+

WO2025177578A1 - Communication control device, wireless communication system, communication control method, and communication control program - Google Patents

Communication control device, wireless communication system, communication control method, and communication control program

Info

Publication number
WO2025177578A1
WO2025177578A1 PCT/JP2024/006664 JP2024006664W WO2025177578A1 WO 2025177578 A1 WO2025177578 A1 WO 2025177578A1 JP 2024006664 W JP2024006664 W JP 2024006664W WO 2025177578 A1 WO2025177578 A1 WO 2025177578A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
frequency band
base station
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/006664
Other languages
French (fr)
Japanese (ja)
Inventor
潔 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SoftBank Corp
Original Assignee
SoftBank Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SoftBank Corp filed Critical SoftBank Corp
Priority to PCT/JP2024/006664 priority Critical patent/WO2025177578A1/en
Publication of WO2025177578A1 publication Critical patent/WO2025177578A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present invention relates to a communication control device, a wireless communication system, a communication control method, and a communication control program.
  • wireless communication systems wireless cellular network systems
  • Terminal devices also known as mobile stations
  • handovers switching between wireless base stations as they move. Therefore, technologies have been proposed to achieve low-latency handovers.
  • terminal devices In this way, it can be said that there is an optimal frequency band for terminal devices to use in terms of traffic.
  • the base station is designed to determine the priority of frequency bands, terminal devices will communicate wirelessly with the base station by using specific frequency bands preferentially in accordance with the priority set by the base station, regardless of traffic.
  • terminal devices This causes many terminal devices to use specific frequency bands, resulting in a shortage of wireless resources. Furthermore, because terminal devices generally perform cell searches starting with high-frequency bands, which are given higher priority, they tend to wait for cells in high-frequency bands. This results in frequent handovers due to terminal devices connecting to base stations using high-frequency bands with narrower coverage, creating a problem.
  • the above-mentioned conventional technology simply uses machine learning to determine frequencies predicted to be available as the frequencies to be used for wireless communication, and does not take into account the traffic of the terminal devices when determining the frequency bands to be used. For this reason, the above-mentioned conventional technology does not necessarily make it possible to optimize the frequency bands to be used by terminal devices.
  • the present invention therefore proposes a communication control device, wireless communication system, communication control method, and communication control program that can optimize the frequency bands used by terminal devices.
  • the communication control device may be implemented, for example, as a RIC (RAN Intelligent Controller).
  • one embodiment of the present invention provides a communication control device that includes an acquisition unit that acquires, as context information of a user of a terminal device, traffic information related to traffic generated by the terminal device in wireless communication with a base station and movement information related to the movement of the terminal device in response to the traffic; a generation unit that generates a model that indicates the tendency of the user's context according to frequency band by learning result information indicating whether the frequency band used by the terminal device when the context information was acquired, among frequency bands supported by the base station, is optimal for the context information and the relationship with the context information; a determination unit that determines a target frequency band to be given priority use by the terminal device in the wireless communication based on the model; and a control unit that controls the wireless communication to be performed in the target frequency band.
  • FIG. 1 is an explanatory diagram illustrating the problem of frequent handovers.
  • FIG. 2 is an explanatory diagram showing an example of a schematic configuration of a system according to this embodiment.
  • FIG. 3 is a diagram simply illustrating the architecture of a 5G core of a wireless communication system according to an embodiment.
  • FIG. 4 is a diagram conceptually showing the advantages of installing a communication control device in a regional center.
  • FIG. 5 is a diagram showing the configuration of an AI-RAN.
  • FIG. 6 is a diagram illustrating an example of the configuration of a communication control device according to the embodiment.
  • FIG. 7 is a diagram illustrating the procedure of the learning process implemented in the wireless communication system.
  • FIG. 8 is a diagram illustrating the procedure of the inference process implemented in the wireless communication system.
  • FIG. 9 is a hardware configuration diagram illustrating an example of a computer that realizes the functions of the communication control device according to the embodiment.
  • One or more embodiments (including examples, modifications, and application examples) described below can be implemented independently. However, at least a portion of the multiple embodiments described below may be implemented in appropriate combination with at least a portion of another embodiment. These multiple embodiments may include novel features that are different from one another. Therefore, these multiple embodiments may contribute to solving different purposes or problems and may achieve different effects from one another.
  • the current specifications require that frequency band priorities be determined by the base station, meaning that terminal devices communicate wirelessly with the base station by using specific frequency bands in accordance with the priority set by the base station, regardless of traffic. This results in a bias toward the use of specific frequency bands by many terminal devices, leading to a shortage of wireless resources.
  • base stations generally have priorities set to prioritize higher frequency bands.
  • the terminal device will perform a cell search starting from the high frequency band, which has a higher priority, and will therefore set a high frequency band cell as its standby destination.
  • handovers will occur frequently as the terminal device moves while connected to a base station using the high frequency band, which has narrow coverage. This point will be explained using Figure 1.
  • Figure 1 is an explanatory diagram illustrating the problem of frequent handovers.
  • Figure 1 shows base stations gNB1, gNB2, and gNB3 as examples of base stations gNBs for the fifth generation (5G), and these base stations gNB are adjacent to one another.
  • the cell formed by base station gNB1, the cell formed by base station gNB2, and the cell formed by base station gNB3 are adjacent to one another, with some overlapping as shown in Figure 1.
  • an overlapping area H1 occurs between cells CE11 and CE21, and an overlapping area H2 occurs between cells CE21 and CE31. Furthermore, an overlapping area M1 occurs between cells CE12 and CE32, and an overlapping area L1 occurs between cells CE13 and CE33. From this example, it can be seen that there are often more overlapping areas between cells that support high frequency bands than between cells that support medium or low frequency bands.
  • a terminal device UE performs a handover from base station gNB1 to base station gNB3.
  • base station gNB1 When moving between cells using a medium or low frequency band, only one handover in one overlapping area (overlap area M1 or overlap area L1) is required, but when moving between cells using a high frequency band, two handovers occur in two overlapping areas (overlap area H1 and overlap area H2).
  • overlap area M1 or overlap area L1 overlap area
  • two handovers occur in two overlapping areas (overlap area H1 and overlap area H2).
  • the terminal device UE travels between base station gNB1 and base station gNB3, more handovers occur when using a high frequency band than when using a medium or low frequency band.
  • the terminal device UE performs more handovers when using the high frequency band than when using the medium or low frequency band, and communication delays can also be large when handovers are frequent. To reduce delays, it is necessary to reduce the frequency of handovers. However, terminal devices with a high volume of traffic should be made to use the high frequency band. On the other hand, it is considered acceptable to make terminal devices with a low volume of traffic or no traffic use the medium or low frequency band.
  • each terminal device UE has an optimal frequency band depending on traffic trends. Therefore, the inventors of the present invention focused on the fact that if the frequency band to be used preferentially by the terminal device UE is optimized depending on traffic trends, the handover problem in Figure 1 can also be optimized.
  • any terminal device UE is known to have identification information called SPID (Subscriber Profile I), which indicates the priority of the communication method.
  • the base station gNB can instruct the terminal device UE on the frequency band set in the SPID.
  • the SPID is not intended to be dynamically changed. For this reason, in principle, when there is no SPID, the terminal device UE waits in a frequency band according to the priority set by the base station gNB, and when there is an SPID, it waits in the frequency band set for that SPID.
  • the proposed technology of the present invention is an idea that takes advantage of the characteristic that SPID can be used to control the frequency band to be used preferentially. More specifically, the proposed technology of the present invention grasps the correlation between result information indicating whether the frequency band used by the terminal apparatus UE is optimal among the frequency bands supported by the base station gNB and the user context of the terminal apparatus UE, and determines the frequency band to be used preferentially by the terminal apparatus UE in wireless communication with the base station gNB based on the grasped correlation.
  • the proposed technology of the present invention can detect a certain trend between the movement status (movement route) of the terminal apparatus UE used by the user and the network usage status (traffic status) in a specific frequency band as the user context, it determines the optimal frequency band according to this trend as the frequency band to be used.
  • a communication control device acquires, as context information for a user of a terminal device, traffic information related to traffic generated by the terminal device in wireless communication with a base station and movement information related to the movement of the terminal device in response to the traffic.
  • the communication control device then generates a model indicating the tendency of the user's context according to frequency band by learning the relationship between the context information and result information indicating whether the frequency band used by the terminal device when the context information was acquired, among the frequency bands supported by the base station, is optimal for the context information.
  • the communication control device determines, based on the model, the target frequency band to be used by the terminal device for wireless communication.
  • the communication control device also controls the wireless communication system (wireless cellular network system) so that wireless communication is performed in the target frequency band.
  • Fig. 2 is an explanatory diagram showing an example of a schematic configuration of a system 1 according to the present embodiment.
  • the system 1 includes a wireless communication system (wireless cellular network system) 5 including a communication control device 100 according to the embodiment.
  • wireless communication system wireless cellular network system
  • the wireless communication system 5 is a cellular mobile communication system conforming to the fifth-generation standard specifications, and includes a 5G core network 10, multiple base stations 20, and multiple terminal devices 30. Each terminal device 30 performs data communication (packet communication) via the base station 20, and further via the 5G core 10 and the Internet 60, with external devices in a cloud system (cloud) 70.
  • the base station 20 is called a gNodeB (gNB).
  • the area 10A covered by the wireless communication system 5 is the service area in which the wireless communication system 5 is provided.
  • the wireless communication system 5 according to the embodiment may be deployed for each area 10A, and as an example, the area 10A may be on a prefecture-by-prefecture basis.
  • the communication control device 100 may be installed for each regional area, such as a prefecture-by-prefecture basis.
  • one area 10A includes base station 20(1) and base station 20(2).
  • base station 20(1) and base station 20(2) support multiple frequency bands and form cells corresponding to each frequency band.
  • Figure 2 shows two base stations, 20(1) and 20(2), as an example of base stations 20 included in area 10A, but the number of base stations within area 10A is not limited.
  • Base station 20(1) and base station 20(2) are each configured using hardware such as a computer device having a CPU, memory, etc., an external communication interface unit for 5G core 10, and a wireless communication unit, and by executing a specified program, they can perform wireless communication with terminal device 30, send and receive information with the core network device of 5G core 10, and send and receive information with communication control device 100 using a specified communication method and wireless communication resources.
  • hardware such as a computer device having a CPU, memory, etc., an external communication interface unit for 5G core 10, and a wireless communication unit, and by executing a specified program, they can perform wireless communication with terminal device 30, send and receive information with the core network device of 5G core 10, and send and receive information with communication control device 100 using a specified communication method and wireless communication resources.
  • terminal device 30(1) used by user U1 is shown as an example of terminal device 30. As terminal device 30(1) moves, it may perform a handover to switch the connected base station 20 from base station 20(1) to base station 20(2).
  • terminal device 30(1) When connected to base station 20(1), terminal device 30(1) can perform various communications via base station 20(1), and when connected to base station 20(2), can perform various communications via base station 20(2).
  • Terminal device 30(1) is configured using hardware such as a computer device with a CPU, memory, etc., and a wireless communication unit, and can perform wireless communications with base station 20 by executing a specific program.
  • Figure 2 shows only one terminal device 30(1) used by user U1, in reality, multiple terminal devices 30 used by an unspecified number of multiple users U are connected to the base station 20.
  • the communication control device 100 is an information processing device that executes communication control processing related to the proposed technology of the present invention.
  • the communication control device 100 acquires, as context information of user U of terminal device 30, traffic information related to traffic generated by the terminal device 30 in wireless communication with the base station 20 and movement information related to the movement of the terminal device 30 in response to the traffic.
  • the communication control device 100 learns the relationship between the context information and result information indicating which frequency band the terminal device 30 used among the frequency bands supported by the base station 20, thereby generating a model that indicates the tendency of user U's context according to frequency band, and determines the target frequency band to be given priority for use by the terminal device 30 in wireless communication based on the model.
  • the communication control device 100 also controls the wireless communication system 5 so that wireless communication is performed in the target frequency band.
  • the communication control device 100 may be provided in the 5G core 10, or may be installed in a remote location such as a data center.
  • the communication control device 100 may be installed in a regional center located in each area 10A. This point will be explained later with reference to Figure 4.
  • FIG 3 is a simplified diagram showing the architecture of the 5G core 10 of the wireless communication system 5 according to the embodiment.
  • the 5G core 10 is composed of a control plane portion (C-Plane) that serves as the overall control system for the mobile communication system, where control signals are mainly sent, received, and processed, and a user plane portion (U-Plane) where user data is mainly sent, received, and processed.
  • C-Plane control plane portion
  • U-Plane user plane portion
  • UPF 101 has functions such as forwarding subscriber communication packets.
  • SMF 102 has functions such as subscriber session management. For example, SMF 102 establishes a PDU (Packet Data Unit) session while obtaining information about the base station 20 to which the terminal device 30 is connected from AMF 103.
  • PDU Packet Data Unit
  • AMF 103 has functions such as subscriber authentication and subscriber mobility management. For example, AMF 103 performs a series of access management tasks, such as querying UDM 104 and UDR 105 for subscriber information, authenticating whether the terminal device 30 has a contract with telecommunications carrier T, and providing connection if authentication is successful. AMF 103 also manages which base station 20's cell the terminal device 30 is in, so that when the terminal device 30 moves, it can connect to the nearest base station 20. In other words, AMF 103 can grasp the route taken by the terminal device 30, i.e., from which base station 20 to which base station 20.
  • UDM104 has functions such as subscriber information management.
  • UDR105 has functions such as a subscriber information database.
  • FIG 4 is a conceptual diagram showing the advantages of installing a communication control device 100 in a regional center.
  • the AI-RAN concept involves building large-scale server clusters in data centers for each region (for example, each area 10A), and using the abundant computing resources to simultaneously run and link vRAN (virtual radio access network), MEC (multi-access edge computing), and AI applications.
  • vRAN virtual radio access network
  • MEC multi-access edge computing
  • AI-RAN Configuration Figure 5 is a diagram showing the configuration of an AI-RAN.
  • Figure 5 shows the functional configuration of the AI-RAN possessed by the communication control device 100 corresponding to area 10A.
  • AI-RAN is an architecture that allows AI and RAN (base station 20) to coexist, and it can maximize the performance of the RAN using AI, while also realizing an ultra-low latency, highly secure computing infrastructure for various AI applications at the regional level.
  • vRAN is a 5G virtualized radio access network in which the GPU of the communication control device 100 virtualizes the RAN, i.e., the base station 20 (the base station 20 included in area 10A).
  • the communication control device 100 shown in Figure 5 is configured as an AI-RAN by further implementing a learning platform (AI) in a virtualized platform environment that combines 5G vRAN and MEC.
  • AI learning platform
  • computational resources corresponding to the base stations 20 included in area 10A are also provided.
  • Fig. 6 is a diagram showing an example of the configuration of the communication control device 100 according to the embodiment.
  • the communication control device 100 includes a communication unit 110, a storage unit 120, and a control unit 130.
  • the communication unit 110 is realized by, for example, a network interface card (NIC), etc.
  • NIC network interface card
  • the communication unit 110 performs wireless communication with the 5G core 10 and the base station 20.
  • the storage unit 120 is realized by, for example, a semiconductor memory element such as a random access memory (RAM) or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the storage unit 120 may store, for example, data and programs related to the communication control process according to the embodiment.
  • the control unit 130 is realized by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like using RAM as a work area to execute various programs (e.g., a communication control program according to the embodiment) stored in a storage device inside the communication control device 100.
  • the control unit 130 is also realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • control unit 130 has an acquisition unit 131, a generation unit 132, a determination unit 133, and a communication control unit 134, and realizes or executes the information processing functions and actions described below.
  • the internal configuration of the control unit 130 is not limited to the configuration shown in FIG. 6, and may be other configurations that perform the information processing described below.
  • connection relationships between the processing units of the control unit 130 are not limited to the connection relationships shown in FIG. 6, and may be other connection relationships.
  • the acquisition unit 131 acquires, as context information of the user U of the terminal device 30, traffic information related to traffic generated by the terminal device 30 in wireless communication with the base station 20 and movement information related to the movement of the terminal device 30 in response to the traffic.
  • the traffic information here includes the concepts of traffic volume or traffic behavior.
  • traffic behavior may indicate a change in traffic volume over a certain period of time.
  • the movement information related to the movement of the terminal device 30 may include a base station ID indicating the base station to which the terminal device 30 is connected, a base station ID indicating a base station to which the terminal device 30 is switched in response to handover, and the like.
  • the movement information may include information indicating from which base station 20 the terminal device 30 has moved to which other base station 20.
  • the acquisition unit 131 may acquire base station location information indicating the installation location of the base station 20 from a base station design information DB, and may also acquire the movement route of the terminal device 30 by comparing this base station location information with the movement information.
  • the location of the base station design information DB is not limited.
  • the storage unit 120 of the communication control device 100 may have a base station design information DB, or each base station 20 may have a base station design information DB.
  • the generation unit 132 generates a model indicating the tendency of the context of the user U according to the frequency band by learning the relationship between the context information and result information indicating whether the frequency band used by the terminal device 30 when the context information was acquired, among the frequency bands that the base station 20 can support, is optimal for the context information.
  • the generation unit 132 causes the model to learn the relationship so as to output the frequency band that is optimal according to the context of the specific user, among the frequency bands that the base station 20 can support.
  • the information indicating whether the frequency band used by the terminal device 30 when the context information was acquired is optimal for the context information may be manually labeled, or may be dynamically assigned by providing labeling rules to the generation unit 132.
  • the acquisition unit 131 may further acquire location information of the terminal device as context information of the user U.
  • the generation unit 132 generates a model based on information identified based on the location information of the terminal device 30.
  • the communication control unit 134 controls wireless communication so that it is performed in the frequency band to be used.
  • the communication control unit 134 controls the nodes in the 5G core 10 so that wireless communication is performed in the frequency band to be used.
  • the AMF 103 which is a core network device of the 5G core 10, performs authentication processing for the terminal device 30 based on the IMSI acquired from the terminal device 30 and the IMSI registered as subscriber information in the UDR 105. If the AMF 103 is able to authenticate the terminal device 30, it acquires linking information including the IMSI of the terminal device 30 from the UDR 105. In other words, the AMF 103 acquires the SPID corresponding to the IMSI of the terminal device 30. The AMF 103 then transmits the SPID to the base station 20 to which the terminal device 30 is connected. As a result, the base station 20 identifies the frequency band to be used by the connected terminal device 30 from the SPID, and becomes able to communicate wirelessly with the terminal device 30 using the identified frequency band.
  • Fig. 7 is a diagram illustrating the procedure of the learning process implemented in the wireless communication system 5.
  • Fig. 7 shows a scene in which learning data is collected in response to wireless communication and movement by the terminal device 30(1) of the subscribing user U1, and a model is generated from the collected data.
  • Fig. 7 also shows, as a part of such a scene, an example in which learning data is collected during a band-over in which the terminal device 30(1) first connects to the base station 20(1) and then switches its connection to the base station 20(2).
  • terminal device 30(1) has IMSI "U1" and is powered on within the cell formed by base station 20(1).
  • terminal device 30(1) requests registration of its own device from AMF103 via base station 20(1) (step S71).
  • AMF103 uses the IMSI "U1" acquired from terminal device 30 to reference the subscriber information in UDR105 and executes authentication processing to determine whether IMSI "U1" is registered as subscriber information (step S72). As will be described later, the communication control processing according to the embodiment registers association information linking the IMSI and SPID in UDR105. However, as shown in FIG. 7, at the current stage when the frequency band to be used for terminal device 30(1) has not been determined, the SPID associated with IMSI "U1" is assumed to be "N/A,” indicating no match.
  • AMF103 generates a temporary S-TMSI "U11” to replace IMSI "U1" (step S73) and transmits the generated S-TMSI "U11” to base station 20(1) and terminal device 30(1) (step S74).
  • both base station 20(1) and terminal device 30(1) possess S-TMSI "U11", and data with S-TMSI "U11” assigned can be input from base station 20(1) to learning device SV1.
  • SMF102 sets PDU session parameters upon receiving a request from AMF103, and a PDU session is established with UPF101 as the anchor point based on the parameters.
  • base station 20(1) inputs traffic information Trf11 linked to S-TMSI "U11” and frequency information F11 linked to S-TMSI "U11” to learning device SV1 (step S75).
  • the traffic information Trf11 may include the traffic volume and traffic behavior while the terminal device 30(1) is connected to the base station 20(1) and communicating wirelessly.
  • the frequency information F11 includes the frequency band used according to the priority determined by the base station 20(1) and the base station ID "20(1)" that identifies the base station 20(1), in accordance with the current SPID "N/A.”
  • the terminal device 30(1) is moving and performs a handover to switch the connection destination to the base station 20(2).
  • a handover notification is sent to the AMF 103 via the base station 20(2) (step S76).
  • the AMF 103 transmits the S-TMSI "U11" to the base station 20(2) and the terminal device 30(1) (step S77).
  • the base station 20(2) also possesses the S-TMSI "U11", and data with the S-TMSI "U11” assigned can be input from the base station 20(2) to the learning device SV1. Note that, although not shown in FIG.
  • the SMF 102 receives a request from the AMF 103 and instructs the UPF 101 and the base station 20(2) to replace the PDU session, making the UPF 101 the anchor point and enabling the use of a PDU session using the new base station 20(2).
  • base station 20(2) inputs traffic information Trf21 linked to S-TMSI "U11” and frequency information F21 linked to S-TMSI "U11” to learning device SV1 (step S78).
  • the traffic information Trf21 may include the traffic volume and traffic behavior while the terminal device 30(1) is connected to the base station 20(2) and communicating wirelessly.
  • the frequency information F21 includes the frequency band used according to the priority determined by the base station 20(2) and the base station ID "20(2)" that identifies the base station 20(2).
  • Figure 7 shows an example in which base station 20 inputs traffic information to learning device SV1, but a configuration in which a monitoring device for monitoring traffic connected to the Internet 60 is provided and the monitoring device inputs traffic information to learning device SV1 may also be adopted.
  • location information corresponding to the movement of terminal device 30(1) may be sequentially input to learning device SV1, and location information (base station location information) where base station 20(1) and base station 20(2) are installed may also be input.
  • the learning device SV1 generates learning data from the data that has been input so far, and generates a model through machine learning using the generated learning data (step S79). For example, the learning device SV1 calculates the travel route RT that the terminal device 30(1) took from base station 20(1) to base station 20(2) based on the base station location information of each base station 20 identified by the base station ID included in the frequency information F11 and frequency information F12, and the terminal location information. Furthermore, the learning device SV1 calculates context information CX that indicates the frequency band, traffic volume, and traffic behavior of the terminal device 30(1) along the travel route RT, based on the traffic information Trf11, traffic information Trf21, and the travel route RT.
  • the learning device SV1 determines whether the frequency band at the time when the terminal device 30(1) indicated the context information CX is optimal for the context information CX.
  • the learning device SV1 assigns the determination result as a correct label to the frequency band when the terminal device 30(1) indicates the context information CX, and uses this as the objective variable.
  • the learning device SV1 may assign as a correct label the result of a determination as to whether the actually used frequency band was optimal, based on the frequency of handovers between base station 20(1) and base station 20(2), the usage status (congestion) of wireless resources at base station 20(1) and base station 20(2), the optimal frequency band for the traffic volume on the travel route RT, and the actually used frequency band.
  • the learning device SV1 uses the feature information extracted from the context information CX as explanatory variables in machine learning. As a result, when new data obtained through wireless communication between the terminal device 30(1) and the base station 20 is input, the learning device SV1 can estimate the context trend according to the input data and learn a model so that it outputs the frequency band that is optimal for the estimated trend as the frequency band to be used.
  • the learning device SV1 may also use the type of content (e.g., video content, still image content, etc.) estimated from traffic volume and traffic behavior as learning data.
  • the learning device SV1 may use the period from when the connection service SV is subscribed to until use begins as the learning period, and generate a model using the learning data acquired during this period.
  • the learning device SV1 be configured to be able to identify that S-TMSI "U11" corresponds to IMSI "U1," which identifies subscribing user U1 who has subscribed to connection service SV.
  • the learning device SV1 may be configured to obtain a list of IMSI and S-TMSI combinations from AMF103, or to be configured to determine the IMSI that corresponds to the S-TMSI on its own.
  • the learning device SV1 can extract only the learning data for subscribing user U1 from the data input from base station 20 for an unspecified number of users U other than subscribing user U1, and generate a model customized for subscribing user U1. While the explanation is given using subscribing user U1 as an example, the same applies to other users U.
  • base station 20(1) inputs traffic information Trf12 associated with S-TMSI "U11" and frequency information F12 associated with S-TMSI "U11" to learning device SV1 (step S81).
  • the traffic information Trf12 may include the traffic volume and traffic behavior while the terminal device 30(1) is connected to the base station 20(1) and communicating wirelessly.
  • the frequency information F12 includes the frequency band used according to the priority determined by the base station 20(1) and the base station ID "20(1)" that identifies the base station 20(1), in accordance with the current SPID "N/A.”
  • the learning device SV1 executes the inference process by inputting the data acquired from base station 20(1) in step S81 into the model as inference data (step S82).
  • the model outputs the optimal frequency band according to the context trends during the time period specified by subscribing user U1. Therefore, the learning device SV1 determines the frequency band output by the model as the frequency band "X" to be used (step S82).
  • "X" is assumed to be either H (high frequency band), M (medium frequency band), or L (low frequency band).
  • the frequency band "X" to be used is associated with S-TMSI "U11.” Therefore, the conversion device SV2 converts S-TMSI "U11” to obtain the original IMSI "U1" (step S84).
  • the linking device SV3 generates linking information linking the IMSI "U1" obtained by the conversion with the SPID "X" that defines the target frequency band "X” as the preferred frequency band (step S85).
  • the terminal device 30(1) has previously used the high frequency band during the time period specified by the subscribing user U1, but "M" (medium frequency band) has been determined as the target frequency band.
  • the linking device SV3 generates linking information LK that links the IMSI "U1" with the SPID "M", as shown in FIG. 8.
  • the linking device SV3 transmits the linking information LK to the UDR 105, and registers it as the subscriber information of the subscribing user U1 (step S86).
  • the SPID linked to IMSI "U1" was "N/A,” indicating no match, but at this point this is replaced with SPID "M.”
  • the base station 20 becomes able to instruct the terminal device 30 on the frequency band set for the SPID. Therefore, based on SPID "M,” the base station 20(1) can cause the terminal device 30(1) to use the medium frequency band instead of the high frequency band during the time period specified by the subscribing user U1. This is explained in detail below.
  • the base station 20(1) determines that the frequency band that the terminal device 30(1) should preferentially use is the "medium frequency band,” and instructs the terminal device 30(1) to use the "medium frequency band” (step S89).
  • the flow of the communication control process according to the embodiment has been explained using Figures 7 and 8.
  • the user U is connected to the optimal frequency band according to the traffic behavior and travel route without being biased towards a specific frequency band, thereby improving the user U's experience and reducing the load on the mobile network (e.g., handover processing).
  • the user U can choose whether or not to benefit from the optimization of frequency selection due to mobility.
  • the communication control device 100 may be realized, for example, by a computer 1000 having a configuration as shown in Fig. 9.
  • Fig. 9 is a hardware configuration diagram showing an example of a computer that realizes the functions of the communication control device 100 according to the embodiment.
  • the computer 1000 includes a CPU 1100, a RAM 1200, a ROM 1300, a HDD 1400, a communication interface (I/F) 1500, an input/output interface (I/F) 1600, and a media interface (I/F) 1700.
  • the CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400, and controls each component.
  • the ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 starts up, as well as programs that depend on the computer 1000's hardware.
  • the CPU 1100 controls output devices such as displays and input devices such as keyboards via the input/output interface 1600.
  • the CPU 1100 acquires data from input devices via the input/output interface 1600.
  • the CPU 1100 also outputs generated data to output devices via the input/output interface 1600.
  • Media interface 1700 reads programs or data stored on recording medium 1800 and provides them to CPU 1100 via RAM 1200.
  • CPU 1100 loads the programs from recording medium 1800 onto RAM 1200 via media interface 1700 and executes the loaded programs.
  • Recording medium 1800 is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or a PD (Phase Change Rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical Disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
  • the CPU 1100 of the computer 1000 executes programs loaded onto the RAM 1200, thereby realizing the functions of the control unit 130.
  • the CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, the CPU 1100 may obtain these programs from another device via a specified communications network.
  • each device shown in the figure are functional concepts and do not necessarily have to be physically configured as shown.
  • the specific form of distribution and integration of each device is not limited to that shown, and all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication control device (100) comprises an acquisition unit (131), a generation unit (132), a determination unit (133), and a control unit (134). The acquisition unit (131) acquires, as context information of a user of a terminal device (30), traffic information relating to traffic generated by the terminal device (30) for wireless communication with a base station (20), and movement information relating to movement of the terminal device (30) corresponding to the traffic. The generation unit (132) learns the relationship between the context information and result information indicating whether or not a frequency band, among frequency bands that the base station (20) can handle, that was used by the terminal device (30) when the context information was acquired is optimal for the context information, thereby generating a model indicating the tendency of user context corresponding to the frequency band. The determination unit (133) determines, on the basis of the model, a frequency band to be used that the terminal device (30) is allowed to use preferentially in wireless communication. The control unit (134) performs control so that wireless communication is executed in the frequency band to be used.

