WO2025183016A1 - Quabodepistat-containing composition - Google Patents
Quabodepistat-containing compositionInfo
- Publication number
- WO2025183016A1 WO2025183016A1 PCT/JP2025/006700 JP2025006700W WO2025183016A1 WO 2025183016 A1 WO2025183016 A1 WO 2025183016A1 JP 2025006700 W JP2025006700 W JP 2025006700W WO 2025183016 A1 WO2025183016 A1 WO 2025183016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- mycobacterium
- suspension
- quabodepistat
- suspending agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/38—Cellulose; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
Definitions
- the present invention relates to a composition containing at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof, which is in the form of a microparticle suspension.
- Quabodepistat has the following formula: and has antibacterial activity against Mycobacterium tuberculosis, multidrug-resistant Mycobacterium tuberculosis, and/or non-tuberculous mycobacteria (Patent Document 1).
- One of the problems that the present invention aims to solve is to provide a composition in the form of a suspension of microparticles that is useful as a composition containing at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof.
- [Section 1] A composition comprising at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof, The composition comprises a suspending agent and a dispersion medium, the composition being in the form of a suspension of microparticles.
- [Section 2] Item 1. The composition according to item 1, wherein the viscosity at a shear rate of 0.1 s is 0.2 to 200 Pa ⁇ s, and the viscosity at any shear rate within the range of 900 to 1000 s is 0.1 Pa ⁇ s or less.
- the mycobacterial disease is Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti, Mycobacterium leprae, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum, Mycobacterium chelona
- [Section 13] A method for producing the composition according to any one of items 1 to 11, 11-1, 11-2, 11-3, and 11-4, Step 1 of mixing the ingredients, suspending agent, and dispersion medium; Step 2: wet-pulverizing the suspension obtained by the mixing; and step 3 recovering the suspension obtained by said wet milling.
- Step 14 Item 14. The method according to Item 13, wherein the wet milling is wet milling using a bead mill or a high-pressure homogenizer.
- [Section 15] A method for producing the composition according to any one of items 1 to 11, 11-1, 11-2, 11-3, and 11-4, Step 1: dry-milling the ingredients; Step 2: mixing the dry-milled components, a suspending agent, and a dispersion medium; and step 3 recovering the suspension obtained by said mixing.
- Step 16 Item 16. The method according to Item 15, wherein the dry milling is hammer mill, jet mill, or pin mill dry milling.
- [Section 17] Item 17. The method according to any one of Items 13 to 16, further comprising step 4 of sterilizing the recovered suspension by radiation.
- [Section 18] A method for preventing and/or treating mycobacteriosis, comprising administering intramuscularly or subcutaneously at intervals of one week or more to a subject in need of prevention and/or treatment of mycobacteriosis an effective amount of a composition in the form of a suspension of microparticles containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof.
- the administering comprises intramuscularly or subcutaneously administering an effective amount of the composition to the subject at intervals of one month or more.
- Item 20 Item 20.
- Item 21 The method according to any one of Items 18 to 20, wherein the mycobacterial disease is tuberculosis.
- [Section 22] A method for preventing and/or treating latent tuberculosis, comprising administering intramuscularly or subcutaneously 1 to 3 times at intervals of 1 to 3 months to a subject in need of prevention and/or treatment of latent tuberculosis an effective amount of a composition in the form of a suspension of microparticles containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof.
- [Section 23] A method for preventing and/or treating mycobacteriosis, comprising administering an effective amount of the composition described in any one of Items 1 to 10 and 11-4 to a subject in need of prevention and/or treatment of mycobacteriosis.
- Item 24 The method according to Item 23, wherein the mycobacterial disease is an infectious disease caused by Mycobacterium tuberculosis, Mycobacterium leprae, or nontuberculous mycobacteria.
- the mycobacterial disease is Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti, Mycobacterium leprae, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum
- the mycobacterial disease is Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti, Mycobacterium leprae, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum, Mycobacterium chelonae, Mycobacterium Item 29.
- Item 27 or 28 wherein the infection is caused by Mycobacterium smegmatis or Mycobacterium aurum.
- Item 28 The use according to Item 27, wherein the mycobacterial disease is tuberculosis.
- suction 31 Item 31. The use according to any one of Items 27 to 30, wherein the medicament is administered intramuscularly or subcutaneously 1 to 4 times at intervals of 1 week or more, 1 month or more, 2 to 3 months, or 1 to 3 times at intervals of 1 to 3 months.
- Example 5 shows the effect of reducing the number of viable bacteria in the lungs when the formulation of Example 4 was administered subcutaneously (SC) at a dose of 12 mg/kg or 120 mg/kg to a mouse tuberculosis infection model.
- FIG. 6 shows the blood concentration profile of Examples 21 or 22 when administered subcutaneously (SC) to dogs at a dose of 25 mg/kg.
- the composition of the present invention contains at least one active ingredient selected from quabodepistat, its salts and cocrystals, and solvates thereof (hereinafter also referred to as the "active ingredient"), a suspending agent, and a dispersion medium.
- the active ingredient may be a single ingredient or a combination of two or more ingredients.
- the composition is typically a pharmaceutical composition.
- quabodepistat (also referred to as “OPC-167832”) refers to 5- ⁇ [(3R,4R)-1-(4-chloro-2,6-difluorophenyl)-3,4-dihydroxypiperidin-4-yl]methoxy ⁇ -8-fluoro-3,4-dihydroquinolinone-2(1H)-one (non-salt form, free form).
- Quabodepistat can be produced, for example, by the method described in International Publication No. 2016/031255 (or U.S. Patent Application Publication No. 2017/253576).
- Quabodepistat may be either Form I crystal or Form II crystal, as described in Japanese Patent Application Laid-Open Nos.
- the Form II crystal is a crystal that, in a powder X-ray diffraction pattern obtained using CuK ⁇ radiation as an X-ray source, has diffraction peaks at diffraction angles (2 ⁇ ) of 10.8 ⁇ 0.2°, 14.2 ⁇ 0.2°, 21.0 ⁇ 0.2°, and 25.3 ⁇ 0.2°, and may further have diffraction peaks at one, two, three, four, five, or six diffraction angles (2 ⁇ ) selected from the group consisting of 8.7 ⁇ 0.2°, 16.5 ⁇ 0.2°, 16.7 ⁇ 0.2°, 17.3 ⁇ 0.2°, 23.9 ⁇ 0.2°, and 28.2 ⁇ 0.2°.
- cocrystal refers to a cocrystal of quabodepistat and a coformer.
- the composition comprises a co-crystal of quabodepistat and a coformer, a suspending agent, and a dispersion medium.
- the cocrystal may be a crystalline substance composed of quabodepistat and a coformer present in the same crystal lattice at any molar ratio.
- the cocrystal may exist in multiple crystalline forms (also known as "crystalline polymorphs").
- the coformer is a non-ionizable molecule capable of forming a crystal with quabodepistat.
- non-ionizable molecules include organic acids, amino acids, amines, amides, vanillin, urea, pyridoxine, saccharin, and hydroquinone.
- Examples of organic acids include carboxylic acids, ascorbic acid, and phenols.
- Carboxylic acids include aliphatic carboxylic acids, aromatic carboxylic acids, and heterocyclic carboxylic acids.
- Examples of aliphatic carboxylic acids include fumaric acid, succinic acid, tartaric acid, malic acid, glutaric acid, citric acid, and maleic acid.
- Examples of aromatic carboxylic acids include benzoic acid, 2,5-dihydroxybenzoic acid, salicylic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 4-aminosalicylic acid, 2-amino-5-hydroxybenzoic acid, hippuric acid, and phthalic acid.
- Examples of heterocyclic carboxylic acids include nicotinic acid.
- the organic acid may be a non-volatile organic acid, such as an organic acid that does not volatilize at room temperature (15°C to 25°C) and normal pressure.
- the non-volatile organic acid may also be a water
- Amines include, for example, aliphatic amines such as meglumine and tromethamine; aromatic amines, etc.
- amides include carboxylic acid amides such as nicotinamide.
- the coformer may be one type alone or a combination of two or more types.
- the coformer is a non-volatile organic acid or amino acid.
- the non-volatile organic acid is preferably a carboxylic acid, more preferably a benzoic acid optionally substituted at least at one of the o-, m-, or p-positions with a group selected from the group consisting of hydroxy, amino, and carboxy, and even more preferably 2,5-dihydroxybenzoic acid or salicylic acid.
- the amount of coformer per mole of quabodepistat is, for example, 0.5 moles or more, preferably 0.8 moles or more, more preferably 0.9 moles or more, and even more preferably 1 mole or more.
- the amount of coformer per mole of quabodepistat is, for example, 2.5 moles or less, preferably 2 moles or less, more preferably 1.5 moles or less, and even more preferably 1 mole or less.
- the amount of coformer per mole of quabodepistat may be, for example, 0.5 to 2.5 moles.
- the composition comprises a solvate of quabodepistat, a salt or cocrystal thereof, a suspending agent, and a dispersion medium.
- the solvate may be a solvate formed by quabodepistat, the salt, or the cocrystal and solvent molecules in any molar ratio.
- examples of such solvates include hydrates, ethanol solvates, and THF (tetrahydrofuran) solvates.
- the solvate may exist, for example, as a solvate containing 0.5 to 2 solvent molecules per quabodepistat molecule, and may be, for example, a 0.5-hydrate, monohydrate, 1.5-hydrate, or dihydrate.
- the cocrystal or solvate thereof may be, for example, one described in WO 2021/230198.
- the concentration of the active ingredient in the composition is not particularly limited, as long as it is an effective concentration depending on the intended use of the composition.
- the concentration of the active ingredient in the composition, calculated as free form is, for example, 100 mg/mL or more, preferably 150 mg/mL or more, more preferably 200 mg/mL or more, even more preferably 250 mg/mL or more, and even more preferably 300 mg/mL or more.
- the concentration of the active ingredient in the composition, calculated as free form may be, for example, 400 mg/mL or less or 450 mg/mL or less, but is preferably 500 mg/mL or less from the perspective of maintaining good flow properties and prolonged action.
- the concentration of the active ingredient in the composition, calculated as free form is, for example, 100 to 500 mg/mL, preferably 200 to 500 mg/mL, and even more preferably 300 to 500 mg/mL.
- the suspending agent contained in the composition is not particularly limited, so long as it is pharmaceutically acceptable and can achieve the desired viscosity.
- suspending agents include carboxymethylcellulose and its salts; polyoxyethylene-polyoxypropylene block copolymers such as poloxamer; and polyethylene glycol (also known as "macrogol”).
- salts of carboxymethylcellulose include metal salts such as alkali metal salts, and ammonium salts. Specific examples include sodium carboxymethylcellulose, potassium carboxymethylcellulose, lithium carboxymethylcellulose, ammonium carboxymethylcellulose, and mixtures thereof.
- the suspending agent preferably contains carboxymethylcellulose and/or its sodium salt, and particularly preferably contains sodium carboxymethylcellulose.
- the viscosity of a 2% (w/v) aqueous solution of carboxymethylcellulose or its salt is, for example, 1000 mPa ⁇ s or less, preferably 800 mPa ⁇ s or less.
- the viscosity is, for example, 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more.
- the viscosity is, for example, 10 to 1000 mPa ⁇ s, preferably 50 to 800 mPa ⁇ s.
- the viscosity can be measured according to the method described in USP-NF (e.g., the 2019 edition of USP42-NF37).
- Poloxamers are generally represented by the formula: HO-[ CH2CH2O ]x-[CH( CH3 ) CH2O ] y-[ CH2CH2O ]zH (wherein x is 2 to 150, y is 15 to 70, and z is 2 to 150).
- Examples of poloxamers include poloxamer 124, poloxamer 188, poloxamer 237, poloxamer 338, poloxamer 407, and mixtures of two or more of these.
- the average molecular weight of the poloxamer is, for example, 2,000 or more, preferably 3,000 or more, more preferably 4,000 or more, and even more preferably 5,000 or more, and may be, for example, 6,000 or more, 6,500 or more, 7,000 or more, or 7,500 or more.
- the average molecular weight of the poloxamer is, for example, 20,000 or less, preferably 19,000 or less, and even more preferably 18,000 or less.
- the average molecular weight of the poloxamer is, for example, 2,000 to 20,000.
- the average molecular weight can be measured according to the method described in USP-NF (e.g., the 2019 edition of USP42-NF37).
- the suspending agent preferably contains poloxamer 338 and/or poloxamer 188.
- the suspending agent may be a single agent or a combination of two or more agents.
- the suspending agent contains at least one agent selected from the group consisting of carboxymethylcellulose or a salt thereof and poloxamer as the first suspending agent
- PEG as the second suspending agent to adjust the viscosity to the desired level.
- the amount of the second suspending agent is, for example, 10 parts by mass or more, preferably 15 parts by mass or more, and more preferably 20 parts by mass or more, per 100 parts by mass of the first suspending agent.
- the amount of the second suspending agent is, for example, 200 parts by mass or less, preferably 150 parts by mass or less, and more preferably 100 parts by mass or less, per 100 parts by mass of the first suspending agent.
- the amount of the second suspending agent is, for example, 10 to 200 parts by mass, per 100 parts by mass of the first suspending agent.
- the concentration of the suspending agent in the composition is, for example, 0.01 mg/mL or more, preferably 0.02 mg/mL or more, and more preferably 0.05 mg/mL or more.
- the concentration of the suspending agent in the composition is, for example, 20 mg/mL or less, preferably 15 mg/mL or less, and more preferably 10 mg/mL or less.
- the concentration of the suspending agent in the composition is, for example, 0.01 to 20 mg/mL.
- the concentrations of the suspending agent, first suspending agent, and second suspending agent in the composition can each be appropriately combined with the concentration of the active ingredient in the composition (e.g., 100 to 500 mg/mL in free form).
- the organic solvent is preferably alcohol, more preferably ethanol.
- the water content in the solvent containing water and an organic solvent is, for example, 50% by mass or more but less than 100% by mass, preferably 60% by mass or more but less than 100% by mass, and more preferably 70% by mass or more but less than 100% by mass (e.g., 70-99% by mass).
- the dispersion medium is water, and purified water, sterile purified water, water for injection, etc. are particularly preferred.
- the dispersion medium is contained in an appropriate amount so that the content of the active ingredient, etc. falls within the above-mentioned range.
- the dispersion medium may be contained so that the total volume of the composition is 0.2 mL or more, preferably 0.3 mL or more, more preferably 0.4 mL or more, even more preferably 0.5 mL or more, even more preferably 0.6 mL or more, particularly preferably 0.7 mL or more, especially more preferably 0.8 mL or more, and most preferably 0.9 mL or more.
- the dispersion medium may also be contained so that the total volume of the composition is, for example, 1 mL or more, 1.5 mL or more, 2 mL or more, or 2.5 mL or more.
- the dispersion medium may be contained so that the total volume of the composition is 5 mL or less, preferably 4.5 mL or less, more preferably 4 mL or less, even more preferably 3.5 mL or less, even more preferably 3 mL or less, especially preferably 2.5 mL or less, and especially preferably 2 mL or less.
- the dispersion medium may be contained so that the total volume of the composition is 0.2 to 5 mL, 1 to 2 mL, 2 to 4 mL, or 2.5 to 5 mL.
- the amount may be, for example, the amount of composition in a container such as a prefilled syringe, vial, or ampoule.
- composition may further contain optional additives.
- additives are not particularly limited as long as they are pharmaceutically acceptable, and examples include tonicity agents, buffers, pH adjusters, preservatives, etc.
- the additives may be used alone or in combination of two or more.
- isotonicity agents examples include alkali metal chlorides such as sodium chloride and potassium chloride; sugar alcohols such as mannitol, sorbitol, xylitol, and maltitol; sugars such as glucose, trehalose, and maltose; and glycerin.
- the composition does not need to contain an isotonicity agent, but if it does contain an isotonicity agent, the concentration of the isotonicity agent in the composition is, for example, 0.5 to 10 mg/mL, and preferably 1 to 8 mg/mL.
- buffering agents include phosphates such as sodium phosphate, sodium dihydrogen phosphate, monosodium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, potassium dihydrogen phosphate, and dipotassium hydrogen phosphate; borates such as sodium borate and potassium borate; citrates such as sodium citrate and disodium citrate; acetates such as sodium acetate and potassium acetate; and carbonates such as sodium carbonate and sodium bicarbonate.
- concentration of the buffering agent in the composition is, for example, 0.01 to 1.5 mg/mL, and preferably 0.1 to 1 mg/mL.
- the average secondary particle size of the microparticles is, for example, 30 ⁇ m or less, preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less. This range is preferable in terms of maintaining the effect for a long period of time.
- the average secondary particle size can be measured by laser diffraction scattering under conditions of no ultrasonic irradiation.
- the SALD-3100 or SALD-2300 manufactured by Shimadzu Corporation
- Shimadzu Corporation can be used to measure the average particle size by laser diffraction scattering.
- the viscosity (VH) of the composition at any shear rate within the range of 900 to 1000 s -1 is, for example, 0.1 Pa ⁇ s or less, preferably 0.05 Pa ⁇ s or less, for example, in terms of resistance (slidability) during injection.
- the viscosity VH of the composition is, for example, 0.001 Pa ⁇ s or more, preferably 0.005 Pa ⁇ s or more.
- the viscosity VH of the composition is, for example, 0.001 to 0.1 Pa ⁇ s. Note that the viscosity VH of the composition may be the viscosity at which no change in viscosity is observed even when the shear rate is changed within the range of 900 to 1000 s -1 .
- the viscosity at the above shear rates can be measured at 25°C using a rotational rheometer such as the Discovery Hybrid Rheometer-2 (DHR-2), Discovery Hybrid Rheometer-3 (DHR-3), or Discovery Hybrid Rheometer-20 (DHR-20) (manufacturer: TA Instruments).
- a rotational rheometer such as the Discovery Hybrid Rheometer-2 (DHR-2), Discovery Hybrid Rheometer-3 (DHR-3), or Discovery Hybrid Rheometer-20 (DHR-20) (manufacturer: TA Instruments).
- the pH of the composition at room temperature is, for example, 5 or higher, preferably 5.5 or higher, and more preferably 6 or higher.
- the pH of the composition at room temperature may optionally be 6.5 or higher.
- the pH of the composition at room temperature is, for example, 9 or lower, preferably 8.5 or lower, and more preferably 8 or lower.
- the pH of the composition at room temperature may optionally be 7.5 or lower.
- the pH of the composition at room temperature (e.g., 25°C) is, for example, 5 to 9, and preferably 6 to 8.
- the administration route of the composition is not particularly limited, but the composition is preferably administered intramuscularly or subcutaneously.
- the recipient of the composition includes, for example, mammals such as humans.
- the recipient of the composition may be a patient in need of prevention and/or treatment of mycobacteriosis.
