers to the use of AI chatbots (e.g., ChatGPT) as 
generative tools for instruction, planning, and knowledge construction. 

• Pedagogical Knowledge (PK): Includes strategies for instructional planning, scaffolding, 
and critical evaluation, particularly in the context of information-seeking tasks. 

• Content Knowledge (CK): Represents university-level physics, including abstract 
concepts such as electromagnetism, entropy, and quantum mechanics, which involve 
mathematical modeling and symbolic reasoning. 

Intersections of these domains form hybrid knowledge areas: 

• TPK (Technological Pedagogical Knowledge): Understanding how AI can scaffold 
instructional practices and information seeking. 

• TCK (Technological Content Knowledge): Using AI to help visualize and interpret 
physics concepts. 

• PCK (Pedagogical Content Knowledge): Anticipating student misconceptions and 
designing targeted interventions. 

Despite ongoing critiques of definitional ambiguity in TPACK literature (Cox, 2008; Graham, 
2011), the model’s practical flexibility and integrative capacity make it an effective lens for 
exploring AI-based innovations in STEM education. 

 

3.2 Designed AI Chatbot-Assisted Information-Seeking Activities 

Three structured educational activities were designed for this study, embedded within a capstone 
course titled “Innovative Tools in Physics Education”. The course is an upper-division elective 
for pre-service physics teachers, emphasizing creative and critical use of emerging technologies. 
Each activity corresponds to distinct domains within the TPACK model and was designed to 
provoke reflection on cognitive and pedagogical engagement with AI tools. 



 

3.2.1 Activity 1: Deconstruct a Physics Concept Using AI (PK to TPK) 

In this task, students were required to select a complex physics concept—such as electromagnetic 
induction, entropy, or quantum tunneling—and reformulate it into an explanation suitable for a 
high school audience. This activity was designed to develop pedagogical translation skills while 
engaging critically with AI-generated explanations. 

Workflow: 

• Choose a challenging university-level physics concept. 
• Use an AI chatbot (e.g., ChatGPT or Copilot) to generate a simplified explanation. 
• Evaluate the explanation for clarity, scientific accuracy, and conceptual appropriateness. 
• Revise the output by refining prompts and correcting errors. 
• Reflect in 250–300 words on the pedagogical implications of using AI for conceptual 

explanation. 

This activity was mapped to PK, given its focus on pedagogical transformation. However, because 
it incorporated conceptual evaluation and technological assistance, it also activated the TK and 
CK domains—thereby engaging the full TPACK framework. 

 

3.2.2 Activity 2: Construct a Visual Concept Map for Symbolic Physics Content (CK to TCK) 

The second activity involved creating a Novak-style concept map centered around a key topic in 
physics, such as Maxwell’s equations or Newtonian mechanics. Emphasis was placed on the 
symbolic, hierarchical, and multimodal nature of physics knowledge. 

Expected features: 

• Inclusion of 15–20 key physics concepts with hierarchical structuring. 
• Integration of vector diagrams, equations, LaTeX notations, and illustrative elements. 
• Use of AI to support definition retrieval, conceptual linkage, and symbolic accuracy. 
• Documentation of each AI contribution and critical reflection on its usefulness. 

This activity primarily addressed CK but extended into TCK through the use of AI to engage with 
symbolic representations and their relationships. It also allowed participants to assess the chatbot’s 
capabilities and limitations in dealing with formal physics notation. 

 

3.2.3 Activity 3: Design a Physics Learning Scenario Using AI-Supported Instructional 
Planning (TPACK) 



In the third activity, students were tasked with designing a mini instructional unit using AI tools 
as part of the pedagogical strategy. This task called for integrating all three TPACK knowledge 
domains and was intended to simulate authentic instructional design. 

Components: 

• A 2-session lesson plan (e.g., on wave interference or projectile motion), including learning 
goals, audience, and instructional strategy. 

• A student-facing activity that incorporated chatbot use (e.g., real-time Q&A, personalized 
examples, or calculation checking). 

