+

WO2025090369A1 - Additifs à sulfuration élevée pour compositions d'huile lubrifiante - Google Patents

Additifs à sulfuration élevée pour compositions d'huile lubrifiante Download PDF

Info

Publication number
WO2025090369A1
WO2025090369A1 PCT/US2024/051881 US2024051881W WO2025090369A1 WO 2025090369 A1 WO2025090369 A1 WO 2025090369A1 US 2024051881 W US2024051881 W US 2024051881W WO 2025090369 A1 WO2025090369 A1 WO 2025090369A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfurized
compound
sulfur
ratio
sulfurization
Prior art date
Application number
PCT/US2024/051881
Other languages
English (en)
Inventor
Mitchell LATIMER
Jason Bell
Original Assignee
Afton Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/494,466 external-priority patent/US12270003B2/en
Application filed by Afton Chemical Corporation filed Critical Afton Chemical Corporation
Publication of WO2025090369A1 publication Critical patent/WO2025090369A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/02Sulfurised compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/20Thiols; Sulfides; Polysulfides
    • C10M135/28Thiols; Sulfides; Polysulfides containing sulfur atoms bound to a carbon atom of a six-membered aromatic ring
    • C10M135/30Thiols; Sulfides; Polysulfides containing sulfur atoms bound to a carbon atom of a six-membered aromatic ring containing hydroxy groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol-fuelled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present disclosure generally relates to lubricating oil compositions and additives therefor with high levels of sulfurization.
  • Metal salts of sulfurized alkyl phenols tend to be useful lubricating oil additives. These additives may function as a detergent and/or dispersant and also provide an alkalinity base to aid in the neutralization of acids generated during automotive operation. Unsulfurized variants of the alkyl phenates and/or alkyl phenols have reduced utility and tend to be less desired in the lubricant for many reasons. As such, additive manufacturers seek to minimize levels of unsulfurized alkyl phenates and/or alkyl phenols in their additives. Current methods of preparing such additives, however, have one or more shortcomings when seeking to minimize levels of unsulfurized alkyl phenate/phenol variants when the additives are also overbased.
  • a process for preparing a sulfurized compound for lubricating compositions to achieve a high sulfurization ratio of the sulfurized compound to residual unsulfurized compounds includes sulfurizing an alkyl phenol with a sulfur chloride blend to provide a sulfurized alkyl phenol, wherein a mol ratio of the sulfur chloride blend to the alkyl phenol is about 0.6: 1 to about 0.75: 1; and wherein the sulfur chloride blend includes sulfur monochloride and sulfur dichloride and wherein the sulfur chloride blend is about 40 to about 75 weight percent of sulfur dichloride.
  • the process further includes neutralizing and optionally overbasing the sulfurized alkyl phenol in the presence of a solvent to provide a sulfurized alkyl phenate composition.
  • the process of either embodiment results in a sulfurized compound (e.g., either a sulfurized alkyl phenol or a sulfurized alkyl phenate) with a sulfurization ratio of sulfurized alkyl phenol (or sulfurized alkyl phenate) to unsulfurized compounds (e.g., alkyl phenol and/or unsulfurized alkyl phenate) of about 500:1 or greater.
  • the process of the previous paragraph may include optional embodiments, features, or method steps in any combination. These optional embodiments, features, or method steps may include one or more of the following: wherein copper corrosion of a lubricant including the sulfurized alkyl phenate composition, as measured pursuant to ASTM D6594, is at least about 50% less than the copper corrosion of a lubricant including a sulfurized alkyl phenate composition prepared by sulfurizing the same alkyl phenol but with a sulfur chloride blend including 100 percent sulfur monochloride; and/or wherein the amount of residual organic chloride in the sulfurized compound is about 1,500 ppm or less (as measured by ASTM D4929 using x-ray fluorescence (XRF) spectrometry); and/or wherein the neutralization and optional overbasing is at a temperature not exceeding about 140°C; and/or wherein the solvent is one more solvents having a boiling point of about 100°C or less at about 1000 to about 40 mbars;
  • the sulfurization occurs in the absence of or devoid of a base, such as sodium hydroxide, potassium hydroxide, or calcium hydroxide, which means less than 1 weight percent base during sulfurization, less than about 0.5 weight percent base, less than about 0.1 weight percent base, or even no base present during sulfurization.
  • sulfurization reaction temperatures may be about 0°C to about 250°C, about 0°C to about 230°C, about 0°C to about 120°C, about 40°C to about 120°C, or about 40°C to about 60°C or about 20°C to about 25°C (e.g., room temperatures) and/or other ranges within such endpoints as needed for a particular application.
  • the sulfur source may be combined with the selected alkyl phenol (optionally in the presence of a solvent) at temperatures ranging from at least about 0°C, at least about 20°C, at least about 40°C, at least about 60°C, at least about 80°C , at least about 100°C to less than 200°C, less than 180°C, less than about 160°C, less than about 140°C, less than about 120°C, or less than about 100°C, or less than about 80°C, or less than about 60°C, or less than about 40°C, or less than about 30°C .
  • the reaction product may be subject to short temperature hold up to about 200°C for 30 minutes to 60 minutes and/or vacuum strip/distillation at temperatures up to about 200°C for 30 minutes to 60 minutes as needed for a particular application.
  • the sulfurization process may be for up to about 8 hours, up to about 6 hours, up to about 4 hours, or less depending on the sulfur source (and preferably about 1 hour).
  • Solvents may be present during the reaction such as heptane, hexane, xylenes, glycols, and the like.
  • the reaction preferentially is driven to high levels of sulfurization, such as intermediate sulfurization ratios of about 500: 1 or greater, about 1000: 1 or greater, about 2400: 1 or greater, and in some approaches, about 5000: 1 or less.
  • a ratio of the sulfur source to the alkyl phenol reactant may be selected to achieve high levels of sulfurization when conducting sulfurization devoid of a base and, in some approaches, to also help maintain low levels of copper corrosion in the final product when used in a lubricant.
  • a mol ratio of the sulfur source (e.g., preferably the sulfur chloride blend) to the alkyl phenol or alkyl hydroxyaromatic reactant in the sulfurization reaction may be about 0.6 or greater and, in other approaches or embodiments, about 0.6 to about
  • a mol ratio of the sulfur source (e.g., preferably the sulfur chloride blend) to the alkyl phenol or alkylhydroxyaromatic reactant in the sulfurization reaction may range from at least about 0.6, at least about 0.62, at least about 0.65, at least about 0.66, at least about 0.67, at least about 0.68, at least about 0.69, at least about 0.7, at least about 0.72, at least about 0.74, at least about 0.76, at least about 0.78, or at least about 0.8 to less than about 3.5, less than about 3.0, less than about 2.5, less than about 2.0, less than about
  • Such mol ratio of the sulfur source (e.g., the sulfur chloride blend) to the alkyl phenol reactant helps aid in achieving the high sulfurization ratios of the present disclosure of about 500:1 or greater in the sulfurization reaction (and in other embodiments, about 500: 1 to about 5000: 1 or about 500: 1 to about 4000: 1 or about 500: 1 to about 3500: 1 or about 500: 1 to about 2000: 1), and in some approaches, allow later processing steps as described below to maintain or increase sulfurization ratios such that the final sulfurized and overbased alkyl phenate product maintains a high sulfurization ratio of sulfurized to unsulfurized phenate.