Description

通信制御装置、無線通信システム、通信制御方法および通信制御プログラムCOMMUNICATION CONTROL DEVICE, WIRELESS COMMUNICATION SYSTEM, COMMUNICATION CONTROL METHOD, AND COMMUNICATION CONTROL PROGRAM

 本発明は、通信制御装置、無線通信システム、通信制御方法および通信制御プログラムに関する。 The present invention relates to a communication control device, a wireless communication system, a communication control method, and a communication control program.

 昨今、スマートフォンやタブレット端末装置の普及によって、各地に無線通信システム(無線セルラーネットワークシステム)が構築されている。端末装置は、移動局とも呼ばれ、移動に伴って通信先の無線基地局を切り替えるハンドオーバーを実行する。そこで、低遅延のハンドオーバーを実現するための技術が提案されている。 With the recent spread of smartphones and tablet devices, wireless communication systems (wireless cellular network systems) have been established all over the country. Terminal devices, also known as mobile stations, perform handovers, switching between wireless base stations as they move. Therefore, technologies have been proposed to achieve low-latency handovers.

特開2022-123341号公報Japanese Patent Application Laid-Open No. 2022-123341

 端末装置がユーザ操作に応じて発生させたトラフィック(例えば、トラフィック量やトラフィック挙動)に着目すると、端末装置の中には、高周波帯域を利用する程のトラフィックではなく、中周波数帯もくしは低周波数帯を利用させても十分な通信品質を確保できるものが存在する場合がある。一方で、端末装置の中には、中周波数帯もくしは低周波数帯の利用では不十分なトラフィックであり、通信品質を改善させるには高周波数帯を利用させるべきものが存在する場合もある。 When looking at the traffic (e.g., traffic volume and traffic behavior) generated by terminal devices in response to user operations, there may be some terminal devices whose traffic is not enough to warrant the use of high-frequency bands, and for which sufficient communication quality can be ensured even if they are made to use mid- or low-frequency bands. On the other hand, there may be some terminal devices whose traffic is insufficient to use mid- or low-frequency bands, and for which high-frequency bands should be used to improve communication quality.