• Critical discussion on the role of AI in supporting learning, formative assessment, and 
cognitive scaffolding. 

• A preliminary SWOT analysis completed by the student based on their planning process, 
to be compared with the collective research-wide SWOT evaluation. 

This activity constituted a fully integrated TPACK application and was the most open-ended of 
the three. It encouraged synthesis of knowledge, creative instructional use of AI, and critical 
appraisal of risks and benefits in authentic teaching scenarios. 

 

3.3 SWOT Analysis Procedure 

A structured SWOT framework was used to analyze the data collected from the activities above. 
The choice of SWOT was based on its strength in surfacing the internal affordances and external 
constraints of educational innovations (Helms & Nixon, 2010; Zawacki-Richter et al., 2019). 

To refine this analysis and ensure theoretical depth, each quadrant was overlaid with relevant 
TPACK domains: 

• Strengths: Features such as user-friendliness (TK), enhanced reflection (PK), or 
scaffolded content access (TPK). 

• Weaknesses: Problems with symbolic precision, lack of context sensitivity, or 
oversimplification (CK, TCK). 

• Opportunities: Emerging avenues for curriculum integration, teacher training, and 
personalization of learning (TPACK). 

• Threats: Risks of epistemic confusion, over-reliance, and ethical concerns (PK, PCK). 

Data sources included: 

• Written reflections submitted by students after each activity. 
• Instructor observations and field notes. 
• Group discussion transcripts during debriefing sessions. 

Analysis followed a two-stage process: 



1. Inductive coding to generate themes from participant data. 
2. Deductive classification into SWOT categories informed by theoretical alignment with 

TPACK domains. 

 

3.4 Ethical Considerations and Research Validity 

Ethical approval for the study was granted by the institutional review board of the participating 
university. All participants gave informed consent prior to data collection. Anonymity and 
confidentiality were preserved throughout the research process. 

Validity was enhanced through: 

• Methodological triangulation: Reflections, observations, and discussions were used to 
validate findings. 

• Collaborative coding: Thematic agreement was ensured through peer review of codes. 
• Member checking: Participants were invited to confirm the interpretation of their 

responses. 

The integration of the TPACK model into SWOT analysis further reinforced both theoretical rigor 
and contextual specificity, enabling a rich, multidimensional understanding of AI chatbot 
integration in physics teacher education. 

 

4. Results and Discussion 

4.1. Deconstructing Physics Concepts with AI: Toward Pedagogical Precision 

One of the central aims of Activity 1 was to assess how AI chatbots can assist pre-service physics 
teachers in simplifying complex university-level physics content—such as quantum tunneling or 
electromagnetic induction—for high school audiences. A key internal strength observed was the 
AI chatbot’s capacity to produce clear, accessible initial explanations that students could iteratively 
refine. This aligns with prior research demonstrating the generative potential of large language 
models (LLMs) for content translation and conceptual accessibility (TPK) (OpenAI, 2023; Qadir, 
2023). 

From a pedagogical standpoint, students found that the chatbot's responses offered useful entry 
points for explaining abstract phenomena. However, they frequently identified conceptual 
inaccuracies, over-simplifications, or flawed analogies in the output—highlighting a persistent 
weakness in the model’s content knowledge (CK), especially in symbolic reasoning and causality 
(Marshman, & Singh, 2015). These findings reflect known limitations of generative AI in handling 
domain-specific accuracy and formal representations (Hwang et al., 2020). 

In response, students engaged in iterative prompt-crafting to clarify outputs and correct errors, 
fostering critical reflection and developing their pedagogical content knowledge (PCK). This 



represents a significant opportunity: embedding AI use into training routines not only supports 
reflective practice but also enhances digital literacy and epistemic agency in navigating automated 
tools (Belda-Medina, & Kokošková, 2023). 