  • the sulfur source e.g., the sulfur chloride blend
  • such mol ratios herein of the sulfur source to the alkyl phenol may aid in achieving sulfurization ratios ranging from at least about 500: 1, at least about 600: 1, at least about 700: 1, at least about 800: 1, at least about 900: 1, at least about 1000: 1, at least about 1100: 1 or at least about 1200: 1 to about 5000: 1 or less, about 4500: 1 or less, about 4000:1 or less, about 3500: 1 or less, about 3000: 1 or less, about 2500: 1 or less, or about 2000: 1 or less.
  • the mol ratios and resultant sulfurization ratios herein may also include any other ranges within the noted endpoints as needed for a particular application.
  • the methods herein are such that any residual unsulfurized alkyl phenol need not be removed after the sulfurization and/or after any of the next process steps, such as the neutralizing, overbasing, and/or post processing.
  • the methods herein rather, minimize the generation and/or regeneration of any unsulfurized variants and, thus, avoid the need to remove such undesired components.
  • the sulfurized alkyl phenol or sulfurized alkylhydroxyaromatic compound with the already achieved high sulfurization ratio is then neutralized to provide a phenate or salt of the sulfurized alkyl phenol or alkylhydroxyaromatic compound.
  • neutralization is performed by contacting the sulfurized alkyl phenol with a metal base under reactive conditions, in some approaches, in a liquid hydrocarbon diluent with a promotor to provide a phenate or salt of the sulfurized alkylhydroxyaromatic compound.
  • the reaction can be conducted under an inert gas, such as nitrogen.
  • the metal base may be added either in a single addition or in multiple additions at various times during the reaction if needed for certain applications. Neutralization may occur via the exemplary reaction Scheme II shown below, but other reactions may proceed as needed depending on the application, materials, and conditions.
  • Exemplary metal base reactants include hydroxides, oxides, or alkoxides of a metal such as but not limited to an alkali metal salt derived from a metal base selected from an alkali hydroxide, alkali oxide or an alkali alkoxide, or an alkaline earth metal salt derived from a metal base selected from an alkaline earth hydroxide, alkaline earth oxide or alkaline earth alkoxide.
  • Suitable metal base compounds include lithium hydroxide, potassium hydroxide, sodium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide and aluminum hydroxide.
  • Other examples of metal basic compounds include lithium oxide, magnesium oxide, calcium oxide and barium oxide.
  • the alkaline earth metal base is lime or calcium hydroxide.
  • Additives may be borated as needed depending on the application and use.
  • Neutralization is conducted in the presence of a solvent or solvent system.
  • the solvent and/or system is one or more organic compounds having a boiling point of less than about 100 °C and, in other approaches, compounds having a boiling point less than about 100 °C at about 1000 to about 40 mbars of pressure (in other approaches, about 1000 to about 300 mbar).
  • Suitable examples include xylene, toluene, octane, butanol, heptane, methanol, pentanol, acetone, benzene, cyclohexane, cyclopentane, ethanol, hexane, pentane, propanol, water, or combinations thereof.
  • solvents include one or more of heptane, methanol, water, and combinations thereof and, in one approach, the solvent system for neutralization may be about 80 to about 95 weight percent heptane, about 2 to about 10 weight percent methanol, and about 5 to about 15 weight percent water based on the total amount of solvent.
  • the solvent may be a heptane/methanol system and include, in some embodiments, about 85 to about 95 percent heptane and about 5 to about 15 percent methanol.
  • the total amount of solvent for neutralization may be about 10 to about 80 weight percent based on the total weight of solvent, base, and alkyl phenol/phenate.
  • the source of alkali and/or alkaline earth metal may be added in excess as a slurry (such as, a pre-mixture of metal base and solvent) and then reacted with the sulfurized alkyl phenol compound.
  • copper corrosion from lubricants including sulfurized alkyl phenates of the present disclosure is about 50 percent to about 90 percent less than the copper corrosion achieved by a lubricant including a sulfurized alkyl phenate prepared with 100 percent sulfur monochloride (preferably, about 60 percent to about 85 percent less, more preferably about 70 to about 85 percent less, and more preferably about 75 to about 85 percent less).
  • the phosphorus content may be about 0.2 wt% or less, or about 0.1 wt% or less, or about 0.085 wt% or less, or about 0.08 wt% or less, or even about 0.06 wt% or less, about 0.055 wt% or less, or about 0.05 wt% or less. In one embodiment, the phosphorus content may be about 50 ppm to about 1000 ppm, or about 325 ppm to about 850 ppm.
  • the total sulfated ash content may be about 2 wt% or less, or about 1.5 wt% or less, or about 1.1 wt% or less, or about 1 wt% or less, or about 0.8 wt% or less, or about 0.5 wt% or less.
  • the sulfated ash content may be about 0.05 wt% to about 0.9 wt%, or about 0.1 wt% or about 0.2 wt% to about 0.45 wt%.
  • the sulfur content may be about 0.4 wt% or less, the phosphorus content may be about 0.08 wt% or less, and the sulfated ash is about 1 wt% or less.
  • the sulfur content may be about 0.3 wt% or less, the phosphorus content is about 0.05 wt% or less, and the sulfated ash may be about 0.8 wt% or less.
  • lubricants of the present description may be suitable to meet one or more industry specification requirements such as ILSAC GF-3, GF-4, GF-5, GF-6, PC-11, CF, CF-4, CHA, CK-4, FA-4, CJ-4, CI-4 Plus, CIA, API SG, SJ, SL, SM, SN, SN PLUS, ACEA Al/Bl, A2/B2, A3/B3, A3/B4, A5/B5, Cl, C2, C3, C4, C5, E4/E6/E7/E9, Euro 5/6,JASO DL-1, Low SAPS, Mid SAPS, or original equipment manufacturer specifications such as DexoslTM, Dexos2TM, MB-Approval 229.1, 229.3, 229.5, 229.51/229.31, 229.52, 229.6, 229.71, 226.5, 226.51, 228.0/.1, 228.2A3, 228.31, 228.5, 228.51, 228.61, VW 501.01, 502
  • Base Oil or Base Oil Blend The base oil used in the lubricating oil compositions herein may be oils of lubricating viscosity and selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
  • API American Petroleum Institute
  • the five base oil groups are generally set forth in Table 1 below:
  • Groups I, II, and III are mineral oil process stocks.
