+

WO2025039492A1 - 一种分段锥形结构的瓣膜假体装置 - Google Patents

一种分段锥形结构的瓣膜假体装置 Download PDF

Info

Publication number
WO2025039492A1
WO2025039492A1 PCT/CN2024/078243 CN2024078243W WO2025039492A1 WO 2025039492 A1 WO2025039492 A1 WO 2025039492A1 CN 2024078243 W CN2024078243 W CN 2024078243W WO 2025039492 A1 WO2025039492 A1 WO 2025039492A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
prosthesis
stent
prosthesis device
valve prosthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2024/078243
Other languages
English (en)
French (fr)
Inventor
余鹏
孙超
危攀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Quanxin Medical Technology Co Ltd
Original Assignee
Shanghai Quanxin Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Quanxin Medical Technology Co Ltd filed Critical Shanghai Quanxin Medical Technology Co Ltd
Priority to EP24802148.7A priority Critical patent/EP4534047A1/en
Priority to KR1020247033500A priority patent/KR20250030437A/ko
Priority to AU2024266787A priority patent/AU2024266787A1/en
Priority to GB2417369.2A priority patent/GB2638848A/en
Priority to US18/961,483 priority patent/US20250090313A1/en
Publication of WO2025039492A1 publication Critical patent/WO2025039492A1/zh
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body