- the composition for intramuscular or subcutaneous administration is also preferably used in combination with an oral composition containing at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof; this combination may be effective for patients in the early stages of mycobacteriosis prevention and/or treatment.
- the composition has a long-lasting effect (e.g., an effective blood concentration is maintained), it is suitable for use as a long-acting injection (LAI) formulation, enabling reduced administration frequency.
- LAI long-acting injection
- the composition is administered, for example, at intervals of 2 weeks or more, 3 weeks or more, 4 weeks or more, 1 month or more, or 2 months or more. The longer the administration interval, the more preferable. There is no upper limit, but for example, 2 months, 3 months, 4 months, 5 months, or 6 months. Administration at such a frequency is preferable from the standpoint of patient compliance.
- the administration period (or treatment period) of the composition can be, for example, 6 months, and it is preferably administered 1 to 6 times every 6 months, more preferably 1 to 3 times every 6 months, even more preferably 1 or 2 times every 6 months, and particularly preferably once every 6 months.
- the composition is preferably administered subcutaneously no more than once a month or no more than once every 2 months.
- the composition is preferably administered intramuscularly no more frequently than once every two months or no more frequently than once every three months.
- the composition is preferably administered at a daily dose of, for example, 10 mg or more or 12 mg or more (or at a monthly dose of, for example, 300 mg or more or 360 mg or more).
- the composition is also preferably administered at a daily dose of, for example, 20 mg or less or 18 mg or less (or at a monthly dose of, for example, 600 mg or less or 540 mg or less).
- the composition is also preferably administered at a daily dose of, for example, 10 to 20 mg, preferably 12 to 18 mg.
- the composition is typically an injectable formulation.
- the composition is an injectable formulation for administration with an 18-30G (gauge) or 20-30G (gauge) needle.
- non-tuberculous mycobacteria examples include Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum, Mycobacterium chelonae, Mycobacterium smegmatis, and Mycobacterium aurum.
- the mycobacterial disease is tuberculosis (including latent tuberculosis).
- the tuberculosis may be multidrug-resistant tuberculosis.
- the tuberculosis may also be pulmonary tuberculosis.
- the composition is preferably a sterile composition or a sterilized composition.
- Sterilization is preferably by radiation sterilization from the viewpoints of inhibiting particle aggregation and/or maintaining the thixotropy of the composition during long-term storage and preventing particle settling and caking.
- radiation sterilization include gamma ray sterilization, electron beam sterilization, and X-ray sterilization.
- the composition may be used in combination with other drugs for preventing or treating mycobacteriosis.
- the term "used in combination” includes simultaneous administration and separate administration, such as sequential administration.
- the composition contains other drugs for preventing or treating mycobacteriosis in addition to the active ingredient, and may be administered as a single composition.
- wet milling techniques can be used to prepare the composition.
- Preferred wet milling techniques include wet ball milling, high pressure homogenization, high shear homogenization, and bead mills (e.g., Dyno Mill).
- other low- and high-energy mills e.g., roller mills
- Other preparation methods include controlled crystallization, and methods of suspending dry-milled powder using a hammer mill, jet mill, pin mill, etc.
- the composition can be produced by a method including, for example, step 1: mixing an active ingredient, a suspending agent, and a dispersion medium; step 2: wet-milling the suspension obtained by the mixing; and step 3: recovering the suspension obtained by the wet-milling.
- the wet milling is preferably wet milling using a bead mill or a high-pressure homogenizer.
- the bead milling method is not particularly limited.
- step 2 is a step of adding beads to the suspension and stirring.
- the bead milling method may be batch, continuous (pass), or circulating.
- bead materials include zirconia, alumina, and glass.
- the bead diameter is, for example, 0.1 to 5 mm, preferably 0.2 to 3 mm.
- the average particle size of the particles obtained using the bead mill can be adjusted appropriately by adjusting the bead size, the rotation speed (circumferential speed) and flow rate (flow velocity) during milling, the milling time, and other factors.
- step 1 the dry grinding is preferably performed using a hammer mill or a jet mill.
- Step 3 may be the same as the step of recovering the suspension obtained by wet grinding.
- the composition is preferably a sterilized or aseptic composition.
- the production method preferably includes, in addition to steps 1, 2, and 3, step 4 of sterilizing the suspension (e.g., a wet-pulverized or dry-pulverized suspension, typically a suspension filled in a container).
- the suspension e.g., a wet-pulverized or dry-pulverized suspension, typically a suspension filled in a container.
- radiation sterilization is preferred for sterilization. Examples of radiation sterilization include gamma ray sterilization, electron beam sterilization, and X-ray sterilization.
- the present invention encompasses a method for preventing and/or treating mycobacteriosis, comprising administering an effective amount of the composition to a subject in need of prevention and/or treatment of mycobacteriosis.
- the corresponding configurations described for the composition can be employed for each element of the method.
- the present invention encompasses a method for preventing and/or treating mycobacteriosis (e.g., tuberculosis), comprising intramuscularly or subcutaneously administering an effective amount of a composition in the form of a microparticle suspension containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof, to a subject in need of prevention and/or treatment of mycobacteriosis (e.g., tuberculosis) 1 to 4 times at intervals of one week or more, preferably at intervals of one month or more, and more preferably at intervals of 2 to 3 months.
- mycobacteriosis e.g., tuberculosis
- the present invention encompasses a method for preventing and/or treating latent tuberculosis, which comprises intramuscularly or subcutaneously administering an effective amount of a composition in the form of a suspension of microparticles containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof, to a subject in need of prevention and/or treatment of latent tuberculosis 1 to 3 times at intervals of 1 to 3 months.
- the present invention encompasses the use of the composition for the manufacture of a medicament for the prevention and/or treatment of mycobacteriosis.
- the respective components of the use can be the same as those described for the composition.
- the medicament is preferably administered intramuscularly or subcutaneously 1 to 4 times at intervals of one week or more, one month or more, or two to three months, or 1 to three times at intervals of one to three months.
- Q.S. is an abbreviation for quantum sufficient, meaning sufficient quantity.
- Examples 1 to 21 and Comparative Example 1 A vehicle solution was prepared by dissolving sodium carboxymethylcellulose (Aqualon CMC 7L2P or Blanose CMC 7LP, 7LF) from Ashland (as shown in Table 1) as a suspending agent, optionally PEG3350 (POLYGLYKOL 3350 S) from CLARIANT or PEG400 (Super Refined PEG400) from CRODA (as shown in Table 1), sodium chloride or mannitol as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection). The pH was adjusted to 7.0 with sodium hydroxide solution.
- the active ingredient, quabodepistat (OPC-167832), and the prepared vehicle solution were weighed into a vial and mixed with the weighed OPC-167832 to prepare a suspension. Furthermore, 2 g of 1.5 mm diameter zirconia beads per 1 mL of suspension were added to the vial, and a stir bar was inserted. The vial containing the stirring bar was stirred with a stirrer and subjected to bead milling (500 rpm). The milling time was varied depending on the target particle size. All operations after suspending the active ingredient in the vehicle solution were carried out at 10°C or below.
- the milled suspension was collected using a syringe needle with a pore size smaller than the ⁇ 1.5 mm zirconia beads (a syringe needle of 22 G or less) or an 80 ⁇ m nylon mesh filter to obtain the injectable formulations shown in Table 1.
- the viscosity of some of the injection formulations was measured using a rheometer, Discovery Hybrid Rheometer (DHR)-2 (manufacturer: TA Instruments).
- the viscosity measurement conditions were as follows: ⁇ Shear rate: 10-3 ⁇ 1000 (1/s) ⁇ Measurement temperature: 25°C ⁇ Use a 40 mm flat plate ⁇ Gap: 500 ⁇ m (40 mm flat plate)
- Test Example 1 The average primary particle size and average secondary particle size of each prepared example were measured using SALD-3100. The results are shown in Table 2.
- Example 3 Injectable formulations were prepared using the formulation of Example 4, with an average primary particle size of 2.5 ⁇ m and an average secondary particle size of 4.6 ⁇ m; injectable formulations using the formulation of Example 18, with an average primary particle size of 6.8 ⁇ m and an average secondary particle size of 9.3 ⁇ m; and injectable formulations using the formulation of Example 19, with an average primary particle size of 11.7 ⁇ m and an average secondary particle size of 12.6 ⁇ m.
- Each injection formulation was subcutaneously injected into the dorsal skin of male SD rats at a dose of 50 mg/kg.
- Example 4 Injectable formulations were prepared using the formulation of Example 4, with an average primary particle size of 2.5 ⁇ m and an average secondary particle size of 4.6 ⁇ m; injectable formulations using the formulation of Example 18, with an average primary particle size of 6.8 ⁇ m and an average secondary particle size of 9.3 ⁇ m; and injectable formulations using the formulation of Example 19, with an average primary particle size of 11.7 ⁇ m and an average secondary particle size of 12.6 ⁇ m.
- Each injection formulation was injected into the calf muscle of male SD rats at a dose of 50 mg/kg.
- a suspension of jet-milled quabodepistat powder was prepared in 5% gum arabic solution and administered orally (PO) at 3.5 mg/kg daily for 28 days starting from the first day of treatment (shown as "QBS-JM (3.5 mg/kg)" in Figure 5).
- PO orally
- mice were euthanized by exsanguination from the inferior vena cava under anesthesia 3 days after the 28-day treatment, and the lungs were aseptically removed. The removed lungs were placed in a homogenizing tube containing 2 mL of sterile water and homogenized using a multi-bead shocker. Serial dilutions were then made.
- lung viable bacterial counts were calculated.
- the lung viable bacterial counts were measured in the same manner in the group at the start of treatment (labeled "Initial” in Figure 5 ) and in the group that received a single subcutaneous (SC) injection of a vehicle solution (combined with the formulation of Example 4, excluding quabodepistat) on the day of treatment (labeled "QBS-LAI-Vehicle” in Figure 5 ).
- the QBS-LAI (120 mg/kg) group demonstrated a slightly greater reduction in lung viable bacterial counts than the QBS-JM (3.5 mg/kg) group, while the QBS-LAI (12 mg/kg) group demonstrated a therapeutic effect similar to that of the QBS-JM (3.5 mg/kg) group.
- All quabodepistat-treated groups demonstrated a 1.3-Log to 2.4-Log reduction in lung viable bacterial counts compared with the initial and QBS-LAI-Vehicle groups.
- the QBS-LAI (12 mg/kg) group received approximately one-eighth the total dose of the 28-day QBS-JM (3.5 mg/kg) group, it still demonstrated a reduction in lung viable bacterial counts of approximately 1.3 Log compared with the initial group.
- Subcutaneous administration of the OPC-167832 LAI formulation is expected to produce therapeutic effects comparable to those of oral administration for 28 consecutive days.
- Example 21 to 23 The vehicle solution shown in Table 4 was prepared by dissolving carmellose sodium and PEG3350 as suspending agents, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection), and adjusting the pH to 7.0 with sodium hydroxide solution.
- the active ingredient, quabodepistat (OPC-167832), and the vehicle solution were weighed and mixed into a vial to prepare a suspension. Furthermore, 2 g of ⁇ 1.5 mm zirconia beads per 1 mL of suspension were added to the vial, and a stir bar was inserted. The vial containing the stir bar was stirred with a stirrer and milled using a bead mill (500 rpm).
- the milling time was adjusted depending on the target particle size. All operations after suspending the active ingredient in the vehicle solution were performed at 10°C or below. The milled suspension was collected using a syringe needle with a smaller pore size than the ⁇ 1.5 mm zirconia beads (22 G or smaller), to obtain the injectable formulations shown in Table 4. Each injection formulation was filled into a vial (3.5 mL), which was then stoppered and sealed with an aluminum cap, and then irradiated with gamma rays at 25-35 kGy.
- Test Example 6 The average primary particle size and average secondary particle size of each prepared example were measured using SALD-3100. The results are shown in Table 5.
- the subcutaneous or femoral injection sites (skin and subcutaneous tissue) were then excised and fixed in 10% neutral buffered formalin. After embedding in paraffin according to standard procedures, HE-stained tissue specimens were prepared and subjected to histopathological examination. Local irritation at the injection site was evaluated using the average value of three rabbits.
- Table 6 shows subcutaneous retention and subcutaneous irritation
- Table 7 shows intramuscular retention and muscle irritation.
- Visual observation at autopsy revealed that test-formulation-like substances remained in Examples 21-23 7 days after administration and in some cases 14 days after administration, whereas no test-formulation-like substances remained in the control substance not containing OPC-167832 7 days after administration or 14 days after administration.
- Histopathological examination revealed that Examples 21-23 showed weaker necrosis, partial necrosis/repair reaction, and fibrosis than the positive control substances 0.425% acetic acid and 1.7% acetic acid, and the irritation was within an acceptable range.
- immune reactions such as foam cell aggregates and mononuclear cell infiltration were observed in Examples 21-23, but the irritation in all cases was within an acceptable range.
- the animals were anesthetized by intravenous administration of 25 mg/mL/kg thiopental sodium via the carotid artery and euthanized.
- the subcutaneous injection site skin and subcutaneous tissue
- the subcutaneous injection site was then excised and fixed in 20% neutral buffered formalin.
- HE-stained tissue specimens were prepared, and the injection site was evaluated by histopathological examination using the average value of three animals.
- the plasma OPC-167832 concentrations of the collected blood samples were measured using LC-MS/MS. As shown in Figure 6, the blood concentration of OPC-167832 was dependent on the particle size of the microparticles, and the plasma OPC-167832 concentration was sustained up to 56 days after administration.
- Example 24 to 26 The vehicle solution shown in Table 9 was prepared by dissolving carmellose sodium as a suspending agent, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection) and adjusting the pH to 7.0 with sodium hydroxide solution. OPC-167832 and the vehicle solution were weighed and mixed in a beaker. Using a DYNO-MILL MULTI LAB (Willy A. Bachofen AG) equipped with an agitator disc and a 600 mL grinding container, 1.5 mm diameter zirconia beads were placed in the grinding container to achieve an 80% filling rate. The peripheral speed was set to 10-14 m/s and the flow rate to 85-150 mL/min.
- the suspension was collected.
- 3.5 mL of the injection formulation was filled into vials, stoppered, and sealed with an aluminum cap.
- the vials were then irradiated with gamma rays at 25-35 kGy.
- the stability tests shown in Table 10 were then performed.
- the stability of the injectable formulation was evaluated after storage at 40°C and 50°C for one month, and it was found to be stable, with no changes in particle size or viscosity. It was also found that the crystalline form in the injectable formulation did not change from the active pharmaceutical ingredient when exposed to bead milling or gamma rays.
- Example 27 A vehicle solution was prepared by dissolving carmellose sodium as a suspending agent, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection) and adjusting the pH to 7.0 with sodium hydroxide solution.
- OPC-167832 and the vehicle solution were weighed and mixed in a beaker to prepare a suspension.
- This suspension was then wet-milled using a PANDA PLUS 1000 high-pressure homogenizer (GEA Niro Soavi). Using 500 mL of the suspension, the pressure was gradually increased by 100 bar, and the final pressure was 400-500 bar for 10 minutes. The suspension was then recovered.
- the average primary particle size and average secondary particle size of the recovered suspension were measured using an SALD-3100. The average primary particle size was 3.9 ⁇ m, and the average secondary particle size was 4.1 ⁇ m.
- Example 28 A vehicle solution was prepared by dissolving carmellose sodium and PEG3350 as suspending agents, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection) and adjusting the pH to 7.0 with sodium hydroxide solution.
- OPC-167832 and the vehicle solution were weighed and mixed in a beaker to prepare a suspension.
- This suspension was then wet-milled using a PANDA PLUS 1000 high-pressure homogenizer (GEA Niro Soavi). Using 800 mL of the suspension, the pressure was gradually increased, ultimately milling at 200-300 bar for 20 minutes, after which the suspension was recovered.
- the average primary particle size and average secondary particle size of the recovered suspension were measured using an SALD-3100. The average primary particle size was 7.3 ⁇ m and the average secondary particle size was 10.6 ⁇ m.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Communicable Diseases (AREA)
- Pulmonology (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明は、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種を含む組成物であって、マイクロ粒子の懸濁液の形態である組成物等に関する。 The present invention relates to a composition containing at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof, which is in the form of a microparticle suspension.
Quabodepistatは、下記式:
本発明が解決しようとする課題の一つは、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種を含む組成物として有用なマイクロ粒子の懸濁液の形態の組成物を提供することである。 One of the problems that the present invention aims to solve is to provide a composition in the form of a suspension of microparticles that is useful as a composition containing at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof.
本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種を含む組成物として有用なマイクロ粒子の懸濁液の形態の組成物を見出し、更に検討を重ねることにより本発明を完成した。 As a result of extensive research aimed at solving the above-mentioned problems, the inventors discovered a useful composition in the form of a microparticle suspension containing at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof, and further research led to the completion of the present invention.