 このように、端末装置にはトラフィックの点から利用すべき最適な周波数帯が存在するといえる。しかしながら、基地局側で周波数帯の優先度が定められるという仕様になっているため、端末装置は、トラフィックに拘わらず、基地局側に定められた優先度に従い特定の周波数帯を優先的に利用して基地局と無線通信することになる。 In this way, it can be said that there is an optimal frequency band for terminal devices to use in terms of traffic. However, because the base station is designed to determine the priority of frequency bands, terminal devices will communicate wirelessly with the base station by using specific frequency bands preferentially in accordance with the priority set by the base station, regardless of traffic.

 そうすると、多くの端末装置が特定の周波数帯の利用に偏り、無線リソースが不足するという問題が生じる。また、端末装置は、一般的に優先度が高く設定されている高周波数帯からセルサーチを実行するため、高周波帯域のセルを待ち受け先とする傾向にある。この結果、端末装置が、カバレッジの狭い高周波数帯を利用して基地局に接続することによるハンドオーバーの頻発も問題となっている。 This causes many terminal devices to use specific frequency bands, resulting in a shortage of wireless resources. Furthermore, because terminal devices generally perform cell searches starting with high-frequency bands, which are given higher priority, they tend to wait for cells in high-frequency bands. This results in frequent handovers due to terminal devices connecting to base stations using high-frequency bands with narrower coverage, creating a problem.

 以上のことから、端末装置に利用させる周波数帯を最適化することが求められている。しかしながら、上記の従来技術では、機械学習を用いて空いていると予測される周波数を無線通信に用いる使用周波数として決定しているに過ぎず、使用周波数帯の決定において端末装置のトラフィックが考慮されていない。このため、上記の従来技術では、端末装置に利用させる周波数帯を最適化することができるとは限らない。 For these reasons, there is a demand for optimizing the frequency bands used by terminal devices. However, the above-mentioned conventional technology simply uses machine learning to determine frequencies predicted to be available as the frequencies to be used for wireless communication, and does not take into account the traffic of the terminal devices when determining the frequency bands to be used. For this reason, the above-mentioned conventional technology does not necessarily make it possible to optimize the frequency bands to be used by terminal devices.

 そこで、本発明では、端末装置に利用させる周波数帯を最適化することができる通信制御装置、無線通信システム、通信制御方法および通信制御プログラムを提案する。後述するが、通信制御装置は、例えば、RIC(RAN Intelligent Controller)として実装されてよい。 The present invention therefore proposes a communication control device, wireless communication system, communication control method, and communication control program that can optimize the frequency bands used by terminal devices. As will be described later, the communication control device may be implemented, for example, as a RIC (RAN Intelligent Controller).

 上記の課題を解決するために、本発明に係る一形態の通信制御装置は、端末装置のユーザのコンテキスト情報として、前記端末装置が基地局との無線通信で発生させたトラフィックに関するトラフィック情報と、前記トラフィックに応じた前記端末装置の移動に関する移動情報とを取得する取得部と、前記基地局が対応可能な周波数帯のうち、前記コンテキスト情報を取得された際に前記端末装置が利用した周波数帯が前記コンテキスト情報に対して最適であるか否かを示す結果情報と、前記コンテキスト情報との関係性を学習することにより、周波数帯に応じた前記ユーザのコンテキストの傾向を示すモデルを生成する生成部と、前記モデルに基づいて、前記無線通信において前記端末装置に優先利用させる利用対象の周波数帯を決定する決定部と、前記利用対象の周波数帯で前記無線通信が実行されるよう制御する制御部と、を備える。 In order to solve the above problem, one embodiment of the present invention provides a communication control device that includes an acquisition unit that acquires, as context information of a user of a terminal device, traffic information related to traffic generated by the terminal device in wireless communication with a base station and movement information related to the movement of the terminal device in response to the traffic; a generation unit that generates a model that indicates the tendency of the user's context according to frequency band by learning result information indicating whether the frequency band used by the terminal device when the context information was acquired, among frequency bands supported by the base station, is optimal for the context information and the relationship with the context information; a determination unit that determines a target frequency band to be given priority use by the terminal device in the wireless communication based on the model; and a control unit that controls the wireless communication to be performed in the target frequency band.

 本発明によれば、端末装置に利用させる周波数帯を最適化することができる。 According to the present invention, it is possible to optimize the frequency bands used by terminal devices.

図1は、ハンドオーバー頻発の問題を説明する説明図である。FIG. 1 is an explanatory diagram illustrating the problem of frequent handovers. 図2は、本実施形態に係るシステムの概略構成の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a schematic configuration of a system according to this embodiment. 図3は、実施形態に係る無線通信システムの5Gコアのアーキテクチャを簡易的に示す図である。FIG. 3 is a diagram simply illustrating the architecture of a 5G core of a wireless communication system according to an embodiment. 図4は、地域センターに通信制御装置が設置されることによる有利な点が概念的に示される図である。FIG. 4 is a diagram conceptually showing the advantages of installing a communication control device in a regional center. 図5は、AI-RANの構成を示す図である。FIG. 5 is a diagram showing the configuration of an AI-RAN. 図6は、実施形態に係る通信制御装置の構成例を示す図である。FIG. 6 is a diagram illustrating an example of the configuration of a communication control device according to the embodiment. 図7は、無線通信システムで実現される学習処理の手順を説明する図である。FIG. 7 is a diagram illustrating the procedure of the learning process implemented in the wireless communication system. 図8は、無線通信システムで実現される推論処理の手順を説明する図である。FIG. 8 is a diagram illustrating the procedure of the inference process implemented in the wireless communication system. 図9は、実施形態に係る通信制御装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。FIG. 9 is a hardware configuration diagram illustrating an example of a computer that realizes the functions of the communication control device according to the embodiment.

 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Note that in this specification and drawings, components having substantially the same functional configuration will be assigned the same reference numerals, and redundant explanations will be omitted.

 以下に説明される1または複数の実施形態(実施例、変形例、適用例を含む)は、各々が独立に実施されることが可能である。一方で、以下に説明される複数の実施形態は少なくとも一部が他の実施形態の少なくとも一部と適宜組み合わせて実施されてもよい。これら複数の実施形態は、互いに異なる新規な特徴を含み得る。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し得、互いに異なる効果を奏し得る。 One or more embodiments (including examples, modifications, and application examples) described below can be implemented independently. However, at least a portion of the multiple embodiments described below may be implemented in appropriate combination with at least a portion of another embodiment. These multiple embodiments may include novel features that are different from one another. Therefore, these multiple embodiments may contribute to solving different purposes or problems and may achieve different effects from one another.

(実施形態)
〔1.はじめに〕
 公共交通機関(例えば、電車)の車内で不特定多数のユーザが自身の端末装置を利用している場面を想定する。この場合、端末装置の間で移動状況は同一であるが、ユーザごとに端末装置の使用状況は異なる。例えば、ユーザの動画閲覧操作に応じてトラフィック量が多めのデータを取得している端末装置も存在すれば、ユーザの静止画像閲覧操作に応じてトラフィック量が少なめのデータを取得している端末装置も存在し得る。また、ユーザが一切操作を行わず基地局との無線通信が発生していない待ち受け状態の端末装置も存在し得る。
(Embodiment)
1. Introduction
Consider a scenario in which an unspecified number of users are using their own terminal devices on a public transportation vehicle (e.g., a train). In this case, the movement status of the terminal devices is the same, but the usage status of the terminal device varies from user to user. For example, there may be terminal devices that acquire data with a high traffic volume in response to a user's video viewing operation, while there may be terminal devices that acquire data with a low traffic volume in response to a user's still image viewing operation. There may also be terminal devices that are in a standby state, where the user is not performing any operation and no wireless communication with a base station is occurring.

 この場合、通信品質を観点からトラフィック量が多めの端末装置には高周波数帯を利用させることが適切である。一方で、トラフィック量が少なめあるいはトラフィック量がゼロの端末装置には中周波数帯もくしは低周波数帯を利用させても十分な通信品質を確保できる可能性がある。 In this case, from the perspective of communication quality, it is appropriate to have terminal devices with high traffic volumes use high frequency bands. On the other hand, it may be possible to ensure sufficient communication quality by having terminal devices with low or no traffic volumes use medium or low frequency bands.

 しかしながら、上述したように、現在は、基地局側で周波数帯の優先度が定められるという仕様になっているため、端末装置は、トラフィックに拘わらず、基地局側に定められた優先度に従い特定の周波数帯を優先的に利用して基地局と無線通信することになる。よって、多くの端末装置が特定の周波数帯の利用に偏り、無線リソースが不足するという問題が生じる。 However, as mentioned above, the current specifications require that frequency band priorities be determined by the base station, meaning that terminal devices communicate wirelessly with the base station by using specific frequency bands in accordance with the priority set by the base station, regardless of traffic. This results in a bias toward the use of specific frequency bands by many terminal devices, leading to a shortage of wireless resources.

 また、一般的に、基地局側には高周波数帯を優先するように優先度が定められていることが多い。この場合、端末装置は、優先度が高く設定されている高周波数帯からセルサーチを実行するため、高周波帯域のセルを待ち受け先とする。この結果、端末装置が、カバレッジの狭い高周波数帯を利用して基地局に接続しながら移動するためハンドオーバーが高頻度に発生してしまう。この点について図1を用いて説明する。 Furthermore, base stations generally have priorities set to prioritize higher frequency bands. In this case, the terminal device will perform a cell search starting from the high frequency band, which has a higher priority, and will therefore set a high frequency band cell as its standby destination. As a result, handovers will occur frequently as the terminal device moves while connected to a base station using the high frequency band, which has narrow coverage. This point will be explained using Figure 1.

 図1は、ハンドオーバー頻発の問題を説明する説明図である。図1には、第5世代(5G)向けの基地局gNBの一例として、基地局gNB1、基地局gNB2および基地局gNB3が示され、これらの基地局gNBは互いに隣接している。つまり、基地局gNB1が形成するセルと、基地局gNB2が形成するセルと、基地局gNB3が形成するセルとは、互いに隣接関係にあり、図1に示すようにその一部は重複している。 Figure 1 is an explanatory diagram illustrating the problem of frequent handovers. Figure 1 shows base stations gNB1, gNB2, and gNB3 as examples of base stations gNBs for the fifth generation (5G), and these base stations gNB are adjacent to one another. In other words, the cell formed by base station gNB1, the cell formed by base station gNB2, and the cell formed by base station gNB3 are adjacent to one another, with some overlapping as shown in Figure 1.

 図1の例では、基地局gNB1は、高・中・低の3つの周波数帯に対応し、高周波数帯のセルCE11、中周波数帯のセルCE12、低周波数帯のセルCE13を形成している。また、基地局gNB3も、高・中・低の3つの周波数帯に対応し、高周波数帯のセルCE31、中周波数帯のセルCE32、低周波数帯のセルCE33を形成している。一方、基地局gNB2は、高周波数帯のみに対応し、高周波数帯のセルCE21を形成している。 In the example of Figure 1, base station gNB1 supports three frequency bands: high, medium, and low, and forms high frequency band cell CE11, medium frequency band cell CE12, and low frequency band cell CE13. Base station gNB3 also supports three frequency bands: high, medium, and low, and forms high frequency band cell CE31, medium frequency band cell CE32, and low frequency band cell CE33. On the other hand, base station gNB2 supports only the high frequency band, and forms high frequency band cell CE21.

 係る例では、セルCE11とセルCE21との間には重複領域H1が生じ、セルCE21とセルCE31との間には重複領域H2が生じる。また、セルCE12とセルCE32との間には重複領域M1が生じ、セルCE13とセルCE33との間には重複領域L1が生じる。この例から、高周波数帯に対応するセル同士では、中もしくは低周波数帯に対応するセル同士よりも多くの重複領域が生じる場合が多い。 In this example, an overlapping area H1 occurs between cells CE11 and CE21, and an overlapping area H2 occurs between cells CE21 and CE31. Furthermore, an overlapping area M1 occurs between cells CE12 and CE32, and an overlapping area L1 occurs between cells CE13 and CE33. From this example, it can be seen that there are often more overlapping areas between cells that support high frequency bands than between cells that support medium or low frequency bands.

 ここで、端末装置UEが、基地局gNB1から基地局gNB3へとハンドオーバーしてゆく場面を考えると、中もしくは低周波数帯のセル間を移動する場合には1つの重複領域(重複領域M1もしくは重複領域L1)における1回のハンドオーバーでよいが、高周波数帯のセル間を移動する場合には2つの重複領域(重複領域H1と重複領域H2)における2回のハンドオーバーが発生する。また、端末装置UEが、基地局gNB1と基地局gNB3との間を行き来する場合には、中もしくは低周波数帯を利用する場合より、高周波数帯を利用する場合の方がより多くのハンドオーバーが発生してしまう。 Here, consider a scenario in which a terminal device UE performs a handover from base station gNB1 to base station gNB3. When moving between cells using a medium or low frequency band, only one handover in one overlapping area (overlap area M1 or overlap area L1) is required, but when moving between cells using a high frequency band, two handovers occur in two overlapping areas (overlap area H1 and overlap area H2). Furthermore, when the terminal device UE travels between base station gNB1 and base station gNB3, more handovers occur when using a high frequency band than when using a medium or low frequency band.

 つまり、図1の例から、端末装置UEは、中もしくは低周波数帯を利用する場合より、高周波数帯を利用する場合の方がより多くのハンドオーバーを行うことが判り、ハンドオーバーの頻度が高い状況では通信の遅延も大きくなり得る。遅延を減らすにはハンドオーバーの頻度を抑える必要がある。ただし、トラフィック量が多めの端末装置には高周波数帯を利用させるべきである。一方、トラフィック量が少なめあるいはトラフィック量がゼロの端末装置には中周波数帯もくしは低周波数帯を利用させてもよいと考えられる。 In other words, from the example in Figure 1, it can be seen that the terminal device UE performs more handovers when using the high frequency band than when using the medium or low frequency band, and communication delays can also be large when handovers are frequent. To reduce delays, it is necessary to reduce the frequency of handovers. However, terminal devices with a high volume of traffic should be made to use the high frequency band. On the other hand, it is considered acceptable to make terminal devices with a low volume of traffic or no traffic use the medium or low frequency band.

 このように、端末装置UEそれぞれにはトラフィック傾向に応じた最適な周波数帯がある。そこで、本発明の発明者は、トラフィック傾向に応じて端末装置UEに優先利用させる利用対象の周波数帯を最適化すれば、図1のハンドオーバー問題も最適化できる点に着目した。 In this way, each terminal device UE has an optimal frequency band depending on traffic trends. Therefore, the inventors of the present invention focused on the fact that if the frequency band to be used preferentially by the terminal device UE is optimized depending on traffic trends, the handover problem in Figure 1 can also be optimized.

 しかしながら、端末装置UEに高周波数帯を優先させるような仕様が基地局gNB側に定められている現状では、いずれの端末装置UEも自装置のトラフィックに拘わらず高周波数帯を利用することになり、結果的に、図1のハンドオーバー問題を最適化できない。 However, under the current circumstances where specifications are set on the base station gNB side that prioritize high frequency bands for terminal devices UE, all terminal devices UE will use high frequency bands regardless of their own traffic, and as a result, the handover problem in Figure 1 cannot be optimized.