Definitions

  • the invention relates to a cardiac surgical instrument, in particular to a valve prosthesis device with a segmented conical structure.
  • aortic valve prostheses include an expandable stent and a trileaflet prosthesis. It is used to fit with the symmetrical circumferential relatively rigid aortic root. These characteristics of the aortic root determine that the expandable stent can fit with it and is not easy to be displaced or fall off.
  • the complex anatomical structure of the mitral valve poses challenges to mitral valve replacement.
  • the mitral valve annulus is D-shaped and saddle-shaped, lacking symmetry, and the size of the annulus varies greatly during the cardiac cycle.
  • valve ring size of patients with mitral regurgitation is much larger than that of the aortic valve.
  • the force on the leaflets increases sharply. Therefore, a leaflet structure that is more suitable for the blood flow dynamics of the mitral valve is needed.
  • the mitral valve annulus In addition to the irregular and indeterminate shape of the mitral valve annulus, it lacks important radial support structures.
  • the aortic valve is surrounded by fibroelastic tissue at the root, which helps the valve prosthesis
  • the mitral valve is only surrounded by cardiac tissue.
  • the mitral valve ring has a strong radial force. This radial force may cause the implanted valve prosthesis to fail.
  • chordae tendineae of the ventricle may also affect the valve prosthesis. Such chordae do not exist in the aortic valve. Such chordae cause confusion during the repair or replacement of the mitral valve through the sheath intervention, increasing the difficulty of surgical positioning and placement. Positioning or placement of the valve prosthesis from the ventricular side is also difficult due to the interference of the chordae tendineae.
  • the tricuspid valve on the right side of the heart although it normally has three leaflets, is also as difficult to treat as the mitral valve. Therefore, the treatment of the tricuspid valve also requires the design and invention of a well-designed valve prosthesis.
  • Existing valve prosthesis devices can basically be used to treat heart valve diseases in a simple and efficient manner.
  • the unfolded structure of the ventricular side of the valve prosthesis device is usually an integral conical or annular structure.
  • this design makes the prosthesis device as a whole too high, occupying unnecessary space on the ventricular side, which may cause flow obstruction.
  • the valve ring side structure may not fit closely to the native valve ring when it is squeezed and deformed, resulting in poor adaptability on the valve ring side.
  • the present invention provides a valve prosthesis device, which adopts a split conical structure on the ventricular side, which can reduce the obstruction of the outflow tract and improve the adaptability of the prosthesis instead of fitting the ventricular wall.
  • the present invention specifically adopts the following technical means:
  • a valve prosthesis device comprises an outer stent and an inner stent;
  • the outer stent comprises a disc-shaped structure deployed on the atrial side, a ring-shaped structure adapted on the valve ring side, and a
  • the split structure has different tapers; the resilient clamping parts are distributed on the circumferential side of the outer stent according to the original valve leaflets; the inner stent is connected to the inside of the outer stent, and the valve body is arranged in the inner stent.
  • it also includes barbs or protrusions selectively or integrally distributed on the annular structure of the outer stent, which are used to anchor the prosthesis to the congenital heart valve ring.
  • the barbs or protrusions are distributed at the middle position of the tricuspid valve leaflet; or distributed at the anterior leaflet A2 and the posterior leaflet P1, P3 of the mitral valve.
  • the disc-shaped structure unfolded on the atrial side is a circular structure or a special-shaped structure
  • the ring-shaped structure unfolded on the valve ring side is a circular structure or a special-shaped structure.
  • the special-shaped structure is a D-shaped or saddle-shaped structure.
  • split structures with different tapers are distributed at 60°-120°; the split structures of the prosthetic device adapted to the mitral valve are distributed at 120°; and the split structures of the prosthetic device adapted to the tricuspid valve are distributed at equal angles.
  • the disc-shaped structure on the atrial side is also provided with a developing structure that can be identified by ultrasound.
  • the inner stent and the outer stent are made of memory alloy or biocompatible metal material, wherein the inner stent is deployable or self-expandable.
  • the outer bracket is formed by cutting and shaping a memory alloy tubular material or by weaving and shaping a filamentary material
  • the inner bracket is formed by cutting and shaping a memory alloy tubular material.
  • the inner and outer brackets are integrally manufactured or connected and sutured.
  • the outer stent and the inner stent are covered with biocompatible materials to prevent blood from leaking between the prosthesis and the native valve ring.
  • the structure is provided with a PET coating
  • the inner edge of the inner support is provided with a PET coating or other biocompatible materials.
  • the clamping member has an annular structure, which is formed by filamentary weaving or flat plate cutting and shaping.
  • a woven flexible material is attached to the clamping member.
  • the prosthetic device adapted for the mitral valve includes two clamps, the front anchoring component is used to capture the native anterior leaflet and fix the prosthesis, and the rear anchoring component is used to capture the native posterior leaflet and fix the prosthesis;
  • the prosthetic device adapted for the tricuspid valve includes three clamps, one clamp is used to capture the native anterior leaflet and fix the prosthesis, the rear clamp is used to capture the native posterior leaflet and fix the prosthesis, and the other clamp is used to capture the native septal leaflet and fix the prosthesis.
  • valve body is a biological tissue leaflet, including bovine pericardium or porcine pericardium.
  • the ventricular side adopts a split conical structure, which reduces the height of the valve prosthesis and reduces the occupied space on the ventricular side, increasing the utilization space of the outflow tract, thereby reducing outflow tract obstruction.
  • the split taper structure of the ventricular side can better adapt to the saddle-shaped structure of the mitral valve ring, making it more adaptable. Barbs or protrusions are selectively distributed in specific positions to reduce unnecessary anchoring structures, maintain the anchoring effect while reducing damage to the congenital valve ring, reduce the impact on the atrioventricular bundle, atrioventricular node and other conduction systems, and reduce the weight of the valve prosthesis device.
  • the inner and outer stents are made of memory alloy and have excellent elasticity and mechanical properties.
  • the annular structure of the outer stent can change with the changes of the valve ring during the cardiac cycle, and can fit well with the atrial wall on the valve ring.
  • the inner stent can provide support for the prosthetic device to prevent collapse.
  • the clamp can control the folding and rebounding through the control handle. If the capture is not good, it can be pulled back and folded again. Recapture improves the success rate of the operation.
  • the valve prosthesis stent is anchored at the native valve device by the atrial side part, the valve ring part and the ventricular side part to prevent the valve prosthesis from shifting or separating during the heart contraction/diastole period. The synergistic effect of the three makes it more superior than valve prostheses with only one or only a combination of some of the anchoring methods.
  • Fig. 1 is a schematic structural diagram of the present invention
  • FIG2 is a schematic structural diagram of the present invention from another perspective
  • FIG3 is a schematic diagram of an external support according to an embodiment of the present invention.
  • FIG4 is a schematic diagram of an external bracket from another perspective of an embodiment of the present invention.
  • FIG5 is a schematic diagram of the structure of an embodiment of the present invention.
  • FIG6 is a schematic structural diagram of another viewing angle of an embodiment of the present invention.
  • FIG7 is a schematic structural diagram of another embodiment of the present invention.
  • FIG8 is a schematic structural diagram of another embodiment of the present invention.
  • FIG9 is a schematic diagram of the distribution of barbs or protrusions according to another embodiment of the present invention.
  • FIG10 is a schematic diagram of the structure of the present invention with a developing structure
  • FIG. 11 is a perspective view of an outer support structure of another embodiment of the present invention.
  • FIG12 is a side view of an outer support structure according to another embodiment of the present invention.
  • FIG13 is a schematic diagram of the structure of an embodiment of the present invention.
  • FIG14 is a schematic diagram of the structure of the barb of the present invention.
  • 16 is a schematic structural diagram of another clamping member of the present invention.
  • FIG17 is a schematic structural diagram of an embodiment of an external support of the present invention.
  • FIG. 18 is a schematic diagram of the structure of some embodiments of the inner stent of the present invention. wherein FIG. (m) and FIG. (n) respectively represent inner stents of two different structures;
  • FIG19 is a schematic structural diagram of a valve body according to an embodiment of the present invention.
  • FIG20 is a schematic diagram of the structure of the present invention in an undeployed state
  • FIG21 is a schematic diagram of the structure of another undeployed state of the present invention.
  • FIG22 is a side view of the structure of the present invention in an expanded state