本発明は、以下の項に記載の実施形態を包含する。
[項1]
Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種の成分を含む組成物であって、
前記組成物は懸濁化剤及び分散媒を含み、マイクロ粒子の懸濁液の形態である前記組成物。
[項2]
0.1s-1のせん断速度での粘度が、0.2~200Pa・sであり、900~1000s-1の範囲内の任意のせん断速度での粘度が、0.1Pa・s以下である、項1に記載の組成物。
[項3]
前記マイクロ粒子の平均一次粒子径が0.5~20μmであり、平均二次粒子径が1~30μmである、項1又は2に記載の組成物。
[項4]
前記懸濁化剤がカルボキシメチルセルロース又はその塩及びポロキサマーからなる群から選択される少なくとも一種を含む、項1~3のいずれかに記載の組成物。
[項5]
前記懸濁化剤がポリエチレングリコールを更に含む、項4に記載の組成物。
[項6]
前記組成物中の前記成分の含有濃度が、フリー体換算で100~500mg/mLである、項1~5のいずれかに記載の組成物。
[項7]
前記組成物中の前記成分の含有濃度が、フリー体換算で200~500mg/mLである、項1~6のいずれかに記載の組成物。
[項8]
筋肉内投与又は皮下投与に用いられる、項1~7のいずれかに記載の組成物。
[項9]
1ヶ月以上の間隔をあけて投与される、項1~8のいずれかに記載の組成物。
[項10]
注射製剤である、項1~9のいずれかに記載の組成物。
[項11]
抗酸菌症の予防及び/又は治療に用いられる、項1~10のいずれかに記載の組成物。
[項11-1]
前記抗酸菌症が、結核菌、らい菌、又は非結核性抗酸菌によって引き起こされる感染症である、項11に記載の組成物。
[項11-2]
前記抗酸菌症が、Mycobacterium tuberculosis、Mycobacterium africanum、Mycobacterium bovis、Mycobacterium caprae、Mycobacterium pinnipedii、Mycobacterium microti、Mycobacterium leprae、Mycobacterium avium、Mycobacterium intracellulare、Mycobacterium kansasii、Mycobacterium marinum、Mycobacterium simiae、Mycobacterium scrofulaceum、Mycobacterium szulgai、Mycobacterium xenopi、Mycobacterium malmoense、Mycobacterium haemophilum、Mycobacterium ulcerans、Mycobacterium shimoidei、Mycobacterium fortuitum、Mycobacterium chelonae、Mycobacterium smegmatis、又はMycobacterium aurumによって引き起こされる感染症である、項11に記載の組成物。
[項11-3]
前記抗酸菌症が結核である、項11に記載の組成物。
[項11-4]
無菌組成物である、項1~11、11-1、11-2、及び11-3のいずれかに記載の組成物。
[項12]
項1~11、11-1、11-2、11-3、及び11-4のいずれかに記載の組成物を含有する、プレフィルドシリンジ、バイアル、又はアンプル。
[項13]
項1~11、11-1、11-2、11-3、及び11-4のいずれかに記載の組成物を製造する方法であって、
前記成分、懸濁化剤、及び分散媒を混合する工程1と、
前記混合により得られた懸濁液に対して湿式粉砕を行う工程2と、
前記湿式粉砕により得られた懸濁液を回収する工程3とを含む、方法。
[項14]
前記湿式粉砕が、ビーズミル又は高圧ホモジナイザーによる湿式粉砕である、項13に記載の方法。
[項15]
項1~11、11-1、11-2、11-3、及び11-4のいずれかに記載の組成物を製造する方法であって、
前記成分を乾式粉砕する工程1と、
前記乾式粉砕後の成分、懸濁化剤、及び分散媒を混合する工程2と、
前記混合により得られた懸濁液を回収する工程3とを含む、方法。
[項16]
前記乾式粉砕が、ハンマーミル、ジェットミル、又はピンミル乾式粉砕である、項15に記載の方法。
[項17]
さらに、前記回収された懸濁液を放射線滅菌する工程4を含む、項13~16のいずれかに記載の方法。
[項18]
抗酸菌症を予防及び/又は治療する方法であって、抗酸菌症の予防及び/又は治療の必要がある対象に、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも一種の成分を含むマイクロ粒子の懸濁液の形態である組成物の有効量を1週間以上の間隔で筋肉内投与又は皮下投与することを含む、方法。
[項19]
前記投与は、前記対象に、前記組成物の有効量を1か月以上の間隔で筋肉内投与又は皮下投与することである、項18に記載の方法。
[項20]
前記投与は、前記対象に、前記組成物の有効量を2~3か月の間隔で1~4回筋肉内投与又は皮下投与することである、項18又は19に記載の方法。
[項21]
前記抗酸菌症が結核である、項18~20のいずれかに記載の方法。
[項22]
潜在性結核を予防及び/又は治療する方法であって、潜在性結核の予防及び/又は治療の必要がある対象に、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも一種の成分を含むマイクロ粒子の懸濁液の形態である組成物の有効量を1~3か月の間隔で1~3回筋肉内投与又は皮下投与することを含む、方法。
[項23]
抗酸菌症を予防及び/又は治療する方法であって、抗酸菌症の予防及び/又は治療の必要がある対象に項1~10及び11-4のいずれかに記載の組成物を有効量投与することを含む方法。
[項24]
前記抗酸菌症が、結核菌、らい菌、又は非結核性抗酸菌によって引き起こされる感染症である、項23に記載の方法。
[項25]
前記抗酸菌症が、Mycobacterium tuberculosis、Mycobacterium africanum、Mycobacterium bovis、Mycobacterium caprae、Mycobacterium pinnipedii、Mycobacterium microti、Mycobacterium leprae、Mycobacterium avium、Mycobacterium intracellulare、Mycobacterium kansasii、Mycobacterium marinum、Mycobacterium simiae、Mycobacterium scrofulaceum、Mycobacterium szulgai、Mycobacterium xenopi、Mycobacterium malmoense、Mycobacterium haemophilum、Mycobacterium ulcerans、Mycobacterium shimoidei、Mycobacterium fortuitum、Mycobacterium chelonae、Mycobacterium smegmatis、又はMycobacterium aurumによって引き起こされる感染症である、項23又は24に記載の方法。
[項26]
前記抗酸菌症が結核である、項23に記載の方法。
[項27]
抗酸菌症の予防及び/又は治療用の医薬を製造するための、項1~10及び11-4のいずれかに記載の組成物の使用。
[項28]
前記抗酸菌症が、結核菌、らい菌、又は非結核性抗酸菌によって引き起こされる感染症である、項27に記載の使用。
[項29]
前記抗酸菌症が、Mycobacterium tuberculosis、Mycobacterium africanum、Mycobacterium bovis、Mycobacterium caprae、Mycobacterium pinnipedii、Mycobacterium microti、Mycobacterium leprae、Mycobacterium avium、Mycobacterium intracellulare、Mycobacterium kansasii、Mycobacterium marinum、Mycobacterium simiae、Mycobacterium scrofulaceum、Mycobacterium szulgai、Mycobacterium xenopi、Mycobacterium malmoense、Mycobacterium haemophilum、Mycobacterium ulcerans、Mycobacterium shimoidei、Mycobacterium fortuitum、Mycobacterium chelonae、Mycobacterium smegmatis、又はMycobacterium aurumによって引き起こされる感染症である、項27又は28に記載の使用。
[項30]
前記抗酸菌症が結核である、項27に記載の使用。
[項31]
前記医薬が、1週間以上の間隔、1か月以上の間隔、2~3か月の間隔で1~4回、又は1~3か月の間隔で1~3回の筋肉内投与又は皮下投与に用いられる、項27~30のいずれかに記載の使用。
The present invention encompasses the embodiments described in the following sections.
[Section 1]
A composition comprising at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof,
The composition comprises a suspending agent and a dispersion medium, the composition being in the form of a suspension of microparticles.
[Section 2]
Item 1. The composition according to item 1, wherein the viscosity at a shear rate of 0.1 s is 0.2 to 200 Pa·s, and the viscosity at any shear rate within the range of 900 to 1000 s is 0.1 Pa·s or less.
[Section 3]
Item 3. The composition according to Item 1 or 2, wherein the microparticles have an average primary particle size of 0.5 to 20 μm and an average secondary particle size of 1 to 30 μm.
[Section 4]
Item 4. The composition according to any one of Items 1 to 3, wherein the suspending agent comprises at least one selected from the group consisting of carboxymethylcellulose or a salt thereof and poloxamer.
[Section 5]
Item 5. The composition according to item 4, wherein the suspending agent further comprises polyethylene glycol.
[Section 6]
Item 6. The composition according to any one of Items 1 to 5, wherein the concentration of the component in the composition is 100 to 500 mg/mL in terms of free form.
[Section 7]
Item 7. The composition according to any one of Items 1 to 6, wherein the concentration of the component in the composition is 200 to 500 mg/mL in terms of free form.
[Section 8]
Item 8. The composition according to any one of Items 1 to 7, which is administered intramuscularly or subcutaneously.
[Section 9]
The composition according to any one of Items 1 to 8, which is administered at intervals of one month or more.
[Section 10]
Item 10. The composition according to any one of Items 1 to 9, which is an injectable formulation.
[Section 11]
Item 11. The composition according to any one of Items 1 to 10, which is used for the prevention and/or treatment of mycobacteriosis.
[Section 11-1]
Item 12. The composition according to Item 11, wherein the mycobacterial disease is an infectious disease caused by Mycobacterium tuberculosis, Mycobacterium leprae, or nontuberculous mycobacteria.
[Section 11-2]
The mycobacterial disease is Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti, Mycobacterium leprae, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum, Mycobacterium chelonae, Mycobacterium Item 12. The composition according to Item 11, wherein the infection is caused by Mycobacterium smegmatis or Mycobacterium aurum.
[Section 11-3]
Item 12. The composition according to Item 11, wherein the mycobacterial disease is tuberculosis.
[Section 11-4]
The composition according to any one of Items 1 to 11, 11-1, 11-2, and 11-3, which is a sterile composition.
[Section 12]
A pre-filled syringe, vial, or ampoule containing the composition according to any one of items 1 to 11, 11-1, 11-2, 11-3, and 11-4.
[Section 13]
A method for producing the composition according to any one of items 1 to 11, 11-1, 11-2, 11-3, and 11-4,
Step 1 of mixing the ingredients, suspending agent, and dispersion medium;
Step 2: wet-pulverizing the suspension obtained by the mixing;
and step 3 recovering the suspension obtained by said wet milling.
[Section 14]
Item 14. The method according to Item 13, wherein the wet milling is wet milling using a bead mill or a high-pressure homogenizer.
[Section 15]
A method for producing the composition according to any one of items 1 to 11, 11-1, 11-2, 11-3, and 11-4,
Step 1: dry-milling the ingredients;
Step 2: mixing the dry-milled components, a suspending agent, and a dispersion medium;
and step 3 recovering the suspension obtained by said mixing.
[Section 16]
Item 16. The method according to Item 15, wherein the dry milling is hammer mill, jet mill, or pin mill dry milling.
[Section 17]
Item 17. The method according to any one of Items 13 to 16, further comprising step 4 of sterilizing the recovered suspension by radiation.
[Section 18]
A method for preventing and/or treating mycobacteriosis, comprising administering intramuscularly or subcutaneously at intervals of one week or more to a subject in need of prevention and/or treatment of mycobacteriosis an effective amount of a composition in the form of a suspension of microparticles containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof.
[Section 19]
Item 19. The method according to Item 18, wherein the administering comprises intramuscularly or subcutaneously administering an effective amount of the composition to the subject at intervals of one month or more.
[Section 20]
Item 20. The method according to Item 18 or 19, wherein the administration comprises intramuscularly or subcutaneously administering an effective amount of the composition to the subject 1 to 4 times at intervals of 2 to 3 months.
[Section 21]
Item 21. The method according to any one of Items 18 to 20, wherein the mycobacterial disease is tuberculosis.
[Section 22]
A method for preventing and/or treating latent tuberculosis, comprising administering intramuscularly or subcutaneously 1 to 3 times at intervals of 1 to 3 months to a subject in need of prevention and/or treatment of latent tuberculosis an effective amount of a composition in the form of a suspension of microparticles containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof.
[Section 23]
A method for preventing and/or treating mycobacteriosis, comprising administering an effective amount of the composition described in any one of Items 1 to 10 and 11-4 to a subject in need of prevention and/or treatment of mycobacteriosis.
[Section 24]
Item 24. The method according to Item 23, wherein the mycobacterial disease is an infectious disease caused by Mycobacterium tuberculosis, Mycobacterium leprae, or nontuberculous mycobacteria.
[Section 25]
The mycobacterial disease is Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti, Mycobacterium leprae, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum, Mycobacterium chelonae, Mycobacterium Item 25. The method according to Item 23 or 24, wherein the infection is caused by Mycobacterium smegmatis or Mycobacterium aurum.
[Section 26]
Item 24. The method of Item 23, wherein the mycobacterial disease is tuberculosis.
[Section 27]
Use of the composition according to any one of Items 1 to 10 and 11-4 for the manufacture of a medicament for the prevention and/or treatment of mycobacteriosis.
[Section 28]
Item 28. The use according to Item 27, wherein the mycobacterial disease is an infectious disease caused by Mycobacterium tuberculosis, Mycobacterium leprae, or nontuberculous mycobacteria.
[Section 29]
The mycobacterial disease is Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti, Mycobacterium leprae, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum, Mycobacterium chelonae, Mycobacterium Item 29. The use according to Item 27 or 28, wherein the infection is caused by Mycobacterium smegmatis or Mycobacterium aurum.
[Section 30]
Item 28. The use according to Item 27, wherein the mycobacterial disease is tuberculosis.
[Section 31]
Item 31. The use according to any one of Items 27 to 30, wherein the medicament is administered intramuscularly or subcutaneously 1 to 4 times at intervals of 1 week or more, 1 month or more, 2 to 3 months, or 1 to 3 times at intervals of 1 to 3 months.
本発明によりQuabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種を含む組成物として有用なマイクロ粒子の懸濁液の形態の組成物が提供される。当該組成物は、例えば、下記の利点を有し得る。
・2週間以上(特に1ヶ月以上)の間隔での投与が可能であり、アドヒアランスの向上ひいては抗酸菌症(結核を含む)等に対する治療の成功率の向上、耐性菌の発生の抑制に寄与する。
・潜在性抗酸菌症(特に潜在性結核)の治療、抗酸菌症ハイリスクグループの予防にも有用である。
・マイクロ粒子がケーキングすることなく長期保存安定性に優れている。
・投与時に刺激が少ない。
・小型で使用しやすい製剤化が可能である。
The present invention provides a composition in the form of a suspension of microparticles useful as a composition comprising at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof. The composition may have the following advantages, for example:
- It can be administered at intervals of two weeks or more (especially one month or more), which improves adherence and contributes to improving the success rate of treatment for mycobacterial diseases (including tuberculosis) and suppressing the emergence of resistant bacteria.
-It is also useful for treating latent mycobacterial disease (especially latent tuberculosis) and preventing mycobacterial disease in high-risk groups.
- The microparticles do not caking and have excellent long-term storage stability.
- Less irritating when administered.
- It is possible to create small, easy-to-use formulations.
本明細書において、「含む(comprise)」とは「実質的にからなる(essentially consist of)」及び「からなる(consist of)」という概念を包含する。 In this specification, the term "comprise" encompasses the concepts of "essentially consist of" and "consist of."
本明細書に記載される全ての文献は参照により本明細書に組み込まれる。 All documents mentioned in this specification are incorporated herein by reference.
本発明の組成物は、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種(以下、「活性成分」ともいう。)、懸濁化剤、並びに分散媒を含む。活性成分は1種単独であっても2種以上の組合せであってもよい。前記組成物は、通常、医薬組成物である。 The composition of the present invention contains at least one active ingredient selected from quabodepistat, its salts and cocrystals, and solvates thereof (hereinafter also referred to as the "active ingredient"), a suspending agent, and a dispersion medium. The active ingredient may be a single ingredient or a combination of two or more ingredients. The composition is typically a pharmaceutical composition.
本明細書において、Quabodepistat(「OPC-167832」ともいう。)は、5-{[(3R,4R)-1-(4-クロロ-2,6-ジフルオロフェニル)-3,4-ジヒドロキシピぺリジン-4-イル]メトキシ}-8-フルオロ-3,4-ジヒドロキノリノン-2(1H)-オン(非塩形態、フリー体)を意味する。Quabodepistatは、例えば、国際公開第2016/031255号公報(又は米国特許出願公開第2017/253576号公報)に記載の方法で製造することができる。Quabodepistatは、特開2020-79206号公報及び特開2021-178818号公報に記載されるI形結晶であってもII形結晶であってもよい。I形結晶とは、X線源としてCuKα線を用いて得られる粉末X線回折図において、回折角(2θ)4.9±0.2°、10.6±0.2°、13.9±0.2°、及び21.9±0.2°に回折ピークを有し、さらに9.9±0.2°、16.6±0.2°、17.9±0.2°、18.2±0.2°、23.1±0.2°、26.2±0.2°、及び31.9±0.2°からなる群から選択される1個、2個、3個、4個、5個、6個、又は7個の回折角(2θ)に回折ピークを有していてもよい結晶である。II形結晶とは、X線源としてCuKα線を用いて得られる粉末X線回折図において、回折角(2θ)10.8±0.2°、14.2±0.2°、21.0±0.2°、及び25.3±0.2°に回折ピークを有し、さらに8.7±0.2°、16.5±0.2°、16.7±0.2°、17.3±0.2°、23.9±0.2°、及び28.2±0.2°からなる群から選択される1個、2個、3個、4個、5個、又は6個の回折角(2θ)に回折ピークを有していてもよい結晶である。 As used herein, quabodepistat (also referred to as "OPC-167832") refers to 5-{[(3R,4R)-1-(4-chloro-2,6-difluorophenyl)-3,4-dihydroxypiperidin-4-yl]methoxy}-8-fluoro-3,4-dihydroquinolinone-2(1H)-one (non-salt form, free form). Quabodepistat can be produced, for example, by the method described in International Publication No. 2016/031255 (or U.S. Patent Application Publication No. 2017/253576). Quabodepistat may be either Form I crystal or Form II crystal, as described in Japanese Patent Application Laid-Open Nos. 2020-79206 and 2021-178818. The form I crystal is a crystal that, in a powder X-ray diffraction pattern obtained using CuKα radiation as an X-ray source, has diffraction peaks at diffraction angles (2θ) of 4.9±0.2°, 10.6±0.2°, 13.9±0.2°, and 21.9±0.2°, and may further have diffraction peaks at one, two, three, four, five, six, or seven diffraction angles (2θ) selected from the group consisting of 9.9±0.2°, 16.6±0.2°, 17.9±0.2°, 18.2±0.2°, 23.1±0.2°, 26.2±0.2°, and 31.9±0.2°. The Form II crystal is a crystal that, in a powder X-ray diffraction pattern obtained using CuKα radiation as an X-ray source, has diffraction peaks at diffraction angles (2θ) of 10.8±0.2°, 14.2±0.2°, 21.0±0.2°, and 25.3±0.2°, and may further have diffraction peaks at one, two, three, four, five, or six diffraction angles (2θ) selected from the group consisting of 8.7±0.2°, 16.5±0.2°, 16.7±0.2°, 17.3±0.2°, 23.9±0.2°, and 28.2±0.2°.
本明細書において、「共結晶」とは、Quabodepistatとコフォーマーとの共結晶を意味する。 As used herein, "cocrystal" refers to a cocrystal of quabodepistat and a coformer.
本明細書において、「溶媒和物」とは、Quabodepistat又はその塩の溶媒和物、或いはQuabodepistatとコフォーマーとの共結晶の溶媒和物を意味する。 As used herein, the term "solvate" refers to a solvate of quabodepistat or a salt thereof, or a solvate of a co-crystal of quabodepistat and a coformer.
一実施形態において、組成物は、Quabodepistat、懸濁化剤、及び分散媒を含む。 In one embodiment, the composition comprises quabodepistat, a suspending agent, and a dispersion medium.
