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Abstract

Despite the remarkable progress of deep-learning

methods generating a target vital sign wave-

form from a source vital sign waveform, most

existing models are designed exclusively for a

specific source-to-target pair. This requires

distinct model architectures, optimization pro-

cedures, and pre-processing pipelines, result-

ing in multiple models that hinder usability in

clinical settings. To address this limitation,

we propose the Multi-Directional Vital-Sign

Converter (MD-ViSCo)1, a unified frame-

work capable of generating any target wave-

form such as electrocardiogram (ECG), photo-

plethysmogram (PPG), or arterial blood pres-

sure (ABP) from any single input waveform with

a single model. MD-ViSCo employs a shal-

low 1-Dimensional U-Net integrated with a Swin

Transformer that leverages Adaptive Instance

Normalization (AdaIN) to capture distinct wave-

form styles. To evaluate the efficacy of MD-

ViSCo, we conduct multi-directional waveform

generation on two publicly available datasets.

∗* Equal contribution (co-first authors).
1Our code implementation is available on Github -

https://github.com/fr-meyer/MD-ViSCo

Our framework surpasses state-of-the-art base-

lines (NabNet & PPG2ABP) on average across

all waveform types, lowering Mean absolute er-

ror (MAE) by 8.8% and improving Pearson cor-

relation (PC) by 4.9% over two datasets. In

addition, the generated ABP waveforms satisfy

the Association for the Advancement of Medical

Instrumentation (AAMI) criterion and achieve

Grade B on the British Hypertension Society

(BHS) standard, outperforming all baselines. By

eliminating the need for developing a distinct

model for each task, we believe that this work

offers a unified framework that can deal with any

kind of vital sign waveforms with a single model

in healthcare monitoring.

Keywords

vital sign, waveform generation, multi-

modality, ABP, PPG, ECG, multi-directional

physiological signal reconstruction, non-invasive

to invasive, unified model, patient demographic

information

1 Introduction

Continuous and accurate monitoring of various

vital signs such as electrocardiograms (ECG),
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Figure 1: For the conventional waveform conver-
sion framework, a distinct model must be trained
for each source-to-target direction, each with its
own architecture, objective function, and subsets
of selected demographic features.

photoplethysmograms (PPG), and arterial blood

pressure (ABP) waveforms is critical for track-

ing patients’ status, which in turn facilitates

timely and effective medical intervention [1, 2].

However, unlike Intensive Care Unit (ICU),

the use of comprehensive monitoring systems

in general wards or emergency departments is

rarely feasible due to limited clinical equipment

and personnel, even though continuous moni-

toring of vital signs is often needed [3]. For

that, the waveform conversion method mitigates

this gap by computationally generating miss-

ing signals, reducing the reliance on specific

measurement [4, 5]. One promising use case

is the conversion of non-invasive into invasive

waveforms (e.g., PPG→ABP), since traditional

methods such as arterial line insertion impose

constraints—including the need for a sterile en-

vironment, trained medical personnel, and con-

stant supervision—and carry risks such as infec-

tion or bleeding [6, 7].

Recent advances in artificial intelligence(AI)

have facilitated these waveform conversion meth-

ods [8–10]. However, as illustrated in Figure 1,

most current AI models are developed for uni-

directional conversion, where each model is de-

signed to transform a specific source into a tar-

get waveform (e.g., PPG→ABP or PPG→ECG).

This approach requires separate models for each

source-to-target conversion, which induces ineffi-

ciency, since multiple models with distinct archi-

tectures must be trained, optimized, and main-

tained. Moreover, as the number of required

conversion tasks grows, so does the engineering

overhead. The result is a fragmented landscape

of single-objective models that are neither scal-

able nor share model parameters across different

tasks, raising the clear need for a unified model

that can handle any source-to-target waveform

conversion [11].

Meanwhile, recent studies aim to enhance

performance by leveraging multiple waveforms

simultaneously (e.g. ECG+PPG→ABP) [12,

13]. Although the use of multiple waveforms is

promising, these approaches assume that multi-

ple waveform modalities should be available at

the same time, an assumption rarely encoun-

tered in general wards or pre-hospital care. Con-

sequently, there is a need for models that can

learn inter-waveform relationships during train-

ing, while facilitating waveform conversion from

a single input waveform at the inference stage.

To overcome these challenges, we propose

the Multi-Directional Vital-Sign Converter (MD-

ViSCo) that uses any single source waveform as

input to generate any type of target waveform

within a unified model. Although the model op-

erates in a setting where each sample contains

a single waveform type, it can implicitly learn

relationships among different waveform types by

being trained on a dataset that pools multiple

waveform types. First, multi-directional approx-

imation model is designed to generate normal-
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S
o
u
rc
e PPG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ECG ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

ABP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

T
a
rg

e
t PPG ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

ECG ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

ABP ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

D
a
ta

se
t MIMIC-II ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

MIMIC-III ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

VitalDB ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

M
e
tr
ic
s Similarity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AAMI ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

BHS ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

M
o
d
a
li
ty Waveform ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Patient info. ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Code available ✗ ✓ ✓ * ✓ * ✗ ✗ * ✓

Extensible† ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

For datasets, only those that are publicly available and more than 1,000 samples are included.
*: Github repository is presented but does not provide code for reproducing results.
† : Provided interface and clear guidelines to easily add interoperable modules and extend waveform type with
minimal refactoring.

Table 1: Comparison of physiological waveform conversion studies, ordered by publication date.
MD-ViSCo (Ours) supports all three types of waveforms as both a source and a target waveform.
Similarity metrics refer to Mean Standard Error(MSE), Mean Absolute Error(MAE), while AAMI
and BHS indicate medical application standards. Modality indicates whether the model incorpo-
rates additional input beyond waveforms; to the best of our knowledge, no prior work uses auxiliary
modality other than patient information. MD-ViSCo is publicly available and allows the addition
of modules and waveform types.

ized vital sign waveforms from any single input

waveform. This model enables scalable and ef-

ficient conversion across diverse waveform types

without requiring the training and management

of separate models for each specific conversion

direction. Second, refinement model further re-

fines these approximations into real-unit valued

units by incorporating patient demographic in-

formation with textual embeddings.

