Computer Science > Sound
[Submitted on 10 Jun 2025]
Title:MD-ViSCo: A Unified Model for Multi-Directional Vital Sign Waveform Conversion
View PDF HTML (experimental)Abstract:Despite the remarkable progress of deep-learning methods generating a target vital sign waveform from a source vital sign waveform, most existing models are designed exclusively for a specific source-to-target pair. This requires distinct model architectures, optimization procedures, and pre-processing pipelines, resulting in multiple models that hinder usability in clinical settings. To address this limitation, we propose the Multi-Directional Vital-Sign Converter (MD-ViSCo), a unified framework capable of generating any target waveform such as electrocardiogram (ECG), photoplethysmogram (PPG), or arterial blood pressure (ABP) from any single input waveform with a single model. MD-ViSCo employs a shallow 1-Dimensional U-Net integrated with a Swin Transformer that leverages Adaptive Instance Normalization (AdaIN) to capture distinct waveform styles. To evaluate the efficacy of MD-ViSCo, we conduct multi-directional waveform generation on two publicly available datasets. Our framework surpasses state-of-the-art baselines (NabNet & PPG2ABP) on average across all waveform types, lowering Mean absolute error (MAE) by 8.8% and improving Pearson correlation (PC) by 4.9% over two datasets. In addition, the generated ABP waveforms satisfy the Association for the Advancement of Medical Instrumentation (AAMI) criterion and achieve Grade B on the British Hypertension Society (BHS) standard, outperforming all baselines. By eliminating the need for developing a distinct model for each task, we believe that this work offers a unified framework that can deal with any kind of vital sign waveforms with a single model in healthcare monitoring.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.