別の実施形態において、組成物は、Quabodepistatの塩、懸濁化剤、及び分散媒を含む。前記Quabodepistatの塩は、薬学的に許容される塩であれば特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基との塩;アルキルアミン(例えばメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン)、アルカノールアミン(例えばエタノールアミン、ジエタノールアミン、トリエタノールアミン、トリス(ヒドロキシメチル)メチルアミン)、シクロアルキルアミン(例えばジシクロヘキシルアミン)、アルキレンジアミン(例えばエチレンジアミン、N,N’-ジベンジルエチレンジアミン)、グアニジン、ピリジン、ピコリン、コリン等の有機塩基との塩;塩酸、臭化水素酸、硝酸、硫酸、リン酸等の無機酸との塩;メタンスルホン酸、p-トルエンスルホン酸、酢酸、クエン酸、酒石酸、マレイン酸、フマル酸、リンゴ酸、乳酸等の有機酸との塩等が挙げられる。 In another embodiment, the composition comprises a salt of quabodepistat, a suspending agent, and a dispersion medium. The salt of quabodepistat is not particularly limited as long as it is a pharmaceutically acceptable salt, and examples thereof include salts with inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate; salts with organic bases such as alkylamines (e.g., methylamine, diethylamine, trimethylamine, and triethylamine), alkanolamines (e.g., ethanolamine, diethanolamine, triethanolamine, and tris(hydroxymethyl)methylamine), cycloalkylamines (e.g., dicyclohexylamine), alkylenediamines (e.g., ethylenediamine and N,N'-dibenzylethylenediamine), guanidine, pyridine, picoline, and choline; salts with inorganic acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, and phosphoric acid; and salts with organic acids such as methanesulfonic acid, p-toluenesulfonic acid, acetic acid, citric acid, tartaric acid, maleic acid, fumaric acid, malic acid, and lactic acid.
更に別の実施形態において、組成物は、Quabodepistatとコフォーマー(Coformer)との共結晶、懸濁化剤、及び分散媒を含む。 In yet another embodiment, the composition comprises a co-crystal of quabodepistat and a coformer, a suspending agent, and a dispersion medium.
前記共結晶は、Quabodepistatとコフォーマーとが任意のモル比にて同一結晶格子内に存在して構成される結晶性物質であり得る。前記共結晶は、複数の結晶形態(「結晶多形」ともいう。)として存在し得る。 The cocrystal may be a crystalline substance composed of quabodepistat and a coformer present in the same crystal lattice at any molar ratio. The cocrystal may exist in multiple crystalline forms (also known as "crystalline polymorphs").
一実施形態において、コフォーマーは、Quabodepistatと結晶を形成し得る非イオン化分子である。そのような非イオン化分子としては、例えば、有機酸、アミノ酸、アミン、アミド、バニリン、尿素、ピリドキシン、サッカリン、ヒドロキノン等が挙げられる。 In one embodiment, the coformer is a non-ionizable molecule capable of forming a crystal with quabodepistat. Examples of such non-ionizable molecules include organic acids, amino acids, amines, amides, vanillin, urea, pyridoxine, saccharin, and hydroquinone.
有機酸としては、例えば、カルボン酸、アスコルビン酸、フェノール類が挙げられる。カルボン酸には、脂肪族カルボン酸、芳香族カルボン酸、複素環カルボン酸等が含まれる。脂肪族カルボン酸としては、例えば、フマル酸、コハク酸、酒石酸、リンゴ酸、グルタル酸、クエン酸、マレイン酸等が挙げられる。芳香族カルボン酸としては、例えば、安息香酸、2,5-ジヒドロキシ安息香酸、サリチル酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、4-アミノサリチル酸、2-アミノ-5-ヒドロキシ安息香酸、馬尿酸、フタル酸等が挙げられる。複素環カルボン酸としては、例えば、ニコチン酸等が挙げられる。有機酸は、不揮発性有機酸、例えば常温(15℃~25℃)常圧下で揮発しない有機酸であってもよい。不揮発性有機酸は、水溶性有機酸であってもよい。 Examples of organic acids include carboxylic acids, ascorbic acid, and phenols. Carboxylic acids include aliphatic carboxylic acids, aromatic carboxylic acids, and heterocyclic carboxylic acids. Examples of aliphatic carboxylic acids include fumaric acid, succinic acid, tartaric acid, malic acid, glutaric acid, citric acid, and maleic acid. Examples of aromatic carboxylic acids include benzoic acid, 2,5-dihydroxybenzoic acid, salicylic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 4-aminosalicylic acid, 2-amino-5-hydroxybenzoic acid, hippuric acid, and phthalic acid. Examples of heterocyclic carboxylic acids include nicotinic acid. The organic acid may be a non-volatile organic acid, such as an organic acid that does not volatilize at room temperature (15°C to 25°C) and normal pressure. The non-volatile organic acid may also be a water-soluble organic acid.
アミノ酸は、天然アミノ酸であっても非天然アミノ酸であってもよい。アミノ酸としては、例えば、プロリン、リシン、チロシン、ヒスチジン等が挙げられる。 The amino acid may be a natural amino acid or an unnatural amino acid. Examples of amino acids include proline, lysine, tyrosine, and histidine.
アミンとしては、例えば、メグルミン、トロメタミン等の脂肪族アミン;芳香族アミン等が挙げられる。 Amines include, for example, aliphatic amines such as meglumine and tromethamine; aromatic amines, etc.
アミドとしては、例えば、ニコチンアミド等のカルボン酸アミド等が挙げられる。 Examples of amides include carboxylic acid amides such as nicotinamide.
コフォーマーは1種単独であってもよく2種以上の組合せであってもよい。好適な実施形態において、コフォーマーは不揮発性有機酸又はアミノ酸である。不揮発性有機酸は、好ましくはカルボン酸であり、より好ましくはo-、m-、又はp-位の少なくとも1つがヒドロキシ、アミノ、及びカルボキシからなる群から選択される基で置換されていてもよい安息香酸であり、更に好ましくは2,5-ジヒドロキシ安息香酸又はサリチル酸である。 The coformer may be one type alone or a combination of two or more types. In a preferred embodiment, the coformer is a non-volatile organic acid or amino acid. The non-volatile organic acid is preferably a carboxylic acid, more preferably a benzoic acid optionally substituted at least at one of the o-, m-, or p-positions with a group selected from the group consisting of hydroxy, amino, and carboxy, and even more preferably 2,5-dihydroxybenzoic acid or salicylic acid.
前記共結晶において、コフォーマーは、Quabodepistat 1モルに対して、例えば0.5モル以上、好ましくは0.8モル以上、より好ましくは0.9モル以上、更に好ましくは1モル以上である。前記共結晶において、コフォーマーは、Quabodepistat 1モルに対して、例えば2.5モル以下、好ましくは2モル以下、より好ましくは1.5モル以下、更に好ましくは1モル以下である。前記共結晶において、コフォーマーは、Quabodepistat 1モルに対して、例えば0.5~2.5モルであってもよい。 In the cocrystal, the amount of coformer per mole of quabodepistat is, for example, 0.5 moles or more, preferably 0.8 moles or more, more preferably 0.9 moles or more, and even more preferably 1 mole or more. In the cocrystal, the amount of coformer per mole of quabodepistat is, for example, 2.5 moles or less, preferably 2 moles or less, more preferably 1.5 moles or less, and even more preferably 1 mole or less. In the cocrystal, the amount of coformer per mole of quabodepistat may be, for example, 0.5 to 2.5 moles.
更に別の実施形態において、組成物は、Quabodepistat、その塩又は共結晶の溶媒和物、懸濁化剤、及び分散媒を含む。 In yet another embodiment, the composition comprises a solvate of quabodepistat, a salt or cocrystal thereof, a suspending agent, and a dispersion medium.
前記溶媒和物は、Quabodepistat、前記塩、又は前記共結晶と溶媒分子とが任意のモル比にて形成する溶媒和物であり得る。そのような溶媒和物としては、例えば、水和物、エタノール和物、THF(テトラヒドロフラン)和物等が挙げられる。前記溶媒和物は、例えば、Quabodepistat 1分子に対して溶媒分子が0.5~2分子の溶媒和物として存在してもよく、例えば0.5水和物、1水和物、1.5水和物、又は2水和物であってもよい。 The solvate may be a solvate formed by quabodepistat, the salt, or the cocrystal and solvent molecules in any molar ratio. Examples of such solvates include hydrates, ethanol solvates, and THF (tetrahydrofuran) solvates. The solvate may exist, for example, as a solvate containing 0.5 to 2 solvent molecules per quabodepistat molecule, and may be, for example, a 0.5-hydrate, monohydrate, 1.5-hydrate, or dihydrate.
前記共結晶又はその溶媒和物は、例えば、国際公開第2021/230198号公報に記載のものであってもよい。 The cocrystal or solvate thereof may be, for example, one described in WO 2021/230198.
前記組成物中の活性成分の含有濃度は、前記組成物の用途に応じた有効濃度であれば特に制限されない。前記組成物中の活性成分の含有濃度は、フリー体換算で、例えば100mg/mL以上、好ましくは150mg/mL以上、より好ましくは200mg/mL以上、更に好ましくは250mg/mL以上、更により好ましくは300mg/mL以上である。前記組成物中の活性成分の含有濃度は、フリー体換算で、例えば400mg/mL以下又は450mg/mL以下であってもよいが、良好な流動特性を維持しつつ作用を長時間持続させる観点から500mg/mL以下であることが好ましい。前記組成物中の活性成分の含有濃度は、フリー体換算で、例えば100~500mg/mL、好ましくは200~500mg/mL、更に好ましくは300~500mg/mLである。 The concentration of the active ingredient in the composition is not particularly limited, as long as it is an effective concentration depending on the intended use of the composition. The concentration of the active ingredient in the composition, calculated as free form, is, for example, 100 mg/mL or more, preferably 150 mg/mL or more, more preferably 200 mg/mL or more, even more preferably 250 mg/mL or more, and even more preferably 300 mg/mL or more. The concentration of the active ingredient in the composition, calculated as free form, may be, for example, 400 mg/mL or less or 450 mg/mL or less, but is preferably 500 mg/mL or less from the perspective of maintaining good flow properties and prolonged action. The concentration of the active ingredient in the composition, calculated as free form, is, for example, 100 to 500 mg/mL, preferably 200 to 500 mg/mL, and even more preferably 300 to 500 mg/mL.
前記組成物に含まれる懸濁化剤は、薬学的に許容され且つ所定の粘度を達成し得るものである限り、特に制限されない。懸濁化剤としては、例えば、カルボキシメチルセルロース及びその塩;ポロキサマー等のポリオキシエチレン-ポリオキシプロピレンブロックコポリマー;ポリエチレングリコール(「マクロゴール」ともいう。)等が挙げられる。 The suspending agent contained in the composition is not particularly limited, so long as it is pharmaceutically acceptable and can achieve the desired viscosity. Examples of suspending agents include carboxymethylcellulose and its salts; polyoxyethylene-polyoxypropylene block copolymers such as poloxamer; and polyethylene glycol (also known as "macrogol").
カルボキシメチルセルロースの塩としては、例えば、アルカリ金属塩等の金属塩、アンモニウム塩等が挙げられる。具体的には、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカリウム、カルボキシメチルセルロースリチウム、カルボキシメチルセルロースアンモニウム、これらの混合物等が挙げられる。一実施形態において、懸濁化剤は、カルボキシメチルセルロース及び/又はそのナトリウム塩を含むことが好ましく、カルボキシメチルセルロースナトリウムを含むことが特に好ましい。 Examples of salts of carboxymethylcellulose include metal salts such as alkali metal salts, and ammonium salts. Specific examples include sodium carboxymethylcellulose, potassium carboxymethylcellulose, lithium carboxymethylcellulose, ammonium carboxymethylcellulose, and mixtures thereof. In one embodiment, the suspending agent preferably contains carboxymethylcellulose and/or its sodium salt, and particularly preferably contains sodium carboxymethylcellulose.
カルボキシメチルセルロース又はその塩の平均分子量は、例えば5000以上、好ましくは10000以上である。カルボキシメチルセルロース又はその塩の平均分子量は、例えば300000以下、好ましくは250000以下である。カルボキシメチルセルロース又はその塩の平均分子量は、例えば5000~300000、好ましくは10000~250000である。 The average molecular weight of carboxymethylcellulose or its salts is, for example, 5,000 or more, preferably 10,000 or more. The average molecular weight of carboxymethylcellulose or its salts is, for example, 300,000 or less, preferably 250,000 or less. The average molecular weight of carboxymethylcellulose or its salts is, for example, 5,000 to 300,000, preferably 10,000 to 250,000.
カルボキシメチルセルロース又はその塩の2%(w/v)水溶液の粘度は、例えば1000mPa・s以下、好ましくは800mPa・s以下である。前記粘度は、例えば10mPa・s以上、好ましくは50mPa・s以上である。前記粘度は、例えば10~1000mPa・s、好ましくは50~800mPa・sである。前記粘度はUSP-NF(例えば2019年度版USP42-NF37)に記載の方法に従って測定することができる。 The viscosity of a 2% (w/v) aqueous solution of carboxymethylcellulose or its salt is, for example, 1000 mPa·s or less, preferably 800 mPa·s or less. The viscosity is, for example, 10 mPa·s or more, preferably 50 mPa·s or more. The viscosity is, for example, 10 to 1000 mPa·s, preferably 50 to 800 mPa·s. The viscosity can be measured according to the method described in USP-NF (e.g., the 2019 edition of USP42-NF37).
ポロキサマーは、通常、式:HO-[CH2CH2O]x-[CH(CH3)CH2O]y-[CH2CH2O]z-H(式中、xは2~150、yは15~70、zは2~150である)で表される。ポロキサマーとしては、例えば、ポロキサマー124、ポロキサマー188、ポロキサマー237、ポロキサマー338、ポロキサマー407、これら2種以上の混合物等が挙げられる。ポロキサマーの平均分子量は、例えば2000以上、好ましくは3000以上、より好ましくは4000以上、更に好ましくは5000以上であり、例えば6000以上、6500以上、7000以上、又は7500以上であってもよい。ポロキサマーの平均分子量は、例えば20000以下、好ましくは19000以下、更に好ましくは18000以下である。ポロキサマーの平均分子量は、例えば2000~20000以下である。当該平均分子量はUSP-NF(例えば2019年度版USP42-NF37)に記載の方法に従って測定することができる。一実施形態において、懸濁化剤は、ポロキサマー338及び/又はポロキサマー188を含むことが好ましい。 Poloxamers are generally represented by the formula: HO-[ CH2CH2O ]x-[CH( CH3 ) CH2O ] y-[ CH2CH2O ]zH (wherein x is 2 to 150, y is 15 to 70, and z is 2 to 150). Examples of poloxamers include poloxamer 124, poloxamer 188, poloxamer 237, poloxamer 338, poloxamer 407, and mixtures of two or more of these. The average molecular weight of the poloxamer is, for example, 2,000 or more, preferably 3,000 or more, more preferably 4,000 or more, and even more preferably 5,000 or more, and may be, for example, 6,000 or more, 6,500 or more, 7,000 or more, or 7,500 or more. The average molecular weight of the poloxamer is, for example, 20,000 or less, preferably 19,000 or less, and even more preferably 18,000 or less. The average molecular weight of the poloxamer is, for example, 2,000 to 20,000. The average molecular weight can be measured according to the method described in USP-NF (e.g., the 2019 edition of USP42-NF37). In one embodiment, the suspending agent preferably contains poloxamer 338 and/or poloxamer 188.
ポリエチレングリコール(PEG)の平均分子量は、例えば100以上、好ましくは150以上、さらに好ましくは200以上である。PEGの平均分子量は、例えば10000以下、好ましくは8000以下、更に好ましくは5000以下である。PEGの平均分子量は、例えば100~10000である。当該平均分子量はUSP-NF(例えば2019年度版USP42-NF37)に記載の方法に従って測定することができる。PEGとしては、例えば、PEG200、PEG300、PEG400、PEG600、PEG3350、PEG4000、PEG6000、PEG8000、これら2種以上の混合物等が挙げられる。これらのうち、PEG3350及び/又はPEG400が好ましい。 The average molecular weight of polyethylene glycol (PEG) is, for example, 100 or more, preferably 150 or more, and more preferably 200 or more. The average molecular weight of PEG is, for example, 10,000 or less, preferably 8,000 or less, and more preferably 5,000 or less. The average molecular weight of PEG is, for example, 100 to 10,000. The average molecular weight can be measured according to the method described in USP-NF (e.g., the 2019 edition of USP42-NF37). Examples of PEG include PEG200, PEG300, PEG400, PEG600, PEG3350, PEG4000, PEG6000, PEG8000, and mixtures of two or more of these. Of these, PEG3350 and/or PEG400 are preferred.
懸濁化剤は1種単独であっても2種以上の組合せであってもよい。一実施形態において、懸濁化剤が、第1の懸濁化剤としてカルボキシメチルセルロース又はその塩及びポロキサマーからなる群から選択される少なくとも一種を含む場合、所望の粘度に調整するため、第2の懸濁化剤としてPEGを含むことが好ましい。第2の懸濁化剤は、第1の懸濁化剤100質量部に対して、例えば10質量部以上、好ましくは15質量部以上、更に好ましくは20質量部以上である。第2の懸濁化剤は、第1の懸濁化剤100質量部に対して、例えば200質量部以下、好ましくは150質量部以下、更に好ましくは100質量部以下である。第2の懸濁化剤は、第1の懸濁化剤100質量部に対して、例えば10~200質量部である。 The suspending agent may be a single agent or a combination of two or more agents. In one embodiment, when the suspending agent contains at least one agent selected from the group consisting of carboxymethylcellulose or a salt thereof and poloxamer as the first suspending agent, it is preferable to contain PEG as the second suspending agent to adjust the viscosity to the desired level. The amount of the second suspending agent is, for example, 10 parts by mass or more, preferably 15 parts by mass or more, and more preferably 20 parts by mass or more, per 100 parts by mass of the first suspending agent. The amount of the second suspending agent is, for example, 200 parts by mass or less, preferably 150 parts by mass or less, and more preferably 100 parts by mass or less, per 100 parts by mass of the first suspending agent. The amount of the second suspending agent is, for example, 10 to 200 parts by mass, per 100 parts by mass of the first suspending agent.
前記組成物中の懸濁化剤の含有濃度は、例えば0.01mg/mL以上、好ましくは0.02mg/mL以上、更に好ましくは0.05mg/mL以上である。前記組成物中の懸濁化剤の含有濃度は、例えば20mg/mL以下、好ましくは15mg/mL以下、より好ましくは10mg/mL以下である。前記組成物中の懸濁化剤の含有濃度は、例えば0.01~20mg/mLである。前記組成物中の懸濁化剤、第1の懸濁化剤、及び第2の懸濁化剤の含有濃度は、それぞれ、前記組成物中の活性成分の含有濃度(例えば、フリー体換算で100~500mg/mL)と適宜組み合わせることができる。 The concentration of the suspending agent in the composition is, for example, 0.01 mg/mL or more, preferably 0.02 mg/mL or more, and more preferably 0.05 mg/mL or more. The concentration of the suspending agent in the composition is, for example, 20 mg/mL or less, preferably 15 mg/mL or less, and more preferably 10 mg/mL or less. The concentration of the suspending agent in the composition is, for example, 0.01 to 20 mg/mL. The concentrations of the suspending agent, first suspending agent, and second suspending agent in the composition can each be appropriately combined with the concentration of the active ingredient in the composition (e.g., 100 to 500 mg/mL in free form).