In this study, we evaluate MD-ViSCo against

state-of-the-art (SOTA) baseline models origi-

nally developed for specific waveform conversion

tasks through two publicly available datasets

(UCI [14] and PulseDB [15]) using three evalua-

tion settings; (i) Waveform conversion based on

similarity metric, (ii) Extracting features from

generated waveform based on its morphology,

(iii) Compliance with two key blood pressure

(BP) measurement standards for ABP: AAMI

(Association for the Advancement of Medical In-

strumentation) and BHS (British Hypertension

Society).

Our key contributions are summarized as fol-

lows:

• We present a unified vital sign waveform

conversion framework that processes any

3
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Figure 2: Overview of MD-ViSCo. The approximation model fapx receives a source waveform x(i)

and a target domain indicator d(j) to generate an normalized target waveform ŷ
(j)
apx. For arterial

blood pressure (ABP) waveform generation, the refinement model fref further processes ŷ
APX
apx along

with patient information xPI by predicting systolic and diastolic blood pressure values (ŷSBP, ŷDBP).
The final ABP waveform ŷ(j) in real-valued mmHg units is obtained via a linear transformation T .
During training, all components including dotted arrows are used, whereas during inference, only
the solid arrow is active.

waveform type conversion and refines the

generated waveform by scaling it to real

units using demographic patient informa-

tion.

• Compared to SOTA uni-directional mod-

els, our proposed framework achieves supe-

rior or comparable performance in waveform

conversion (in Figure 3) and physiological

feature fidelity (in Figure 4).

• We demonstrate its feasibility by showing

that it outperforms baseline models accord-

ing to the AAMI (in Table 3) and BHS(in

Figure 5) medical device standards, high-

lighting its clinical applicability in generat-

ing ABP waveforms in millimeters of mer-

cury (mmHg).

2 Related Works

2.1 Deep Learning method for vital

sign waveform conversion

Deep learning techniques have been widely

adopted for vital sign waveform conversion. In

particular, methods such as PPG2ABP [16] and

NabNet [17] demonstrate how non-invasive wave-

forms (PPG or ECG) can be transformed into an

invasive ABP waveform via a two-stage cascade

model, thus enabling non-invasive monitoring as

an alternative in situations where invasive meth-

ods are required but difficult to implement. For

non-invasive to non-invasive conversions, many

studies focus on translating PPG waveforms into

ECG waveforms that provide richer cardiac clin-

ical information but are harder to capture than

PPG [18, 19]. In addition to these represen-
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tative conversion models, previous studies have

employed diverse methodologies, such as transfer

learning [20], frequency domain transforms [21],

adversarial training (GANs) [22,23], and patient-

specific trained models [24,25], for waveform con-

version tasks. However, all of these approaches

focus on a single target conversion, limiting their

scope to a specific task or evaluation conditions

(e.g., dataset, metrics, modulus), as described in

Table 1. This leads to disparities in evaluation

criteria, model architectures, and maintenance

workflows (e.g., updating patient-specific models

for unseen patients), making it difficult to com-

pare methods fairly or generalize across settings.

2.2 Incorporating additional modali-

ties: demographics and multiple

waveform modalities

Apart from methods relying solely on a single

waveform as input, recent studies have inves-

tigated utilizing multiple data sources to im-

prove waveform conversion performance. One

line of work explores the integration of pa-

tient demographic information as an additional

modality [26,27]. In practice, since demographic

features vary across datasets (e.g., age, sex,

weight), model development must be tailored for

both preprocessing and architecture. Another

approach adopts multiple waveform modalities,

feeding them into the model to capture cross-

waveform dependencies via early/late fusion or

attention mechanisms [17, 22]. However, model

performance degrades when one waveform type

is missing, which is a scenario common outside

the ICU.

3 Methodology

3.1 Datasets

We evaluate our proposed model using two

datasets: PulseDB [15] and UCI dataset [14].

Both datasets contain synchronized ECG, PPG,

and ABP waveforms, all sampled at 125Hz, en-

abling waveform conversion studies. ECG and

PPG are provided in locally min-max normal-

ized form (0–1 range, sample-wise), whereas

ABP is retained in real-valued units. Details on

dataset pre-processing are presented in the Ap-

pendix 6.1.

PulseDB [15] is constructed by merging

VitalDB [28] and the MIMIC-III waveform

dataset [29]. It comprises 5,245,454 segments

of 10-second ECG, PPG, and ABP recordings

collected from 5,361 patients. Pre-processing

includes signal synchronization, noise removal,

zero-centering, and zero padding to ensure a

consistent length of 1,280 data points. It also

includes patient demographic information, al-

though the available features differ between Vi-

talDB and MIMIC-III: age and sex in VitalDB,

and additional attributes such as height, weight,

and BMI in MIMIC-III.

UCI Dataset [14] derived from MIMIC-II

Waveform database, contains 12,000 ECG, PPG,

and ABP recordings. Following the original

NabNet pre-processing pipeline, the dataset was

filtered, synchronized, baseline corrected, and

normalized. After pre-processing, it comprises

191,186 segments with 8.192-seconds(1,024 data

points) each. UCI dataset does not provide any

demographic information.

3.2 Waveform conversion process

In this section, we describe the waveform con-

version process and introduce the notation used

5



throughout this paper. Each patient record con-

tains a set of single-channel vital sign wave-

forms of different types, such as ECG, PPG, and

ABP, which are recorded simultaneously. For

waveform conversion between these vital sign

types, we define the sets of source and target

waveforms as follows: Let X = {x(i) | i ∈
T } and Y = {y(j) | j ∈ T }, where each

x(i), y(j) ∈ R1×L represents a source and target

waveform of types i and j, respectively, and T =

{ECG, PPG, ABP} denotes the set of wave-

form types. All waveforms have a same sequence

length L, defined by the sampling rate and seg-

ment duration: L = (Sample Rate in Hz) ×
(Segment Length in seconds). Given a source

waveform x(i), the objective is to generate a tar-

get waveform y(j) where i ̸= j). We formulate

this waveform conversion process as a mapping

function f , which generates the corresponding

target waveform from the source waveform, de-

noted in f : X → Y.