  • FIG23 is a perspective view of the structure of the present invention in an expanded state
  • FIG24 is a schematic diagram of the release process of the present invention through a sheath; wherein (a)-(j) are different shape changes of the pretend device during the release process;
  • Fig. 25 is a schematic diagram of the mitral valve structure
  • Fig. 26 is a schematic diagram of delivery through the apex
  • FIG. 27 is a schematic diagram of the present invention when release is completed.
  • a valve prosthesis device includes an outer stent 1 and an inner stent 2 ;
  • the outer stent 1 includes a disc-shaped structure 10 deployed on the atrial side, a ring-shaped structure 20 adapted to the valve ring side, and a split structure 30 with different tapers deployed on the ventricular side;
  • the resilient clamps 40 are distributed on the circumferential side of the outer stent 1 according to the original valve leaflets;
  • the inner stent 2 is connected to the inside of the outer stent 1, and a valve body is provided in the inner stent 2.
  • the atrial side portion of the valve prosthesis When deployed, the atrial side portion of the valve prosthesis is deployed in the radial direction to fit against the atrial wall of the heart, and can anchor at least one side of the valve prosthesis.
  • the atrial side portion of the valve prosthesis has an axially low posture (extending only a small length toward the atrium) to minimize blood flow vortex thrombosis.
  • the atrial side portion is covered with a material with good biocompatibility, such as PET or other synthetic prosthetic materials to seal the atrial side portion. When blood flows through, it will not leak from between the prosthesis and the atrial wall.
  • the disc-shaped structure 10 on the atrial side is circular.
  • the disc-shaped structure 10 on the atrial side is a special-shaped structure, preferably a D-shaped structure or a saddle-shaped structure, so as to be well attached to the atrial wall on the valve ring.
  • a developing structure 100 is also provided on the disc-shaped structure 10 on the atrial side, which can be particularly recognized by ultrasound, reducing the use of radiation developing equipment.
  • the valve prosthesis valve ring portion is used to anchor on the congenital valve ring of the heart.
  • the annular structure 20 of the valve ring portion is circular.
  • the annular structure 20 of the valve ring portion is a special-shaped structure, preferably having a D-shaped structure or a saddle shape, so as to be able to fit well with the atrial wall on the valve ring.
  • the prosthetic valve ring is partially distributed with barbs 50 or protrusions as shown in FIG14, so that the prosthetic device can better fit and anchor with the native valve ring.
  • the barbs 50 are integrally covered on the outer edge of the valve ring of the outer stent 1, or selectively distributed on the side of the prosthetic valve ring according to the characteristics of the native valve, which can reduce the damage to the native valve ring caused by too many barbs or protrusions. Please refer to FIG13, barbs 50a are evenly distributed as a whole.
  • the valve ring is covered with a biocompatible material, such as PET or other synthetic prosthetic materials, to seal the valve ring. When blood flows through, it will not leak between the prosthesis and the congenital valve ring.
  • the ventricular side portion of the valve prosthesis is deployed in a radial direction when the prosthesis is deployed, and has a low posture, and is provided with a split structure 30 with the same or different tapers, which can reduce obstruction of the outflow tract or make it more adaptable, rather than fitting the ventricular wall.
  • the tapered split structure 30 on the ventricular side can be distributed at 60°-120°.
  • a 120° distribution is used to make it more adaptable.
  • the same taper split is used to make it more adaptable.
  • the ventricular side portion of the valve prosthesis is covered with a material with good biocompatibility, such as PET or other synthetic prosthetic materials to seal the ventricular side portion.
  • a material with good biocompatibility such as PET or other synthetic prosthetic materials to seal the ventricular side portion.
  • a clamp 40 is provided on the ventricular side portion, and the clamp 40 is evenly distributed around the valve prosthesis according to the characteristics of the original leaflets.
  • the mitral valve as shown in FIG8 , it is preferred to use two clamps 40, the front clamp 40 is used to capture the native anterior leaflet and fix the prosthesis, and the rear clamp 40 is used to capture the native posterior leaflet and fix the prosthesis.
  • the tricuspid valve as shown in FIG23 , it is preferred to use three clamps 40, one clamp 40 is used to capture the native anterior leaflet and fix the prosthesis, the rear clamp 40 is used to capture the native posterior leaflet and fix the prosthesis, and one clamp 40 is used to capture the native septal leaflet and fix the prosthesis.
  • the clamp 40 has a ring structure as shown in FIG. 15 .
  • the ring structure can be woven in a filamentous manner or cut and shaped from a flat plate. The structure can be stretched and rebounded to capture the native leaflets between the stent 1 outside the valve prosthesis.
  • the valve prosthesis stent is anchored at the native valve device in conjunction with the atrial side portion, the valve ring portion and the ventricular side portion to prevent the valve prosthesis from shifting or separating during the heart's contraction/diastole.
  • the synergistic effect of the three makes the valve prosthesis more superior than only one or a combination of some of the anchoring methods.
  • the structure of the valve prosthesis combined with the outer stent 1 and the inner stent 2 has a certain gap on the blood inflow side.
  • valve outer stent 1 When the valve outer stent 1 is squeezed by the native valve ring on the inflow side and deforms inwardly to the valve ring so as to fit the native valve ring in the entire cardiac cycle, the inner stent 2 will not deform, so that the valve leaflets of the valve prosthesis can have good hemodynamic performance.
  • the inner stent 2 is designed to be deployable or self-expandable.
  • the inner stent 2 can be made of a memory alloy, such as nickel-titanium alloy. Other biocompatible metal materials can also be used for manufacturing.
  • the outer stent 1 can also be made of a memory alloy, such as nickel-titanium alloy or other biocompatible metal materials.
  • the inner and outer stents 1 can be manufactured as a whole or connected and sutured. In this example, they are connected by sewing.
  • the annular structure 20 of the outer stent 1 can change with the changes of the valve annulus during the cardiac cycle, and is designed to be a D-shaped structure or a saddle shape to adapt to the changes of the valve annulus, which is particularly suitable for the mitral valve.
  • the prosthetic device is cut from a memory alloy tubular material or woven from a filamentary material, and has good elasticity.
  • the inner support 2 and the outer support 1 are composed of a plurality of rhombus lattice units, and a valve body 60 is sutured in the inner support 2.
  • the valve body is a biological tissue leaflet, and as shown in FIG19 , the biological valve tissue includes bovine pericardium or porcine pericardium, and is composed of three independent valves or three integrally formed valves.
  • the valve prosthesis is first compressed and loaded into a suitable sheath 80.
  • the valve prosthesis body is compressed into the sheath 80, and the clamp 40 is reversely pulled into the sheath 80 through a pull wire 90 or other similar metal wire according to the number of anchoring features of the valve prosthesis.
  • the distal end of these pull wires 90 or metal wires is connected to the valve prosthesis through a loop, and the proximal end is controlled by a control handle to control the folding and rebounding of the clamp 40.
  • the valve prosthesis loaded into the sheath 80 is then Delivered via the apical approach.
  • the sheath 80 When the valve prosthesis is delivered to the designated atrial side, the sheath 80 is retracted by manipulating the delivery handle so that the valve prosthesis can be gradually exposed and deployed. In some self-expanding examples, once the valve prosthesis is gradually pushed forward to expose it, the valve prosthesis will partially deploy. In expandable examples, a balloon is required to expand and deploy.
  • the unfolding of the valve prosthesis may be released according to the characteristics of the native valve.
  • the valve prosthesis includes two front and rear clamps 40.
  • the sheath 80 is withdrawn a little and the valve prosthesis is gradually pushed out, the atrial side of the valve prosthesis has been partially unfolded.
  • the relative position of the native leaflets and the valve prosthesis can be identified through ultrasound guidance, and the front and rear clamps 40 can be adjusted to match the native leaflets.
  • the sheath 80 is withdrawn again to allow the valve prosthesis to be gradually exposed.
  • the atrial part and the valve ring part of the valve prosthesis are unfolded and fit with the native valve ring device until the clamp 40 is exposed outside the sheath and the sheath is stopped.
  • the valve prosthesis has been well anchored at the native valve ring.
  • the clamp 40 is controlled by the pull wire 90 or the metal wire to capture the native leaflets and release to allow the clamp 40 to rebound. If the capture is not good, it can be re-pulled and re-captured.
  • the valve prosthesis is finally released after the pull wire or wire is dissociated, and the two clamping members 40 capture the native anterior and posterior leaflets between the prosthesis stent and the anchoring member, the barbs 50 or protrusions are supported under the native valve ring, and the clamping member 40 is supported on the leaflet fiber structure, and the prosthesis device is anchored stably. Finally, the delivery sheath 80 is completely withdrawn to complete the implantation operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