  • Group IV base oils contain true synthetic molecular species, which are produced by polymerization of olefinically unsaturated hydrocarbons.
  • Many Group V base oils are also true synthetic products and may include diesters, polyol esters, polyalkylene glycols, alkylated aromatics, polyphosphate esters, polyvinyl ethers, and/or polyphenyl ethers, and the like, but may also be naturally occurring oils, such as vegetable oils.
  • Group III base oils are derived from mineral oil, the rigorous processing that these fluids undergo causes their physical properties to be very similar to some true synthetics, such as PAOs. Therefore, oils derived from Group III base oils may be referred to as synthetic fluids in the industry.
  • Group 11+ may comprise high viscosity index Group II.
  • the base oil blend used in the disclosed lubricating oil composition may be a mineral oil, animal oil, vegetable oil, synthetic oil, synthetic oil blends, or mixtures thereof.
  • Suitable oils may be derived from hydrocracking, hydrogenation, hydrofinishing, unrefined, refined, and re-refined oils, and mixtures thereof.
  • Unrefined oils are those derived from a natural, mineral, or synthetic source without or with little further purification treatment. Refined oils are similar to the unrefined oils except that they have been treated in one or more purification steps, which may result in the improvement of one or more properties. Examples of suitable purification techniques are solvent extraction, secondary distillation, acid or base extraction, filtration, percolation, and the like. Oils refined to the quality of an edible may or may not be useful. Edible oils may also be called white oils. In some embodiments, lubricating oil compositions are free of edible or white oils. [00054] Re-refined oils are also known as reclaimed or reprocessed oils. These oils are obtained similarly to refined oils using the same or similar processes. Often these oils are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • Mineral oils may include oils obtained by drilling or from plants and animals or any mixtures thereof.
  • oils may include, but are not limited to, castor oil, lard oil, olive oil, peanut oil, corn oil, soybean oil, and linseed oil, as well as mineral lubricating oils, such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types.
  • mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types.
  • Such oils may be partially or fully hydrogenated, if desired. Oils derived from coal or shale may also be useful.
  • Useful synthetic lubricating oils may include hydrocarbon oils such as polymerized, oligomerized, or interpolymerized olefins (e.g., polybutylenes, polypropylenes, propyleneisobutylene copolymers); poly(l -hexenes), poly(l -octenes), trimers or oligomers of 1- decene, e.g., poly(l -decenes), such materials being often referred to as a-olefins, and mixtures thereof; alkyl-benzenes (e.g.
  • dodecylbenzenes dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2- ethylhexyl)-benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls); diphenyl alkanes, alkylated diphenyl alkanes, alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof or mixtures thereof.
  • Polyalphaolefins are typically hydrogenated materials.
  • Other synthetic lubricating oils include polyol esters, diesters, liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, and the diethyl ester of decane phosphonic acid), or polymeric tetrahydrofurans.
  • Synthetic oils may be produced by Fischer-Tropsch reactions and typically may be hydroisomerized Fischer-Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
  • the major amount of base oil included in a lubricating composition may be selected from the group consisting of Group I, Group II, a Group III, a Group IV, a Group V, and a combination of two or more of the foregoing, and wherein the major amount of base oil is other than base oils that arise from provision of additive components or viscosity index improvers in the composition.
  • the major amount of base oil included in a lubricating composition may be selected from the group consisting of Group II, a Group III, a Group IV, a Group V, and a combination of two or more of the foregoing, and wherein the major amount of base oil is other than base oils that arise from provision of additive components or viscosity index improvers in the composition.
  • the amount of the oil of lubricating viscosity present may be the balance remaining after subtracting from 100 wt% the sum of the amount of the performance additives inclusive of viscosity index improver(s) and/or pour point depressant(s) and/or other top treat additives.
  • the oil of lubricating viscosity that may be present in a finished fluid may be a major amount, such as greater than about 50 wt%, greater than about 60 wt%, greater than about 70 wt%, greater than about 80 wt%, greater than about 85 wt%, or greater than about 90 wt%.
  • the lubricating oil compositions herein may also include a number of optional additives combined with the optionally overbased and sulfurized alkyl phenate product as needed to meet performance standards. Those optional additives are described in the following paragraphs.
  • the lubricating oil composition may optionally include one or more dispersants or mixtures thereof.
  • Dispersants are often known as ashless-type dispersants because, prior to mixing in a lubricating oil composition, they do not contain ash-forming metals and they do not normally contribute any ash when added to a lubricant.
  • Ashless type dispersants are characterized by a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • Typical ashless dispersants include N-substituted long chain alkenyl succinimides.
  • N-substituted long chain alkenyl succinimides examples include polyisobutylene succinimide with the number average molecular weight of the polyisobutylene substituent being in the range about 350 to about 50,000, or to about 5,000, or to about 3,000, as measured by GPC.
  • Succinimide dispersants and their preparation are disclosed, for instance in U.S. Pat. No.
  • the alkenyl substituent may be prepared from polymerizable monomers containing about 2 to about 16, or about 2 to about 8, or about 2 to about 6 carbon atoms.
  • Succinimide dispersants are typically the imide formed from a polyamine, typically a poly(ethyleneamine).
  • Preferred amines are selected from polyamines and hydroxy amines. Examples of polyamines that may be used include, but are not limited to, diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), and higher homologues such as pentaethylamine hexamine (PEHA), and the like.
  • a suitable heavy polyamine is a mixture of polyalkylene-polyamines comprising small amounts of lower polyamine oligomers such as TEPA and PEHA (pentaethylene hexamine) but primarily oligomers with 6 or more nitrogen atoms, 2 or more primary amines per molecule, and more extensive branching than conventional polyamine mixtures.
  • a heavy polyamine preferably includes polyamine oligomers containing 7 or more nitrogens per molecule and with 2 or more primary amines per molecule.
  • the heavy polyamine comprises more than 28 wt. % (e g., >32 wt. %) total nitrogen and an equivalent weight of primary amine groups of 120- 160 grams per equivalent.
  • suitable polyamines are commonly known as PAM and contain a mixture of ethylene amines where TEPA and pentaethylene hexamine (PEHA) are the major part of the polyamine, usually less than about 80%.
  • PAM has 8.7-8.9 milliequivalents of primary amine per gram (an equivalent weight of 115 to 112 grams per equivalent of primary amine) and a total nitrogen content of about 33-34 wt. %. Heavier cuts of PAM oligomers with practically no TEPA and only very small amounts of PEHA but containing primarily oligomers with more than 6 nitrogens and more extensive branching, may produce dispersants with improved dispersancy.