3.3 Approximation model

Building on the previously defined process, we

introduce our proposed framework: a two-stage

model for multi-directional waveform conversion,

detailed architecture is illustrated in Figure 2.

The initial component of the framework is the

approximation model fapx, which generates a

normalized waveform across modalities within a

single model. To enable effective training across

multiple waveform types, we treat each type as

a style domain and apply style-transfer tech-

niques, specifically adaptive instance normal-

ization (AdaIN). Inspired by StarGANv2 style-

transfer method [30], the model learns to convert

any input waveform to match the style of a tar-

get waveform domain.

Model architecture and Style injection

The approximation model consists of an en-

coder (E), a bottleneck (B), and a decoder (D).

The encoder employs two layers of 1-D convolu-

tion (CNN) followed by instance normalization

to extract local waveform features, represented

as h. Within the bottleneck, the feature vec-

tor h is processed by a Swin Transformer block,

that captures global temporal dependencies and

injects target waveform style via AdaIN, produc-

ing the style-conditioned feature vector h̃. Fi-

nally, the decoder generates the normalized tar-

get waveform ŷ
(j)
apx with AdaIN that adapts the

style throughout the process. The overall flow

can be summarized as x(i) → h → h̃ → ŷ
(j)
apx, as

described in Equation 1.

To inject target-specific style information into

the bottleneck and decoder, the target type se-

lector d(j) ∈ {0, 1}|T |—one hot vector that indi-

cates the type of target waveform j— is trans-

formed into a style-conditioned embedding vec-

tor s = fc(d(j)) ∈ Rds through a fully connected

layer of dimensions ds. This embedding s is di-

vided into two vectors (γ, β) and each vector has

s/2 sizes of the feature dimensions. These two

learnable vectors are applied in the AdaIN op-

eration to adaptively shift and scale the char-

acteristics z -its mean µ(z) and standard devi-

ation σ(z)- thus encoding the target waveform

style as shown in Equation (2). AdaIN is ap-

plied throughout all layers of the SwinTD block

and the decoderD, ensuring consistent style con-

ditioning throughout the generation process. In

this way, the model does not require any specific

modifications to each conversion task.

Training with multiple waveform modal-

ities

To enable simultaneous training across mul-

tiple waveform modalities, we pool ECG, PPG,

and ABP waveforms into a same train set with-
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out explicit separation by modality for training

the approximation model. However, the differ-

ences in amplitude scales—such as the typically

higher magnitudes of ABP compared to ECG

or PPG—can cause the model to become bi-

ased toward these dominant modalities, leading

to instability and degraded performance on oth-

ers [31]. To address this issue, we use waveforms

with sample-wise normalization (local min-max

normalization), guaranteeing that all samples

have the same amplitude scale in the ranges 0-1.

During training, each mini-batch is con-

structed by sampling a source waveform segment

of type i, and then randomly selecting a different

target waveform type j ̸= i, forming a source-

to-target conversion pair (i → j) as defined in

Equation 3. By including a diverse set of such

conversion pairs in each mini-batch, the model

learns to handle all possible translation direc-

tions across waveform types and to capture the

underlying interrelationships among them. This

training strategy allows the model to leverage all

three waveform modalities during training while

it generates any target modality from a single

input waveform at inference time. The model

is trained to minimize the mean squared error

(MSE) between the generated normalized wave-

form ŷ
(j)
apx and the normalized ground truth wave-

form y
(j)
apx. The overall model architecture and

training objective are formalized as follows:

E(x(i)) = h, B(h, s) = h̃,

D(h̃, s) = ŷ(j)apx, s = [γ ∥ β],

z = SwinTE(h)

(1)

AdaIN(z, γ, β) = (1 + γ) · z − µ(z)

σ(z) + ε
+ β (2)

Dtrain =
{
(x(i), d(j), y(j)) |

i, j ∈ T, i ̸= j
} (3)

Lapx =
1

L

L∑
t=1

(
ŷ(j)apx − y(j)apx

)2
(4)

3.4 Refinement model

While the approximation model generates the

normalized waveform ŷ
(j)
apx,t, an additional re-

finement process is necessary to convert it into

real-valued units necessary for downstream clin-

ical decision-making. We introduce a refinement

model fref that predicts amplitude information

such as systolic blood pressure (SBP) and dias-

tolic blood pressure (DBP), which correspond to

the maximum and minimum values of the ABP

waveform, and apply a linear transformation to

scale the waveform in real-valued units (mmHg).

Note that since the dataset provides real-valued

unit ground truths only for the ABP waveform,

we apply the refinement procedure exclusively to

ABP.

Multi-modal encoder

First, the refinement model fref receives the

source waveform x(i) and the structured demo-

graphic information xPI as inputs. However,

due to structural differences in demographic fea-

tures across datasets (e.g. MIMIC-III wave-

form and VitalDB), schema-specific encoders

must be manually designed, which is not scal-

able. To address this, we convert the struc-

tured features into a linearized string format

following text-based embedding studies [32, 33]:

“Age/Gender/Height/Weight/BMI”, using “/”

as the delimiter. This linearized text format en-

ables the use of a tokenizer and text encoder as

7



Dataset Split Train/Val Test

PulseDB

Number of Patient 2,494 279

Samples for approximation 902,160 111,535

Samples for refinement
Pretrain- train

721,728 (80%)

Pretrain-val

180,432 (20%)

Finetune-train

90,342 (81%)

Finetune-val

10,038 (9%)

Finetune-test

11,155 (10%)

UCI

Number of Patient Unknown Unknown

Samples for approximation 140,552 50,634

Samples for refinement
Pretrain- train

112,441(80%)

Pretrain-val

28,111(20%)

Finetune-train

41,013 (81%)

Finetune-val

4,557 (9%)

Finetune-test

5,064 (10%)

Table 2: Summary of dataset splits for PulseDB and UCI. The table reports the number of samples
and patients arranged into training, validation, and testing sets. The test set is calibration-free,
meaning that test patients do not appear in the training set. To evaluate the benefit of pretrain-
ing, train/validation sets from the approximation model are used for refinement pretraining. The
original calibration-free test set is further split into training, validation, and testing subsets for
finetuning. This apply a calibration-based setting, where the same patient may appear in both the
training and test sets.

the patient information module EPI , where Dis-

tilBERT, a lightweight variant of BERT, encodes

the tokenized subword units to produce the pa-

tient information embedding ePI . This approach

allows our framework to incorporate any struc-

tured patient information in a raw table format

without requiring manual feature engineering or

pre-processing.