本发明涉及心脏手术器械,具体地说是一种分段锥形结构的瓣膜假体装置。包括外支架和内支架;所述外支架包括于心房侧展开的盘状结构,于瓣环侧相适配的环形结构,以及于心室侧展开的不同锥度的分体结构;可回弹的夹持件根据原始瓣叶分布于外支架环周侧;所述内支架连接于所述外支架内部,所述内支架中设有瓣膜体。还包括选择性或整体分布于外支架环形结构的倒刺或凸起,其用于将假体锚固于心脏先天瓣环上。盘状结构、环形结构采用为圆形结构或者异形结构,不同锥度的分体结构呈60°-120°分布。采用分体的锥形结构,能减少流出道的梗阻和提高假体适应性。

Description

一种分段锥形结构的瓣膜假体装置 技术领域
本发明涉及心脏手术器械,具体地说是一种分段锥形结构的瓣膜假体装置。
背景技术
目前影响心脏二尖瓣功能的条件有:二尖瓣反流、二尖瓣瓣叶脱垂和二尖瓣狭窄等。二尖瓣反流是指在心脏收缩期峰值血压下,二尖瓣瓣叶不能对合而引起的血流从左心室流向左心房泄露。导致二尖瓣瓣叶不能正常关闭的结构性原因有:瓣叶损伤、瓣环扩大、腱索断裂和乳头肌缺血等。瓣叶脱垂或者瓣叶朝心房侧凸起引起瓣叶结构异常同样会导致二尖瓣反流。正常二尖瓣的功能也能受到二尖瓣狭窄或者二尖瓣开口变窄的影响,会导致心脏舒张期血流从心房通过心室时受阻。
二尖瓣反流主要是药物治疗和手术治疗从而降低血流反流到心房。例如,通过修复的方式夹合或者剪切扩张的瓣环从而让瓣叶对合良好。夹合瓣环通过在瓣环周围植入圆周环让扩张的瓣环收缩。其他修复手术也包括缝合或者夹合瓣叶从而让瓣叶对合良好。或者,更多的介入手术包括用机械或者生物瓣膜置换整体原生瓣膜。这种手术方式更多的是通过开胸体外循坏的方式进行,从而会让患者的创伤更大,更容易引起疼痛以及死亡以及需要更长的恢复时间。
更少创伤的主动脉瓣膜置换手术已经在最近几年开展。这些主动脉瓣膜假体包括可扩张的支架以及一个三叶瓣假体。可扩张式的支架 用于与对称的圆周型的相对刚性主动脉根部适配。主动脉根部这些特点决定可扩张的支架能够与之适配从而不易位移或者脱落。
而相对于主动脉瓣膜解剖结构,二尖瓣瓣膜复杂的解剖结构给二尖瓣置换带来了挑战。首先,不同于主动脉相对对称以及原生刚性的瓣环,二尖瓣瓣环呈现D型马鞍状,缺乏对称性,而且在心脏心动周期瓣环尺寸会变化大。这些不确定性给设计一款合适的瓣膜假体能够适配二尖瓣瓣环带来了挑战。如果瓣膜假体与二尖瓣瓣环之间缺乏足够的接触,从而有间隙,会导致血流的反流。如果植入一个可扩张的支架可能会导致瓣周漏。
当前的主动脉瓣膜置换器械设计并不适合二尖瓣瓣膜。首先,许多装置需要直接性的结构来适配二尖瓣瓣环以及连接支撑瓣叶假体。在一些装置中,这些用于支撑瓣叶的支架结构同样与瓣环适配或者与周围其他组织适配,在心脏收缩期时直接承受了来自于瓣环或者周围组织或者血液的变形压力。大多数瓣膜假体使用三叶瓣,这种设计需要对称的圆周型的支撑结构来使得三叶瓣能够长期自由开启闭合。如果这种支撑结构承受了来自于瓣环或者周围组织的变形压力从而弯曲变形,这种三叶瓣可能就会功能失效。更多的,通常情况下二尖瓣反流患者的瓣环尺寸会远大于主动脉瓣膜的尺寸。而当瓣膜尺寸增大时,瓣叶承受的力会急剧增大。所以需要一款更适合二尖瓣血流动力的瓣叶结构。
除了二尖瓣瓣环不规则以及不确定形状的特点,其缺少重要的径向支撑结构。而主动脉瓣膜会被根部的纤弹性组织包围,帮助瓣膜假 体锚定。二尖瓣瓣膜只是被心机组织包围。从而,二尖瓣瓣环拥有很强的径向力。此种径向力可能导致植入的瓣膜假体结构失效。
心室的腱索组织同样可能会给瓣膜假体带来影响。这种腱索主动脉瓣膜是不存在的。这种腱索给二尖瓣通过鞘管介入修复或者置换带来了混乱,增大了手术定位以及放置难度。从心室侧定位或者放置瓣膜假体由于有腱索干扰同样也会有难度。
而在心脏右侧的三尖瓣,虽然正常情况下,有三个瓣叶,同样有二尖瓣的治疗的难度。所以,对于三尖瓣的治疗同样需要设计发明良好的瓣膜假体。
现有瓣膜假体装置基本可以简单高效地介入从而治疗心脏瓣膜疾病。在现有技术中,瓣膜假体装置心室侧的展开结构通常情况下为整体式锥形或者环形结构,然而这种设计使得假体装置整体过高,非必要的占用心室侧空间,可能会引起流通梗阻。同时由于心室侧的整体式设计,瓣环侧结构受挤压变形时可能无法紧密贴合原生瓣环,导致瓣环侧适应性不佳。
发明内容
本发明提出了一种瓣膜假体装置,该假体装置靠心室侧采用分体的锥形结构,能减少流出道的梗阻和提高假体适应性,而非贴合心室壁。
本发明具体采用了以下技术手段:
一种瓣膜假体装置,包括外支架和内支架;所述外支架包括于心房侧展开的盘状结构,于瓣环侧相适配的环形结构,以及于心室侧展 开的不同锥度的分体结构;可回弹的夹持件根据原始瓣叶分布于外支架环周侧;所述内支架连接于所述外支架内部,所述内支架中设有瓣膜体。
进一步的,还包括选择性或整体分布于外支架环形结构的倒刺或者凸起,其用于将假体锚固于心脏先天瓣环上。
进一步的,所述倒刺或凸起分布于三尖瓣瓣叶的中间位置;或者分布于二尖瓣的前叶A2与后叶P1、P3位置处。
进一步的,心房侧展开的盘状结构为圆形结构或者异形结构;瓣环侧展开的环形结构为圆形结构或者异形结构。
进一步的,所述异形结构为类D型或马鞍型结构。
进一步的,不同锥度的分体结构呈60°-120°分布;其中适配于二尖瓣的假体装置分体结构为120°分布;适配于三尖瓣的假体装置分体结构等角度分布。