 ここで、任意の端末装置UEに通信方式の優先度を示すSPID(Subscriber ProfileI)と呼ばれる識別情報が知られている。基地局gNBは、SPIDに設定された周波数帯を端末装置UEに指示することができる。しかしながら、SPIDは、ダイナミックに設定を変えることを想定されていない。このため、基本的には、端末装置UEは、SPIDが無い状態では基地局gNB側で定められた優先度に応じた周波数帯で待ち受けし、SPIDが存在する場合にはそのSPIDに設定された周波数帯で待ち受けする。 Here, any terminal device UE is known to have identification information called SPID (Subscriber Profile I), which indicates the priority of the communication method. The base station gNB can instruct the terminal device UE on the frequency band set in the SPID. However, the SPID is not intended to be dynamically changed. For this reason, in principle, when there is no SPID, the terminal device UE waits in a frequency band according to the priority set by the base station gNB, and when there is an SPID, it waits in the frequency band set for that SPID.

 すなわち、本発明の提案技術は、SPIDを用いれば、優先的に利用させる周波数帯を制御できるという特性を生かしたアイデアである。より具体的には、本発明の提案技術は、基地局gNBが対応可能な周波数帯のうち端末装置UE利用した周波数帯が最適であるか否かを示す結果情報と、端末装置UEのユーザのコンテキストとの間での相関性を把握し、把握した相関性に基づき、基地局gNBとの無線通信において端末装置UEに優先利用させる利用対象の周波数帯を決定するというものである。一例を示すと、本発明の提案技術は、ユーザのコンテキストとして、ユーザが利用する端末装置UEの移動状況(移動経路)と、特定の周波数帯でのネットワークの使用状況(トラフィック状況)との間において一定の傾向を検出できた場合には、この傾向に応じた最適な周波数帯を利用対象の周波数帯として決定するというものである。 In other words, the proposed technology of the present invention is an idea that takes advantage of the characteristic that SPID can be used to control the frequency band to be used preferentially. More specifically, the proposed technology of the present invention grasps the correlation between result information indicating whether the frequency band used by the terminal apparatus UE is optimal among the frequency bands supported by the base station gNB and the user context of the terminal apparatus UE, and determines the frequency band to be used preferentially by the terminal apparatus UE in wireless communication with the base station gNB based on the grasped correlation. As an example, if the proposed technology of the present invention can detect a certain trend between the movement status (movement route) of the terminal apparatus UE used by the user and the network usage status (traffic status) in a specific frequency band as the user context, it determines the optimal frequency band according to this trend as the frequency band to be used.

 ここまで本発明の背景と概要について説明した。以下、図面を参照して本発明の実施形態について説明する。以下では、3GPP(登録商標)のLTE/LTE-Advancedの無線通信システム、第5世代以降の次世代のNR(New Radio)の無線通信システムのへの適用を前提に本発明の実施形態を説明するが、類似の構成を用いるシステムであれば、本発明の概念はどのようなシステムにも適用可能である。 So far, we have explained the background and overview of the present invention. Below, we will explain embodiments of the present invention with reference to the drawings. Below, we will explain embodiments of the present invention assuming application to 3GPP (registered trademark) LTE/LTE-Advanced wireless communication systems and next-generation NR (New Radio) wireless communication systems (5th generation and later). However, the concept of the present invention can be applied to any system that uses a similar configuration.

 本書に記載された実施形態に係る通信制御装置は、端末装置のユーザのコンテキスト情報として、端末装置が基地局との無線通信で発生させたトラフィックに関するトラフィック情報と、トラフィックに応じた端末装置の移動に関する移動情報とを取得する。そして、通信制御装置は、基地局が対応可能な周波数帯のうち、コンテキスト情報を取得された際に端末装置が利用した周波数帯がコンテキスト情報に対して最適であるか否かを示す結果情報と、コンテキスト情報との関係性を学習することにより、周波数帯に応じたユーザのコンテキストの傾向を示すモデルを生成する。そして、通信制御装置は、モデルに基づいて、無線通信において端末装置に優先利用させる利用対象の周波数帯を決定する。また、通信制御装置は、利用対象の周波数帯で無線通信が実行されるよう無線通信システム(無線セルラーネットワークシステム)を制御する。 A communication control device according to an embodiment described herein acquires, as context information for a user of a terminal device, traffic information related to traffic generated by the terminal device in wireless communication with a base station and movement information related to the movement of the terminal device in response to the traffic. The communication control device then generates a model indicating the tendency of the user's context according to frequency band by learning the relationship between the context information and result information indicating whether the frequency band used by the terminal device when the context information was acquired, among the frequency bands supported by the base station, is optimal for the context information. The communication control device then determines, based on the model, the target frequency band to be used by the terminal device for wireless communication. The communication control device also controls the wireless communication system (wireless cellular network system) so that wireless communication is performed in the target frequency band.

〔2.システム構成の概要〕
 図2は、本実施形態に係るシステム1の概略構成の一例を示す説明図である。また、図2の例によれば、システム1には、実施形態に係る通信制御装置100を含む無線通信システム(無線セルラーネットワークシステム)5が含まれる。
[2. System configuration overview]
Fig. 2 is an explanatory diagram showing an example of a schematic configuration of a system 1 according to the present embodiment. According to the example of Fig. 2, the system 1 includes a wireless communication system (wireless cellular network system) 5 including a communication control device 100 according to the embodiment.

 図2において、実施形態に係る無線通信システム5は、第5世代の標準仕様に準拠するセルラー方式の移動通信システムであり、5Gコアネットワーク10と、複数の基地局20と、複数の端末装置30とを含み、各端末装置30は、基地局20を介して、さらに、5Gコア10およびインターネット60を介してクラウドシステム(クラウド)70の外部装置との間でデータ通信(パケット通信)を行う。5Gでは、基地局20は、gNodeB(gNB)と呼ばれる。 In FIG. 2, the wireless communication system 5 according to the embodiment is a cellular mobile communication system conforming to the fifth-generation standard specifications, and includes a 5G core network 10, multiple base stations 20, and multiple terminal devices 30. Each terminal device 30 performs data communication (packet communication) via the base station 20, and further via the 5G core 10 and the Internet 60, with external devices in a cloud system (cloud) 70. In 5G, the base station 20 is called a gNodeB (gNB).

 また、図2において、無線通信システム5がカバーするエリア10Aは、無線通信システム5が提供されるサービスエリアである。実施形態に係る無線通信システム5は、エリア10Aごとに展開されてよく、一例としてエリア10Aは都道府県単位であってよい。すなわち、通信制御装置100は、都道府県単位という地域エリアごとに設置されてよい。 Furthermore, in FIG. 2, the area 10A covered by the wireless communication system 5 is the service area in which the wireless communication system 5 is provided. The wireless communication system 5 according to the embodiment may be deployed for each area 10A, and as an example, the area 10A may be on a prefecture-by-prefecture basis. In other words, the communication control device 100 may be installed for each regional area, such as a prefecture-by-prefecture basis.

 5Gコア10は、ネットワークファンクションと呼ばれる様々な機能(ノード)を有するコアネットワーク装置で構成される。5Gコア10は、通信事業者Tが保有する無線通信システム5からインターネット60に接続する部分に相当する。ここでいう通信事業者Tは、実施形態に係る通信制御装置100を用いて、決められた周波数帯が優先利用される接続サービスSVを提供する企業であってよい。 The 5G core 10 is composed of core network devices having various functions (nodes) called network functions. The 5G core 10 corresponds to the part that connects the wireless communication system 5 owned by the telecommunications carrier T to the Internet 60. The telecommunications carrier T here may be a company that provides a connection service SV in which a designated frequency band is used preferentially using the communication control device 100 according to the embodiment.

 また、図2の例によれば、1つのエリア10Aには、基地局20(1)と基地局20(2)とが含まれる。基地局20(1)および基地局20(2)は、図1に示したように、複数の周波数帯に対応しており、各周波数帯に対応するセルを成形しているものとする。図2には、エリア10Aに含まれる基地局20の一例として、2つの基地局20(1)および基地局20(2)が示されるが、エリア10A内の基地局の数は限定されない。 Furthermore, according to the example of Figure 2, one area 10A includes base station 20(1) and base station 20(2). As shown in Figure 1, base station 20(1) and base station 20(2) support multiple frequency bands and form cells corresponding to each frequency band. Figure 2 shows two base stations, 20(1) and 20(2), as an example of base stations 20 included in area 10A, but the number of base stations within area 10A is not limited.

 基地局20(1)および基地局20(2)はそれぞれ、例えばCPUやメモリ等を有するコンピュータ装置、5Gコア10に対する外部通信インターフェース部、無線通信部等のハードウェアを用いて構成され、所定のプログラムが実行されることにより、所定の通信方式および無線通信リソースを用いて、端末装置30との間の無線通信を行ったり、5Gコア10のコアネットワーク装置との間の情報の送受信を行ったり、通信制御装置100との間の情報の送受信を行ったりすることができる。 Base station 20(1) and base station 20(2) are each configured using hardware such as a computer device having a CPU, memory, etc., an external communication interface unit for 5G core 10, and a wireless communication unit, and by executing a specified program, they can perform wireless communication with terminal device 30, send and receive information with the core network device of 5G core 10, and send and receive information with communication control device 100 using a specified communication method and wireless communication resources.

 端末装置30は、例えば、通信サービスの利用者によって使用されるためユーザ装置(UE:User Equipment)と呼ばれる。また、端末装置30は、移動可能なものであるため移動局または移動機と呼ばれたり、無線機と呼ばれたりする場合もある。 The terminal device 30 is called user equipment (UE) because it is used by a user of a communication service. Furthermore, because the terminal device 30 is mobile, it may also be called a mobile station or mobile device, or a radio device.

 図2には、端末装置30の一例として、ユーザU1が利用する端末装置30(1)が示されている。端末装置30(1)は、移動に応じて、接続先の基地局20を基地局20(1)から基地局20(2)へと切り替えるハンドオーバーを実行する場合がある。 In Figure 2, terminal device 30(1) used by user U1 is shown as an example of terminal device 30. As terminal device 30(1) moves, it may perform a handover to switch the connected base station 20 from base station 20(1) to base station 20(2).

 端末装置30(1)は、基地局20(1)に接続している場合には基地局20(1)を介して各種の通信を行うことができ、基地局20(2)に接続している場合には基地局20(2)を介して各種の通信を行うことができる。端末装置30(1))は、例えばCPUやメモリ等を有するコンピュータ装置、無線通信部などのハードウェアを用いて構成され、所定のプログラムが実行されることにより、基地局20との間の無線通信を行うことができる。 When connected to base station 20(1), terminal device 30(1) can perform various communications via base station 20(1), and when connected to base station 20(2), can perform various communications via base station 20(2). Terminal device 30(1) is configured using hardware such as a computer device with a CPU, memory, etc., and a wireless communication unit, and can perform wireless communications with base station 20 by executing a specific program.

 なお、図2には、ユーザU1が利用する1つの端末装置30(1)のみ示されているが、実際には、不特定多数の複数のユーザUそれぞれにより利用される複数の端末装置30が基地局20に接続している。 Note that while Figure 2 shows only one terminal device 30(1) used by user U1, in reality, multiple terminal devices 30 used by an unspecified number of multiple users U are connected to the base station 20.

 通信制御装置100は、本発明の提案技術に係る通信制御処理を実行する情報処理装置である。通信制御装置100は、端末装置30のユーザUのコンテキスト情報として、端末装置30が基地局20との無線通信で発生させたトラフィックに関するトラフィック情報と、トラフィックに応じた端末装置30の移動に関する移動情報とを取得する。そして、通信制御装置100は、基地局20が対応可能な周波数帯のうち端末装置30がいずれの周波数帯を利用したかを示す結果情報と、コンテキスト情報との関係性を学習することにより、周波数帯に応じたユーザUのコンテキストの傾向を示すモデルを生成し、モデルに基づいて、無線通信において端末装置30に優先利用させる利用対象の周波数帯を決定する。また、通信制御装置100は、利用対象の周波数帯で無線通信が実行されるよう無線通信システム5を制御する。 The communication control device 100 is an information processing device that executes communication control processing related to the proposed technology of the present invention. The communication control device 100 acquires, as context information of user U of terminal device 30, traffic information related to traffic generated by the terminal device 30 in wireless communication with the base station 20 and movement information related to the movement of the terminal device 30 in response to the traffic. The communication control device 100 then learns the relationship between the context information and result information indicating which frequency band the terminal device 30 used among the frequency bands supported by the base station 20, thereby generating a model that indicates the tendency of user U's context according to frequency band, and determines the target frequency band to be given priority for use by the terminal device 30 in wireless communication based on the model. The communication control device 100 also controls the wireless communication system 5 so that wireless communication is performed in the target frequency band.

 通信制御装置100は、5Gコア10に設けられてもよいし、データセンター等の遠隔地に設置されてもよい。例えば、通信制御装置100は、エリア10Aごとに存在する地域センターに設置されてよい。この点については後に図4で説明する。 The communication control device 100 may be provided in the 5G core 10, or may be installed in a remote location such as a data center. For example, the communication control device 100 may be installed in a regional center located in each area 10A. This point will be explained later with reference to Figure 4.

 図3は、実施形態に係る無線通信システム5の5Gコア10のアーキテクチャを簡易的に示す図である。5Gコア10は、主に制御信号が送受されて処理される移動通信システムの全体の制御系としての制御・プレーンの部分(C-Plane)と、主にユーザデータが送受信されて処理されるユーザプレーンの部分(U-Plane)とにより構成されている。図3において、C-Planeの通信は点線で示され、U-Planeの通信は実線で示される。 Figure 3 is a simplified diagram showing the architecture of the 5G core 10 of the wireless communication system 5 according to the embodiment. The 5G core 10 is composed of a control plane portion (C-Plane) that serves as the overall control system for the mobile communication system, where control signals are mainly sent, received, and processed, and a user plane portion (U-Plane) where user data is mainly sent, received, and processed. In Figure 3, C-Plane communications are indicated by dotted lines, and U-Plane communications are indicated by solid lines.

 C-Planeには、UPF(User Plane Function)101、SMF(Session Management Function)102、AMF(Access and Mobility Management Function)103、UDM(Unified Data Management)104、UDR(Unified Data Repository)105が配置されている。C-Planeの説明は省略する。 The C-Plane contains the UPF (User Plane Function) 101, SMF (Session Management Function) 102, AMF (Access and Mobility Management Function) 103, UDM (Unified Data Management) 104, and UDR (Unified Data Repository) 105. An explanation of the C-Plane is omitted.

 UPF101は、加入者通信パケット転送等の機能を有する。SMF102は、加入者セッション管理等の機能を有する。例えば、SMF102は、AMF103から端末装置30の接続する基地局20の情報を取得しつつ、PDU(Packet Data Unit)セッションを確立する。 UPF 101 has functions such as forwarding subscriber communication packets. SMF 102 has functions such as subscriber session management. For example, SMF 102 establishes a PDU (Packet Data Unit) session while obtaining information about the base station 20 to which the terminal device 30 is connected from AMF 103.

 AMF103は、加入者認証や加入者モビリティ管理等の機能を有する。例えば、AMF103は、UDM104やUDR105に加入者の情報を問い合わせ、通信事業者Tとの契約のある端末装置30であるか否か認証し認証できた場合に接続を提供するという一連のアクセス管理を行う。また、AMF103は、端末装置30が移動した際には最寄りの基地局20に接続できるように、端末装置30がどの基地局20のセルにいるか否かの管理を行う。つまり、AMF103は、端末装置30がどの基地局20からどの基地局20へと移動したか移動経路を把握することができる。 AMF 103 has functions such as subscriber authentication and subscriber mobility management. For example, AMF 103 performs a series of access management tasks, such as querying UDM 104 and UDR 105 for subscriber information, authenticating whether the terminal device 30 has a contract with telecommunications carrier T, and providing connection if authentication is successful. AMF 103 also manages which base station 20's cell the terminal device 30 is in, so that when the terminal device 30 moves, it can connect to the nearest base station 20. In other words, AMF 103 can grasp the route taken by the terminal device 30, i.e., from which base station 20 to which base station 20.