Next, source waveform inputs x(i) are passed

through waveform-specific encoders E
(i)
W , im-

plemented using a shared PatchTSMixer back-

bone [35]. The obtained embedddings e
(i)
W and

ePI are concatenated and passed to a regression

module P (i), which estimates the corresponding

SBP ŷSBP and DBP ŷDBP). Note that this design

allows the refinement model to flexibly operate

with or without access to demographic informa-

tion.

Linear transformation

To obtain an ABP waveform in real-valued

units, we apply a linear transformation to the

shape-only waveform generated by the approxi-

mation model, using the amplitude information

predicted from patient-specific features. Given

the predicted ŷSBP and ŷDBP values from the

multi-modal encoder, we perform a linear trans-

formation to convert the normalized ABP wave-

form ŷABP
apx , generated by the approximation

model, into a real-valued waveform in mmHg

ŷABP . This transformation maps the normalized

waveform to the predicted range of DBP and

SBP. We follow the method proposed in Nab-

Net [17], and formulated as below:

e
(i)
W = E

(i)
W (x(i)), ePI = EPI(xPI)

ŷSBP, ŷDBP = P (i)([e
(i)
W ; ePI])

ŷABP = ŷABP
apx · (ŷSBP − ŷDBP) + ŷDBP

Note that, instead of directly predicting SBP

and DBP in real-valued units (mmHg), we first

estimate them in the globally min-max normal-

ized ABP scale to ensure uniform target ranges

and stabilize training. Using the predicted ŷnormSBP

and ŷnormDBP , we rescale the locally normalized

waveform to the globally normalized domain, and

then convert it to the final real-valued ABP wave-

form ŷABP using the global maximum and min-

imum values from the training set.
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Contrastive learning loss

To accurately estimate the waveform in real-

valued units, the refinement model is trained us-

ing multiple objectives that combine Mean Ab-

solute Error(MAE) loss and weighted contrastive

learning (WCL). Contrastive learning enables

models to learn an embedding space by minimiz-

ing the distance between positive pairs, samples

that are semantically similar, while maximizing

the distance between negative pairs. WCL ex-

tends this principle by introducing continuous

similarity weights, derived from ground truth la-

bel similarities (e.g., SBP/DBP values, age, and

gender), which are used to modulate the attrac-

tion between embeddings [34].

In our refinement model, WCL guides the em-

bedding spaces of waveform features and pa-

tient demographic information by aligning sam-

ples based on their clinical similarity. For e
(i)
W ,

a pair is considered similar if the MAE between

their SBP and DBP values is less than or equal

to 15mmHg. For ePI, a similar pair is defined

as having an age difference less than 15 years

and identical gender. Details of the similar-

ity weights and their associated hyperparameters

are described in Appendix 6.3.

During training, we jointly optimize both

ECG→ABP and PPG→ABP branches simul-

taneously ; hence the losses are summed over

i ∈ {ECG,PPG}. Although both ECG and

PPG signals are jointly used during training,

at inference time, the refinement model gener-

ates real-valued ABP waveforms from only a sin-

gle input modality (either ECG or PPG). Fur-

thermore, contrastive learning loss can be used

as self-supervised learning independently to pre-

train the waveform and patient information en-

coders. In this study, we apply pretraining with

contrastive loss to initialize the encoders prior to

downstream finetuning for both datasets.

Lref = LMAE + LWCL

LMAE = λ
∑

i∈{ECG,PPG}

(
|ŷSBP (i) − ySBP|

+ |ŷDBP (i) − yDBP|
)

LWCL = λ1

∑
i∈{ECG,PPG}

L(i)
eW

+ λ2 LePI

3.5 Implementation details

3.5.1 Data split

We adopt a calibration-free data-splitting strat-

egy for both the PulseDB and UCI datasets.

This approach splits the data at the patient

level—ensuring that the train and test sets con-

tain no overlapping patients—to assess whether

the model generalizes to entirely unseen patients.

For each dataset, the training set is further di-

vided into train and validation subsets in a 4:1

ratio.

Building on these splits, we further prepare a

refinement model data split. The original train

and validation sets are used for self-supervised

contrastive pretraining. Separately, the original

test set is further split into new train, validation,

and test subsets to support finetuning under

a calibration-based setting where the same pa-

tient may appear in both training and test sets.

This design allows us to evaluate whether inter-

modality contrastive learning improves perfor-

mance when used as a pretraining strategy. The

detailed split information is summarized in Ta-

ble 2.

3.5.2 Baselines

Since there is no previous work that simultane-

ously handles multi-directional waveform conver-
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sion, we establish baselines using SOTA models

from uni-directional waveform conversion tasks.

Each baseline, originally developed for a specific

conversion direction, is adapted by training sep-

arate models one for each of the six waveform

conversion pairs. To fairly compare methods,

we adjust the number of trainable parameters

across baselines. Detailed architectural descrip-

tions and modifications of each baseline are pro-

vided below:

• NabNet [17, 36]: A SOTA two-stage ABP

conversion model with an approximation

module (1-D CNN + attention-guided bi-

CNN LSTM) and a refinement module

(ShallowUnet + MLP). Approximation and

refinement modules use 48 and 84 filter

channels, respectively.