前記組成物に含まれる分散媒は、薬学的に許容され且つ活性成分を分散し得るものである限り、特に制限されない。分散媒は1種単独であっても2種以上の組合せであってもよい。分散媒は、少なくとも水を含むことが好ましい。そのような分散媒としては、水、生理食塩水、水と有機溶媒とを含む溶媒等が挙げられる。前記有機溶媒としては、水と混和性があるもの、例えば、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール;アセトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド等のアミド;これらの混合物等が挙げられる。前記有機溶媒は、好ましくはアルコール、更に好ましくはエタノールである。水と有機溶媒とを含む溶媒における水の含有割合は、例えば50質量%以上100質量%未満、好ましくは60質量%以上100質量%未満、更に好ましくは70質量%以上100質量%未満(例えば70~99質量%)である。好適な実施形態において、分散媒は水であり、精製水、滅菌精製水、注射用水等を用いることが特に好ましい。 The dispersion medium contained in the composition is not particularly limited, so long as it is pharmaceutically acceptable and capable of dispersing the active ingredient. The dispersion medium may be a single type or a combination of two or more types. It is preferable that the dispersion medium contains at least water. Examples of such dispersion mediums include water, physiological saline, and solvents containing water and an organic solvent. Examples of the organic solvent include those that are miscible with water, such as alcohols (e.g., methanol, ethanol, propanol, isopropanol, etc.); ketones (e.g., acetone); ethers (e.g., tetrahydrofuran); amides (e.g., dimethylformamide); and mixtures thereof. The organic solvent is preferably alcohol, more preferably ethanol. The water content in the solvent containing water and an organic solvent is, for example, 50% by mass or more but less than 100% by mass, preferably 60% by mass or more but less than 100% by mass, and more preferably 70% by mass or more but less than 100% by mass (e.g., 70-99% by mass). In a preferred embodiment, the dispersion medium is water, and purified water, sterile purified water, water for injection, etc. are particularly preferred.
分散媒は、活性成分等の含有割合が上記範囲となるように、適量含有される。例えば、組成物全体の量が0.2mL以上、好ましくは0.3mL以上、より好ましくは0.4mL以上、更に好ましくは0.5mL以上、更により好ましくは0.6mL以上、特に好ましくは0.7mL以上、特により好ましくは0.8mL以上、最も好ましくは0.9mL以上となるように分散媒を含有してもよい。また、組成物全体の量が、例えば1mL以上、1.5mL以上、2mL以上、又は2.5mL以上となるように分散媒を含有してもよい。さらに、組成物全体の量が5mL以下、好ましくは4.5mL以下、より好ましくは4mL以下、更に好ましくは3.5mL以下、更により好ましくは3mL以下、特に好ましくは2.5mL以下、特により好ましくは2mL以下となるように分散媒を含有してもよい。例えば、組成物全体の量が0.2~5mL、1~2mL、2~4mL、又は2.5~5mLとなるように分散媒を含有してもよい。当該量は、例えばプレフィルドシリンジ、バイアル、アンプル等の容器中の組成物の量であり得る。 The dispersion medium is contained in an appropriate amount so that the content of the active ingredient, etc. falls within the above-mentioned range. For example, the dispersion medium may be contained so that the total volume of the composition is 0.2 mL or more, preferably 0.3 mL or more, more preferably 0.4 mL or more, even more preferably 0.5 mL or more, even more preferably 0.6 mL or more, particularly preferably 0.7 mL or more, especially more preferably 0.8 mL or more, and most preferably 0.9 mL or more. The dispersion medium may also be contained so that the total volume of the composition is, for example, 1 mL or more, 1.5 mL or more, 2 mL or more, or 2.5 mL or more. Furthermore, the dispersion medium may be contained so that the total volume of the composition is 5 mL or less, preferably 4.5 mL or less, more preferably 4 mL or less, even more preferably 3.5 mL or less, even more preferably 3 mL or less, especially preferably 2.5 mL or less, and especially preferably 2 mL or less. For example, the dispersion medium may be contained so that the total volume of the composition is 0.2 to 5 mL, 1 to 2 mL, 2 to 4 mL, or 2.5 to 5 mL. The amount may be, for example, the amount of composition in a container such as a prefilled syringe, vial, or ampoule.
前記組成物は、更なる任意の添加剤を含んでいてもよい。そのような添加剤としては、薬学的に許容されるものであれば特に制限されず、例えば、等張化剤、緩衝剤、pH調整剤、保存剤等が挙げられる。前記添加剤は1種を単独で又は2種以上を組み合わせて使用することができる。 The composition may further contain optional additives. Such additives are not particularly limited as long as they are pharmaceutically acceptable, and examples include tonicity agents, buffers, pH adjusters, preservatives, etc. The additives may be used alone or in combination of two or more.
等張化剤としては、例えば、塩化ナトリウム、塩化カリウム等のアルカリ金属塩化物;マンニトール、ソルビトール、キシリトール、マルチトール等の糖アルコール:ブドウ糖、トレハロース、マルトース等の糖;グリセリン等が挙げられる。前記組成物は等張化剤を含んでいなくてもよいが、等張化剤を含む場合、前記組成物中の等張化剤の含有濃度は、例えば0.5~10mg/mL、好ましくは1~8mg/mLである。 Examples of isotonicity agents include alkali metal chlorides such as sodium chloride and potassium chloride; sugar alcohols such as mannitol, sorbitol, xylitol, and maltitol; sugars such as glucose, trehalose, and maltose; and glycerin. The composition does not need to contain an isotonicity agent, but if it does contain an isotonicity agent, the concentration of the isotonicity agent in the composition is, for example, 0.5 to 10 mg/mL, and preferably 1 to 8 mg/mL.
緩衝剤としては、例えば、リン酸ナトリウム、リン酸二水素ナトリウム、リン酸水素一ナトリウム、リン酸水素二ナトリウム、リン酸カリウム、リン酸二水素カリウム、リン酸水素二カリウム等のリン酸塩;ホウ酸ナトリウム、ホウ酸カリウム等のホウ酸塩;クエン酸ナトリウム、クエン酸二ナトリウム等のクエン酸塩;酢酸ナトリウム、酢酸カリウム等の酢酸塩;炭酸ナトリウム、炭酸水素ナトリウム等の炭酸塩等が挙げられる。前記組成物中の緩衝剤の含有濃度は、例えば0.01~1.5mg/mL、好ましくは0.1~1mg/mLである。 Examples of buffering agents include phosphates such as sodium phosphate, sodium dihydrogen phosphate, monosodium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, potassium dihydrogen phosphate, and dipotassium hydrogen phosphate; borates such as sodium borate and potassium borate; citrates such as sodium citrate and disodium citrate; acetates such as sodium acetate and potassium acetate; and carbonates such as sodium carbonate and sodium bicarbonate. The concentration of the buffering agent in the composition is, for example, 0.01 to 1.5 mg/mL, and preferably 0.1 to 1 mg/mL.
pH調整剤は、酸性pH調整剤であっても塩基性pH調整剤であってもよい。酸性pH調整剤としては、例えば、塩酸、リン酸、酢酸、クエン酸等が挙げられる。塩基性pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム等が挙げられる。pH調整剤は、通常、組成物の所望のpHに応じて適量添加される。 The pH adjuster may be either an acidic pH adjuster or a basic pH adjuster. Examples of acidic pH adjusters include hydrochloric acid, phosphoric acid, acetic acid, and citric acid. Examples of basic pH adjusters include sodium hydroxide, potassium hydroxide, calcium carbonate, magnesium oxide, and magnesium hydroxide. The pH adjuster is usually added in an appropriate amount depending on the desired pH of the composition.
保存剤としては、例えば、安息香酸又はその塩(例えばナトリウム塩等のアルカリ金属塩)、パラオキシ安息香酸エステル(例えばメチルエステル、エチルエステル、プロピルエステル、ブチルエステル等のアルキルエステル)、ブチルヒドロキシアニソール(BHA)、ジブチルヒドロキシトルエン(BHT)、ベンジルアルコール等が挙げられる。前記組成物は保存剤を含んでいなくてもよいが、保存剤を含む場合、前記組成物中の保存剤の含有濃度は、例えば0.01~1mg/mL又は0.05~0.5mg/mLである。 Examples of preservatives include benzoic acid or its salts (e.g., alkali metal salts such as sodium salt), parahydroxybenzoic acid esters (e.g., alkyl esters such as methyl ester, ethyl ester, propyl ester, and butyl ester), butylhydroxyanisole (BHA), dibutylhydroxytoluene (BHT), and benzyl alcohol. The composition may not contain a preservative, but if it does contain a preservative, the concentration of the preservative in the composition is, for example, 0.01 to 1 mg/mL or 0.05 to 0.5 mg/mL.
前記組成物は、マイクロ粒子の懸濁液の形態である。前記懸濁液は、水性懸濁液であることが好ましい。前記マイクロ粒子は、少なくとも活性成分を含んでいる。前記マイクロ粒子は、その表面等に懸濁化剤を含んでいてもよい。 The composition is in the form of a suspension of microparticles. The suspension is preferably an aqueous suspension. The microparticles contain at least an active ingredient. The microparticles may contain a suspending agent on their surfaces, etc.
前記マイクロ粒子の平均一次粒子径は、例えば0.5μm以上、好ましくは1μm以上である。前記マイクロ粒子の平均一次粒子径は、例えば20μm以下、好ましくは15μm以下、更に好ましくは10μm以下である。前記マイクロ粒子の平均一次粒子径は、例えば0.5~20μmである。このような範囲は作用を長時間持続させる点で好ましい。なお、平均一次粒子径は、超音波照射を行う条件下でレーザー回折散乱法によって測定することができる。前記マイクロ粒子の平均二次粒子径は、例えば1μm以上、好ましくは2μm以上である。前記マイクロ粒子の平均二次粒子径は、例えば30μm以下、好ましくは25μm以下、更に好ましくは20μm以下である。このような範囲は作用を長時間持続させる点で好ましい。なお、平均二次粒子径は、超音波照射を行わない条件下でレーザー回折散乱法によって測定することができる。レーザー回折散乱法による平均粒子径の測定には、例えばSALD-3100又はSALD-2300(メーカー:株式会社島津製作所)を用いることができる。 The average primary particle size of the microparticles is, for example, 0.5 μm or more, preferably 1 μm or more. The average primary particle size of the microparticles is, for example, 20 μm or less, preferably 15 μm or less, and more preferably 10 μm or less. The average primary particle size of the microparticles is, for example, 0.5 to 20 μm. This range is preferable in terms of maintaining the effect for a long period of time. The average primary particle size can be measured by laser diffraction scattering under conditions of ultrasonic irradiation. The average secondary particle size of the microparticles is, for example, 1 μm or more, preferably 2 μm or more. The average secondary particle size of the microparticles is, for example, 30 μm or less, preferably 25 μm or less, and more preferably 20 μm or less. This range is preferable in terms of maintaining the effect for a long period of time. The average secondary particle size can be measured by laser diffraction scattering under conditions of no ultrasonic irradiation. For example, the SALD-3100 or SALD-2300 (manufacturer: Shimadzu Corporation) can be used to measure the average particle size by laser diffraction scattering.
前記マイクロ粒子の平均二次粒子径(d2)と平均一次粒子径(d1)との差(d2-d1)は、0.5μm以上であることが好ましく、1μm以上であることが更に好ましい。前記マイクロ粒子の平均二次粒子径と平均一次粒子径との差は、10μm以下であることが好ましく、5μm以下であることが更に好ましい。前記マイクロ粒子の平均二次粒子径と平均一次粒子径との差は、例えば0.5~10μmである。 The difference (d2-d1) between the average secondary particle diameter (d2) and the average primary particle diameter (d1) of the microparticles is preferably 0.5 μm or more, and more preferably 1 μm or more. The difference between the average secondary particle diameter and the average primary particle diameter of the microparticles is preferably 10 μm or less, and more preferably 5 μm or less. The difference between the average secondary particle diameter and the average primary particle diameter of the microparticles is, for example, 0.5 to 10 μm.
前記組成物は、せん断速度の増加に応じて粘度が低下する性質、すなわち、チキソトロピー(シアシニング)を示すことが好ましい。 The composition preferably exhibits a property in which the viscosity decreases as the shear rate increases, i.e., thixotropy (shear thinning).
前記組成物の、0.1s-1のせん断速度での粘度(VL)は、粒子間相互作用を増強し、粒子の沈降やケーキングを防止、再分散性を良好とする点から、例えば0.2Pa・s以上、好ましくは0.5Pa・s以上、更に好ましくは1Pa・s以上である。前記組成物の粘度VLは、流動性を確保し、粉砕性及び充填精度の低下を防止する点から、例えば200Pa・s以下、好ましくは150Pa・s以下、より好ましくは100Pa・s以下、更に好ましくは70Pa・s以下である。前記組成物の粘度VLは、例えば0.2~200Pa・sである。 The viscosity (VL) of the composition at a shear rate of 0.1 s -1 is, for example, 0.2 Pa s or more, preferably 0.5 Pa s or more, and more preferably 1 Pa s or more, from the viewpoints of enhancing interparticle interactions, preventing particle settling and caking, and improving redispersibility. The viscosity VL of the composition is, for example, 200 Pa s or less, preferably 150 Pa s or less, more preferably 100 Pa s or less, and even more preferably 70 Pa s or less, from the viewpoints of ensuring flowability and preventing a decrease in grindability and filling accuracy. The viscosity VL of the composition is, for example, 0.2 to 200 Pa s.
前記組成物の、900~1000s-1の範囲内の任意の(例えば900s-1又は1000s-1での)せん断速度での粘度(VH)は、例えば注射時の抵抗値(摺動性)の点から、例えば0.1Pa・s以下、好ましくは0.05Pa・s以下である。前記組成物の粘度VHは、例えば0.001Pa・s以上、好ましくは0.005Pa・s以上である。前記組成物の粘度VHは、例えば0.001~0.1Pa・sである。なお、前記組成物の粘度VHは、900~1000s-1の範囲でせん断速度が変化しても粘度の変化が見られなくなった時点の粘度であってもよい。 The viscosity (VH) of the composition at any shear rate within the range of 900 to 1000 s -1 (e.g., at 900 s -1 or 1000 s -1 ) is, for example, 0.1 Pa·s or less, preferably 0.05 Pa·s or less, for example, in terms of resistance (slidability) during injection. The viscosity VH of the composition is, for example, 0.001 Pa·s or more, preferably 0.005 Pa·s or more. The viscosity VH of the composition is, for example, 0.001 to 0.1 Pa·s. Note that the viscosity VH of the composition may be the viscosity at which no change in viscosity is observed even when the shear rate is changed within the range of 900 to 1000 s -1 .
前記組成物の粘度比VL/VHは、例えば2以上、好ましくは5以上、更に好ましくは10以上である。 The viscosity ratio VL/VH of the composition is, for example, 2 or more, preferably 5 or more, and more preferably 10 or more.
上記せん断速度での粘度は、例えば、Discovery Hybrid Rheometer-2(DHR-2)、Discovery Hybrid Rheometer-3(DHR-3)、Discovery Hybrid Rheometer-20(DHR-20)(メーカー:TAインスツルメント)等の回転式レオメーターにより、25℃の条件下で測定することができる。 The viscosity at the above shear rates can be measured at 25°C using a rotational rheometer such as the Discovery Hybrid Rheometer-2 (DHR-2), Discovery Hybrid Rheometer-3 (DHR-3), or Discovery Hybrid Rheometer-20 (DHR-20) (manufacturer: TA Instruments).
前記組成物の室温(例えば25℃)でのpHは、例えば5以上、好ましくは5.5以上、更に好ましくは6以上である。前記組成物の室温(例えば25℃)でのpHは、場合により6.5以上であってもよい。前記組成物の室温(例えば25℃)でのpHは、例えば9以下、好ましくは8.5以下、更に好ましくは8以下である。前記組成物の室温(例えば25℃)でのpHは、場合により7.5以下であってもよい。前記組成物の室温(例えば25℃)でのpHは、例えば5~9、好ましくは6~8である。 The pH of the composition at room temperature (e.g., 25°C) is, for example, 5 or higher, preferably 5.5 or higher, and more preferably 6 or higher. The pH of the composition at room temperature (e.g., 25°C) may optionally be 6.5 or higher. The pH of the composition at room temperature (e.g., 25°C) is, for example, 9 or lower, preferably 8.5 or lower, and more preferably 8 or lower. The pH of the composition at room temperature (e.g., 25°C) may optionally be 7.5 or lower. The pH of the composition at room temperature (e.g., 25°C) is, for example, 5 to 9, and preferably 6 to 8.
前記組成物の投与経路は特に制限されないが、前記組成物は筋肉内投与又は皮下投与に用いられることが好ましい。前記組成物の投与対象としては、例えば、ヒト等の哺乳動物が挙げられる。前記組成物の投与対象は、抗酸菌症の予防及び/又は治療を必要とする患者であってもよい。筋肉内投与用又は皮下投与用の前記組成物は、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種を含む、経口投与用の組成物と併用することも好ましく、抗酸菌症の予防及び/又は治療を開始した初期の患者に対しては当該併用が効果的であり得る。 The administration route of the composition is not particularly limited, but the composition is preferably administered intramuscularly or subcutaneously. The recipient of the composition includes, for example, mammals such as humans. The recipient of the composition may be a patient in need of prevention and/or treatment of mycobacteriosis. The composition for intramuscular or subcutaneous administration is also preferably used in combination with an oral composition containing at least one selected from quabodepistat, its salts and cocrystals, and solvates thereof; this combination may be effective for patients in the early stages of mycobacteriosis prevention and/or treatment.