 UDM104は、加入者情報管理等の機能を有する。UDR105は、加入者情報データベース等の機能を有する。 UDM104 has functions such as subscriber information management. UDR105 has functions such as a subscriber information database.

 図4は、地域センターに通信制御装置100が設置されることによる有利な点が概念的に示される図である。例えば、AIが加速的に進化する社会を支えるために、急増するデータ処理やデータ処理に必要な電力の需要に対応できる次世代社会インフラの構築が必要となっている。そこで、地域ごと(例えば、エリア10Aごと)のデータセンターに大規模なサーバ群を構築し、その潤沢な計算機リソース上でvRAN(virtual Radio Access Network=仮想化無線アクセスネットワーク)とMEC(マルチアクセスエッジコンピューティング)やAIアプリケーションを同時に動作させ、連携させるというAI-RAN構想がある。 Figure 4 is a conceptual diagram showing the advantages of installing a communication control device 100 in a regional center. For example, to support a society in which AI is evolving at an accelerating pace, it is necessary to build a next-generation social infrastructure that can handle the rapidly increasing demand for data processing and the power required for that data processing. Therefore, the AI-RAN concept involves building large-scale server clusters in data centers for each region (for example, each area 10A), and using the abundant computing resources to simultaneously run and link vRAN (virtual radio access network), MEC (multi-access edge computing), and AI applications.

 図4には、AI-RAN構想に通信制御装置100が適用された場面が示される。各エリア10Aに存在する通信制御装置100は、計算基盤と学習基盤とを有するAI-RANであり、地域ごとに分散された状態で配置される。このように、AI-RANとしての通信制御装置100は、端末装置30の近くにエッジサーバ(MECサーバともいえる)として分散配置されるクラウドサーバであってよく、インターネット60から分離された閉域ネットワークを活用することで、高速・大容量・低遅延等を実現することができる。一方で、各地の通信制御装置100によって収集されたデータを活用したサービス(例えば、大規模演算や大電力を必要とする学習)は、インターネット60を通じたクラウド70の側で実行されてよい。 Figure 4 shows a scenario in which the communication control device 100 is applied to the AI-RAN concept. The communication control device 100 present in each area 10A is an AI-RAN having a calculation platform and a learning platform, and is deployed in a distributed manner by region. In this way, the communication control device 100 as an AI-RAN may be a cloud server that is deployed as an edge server (also known as an MEC server) near the terminal device 30, and by utilizing a closed network separated from the Internet 60, high speed, large capacity, low latency, etc. can be achieved. Meanwhile, services that utilize data collected by the communication control device 100 in each location (for example, large-scale calculations or learning that requires large amounts of power) may be executed on the cloud 70 side via the Internet 60.

〔3.AI-RANの構成〕
 図5は、AI-RANの構成を示す図である。図5には、エリア10Aに対応する通信制御装置100が有するAI-RANの機能構成が示される。まず、AI-RANとは、AIとRAN(基地局20)とを共存させるアーキテクチャであり、AIによりRANの性能を最大限に引き出すことができるとともに、様々なAIアプリケーション用の超低遅延・高セキュリティな計算基盤を地域レベルで実現することができる。
3. AI-RAN Configuration
Figure 5 is a diagram showing the configuration of an AI-RAN. Figure 5 shows the functional configuration of the AI-RAN possessed by the communication control device 100 corresponding to area 10A. First, AI-RAN is an architecture that allows AI and RAN (base station 20) to coexist, and it can maximize the performance of the RAN using AI, while also realizing an ultra-low latency, highly secure computing infrastructure for various AI applications at the regional level.

 図5の例では、vRANは、通信制御装置100のGPUが、RANすなわち基地局20(エリア10Aに含まれる基地局20)を仮想化した5Gの仮想化無線アクセスネットワークである。つまり、図5に示す通信制御装置100は、5GのvRANおよびMECが融合した仮想化基盤環境において、さらに学習基盤(AI)が実装されることでAI-RANとして構成されている。 In the example of Figure 5, vRAN is a 5G virtualized radio access network in which the GPU of the communication control device 100 virtualizes the RAN, i.e., the base station 20 (the base station 20 included in area 10A). In other words, the communication control device 100 shown in Figure 5 is configured as an AI-RAN by further implementing a learning platform (AI) in a virtualized platform environment that combines 5G vRAN and MEC.

 また、地域レベルでの計算基盤の実現例として、エリア10Aに含まれる基地局20に対応する計算機リソースがさらに設けられている。 Furthermore, as an example of implementing a computational infrastructure at the regional level, computational resources corresponding to the base stations 20 included in area 10A are also provided.

 なお、通信制御装置100が有する学習基盤の部分は、後述する生成部132(図6)に対応するものであってよい。 The learning platform portion of the communication control device 100 may correspond to the generation unit 132 (Figure 6) described below.

〔4.通信制御装置の構成〕
 図6を用いて、実施形態に係る通信制御装置100について説明する。図6は、実施形態に係る通信制御装置100の構成例を示す図である。図6に示すように、通信制御装置100は、通信部110と、記憶部120と、制御部130とを有する。
4. Configuration of communication control device
The communication control device 100 according to the embodiment will be described with reference to Fig. 6. Fig. 6 is a diagram showing an example of the configuration of the communication control device 100 according to the embodiment. As shown in Fig. 6, the communication control device 100 includes a communication unit 110, a storage unit 120, and a control unit 130.

(通信部110について)
 通信部110は、例えば、NIC(Network Interface Card)等によって実現される。例えば、通信部110は、5Gコア10や基地局20との間で無線通信を行う。
(Regarding the communication unit 110)
The communication unit 110 is realized by, for example, a network interface card (NIC), etc. For example, the communication unit 110 performs wireless communication with the 5G core 10 and the base station 20.

(記憶部120について)
 記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子またはハードディスク、光ディスク等の記憶装置によって実現される。記憶部120は、例えば、実施形態に係る通信制御処理に関するデータやプログラムを記憶してよい。
(Regarding the storage unit 120)
The storage unit 120 is realized by, for example, a semiconductor memory element such as a random access memory (RAM) or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 120 may store, for example, data and programs related to the communication control process according to the embodiment.

(制御部130について)
 制御部130は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、通信制御装置100内部の記憶装置に記憶されている各種プログラム(例えば、実施形態に係る通信制御プログラム)がRAMを作業領域として実行されることにより実現される。また、制御部130は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。
(Regarding the control unit 130)
The control unit 130 is realized by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like using RAM as a work area to execute various programs (e.g., a communication control program according to the embodiment) stored in a storage device inside the communication control device 100. The control unit 130 is also realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).

 図6に示すように、制御部130は、取得部131と、生成部132と、決定部133と、通信制御部134とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部130の内部構成は、図6に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。また、制御部130が有する各処理部の接続関係は、図6に示した接続関係に限られず、他の接続関係であってもよい。 As shown in FIG. 6, the control unit 130 has an acquisition unit 131, a generation unit 132, a determination unit 133, and a communication control unit 134, and realizes or executes the information processing functions and actions described below. Note that the internal configuration of the control unit 130 is not limited to the configuration shown in FIG. 6, and may be other configurations that perform the information processing described below. Furthermore, the connection relationships between the processing units of the control unit 130 are not limited to the connection relationships shown in FIG. 6, and may be other connection relationships.

(取得部131)
 取得部131は、端末装置30のユーザUのコンテキスト情報として、端末装置30が基地局20との無線通信で発生させたトラフィックに関するトラフィック情報と、トラフィックに応じた端末装置30の移動に関する移動情報とを取得する。ここでいうトラフィック情報には、トラフィック量、あるいは、トラフィック挙動の概念が含まれるものとする。また、トラフィック挙動とは、一定期間でのトラフィック量の推移を示すものであってよい。また、端末装置30の移動に関する移動情報には、端末装置30が接続している接続先の基地局を示す基地局ID、端末装置30のハンドオーバーに対応する切り替え先の基地局を示す基地局ID等が含まれてよい。つまり、移動情報には、端末装置30がいずれの基地局20から他のどの基地局20へと移動したかを示す情報が含まれてよい。
(Acquisition unit 131)
The acquisition unit 131 acquires, as context information of the user U of the terminal device 30, traffic information related to traffic generated by the terminal device 30 in wireless communication with the base station 20 and movement information related to the movement of the terminal device 30 in response to the traffic. The traffic information here includes the concepts of traffic volume or traffic behavior. Furthermore, traffic behavior may indicate a change in traffic volume over a certain period of time. Furthermore, the movement information related to the movement of the terminal device 30 may include a base station ID indicating the base station to which the terminal device 30 is connected, a base station ID indicating a base station to which the terminal device 30 is switched in response to handover, and the like. In other words, the movement information may include information indicating from which base station 20 the terminal device 30 has moved to which other base station 20.

 なお、取得部131は、基地局設計情報DBから基地局20の設置位置を示す基地局位置情報を取得してよく、この基地局位置情報と移動情報とを照らし合わせることで、端末装置30の移動経路を取得することもできる。基地局設計情報DBの所在場所は限定されない。例えば、通信制御装置100の記憶部120が基地局設計情報DBを有してもよいし、各基地局20が基地局設計情報DBを有してもよい。 The acquisition unit 131 may acquire base station location information indicating the installation location of the base station 20 from a base station design information DB, and may also acquire the movement route of the terminal device 30 by comparing this base station location information with the movement information. The location of the base station design information DB is not limited. For example, the storage unit 120 of the communication control device 100 may have a base station design information DB, or each base station 20 may have a base station design information DB.

(生成部132)
 生成部132は、基地局20が対応可能な周波数帯のうち、コンテキスト情報を取得された際に端末装置30が利用した周波数帯がコンテキスト情報に対して最適であるか否かを示す結果情報と、コンテキスト情報との関係性を学習することにより、周波数帯に応じたユーザUのコンテキストの傾向を示すモデルを生成する。生成部132は、所定のユーザのコンテキスト情報が入力された場合に、基地局20が対応可能な周波数帯のうち所定のユーザのコンテキストに応じた最適な、周波数帯を出力するように関係性をモデルに学習させる。
(Generation unit 132)
The generation unit 132 generates a model indicating the tendency of the context of the user U according to the frequency band by learning the relationship between the context information and result information indicating whether the frequency band used by the terminal device 30 when the context information was acquired, among the frequency bands that the base station 20 can support, is optimal for the context information. When the context information of a specific user is input, the generation unit 132 causes the model to learn the relationship so as to output the frequency band that is optimal according to the context of the specific user, among the frequency bands that the base station 20 can support.

 なお、コンテキスト情報を取得された際に端末装置30が利用した周波数帯がコンテキスト情報に対して最適であるか否かを示す情報は人手によってラベル付けされてもよいし、生成部132にラベル付与のルールを与えておくことで、動的に付与させてもよい。 In addition, the information indicating whether the frequency band used by the terminal device 30 when the context information was acquired is optimal for the context information may be manually labeled, or may be dynamically assigned by providing labeling rules to the generation unit 132.

 また、取得部131は、ユーザUのコンテキスト情報として、端末装置の位置情報をさらに取得してよく、係る場合、生成部132は、端末装置30の位置情報に基づき特定される情報に基づいて、モデルを生成する。 Furthermore, the acquisition unit 131 may further acquire location information of the terminal device as context information of the user U. In such a case, the generation unit 132 generates a model based on information identified based on the location information of the terminal device 30.

(決定部133)
 決定部133は、モデルに基づいて、端末装置30と基地局20無線通信において端末装置30に優先利用させる利用対象の周波数帯を決定する。例えば、決定部133は、所定のユーザUのコンテキスト情報をモデルに入力した場合に、モデルが出力した周波数帯の情報に基づいて、利用対象の周波数帯を決定する。
(Determination unit 133)
Based on the model, the determination unit 133 determines a target frequency band to be preferentially used by the terminal device 30 in wireless communication between the terminal device 30 and the base station 20. For example, when context information of a predetermined user U is input to the model, the determination unit 133 determines a target frequency band to be used based on information on the frequency band output by the model.

(通信制御部134)
 通信制御部134は、利用対象の周波数帯で無線通信が実行されるよう制御する。例えば、通信制御部134は、利用対象の周波数帯で無線通信が実行されるよう5Gコア10内のノードを制御する。
(Communication control unit 134)
The communication control unit 134 controls wireless communication so that it is performed in the frequency band to be used. For example, the communication control unit 134 controls the nodes in the 5G core 10 so that wireless communication is performed in the frequency band to be used.

(制御部130の一例)
 端末装置30と基地局20との無線通信において、コンテキスト情報には、端末装置30のユーザUを加入者として識別する第1識別情報に関連付けられ、かつ、第1識別情報の代わりとなる一時的な第2識別情報が紐付けられる。第1識別情報は、IMSI(International Mobile Subscriber Identity)である。IMSIは、端末装置30のユーザUまたは加入者を識別する情報であり、本実施形態では通信事業者Tのサービスを利用する加入者に割り当てられる番号である。第2識別情報は、5G-S-TMSI(5G S Temporary Mobile Subscription Identifier)である。5G-S-TMSI(以下、「S-TMSI」と略す)は、IMSIの代わりにユーザU(ユーザUの端末装置30)に割り当てられる一時的な加入識別子である。
(An example of the control unit 130)
In wireless communication between the terminal device 30 and the base station 20, the context information is associated with first identification information that identifies the user U of the terminal device 30 as a subscriber, and is linked to temporary second identification information that replaces the first identification information. The first identification information is an International Mobile Subscriber Identity (IMSI). The IMSI is information that identifies the user U or subscriber of the terminal device 30, and in this embodiment, is a number assigned to subscribers who use the services of the telecommunications carrier T. The second identification information is a 5G-S Temporary Mobile Subscription Identifier (5G-S-TMSI). The 5G-S-TMSI (hereinafter abbreviated as "S-TMSI") is a temporary subscription identifier assigned to the user U (user U's terminal device 30) instead of the IMSI.

 無線通信ではIMSIではなく常にS-TMSIが用いられる。よって、取得部131は、S-TMSIが紐付けられたコンテキスト情報を取得する。例えば、取得部131は、ユーザUのうち、決められた周波数帯が優先利用される接続サービスSVに加入する加入ユーザUxのIMSIに対応するS-TMSIが紐付けられるコンテキスト情報を、モデルの生成に用いる対象のコンテキスト情報として取得する。また、取得部131は、対象のコンテキスト情報が取得された際に端末装置30が利用した周波数帯の情報を取得する。 In wireless communication, the S-TMSI is always used, not the IMSI. Therefore, the acquisition unit 131 acquires context information linked to the S-TMSI. For example, the acquisition unit 131 acquires, as the target context information to be used in generating the model, context information linked to the S-TMSI corresponding to the IMSI of a subscriber user Ux who subscribes to a connection service SV that prioritizes the use of a specified frequency band, among users U. The acquisition unit 131 also acquires information on the frequency band used by the terminal device 30 when the target context information was acquired.