• PPG2ABP [16]: A two-stage cascade

1-D U-Nets model for ABP conversion,

where the approximation output from a

deep-supervised U-Net feeds into a multi-

resolution U-Net for refinement. Approxi-

mation and refinement modules use 96 fil-

ters channels and a scaling factor of 10, re-

spectively.

• PatchTST [37]: A two-stage transformer-

based model using patch tokenization and

temporal self-attention to jointly encode

waveform and patient data. Previously

adapted for ECG reconstruction [38] and

BP prediction [34].

• P2E-WGAN [23]: A GAN for PPG →
ECG synthesis, with CNN-based generator

and discriminator. Approximation and re-

finement models (generator/discriminator)

use 288/144 and 640/320 filter channels, re-

spectively.

All methods, including the approximation

model and the refinement model (both pretrain-

ing and finetuning), use identical hyperparame-

ters: batch size of 2048, learning rate of 1.00E-

03, scheduler patience of 3, early stopping pa-

tience of 5, and a maximum of 30K training

steps. While all baselines adopt the same ap-

proximation approach as MD-ViSCo which gen-

erates a locally min-max normalized waveform,

the refinement models are different for each.

NabNet and PatchTST follow the same method-

ology as MD-ViSCo, where the refinement model

serves as a BP predictor and estimates SBP and

DBP values. In contrast, PPG2ABP (two-stage)

and P2E-WGAN (single-stage) models directly

generate the ABP waveform.

4 Experiment Results and Dis-

cussion

We design four sets of experiments to evalu-

ate MD-ViSCo against four baselines, assessing

both waveform similarity and practical utility

in health monitoring. First, we conduct Multi-

directional Waveform Conversion experiment to

evaluate our model’s capability to convert wave-

forms between different vital signs types (ECG,

PPG, ABP). Second, we perform a Physiological

Feature Fidelity Evaluation to assess the physi-

ological relevance of converted waveforms by ex-

tracting morphology-based features and compar-

ing them to those from the ground truth. Third,

we conduct an AAMI/BHS Standard Evalua-

tion to evaluate our ABP waveform conversions

against established BP clinical standard [39,40].

Lastly, we carry out ablation studies to validate

the contributions of multi-directional training,

WCL loss, and patient information to overall

waveform generation performance.
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Figure 3: Comparison of MAE (↓) and PC (↑) from waveform conversion experiments on the
PulseDB and UCI datasets across six waveform conversion directions (source waveform→ target
waveform). Bar colors correspond to each method. Error caps show ±1 SD over five random seeds.
MD-ViSCo (ours) method (dark red) consistently has shown better or comparable performance
with baseline models (orange gradient). Statistical significances between our method and others
are assessed under an unpaired t-test (*p < 0.05, **p < 0.01, ***p < 0.001, n=5).

4.1 Multi-directional Waveform Con-

version

The goal of this experiment is to evaluate the

performance of a single model across all conver-

sion types within a multi-directional framework.

To ensure a fair comparison, each baseline is im-

plemented as six separate uni-directional mod-

els, one per conversion direction. As shown in

Figure 3, we report the MAE and Pearson corre-

lation (PC) between the converted and ground-

truth waveforms across all six possible conver-

sion directions, where MAE measures point-wise

error and PC reflects how well the generated

waveform preserves the overall shape and trend.

Lower MAE values indicate higher similarity,

while more positive PC values reflect stronger

linear relationship. Note that ECG and PPG are

evaluated in normalized units, whereas ABP is

evaluated in real-valued units, resulting in task-

specific Y-axis scales for MAE and PC.

Our MD-ViSCo consistently demonstrates the

best performance in most conversion directions

or shows comparable results to baseline mod-

els when the gap is not statistically significant.

Specifically, on the PulseDB dataset, it outper-

forms the average of all baseline models by 4.47

mmHg in MAE and 4%P in PC for ABP wave-

form, by 0.007 MAE / 11.34%P PC for ECG and

0.021 MAE / 5.88%P PC for PPG generation.

In the UCI dataset, it showed improvements of

2.65 mmHg in MAE and 6% in PC for ABP,

0.009 MAE / 9.93%P PC for ECG, and 0.006

MAE / 1.16%P PC PPG, again outperforming

the baseline average.

PatchTST and P2E-WGAN demonstrate rel-

atively lower performance: PatchTST is origi-

nally developed for general time series forecast-

ing tasks, and P2E-WGAN suffers from unstable

GAN training. In contrast, PPG2ABP and Nab-

Net show similar or lower performance compared

to MD-ViSCo. Unlike baseline methods that re-

quire six separate models, MD-ViSCo needs only

a single model training. This highlights that

MD-ViSCo not only achieves strong performance

but also reduces model maintenance and man-

agement costs, making it more efficient and prac-

tical for deployment in clinical settings.
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Figure 4: Comparison of relative mean error (%) in physiological feature estimation across different
waveform conversion directions and clinical subgroups. Each physiological feature is represented at
the upper side, along with corresponding waveform conversion directions. The y-axis label repre-
sents two datasets (PulseDB and UCI), and clinical subgroups(normal and abnormal). Bar colors
represent each method. Error caps show ±1 SD over five random seeds. Statistical significances
between MD-ViSCo(ours) and others are assessed under an unpaired t-test (*p < 0.05, **p < 0.01,
***p < 0.001, n=5).

4.2 Physiological Feature Fidelity

Evaluation

In addition to evaluating waveform similarity, we

assess whether key morphological features, com-

monly used to derive physiological insight, are

well preserved, assuming that features from well-

generated waveforms should be similar to those

from the ground truth. Since clinical decision-

making focuses on detecting abnormal cases, we

group samples based on whether their ground-

truth feature values lie within or outside the nor-

mal physiological range. These normal ranges

are defined using established clinical thresholds

for each feature, as described below. To account

for features with varying value ranges, we mea-

sure relative error, defined as the MAE divided

by the absolute value of the feature, as the eval-

uation metric, shown in Figure 4.

4.2.1 ECG features

We exclude P-peak-related features due to low

sampling rates (125Hz) and instead focus on

QRST-based features extracted using NeuroKit2

library [41].