Moreover, students began shifting from a content-delivery mindset to one focused on 
metacognitive awareness—evaluating how scientific ideas are taught rather than simply 
transmitted. This pedagogical repositioning supports adaptive instructional design. However, the 
exercise also revealed external threats. Without scaffolding, students may become overly reliant 
on AI explanations, which risks bypassing deeper engagement with physics content. There are also 
broader concerns around authorship ethics, originality, and the potential for prompt-injection 
vulnerabilities in unsupervised AI use (Liu et al., 2023). 

To mitigate these threats, physics teacher education programs should include training on 
responsible chatbot use, including verification procedures, ethical considerations, and 
cybersecurity awareness (Mirnajafizadeh et al., 2024). This ensures that chatbot integration 
supports both scientific integrity and instructional innovation. 

SWOT Table – Activity 1: Deconstruct a Physics Concept Using AI 

Strengths Weaknesses Opportunities Threats 
Facilitates pedagogical translation 
of complex physics concepts (TPK) Risk of inaccurate 

simplification or 
misleading analogies 
(CK) 

Develops AI literacy 
and prompt-
engineering 
competence (TPK) 

Overreliance on AI-
generated content 
may reduce deep 
learning (PK) 

Enhances productivity by 
leveraging AI to generate simplified 
explanations (TK) 

Requires strong 
prompting and 
iterative refinement 
skills (TPK) 

Encourages reflective 
practice and iterative 
content improvement 
(PCK) 

Ethical concerns 
around authorship, 
originality, and 
overuse (TPACK) 

Promotes critical evaluation of 
scientific accuracy and clarity (PK) May reinforce 

misconceptions or 
flawed reasoning if 
unverified (CK) 

Promotes awareness of 
model limitations and 
trust calibration (PK) 

Susceptibility to 
prompt-injection or 
adversarial misuse 
(TPACK, 
cybersecurity) 

Builds familiarity with 
responsible AI integration in 
classroom practice (TPACK) 

Lacks capacity for 
multimodal 
representation or 
symbolic precision 
(TCK) 

Supports introduction 
of cybersecurity and 
verification protocols 
in pedagogy (TPACK) 

Misalignment with 
standard curricula or 
rigid assessment 
frameworks 
(TPACK) 

 



4.2. Visualizing Symbolic Relationships through AI-Supported Concept Mapping 

The second activity focused on constructing symbolic concept maps that integrated visual 
reasoning with domain-specific knowledge—particularly valuable in physics where abstract 
relationships, such as Maxwell’s equations or Newtonian mechanics, require both hierarchical 
structuring and symbolic fluency. Pre-service teachers engaged AI chatbots to generate concise 
definitions, verify symbolic syntax, and suggest conceptual linkages. This reflected a TCK-
centered engagement where technological tools facilitated access to content knowledge in new 
formats (Zawacki-Richter et al., 2019; Mishra & Koehler, 2006). 

Students reported several internal strengths. The structured nature of concept mapping encouraged 
metacognitive reflection, enabling clearer visualization of scientific relationships (CK). Moreover, 
combining graphical tools with AI-supported prompts helped demystify abstract formulations—
particularly among those who had previously struggled with formal mathematical representation 
(Hwang et al., 2020; Marshman, & Singh, 2015). 

However, limitations of AI performance in symbolic accuracy emerged. Chatbots sometimes 
produced incorrect LaTeX formatting or misinterpreted expressions like ∇×𝐁 = μ₀𝐉, particularly 
when handling vector calculus or differential equations. These symbolic errors prompted students 
to verify outputs by consulting textbooks or peer discussions—reinforcing triangulated 
information behavior, an important trait of responsible AI use (Belda-Medina, & Kokošková, 
2023; Gilson et al., 2023). 

This need for verification also exposed a cybersecurity and reliability layer often overlooked in 
pedagogical design. Chatbots can be vulnerable to adversarial prompts or misinformation when 
deployed without safeguards, especially when handling symbolic data that may include embedded 
payloads or flawed logic (Liu et al., 2023). Embedding defenses such as polymorphic prompt 
techniques or layered input filters into educational environments is essential (Mirnajafizadeh et 
al., 2024). 