 係る場合、生成部132は、加入ユーザUxごとに取得されたコンテキスト情報と結果情報との関係性を学習することにより、加入ユーザ別のモデルを生成してよい。そして、決定部133は、加入ユーザ別に生成されモデルに基づいて、加入ユーザごとに端末装置30に優先利用させる利用対象の周波数帯を決定する。ここで決定された利用対象の周波数帯にもS-TMSIが紐付けられている。そこで、通信制御部134は、利用対象の周波数帯に紐付けられるS-TMSIを、当該S-TMSIに対応するIMSIに変換し、変換後のIMSIと、利用する周波数帯の優先度を示すSPID(第3識別情報)とを紐付けた紐付情報を、IMSIが記憶される加入者情報データベースに登録する。ここでいう加入者情報データベースは、UDR105であってよい。 In such a case, the generation unit 132 may generate a model for each subscriber user by learning the relationship between the context information and result information acquired for each subscriber user Ux. Then, the determination unit 133 determines the target frequency band to be preferentially used by the terminal device 30 for each subscriber user based on the model generated for each subscriber user. The target frequency band determined here is also associated with an S-TMSI. Therefore, the communication control unit 134 converts the S-TMSI associated with the target frequency band to an IMSI corresponding to that S-TMSI, and registers association information that associates the converted IMSI with an SPID (third identification information) indicating the priority of the frequency band to be used in the subscriber information database in which the IMSI is stored. The subscriber information database referred to here may be the UDR 105.

 ここで、5Gコア10のコアネットワーク装置であるAMF103は、端末装置30が基地局20にアクセスした場合には、端末装置30から取得したIMSIと、UDR105に加入者情報として登録されるIMSIとに基づいて、端末装置30の認証処理を実行する。AMF103は、端末装置30を認証できた場合には、この端末装置30のIMSIを含む紐付情報をUDR105から取得する。つまり、AMF103は、端末装置30のIMSIに対応するSPIDを取得する。そして、AMF103は、端末装置30の接続先の基地局20にSPIDを送信する。この結果、基地局20は、接続してきた端末装置30に利用させる周波数帯をSPIDから特定し、特定した周波数帯を用いて端末装置30と無線通信することができるようになる。 Here, when a terminal device 30 accesses a base station 20, the AMF 103, which is a core network device of the 5G core 10, performs authentication processing for the terminal device 30 based on the IMSI acquired from the terminal device 30 and the IMSI registered as subscriber information in the UDR 105. If the AMF 103 is able to authenticate the terminal device 30, it acquires linking information including the IMSI of the terminal device 30 from the UDR 105. In other words, the AMF 103 acquires the SPID corresponding to the IMSI of the terminal device 30. The AMF 103 then transmits the SPID to the base station 20 to which the terminal device 30 is connected. As a result, the base station 20 identifies the frequency band to be used by the connected terminal device 30 from the SPID, and becomes able to communicate wirelessly with the terminal device 30 using the identified frequency band.

 なお、加入ユーザUxは、接続サービスSVに申し込んでおくことで、例えば、通勤時間帯における自身のコンテキスト情報に応じた最適な周波数帯を通勤時間帯にのみ利用できるよしておく等といった設定をすることができるようになる。また、このような設定を実現できるよう、端末装置30と通信制御装置100との間で情報の送受信をアプリケーションが実装されてよい。 Furthermore, by subscribing to the connection service SV, the subscriber user Ux can set up settings such as, for example, allowing the optimal frequency band based on the subscriber's own context information for commuting hours to be used only during commuting hours. Furthermore, to enable such settings to be realized, an application may be implemented to send and receive information between the terminal device 30 and the communication control device 100.

〔5.モデル生成の一例〕
 生成部132は、加入ユーザUxごとにモデルを生成してよい。例えば、生成部132は、基地局20が対応可能な周波数帯のうち、コンテキスト情報を取得された際に加入ユーザUxの端末装置30が利用した周波数帯がコンテキスト情報に対して最適であるか否かを示す結果情報を、機械学習における目的変数とする。また、生成部132は、加入ユーザUxのコンテキスト情報や加入ユーザUxの位置情報から抽出された特徴情報を、機械学習における説明変数とする。そして、生成部132は、目的変数と説明変数とを用いてモデルを生成する。これにより、生成部132は、例えば、加入ユーザU1xのコンテキストに応じた最適な周波数帯を推定できるようになる。
5. An example of model generation
The generation unit 132 may generate a model for each subscribing user Ux. For example, the generation unit 132 uses result information indicating whether the frequency band used by the terminal device 30 of the subscribing user Ux when the context information is acquired, among the frequency bands supported by the base station 20, is optimal for the context information as a target variable in machine learning. Furthermore, the generation unit 132 uses feature information extracted from the context information of the subscribing user Ux and the location information of the subscribing user Ux as explanatory variables in machine learning. Then, the generation unit 132 generates a model using the target variable and the explanatory variables. This allows the generation unit 132 to estimate, for example, the optimal frequency band according to the context of the subscribing user U1x.

 例えば、生成部132は、加入ユーザU1のコンテキスト情報を入力として<高周波数帯を利用している状態で、トラフィック量「A1」/トラフィック挙動「A2」/基地局20(1)~基地局20(2)間を移動>という傾向を推定できる場合には、中周波数帯が最適との出力を得ることができるようなモデルを生成できる。また、生成部132は、加入ユーザU1のコンテキスト情報を入力として<低周波数帯を利用している状態で、トラフィック量「B1」/トラフィック挙動「B2」/基地局20(2)~基地局20(3)間を移動>という傾向を推定できる場合には、高周波数帯が最適との出力を得ることができるようなモデルを生成できる。他の例として、生成部132は、加入ユーザU1のコンテキスト情報を入力として<基地局20(3)~基地局20(4)間を移動する場合、接続せず待ち受け状態にある>という傾向を推定できる場合には、高周波数帯で待ち受けさせておくことが最適との出力を得ることができるようなモデルを生成できる。 For example, if the generation unit 132 can estimate the following tendency using the context information of subscribing user U1 as input: <traffic volume "A1" / traffic behavior "A2" / movement between base station 20(1) and base station 20(2) when using the high frequency band>, it can generate a model that can obtain an output indicating that the medium frequency band is optimal. Furthermore, if the generation unit 132 can estimate the following tendency using the context information of subscribing user U1 as input: <traffic volume "B1" / traffic behavior "B2" / movement between base station 20(2) and base station 20(3) when using the low frequency band>, it can generate a model that can obtain an output indicating that the high frequency band is optimal. As another example, if the generation unit 132 can estimate the following tendency using the context information of subscribing user U1 as input: <when moving between base station 20(3) and base station 20(4), the user remains in standby mode without connecting>, it can generate a model that can obtain an output indicating that standby in the high frequency band is optimal.

〔6.学習処理手順〕
 続いて、学習処理の手順を説明する。図7は、無線通信システム5で実現される学習処理の手順を説明する図である。図7には、加入ユーザU1の端末装置30(1)による無線通信と移動に応じて学習用のデータが収集され、収集されたデータからモデルが生成される場面が示される。また、図7には、このような場面の一部分として、端末装置30(1)がまず基地局20(1)に接続し、続いて、基地局20(2)へと接続を切り替えるバンドオーバーの中で学習用のデータが収集される例が示される。
6. Learning Process
Next, the procedure of the learning process will be described. Fig. 7 is a diagram illustrating the procedure of the learning process implemented in the wireless communication system 5. Fig. 7 shows a scene in which learning data is collected in response to wireless communication and movement by the terminal device 30(1) of the subscribing user U1, and a model is generated from the collected data. Fig. 7 also shows, as a part of such a scene, an example in which learning data is collected during a band-over in which the terminal device 30(1) first connects to the base station 20(1) and then switches its connection to the base station 20(2).

 なお、図7では、基地局20と、5Gコア10のコアネットワーク装置との間でのデータの送受信、もしくは、コアネットワーク装置同士でのデータの送受信が実線矢印で示される。一方、学習用のデータの流れは点線矢印で示される。また、処理手順を示すステップ番号が括弧書きで示される。また、図7(図8も同様)の例では、学習装置SV1、変換装置SV2、紐付情報SV3を組み合わせた機能を通信制御装置100とする。学習装置SV1は、図6で説明した制御部130を有する。 In Figure 7, solid arrows indicate data transmission and reception between the base station 20 and the core network device of the 5G core 10, or data transmission and reception between core network devices. On the other hand, dotted arrows indicate the flow of data for learning. Step numbers indicating processing procedures are shown in parentheses. In the example of Figure 7 (similar to Figure 8), the combined functions of the learning device SV1, conversion device SV2, and association information SV3 are defined as the communication control device 100. The learning device SV1 has the control unit 130 described in Figure 6.

 図7に示すように、端末装置30(1)は、IMSI「U1」を有しており、基地局20(1)が形成するセルの中で電源ONにされたとする。係る場合、端末装置30(1)が移動しても追跡できるようにするため、端末装置30(1)は、基地局20(1)を経由してAMF103に対して自装置の登録を要求する(ステップS71)。 As shown in Figure 7, assume that terminal device 30(1) has IMSI "U1" and is powered on within the cell formed by base station 20(1). In this case, in order to be able to track terminal device 30(1) even if it moves, terminal device 30(1) requests registration of its own device from AMF103 via base station 20(1) (step S71).

 AMF103は、端末装置30から取得したIMSI「U1」を用いてUDR105の加入者情報を参照し、IMSI「U1」が加入者情報として登録されているか否か判定する認証処理を実行する(ステップS72)。なお、後述するが、実施形態に係る通信制御処理によって、IMSIとSPIDとを紐付けた紐付情報がUDR105に登録されることになる。しかしながら、図7に示すように、端末装置30(1)について、利用対象の周波数帯が決定されていない現段階では、IMSI「U1」に紐づくSPIDは該当なし「N/A」であるものとする。 AMF103 uses the IMSI "U1" acquired from terminal device 30 to reference the subscriber information in UDR105 and executes authentication processing to determine whether IMSI "U1" is registered as subscriber information (step S72). As will be described later, the communication control processing according to the embodiment registers association information linking the IMSI and SPID in UDR105. However, as shown in FIG. 7, at the current stage when the frequency band to be used for terminal device 30(1) has not been determined, the SPID associated with IMSI "U1" is assumed to be "N/A," indicating no match.

 説明を戻し、AMF103は、IMSI「U1」に代わる一時的なS-TMSI「U11」を生成し(ステップS73)、生成したS-TMSI「U11」を基地局20(1)および端末装置30(1)に伝送する(ステップS74)。この結果、基地局20(1)および端末装置30(1)の双方が、S-TMSI「U11」を保有することになり、S-TMSI「U11」が付与された状態のデータを、基地局20(1)から学習装置SV1に入力できるようになる。なお、図7では不図示であるが、SMF102は、AMF103からの依頼を受けてPDUセッションのパラメータを設定し、パラメータに基づきUPF101をアンカーポイントとしてPDUセッションが確立される。 Going back to the explanation, AMF103 generates a temporary S-TMSI "U11" to replace IMSI "U1" (step S73) and transmits the generated S-TMSI "U11" to base station 20(1) and terminal device 30(1) (step S74). As a result, both base station 20(1) and terminal device 30(1) possess S-TMSI "U11", and data with S-TMSI "U11" assigned can be input from base station 20(1) to learning device SV1. Note that, although not shown in FIG. 7, SMF102 sets PDU session parameters upon receiving a request from AMF103, and a PDU session is established with UPF101 as the anchor point based on the parameters.

 このような状態において、基地局20(1)は、S-TMSI「U11」が紐付けられたトラフィック情報Trf11と、S-TMSI「U11」が紐付けられた周波数情報F11とを学習装置SV1に入力する(ステップS75)。 In this state, base station 20(1) inputs traffic information Trf11 linked to S-TMSI "U11" and frequency information F11 linked to S-TMSI "U11" to learning device SV1 (step S75).

 トラフィック情報Trf11には、端末装置30(1)が基地局20(1)に接続し無線通信している間のトラフィック量やトラフィック挙動が含まれてよい。周波数情報F11には、現時点ではSPID「N/A」であることに応じて、基地局20(1)側で定められた優先度に従って利用された周波数帯と、基地局20(1)を識別する基地局ID「20(1)」とが含まれる。 The traffic information Trf11 may include the traffic volume and traffic behavior while the terminal device 30(1) is connected to the base station 20(1) and communicating wirelessly. The frequency information F11 includes the frequency band used according to the priority determined by the base station 20(1) and the base station ID "20(1)" that identifies the base station 20(1), in accordance with the current SPID "N/A."

 端末装置30(1)は、移動しており、基地局20(2)へと接続先を切り替えるハンドオーバーを実行する。この際、ハンドオーバーの通知が基地局20(2)を経由してAMF103に送信される(ステップS76)。AMF103は、S-TMSI「U11」を基地局20(2)および端末装置30(1)に伝送する(ステップS77)。この結果、基地局20(2)もS-TMSI「U11」を保有することになり、S-TMSI「U11」が付与された状態のデータを、基地局20(2)から学習装置SV1に入力できるようになる。なお、図7では不図示であるが、SMF102は、AMF103からの依頼を受けてPDUセッションの張り替えをUPF101および基地局20(2)に指示するため、UPF101をアンカーポイントとし、新たな基地局20(2)を使用したPDUセッションを利用可能となる。 The terminal device 30(1) is moving and performs a handover to switch the connection destination to the base station 20(2). At this time, a handover notification is sent to the AMF 103 via the base station 20(2) (step S76). The AMF 103 transmits the S-TMSI "U11" to the base station 20(2) and the terminal device 30(1) (step S77). As a result, the base station 20(2) also possesses the S-TMSI "U11", and data with the S-TMSI "U11" assigned can be input from the base station 20(2) to the learning device SV1. Note that, although not shown in FIG. 7, the SMF 102 receives a request from the AMF 103 and instructs the UPF 101 and the base station 20(2) to replace the PDU session, making the UPF 101 the anchor point and enabling the use of a PDU session using the new base station 20(2).

 このような状態において、基地局20(2)は、S-TMSI「U11」が紐付けられたトラフィック情報Trf21と、S-TMSI「U11」が紐付けられた周波数情報F21とを学習装置SV1に入力する(ステップS78)。 In this state, base station 20(2) inputs traffic information Trf21 linked to S-TMSI "U11" and frequency information F21 linked to S-TMSI "U11" to learning device SV1 (step S78).

 トラフィック情報Trf21には、端末装置30(1)が基地局20(2)に接続し無線通信している間のトラフィック量やトラフィック挙動が含まれてよい。周波数情報F21には、基地局20(2)側で定められた優先度に従って利用された周波数帯と、基地局20(2)を識別する基地局ID「20(2)」とが含まれる。 The traffic information Trf21 may include the traffic volume and traffic behavior while the terminal device 30(1) is connected to the base station 20(2) and communicating wirelessly. The frequency information F21 includes the frequency band used according to the priority determined by the base station 20(2) and the base station ID "20(2)" that identifies the base station 20(2).

 図7には、基地局20がトラフィック情報を学習装置SV1に入力する例が示されるが、インターネット60に接続するトラフィック監視用の監視装置を設けることで、監視装置がトラフィック情報を学習装置SV1に入力する構成が採用されてもよい。 Figure 7 shows an example in which base station 20 inputs traffic information to learning device SV1, but a configuration in which a monitoring device for monitoring traffic connected to the Internet 60 is provided and the monitoring device inputs traffic information to learning device SV1 may also be adopted.

 また、学習装置SV1には、端末装置30(1)の移動に応じた位置情報(端末位置情報)が逐次入力されてよいし、基地局20(1)および基地局20(2)が設置される位置情報(基地局位置情報)も入力されてよい。 In addition, location information (terminal location information) corresponding to the movement of terminal device 30(1) may be sequentially input to learning device SV1, and location information (base station location information) where base station 20(1) and base station 20(2) are installed may also be input.