The QTc interval [0.35-0.45s] is the du-

ration between the onset of the QRS complex

and the end of the T-wave (QT interval), cor-

rected for heart rate using Bazett’s formula:

QTc = QT√
RR

. Prolonged QTc (> 0.45 s) may

indicate congenital long QT syndrome or brad-

yarrhythmia; shortened QTc (< 0.35 s) may
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suggest SQTS or hypercalcemia. For QTc, the

improvement is 3.9%P on PulseDB and 4.8%P

on UCI over the baseline average in the nor-

mal range, and 2.9%P on PulseDB and 0.4%P

on UCI in the abnormal range.

RR interval [0.6-1.0s] is a temporal feature

that represents the time between two R peaks,

divided by the sampling rate to compute beat-to-

beat intervals in seconds (s). Values < 0.6 s may

indicate sinus tachycardia, while values > 1.0 s

may reflect bradycardia or heart block. For RR

interval, which is the reciprocal of heart rate, it

achieves a 3.4%P improvement on PulseDB and

4.1%P on UCI compared to the baseline average

in the normal range, and a 4.3%P improvement

on PulseDB and 5.0%P on UCI in the abnormal

range.

4.2.2 PPG features

We evaluate two morphological features ex-

tracted using the pyPPG library [42]. Due to the

short duration of the waveform segments (< 10

seconds), we exclude derivative-based features

and focus on direct waveform features.

Asp/∆T [2-3.5au/s] is defined as the ra-

tio of the systolic peak amplitude (Asp) to the

time delay (∆T) between the waveform onset

and the systolic peak, which is related to arte-

rial stiffness. Values below 2au/s may indicate

hypotension or heart failure, while values above

3.5au/s may indicate hypertension or arterioscle-

rosis. MD-ViSCo shows 2.3%P improvement on

PulseDB and 1.6%P on UCI compared to the

baseline average in the normal range, and 3.2%P

improvement on PulseDB and 3.0%P on UCI in

the abnormal range.

Instantaneous Pulse Rate (IPR) [60-

100BPM] is reciprocal of the beat-to-beat inter-

val. Values below 60 BPM suggest bradycardia,

while those above 100 BPM indicate tachycar-

dia. Our model achieves a 0.8%P improvement

on PulseDB and 0.3%P on UCI over the base-

line average in the normal range, and 1.7%P im-

provement on PulseDB and 1.3%P on UCI in the

abnormal range.

4.2.3 ABP features

: Systolic Blood Pressure (SBP) [90-

130mmHg] is ABP waveform maximum value

(mmHg). SBP below 90 mmHg may indicate hy-

potension, while values above 130 mmHg suggest

hypertension. MD-ViSCo reduces relative error

by 4.5%P on PulseDB and 31.9%P on UCI in the

normal range, and achieves larger improvements

of 9.4%P on PulseDB and 34.8%P on UCI in the

abnormal range.

Diastolic Blood Pressure (DBP) [60-

80mmHg] is ABP waveform minimum value

(mmHg). DBP below 60 mmHg may signal hy-

potension, while values above 80 mmHg can in-

dicate hypertension. MD-ViSCo shows a rela-

tive error improvement of 7.4%P on PulseDB

and 28.2%P on UCI in the normal range, and

further improvement of 9.6%P on PulseDB and

31.1%P on UCI in the abnormal range.

Across all features, the mean relative error

tends to be slightly higher in the abnormal

group, which reflects the inherent difficulty of

modeling atypical patterns. However, our model

consistently maintains lower errors than base-

lines in both subgroups. These results demon-

strate that our model generates waveforms that

preserve key diagnostic features compared to the

baselines, even in abnormal cases.

4.3 AAMI/BHS Standard Evaluation

To assess the clinical reliability of ABP wave-

forms generated by MD-ViSCo, we evaluate
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Figure 5: BHS-standard evaluation of generated ABP waveforms on the PulseDB and UCI test
sets. Each bar shows the cumulative percentage of MAE values that fall within ≤ 5, ≤ 10, or
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SBP C, MAP B, DBP A ↑ overall grade C). Taller bars(↑) indicate better compliance.

whether they meet established clinical stan-

dards (AAMI/BHS) required for BP device ap-

proval. Ensuring compliance with these stan-

dards demonstrates the potential for real-world

application of our model, which are shown in Ta-

ble 3 and Figure 5 respectively. Specifically, we

compare SBP, DBP, and mean arterial pressure

(MAP)2 from the generated ABP waveforms to

ground-truth values.

AAMI: The AAMI standard which is a

Pass/Fail assessment evaluate mean error (ME)

and standard deviation(SD) on a dataset with

more than 85 unique patients, as described in

Table 4. Our framework satisfies the AAMI

criteria for both PPG→ABP and ECG→ABP

conversions on both datasets with the lowest

SD. In contrast, except PPG2ABP which pass

PPG→ABP direction in UCI datasets, all base-

lines fail to meet the AAMI standard. These

results underscore the consistency and superior-

ity of our framework, establishing it as the only

model to satisfy the AAMI standard across all

2MAP = SBP+2×DBP
3

conversion tasks and datasets.

BHS: The BHS standard is detailed in Ta-

ble 5, where specific MAE thresholds correspond

to the grade. The overall BHS grade is deter-

mined by the lowest grade among these nine in-

dividual evaluations. On the PulseDB dataset,

our MD-ViSCo achieved grade B, outperform-

ing all baseline methods: PPG2ABP and NAB-

Net attain grade C while PatchTST and P2E-

WGAN get grade D in both directions. On the

UCI dataset, which contains a higher level of sig-

nal noise, our model is the only one that achieves

grade B for both PPG→ABP and ECG→ABP

directions, whereas PPG2ABP attains grade C,

and all other baselines remain at grade D.