前記組成物は、作用が長時間持続する(例えば有効な血中濃度が持続する)ことから、LAI(Long Acting Injection)製剤として好適に使用され、投与頻度を低減することが可能である。前記組成物は、例えば2週間又はそれ以上、3週間又はそれ以上、4週間又はそれ以上、1ヶ月又はそれ以上、2ヶ月又はそれ以上の間隔をあけて投与される。投与間隔は長ければ長い程好ましく、上限は特に制限されないが、例えば2ヶ月、3ヶ月、4ヶ月、5ヶ月、又は6ヶ月である。このような頻度での投与は患者の服薬遵守の点から好ましい。前記組成物の投与期間(又は治療期間)は、例えば6ヶ月とすることができ、6ヶ月に1~6回投与されることが好ましく、6ヶ月に1~3回投与されることがより好ましく、6ヶ月に1回又は2回投与されることが更に好ましく、6ヶ月に1回投与されることが特に好ましい。一実施形態において、前記組成物は、1ヶ月に1回以下又は2ヶ月に1回以下の頻度で皮下投与されることが好ましい。別の実施形態において、前記組成物は、2ヶ月に1回以下又は3ヶ月に1回以下の頻度で筋肉内投与されることが好ましい。前記組成物は、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも1種の成分、懸濁化剤、及び分散媒を含むサブミクロン粒子の懸濁液の形態である組成物と組み合わせて投与することもできる。前記LAI製剤は、他のLAI製剤(例えば、作用は長時間持続するが、前記LAI製剤よりも作用発現が速いもの)と組み合わせて投与することもでき、該投与は治療初期において効果的であり得る。前記LAI製剤は、経口投与製剤と組み合わせて用いることも好ましい。 Because the composition has a long-lasting effect (e.g., an effective blood concentration is maintained), it is suitable for use as a long-acting injection (LAI) formulation, enabling reduced administration frequency. The composition is administered, for example, at intervals of 2 weeks or more, 3 weeks or more, 4 weeks or more, 1 month or more, or 2 months or more. The longer the administration interval, the more preferable. There is no upper limit, but for example, 2 months, 3 months, 4 months, 5 months, or 6 months. Administration at such a frequency is preferable from the standpoint of patient compliance. The administration period (or treatment period) of the composition can be, for example, 6 months, and it is preferably administered 1 to 6 times every 6 months, more preferably 1 to 3 times every 6 months, even more preferably 1 or 2 times every 6 months, and particularly preferably once every 6 months. In one embodiment, the composition is preferably administered subcutaneously no more than once a month or no more than once every 2 months. In another embodiment, the composition is preferably administered intramuscularly no more frequently than once every two months or no more frequently than once every three months. The composition may also be administered in combination with a composition in the form of a submicron particle suspension containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof, a suspending agent, and a dispersion medium. The LAI formulation may also be administered in combination with other LAI formulations (e.g., those with a longer duration of action but a faster onset of action than the LAI formulation), which may be effective in the early stages of treatment. The LAI formulation is also preferably used in combination with an orally administered formulation.
前記組成物は、1日当たりの用量が、例えば10mg以上又は12mg以上となるように(あるいは1ヶ月当たりの用量が、例えば300mg以上又は360mg以上となるように)投与されることが好ましい。また、前記組成物は、1日当たりの用量が、例えば20mg以下又は18mg以下となるように(あるいは1ヶ月当たりの用量が、例えば600mg以下又は540mg以下となるように)投与されることが好ましい。さらに、前記組成物は、1日当たりの用量が、例えば10~20mg、好ましくは12~18mgとなるように投与されることが好ましい。 The composition is preferably administered at a daily dose of, for example, 10 mg or more or 12 mg or more (or at a monthly dose of, for example, 300 mg or more or 360 mg or more). The composition is also preferably administered at a daily dose of, for example, 20 mg or less or 18 mg or less (or at a monthly dose of, for example, 600 mg or less or 540 mg or less). The composition is also preferably administered at a daily dose of, for example, 10 to 20 mg, preferably 12 to 18 mg.
前記組成物は、1回(又は1ヶ月)当たりの注入量が、例えば0.5mL以上、又は1mL以上となるように投与されることが好ましい。また、前記組成物は、1回(又は1ヶ月)当たりの注入量が、例えば5mL以下、4.5mL以下、4mL以下、3.5mL以下、3mL以下、2.5mL以下、2mL以下、又は1.5mL以下となるように投与されることが好ましい。さらに、前記組成物は、1回(又は1ヶ月)当たりの注入量が、例えば0.5~5mL、0.5~3mL、又は1~2mLとなるように投与されることが好ましい。 The composition is preferably administered so that the injection volume per administration (or per month) is, for example, 0.5 mL or more, or 1 mL or more. The composition is also preferably administered so that the injection volume per administration (or per month) is, for example, 5 mL or less, 4.5 mL or less, 4 mL or less, 3.5 mL or less, 3 mL or less, 2.5 mL or less, 2 mL or less, or 1.5 mL or less. The composition is also preferably administered so that the injection volume per administration (or per month) is, for example, 0.5 to 5 mL, 0.5 to 3 mL, or 1 to 2 mL.
前記組成物は、通常、注射製剤である。一実施形態において、前記組成物は、18~30G(ゲージ)又は20~30G(ゲージ)の注射針で投与するための注射製剤である。 The composition is typically an injectable formulation. In one embodiment, the composition is an injectable formulation for administration with an 18-30G (gauge) or 20-30G (gauge) needle.
前記組成物は、抗酸菌症(潜在性抗酸菌症を含む)の予防及び/又は治療に用いられることが好ましい。抗酸菌症は、例えば、結核菌、らい菌、非結核性抗酸菌等によって引き起こされる感染症である。結核菌としては、例えば、Mycobacterium tuberculosis、Mycobacterium africanum、Mycobacterium bovis、Mycobacterium caprae、Mycobacterium pinnipedii、Mycobacterium microti等が挙げられる。らい菌としては、例えば、Mycobacterium leprae等が挙げられる。非結核性抗酸菌としては、例えば、Mycobacterium avium、Mycobacterium intracellulare、Mycobacterium kansasii、Mycobacterium marinum、Mycobacterium simiae、Mycobacterium scrofulaceum、Mycobacterium szulgai、Mycobacterium xenopi、Mycobacterium malmoense、Mycobacterium haemophilum、Mycobacterium ulcerans、Mycobacterium shimoidei、Mycobacterium fortuitum、Mycobacterium chelonae、Mycobacterium smegmatis、Mycobacterium aurum等が挙げられる。好適な実施形態において、抗酸菌症は結核(潜在性結核を含む)である。結核は多剤耐性結核であってもよい。また、結核は肺結核であってもよい。 The composition is preferably used for the prevention and/or treatment of mycobacteriosis (including latent mycobacteriosis). Mycobacteriosis is an infectious disease caused by, for example, Mycobacterium tuberculosis, Mycobacterium leprae, non-tuberculous mycobacteria, etc. Examples of tuberculosis bacteria include Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium pinnipedii, Mycobacterium microti, etc. Examples of leprae bacteria include Mycobacterium leprae, etc. Examples of non-tuberculous mycobacteria include Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium shimoidei, Mycobacterium fortuitum, Mycobacterium chelonae, Mycobacterium smegmatis, and Mycobacterium aurum. In a preferred embodiment, the mycobacterial disease is tuberculosis (including latent tuberculosis). The tuberculosis may be multidrug-resistant tuberculosis. The tuberculosis may also be pulmonary tuberculosis.
前記組成物は、無菌組成物又は滅菌組成物であることが好ましい。滅菌は、粒子の凝集抑制、及び/又は長期保存における組成物のチキソトロピーの維持及び粒子沈降やケーキング防止の観点から、放射線滅菌が好ましい。放射線滅菌としては、例えば、γ線滅菌、電子線滅菌、X線滅菌等が挙げられる。 The composition is preferably a sterile composition or a sterilized composition. Sterilization is preferably by radiation sterilization from the viewpoints of inhibiting particle aggregation and/or maintaining the thixotropy of the composition during long-term storage and preventing particle settling and caking. Examples of radiation sterilization include gamma ray sterilization, electron beam sterilization, and X-ray sterilization.
前記組成物は、他の抗酸菌症予防又は治療薬と組み合わせて用いられるものであってもよい。本明細書において、「組み合わせて用いられる」とは、同時に投与すること、及び逐次投与のように別々に投与することを含む意味で用いる。一実施形態において、前記組成物は、前記活性成分に加えて他の抗酸菌症予防又は治療薬を含んでおり、単一の組成物として投与されるものであってもよい。 The composition may be used in combination with other drugs for preventing or treating mycobacteriosis. As used herein, the term "used in combination" includes simultaneous administration and separate administration, such as sequential administration. In one embodiment, the composition contains other drugs for preventing or treating mycobacteriosis in addition to the active ingredient, and may be administered as a single composition.
前記組成物の調製方法としては、湿式粉砕手法を使用することができる。湿式粉砕手法は、湿式ボールミリング(wet ball milling)や高圧ホモジナイザー粉砕(high pressure homogenization)、高剪断ホモジナイゼーション(high shear homogenization)、ビーズミル(例えば、ダイノーミル)等が好ましい。前記粉砕手法に加えて、他の低及び高エネルギーミル(例えば、ローラーミル)も使用することができる。その他の調製方法としては、制御された晶析法(controlled crystallization)、ハンマーミル、ジェットミル、ピンミル等の乾式粉砕した粉末を懸濁する方法等が挙げられる。 Wet milling techniques can be used to prepare the composition. Preferred wet milling techniques include wet ball milling, high pressure homogenization, high shear homogenization, and bead mills (e.g., Dyno Mill). In addition to the above milling techniques, other low- and high-energy mills (e.g., roller mills) can also be used. Other preparation methods include controlled crystallization, and methods of suspending dry-milled powder using a hammer mill, jet mill, pin mill, etc.
一実施形態において、前記組成物は、例えば、活性成分、懸濁化剤、及び分散媒を混合する工程1と、前記混合により得られた懸濁液に対して湿式粉砕を行う工程2と、前記湿式粉砕により得られた懸濁液を回収する工程3とを含む方法により製造することができる。 In one embodiment, the composition can be produced by a method including, for example, step 1: mixing an active ingredient, a suspending agent, and a dispersion medium; step 2: wet-milling the suspension obtained by the mixing; and step 3: recovering the suspension obtained by the wet-milling.
工程1において、各成分の混合順序は特に制限されない。一実施形態において、工程1は、活性成分以外の成分を混合してビヒクル溶液を得る工程、及び前記ビヒクル溶液と活性成分とを混合する工程で構成されている。 In Step 1, the order in which the components are mixed is not particularly limited. In one embodiment, Step 1 consists of a step of mixing components other than the active ingredient to obtain a vehicle solution, and a step of mixing the vehicle solution with the active ingredient.
工程2において、湿式粉砕はビーズミル又は高圧ホモジナイザーによる湿式粉砕であることが好ましい。ビーズミルの方法は特に制限されない。一実施形態において、工程2は、懸濁液にビーズを添加して撹拌する工程である。ビーズミルは、バッチ式、連続(パス)式、及び循環式のいずれで行ってもよい。ビーズの材質としては、例えば、ジルコニア、アルミナ、ガラス等が挙げられる。ビーズの直径は、例えば、0.1~5mm、好ましくは0.2~3mmである。なお、ビーズミルにより得られる粒子の平均粒子径は、ビーズの大きさ、粉砕時の回転速度(周速)や流動速度(流速)、粉砕時間等により適宜調整することができる。高圧ホモジナイザーの方法も特に制限されない。処理圧力(又は最終到達圧力)は、例えば100~1000bar、好ましくは150~800bar、更に好ましくは200~600barである。処理時間は、例えば懸濁液1L当たり1~60分、好ましくは5~30分である。 In step 2, the wet milling is preferably wet milling using a bead mill or a high-pressure homogenizer. The bead milling method is not particularly limited. In one embodiment, step 2 is a step of adding beads to the suspension and stirring. The bead milling method may be batch, continuous (pass), or circulating. Examples of bead materials include zirconia, alumina, and glass. The bead diameter is, for example, 0.1 to 5 mm, preferably 0.2 to 3 mm. The average particle size of the particles obtained using the bead mill can be adjusted appropriately by adjusting the bead size, the rotation speed (circumferential speed) and flow rate (flow velocity) during milling, the milling time, and other factors. The high-pressure homogenizer method is also not particularly limited. The processing pressure (or final pressure) is, for example, 100 to 1,000 bar, preferably 150 to 800 bar, and more preferably 200 to 600 bar. The processing time is, for example, 1 to 60 minutes per 1 L of suspension, preferably 5 to 30 minutes.
工程3において、湿式粉砕により得られた懸濁液を回収する方法は特に制限されない。工程3は、湿式粉砕がビーズミルの場合、通常、ビーズを除去する工程を含む。一実施形態において、ビーズを除去する工程は、ビーズミル出口のセパレータ(ギャップ又はスクリーン等)やビーズミルの遠心分離によってビーズを分離除去する工程や、ビーズよりも孔径の小さい注射針(例えば22G以下)又はメッシュフィルター(例えば80μmのメッシュ)を用いてビーズを分離除去する工程であることが好ましい。 In step 3, the method for recovering the suspension obtained by wet milling is not particularly limited. When wet milling is performed using a bead mill, step 3 typically includes a step of removing the beads. In one embodiment, the step of removing the beads is preferably a step of separating and removing the beads using a separator (such as a gap or screen) at the bead mill outlet or by centrifuging the bead mill, or a step of separating and removing the beads using a syringe needle with a pore size smaller than the beads (for example, 22G or smaller) or a mesh filter (for example, 80 μm mesh).
工程3は、湿式粉砕後の懸濁液(湿式粉砕がビーズミルの場合は、ビーズ除去後の懸濁液)を容器に充填する方法を含むことが好ましい。一実施形態において、バルブピストンポンプ、ペリスタルティックポンプ、マスフロー方式、タイムプレッシャー方式等の充填装置を使用することができる。容器も特に制限されないが、アンプル、バイアル、プレフィルドシリンジ等が挙げられ、プレフィルドシリンジが好ましい。 Step 3 preferably includes a method of filling a container with the suspension after wet milling (or the suspension after beads are removed if the wet milling is performed using a bead mill). In one embodiment, a filling device such as a valve piston pump, peristaltic pump, mass flow system, or time pressure system can be used. The container is not particularly limited, but examples include ampoules, vials, and prefilled syringes, with prefilled syringes being preferred.
一実施形態において、前記組成物は、例えば、活性成分を乾式粉砕する工程1と、前記乾式粉砕後の活性成分、懸濁化剤、及び分散媒を混合する工程2と、前記混合により得られた懸濁液を回収する工程3とを含む方法により製造することができる。 In one embodiment, the composition can be produced by a method comprising, for example, step 1: dry-milling the active ingredient; step 2: mixing the dry-milled active ingredient, suspending agent, and dispersant; and step 3: recovering the suspension obtained by the mixing.
工程1において、乾式粉砕はハンマーミル又はジェットミルによる乾式粉砕であることが好ましい。 In step 1, the dry grinding is preferably performed using a hammer mill or a jet mill.
工程2において、各成分の混合順序は特に制限されない。一実施形態において、工程2は、乾式粉砕後の活性成分以外の成分を混合してビヒクル溶液を得る工程、及び前記ビヒクル溶液と乾式粉砕後の活性成分とを混合する工程で構成されている。 In Step 2, the order in which the components are mixed is not particularly limited. In one embodiment, Step 2 consists of a step of mixing components other than the dry-milled active ingredient to obtain a vehicle solution, and a step of mixing the vehicle solution with the dry-milled active ingredient.
工程3は、湿式粉砕により得られた懸濁液を回収する工程と同様の工程であってもよい。 Step 3 may be the same as the step of recovering the suspension obtained by wet grinding.
前記組成物は滅菌組成物又は無菌組成物であることが好ましい。この場合、前記製造方法は、工程1、工程2、及び工程3に加えて、前記懸濁液(例えば、湿式粉砕又は乾式粉砕された懸濁液、通常、容器に充填された懸濁液)を滅菌する工程4を含むことが好ましい。滅菌は、粒子の凝集抑制の観点から、放射線滅菌が好ましい。放射線滅菌としては、例えば、γ線滅菌、電子線滅菌、X線滅菌等が挙げられる。 The composition is preferably a sterilized or aseptic composition. In this case, the production method preferably includes, in addition to steps 1, 2, and 3, step 4 of sterilizing the suspension (e.g., a wet-pulverized or dry-pulverized suspension, typically a suspension filled in a container). From the viewpoint of suppressing particle aggregation, radiation sterilization is preferred for sterilization. Examples of radiation sterilization include gamma ray sterilization, electron beam sterilization, and X-ray sterilization.
本発明は、前記組成物を含む容器(一次容器ともいう)を包含する。容器としては、プレフィルドシリンジのようなシリンジ、バイアル、アンプル、ボトル、カートリッジ等が挙げられる。これらの容器の材質は、特に制限されず、ガラスであってもプラスチックであってもよい。一実施形態において、容器はプレフィルドシリンジ、バイアル、又はアンプルである。例えば、前記組成物をそのままシリンジに充填することでプレフィルドシリンジとして利用することができる。前記組成物を前記容器(特にプレフィルドシリンジ、バイアル、又はアンプル)に充填した後に前記滅菌を行うことも好ましい。さらに、本発明は、前記容器(特にプレフィルドシリンジ、バイアル、又はアンプル)を含むキットも包含する。 The present invention encompasses a container (also referred to as a primary container) containing the composition. Examples of containers include syringes such as prefilled syringes, vials, ampoules, bottles, cartridges, etc. The material of these containers is not particularly limited and may be glass or plastic. In one embodiment, the container is a prefilled syringe, vial, or ampoules. For example, the composition can be used as a prefilled syringe by filling it directly into a syringe. It is also preferable to perform the sterilization after filling the composition into the container (particularly a prefilled syringe, vial, or ampoules). Furthermore, the present invention also encompasses a kit containing the container (particularly a prefilled syringe, vial, or ampoules).
本発明は、抗酸菌症を予防及び/又は治療する方法であって、抗酸菌症の予防及び/又は治療の必要がある対象に前記組成物を有効量投与することを含む方法を包含する。当該方法における各構成は、前記組成物について記載された対応する構成を採用することができる。本発明は、抗酸菌症(例えば結核)を予防及び/又は治療する方法であって、抗酸菌症(例えば結核)の予防及び/又は治療の必要がある対象に、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも一種の成分を含むマイクロ粒子の懸濁液の形態である組成物の有効量を1週間以上の間隔で、好ましくは1か月以上の間隔で、更に好ましくは2~3か月の間隔で1~4回、筋肉内投与又は皮下投与することを含む方法を包含する。さらに、本発明は、潜在性結核を予防及び/又は治療する方法であって、潜在性結核の予防及び/又は治療の必要がある対象に、Quabodepistat、その塩及び共結晶、並びにそれらの溶媒和物から選択される少なくとも一種の成分を含むマイクロ粒子の懸濁液の形態である組成物の有効量を1~3か月の間隔で1~3回筋肉内投与又は皮下投与することを含む方法を包含する。 The present invention encompasses a method for preventing and/or treating mycobacteriosis, comprising administering an effective amount of the composition to a subject in need of prevention and/or treatment of mycobacteriosis. The corresponding configurations described for the composition can be employed for each element of the method. The present invention encompasses a method for preventing and/or treating mycobacteriosis (e.g., tuberculosis), comprising intramuscularly or subcutaneously administering an effective amount of a composition in the form of a microparticle suspension containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof, to a subject in need of prevention and/or treatment of mycobacteriosis (e.g., tuberculosis) 1 to 4 times at intervals of one week or more, preferably at intervals of one month or more, and more preferably at intervals of 2 to 3 months. Furthermore, the present invention encompasses a method for preventing and/or treating latent tuberculosis, which comprises intramuscularly or subcutaneously administering an effective amount of a composition in the form of a suspension of microparticles containing at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof, to a subject in need of prevention and/or treatment of latent tuberculosis 1 to 3 times at intervals of 1 to 3 months.