进一步的,心房侧部分的盘状结构上还设有能被超声识别的显影结构。
进一步的,所述内支架和外支架由记忆合金制造或者生物相容的金属材料制造而成,其中内支架为可展开式或自膨胀式。
进一步的,外支架采用记忆合金管状材料切割定型而成或者丝状材料编织定型而成,内支架采用记忆合金管状材料切割定型而成。
进一步的,内外支架整体制造或连接缝合而成。
进一步的,外支架和内支架上覆有生物相容性材料,避免血流从假体与先天瓣环之间泄露。其中心房侧、原生瓣环侧以及心室侧的结 构上设有PET覆膜,内支架内缘设有PET覆膜或者其他生物相容性材料。
进一步的,所述夹持件具有环形结构,该环形结构为丝状编织或平板切割定型而成。
进一步的,所述夹持件上贴合有编织柔性材料。
进一步的,适配于二尖瓣的假体装置包括两个夹持件,前锚定部件用于捕获原生前叶与固定假体,后锚定部件用于捕获原生后叶与固定假体;适配于三尖瓣的假体装置包括三个夹持件,一夹持件用于捕获原生前叶与固定假体,后夹持件用于捕获原生后叶与固定假体,另一夹持件用于捕获原生隔叶与固定假体。
进一步的,所述瓣膜体为生物组织瓣叶,包括牛心包或者猪心包。
本发明具有以下有益效果:
心室侧部分采用分体式锥形结构,使得瓣膜假体高度降低以及减少了心室侧的占用空间,提高了流出道的利用空间,从而可以减少流出道的梗阻。心室侧部分的分体锥度结构可以更好的适应二尖瓣瓣环马鞍型结构使得适应性更佳。倒刺或凸起选择性分布特定位置,减少非必要锚固结构,可以维持锚定效果同时减少对先天瓣环损伤,降低对房室束房室结等传导系统的影响以及降低瓣膜假体装置的重量。内外支架采用记忆合金制造而成,具有优良的弹性和力学性能,外支架的环形结构可以随着心动周期瓣环的变化而变化,能够与瓣环上心房壁贴合良好,内支架可为假体装置提供支撑力,防止坍塌。夹持件可通过操控手柄控制反折和回弹,如果捕获不佳,还可以重新拉反折并 重新捕获,提高了手术成功率。瓣膜假体支架联合心房侧部分、瓣环部分以及心室侧部分在原生瓣膜装置处锚定能够阻止瓣膜假体在心脏收缩/舒张期移位或者分离,三者的协同作用使得比只有一种或者只组合其中某些锚定方式的瓣膜假体更有优越性。
附图说明
图1是本发明的结构示意图;
图2是本发明另一视角的结构示意图;
图3是本发明某一实施例的外支架示意图;
图4是本发明某一实施例另一视角的外支架示意图;
图5是本发明某一实施例的结构示意图;
图6是本发明某一实施例另一视角的结构示意图;
图7是本发明另一实施例的结构示意图;
图8是本发明另一实施例的结构示意图;
图9是本发明另一实施例的倒刺或凸起分布示意图;
图10是本发明带有显影结构的结构示意图;
图11是本发明另一实施例的外支架结构立体图;
图12是本发明另一实施例的外支架结构侧视图;
图13是本发明一实施例的结构示意图;
图14是本发明倒刺的结构示意图;
图15是本发明夹持件的结构示意图;
图16是本发明另一夹持件的结构示意图;
图17是本发明外支架的某一实施例结构示意图;
图18是本发明内支架的某些实施例结构示意图;其中图(m)、(n)分别表示两种不同结构内支架;
图19是本发明某一实施例瓣膜体的结构示意图;
图20是本发明未展开状态的结构示意图;
图21是本发明另一未展开状态的结构示意图;
图22是本发明展开状态的结构侧视图;
图23是本发明展开状态的结构立体图;
图24是本发明通过鞘管释放过程示意图;其中(a)-(j)为假装装置在释放过程中不同形状变化;
图25是二尖瓣结构示意图;
图26是经过心尖输送示意图;
图27是本发明释放完成时示意图。
图中各编号:
1、外支架;2、内支架;10、盘状结构;20、环形结构;30、分
体结构;40、夹持件;50、倒刺;60、瓣膜体;70、覆膜;80、鞘管;90、拉线;100、显影结构。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1和2,一种瓣膜假体装置包括外支架1和内支架2; 外支架1包括于心房侧展开的盘状结构10,于瓣环侧相适配的环形结构20,以及于心室侧展开的不同锥度的分体结构30;可回弹的夹持件40根据原始瓣叶分布于外支架1圆周侧;内支架2连接于外支架1内部,内支架2中设有瓣膜体。
当展开时,瓣膜假体心房侧部分朝径向方向展开以能够与心脏心房壁贴合,能够至少锚固瓣膜假体一侧。瓣膜假体心房侧部分具有轴向低姿态(只朝心房延伸一小长度)能够最小化血流涡流血栓形成。在优选的实例中,心房侧部分覆有生物相容性好的材料,比如PET或者其它合成的假体材料以能够密封心房侧部分。当血流流过时,不至于从假体与心房壁之间泄露。
请参阅图5-8,在一些实例中,心房侧部分盘状结构10为圆形。在一些实例中,心房侧部分盘状结构10为异形结构,优选的为D型结构或者马鞍形结构,以能够与瓣环上心房壁贴合良好。请参阅图10,为了让瓣膜假体在展开释放时能够定位朝向,在一些实例中,心房侧部分盘状结构10上还设有显影结构100,尤其能够被超声识别,减少辐射显影设备的使用。
瓣膜假体瓣环部分用于锚固在心脏先天瓣环上。在一些实例中,瓣环部分的环形结构20为圆形。在一些实例中,瓣环部分的环形结构20为为异形结构,优选的具有D形结构或马鞍形,以能够与瓣环上心房壁贴合良好。