Taken together, these results demonstrate

that MD-ViSCo consistently outperforms exist-

ing baselines in both AAMI and BHS com-

pliances. This confirms the strong potential

of our model for real-world applications where

waveform-based BP estimation is critical.
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PPG→ABP ECG→ABP

SBP MAP DBP AAMI SBP MAP DBP AAMI

Dataset Model ME Std ME Std ME Std ME Std ME Std ME Std

PulseDB

PatchTST -0.601.03 13.760.36 -0.161.72 9.000.31 0.062.24 7.920.32 Fail -1.831.87 13.030.68 -0.541.73 8.730.43 0.111.77 7.760.41 Fail

P2E-WGAN -14.290.62 14.250.21 -13.640.85 10.340.20 -13.321.46 11.010.49 Fail 1.001.23 14.290.39 -7.221.33 9.880.19 -11.331.46 9.620.31 Fail

PPG2ABP 1.260.74 8.281.32 -1.990.72 6.390.91 -1.120.69 6.170.87 Fail 1.740.68 9.180.40 -1.120.60 6.120.44 -1.550.89 6.340.95 Fail

NABNet 0.601.18 10.270.97 -0.050.38 7.390.36 -0.090.24 6.430.29 Fail -1.810.86 10.810.52 -0.561.23 7.930.72 -2.083.16 6.790.77 Fail

MD-ViSCo(ours) -0.890.43 6.462.46 -0.830.26 4.031.20 -1.040.63 4.451.29 Pass -0.090.64 7.090.39 -0.310.69 4.660.52 -0.280.64 4.380.76 Pass

UCI

PatchTST -1.191.11 13.010.67 -0.940.59 7.350.36 -0.820.76 6.470.21 Fail -0.401.16 10.920.62 0.300.53 6.460.31 0.651.47 5.890.23 Fail

P2E-WGAN -3.432.17 15.010.20 -1.411.10 8.620.09 -0.401.19 7.360.17 Fail -2.822.73 15.090.79 -5.464.72 8.950.35 -4.771.09 8.020.74 Fail

PPG2ABP -1.490.81 7.970.28 -0.840.72 7.080.11 -0.511.86 6.300.28 Pass 1.780.68 8.170.57 -1.291.54 7.425.45 -1.820.68 6.370.92 Fail

NABNet -1.281.22 9.871.02 -0.690.60 5.490.56 -0.500.50 5.150.56 Fail -1.351.22 8.610.98 -1.500.65 7.270.46 -1.580.58 6.950.25 Fail

MD-ViSCo(ours) 1.150.62 7.860.40 -0.650.61 4.500.17 -0.470.85 4.770.32 Pass -1.470.83 7.710.77 -0.920.60 5.600.44 -0.640.51 5.140.36 Pass

Table 3: AAMI compliance results. Mean Error (ME) and standard deviation (Std ↓) for SBP,
MAP, and DBP estimation. ME is computed by averaging errors across all detected SBP, MAP,
or DBP points within a waveform; the corresponding standard deviation across those points is
reported in Std. Each ME and Std value corresponds to the mean over five independent runs, with
standard deviation across runs shown in italics. AAMI compliance results are shown on the right,
and the best performance in each metric is highlighted in bold.

ME(mmHg) σ(mmHg) Number of Subjects AAMI Result

AAMI Standard
≤5mmHg ≤8mmHg ≥85 Pass

>5mmHg >8mmHg <85 Fail

Table 4: AAMI Standard requirements. AAMI
requires ME, standard deviation, and the num-
ber of subject criteria to be fulfilled to pass the
standard.

Cumulative MAE Percentage
BHS Grade

≤5mmHg ≤10mmHg ≤15mmHg

BHS Metric

60% 85% 95% A

50% 75% 90% B

40% 65% 85% C

≤40% ≤65% ≤85% D

Table 5: BHS grade requirements. BHS grade
is evaluated on the cumulative MAE percentage
score.

4.4 Ablation Study

Uni-directional Waveform Conversion:

We conduct an ablation study comparing

multi-directional and uni-directional training,

aiming to demonstrate that a single model

trained across multiple waveform directions out-

performs separately trained models for individ-

ual conversion tasks. Summarized in Table 6, we

Direction
PulseDB UCI

Uni Multi Uni Multi

ECG→PPG 0.0930.001 0.0830.001 0.1020.001 0.0980.003

ABP→PPG 0.0690.001 0.0660.000 0.0910.001 0.0880.004

PPG→ECG 0.0750.001 0.0710.001 0.1720.001 0.1710.004

ABP→ECG 0.0720.001 0.0680.001 0.1730.003 0.1700.004

ECG→ABP 7.231.00 6.811.56 6.750.70 6.410.54

PPG→ABP 7.360.90 6.951.04 7.140.50 6.930.23

Table 6: Multi-directional versus uni-directional
training comparison for six waveform conversion
tasks. Each entry represents MAE(↓) averaged
over five random-seed runs with standard devia-
tion shown in italic subscript.

report the MAE and SD (σ) across the six wave-

form conversion directions. Multi-directional

training consistently outperforms uni-directional

models across all waveform conversion tasks. We

observe average MAE reductions of 5.4%P for

ECG generation, 3.1%P for PPG generation,

and 4.0%P for ABP generation, demonstrating

consistent gains across waveform types without

requiring task-specific training. These results

15



Configure UCI PulseDB

WCL PI PPG→ABP ECG→ABP PPG→ABP ECG→ABP

N N 7.260.36 7.010.39 8.501.30 8.031.16

Y N 6.930.23 6.410.54 7.830.62 7.531.32

N Y – – 7.601.21 7.260.32

Y Y – – 6.941.41 6.811.04

Table 7: Ablation study of contrastive learning
and patient information. Each entry represents
MAE(↓) averaged over five seeds in mmHg, with
the tiny italic subscript indicating standard devi-
ation. WCL indicates whether LWCL is added to
the training objective. PI specifies whether xPI
is utilized by the refinement model. As the UCI
dataset does not provide patient demographics,
PI variants are not applicable.

exhibit that multi-directional joint training im-

proves overall performance and generalization by

learning shared representations across waveform

conversion tasks.