本発明は、抗酸菌症の予防及び/又は治療用の医薬を製造するための、前記組成物の使用を包含する。当該使用における各構成は、前記組成物について記載された対応する構成を採用することができる。一実施形態において、前記医薬は、1週間以上の間隔、1か月以上の間隔、2~3か月の間隔で1~4回、又は1~3か月の間隔で1~3回の筋肉内投与又は皮下投与に用いられることが好ましい。 The present invention encompasses the use of the composition for the manufacture of a medicament for the prevention and/or treatment of mycobacteriosis. The respective components of the use can be the same as those described for the composition. In one embodiment, the medicament is preferably administered intramuscularly or subcutaneously 1 to 4 times at intervals of one week or more, one month or more, or two to three months, or 1 to three times at intervals of one to three months.
以下に、本発明をさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。なお、「Q.S.」はquantum sufficitの略であり、sufficient quantityという意味を表す。 The present invention will be described in more detail below. However, the present invention is not limited to the following embodiments. Note that "Q.S." is an abbreviation for quantum sufficient, meaning sufficient quantity.
実施例1~21並びに比較例1
表1に示す懸濁化剤としてAshlandから入手したカルボキシメチルセルロースナトリウム(Aqualon CMC 7L2P又はBlanose CMC 7LP、7LF)、場合によりCLARIANTから入手したPEG3350(POLYGLYKOL 3350 S)又はCRODAから入手したPEG400(Super Refined PEG400)、等張化剤として塩化ナトリウム又はマンニトール、緩衝剤としてリン酸二水素ナトリウム一水和物を水(注射用水)で溶解し、水酸化ナトリウム溶液でpH 7.0に調整し、ビヒクル溶液を調製した。バイアル中に有効成分Quabodepistat(OPC-167832)と調製したビヒクル溶液を秤量し、秤取したOPC-167832と混合して、懸濁液を調製した。さらにバイアル中にφ1.5 mm ジルコニアビーズを懸濁液1 mLあたり2g添加し、撹拌子を入れた。撹拌子を入れたバイアルをスターラーで撹拌し、ビーズミルを行った(500 rpm)。なお、粉砕時間は、目標とする粒子径に応じて変更した。ビヒクル溶液に有効成分を懸濁した後の操作はいずれも10℃以下で行った。粉砕後の懸濁液をφ1.5 mm ジルコニアビーズより孔径の小さい注射針(22 G以下の注射針)又は80 μmのナイロンメッシュフィルターを使用して回収し、表1に示される注射製剤を得た。
Examples 1 to 21 and Comparative Example 1
A vehicle solution was prepared by dissolving sodium carboxymethylcellulose (Aqualon CMC 7L2P or Blanose CMC 7LP, 7LF) from Ashland (as shown in Table 1) as a suspending agent, optionally PEG3350 (POLYGLYKOL 3350 S) from CLARIANT or PEG400 (Super Refined PEG400) from CRODA (as shown in Table 1), sodium chloride or mannitol as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection). The pH was adjusted to 7.0 with sodium hydroxide solution. The active ingredient, quabodepistat (OPC-167832), and the prepared vehicle solution were weighed into a vial and mixed with the weighed OPC-167832 to prepare a suspension. Furthermore, 2 g of 1.5 mm diameter zirconia beads per 1 mL of suspension were added to the vial, and a stir bar was inserted. The vial containing the stirring bar was stirred with a stirrer and subjected to bead milling (500 rpm). The milling time was varied depending on the target particle size. All operations after suspending the active ingredient in the vehicle solution were carried out at 10°C or below. The milled suspension was collected using a syringe needle with a pore size smaller than the φ1.5 mm zirconia beads (a syringe needle of 22 G or less) or an 80 μm nylon mesh filter to obtain the injectable formulations shown in Table 1.
得られた各注射製剤は、測定装置としてSALD-3100(メーカー:株式会社島津製作所)を使用し、レーザー回折散乱法により粒子径を測定した。測定時の溶媒は、精製水を使用した。そして、測定時にSALD-3100の据付の超音波を照射しながら、粒子径を測定する方法を一次粒子径とし、超音波照射を行わずに測定する方法を二次粒子径とした。 The particle size of each of the resulting injectable formulations was measured using the laser diffraction scattering method with a SALD-3100 (manufacturer: Shimadzu Corporation) as the measuring device. Purified water was used as the solvent during measurement. The particle size measured while irradiating the SALD-3100's built-in ultrasound was considered to be the primary particle size, and the particle size measured without ultrasound irradiation was considered to be the secondary particle size.
さらに一部の注射製剤をレオメーター Discovery Hybrid Rheometer(DHR)-2(メーカー:TAインスツルメント)を使用して粘度を測定した。当該粘度測定の条件は次の通りである。
・せん断速度(Shear rate):10-3→1000 (1/s)
・測定温度:25℃
・40 mm Flat Plateを使用
・Gap:500 μm(40 mm Flat Plate)
Furthermore, the viscosity of some of the injection formulations was measured using a rheometer, Discovery Hybrid Rheometer (DHR)-2 (manufacturer: TA Instruments). The viscosity measurement conditions were as follows:
・Shear rate: 10-3 → 1000 (1/s)
・Measurement temperature: 25℃
・Use a 40 mm flat plate ・Gap: 500 μm (40 mm flat plate)
[試験例1]
調製した各実施例の平均一次粒子径及び平均二次粒子径をSALD-3100によって測定した。結果を表2に示す。
[Test Example 1]
The average primary particle size and average secondary particle size of each prepared example were measured using SALD-3100. The results are shown in Table 2.
表2に示されるように、平均一次粒子径と平均二次粒子径に差が認められ、平均一次粒子径に比べて、平均二次粒子径が大きくなった。この平均二次粒子径の増大は、粒子間相互作用が働き、粒子が凝集していることを示している。全ての実施例の平均一次粒子径及び平均二次粒子径は、血中濃度が1カ月以上持続するために、適したものであった。 As shown in Table 2, a difference was observed between the average primary particle size and the average secondary particle size, with the average secondary particle size being larger than the average primary particle size. This increase in average secondary particle size indicates that inter-particle interactions are at work, causing particles to aggregate. The average primary particle size and average secondary particle size in all examples were appropriate for maintaining blood concentrations for more than one month.
[試験例2]
調製した各実施例の粘度プロファイルをレオメーターによって測定した。結果を表3、図1、及び図2に示す。
[Test Example 2]
The viscosity profile of each prepared example was measured using a rheometer, and the results are shown in Table 3, Figures 1 and 2.
表3に示されるように、せん断速度の増加に応じて、粘度が低下し、全ての実施例はチキソトロピー(シアシニング)を示した。実施例は、比較例と比べて、優れた流動性を有しており粒子の粉砕性の低下や充填精度の低下を防止できるとともに、粒子の凝集、沈降、ケーキングが防止され良好な再分散性を有する。また、実施例15~21のように低濃度カルボキシメチルセルロースナトリウムにPEG3350又はPEG400を加えた場合、増粘効果が認められた。 As shown in Table 3, viscosity decreased with increasing shear rate, and all Examples exhibited thixotropy (shear thinning). Compared to the Comparative Examples, the Examples had superior fluidity, preventing a decrease in particle grindability and filling accuracy, while also preventing particle aggregation, sedimentation, and caking, resulting in good redispersibility. Furthermore, when PEG3350 or PEG400 was added to low-concentration sodium carboxymethylcellulose, as in Examples 15 to 21, a thickening effect was observed.
[試験例3]
実施例4の処方において、平均一次粒子径2.5 μm、平均二次粒子径4.6 μmの注射製剤、実施例18の処方において、平均一次粒子径6.8 μm、平均二次粒子径9.3 μmの注射製剤、実施例19の処方において、平均一次粒子径11.7 μm、平均二次粒子径12.6 μmの注射製剤を調製し、各注射製剤を50 mg/kgの用量で、雄性SDラットの背部皮下へ注射した。投与後のOPC-167832の血中移行性評価のために、血液サンプルを投与後0.083、1、3、6、9、14、21、28、42、56、70、及び84日後に採取し、血清中におけるOPC-167832の濃度を測定した。結果を図3に示す。
OPC-167832のマイクロ粒子の粒子径に依存した血中濃度を示し、投与84日後まで血清中薬物濃度が維持された。
[Test Example 3]
Injectable formulations were prepared using the formulation of Example 4, with an average primary particle size of 2.5 μm and an average secondary particle size of 4.6 μm; injectable formulations using the formulation of Example 18, with an average primary particle size of 6.8 μm and an average secondary particle size of 9.3 μm; and injectable formulations using the formulation of Example 19, with an average primary particle size of 11.7 μm and an average secondary particle size of 12.6 μm. Each injection formulation was subcutaneously injected into the dorsal skin of male SD rats at a dose of 50 mg/kg. To evaluate the blood distribution of OPC-167832 after administration, blood samples were collected 0.083, 1, 3, 6, 9, 14, 21, 28, 42, 56, 70, and 84 days after administration, and serum OPC-167832 concentrations were measured. The results are shown in Figure 3.
The blood concentration of OPC-167832 microparticles was dependent on their particle size, and serum drug concentrations were maintained up to 84 days after administration.
[試験例4]
実施例4の処方において、平均一次粒子径2.5 μm、平均二次粒子径4.6 μmの注射製剤、実施例18の処方において、平均一次粒子径6.8 μm、平均二次粒子径9.3 μmの注射製剤、実施例19の処方において、平均一次粒子径11.7 μm、平均二次粒子径12.6 μmの注射製剤を調製し、各注射製剤を50 mg/kgの用量で、雄性SDラットの下腿筋中へ注射した。投与後のOPC-167832の血中移行性評価のために、血液サンプルを投与後0.083、1、3、6、9、14、21、28、42、56、70、及び84日後に採取し、血清中におけるOPC-167832の濃度を測定した。結果を図4に示す。
OPC-167832のマイクロ粒子の粒子径に依存した血中濃度を示し、投与84日後まで血清中薬物濃度が維持された。
[Test Example 4]
Injectable formulations were prepared using the formulation of Example 4, with an average primary particle size of 2.5 μm and an average secondary particle size of 4.6 μm; injectable formulations using the formulation of Example 18, with an average primary particle size of 6.8 μm and an average secondary particle size of 9.3 μm; and injectable formulations using the formulation of Example 19, with an average primary particle size of 11.7 μm and an average secondary particle size of 12.6 μm. Each injection formulation was injected into the calf muscle of male SD rats at a dose of 50 mg/kg. To evaluate the blood distribution of OPC-167832 after administration, blood samples were collected 0.083, 1, 3, 6, 9, 14, 21, 28, 42, 56, 70, and 84 days after administration, and serum OPC-167832 concentrations were measured. The results are shown in Figure 4.
The blood concentration of OPC-167832 microparticles was dependent on their particle size, and serum drug concentrations were maintained up to 84 days after administration.
[試験例5]
QuabodepistatのLAI製剤の治療効果に関するin vivo実験
698CFUの結核菌Kurono株を経気管的にBALB/cマウスに接種し、2週間放置することで実験的マウス結核症モデルを作製した。本モデルに対し、実施例4の処方のLAI製剤を、12 mg/kg又は120 mg/kgとなるように、治療開始日にマウス背部皮下(SC)に1回投与した(図5中、「QBS-LAI (12 mg/kg)」及び「QBS-LAI (120 mg/kg)」と示す)。比較対照として、5%アラビアゴム溶液を用いて、Quabodepistatのジェットミル粉末の懸濁液を調製し、3.5 mg/kgとなるように、治療開始日から28日間連日経口(PO)投与した(図5中、「QBS-JM (3.5 mg/kg)」と示す)。肺内生菌数の減少を確認するため、28日間の治療を行った3日後に、麻酔下で下大静脈から放血することでマウスを安楽死させ、無菌的に肺の摘出を行った。摘出した肺を2 mLの滅菌水の入ったホモジナイズ用チューブに入れ、マルチビーズショッカーを用いて均一に磨り潰し、段階的に希釈を行い、0.4%活性炭入り7H11寒天平板培地に各希釈液の0.1 mLを塗り広げ、コロニーが出現するまで孵卵器で培養し、治療後の肺内生菌数を算出した。肺内生菌数の減少効果の評価対照として、治療開始時の群(図5中、「Initial」と示す)の肺内生菌数、及び実施例4の処方からQuabodepistatを除いたビヒクル溶液を治療開始日に1回皮下(SC)注射した群(図5中、「QBS-LAI-Vehicle」と示す)の肺内生菌数を各々同様の方法で測定した。その結果、図5に示したように、QBS-LAI (120 mg/kg)群はQBS-JM (3.5 mg/kg)群よりもやや高い肺内生菌数減少効果を示し,QBS-LAI (12 mg/kg)群はQBS-JM (3.5 mg/kg)群とほぼ同等の治療効果であった。Quabodepistat投与群はいずれもInitial群及びQBS-LAI-Vehicle群と比べて,1.3 Logから2.4 Logの肺内生菌数の減少効果を示した。また、QBS-LAI (12 mg/kg)群の投与量は、QBS-JM (3.5 mg/kg)の28日間連投群の総投与量の8分の1程度であるが、Initial群から約1.3 Logの肺内生菌数の減少が認められた。OPC-167832のLAI製剤の皮下(SC)投与は、1回の治療により経口投与の28日間連続投与に匹敵する治療効果が期待できる。
[Test Example 5]
In vivo study of the therapeutic effect of quabodepistat LAI formulations. BALB/c mice were inoculated intratracheally with 698 CFU of Mycobacterium tuberculosis Kurono strain and then incubated for 2 weeks to create an experimental mouse tuberculosis model. The LAI formulation of Example 4 was administered subcutaneously (SC) to the back of the mice at 12 mg/kg or 120 mg/kg on the first day of treatment (shown as "QBS-LAI (12 mg/kg)" and "QBS-LAI (120 mg/kg)" in Figure 5). As a control, a suspension of jet-milled quabodepistat powder was prepared in 5% gum arabic solution and administered orally (PO) at 3.5 mg/kg daily for 28 days starting from the first day of treatment (shown as "QBS-JM (3.5 mg/kg)" in Figure 5). To confirm the reduction in lung viable bacterial counts, mice were euthanized by exsanguination from the inferior vena cava under anesthesia 3 days after the 28-day treatment, and the lungs were aseptically removed. The removed lungs were placed in a homogenizing tube containing 2 mL of sterile water and homogenized using a multi-bead shocker. Serial dilutions were then made. 0.1 mL of each dilution was spread onto 7H11 agar plates containing 0.4% activated charcoal and incubated in an incubator until colonies appeared. The post-treatment lung viable bacterial counts were calculated. As controls for evaluating the effect of reducing lung viable bacterial counts, the lung viable bacterial counts were measured in the same manner in the group at the start of treatment (labeled "Initial" in Figure 5 ) and in the group that received a single subcutaneous (SC) injection of a vehicle solution (combined with the formulation of Example 4, excluding quabodepistat) on the day of treatment (labeled "QBS-LAI-Vehicle" in Figure 5 ). As shown in Figure 5, the QBS-LAI (120 mg/kg) group demonstrated a slightly greater reduction in lung viable bacterial counts than the QBS-JM (3.5 mg/kg) group, while the QBS-LAI (12 mg/kg) group demonstrated a therapeutic effect similar to that of the QBS-JM (3.5 mg/kg) group. All quabodepistat-treated groups demonstrated a 1.3-Log to 2.4-Log reduction in lung viable bacterial counts compared with the initial and QBS-LAI-Vehicle groups. Furthermore, although the QBS-LAI (12 mg/kg) group received approximately one-eighth the total dose of the 28-day QBS-JM (3.5 mg/kg) group, it still demonstrated a reduction in lung viable bacterial counts of approximately 1.3 Log compared with the initial group. Subcutaneous administration of the OPC-167832 LAI formulation is expected to produce therapeutic effects comparable to those of oral administration for 28 consecutive days.
実施例21~23
表4に示す懸濁化剤としてカルメロースナトリウム及びPEG3350、等張化剤として塩化ナトリウム、緩衝剤としてリン酸二水素ナトリウム一水和物を水(注射用水)で溶解し、水酸化ナトリウム溶液でpH 7.0に調整し、ビヒクル溶液を調製した。バイアル中に有効成分Quabodepistat(OPC-167832)とビヒクル溶液を秤量し、混合して懸濁液を調製した。さらにバイアル中にφ1.5 mmジルコニアビーズを懸濁液1 mLあたり2g添加し、撹拌子を入れた。撹拌子を入れたバイアルをスターラーで撹拌し、ビーズミルを行った(500 rpm)。粉砕時間は、目標とする粒子径に応じて変更した。なお、ビヒクル溶液に有効成分を懸濁した後の操作はいずれも10℃以下で行った。粉砕後の懸濁液をφ1.5 mmジルコニアビーズより孔径の小さい注射針(22 G以下の注射針)を使用して回収し、表4に示される注射製剤を得た。各注射製剤をバイアル内に3.5 mL充填し、打栓、アルミキャップの巻締を行った。その後、25-35 kGyでγ線照射を行った。
Examples 21 to 23
The vehicle solution shown in Table 4 was prepared by dissolving carmellose sodium and PEG3350 as suspending agents, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection), and adjusting the pH to 7.0 with sodium hydroxide solution. The active ingredient, quabodepistat (OPC-167832), and the vehicle solution were weighed and mixed into a vial to prepare a suspension. Furthermore, 2 g of φ1.5 mm zirconia beads per 1 mL of suspension were added to the vial, and a stir bar was inserted. The vial containing the stir bar was stirred with a stirrer and milled using a bead mill (500 rpm). The milling time was adjusted depending on the target particle size. All operations after suspending the active ingredient in the vehicle solution were performed at 10°C or below. The milled suspension was collected using a syringe needle with a smaller pore size than the φ1.5 mm zirconia beads (22 G or smaller), to obtain the injectable formulations shown in Table 4. Each injection formulation was filled into a vial (3.5 mL), which was then stoppered and sealed with an aluminum cap, and then irradiated with gamma rays at 25-35 kGy.
[試験例6]
調製した各実施例の平均一次粒子径及び平均二次粒子径をSALD-3100によって測定した。結果を表5に示す。
[Test Example 6]
The average primary particle size and average secondary particle size of each prepared example were measured using SALD-3100. The results are shown in Table 5.