 学習装置SV1は、これまでに入力されたのデータから学習データを生成し、生成した学習データを用いた機械学習によりモデルを生成する(ステップS79)。例えば、学習装置SV1は、周波数情報F11と周波数情報F12とに含まれる基地局IDで識別される各基地局20の基地局位置情報と、端末位置情報とに基づいて、端末装置30(1)が基地局20(1)から基地局20(2)に移動した移動経路RTを算出する。また、学習装置SV1は、トラフィック情報Trf11およびトラフィック情報Trf21と、移動経路RTとに基づいて、移動経路RTの間において、端末装置30(1)がどのような周波数帯で、どのようなトラフィック量およびトラフィック挙動であったかを示すコンテキスト情報CXを算出する。そして、学習装置SV1は、端末装置30(1)がコンテキスト情報CXを示したときの周波数帯がコンテキスト情報CXに対して最適であるか否かを判定する。ここで、学習装置SV1は、端末装置30(1)がコンテキスト情報CXを示したときの周波数帯に、判定結果を正解ラベルとして付与したものを目的変数とする。例えば、学習装置SV1は、基地局20(1)と基地局20(2)との間でハンドオーバーが起きた頻度、基地局20(1)および基地局20(2)での無線リソースの使用状況(混雑具合)、移動経路RTでのトラフィック量での最適な周波数帯と、実際に利用された周波数帯とに基づき、実際に利用された周波数帯が最適だったか否かを判定した判定結果を正解ラベルとして付与してよい。 The learning device SV1 generates learning data from the data that has been input so far, and generates a model through machine learning using the generated learning data (step S79). For example, the learning device SV1 calculates the travel route RT that the terminal device 30(1) took from base station 20(1) to base station 20(2) based on the base station location information of each base station 20 identified by the base station ID included in the frequency information F11 and frequency information F12, and the terminal location information. Furthermore, the learning device SV1 calculates context information CX that indicates the frequency band, traffic volume, and traffic behavior of the terminal device 30(1) along the travel route RT, based on the traffic information Trf11, traffic information Trf21, and the travel route RT. The learning device SV1 then determines whether the frequency band at the time when the terminal device 30(1) indicated the context information CX is optimal for the context information CX. Here, the learning device SV1 assigns the determination result as a correct label to the frequency band when the terminal device 30(1) indicates the context information CX, and uses this as the objective variable. For example, the learning device SV1 may assign as a correct label the result of a determination as to whether the actually used frequency band was optimal, based on the frequency of handovers between base station 20(1) and base station 20(2), the usage status (congestion) of wireless resources at base station 20(1) and base station 20(2), the optimal frequency band for the traffic volume on the travel route RT, and the actually used frequency band.

 また、学習装置SV1は、コンテキスト情報CXから抽出された特徴情報を、機械学習における説明変数とする。この結果、学習装置SV1は、端末装置30(1)が基地局20と無線通信して得られた新たなデータが入力された場合に、入力されたデータに応じたコンテキストの傾向を推定し、推定した傾向に最適な周波数帯を利用対象の周波数帯として出力するようにモデルを学習できるようになる。 Furthermore, the learning device SV1 uses the feature information extracted from the context information CX as explanatory variables in machine learning. As a result, when new data obtained through wireless communication between the terminal device 30(1) and the base station 20 is input, the learning device SV1 can estimate the context trend according to the input data and learn a model so that it outputs the frequency band that is optimal for the estimated trend as the frequency band to be used.

 なお、学習装置SV1は、トラフィック量やトラフィック挙動から推定されるコンテンツの種別(例えば、動画コンテンツ、静止画コンテンツ等)も学習データとして用いることができる。学習装置SV1は、接続サービスSVに申し込まれた時点から利用開始までの期間を学習期間として、この期間に取得した学習用のデータを用いてモデルを生成してよい。 The learning device SV1 may also use the type of content (e.g., video content, still image content, etc.) estimated from traffic volume and traffic behavior as learning data. The learning device SV1 may use the period from when the connection service SV is subscribed to until use begins as the learning period, and generate a model using the learning data acquired during this period.

 また、学習装置SV1には、S-TMSI「U11」が、接続サービスSVに加入している加入ユーザU1を識別するIMSI「U1」に対応している情報であることを特定可能な構成が採用されることが好ましい。例えば、学習装置SV1は、AMF103からIMSIとS-TMSIとの組合せリストを取得する構成、あるいは、自装置側でS-TMSIに対応するIMSIを判別可能な構成が採用されてよい。この結果、学習装置SV1は、加入ユーザU1以外の不特定多数のユーザUについても基地局20から入力されてくるデータの中から、加入ユーザU1の学習用のデータのみ抽出し、加入ユーザU1用にカスタマイズされたモデルを生成できるようになる。加入ユーザU1を例に説明しているが、他のユーザUについても同様である。 Furthermore, it is preferable that the learning device SV1 be configured to be able to identify that S-TMSI "U11" corresponds to IMSI "U1," which identifies subscribing user U1 who has subscribed to connection service SV. For example, the learning device SV1 may be configured to obtain a list of IMSI and S-TMSI combinations from AMF103, or to be configured to determine the IMSI that corresponds to the S-TMSI on its own. As a result, the learning device SV1 can extract only the learning data for subscribing user U1 from the data input from base station 20 for an unspecified number of users U other than subscribing user U1, and generate a model customized for subscribing user U1. While the explanation is given using subscribing user U1 as an example, the same applies to other users U.

〔7.推論処理手順〕
 次に、図7の手順で生成されたモデルを用いた推論処理の手順を説明する。図8は、無線通信システム5で実現される推論処理の手順を説明する図である。図8には、加入ユーザU1が接続サービスSVに申し込んだ時間帯(例えば、通勤時間帯)になったタイミングで、この時間帯での加入ユーザU1のコンテキストの傾向に応じた最適な周波数帯が決定される場面が示される。
7. Inference Processing Procedure
Next, the procedure of the inference process using the model generated by the procedure of Fig. 7 will be described. Fig. 8 is a diagram illustrating the procedure of the inference process implemented in the wireless communication system 5. Fig. 8 shows a scene in which, when the time period for which subscribing user U1 has applied for the connection service SV (e.g., commuting time) arrives, the optimal frequency band is determined according to the tendency of the context of subscribing user U1 during this time period.

 なお、図8では、推論用のデータの流れは一点鎖線の点線矢印で示され、利用対象の周波数帯を用いた無線通信制御は二点鎖線の点線矢印で示される。また、処理手順を示すステップ番号が括弧書きで示される。 In Figure 8, the flow of data for inference is indicated by dashed arrows, and wireless communication control using the target frequency band is indicated by dashed arrows. Step numbers indicating the processing procedure are also shown in parentheses.

 例えば、加入ユーザU1の端末装置30(1)が、基地局20(1)との間で無線通信を行っている状態で、加入ユーザU1が指定した時間帯になったとする。図8に示すように、加入ユーザU1が指定した時間帯では、基地局20(1)は、S-TMSI「U11」が紐付けられたトラフィック情報Trf12と、S-TMSI「U11」が紐付けられた周波数情報F12とを学習装置SV1に入力している(ステップS81)。 For example, suppose that the time period designated by subscribing user U1 has arrived while the terminal device 30(1) of subscribing user U1 is conducting wireless communication with base station 20(1). As shown in FIG. 8, during the time period designated by subscribing user U1, base station 20(1) inputs traffic information Trf12 associated with S-TMSI "U11" and frequency information F12 associated with S-TMSI "U11" to learning device SV1 (step S81).

 トラフィック情報Trf12には、端末装置30(1)が基地局20(1)に接続し無線通信している間のトラフィック量やトラフィック挙動が含まれてよい。周波数情報F12には、現時点ではSPID「N/A」であることに応じて、基地局20(1)側で定められた優先度に従って利用された周波数帯と、基地局20(1)を識別する基地局ID「20(1)」とが含まれる。 The traffic information Trf12 may include the traffic volume and traffic behavior while the terminal device 30(1) is connected to the base station 20(1) and communicating wirelessly. The frequency information F12 includes the frequency band used according to the priority determined by the base station 20(1) and the base station ID "20(1)" that identifies the base station 20(1), in accordance with the current SPID "N/A."

 学習装置SV1は、ステップS81で基地局20(1)から取得したデータを推論用データとしてモデルに入力することで推論処理を実行させる(ステップS82)。この結果、モデルは、加入ユーザU1が指定した時間帯でのコンテキストの傾向に応じた最適な周波数帯を出力する。そこで、学習装置SV1は、モデルが出力した周波数帯を利用対象の周波数帯「X」として決定する(ステップS82)。「X」は、H(高周波数帯)、M(中周波数帯)、L(低周波数帯)のいずれかであるものとする。 The learning device SV1 executes the inference process by inputting the data acquired from base station 20(1) in step S81 into the model as inference data (step S82). As a result, the model outputs the optimal frequency band according to the context trends during the time period specified by subscribing user U1. Therefore, the learning device SV1 determines the frequency band output by the model as the frequency band "X" to be used (step S82). "X" is assumed to be either H (high frequency band), M (medium frequency band), or L (low frequency band).

 利用対象の周波数帯「X」には、S-TMSI「U11」が紐付けられている。そこで、変換装置SV2は、S-TMSI「U11」を変換して元のIMSI「U1」を求める(ステップS84)。 The frequency band "X" to be used is associated with S-TMSI "U11." Therefore, the conversion device SV2 converts S-TMSI "U11" to obtain the original IMSI "U1" (step S84).

 紐付装置SV3は、変換で得られたIMSI「U1」と、利用対象の周波数帯「X」を優先利用の周波数帯として定義されたSPID「X」とを紐付けた紐付情報を生成する(ステップS85)。以下の説明では、これまで端末装置30(1)は、加入ユーザU1が指定した時間帯では高周波数帯を利用していたが、利用対象の周波数帯として「M」(中周波数帯)が決定された例を用いる。係る例では、紐付装置SV3は、図8に示すように、IMSI「U1」とSPID「M」とを紐付けた紐付情報LKを生成する。 The linking device SV3 generates linking information linking the IMSI "U1" obtained by the conversion with the SPID "X" that defines the target frequency band "X" as the preferred frequency band (step S85). In the following explanation, an example is used in which the terminal device 30(1) has previously used the high frequency band during the time period specified by the subscribing user U1, but "M" (medium frequency band) has been determined as the target frequency band. In this example, the linking device SV3 generates linking information LK that links the IMSI "U1" with the SPID "M", as shown in FIG. 8.

 そして、紐付装置SV3は、紐付情報LKをUDR105に送信し、加入ユーザU1の加入者情報として登録させる(ステップS86)。図7の例では、IMSI「U1」に紐づくSPIDは該当なしの「N/A」であったが、この時点でSPID「M」に置き換わる。上述したように、基地局20は、SPIDに設定された周波数帯を端末装置30に指示することができるようになる。よって、基地局20(1)は、SPID「M」に基づき、加入ユーザU1が指定した時間帯では、高周波数帯ではなく中周波数帯を端末装置30(1)に利用させることができる。以下で具体的に説明する。 Then, the linking device SV3 transmits the linking information LK to the UDR 105, and registers it as the subscriber information of the subscribing user U1 (step S86). In the example of Figure 7, the SPID linked to IMSI "U1" was "N/A," indicating no match, but at this point this is replaced with SPID "M." As described above, the base station 20 becomes able to instruct the terminal device 30 on the frequency band set for the SPID. Therefore, based on SPID "M," the base station 20(1) can cause the terminal device 30(1) to use the medium frequency band instead of the high frequency band during the time period specified by the subscribing user U1. This is explained in detail below.

 まず、AMF103は、UDR105の加入者情報の中から紐付情報LKを抽出する(ステップS87)。そして、AMF103は、紐付情報LKを基地局20(1)に送信する(ステップS88)。 First, AMF103 extracts the linking information LK from the subscriber information of UDR105 (step S87). Then, AMF103 transmits the linking information LK to base station 20(1) (step S88).

 基地局20(1)は、紐付情報LKに基づき、端末装置30(1)に優先利用させる周波数帯が「中周波数帯」であることを特定し、「中周波数帯」を利用するよう端末装置30(1)に指示する(ステップS89)。 Based on the linking information LK, the base station 20(1) determines that the frequency band that the terminal device 30(1) should preferentially use is the "medium frequency band," and instructs the terminal device 30(1) to use the "medium frequency band" (step S89).

 ここまで、図7および図8を用いて、実施形態に係る通信制御処理の流れを説明した。図7および図8に示す通信制御処理によれば、特定の周波数帯にユーザUが偏ることなく、トラフィック挙動と移動経路に応じた最適な周波数帯にに接続されることで、ユーザUの体感向上や、モバイルネットワークに掛かる負荷(例えば、ハンドオーバー処理)の軽減を実現することができるようになる。また、モビリティによる周波数選択の最適化の恩恵を受けるか否かをユーザUが選択できるようになる。 So far, the flow of the communication control process according to the embodiment has been explained using Figures 7 and 8. According to the communication control process shown in Figures 7 and 8, the user U is connected to the optimal frequency band according to the traffic behavior and travel route without being biased towards a specific frequency band, thereby improving the user U's experience and reducing the load on the mobile network (e.g., handover processing). In addition, the user U can choose whether or not to benefit from the optimization of frequency selection due to mobility.

〔8.その他の実施形態〕
 上述した通信制御装置100は、上記実施形態以外にも種々の異なる形態にて実施されてよい。そこで、以下では、通信制御装置100のその他の実施形態について説明する。
8. Other Embodiments
The above-described communication control device 100 may be implemented in various different forms other than the above embodiment, so other embodiments of the communication control device 100 will be described below.

 上記実施形態では、通信制御装置100は、接続サービスSVに申し込んでいる加入ユーザUxを対象として、加入ユーザUxごとにモデルを生成し、加入ユーザUxの申込内容に合わせて最適な周波数帯を割り当てる例を示した。しかしながら、通信制御装置100は、接続サービスSVに拘わらず、全てのユーザUを対象として強制的に周波数帯を制御してもよい。この結果、例えば、通信事業者Tは、コンテキストの傾向に応じた最適な周波数帯を各ユーザUの端末装置30に利用させるという機能を活性化させることができるようになる。 In the above embodiment, the communication control device 100 generates a model for each subscriber user Ux who has applied for a connection service SV, and assigns the optimal frequency band according to the application details of the subscriber user Ux. However, the communication control device 100 may also forcibly control the frequency band for all users U, regardless of the connection service SV. As a result, for example, the telecommunications carrier T can activate the function of having each user U's terminal device 30 use the optimal frequency band according to the context tendency.

〔9.ハードウェア構成〕
 実施形態に係る通信制御装置100は、例えば、図9に示すような構成のコンピュータ1000によって実現されてよい。図9は、実施形態に係る通信制御装置100の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD1400、通信インターフェース(I/F)1500、入出力インターフェース(I/F)1600、及びメディアインターフーイス(I/F)1700を有する。
9. Hardware Configuration
The communication control device 100 according to the embodiment may be realized, for example, by a computer 1000 having a configuration as shown in Fig. 9. Fig. 9 is a hardware configuration diagram showing an example of a computer that realizes the functions of the communication control device 100 according to the embodiment. The computer 1000 includes a CPU 1100, a RAM 1200, a ROM 1300, a HDD 1400, a communication interface (I/F) 1500, an input/output interface (I/F) 1600, and a media interface (I/F) 1700.

 CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400, and controls each component. The ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 starts up, as well as programs that depend on the computer 1000's hardware.

 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を格納する。通信インターフェース1500は、所定の通信網を介して他の機器からデータを受信してCPU1100へ送り、CPU1100が生成したデータを所定の通信網を介して他の機器へ送信する。 The HDD 1400 stores programs executed by the CPU 1100 and data used by such programs. The communication interface 1500 receives data from other devices via a specified communication network and sends it to the CPU 1100, and transmits data generated by the CPU 1100 to other devices via a specified communication network.