Still, the activity surfaced valuable opportunities. Students developed cross-verification skills and 
deeper engagement with physics content by actively navigating AI limitations. For those 
apprehensive about symbolic formalism, AI-assisted scaffolding reduced cognitive barriers—
transforming what might have been a demotivating experience into one of curiosity and resilience. 

Nonetheless, several external threats remain. These include unequal access to reliable visualization 
tools, inconsistent instructor preparedness, and cognitive overload due to symbolic density. To 
support ethical and effective implementation, physics education programs should ensure 
scaffolded instruction, secure chatbot deployment, and integrated verification procedures within 
teacher education curricula. 

SWOT Table – Activity 2: Construct a Visual Concept Map for Symbolic Physics Content 

Strengths Weaknesses Opportunities Threats 
Encourages structured 
thinking and 
conceptual clarity (CK) 

AI may struggle with 
accurate symbolic 

Enhances multimodal 
and accessible learning 

Cognitive overload due to 
complexity of symbolic 
content (CK) 



formatting and advanced 
notation (TCK) 

in abstract physics 
domains (TCK) 

Combines visual and 
symbolic reasoning 
with AI assistance 
(TCK) 

Overdependence on AI 
output without validation 
may introduce errors (CK) 

Promotes triangulated 
verification and 
responsible AI use 
(TPK) 

Disparities in student 
access to visualization 
tools or secure AI 
platforms (TPACK) 

Supports construction 
of hierarchical and 
relational knowledge 
maps (CK) 

Challenges in reviewing and 
interpreting AI-generated 
visual content (TCK) 

Reduces apprehension 
toward abstract 
formalism through AI-
assisted scaffolding 
(TPACK) 

Vulnerability to prompt-
injection attacks or 
symbolic misinformation  

Stimulates 
metacognitive 
engagement through 
symbolic reasoning 
(PCK) 

May fail to detect symbolic 
inconsistencies in 
adversarial prompts 
(TPACK, cybersecurity) 

Supports integration of 
cybersecurity and ethical 
reasoning into symbolic 
learning activities 
(TPACK) 

Instructor training gaps in 
AI-supported symbolic 
representation (TPACK) 

 

4.3. Designing AI-Enhanced Instructional Scenarios: Fostering TPACK Synergy 

The third activity challenged participants to design a full instructional scenario incorporating AI 
chatbots into the physics teaching workflow. This project-based design task activated the entire 
TPACK framework—requiring integration of content knowledge (CK), pedagogical strategy 
(PK), and technological tools (TK). By asking students to simulate classroom planning, this 
activity brought AI use into an authentic instructional context, thereby emphasizing practical 
synergy among the knowledge domains (Mishra & Koehler, 2006; Graham, 2011). 

Students found that AI chatbots offered strong support in generating lesson structures, producing 
formative questions, and proposing student-centered activities. A notable internal strength was the 
chatbot’s capacity to assist in basic coding tasks, such as debugging Python code for kinematic 
simulations or assisting with Arduino-based experimental design—extending technological 
engagement beyond text generation into hardware-relevant planning (TK, TCK). These findings 
echo emerging literature showing AI’s role in facilitating both instructional and technical creativity 
in STEM domains (Belda-Medina, & Kokošková, 2023; Cooper, 2023). 

Despite these benefits, students frequently reported that AI outputs lacked essential pedagogical 
components such as scaffolding, formative assessment cues, and anticipatory strategies for student 
misconceptions. These omissions revealed a limitation in AI's alignment with pedagogical content 
knowledge (PCK), highlighting the need for teacher oversight and critical refinement of AI-
generated lesson materials (Lai, 2022; Docktor & Mestre, 2014). 

Opportunities emerged in the form of increased instructional autonomy and design-based 
metacognition. Several participants reported that chatbots helped expand their zone of proximal 
development (ZPD) by offering immediate feedback or novel instructional formats—facilitating 
exploratory learning and promoting just-in-time support for lesson innovation (Vygotsky, 1978; 
Roll & Wylie, 2016). 