[試験例7]
OPC-167832 LAI製剤の局所刺激性試験
実施例21~23をOPC-167832として15 mg/kgの用量、陽性対照物質の0.425%酢酸、1.7%酢酸、陰性対照物質の生理食塩液を0.4 mL/kgとなるようにディスポシリンジに採取して雄性Kbl/JWウサギを用手で保定し、皮下内又は筋肉内に23Gの注射針を用いて注射した。投与後7日目と14日目にチオペンタールナトリウム2.5%水溶液の耳介静脈内投与(2 mL/kg)による麻酔下で腹大動脈から放血して安楽死させた後、皮下又は大腿部の投与部位(皮膚及び皮下組織)を摘出して、摘出した皮下組織、筋肉を10%中性緩衝ホルマリンで固定した。常法に従いパラフィン包埋後、HE染色組織標本を作製し、病理組織学的検査を行い、投与部位の局所刺激性を3個体の平均値で評価した。
[Test Example 7]
Local irritation testing of OPC-167832 LAI formulations. OPC-167832 (Examples 21-23) was administered at a dose of 15 mg/kg in disposable syringes. The positive control substances, 0.425% acetic acid and 1.7% acetic acid, and the negative control substance, saline, were injected subcutaneously or intramuscularly using a 23G needle into male Kbl/JW rabbits while they were manually restrained. On days 7 and 14 after administration, the rabbits were anesthetized by exsanguination via the abdominal aorta under anesthesia with 2.5% thiopental sodium in water (2 mL/kg) administered intravenously through the auricular vein. The subcutaneous or femoral injection sites (skin and subcutaneous tissue) were then excised and fixed in 10% neutral buffered formalin. After embedding in paraffin according to standard procedures, HE-stained tissue specimens were prepared and subjected to histopathological examination. Local irritation at the injection site was evaluated using the average value of three rabbits.
-: None (1), ±: slight (2), +: mild (3), 2+: moderate (4), 3+: marked (5).
-: None (1), ±: slight (2), +: mild (3), 2+: moderate (4), 3+: marked (5).
-: None (1), ±: slight (2), +: mild (3), 2+: moderate (4), 3+: marked (5).
-: None (1), ±: slight (2), +: mild (3), 2+: moderate (4), 3+: marked (5).
表6に皮下残留性及び皮下刺激性、表7に筋肉内残留性及び筋肉刺激性を示す。剖検による目視での観察によれば、実施例21~23は投与7日後も場合により投与14日後も被験製剤様物質の残留が認められたのに対し、OPC-167832が含まれていない対照物質は投与7日後も投与14日後も被験製剤様物質の残留が認められなかった。病理組織学的検査により、実施例21~23は陽性対照物質である0.425%酢酸、1.7%酢酸に比べて、壊死や部分壊死/修復反応、線維化が弱く、刺激性は許容可能な範囲であった。そして、実施例21~23には、他に泡沫細胞の集合体や単核球の浸潤等の免疫反応が認められたが、いずれも刺激性は許容可能な範囲であった。 Table 6 shows subcutaneous retention and subcutaneous irritation, and Table 7 shows intramuscular retention and muscle irritation. Visual observation at autopsy revealed that test-formulation-like substances remained in Examples 21-23 7 days after administration and in some cases 14 days after administration, whereas no test-formulation-like substances remained in the control substance not containing OPC-167832 7 days after administration or 14 days after administration. Histopathological examination revealed that Examples 21-23 showed weaker necrosis, partial necrosis/repair reaction, and fibrosis than the positive control substances 0.425% acetic acid and 1.7% acetic acid, and the irritation was within an acceptable range. Furthermore, immune reactions such as foam cell aggregates and mononuclear cell infiltration were observed in Examples 21-23, but the irritation in all cases was within an acceptable range.
[試験例8]
OPC-167832 LAI製剤のイヌPK試験と試験後の病理組織学的検査
実施例21~22をOPC-167832として25 mg/kgの用量となるようにディスポシリンジに採取して雄性イヌを用手で保定し、背部の皮下に23Gの注射針を用いて注射した。採血は投与後2及び6時間並びに投与後1、3、6、9、14、21、28、35、42及び56日の計12ポイントとし、動物を保定し、採血部位を消毒用アルコールで消毒した後、橈側皮静脈からヘパリン真空採血管(ベネジェクト(R)II真空採血管、テルモ株式会社)を用いて約2 mL採血した。全ての採血完了後にチオペンタールナトリウム25 mg/mL/kgを橈側皮静脈内投与による麻酔下で頸動脈より放血して安楽死させた後、皮下の投与部位(皮膚及び皮下組織)を摘出して、摘出した皮下組織を20%中性緩衝ホルマリンで固定した。常法に従いパラフィン包埋後、HE染色組織標本を作製し、病理組織学的検査で投与部位を3個体の平均値で評価した。
採血したサンプルは、血漿中におけるOPC-167832の濃度をそれぞれLC-MS/MS法により測定した。その結果、図6に示したように、OPC-167832のマイクロ粒子の粒子径に依存した血中濃度を示し、投与56日後まで血漿中OPC-167832濃度が持続された。
[Test Example 8]
Dog PK study of OPC-167832 LAI formulation and post-study histopathological examination : Examples 21 and 22 were dispensed into disposable syringes at a dose of 25 mg/kg of OPC-167832, and male dogs were manually restrained and injected subcutaneously into the back using a 23G needle. Blood samples were collected at 2 and 6 hours after administration and at 1, 3, 6, 9, 14, 21, 28, 35, 42, and 56 days after administration, for a total of 12 time points. After the animals were restrained and the blood collection site was disinfected with rubbing alcohol, approximately 2 mL of blood was collected from the cephalic vein using a heparin vacuum blood collection tube (Veneject® II vacuum blood collection tube, Terumo Corporation). After all blood samples were collected, the animals were anesthetized by intravenous administration of 25 mg/mL/kg thiopental sodium via the carotid artery and euthanized. The subcutaneous injection site (skin and subcutaneous tissue) was then excised and fixed in 20% neutral buffered formalin. After embedding in paraffin according to standard procedures, HE-stained tissue specimens were prepared, and the injection site was evaluated by histopathological examination using the average value of three animals.
The plasma OPC-167832 concentrations of the collected blood samples were measured using LC-MS/MS. As shown in Figure 6, the blood concentration of OPC-167832 was dependent on the particle size of the microparticles, and the plasma OPC-167832 concentration was sustained up to 56 days after administration.
-: None (1), ±: slight (2), +: mild (3), 2+: moderate (4), 3+: marked (5).
-: None (1), ±: slight (2), +: mild (3), 2+: moderate (4), 3+: marked (5).
表8に示されるように実施例21~22の投与後の病理組織学的検査は、皮下障害性を示唆する壊死や部分壊死/修復反応、線維化は認められず、免疫反応のみであり、許容可能な刺激性であった。 As shown in Table 8, histopathological examination after administration of Examples 21 and 22 revealed no necrosis, partial necrosis/repair reaction, or fibrosis suggestive of subcutaneous damage, and only an immune reaction was observed, making the irritation tolerable.
実施例24~26
表9に示す懸濁化剤としてカルメロースナトリウム、等張化剤として塩化ナトリウム、緩衝剤としてリン酸二水素ナトリウム一水和物を水(注射用水)で溶解し、水酸化ナトリウム溶液でpH 7.0に調整し、ビヒクル溶液を調製した。ビーカーにOPC-167832とビヒクル溶液を秤量して混合して調製した。DYNO-MILL MULTI LAB(Willy A. Bachofen AG)にて、アジテーターディスクを装着し、600 mLの粉砕コンテナーを使用して、φ1.5 mmジルコニアビーズを80%の充填率になるように粉砕コンテナー内に入れた。周速10-14 m/s、流速85-150 mL/minに設定した。1パス相当のビーズミルを行い、懸濁液を回収した。注射製剤をバイアル内に3.5 mL充填し、打栓、アルミキャップの巻締を行った。その後、25-35 kGyでγ線照射を行った。そして、表10の安定性試験を実施した。
Examples 24 to 26
The vehicle solution shown in Table 9 was prepared by dissolving carmellose sodium as a suspending agent, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection) and adjusting the pH to 7.0 with sodium hydroxide solution. OPC-167832 and the vehicle solution were weighed and mixed in a beaker. Using a DYNO-MILL MULTI LAB (Willy A. Bachofen AG) equipped with an agitator disc and a 600 mL grinding container, 1.5 mm diameter zirconia beads were placed in the grinding container to achieve an 80% filling rate. The peripheral speed was set to 10-14 m/s and the flow rate to 85-150 mL/min. After one pass of the bead mill, the suspension was collected. 3.5 mL of the injection formulation was filled into vials, stoppered, and sealed with an aluminum cap. The vials were then irradiated with gamma rays at 25-35 kGy. The stability tests shown in Table 10 were then performed.
[試験例9]
実施例24~26を40℃、50℃に1カ月間保管して安定性を評価した。安定性試験では、粒子径及び粘度をn=3の平均値で測定した。尚、多目的X線回折装置 Empyrean (Malvern Panalytical)による結晶形測定も行った。加えて、安定性試験では、γ線未照射のサンプルも評価した。
[Test Example 9]
The stability of Examples 24 to 26 was evaluated by storing them at 40°C and 50°C for one month. In the stability test, particle size and viscosity were measured using an average value of n = 3. Crystal form was also measured using a multipurpose X-ray diffractometer, Empyrean (Malvern Panalytical). In addition, samples that had not been irradiated with gamma rays were also evaluated in the stability test.
40℃、50℃の1カ月間の保管によって、注射製剤の安定性を評価した結果、粒子径並びに粘度に変化が生じず、安定であることが明らかとなった。また、ビーズミルやγ線照射によって、注射製剤中の結晶形が原薬から変化しないことが明らかとなった。 The stability of the injectable formulation was evaluated after storage at 40°C and 50°C for one month, and it was found to be stable, with no changes in particle size or viscosity. It was also found that the crystalline form in the injectable formulation did not change from the active pharmaceutical ingredient when exposed to bead milling or gamma rays.
実施例27
実施例4に示す懸濁化剤としてカルメロースナトリウム、等張化剤として塩化ナトリウム、緩衝剤としてリン酸二水素ナトリウム一水和物を水(注射用水)で溶解し、水酸化ナトリウム溶液でpH 7.0に調整し、ビヒクル溶液を調製した。ビーカーにOPC-167832とビヒクル溶液を秤量して混合して懸濁液を調製し、高圧ホモジナイザー PANDA PLUS 1000 (GEA Niro Soavi) を使用して、湿式粉砕を行った。500 mLの懸濁液を使用し、100 barずつ徐々に圧力を上げながら、最終的に400-500 barで10分間粉砕し、懸濁液を回収した。回収した懸濁液の平均一次粒子径及び平均二次粒子径をSALD-3100によって測定した結果、平均一次粒子径が3.9μm、平均二次粒子径が4.1μmであった。
Example 27
A vehicle solution was prepared by dissolving carmellose sodium as a suspending agent, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection) and adjusting the pH to 7.0 with sodium hydroxide solution. OPC-167832 and the vehicle solution were weighed and mixed in a beaker to prepare a suspension. This suspension was then wet-milled using a PANDA PLUS 1000 high-pressure homogenizer (GEA Niro Soavi). Using 500 mL of the suspension, the pressure was gradually increased by 100 bar, and the final pressure was 400-500 bar for 10 minutes. The suspension was then recovered. The average primary particle size and average secondary particle size of the recovered suspension were measured using an SALD-3100. The average primary particle size was 3.9 μm, and the average secondary particle size was 4.1 μm.
実施例28
実施例19に示す懸濁化剤としてカルメロースナトリウム、PEG3350、等張化剤として塩化ナトリウム、緩衝剤としてリン酸二水素ナトリウム一水和物を水(注射用水)で溶解し、水酸化ナトリウム溶液でpH 7.0に調整し、ビヒクル溶液を調製した。ビーカーにOPC-167832とビヒクル溶液を秤量して混合して懸濁液を調製し、高圧ホモジナイザー PANDA PLUS 1000 (GEA Niro Soavi) を使用して、湿式粉砕を行った。800 mLの懸濁液を使用し、徐々に圧力を上げながら、最終的200-300 barで20分間粉砕し、懸濁液を回収した。回収した懸濁液の平均一次粒子径及び平均二次粒子径をSALD-3100によって測定した結果、平均一次粒子径が7.3μm、平均二次粒子径が10.6μmであった。
Example 28
A vehicle solution was prepared by dissolving carmellose sodium and PEG3350 as suspending agents, sodium chloride as an isotonicity agent, and sodium dihydrogen phosphate monohydrate as a buffer in water (water for injection) and adjusting the pH to 7.0 with sodium hydroxide solution. OPC-167832 and the vehicle solution were weighed and mixed in a beaker to prepare a suspension. This suspension was then wet-milled using a PANDA PLUS 1000 high-pressure homogenizer (GEA Niro Soavi). Using 800 mL of the suspension, the pressure was gradually increased, ultimately milling at 200-300 bar for 20 minutes, after which the suspension was recovered. The average primary particle size and average secondary particle size of the recovered suspension were measured using an SALD-3100. The average primary particle size was 7.3 μm and the average secondary particle size was 10.6 μm.
Claims (22)
前記組成物は懸濁化剤及び分散媒を含み、マイクロ粒子の懸濁液の形態である前記組成物。 A composition comprising at least one component selected from quabodepistat, its salts and cocrystals, and solvates thereof,
The composition comprises a suspending agent and a dispersion medium, the composition being in the form of a suspension of microparticles.
前記成分、懸濁化剤、及び分散媒を混合する工程1と、
前記混合により得られた懸濁液に対して湿式粉砕を行う工程2と、
前記湿式粉砕により得られた懸濁液を回収する工程3とを含む、方法。 10. A method for producing the composition of claim 1, comprising:
Step 1 of mixing the ingredients, suspending agent, and dispersion medium;
Step 2: wet-pulverizing the suspension obtained by the mixing;
and step 3 recovering the suspension obtained by said wet milling.
前記成分を乾式粉砕する工程1と、
前記乾式粉砕後の成分、懸濁化剤、及び分散媒を混合する工程2と、
前記混合により得られた懸濁液を回収する工程3とを含む、方法。 10. A method for producing the composition of claim 1, comprising:
Step 1: dry-milling the ingredients;
Step 2: mixing the dry-milled components, a suspending agent, and a dispersion medium;
and step 3 recovering the suspension obtained by said mixing.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2024026837 | 2024-02-26 | ||
| JP2024-026837 | 2024-02-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025183016A1 true WO2025183016A1 (en) | 2025-09-04 |
Family
ID=96920876
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2025/006700 Pending WO2025183016A1 (en) | 2024-02-26 | 2025-02-26 | Quabodepistat-containing composition |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025183016A1 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003534366A (en) * | 2000-05-25 | 2003-11-18 | アルカームズ コントロールド セラピューティクス インコーポレイテッド | Preparation of injectable suspensions having improved injectability |
| JP2015514751A (en) * | 2012-04-23 | 2015-05-21 | 大塚製薬株式会社 | Injection formulation |
| JP2017525697A (en) * | 2014-08-28 | 2017-09-07 | 大塚製薬株式会社 | Bicyclic heterocyclic compounds and their therapeutic use for tuberculosis |
| JP2021178818A (en) * | 2020-05-11 | 2021-11-18 | 大塚製薬株式会社 | Method for preparing dihydroquinolinone compound |
| JP2023070704A (en) * | 2021-11-10 | 2023-05-22 | 大塚製薬株式会社 | Pharmaceutical comprising cocrystal of dihydroquinolinone compound |
| JP2023532981A (en) * | 2020-07-09 | 2023-08-01 | ヤンセン ファーマシューティカ エヌ.ベー. | long-acting formulation |
-
2025
- 2025-02-26 WO PCT/JP2025/006700 patent/WO2025183016A1/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003534366A (en) * | 2000-05-25 | 2003-11-18 | アルカームズ コントロールド セラピューティクス インコーポレイテッド | Preparation of injectable suspensions having improved injectability |
| JP2015514751A (en) * | 2012-04-23 | 2015-05-21 | 大塚製薬株式会社 | Injection formulation |
| JP2017525697A (en) * | 2014-08-28 | 2017-09-07 | 大塚製薬株式会社 | Bicyclic heterocyclic compounds and their therapeutic use for tuberculosis |
| JP2021178818A (en) * | 2020-05-11 | 2021-11-18 | 大塚製薬株式会社 | Method for preparing dihydroquinolinone compound |
| JP2023532981A (en) * | 2020-07-09 | 2023-08-01 | ヤンセン ファーマシューティカ エヌ.ベー. | long-acting formulation |
| JP2023070704A (en) * | 2021-11-10 | 2023-05-22 | 大塚製薬株式会社 | Pharmaceutical comprising cocrystal of dihydroquinolinone compound |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP4072520B1 (en) | Pharmaceutical compositions comprising cabotegravir | |
| US6630168B1 (en) | Gel delivery vehicles for anticellular proliferative agents | |
| JP7102500B2 (en) | Long-acting formulation | |
| US20070265329A1 (en) | Methods for the prevention of acute and delayed chemotherapy-induced nausea and vomiting (CINV) | |
| KR100869752B1 (en) | Levosimendan Pharmaceutical Solution | |
| US10493079B2 (en) | Stable carfilzomib formulations | |
| TWI674899B (en) | Pharmaceutical formulation | |
| JP7584535B2 (en) | Methods of administering aripiprazole injectable preparations | |
| KR102728012B1 (en) | Compositions for small molecule therapeutic agent compounds | |
| JP2008543832A (en) | A new formulation for phenothiazine containing fluphenazine and its derivatives | |
| CN115867259A (en) | Long acting formulations | |
| CN1829503B (en) | Veterinary aqueous injectable suspensions containing florfenicol | |
| JP2017528497A (en) | Long-acting pharmaceutical composition | |
| JP2023552149A (en) | Dosing regimens associated with extended-release paliperidone injectable formulations | |
| JP2023551009A (en) | Dosing regimens associated with extended-release paliperidone injectable formulations | |
| WO2025183016A1 (en) | Quabodepistat-containing composition | |
| WO2020136466A1 (en) | An injectable skeletal muscle relaxant and nsaid and method of making the same | |
| WO2025183017A1 (en) | Quabodepistat-containing composition | |
| WO2025183018A1 (en) | Delamanid-containing composition | |
| WO2016036588A1 (en) | Pharmaceutical suspensions containing etoricoxib | |
| JP7661312B2 (en) | Drug Delivery Formulations | |
| US20100210681A1 (en) | Aqueous pharmaceutical composition | |
| JP7606633B2 (en) | Pharmaceutical composition, aprepitant injection solution and freeze-dried powder injection | |
| WO2019106424A1 (en) | Dianhydrogalactitol for the treatment of diffuse intrinsic pontine gliomas | |
| US20230000837A1 (en) | Parenteral dosage form of beta 3 adrenoreceptor agonists |