  • the present disclosure further comprises at least one polyisobutylene succinimide dispersant derived from polyisobutylene with a number average molecular weight in the range about 350 to about 50,000, or to about 5000, or to about 3000, as determined by GPC.
  • the polyisobutylene succinimide may be used alone or in combination with other dispersants.
  • polyisobutylene when included, may have greater than 50 mol%, greater than 60 mol%, greater than 70 mol%, greater than 80 mol%, or greater than 90 mol% content of terminal double bonds.
  • PIB is also referred to as highly reactive PIB (“HR-PIB”).
  • HR-PIB having a number average molecular weight ranging from about 800 to about 5000, as determined by GPC, is suitable for use in embodiments of the present disclosure.
  • Conventional PIB typically has less than 50 mol%, less than 40 mol%, less than 30 mol%, less than 20 mol%, or less than 10 mol% content of terminal double bonds.
  • An HR-PIB having a number average molecular weight ranging from about 900 to about 3000 may be suitable, as determined by GPC.
  • Such HR-PIB is commercially available, or can be synthesized by the polymerization of isobutene in the presence of a non-chlorinated catalyst such as boron trifluoride, as described in US Patent No. 4,152,499 to Boerzel, et al. and U.S. Patent No. 5,739,355 to Gateau, et al.
  • HR-PIB may lead to higher conversion rates in the reaction, as well as lower amounts of sediment formation, due to increased reactivity.
  • a suitable method is described in U.S. Patent No. 7,897,696.
  • the present disclosure further comprises at least one dispersant derived from polyisobutylene succinic anhydride (“PIBSA”).
  • PIBSA polyisobutylene succinic anhydride
  • the PIBSA may have an average of between about 1.0 and about 2.0 succinic acid moieties per polymer.
  • the dispersant may be derived from a polyalphaolefin (PAO) succinic anhydride.
  • PAO polyalphaolefin
  • the dispersant may be derived from olefin maleic anhydride copolymer.
  • the dispersant may be described as a poly-PIBSA.
  • the dispersant may be derived from an anhydride which is grafted to an ethylenepropylene copolymer.
  • a suitable class of nitrogen-containing dispersants may be derived from olefin copolymers (OCP), more specifically, ethylene-propylene dispersants which may be grafted with maleic anhydride.
  • OCP olefin copolymers
  • a more complete list of nitrogen-containing compounds that can be reacted with the functionalized OCP are described in U.S. Patent Nos. 7,485,603; 7,786,057; 7,253,231; 6,107,257; and 5,075,383; and/or are commercially available.
  • a suitable class of dispersants may also be high molecular weight esters or half ester amides.
  • a suitable dispersant may also be post-treated by conventional methods by a reaction with any of a variety of agents. Among these are boron, urea, thiourea, dimercaptothiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbonsubstituted succinic anhydrides, maleic anhydride, nitriles, epoxides, carbonates, cyclic carbonates, hindered phenolic esters, and phosphorus compounds.
  • US 7,645,726; US 7,214,649; and US 8,048,831 are incorporated herein by reference in their entireties.
  • both the compounds may be post-treated, or further post-treatment, with a variety of post-treatments designed to improve or impart different properties.
  • post-treatments include those summarized in columns 27-29 of U.S. Pat. No. 5,241,003, hereby incorporated by reference.
  • Such treatments include, treatment with: Inorganic phosphorous acids or anhydrates (e.g., U.S. Pat. Nos.
  • Organic phosphorous compounds e.g., U.S. Pat. No. 3,502,677
  • Phosphorous pentasulfides Phosphorous pentasulfides
  • Boron compounds as already noted above (e.g., U.S. Pat. Nos. 3,178,663 and 4,652,387)
  • Carboxylic acid, polycarboxylic acids, anhydrides and/or acid halides e.g., U.S. Pat. Nos. 3,708,522 and 4,948,386
  • Epoxides polyepoxiates or thioexpoxides e.g., U.S. Pat. Nos.
  • Cyclic lactone e.g., U.S. Pat. Nos. 4,617,138; 4,645,515; 4,668,246; 4,963,275; and 4,971,711
  • Cyclic carbonate or thiocarbonate linear monocarbonate or polycarbonate, or chloroformate e.g., U.S. Pat. Nos. 4,612,132; 4,647,390; 4,648,886; 4,670,170
  • Nitrogen-containing carboxylic acid e.g., U.S. Pat. 4,971,598 and British Patent GB 2,140,811
  • Hydroxy-protected chlorodicarbonyloxy compound e.g., U.S. Pat. No.
  • Oxidizing agent e.g., U.S. Pat. No. 4,379,064
  • Combination of phosphorus pentasulfide and a polyalkylene polyamine e.g., U.S. Pat. No. 3,185,647;
  • the TBN of a suitable dispersant may be from about 10 to about 65 mg KOH/g dispersant, on an oil-free basis, which is comparable to a TBN of about 5 to about 30 mgKOH/g if measured on a dispersant sample containing about 50% diluent oil. TBN is measured by the method ofASTM D2896.
  • the optional dispersant additive may be a hydrocarbyl substituted succinamide or succinimide dispersant.
  • the hydrocarbyl substituted succinamide or succinimide dispersant may be derived from a hydrocarbyl substituted acylating agent reacted with a polyalkylene polyamine and wherein the hydrocarbyl substituent of the succinamide or the succinimide dispersant is a linear or branched hydrocarbyl group having a number average molecular weight of about 250 to about 5,000 as measured by GPC using polystyrene as a calibration reference.
  • the polyalkylene polyamine used to form the dispersant has the Formula wherein each R and R’, independently, is a divalent Cl to C6 alkylene linker, each Ri and R2, independently, is hydrogen, a Cl to C6 alkyl group, or together with the nitrogen atom to which they are attached form a 5- or 6-membered ring optionally fused with one or more aromatic or non-aromatic rings, and n is an integer from 0 to 8.
  • the polyalkylene polyamine is selected from the group consisting of a mixture of polyethylene polyamines having an average of 5 to 7 nitrogen atoms, tri ethylenetetramine, tetraethylenepentamine, and combinations thereof.
  • the dispersant if present, can be used in an amount sufficient to provide up to about 20 wt%, based upon the final weight of the lubricating oil composition.
  • Another amount of the dispersant that can be used may be about 0.1 wt% to about 15 wt%, or about 0.1 wt% to about 10 wt%, about 0.1 to 8 wt%, or about 1 wt% to about 10 wt%, or about 1 wt% to about 8 wt%, or about 1 wt% to about 6 wt%, based upon the final weight of the lubricating oil composition.