 CPU1100は、入出力インターフェース1600を介して、ディスプレイ等の出力装置、及び、キーボード等の入力装置を制御する。CPU1100は、入出力インターフェース1600を介して、入力装置からデータを取得する。また、CPU1100は、生成したデータを入出力インターフェース1600を介して出力装置へ出力する。 The CPU 1100 controls output devices such as displays and input devices such as keyboards via the input/output interface 1600. The CPU 1100 acquires data from input devices via the input/output interface 1600. The CPU 1100 also outputs generated data to output devices via the input/output interface 1600.

 メディアインターフェース1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、かかるプログラムを、メディアインターフェース1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 Media interface 1700 reads programs or data stored on recording medium 1800 and provides them to CPU 1100 via RAM 1200. CPU 1100 loads the programs from recording medium 1800 onto RAM 1200 via media interface 1700 and executes the loaded programs. Recording medium 1800 is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or a PD (Phase Change Rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical Disk), a tape medium, a magnetic recording medium, or a semiconductor memory.

 例えば、コンピュータ1000が実施形態に係る通信制御装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部130の機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置から所定の通信網を介してこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the communication control device 100 according to the embodiment, the CPU 1100 of the computer 1000 executes programs loaded onto the RAM 1200, thereby realizing the functions of the control unit 130. The CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, the CPU 1100 may obtain these programs from another device via a specified communications network.

〔10.その他〕
 また、上記各実施形態において説明した処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
[10. Other]
Furthermore, among the processes described in each of the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or all or part of the processes described as being performed manually can be performed automatically using known methods. In addition, the information including the processing procedures, specific names, various data, and parameters shown in the above documents and drawings can be changed as desired unless otherwise specified. For example, the various information shown in each drawing is not limited to the information shown in the drawings.

 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Furthermore, the components of each device shown in the figure are functional concepts and do not necessarily have to be physically configured as shown. In other words, the specific form of distribution and integration of each device is not limited to that shown, and all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.

 また、上記各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Furthermore, the above embodiments can be combined as appropriate to the extent that the processing content is not contradictory.

 以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 The above describes in detail some of the embodiments of the present application based on the drawings, but these are merely examples, and the present invention can be implemented in other forms that incorporate various modifications and improvements based on the knowledge of those skilled in the art, including the aspects described in the "present invention" section.

    1  システム
    5  無線通信システム
   10  5Gコアネットワーク
   20  基地局
   30  端末装置
   60  インターネット
   70  クラウドシステム
  100  通信制御装置
  110  通信部
  120  記憶部
  130  制御部
  131  取得部
  132  生成部
  133  決定部
  134  通信制御部
REFERENCE SIGNS LIST 1 System 5 Wireless communication system 10 5G core network 20 Base station 30 Terminal device 60 Internet 70 Cloud system 100 Communication control device 110 Communication unit 120 Storage unit 130 Control unit 131 Acquisition unit 132 Generation unit 133 Determination unit 134 Communication control unit

Claims (10)

 端末装置のユーザのコンテキスト情報として、前記端末装置が基地局との無線通信で発生させたトラフィックに関するトラフィック情報と、前記トラフィックに応じた前記端末装置の移動に関する移動情報とを取得する取得部と、
 前記基地局が対応可能な周波数帯のうち、前記コンテキスト情報を取得された際に前記端末装置が利用した周波数帯が前記コンテキスト情報に対して最適であるか否かを示す結果情報と、前記コンテキスト情報との関係性を学習することにより、周波数帯に応じた前記ユーザのコンテキストの傾向を示すモデルを生成する生成部と、
 前記モデルに基づいて、前記無線通信において前記端末装置に優先利用させる利用対象の周波数帯を決定する決定部と、
 前記利用対象の周波数帯で前記無線通信が実行されるよう制御する制御部と、
 を備える通信制御装置。
an acquisition unit that acquires, as context information of a user of a terminal device, traffic information related to traffic generated by the terminal device in wireless communication with a base station and movement information related to movement of the terminal device in response to the traffic;
a generation unit that generates a model that indicates a tendency of the user's context according to a frequency band by learning a relationship between result information that indicates whether a frequency band used by the terminal device when the context information is acquired, among frequency bands that the base station can support, is optimal for the context information and the context information; and
a determination unit that determines a frequency band to be preferentially used by the terminal device in the wireless communication based on the model;
a control unit that controls the wireless communication to be performed in the target frequency band;
A communication control device comprising:
 前記取得部は、前記ユーザのコンテキスト情報として、前記端末装置の位置情報をさらに取得し、
 前記生成部は、前記端末装置の位置情報に基づき特定される情報に基づいて、前記モデルを生成する
 請求項1に記載の通信制御装置。
The acquisition unit further acquires location information of the terminal device as the context information of the user;
The communication control device according to claim 1 , wherein the generation unit generates the model based on information specified based on location information of the terminal device.
 前記生成部は、所定のユーザのコンテキスト情報が入力された場合に、前記基地局が対応可能な周波数帯のうち前記所定のユーザのコンテキストに応じた周波数帯を出力するように前記関係性を前記モデルに学習させる
 請求項1に記載の通信制御装置。
2. The communication control device according to claim 1, wherein the generation unit causes the model to learn the relationship so that, when context information of a predetermined user is input, a frequency band corresponding to the context of the predetermined user is output from among frequency bands that the base station can support.
 前記無線通信において、前記コンテキスト情報には、前記端末装置のユーザを加入者として識別する第1識別情報に関連付けられ、かつ、前記第1識別情報の代わりとなる一時的な第2識別情報が紐付けられ、
 前記取得部は、前記第2識別情報が紐付けられた前記コンテキスト情報を取得する
 請求項1に記載の通信制御装置。
In the wireless communication, the context information is associated with first identification information that identifies a user of the terminal device as a subscriber, and is linked to temporary second identification information that replaces the first identification information;
The communication control device according to claim 1 , wherein the acquisition unit acquires the context information linked to the second identification information.
 前記取得部は、前記ユーザのうち、決められた周波数帯が優先利用される接続サービスに加入する加入ユーザの前記第1識別情報に対応する前記第2識別情報が紐付けられる前記コンテキスト情報を、前記モデルの生成に用いる対象のコンテキスト情報として取得するとともに、前記対象のコンテキスト情報が取得された際に前記加入ユーザの端末装置が利用した周波数帯の情報を取得し、
 前記生成部は、前記加入ユーザごとに取得された前記対象のコンテキスト情報と前記結果情報との関係性を学習することにより、前記加入ユーザ別の前記モデルを生成し、
 前記決定部は、前記加入ユーザ別に生成され前記モデルに基づいて、前記加入ユーザごとの前記端末装置に優先利用させる利用対象の周波数帯を決定する
 請求項4に記載の通信制御装置。
the acquisition unit acquires, as target context information to be used in generating the model, the context information associated with the second identification information corresponding to the first identification information of a subscriber user who subscribes to a connection service in which a predetermined frequency band is preferentially used among the users, and acquires information on a frequency band used by a terminal device of the subscriber user when the target context information was acquired;
the generation unit generates the model for each of the subscribing users by learning a relationship between the target context information acquired for each of the subscribing users and the result information;
The communication control device according to claim 4 , wherein the determination unit determines a target frequency band to be preferentially used by the terminal device for each of the subscriber users based on the model generated for each of the subscriber users.
 決定された前記利用対象の周波数帯には、前記第2識別情報が紐付けられ、
 前記制御部は、前記利用対象の周波数帯に紐付けられる前記第2識別情報を、前記第2識別情報に対応する前記第1識別情報に変換し、変換後の前記第1識別情報と、利用する周波数帯の優先度を示す第3識別情報とを紐付けた紐付情報を、前記第1識別情報が記憶される加入者情報データベースに登録する
 請求項4に記載の通信制御装置。
the second identification information is associated with the determined target frequency band;
5. The communication control device according to claim 4, wherein the control unit converts the second identification information associated with the frequency band to be used into the first identification information corresponding to the second identification information, and registers association information that associates the converted first identification information with third identification information that indicates a priority of the frequency band to be used in a subscriber information database in which the first identification information is stored.
 請求項6に記載の通信制御装置と、
 前記通信制御装置に前記コンテキスト情報を送信する基地局と、
 前記基地局が接続するコアネットワークと、
 を備えた無線通信システムであって、
 前記基地局に接続されるコアネットワークに含まれる所定のコアネットワーク装置は、前記端末装置が前記基地局にアクセスした場合には、前記端末装置から取得した識別情報と、前記加入者情報データベースに登録される前記第1識別情報とに基づいて、前記端末装置の認証処理を実行し、前記端末装置を認証できた場合には、認証された前記端末装置に対応する前記第3識別情報を、アクセス先の前記基地局に送信する
 無線通信システム。
The communication control device according to claim 6 ;
a base station that transmits the context information to the communication control device;
a core network to which the base station is connected;
A wireless communication system comprising:
A wireless communication system in which, when the terminal device accesses the base station, a predetermined core network device included in the core network connected to the base station performs authentication processing for the terminal device based on identification information obtained from the terminal device and the first identification information registered in the subscriber information database, and if the terminal device is successfully authenticated, transmits the third identification information corresponding to the authenticated terminal device to the base station to be accessed.
 アクセス先の前記基地局は、前記所定のコアネットワーク装置から取得した前記第3識別情報で優先されている前記利用対象の周波数帯を用いて前記端末装置と無線通信する
 請求項7に記載の無線通信システム。
The wireless communication system according to claim 7, wherein the base station to be accessed communicates wirelessly with the terminal device using the frequency band to be used that is prioritized in the third identification information obtained from the specified core network device.
 通信制御装置が実行する情報処理方法であって、
 端末装置のユーザのコンテキスト情報として、前記端末装置が基地局との無線通信で発生させたトラフィックに関するトラフィック情報と、前記トラフィックに応じた前記端末装置の移動に関する移動情報とを取得する取得工程と、
 前記基地局が対応可能な周波数帯のうち、前記コンテキスト情報を取得された際に前記端末装置が利用した周波数帯が前記コンテキスト情報に対して最適であるか否かを示す結果情報と、前記コンテキスト情報との関係性を学習することにより、周波数帯に応じた前記ユーザのコンテキストの傾向を示すモデルを生成する生成工程と、
 前記モデルに基づいて、前記無線通信において前記端末装置に優先利用させる利用対象の周波数帯を決定する決定工程と、
 前記利用対象の周波数帯で前記無線通信が実行されるよう制御する制御工程と、
 を含む通信制御方法。
An information processing method executed by a communication control device,
an acquisition step of acquiring, as context information of a user of a terminal device, traffic information relating to traffic generated by the terminal device in wireless communication with a base station and movement information relating to movement of the terminal device in response to the traffic;
a generation step of generating a model indicating a tendency of the user's context according to a frequency band by learning a relationship between result information indicating whether or not a frequency band used by the terminal device when the context information is acquired, among frequency bands that the base station can support, is optimal for the context information, and the context information;
a determining step of determining a frequency band to be used preferentially by the terminal device in the wireless communication based on the model;
a control step of controlling the wireless communication to be performed in the target frequency band;
A communication control method including:
 端末装置のユーザのコンテキスト情報として、前記端末装置が基地局との無線通信で発生させたトラフィックに関するトラフィック情報と、前記トラフィックに応じた前記端末装置の移動に関する移動情報とを取得する取得手順と、
 前記基地局が対応可能な周波数帯のうち、前記コンテキスト情報を取得された際に前記端末装置が利用した周波数帯が前記コンテキスト情報に対して最適であるか否かを示す結果情報と、前記コンテキスト情報との関係性を学習することにより、周波数帯に応じた前記ユーザのコンテキストの傾向を示すモデルを生成する生成手順と、
 前記モデルに基づいて、前記無線通信において前記端末装置に優先利用させる利用対象の周波数帯を決定する決定手順と、
 前記利用対象の周波数帯で前記無線通信が実行されるよう制御する制御手順と、
 をコンピュータに実行させる通信制御プログラム。
an acquisition procedure for acquiring, as context information of a user of a terminal device, traffic information relating to traffic generated by the terminal device in wireless communication with a base station and movement information relating to movement of the terminal device in response to the traffic;
a generation procedure for generating a model indicating a tendency of the user's context according to a frequency band by learning result information indicating whether or not a frequency band used by the terminal device when the context information is acquired, among frequency bands that the base station can support, is optimal for the context information, and the relationship with the context information;
a determination procedure for determining a frequency band to be preferentially used by the terminal device in the wireless communication based on the model;
a control procedure for controlling the wireless communication to be performed in the target frequency band;
A communication control program that causes a computer to execute the above.
PCT/JP2024/006664 2024-02-22 2024-02-22 Communication control device, wireless communication system, communication control method, and communication control program Pending WO2025177578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/006664 WO2025177578A1 (en) 2024-02-22 2024-02-22 Communication control device, wireless communication system, communication control method, and communication control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/006664 WO2025177578A1 (en) 2024-02-22 2024-02-22 Communication control device, wireless communication system, communication control method, and communication control program

Publications (1)

Publication Number Publication Date
WO2025177578A1 true WO2025177578A1 (en) 2025-08-28

Family

ID=96846816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006664 Pending WO2025177578A1 (en) 2024-02-22 2024-02-22 Communication control device, wireless communication system, communication control method, and communication control program

Country Status (1)

Country Link
WO (1) WO2025177578A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230102021A1 (en) * 2020-02-26 2023-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Multiple SPID Configuration
WO2024010399A1 (en) * 2022-07-06 2024-01-11 Samsung Electronics Co., Ltd. Artificial intelligence and machine learning models management and/or training
US20240040553A1 (en) * 2022-08-01 2024-02-01 At&T Intellectual Property I, L.P. Speed and service aware frequency band selection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230102021A1 (en) * 2020-02-26 2023-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Multiple SPID Configuration
WO2024010399A1 (en) * 2022-07-06 2024-01-11 Samsung Electronics Co., Ltd. Artificial intelligence and machine learning models management and/or training
US20240040553A1 (en) * 2022-08-01 2024-02-01 At&T Intellectual Property I, L.P. Speed and service aware frequency band selection

Similar Documents

Publication Publication Date Title
US11057799B2 (en) Devices and methods for slice-compliant handover control
KR102075659B1 (en) Access network switching method in heterogeneous radio access network and terminal perfomrming the same
JP7086048B2 (en) Terminal route transition method, terminal state transition control method, terminal and base station
Khaturia et al. Connecting the unconnected: Toward frugal 5G network architecture and standardization
CN111901839A (en) Cell management method, apparatus, device and storage medium
CN113115256B (en) Online VMEC service network selection migration method
CN103491578B (en) Network distribution method and device
JP2004511980A (en) Service priority in multi-cell networks
US12333329B2 (en) Dynamic discovery mechanism in 5G systems and methods
Peters et al. Anticipatory user plane management for 5G
CN113301092B (en) Network reconnection method, device, system and storage medium
US11564145B2 (en) Selecting a network node that supports a slice requirement
Khan et al. A survey of context aware vertical handover management schemes in heterogeneous wireless networks
WO2025177578A1 (en) Communication control device, wireless communication system, communication control method, and communication control program
EP2039063B1 (en) User network and method for using multiple access systems to connect to remote communications network(s)
JP6315894B2 (en) Method and apparatus for accessing multiple radio bearers
WO2009081772A1 (en) Connection network and radio communication control method
CN105228208B (en) A kind of method of service switching between Wireless Mesh network and Cellular Networks
Prakash et al. Intelligent mobility management model for heterogeneous wireless networks
US20240381284A1 (en) Configurable options for device registration in wireless communication networks
Davaasambuu et al. Novel anchor-selection scheme for distributed mobility management
US20240224120A1 (en) Selective centralized unit-user plane extended buffering
WO2025180192A1 (en) Task migration method and apparatus, related device and storage medium
CN118764928A (en) Network switching method, device, equipment, readable storage medium and program product
CN118803671A (en) Business processing method, device, equipment, storage medium and program product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24925909

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载