However, the integration of LLMs into instructional design also raised important cybersecurity 
and ethical considerations. Without proper safeguards, AI chatbots used in lesson planning could 
be vulnerable to prompt-injection attacks or generate misleading pedagogical content (Liu et al., 
2023). Students may unknowingly introduce adversarial prompts that affect lesson quality, or rely 
on output that embeds epistemic bias or factual inaccuracies. These threats necessitate the 
inclusion of AI safety training in teacher education—especially prompt-crafting, content 
verification, and ethical analysis procedures (Mirnajafizadeh et al., 2024).  

External threats also include unequal access to secure and reliable AI tools, lack of instructor 
readiness, and institutional hesitancy to embed generative AI into curriculum planning. Without 
systemic support and digital equity frameworks, the transformative potential of AI in instructional 
design may be limited to isolated innovations rather than mainstream adoption.  

SWOT Table – Activity 3: Design a Physics Learning Scenario Using AI-Supported Instructional 
Planning  

Strengths Weaknesses Opportunities Threats 
Engages full TPACK 
knowledge domains in 
authentic instructional 
design (TPACK) 

High cognitive demand 
due to complexity of 
design tasks (TPACK) 

Fosters innovation in 
teaching practices using 
emerging technology 
(TPACK) 

Inconsistent 
institutional guidance 
on AI use in education 
(TK) 

Supports creativity and 
autonomy in lesson 
planning (PK, TK) 

Limited pedagogical 
alignment of chatbot-
generated content (PCK) 

Provides a basis for 
personalized and 
differentiated learning 
scenarios (PCK) 

Variability in student 
access, digital literacy, 
and platform 
reliability (TPACK) 

Facilitates technical 
innovation through code 
support and simulation 
planning (TK) 

Vulnerable to AI 
misinformation or 
prompt-injection risks 
without safeguards 
(cybersecurity, TPK) 

Encourages development of 
prompt-crafting and 
verification skills (TPK, 
cybersecurity) 

Risk of de-skilling in 
traditional 
instructional design 
processes (PK) 

Promotes reflection on AI 
ethics and human-AI 
collaboration in classroom 
contexts (TPK) 

Inexperience with AI 
tools may hinder lesson 
quality and coherence 
(TPACK) 

Supports long-term AI 
integration strategies 
through pedagogical 
planning (TPACK) 

Ethical concerns 
regarding authorship, 
transparency, and AI 
autonomy in lesson 
creation (TPK) 

 
 
 

4.4 Synthesis of AI Chatbot Use in Physics Teacher Preparation: TPACK-Based SWOT 
Summary 

The synthesized SWOT table (Table 4) offers a consolidated analysis of the pedagogical and 
strategic insights derived from all three AI-assisted activities. Framed within the TPACK model, 
this synthesis captures the dynamic interplay between content, pedagogy, technology, and now—
digital ethics and cybersecurity. As large language models (LLMs) are increasingly embedded in 



educational ecosystems, awareness of both pedagogical benefits and security risks becomes 
essential (Hu et al., 2023; Liu et al., 2023). 

4.4.1 Internal Possibilities 

Among the internal strengths, AI chatbots consistently supported the simplification of complex 
physics phenomena, providing initial scaffolding that participants could refine into student-
appropriate explanations (TPACK) (Brandtzaeg & Følstad, 2017; Cooper, 2023). Participants used 
chatbots to explore diverse information-seeking paths—testing, refining, and querying concepts—
which deepened technological-pedagogical engagement (TPK) (Zawacki-Richter et al., 2019). 
Symbolic reasoning was also enhanced as chatbots helped interpret equations and link formal 
concepts with instructional strategies (TCK) (Gugagayanan, 2022), while planning activities 
encouraged critical reflection and design-based learning (PCK) (Pernaa et al., 2023). 

Furthermore, students benefited from AI-assisted simulation planning and code generation—skills 
aligned with neural optimization techniques like parameter-efficient tuning (Hu et al., 2023; 
Mahdavi, 2022b). These features supported fast iteration and exploration in both conceptual and 
technical dimensions of teaching.  