  • the lubricating oil composition utilizes a mixed dispersant system. A single type or a mixture of two or more types of dispersants in any desired ratio may be used.
  • Antioxidants The lubricating oil compositions herein also may optionally contain one or more antioxidants.
  • Antioxidant compounds are known and include for example, phenates, phenate sulfides, sulfurized olefins, phosphosulfurized terpenes, sulfurized esters, aromatic amines, alkylated diphenylamines (e.g., nonyl diphenylamine, di -nonyl diphenylamine, octyl diphenylamine, di-octyl diphenylamine), phenyl-alpha-naphthylamines, alkylated phenyl- alpha-naphthylamines, hindered non-aromatic amines, phenols, hindered phenols, oil-soluble molybdenum compounds, macromolecular antioxidants, or mixtures thereof. Antioxidant compounds may be used alone or in combination.
  • the hindered phenol antioxidant may contain a secondary butyl and/or a tertiary butyl group as a sterically hindering group.
  • the phenol group may be further substituted with a hydrocarbyl group and/or a bridging group linking to a second aromatic group.
  • Suitable hindered phenol antioxidants include 2,6-di-tert-butylphenol, 4-methyl-2,6-di-tert- butylphenol, 4-ethyl-2,6-di-tert-butylphenol, 4-propyl-2,6-di-tert-butylphenol or 4-butyl-2,6-di- tert-butylphenol, or 4-dodecyl-2,6-di-tert-butylphenol.
  • the hindered phenol antioxidant may be an ester and may include, e.g., IrganoxTM L-135 available from BASF or an addition product derived from 2,6-di-tert-butylphenol and an alkyl acrylate, wherein the alkyl group may contain about 1 to about 18, or about 2 to about 12, or about 2 to about 8, or about 2 to about 6, or about 4 carbon atoms.
  • Another commercially available hindered phenol antioxidant may be an ester and may include Ethan oxTM 4716 available from Albemarle Corporation.
  • the antioxidant composition also contains a molybdenum-containing antioxidant in addition to the phenolic and/or aminic antioxidants discussed above.
  • a molybdenum-containing antioxidant in addition to the phenolic and/or aminic antioxidants discussed above.
  • the ratio of phenolic to aminic to molybdenum-containing is (0 to 2) : (0 to 2) : (0 to 1).
  • the one or more antioxidant(s) may be present in ranges about 0 wt% to about 20 wt%, or about 0.1 wt% to about 10 wt%, or about 1 wt% to about 5 wt%, of the lubricating oil composition.
  • the lubricating oil compositions herein also may optionally contain one or more antiwear agents.
  • suitable antiwear agents include, but are not limited to, a metal thiophosphate; a metal dialkyldithiophosphate; a phosphoric acid ester or salt thereof; a phosphate ester(s); a phosphite; a phosphorus-containing carboxylic ester, ether, or amide; a sulfurized olefin; thiocarbamate-containing compounds including, thiocarbamate esters, alkylene-coupled thiocarbamates, and bis(S-alkyldithiocarbamyl)disulfides; and mixtures thereof.
  • a suitable antiwear agent may be a molybdenum dithiocarbamate.
  • the phosphorus containing antiwear agents are more fully described in European Patent 612 839.
  • the metal in the dialkyl dithio phosphate salts may be an alkali metal, alkaline earth metal, aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, or zinc.
  • a useful antiwear agent may be zinc dialkyldithiophosphate.
  • suitable antiwear agents include titanium compounds, tartrates, tartrimides, oil soluble amine salts of phosphorus compounds, sulfurized olefins, phosphites (such as dibutyl phosphite), phosphonates, thiocarbamate-containing compounds, such as thiocarbamate esters, thiocarbamate amides, thiocarbamic ethers, alkylene-coupled thiocarbamates, and bis(S-alkyldithiocarbamyl) disulfides.
  • the tartrate or tartrimide may contain alkyl-ester groups, where the sum of carbon atoms on the alkyl groups may be at least 8.
  • the antiwear agent may in one embodiment include a citrate.
  • the antiwear agent may be present in ranges including about 0 wt% to about 15 wt%, or about 0.01 wt% to about 10 wt%, or about 0.05 wt% to about 5 wt%, or about 0.1 wt% to about 3 wt% of the lubricating oil composition.
  • the lubricating oil compositions herein may optionally contain one or more boron-containing compounds.
  • boron-containing compounds include borate esters, borated fatty amines, borated epoxides, borated detergents, and borated dispersants, such as borated succinimide dispersants, as disclosed in U.S. Patent No. 5,883,057.
  • the boron-containing compound if present, can be used in an amount sufficient to provide up to about 8 wt%, about 0.01 wt% to about 7 wt%, about 0.05 wt% to about 5 wt%, or about 0.1 wt% to about 3 wt% of the lubricating oil composition.
  • the lubricating oil composition may optionally further comprise one or more neutral, low based, or overbased detergents, and mixtures thereof.
  • Suitable detergent substrates include phenates, sulfur containing phenates, sulfonates, calixarates, salixarates, salicylates, carboxylic acids, phosphorus acids, mono- and/or dithiophosphoric acids, alkyl phenols, sulfur coupled alkyl phenol compounds, or methylene bridged phenols. Suitable detergents and their methods of preparation are described in greater detail in numerous patent publications, including US 7,732,390 and references cited therein. [00095]
  • the detergent substrate may be salted with an alkali or alkaline earth metal such as, but not limited to, calcium, magnesium, potassium, sodium, lithium, barium, or mixtures thereof. In some embodiments, the detergent is free of barium.
  • a detergent may contain traces of other metals such as magnesium or calcium in amounts such as 50ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, or 10 ppm or less.
  • a suitable detergent may include alkali or alkaline earth metal salts of petroleum sulfonic acids and long chain mono- or di-alkylarylsulfonic acids with the aryl group being benzyl, tolyl, and xylyl.
  • suitable detergents include, but are not limited to, calcium phenates, calcium sulfur containing phenates, calcium sulfonates, calcium calixarates, calcium salixarates, calcium salicylates, calcium carboxylic acids, calcium phosphorus acids, calcium mono- and/or dithiophosphoric acids, calcium alkyl phenols, calcium sulfur coupled alkyl phenol compounds, calcium methylene bridged phenols, magnesium phenates, magnesium sulfur containing phenates, magnesium sulfonates, magnesium calixarates, magnesium salixarates, magnesium salicylates, magnesium carboxylic acids, magnesium phosphorus acids, magnesium mono- and/or di-thiophosphoric acids, magnesium alkyl phenols, magnesium sulfur coupled alkyl phenol compounds, magnesium methylene bridged phenols, sodium phenates, sodium sulfur containing phenates, sodium sulfonates, sodium calixarates, sodium salixarates, sodium salicylates, sodium carboxylic acids, sodium phosphorus acids, sodium
  • Overbased detergent additives are well known in the art and may be alkali or alkaline earth metal overbased detergent additives.