瓣膜假体瓣环部分分布如图14的倒刺50或凸起结构,使得假体装置能够与先天瓣环贴合锚定更好。该倒刺50整体式覆盖在外支架1瓣环外缘,或者根据先天瓣膜的特性选择性的分布在假体瓣环周侧,能够减少过多倒刺或者凸起给先天瓣环的损伤。请参阅图13,倒刺50a为整体均等分布。请参阅图9和二尖瓣示意图,当倒刺50b为局 部式分布时,倒刺分布于三尖瓣瓣叶的中间位置;或者分布于二尖瓣的前叶A2与后叶P1、P3位置处。在优选的实例中,瓣环部分覆有生物相容性好的材料,比如PET或者其它合成的假体材料以能够密封瓣环部分。当血流流过时,不至于从假体与先天瓣环之间泄露。
瓣膜假体心室侧部分在假体展开时朝着径向方向展开,且具有低姿态,设有相同或者不同锥度的分体结构30,能减少流出道的梗阻或者使适应性更佳,而不是贴合心室壁。在一些实例中,心室侧带有锥度的分体结构30可以呈现60°-120°分布。对于二尖瓣,优选的,使用120°分布以能够使得适应性更加。对于三尖瓣,优选的,使用相同锥度分体以能够使得适应性更加。瓣膜假体心室侧部分在优选的实例中,覆有生物相容性好的材料,比如PET或者其它合成的假体材料以能够密封心室侧部分。当血流流过时,不至于从假体与先天瓣环之间泄露。
为了锚固瓣膜假体,在心室侧部分设有夹持件40,该夹持件40根据原始瓣叶特性均等分布在瓣膜假体周侧。对于二尖瓣,如图8所示,优选的使用两个夹持件40,前夹持件40用于捕获原生前叶与固定假体,后夹持件40用于捕获原生后叶与固定假体。对于三尖瓣,如图23所示,优选的使用三个夹持件40,一夹持件40用于捕获原生前叶与固定假体,后夹持件40用于捕获原生后叶与固定假体,一夹持件40用于捕获原生隔叶与固定假体。
在一些实例中,该夹持件40如图15具有环结构,该环结构可以是丝状编织也可由平板切割定型而成,该结构能够拉伸回弹用于捕获原生瓣叶于瓣膜假体外支架1之间。
瓣膜假体支架联合心房侧部分、瓣环部分以及心室侧部分在原生瓣膜装置处锚定能够阻止瓣膜假体在心脏收缩/舒张期移位或者分离。 三者的协同作用使得比只有一种或者只组合其中某些锚定方式的瓣膜假体更有优越性。在一些实例中,如图8所示,瓣膜假体联合外支架1与内支架2的结构在血液流入侧有一定的间隙,当瓣膜外支架1在流入侧受到原生瓣环挤压朝瓣环内变形以能够与原生瓣环在整个心动周期中贴合适配,而内支架2不会变形,使得瓣膜假体瓣叶能够有良好的血流动力学性能。
请参阅图17-18,内支架2设计成可展开式或者能够自膨胀式。内支架2可以由记忆合金制造而成,比如镍钛合金。其他生物相容的金属材料也可以用于制造。外支架1也可以由记忆合金制造而成,比如镍钛合金或者其他生物相容的金属材料。内外支架1可以整体制造而成或者通过连接缝合而成。在此实例中通过缝制连接而成。在一些发明实例中,外支架1的环形结构20可以随着心动周期瓣环的变化而变化,设计成D型结构或马鞍型来顺应瓣环的变化,尤其适用于二尖瓣。在一些实施例中,假体装置由记忆合金管状材料切割而成或者丝状材料编织而成,具有良好的弹性。
内支架2和外支架1由多个菱形格单元构成,内支架2内缝合有瓣膜体60。在本实施例中瓣膜体为生物组织瓣叶,如图19所示生物瓣组织包括牛心包或猪心包,由三片独立瓣膜或一体成型的三片瓣膜组成。
请参阅图24,为了能够让瓣膜假体在心脏内释放,首先瓣膜假体压缩装载在合适的鞘管80中。瓣膜假体主体压缩进鞘管80内,根据瓣膜假体的锚定特征数量,把夹持件40通过拉线90或者其他类似的金属丝反向拉伸进鞘管80。在一些实例中,这些拉线90或者金属丝的远端与瓣膜假体通过回路连接,近端通过操控手柄控制夹持件40的反折与回弹。如图26所示,被装载进鞘管80的瓣膜假体然后 通过经心尖的方式输送。当瓣膜假体被输送到指定心房侧时,通过操控输送手柄使得鞘管80收回,以能够让瓣膜假体逐步露出并展开。在一些自膨胀式的实例中,一旦逐步推进瓣膜假体暴露,瓣膜假体就会部分展开。而在可扩展式的实例中,需要球囊来扩张展开。
请继续参阅图(a)-(j)的瓣膜假体介入过程,展开瓣膜假体可能根据原生瓣膜的特点来释放。例如在二尖瓣瓣膜假体实例中,瓣膜假体包含两个前后夹持件40。当撤回一点鞘管80并逐步推出瓣膜假体时,瓣膜假体心房侧部分已经展开部分,通过超声引导可以识别原生瓣叶与瓣膜假体的相对位置,并可以调整以使得前后夹持件40与原生瓣叶配合。当位置匹配时,就再次撤回鞘管80让瓣膜假体逐步露出,这时瓣膜假体心房部分与瓣环部分展开与原生瓣环装置贴合,直到夹持件40露出鞘管外停止撤回鞘管。这时,瓣膜假体已经在原生瓣环处锚定良好。接着通过拉线90或者金属丝控制夹持件40捕获原生瓣叶并释放让夹持件40回弹。如果捕获不佳,还可以重新拉反折并重新捕获。一旦瓣膜假体释放位置满意以及夹持件40顺利匹配,解离掉拉线或者金属丝后,瓣膜假体最终释放,两个夹持件40把原生前后叶捕获在假体支架与锚定部件之间,倒刺50或凸起结构支撑在原生瓣环下,夹持件40支撑在瓣叶纤维结构上,假体装置锚定稳定。最后完全撤回输送鞘管80,完成植入操作手术。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于 本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