4.4.2 Internal Challenges 

Yet internal weaknesses persisted. AI-generated content frequently contained factual inaccuracies, 
misapplied analogies, or syntactic errors in physics notation (CK, TCK) (Gilson et al., 2023; Van 
Dis et al., 2023). Many participants noted the chatbot’s limitations in multistep reasoning or in 
creating accurate diagrams—hindering its ability to support visualization-heavy tasks (Hwang et 
al., 2020). These challenges demanded significant subject-matter expertise to identify and correct 
AI outputs, raising concerns about cognitive overload and equity (Cox, 2008). 

More critically, the possibility of adversarial prompt-injection attacks during content generation—
where chatbots could be manipulated to produce misleading or ethically problematic outputs—
was identified as a latent risk (Liu et al., 2023). Though not directly experienced in this study, the 
need for secure prompt design, input sanitization, and AI safety protocols was underscored, 
especially for open-ended lesson planning and real-time student interaction. 

4.4.3 External Opportunities 

From an external perspective, chatbots offered promising avenues for inclusive and multilingual 
education through automatic translation, simplified rephrasing, and content personalization (TPK, 
TPACK) (Pedro et al., 2019). Such tools can empower diverse learners and support teacher training 
models that embed digital competence and AI literacy (Zawacki-Richter et al., 2019). The study 
also revealed that chatbots promoted reflection on source trustworthiness and intellectual 
ownership—developing ethical awareness and professional identity in future educators (PK) 
(Ertmer et al., 2012).  

These affordances align with global educational trends that call for both digital fluency and 
adaptive pedagogical capacity in AI-integrated contexts (Helms & Nixon, 2010;).  



4.4.4 External Threats 

However, the effective deployment of these tools hinges on systemic factors. Participants 
highlighted the need for institutional backing—including secure infrastructure, reliable access to 
AI platforms, and formal training in AI usage and verification (TK, TPACK). In the absence of 
such support, inconsistent access and uneven digital readiness may exacerbate educational 
inequalities.  

Additionally, unchecked reliance on AI may reduce independent instructional planning and critical 
physics reasoning—risking de-skilling and promoting shallow engagement (PCK) (Graham, 
2011). Long-term threats also include software costs, evolving licensing models, and ethical 
concerns related to student data privacy and chatbot autonomy (Van Dis et al., 2023; Sunkara, 
2021). 

 
Table 4. Summary of the synthesized possibilities and challenges categorized via SWOT and 
reflected in the TPACK framework 
  

Possibilities Challenges 
 
 
 
 
Internal 
(Within the 
course or 
activity 
design) 

Strengths  
 
– Helps explain complex physics ideas 
using AI scaffolds (TPACK)  
 
– Encourages diverse information-
seeking and prompt engineering 
(TPK)  
 
– Supports symbolic reasoning with 
equations and formulas (TCK)  
 
– Aids lesson planning, coding, and 
critical reflection (PCK, TK) 

Weaknesses  
 
– AI outputs may contain physics 
inaccuracies or oversimplifications 
(CK)  
– Requires prior content knowledge to 
verify output quality (CK)  
 
– Struggles with diagrammatic and 
multilevel reasoning (TCK)  
 
– Risk of adversarial prompts or 
unintended AI behavior (TPK, 
cybersecurity) 

 
 
 
External 
(Broader 
teaching 
environment) 

Opportunities  
 
– Enables inclusive learning through 
AI translation and rephrasing (TPK)  
 
– Aligns with digital literacy in 
teacher education reforms (TPACK)  
 
– Encourages critical thinking and 
ethical AI evaluation (PK)  
 
– Potential for curriculum-level AI 
integration (TPACK) 

Threats  
 
– Needs infrastructure, AI literacy 
training, and ethical guidance (TK)  
 
– Uneven digital access or 
institutional support may limit 
scalability (TPACK)  
 
– Overuse may reduce student 
initiative and critical thinking (PK, 
PCK)  
 