  • Such detergent additives may be prepared by reacting a metal oxide or metal hydroxide with a substrate and carbon dioxide gas.
  • the substrate is typically an acid, for example, an acid such as an aliphatic substituted sulfonic acid, an aliphatic substituted carboxylic acid, or an aliphatic substituted phenol.
  • overbased relates to metal salts, such as metal salts of sulfonates, carboxylates, and phenates, wherein the amount of metal present exceeds the stoichiometric amount.
  • Such salts may have a conversion level in excess of 100% (i.e., they may comprise more than 100% of the theoretical amount of metal needed to convert the acid to its “normal,” “neutral” salt).
  • metal ratio often abbreviated as MR, is used to designate the ratio of total chemical equivalents of metal in the overbased salt to chemical equivalents of the metal in a neutral salt according to known chemical reactivity and stoichiometry.
  • the metal ratio is one and in an overbased salt, MR, is greater than one.
  • overbased salts are commonly referred to as overbased, hyperbased, or superbased salts and may be salts of organic sulfur acids, carboxylic acids, or phenols.
  • An overbased detergent of the lubricating oil composition may have a total base number (TBN) of about 200 mg KOH/gram or greater, or as further examples, about 250 mg KOH/gram or greater, or about 350 mg KOH/gram or greater, or about 375 mg KOH/gram or greater, or about 400 mg KOH/gram or greater.
  • TBN total base number
  • the overbased calcium phenate detergents have a total base number of at least about 150 mg KOH/g, at least about 225 mg KOH/g, at least about 225 mg KOH/g to about 400 mg KOH/g, at least about 225 mg KOH/g to about 350 mg KOH/g or about 230 mg KOH/g to about 350 mg KOH/g, all as measured by the method of ASTM D-2896.
  • an inert diluent e.g., a process oil, usually a mineral oil
  • the total base number reflects the basicity of the overall composition including diluent, and any other materials (e.g., promoter, etc.) that may be contained in the detergent composition.
  • the overbased detergent may have a metal to substrate ratio of from 1.1 : 1, or from 2: 1, or from 4: 1, or from 5: 1, or from 7:1, or from 10: 1.
  • a detergent is effective at reducing or preventing rust in an engine or other automotive part such as a transmission or gear.
  • the detergent may be present in a lubricating composition at about 0 wt% to about 10 wt%, or about 0.1 wt% to about 8 wt%, or about 1 wt% to about 4 wt%, or greater than about 4 wt% to about 8 wt%.
  • the lubricating oil compositions herein also may optionally contain one or more extreme pressure agents.
  • Extreme Pressure (EP) agents that are soluble in the oil include sulfur- and chlorosulfur-containing EP agents, chlorinated hydrocarbon EP agents and phosphorus EP agents.
  • EP agents include chlorinated wax; organic sulfides and polysulfides such as dibenzyldisulfide, bis(chlorobenzyl) disulfide, dibutyl tetrasulfide, sulfurized methyl ester of oleic acid, sulfurized alkyl phenol, sulfurized dipentene, sulfurized terpene, and sulfurized Diels- Alder adducts; phosphosulfurized hydrocarbons such as the reaction product of phosphorus sulfide with turpentine or methyl oleate; phosphorus esters such as the dihydrocarbyl and trihydrocarbyl phosphites, e.g., dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentylphenyl phosphite; dipentylphenyl phosphite, tridecyl phosphi
  • Friction Modifiers may comprise metal containing and metal-free friction modifiers and may include, but are not limited to, imidazolines, amides, amines, succinimides, alkoxylated amines, alkoxylated ether amines, amine oxides, amidoamines, nitriles, betaines, quaternary amines, imines, amine salts, amino guanadine, alkanolamides, phosphonates, metal-containing compounds, glycerol esters, sulfurized fatty compounds and olefins, sunflower oil other naturally occurring plant or animal oils, dicarboxylic acid esters, esters or partial esters of a polyol and one or more aliphatic or aromatic carboxylic acids, and the like.
  • Suitable friction modifiers may contain hydrocarbyl groups that are selected from straight chain, branched chain, or aromatic hydrocarbyl groups or mixtures thereof, and may be saturated or unsaturated.
  • the hydrocarbyl groups may be composed of carbon and hydrogen or hetero atoms such as sulfur or oxygen.
  • the hydrocarbyl groups may range from about 12 to about 25 carbon atoms.
  • the friction modifier may be a long chain fatty acid ester.
  • the long chain fatty acid ester may be a mono-ester, or a diester, or a (tri)gly ceride.
  • the friction modifier may be a long chain fatty amide, a long chain fatty ester, a long chain fatty epoxide derivatives, or a long chain imidazoline.
  • a friction modifier may optionally be present in ranges such as about 0 wt% to about 10 wt%, or about 0.01 wt% to about 8 wt%, or about 0.1 wt% to about 4 wt%.
  • Molybdenum-containing component The lubricating oil compositions herein also may optionally contain one or more molybdenum-containing compounds.
  • An oil-soluble molybdenum compound may have the functional performance of an antiwear agent, an antioxidant, a friction modifier, or mixtures thereof.
  • An oil-soluble molybdenum compound may include molybdenum dithiocarbamates, molybdenum dialkyldithiophosphates, molybdenum dithiophosphinates, amine salts of molybdenum compounds, molybdenum xanthates, molybdenum thioxanthates, molybdenum sulfides, molybdenum carboxylates, molybdenum alkoxides, a trinuclear organo-molybdenum compound, and/or mixtures thereof.
  • the molybdenum sulfides include molybdenum disulfide.
  • the molybdenum disulfide may be in the form of a stable dispersion.
  • the oil-soluble molybdenum compound may be selected from the group consisting of molybdenum dithiocarbamates, molybdenum dialkyldithiophosphates, amine salts of molybdenum compounds, and mixtures thereof.
  • the oil-soluble molybdenum compound may be a molybdenum dithiocarbamate.
  • Suitable examples of molybdenum compounds which may be used include commercial materials sold under the trade names such as Molyvan 822TM, MolyvanTM A, Molyvan 2000TM and Molyvan 855TM from R. T.
  • Vanderbilt Co., Ltd. and Sakura-LubeTM S- 165, S-200, S-300, S-310G, S-525, S-600, S-700, and S-710 available from Adeka Corporation, and mixtures thereof.
  • Suitable molybdenum components are described in US 5,650,381; US RE 37,363 El; US RE 38,929 El; and US RE 40,595 El, incorporated herein by reference in their entireties.