  1. 一种分段锥形结构的瓣膜假体装置,其特征在于,包括外支架和内支架;所述外支架包括于心房侧展开的盘状结构,于瓣环侧相适配的环形结构,以及于心室侧展开的不同锥度的分体结构;可回弹的夹持件根据原始瓣叶分布于外支架环周侧;所述内支架连接于所述外支架内部,所述内支架中设有瓣膜体。
  2. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,还包括选择性或整体分布于外支架环形结构的倒刺或凸起,其用于将假体锚固于心脏先天瓣环上。
  3. 根据权利要求2所述的分段锥形结构的瓣膜假体装置,其特征在于,所述倒刺或者凸起分布于三尖瓣瓣叶的中间位置;或者分布于二尖瓣的前叶A2与后叶P1、P3位置处。
  4. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,心房侧展开的盘状结构为圆形结构或者异形结构;瓣环侧展开的环形结构为圆形结构或者异形结构。
  5. 根据权利要求4所述的分段锥形结构的瓣膜假体装置,其特征在于,所述异形结构为类D型或马鞍型结构。
  6. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,不同锥度的分体结构呈60°-120°分布;其中适配于二尖瓣的假体装置分体结构为120°分布。
  7. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,心房侧部分的盘状结构上还设有能被超声识别的显影结构。
  8. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,所述内支架和外支架由记忆合金制造或者生物相容的金属材料制造而成,其中内支架为可展开式或自膨胀式。
  9. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,外支架采用记忆合金管状材料切割定型而成或者丝状材料编织定型而成,内支架采用记忆合金管状材料切割定型而成。
  10. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,内外支架整体制造或连接缝合而成。
  11. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,外支架和内支架上覆有生物相容性材料,避免血流从假体与先天瓣环之间泄露。
  12. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,所述夹持件具有环形结构,该环形结构为丝状编织或平板切割定型而成。
  13. 根据权利要求12所述的分段锥形结构的瓣膜假体装置,其特征在于,所述夹持件上贴合有编织柔性材料。
  14. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,适配于二尖瓣的假体装置包括两个夹持件,前锚定部件用于捕获原生前叶与固定假体,后锚定部件用于捕获原生后叶与固定假体;适配于三尖瓣的假体装置包括三个夹持件,一夹持件用于捕获原生前叶与固定假体,后夹持件用于捕获原生后叶与固定假体,另一夹持件用于捕获原生隔叶与固定假体。
  15. 根据权利要求1所述的分段锥形结构的瓣膜假体装置,其特征在于,所述瓣膜体为生物组织瓣叶,包括牛心包或者猪心包。
PCT/CN2024/078243 2023-08-24 2024-02-23 一种分段锥形结构的瓣膜假体装置 Pending WO2025039492A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP24802148.7A EP4534047A1 (en) 2023-08-24 2024-02-23 Valve prosthesis device having segmented tapered structure
KR1020247033500A KR20250030437A (ko) 2023-08-24 2024-02-23 분절 원뿔형 구조의 판막 보형물 장치
AU2024266787A AU2024266787A1 (en) 2023-08-24 2024-02-23 Prosthetic valve device with a segmented tapered structure
GB2417369.2A GB2638848A (en) 2023-08-24 2024-02-23 Valve prosthesis device having segmented tapered structure
US18/961,483 US20250090313A1 (en) 2023-08-24 2024-11-27 Prosthetic valve device with a segmented tapered structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311077193.6A CN117159228B (zh) 2023-08-24 2023-08-24 一种分段锥形结构的瓣膜假体装置
CN202311077193.6 2023-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/961,483 Continuation US20250090313A1 (en) 2023-08-24 2024-11-27 Prosthetic valve device with a segmented tapered structure