– AI tools may introduce long-term 
sustainability and safety issues 
(TPACK, cybersecurity) 

 
 

Strategic Implications 

This synthesis affirms that AI chatbot integration into physics teacher education is both promising 
and complex. The updated SWOT-TPACK model highlights the importance of balancing AI’s 
instructional potential with pedagogical integrity, content verification, and cybersecurity 
resilience. Embedding prompt-crafting skills, ethical reflection, and institutional safeguards into 
teacher preparation programs is essential for cultivating adaptive and responsible educators in the 
AI era. The interplay of these internal and external factors suggests that while AI chatbot 
integration holds transformative potential, its success depends on deliberate instructional design, 
sustained institutional support, and a strong emphasis on digital literacy. The TPACK-guided 
SWOT framework enabled us to locate these findings precisely within intersecting domains of 
teacher knowledge, ensuring that future curricular innovations can be both theoretically grounded 
and pedagogically actionable. 

 
5. Discussion  

The TPACK-guided SWOT analysis conducted in this study revealed both promising 
opportunities and significant challenges in integrating AI chatbots into physics teacher preparation 
programs. By designing and implementing three chatbot-assisted instructional activities—each 
targeting a distinct TPACK configuration—we were able to evaluate how AI tools mediate 
information-seeking, instructional planning, and critical pedagogical reflection in a physics 
education context. 

At the internal level, AI chatbots demonstrated notable strengths, particularly in simplifying 
complex physics topics, supporting conceptual mapping, and expediting the design of physics 
lessons and tasks (TPK, PCK). These tools enabled student teachers to engage in generative tasks 
such as translating entropy or electromagnetic induction into high school-appropriate explanations, 
visualizing symbolic relationships using concept maps, and drafting lesson plans enriched with 
interactive AI-supported scaffolds. These findings align with recent research noting the productive 
role of AI in supporting information behavior and pedagogical reflection in educational settings 
(Brandtzaeg & Følstad, 2017; Zawacki-Richter et al., 2019; Nazaretsky et al., 2022). 

However, internal weaknesses were also evident. Students frequently encountered conceptual 
inaccuracies, especially in AI-generated equations or symbolic representations—highlighting the 
limitations of large language models in interpreting domain-specific syntax like LaTeX or vector 
calculus (Gaur, & Saunshi, 2023; Birhane, 2023). This necessitated verification through 
triangulation with textbooks or expert consultation, which, while educationally beneficial, placed 
additional cognitive demands on learners (Savolainen, 2005). These findings further underscore 



the importance of embedding prompt-crafting skills, content verification procedures, and AI-
critical literacy into physics teacher training. 

Externally, chatbot integration revealed considerable opportunities for enhancing inclusivity and 
access in teacher education. Translation capabilities facilitated engagement with non-English 
physics texts, and the conversational interface supported differentiated learning and the expansion 
of students’ zone of proximal development (ZPD) (Vygotsky, 1978; Belda-Medina, & Kokošková, 
2023). These affordances also align with Sustainable Development Goal 4 (SDG 4), which 
emphasizes inclusive and equitable quality education (UNESCO, 2021). Moreover, the dynamic 
use of chatbots encouraged students to reflect on their instructional choices and to plan lessons 
with real-time feedback loops—highlighting the role of generative AI as both a cognitive tool and 
a reflective partner. 

Nonetheless, several external threats remain. Overreliance on AI tools could diminish students’ 
independent reasoning and symbolic fluency if not properly scaffolded—a concern echoed in 
broader critiques of digital outsourcing in education (Ertmer et al., 1999; Graham, 2011). 
Institutional constraints, such as lack of access to reliable AI infrastructure or limited instructor 
expertise in prompt engineering, also risk impeding successful implementation. Additionally, as 
recent research on prompt-injection attacks and adversarial misuse has shown, educational 
deployment of AI tools must be accompanied by robust cybersecurity measures to guard against 
misinformation, data leakage, or manipulation (Liu et al., 2023). 