  • the molybdenum compound may be an acidic molybdenum compound. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOC14, MoO2Br2, Mo2O3C16, molybdenum tri oxide or similar acidic molybdenum compounds.
  • the compositions can be provided with molybdenum by molybdenum/ sulfur complexes of basic nitrogen compounds as described, for example, in U.S. Pat. Nos.
  • organo-molybdenum compounds are trinuclear molybdenum compounds, such as those of the formula Mo3SkLnQz and mixtures thereof, wherein S represents sulfur, L represents independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values.
  • S sulfur
  • L represents independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil
  • n is from 1 to 4
  • k varies from 4 through 7
  • Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers
  • At least 21 total carbon atoms may be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms. Additional suitable molybdenum compounds are described in U.S. Pat. No. 6,723,685, herein incorporated by reference in its entirety.
  • the oil-soluble molybdenum compound may be present in an amount sufficient to provide about 0.5 ppm to about 2000 ppm, about 1 ppm to about 700 ppm, about 1 ppm to about 550 ppm, about 5 ppm to about 300 ppm, or about 20 ppm to about 250 ppm of molybdenum.
  • the oil-soluble compound may be a transition metal containing compound or a metalloid.
  • the transition metals may include, but are not limited to, titanium, vanadium, copper, zinc, zirconium, molybdenum, tantalum, tungsten, and the like.
  • Suitable metalloids include, but are not limited to, boron, silicon, antimony, tellurium, and the like.
  • an oil-soluble transition metal-containing compound may function as antiwear agents, friction modifiers, antioxidants, deposit control additives, or more than one of these functions.
  • the oil-soluble transition metal-containing compound may be an oil-soluble titanium compound, such as a titanium (IV) alkoxide.
  • titanium containing compounds that may be used in, or which may be used for preparation of the oils-soluble materials of, the disclosed technology are various Ti (IV) compounds such as titanium (IV) oxide; titanium (IV) sulfide; titanium (IV) nitrate; titanium (IV) alkoxides such as titanium methoxide, titanium ethoxide, titanium propoxide, titanium isopropoxide, titanium butoxide, titanium 2-ethylhexoxide; and other titanium compounds or complexes including but not limited to titanium phenates; titanium carboxylates such as titanium (IV) 2-ethyl-l -3- hexanedioate or titanium citrate or titanium oleate; and titanium (IV) (triethanolaminato)isopropoxide.
  • Ti (IV) compounds such as titanium (IV) oxide; titanium (IV) sulfide; titanium (IV) nitrate; titanium (IV) alkoxides such as titanium methoxide, titanium ethoxide, titanium propoxide
  • titanium phosphates such as titanium dithiophosphates (e.g., dialkyldithiophosphates) and titanium sulfonates (e.g., alkylbenzenesulfonates), or, generally, the reaction product of titanium compounds with various acid materials to form salts, such as oilsoluble salts.
  • Titanium compounds can thus be derived from, among others, organic acids, alcohols, and glycols.
  • Ti compounds may also exist in dimeric or oligomeric form, containing Ti-O-Ti structures.
  • Such titanium materials are commercially available or can be readily prepared by appropriate synthesis techniques which will be apparent to the person skilled in the art. They may exist at room temperature as a solid or a liquid, depending on the particular compound. They may also be provided in a solution form in an appropriate inert solvent.
  • the titanium can be supplied as a Ti -modified dispersant, such as a succinimide dispersant.
  • a Ti -modified dispersant such as a succinimide dispersant.
  • Such materials may be prepared by forming a titanium mixed anhydride between a titanium alkoxide and a hydrocarbyl -substituted succinic anhydride, such as an alkenyl- (or alkyl) succinic anhydride.
  • the resulting titanate-succinate intermediate may be used directly or it may be reacted with any of a number of materials, such as (a) a polyamine- based succinimide/amide dispersant having free, condensable --NH functionality; (b) the components of a polyamine-based succinimide/amide dispersant, i.e., an alkenyl- (or alkyl-) succinic anhydride and a polyamine, (c) a hydroxy-containing polyester dispersant prepared by the reaction of a substituted succinic anhydride with a polyol, aminoalcohol, polyamine, or mixtures thereof.
  • a polyamine-based succinimide/amide dispersant having free, condensable --NH functionality
  • the components of a polyamine-based succinimide/amide dispersant i.e., an alkenyl- (or alkyl-) succinic anhydride and a polyamine
  • a hydroxy-containing polyester dispersant prepared by
  • the titanate-succinate intermediate may be reacted with other agents such as alcohols, aminoalcohols, ether alcohols, polyether alcohols or polyols, or fatty acids, and the product thereof either used directly to impart Ti to a lubricant, or else further reacted with the succinic dispersants as described above.
  • succinic dispersants as described above.
  • 1 part (by mole) of tetraisopropyl titanate may be reacted with about 2 parts (by mole) of a polyisobutene-substituted succinic anhydride at 140-150° C for 5 to 6 hours to provide a titanium modified dispersant or intermediate.
  • the resulting material (30 g) may be further reacted with a succinimide dispersant from polyisobutene-substituted succinic anhydride and a polyethylenepolyamine mixture (127 grams + diluent oil) at 150° C for 1.5 hours, to produce a titanium-modified succinimide dispersant.
  • a succinimide dispersant from polyisobutene-substituted succinic anhydride and a polyethylenepolyamine mixture (127 grams + diluent oil) at 150° C for 1.5 hours, to produce a titanium-modified succinimide dispersant.
  • titanium containing compound may be a reaction product of titanium alkoxide and Ce to C25 carboxylic acid.
  • the reaction product may be represented by the following formula:
  • Suitable carboxylic acids may include, but are not limited to caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, oleic acid, erucic acid, linoleic acid, linolenic acid, cyclohexanecarboxylic acid, phenylacetic acid, benzoic acid, neodecanoic acid, and the like.
  • the oil soluble titanium compound may be present in the lubricating oil composition in an amount to provide from 0 to 3000 ppm titanium by weight or 25 to about 1500 ppm titanium by weight or about 35 ppm to 500 ppm titanium by weight or about 50 ppm to about 300 ppm.
  • Viscosity Index Improvers The lubricating oil compositions herein also may optionally contain one or more viscosity index improvers. Suitable viscosity index improvers may include polyolefins, olefin copolymers, ethyl ene/propylene copolymers, polyisobutenes, hydrogenated styrene-isoprene polymers, styrene/maleic ester copolymers, hydrogenated styrene/butadiene copolymers, hydrogenated isoprene polymers, alpha-olefin maleic anhydride copolymers, polymethacrylates, polyacrylates, polyalkyl styrenes, hydrogenated alkenyl aryl conjugated diene copolymers, or mixtures thereof. Viscosity index improvers may include star polymers and suitable examples are described in US Publication No. 20120101017A1.