Publications (1)

Publication Number Publication Date
WO2025039492A1 true WO2025039492A1 (zh) 2025-02-27

Family

ID=88931080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/078243 Pending WO2025039492A1 (zh) 2023-08-24 2024-02-23 一种分段锥形结构的瓣膜假体装置

Country Status (2)

Country Link
CN (1) CN117159228B (zh)
WO (1) WO2025039492A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117159228B (zh) * 2023-08-24 2025-04-04 上海诠昕医疗科技有限公司 一种分段锥形结构的瓣膜假体装置
EP4534047A1 (en) * 2023-08-24 2025-04-09 Shanghai Quanxin Medical Technology Co., Ltd Valve prosthesis device having segmented tapered structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150005874A1 (en) * 2013-06-27 2015-01-01 Tendyne Holdings, Inc. Atrial Thrombogenic Sealing Pockets for Prosthetic Mitral Valves
CN109549755A (zh) * 2017-09-25 2019-04-02 先健科技(深圳)有限公司 心脏瓣膜
CN211067215U (zh) * 2019-10-11 2020-07-24 上海纽脉医疗科技有限公司 一种心脏瓣膜外支架及一种人工心脏瓣膜
CN112674909A (zh) * 2020-12-28 2021-04-20 上海臻亿医疗科技有限公司 一种人工瓣膜假体
CN113616384A (zh) * 2021-08-23 2021-11-09 上海纽脉医疗科技股份有限公司 一种带有连接部件的瓣膜假体
CN115153961A (zh) * 2022-06-30 2022-10-11 潘湘斌 一种瓣膜支架及包含该瓣膜支架的瓣膜假体
CN115553977A (zh) * 2022-10-14 2023-01-03 上海诠昕医疗科技有限公司 一种假体瓣膜
CN116138931A (zh) * 2023-02-20 2023-05-23 上海诠昕医疗科技有限公司 一种二尖瓣人工介入瓣膜
CN117100458A (zh) * 2023-08-24 2023-11-24 上海诠昕医疗科技有限公司 一种含选择性分布倒刺的瓣膜假体装置
CN117159228A (zh) * 2023-08-24 2023-12-05 上海诠昕医疗科技有限公司 一种分段锥形结构的瓣膜假体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109199640B (zh) * 2018-10-24 2020-06-12 宁波健世生物科技有限公司 一种人工瓣膜假体
CN111643223B (zh) * 2020-05-13 2023-04-14 中国人民解放军海军军医大学第一附属医院 用于修复或替换心脏的自体瓣膜的移植物
CN112869915B (zh) * 2021-01-14 2023-05-12 上海易桥医疗器械有限公司 瓣膜假体和瓣膜假体系统
CN115486970A (zh) * 2022-08-02 2022-12-20 上海诠昕医疗科技有限公司 一种带对称可驱动夹持件的瓣膜假体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150005874A1 (en) * 2013-06-27 2015-01-01 Tendyne Holdings, Inc. Atrial Thrombogenic Sealing Pockets for Prosthetic Mitral Valves
CN109549755A (zh) * 2017-09-25 2019-04-02 先健科技(深圳)有限公司 心脏瓣膜
CN211067215U (zh) * 2019-10-11 2020-07-24 上海纽脉医疗科技有限公司 一种心脏瓣膜外支架及一种人工心脏瓣膜
CN112674909A (zh) * 2020-12-28 2021-04-20 上海臻亿医疗科技有限公司 一种人工瓣膜假体
CN113616384A (zh) * 2021-08-23 2021-11-09 上海纽脉医疗科技股份有限公司 一种带有连接部件的瓣膜假体
CN115153961A (zh) * 2022-06-30 2022-10-11 潘湘斌 一种瓣膜支架及包含该瓣膜支架的瓣膜假体
CN115553977A (zh) * 2022-10-14 2023-01-03 上海诠昕医疗科技有限公司 一种假体瓣膜
CN116138931A (zh) * 2023-02-20 2023-05-23 上海诠昕医疗科技有限公司 一种二尖瓣人工介入瓣膜
CN117100458A (zh) * 2023-08-24 2023-11-24 上海诠昕医疗科技有限公司 一种含选择性分布倒刺的瓣膜假体装置
CN117159228A (zh) * 2023-08-24 2023-12-05 上海诠昕医疗科技有限公司 一种分段锥形结构的瓣膜假体装置

Also Published As

Publication number Publication date
CN117159228A (zh) 2023-12-05
CN117159228B (zh) 2025-04-04

Similar Documents

Publication Publication Date Title
US10856974B2 (en) Heart valve repair and replacement
US11833038B2 (en) Valve prosthesis and method for delivery
US11364117B2 (en) Braid connections for prosthetic heart valves
CN112912035B (zh) 用于改进房室瓣的接合的植入物
CN108578016B (zh) 一种经心尖植入式二尖瓣瓣膜装置
JP7462559B2 (ja) 人工弁尖器具
CN108652790B (zh) 瓣膜假体和递送方法
CN102985032B (zh) 二尖瓣假体
EP3821849A1 (en) Mitral valve assembly
WO2025039492A1 (zh) 一种分段锥形结构的瓣膜假体装置
CN117100458A (zh) 一种含选择性分布倒刺的瓣膜假体装置
WO2020114296A1 (zh) 经导管人工瓣膜置换系统
WO2022267851A1 (zh) 一种用于阻止瓣膜返流的修复装置
CN115105264A (zh) 瓣膜支架以及瓣膜假体系统
CN111616835A (zh) 一种人工心脏瓣膜的植入装置
US20230404750A1 (en) Fabric Suture Valve Suspension System
CN215688788U (zh) 瓣膜假体和瓣膜假体系统
US20250090313A1 (en) Prosthetic valve device with a segmented tapered structure
CN219354275U (zh) 一种瓣膜修复装置及系统
HK40051876A (zh) 二尖瓣瓣膜组件
HK1256493B (zh) 一种经心尖植入式二尖瓣瓣膜装置
HK1256493A1 (zh) 一种经心尖植入式二尖瓣瓣膜装置
HK1249395B (zh) 二尖瓣瓣膜组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202417369

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20240223

WWE Wipo information: entry into national phase

Ref document number: 202417096744

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2024802148

Country of ref document: EP

Effective date: 20241115

WWP Wipo information: published in national office

Ref document number: 1020247033500

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2024266787

Country of ref document: AU

Date of ref document: 20240223

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2024802148

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 202417096744

Country of ref document: IN

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载