WCL loss and Patient Information:

To assess the individual contribution of WCL

loss and patient information (PI) in the refine-

ment model, we conduct an ablation study by se-

lectively removing each component. Specifically,

we compare the full model against variants where

WCL loss, PI, or both are removed, allowing us

to isolate the effect of each component. Since PI

is not available in UCI, configurations involving

the PI component are used only with PulseDB.

As shown in Table 7, WCL consistently im-

proves performance on both datasets, while PI

provides additional gains on PulseDB. Specifi-

cally, adding WCL reduced MAE by 0.33mmHg

on UCI and 0.67mmHg on PulseDB in the

PPG→ABP task. PI alone contributes an ad-

ditional 0.90mmHg reduction, and combining

both WCL and PI yield a total improvement of

1.56mmHg over the baseline. These results in-

dicate that WCL and PI offer complementary

benefits for ABP waveform generation by align-

ing embeddings and enabling patient-specific cal-

ibration. We adopt this configuration as the de-

fault for our refinement model.

5 Conclusion

In this study, we propose MD-ViSCo that

enables efficient multi-directional conversion

among ECG, PPG, and ABP waveforms. Our

model not only demonstrates superior or com-

parable performance to previous uni-directional

baselines, but also validates health monitor-

ing applicability through physiological feature fi-

delity and clinical compliance with BP medical

device standards. We believe this framework will

pave the way for scalable waveform conversion

solutions in the healthcare field.

Although our framework is promising, sev-

eral limitations still exist. It requires an ad-

ditional refinement step to recover real-valued

waveforms, which may involve task- or dataset-

specific finetuning. Also, the current design ex-

cludes other valuable modalities such as clini-

cal notes or time-series electronic health records

(EHR). To address these limitations, future re-

search will explore a language-model-based ar-

chitecture that learns to generate real-valued

waveforms directly from textual representations

of vital sign waveforms.
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6 Appendix

6.1 Data Pre-processing

6.1.1 Waveforms pre-processing

Local min-max normalization is applied

sample-wise for the approximation model, since

ABP is provided in its original physical units

(mmHg). Global Min-Max normalization

ensures that the model’s output can be lin-

early transformed back into real-valued unit

(mmHg) using the minimum DBP and maxi-

mum SBP from the training set as fixed global

bounds, making the output directly compara-

ble to true the ABP. This global normaliza-

tion is applied to ABP waveforms, SBP, DBP,

and MAP values in both the UCI and PulseDB

datasets, using fixed bounds of 50–189.98 mmHg

for UCI and 2.34–286.58 mmHg for PulseDB.

Zero-centering is applied only to the PulseDB

dataset after local min-max normalization and is

not used for globally min-max normalized ABP

waveforms, in order to preserve their real-valued

amplitude in mmHg. This step mostly corrects

ECG baseline offset, often caused by device-

specific differences, which is more noticeable in

PulseDB due to its combination of data from

MIMIC-III and VitalDB with varying acquisi-

tion settings. Zero-padding ensures waveform

length multiples of 2. For PulseDB waveforms

originally consisting of 1250 samples (10 seconds

at 125 Hz), we apply 15-sample symmetric zero-

padding on both ends, resulting in a final length

of 1280 samples.
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6.1.2 Patient information pre-processing

Patient information includes age (years), gender

(Male/Female), height (cm), weight (kg), and

body mass index (BMI, kg/m²); missing values

for BMI, height, and weight in the MIMIC-III

patient table are left as null.

6.2 Model Architecture Detail

All other details not mentioned in this section

follow the default settings of the original imple-

mentations [30,35,43–45]

6.2.1 Approximation model architecture

The U-Net encoder starts with a 1-D CNN (ker-

nel size 3, stride 1, filter channels 64). The en-

coder downsamples using a residual block (in-

stance normalization, LeakyReLU), followed by

parallel max-pooling and strided CNN (kernel

size 2, stride 2) paths. Their outputs are con-

catenated and passed through another residual

block. SwinT encoder includes patch embedding

(output channels 256) and Swin Transformer

blocks (window size 4, 32 attention heads per

stage), both modified for taking 1-D waveforms.

SwinT decoder consists of Swin Transformer

blocks with AdaIN (style vector dimension 64)

and patch-expanding operations. The U-Net de-

coder is composed of two AdaIN-residual blocks

and upsample the output using interpolation

(scale factor 2) and transposed CNN. The 1x1

CNN in the last layer reduces the 64-channel fea-

ture map to a single-channel waveform.

6.2.2 Refinement model architecture

Waveforms are encoded using PatchTSMixer

(hidden size 64, 15 layers, expansion factor 5,

patch length 4), while patient demographic in-

formation is processed using the tokenizer and

encoder of DistilBERT base-uncased (6 layers,

12 heads, hidden size 768). Resulting embedding

feature is projected to a 512-dimensional space

through a two-layer MLP (GeLU, dropout 0.1),

yielding a 512-dimensional representation. The

BP regression module takes the combined 512-

dimensional waveform and patient embeddings

as input and uses a PatchTSMixer followed by

two-layer MLP heads.

6.3 Detailed information for WCL

BP-based similarity weights:

S∗
ij =

1

2

(
exp

(
−|SBPi − SBPj |

τs

)
+ exp

(
−|DBPi −DBPj |

τs

)) (5)

Age-based similarity weights:

S∗ age
ij = exp

(
−|agei − agej |

τs

)
,

τs = 4, Ts = 0.0235

(6)

Gender-based similarity weights:

S∗ gender
ij =

1 if genderi = genderj

0 otherwise
,

τs = 1, Ts = 1

(7)

Parameter Description Value

λMAE MAE weight for BP regression loss 0.001

λ1 Weight for waveform embedding WCL 0.01

λ Weight for patient embedding WCL components 0.01

τs (waveform) Similarity decay for SBP/DBP differences 4

Ts (waveform) Threshold to retain waveform similarity 0.0235

τs (age) Similarity decay for age differences 4

Ts (age) Threshold to retain age similarity 0.0235

τs (gender) Decay for gender similarity (binary) 1

Ts (gender) Threshold for gender similarity (binary) 1

τw Temperature for softmax normalization 4

Table 8: WCL hyperparameters used in training
Mref .
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