To address these challenges, we recommend that physics teacher education programs adopt a 
multi-pronged strategy: 

• Incorporate AI literacy as a core component of the curriculum, including modules on 
prompt design, content verification, and ethical AI use; 

• Embed cybersecurity resilience, including awareness of prompt-injection vulnerabilities 
and safe deployment protocols; 

• Promote critical AI reflection, where learners are trained to evaluate chatbot outputs 
across scientific, pedagogical, and ethical dimensions; 

• Ensure institutional support, including access to sustainable and open-source AI 
platforms and professional development for instructors. 

Ultimately, this study positions AI chatbot integration not as a mere technological enhancement 
but as a catalyst for rethinking instructional design, disciplinary engagement, and epistemic 
responsibility in science education. Through the lens of the updated TPACK-SWOT model, we 
argue that preparing reflective, adaptive, and AI-literate educators is essential to harness the 
transformative potential of these tools in a rapidly evolving digital landscape. 

 

6. Conclusion 

This study explored how AI chatbots can be strategically and responsibly integrated into physics 
teacher preparation using a TPACK-guided SWOT framework. Through the design and analysis 



of three chatbot-assisted activities—focused on concept simplification, symbolic concept 
mapping, and instructional planning—we examined how pre-service physics teachers engage with 
AI tools across information seeking, pedagogical reflection, and instructional design. 

The findings confirm that all three research questions were comprehensively addressed. 
Participants identified distinct strengths and weaknesses (RQ1.1), such as AI’s ability to simplify 
complex content, scaffold pedagogical thinking, and support visual-symbolic reasoning—
alongside limitations in symbolic accuracy, scientific precision, and pedagogical misalignment. 
Opportunities and threats (RQ1.2) emerged around inclusivity, multilingual access, and AI-
enabled instructional innovation, but were counterbalanced by concerns over institutional support, 
unequal access, and cybersecurity vulnerabilities—particularly related to prompt injection and 
model manipulation risks. Participants also critically evaluated the pedagogical value, scientific 
trustworthiness, and ethical implications of AI-generated content (RQ1.3), emphasizing the 
importance of prompt-crafting skills, epistemic caution, and content verification protocols to 
prevent misinformation or overreliance. 

Overall, the results suggest that when critically and reflectively employed, AI chatbots can enhance 
higher-order thinking, conceptual clarity, and instructional planning among pre-service physics 
teachers. However, technological integration alone is insufficient. Meaningful implementation 
requires: 1) Deliberate instructional design, 2) Institutional investment in AI infrastructure and 
educator training, 3) And a curriculum-level commitment to AI literacy, cybersecurity resilience, 
and epistemic responsibility. 

By extending traditional models of information-seeking to include instructional, ethical, and 
verification-based dimensions, this study offers both theoretical grounding and actionable 
guidance for embedding AI in teacher education. Preparing future educators to engage with AI 
tools is not only a technological imperative, but a pedagogical and ethical necessity—crucial 
for cultivating adaptive, reflective, and digitally responsible educators in the age of generative 
AI. 

 

7. Future Directions 

To build on the findings of this study, future research should investigate the integration of AI 
chatbots across more diverse educational settings, cultural contexts, and larger cohorts of pre-
service teachers. Mixed-methods or longitudinal designs incorporating quantitative measures of 
AI literacy, instructional efficacy, self-efficacy, and critical reasoning will be valuable in 
validating and scaling these results. 

In addition, emerging challenges—such as prompt-injection attacks, algorithmic bias, and 
epistemic unreliability—highlight the urgent need for interdisciplinary research at the 
intersection of AI, cybersecurity, and science education. Studies should explore how these 
technological and ethical dimensions affect teacher cognition, instructional planning, and the 
formation of professional identity in STEM disciplines. 



Finally, future work should address curriculum-level interventions that embed AI ethics, prompt-
crafting skills, and digital trust protocols into teacher preparation programs. Collaborations 
between educators, computer scientists, and instructional designers will be essential to developing 
sustainable, secure, and pedagogically robust frameworks for AI-enhanced science education. 
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