  • the lubricating oil compositions herein also may optionally contain one or more dispersant viscosity index improvers in addition to a viscosity index improver or in lieu of a viscosity index improver.
  • Suitable viscosity index improvers may include functionalized polyolefins, for example, ethylene-propylene copolymers that have been functionalized with the reaction product of an acylating agent (such as maleic anhydride) and an amine; polymethacrylates functionalized with an amine or esterified maleic anhydride-styrene copolymers reacted with an amine.
  • the total amount of viscosity index improver and/or dispersant viscosity index improver may be about 0 wt% to about 20 wt%, about 0.1 wt% to about 15 wt%, about 0.1 wt% to about 12 wt%, or about 0.5 wt% to about 10 wt%, of the lubricating oil composition.
  • additives may be selected to perform one or more functions required of a lubricating fluid. Further, one or more of the mentioned additives may be multi-functional and provide functions in addition to or other than the function prescribed herein.
  • a lubricating oil composition according to the present disclosure may optionally comprise other performance additives.
  • the other performance additives may be in addition to specified additives of the present disclosure and/or may comprise one or more of metal deactivators, viscosity index improvers, detergents, ashless TBN boosters, friction modifiers, antiwear agents, corrosion inhibitors, rust inhibitors, dispersants, dispersant viscosity index improvers, extreme pressure agents, antioxidants, foam inhibitors, demulsifiers, emulsifiers, pour point depressants, seal swelling agents and mixtures thereof.
  • fully-formulated lubricating oil will contain one or more of these performance additives.
  • Suitable metal deactivators may include derivatives of benzotri azoles (typically tolyltriazole), dimercaptothiadiazole derivatives, 1,2,4-triazoles, benzimidazoles, 2- alkyldithiobenzimidazoles, or 2-alkyldithiobenzothiazoles; foam inhibitors including copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers; pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, polyacrylates or polyacrylamides.
  • benzotri azoles typically tolyltriazole
  • dimercaptothiadiazole derivatives 1,2,4-triazoles
  • benzimidazoles 2- alkyldithiobenzimidazoles
  • Suitable foam inhibitors include silicon-based compounds, such as siloxane.
  • Suitable pour point depressants may include a polymethylmethacrylates or mixtures thereof. Pour point depressants may be present in an amount sufficient to provide from about 0 wt% to about 1 wt%, about 0.01 wt% to about 0.5 wt%, or about 0.02 wt% to about 0.04 wt% based upon the final weight of the lubricating oil composition.
  • Suitable rust inhibitors may be a single compound or a mixture of compounds having the property of inhibiting corrosion of ferrous metal surfaces.
  • Non-limiting examples of rust inhibitors useful herein include oil-soluble high molecular weight organic acids, such as 2- ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, and cerotic acid, as well as oil-soluble polycarboxylic acids including dimer and trimer acids, such as those produced from tall oil fatty acids, oleic acid, and linoleic acid.
  • oil-soluble high molecular weight organic acids such as 2- ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, and cerotic acid
  • oil-soluble polycarboxylic acids including dimer and trimer acids, such as those produced from tall oil fatty acids, oleic acid, and linoleic acid.
  • Suitable corrosion inhibitors include long-chain alpha, omega-dicarboxylic acids in the molecular weight range of about 600 to about 3000 and alkenylsuccinic acids in which the alkenyl group contains about 10 or more carbon atoms such as, tetrapropenylsuccinic acid, tetradecenylsuccinic acid, and hexadecenylsuccinic acid.
  • alkenylsuccinic acids in which the alkenyl group contains about 10 or more carbon atoms such as, tetrapropenylsuccinic acid, tetradecenylsuccinic acid, and hexadecenylsuccinic acid.
  • Another useful type of acidic corrosion inhibitors are the half esters of alkenyl succinic acids having about 8 to about 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols. The corresponding half amides of such alkenyl succinic acids
  • the rust inhibitor if present, can be used in an amount sufficient to provide about 0 wt% to about 5 wt%, about 0.01 wt% to about 3 wt%, about 0.1 wt% to about 2 wt%, based upon the final weight of the lubricating oil composition.
  • a suitable lubricant including the neutral to overbased and sulfurized alkyl phenate product herein may include additive components in the ranges listed in the following table.
  • the percentages of each component above represent the weight percent of each component, based upon the weight of the final lubricating oil composition.
  • the remainder of the lubricating oil composition consists of one or more base oils.
  • Additives used in formulating the compositions described herein may be blended into the base oil individually or in various subcombinations. However, it may be suitable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent).
  • Fully formulated lubricants conventionally contain an additive package, referred to herein as a dispersant/inhibitor package or DI package, that will supply the characteristics that are required in the formulation.
  • oil composition lubrication composition
  • lubricating oil composition lubricating oil
  • lubricant composition lubricating composition
  • fully formulated lubricant composition referring to the finished lubrication product comprising a major amount of a base oil plus a minor amount of an additive composition.
  • additive package As used herein, the terms “additive package,” “additive concentrate,” and “additive composition” are considered synonymous, fully interchangeable terminology referring the portion of the lubricating oil composition excluding the major amount of base oil stock mixture.
  • overbased relates to metal salts, such as metal salts of sulfonates, carboxylates, salicylates, and/or phenates, wherein the amount of metal present exceeds the stoichiometric amount.
  • Such salts may have a conversion level in excess of 100% (i.e., they may comprise more than 100% of the theoretical amount of metal needed to convert the acid to its “normal,” “neutral” salt).
  • metal ratio is used to designate the ratio of total chemical equivalents of metal in the overbased salt to chemical equivalents of the metal in a neutral salt according to known chemical reactivity and stoichiometry.
  • the metal ratio is one and in an overbased salt, MR, is greater than one.
  • They are commonly referred to as overbased, hyperbased, or superbased salts and may be salts of organic sulfur acids, carboxylic acids, salicylates, sulfonates, and/or phenols.
  • alkaline earth metal relates to calcium, barium, magnesium, and strontium, and the term “alkali metal” refers to lithium, sodium, potassium, rubidium, and cesium.
  • Each hydrocarbyl group is independently selected from hydrocarbon substituents, and substituted hydrocarbon substituents containing one or more of halo groups, hydroxyl groups, alkoxy groups, mercapto groups, nitro groups, nitroso groups, amino groups, pyridyl groups, furyl groups, imidazolyl groups, oxygen and nitrogen, and wherein no more than two non-hydrocarbon substituents are present for every ten carbon atoms in the hydrocarbyl group.
  • hydrocarbylene substituent or “hydrocarbylene group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group that is directly attached at two locations of the molecule to the remainder of the molecule by a carbon atom and having predominantly hydrocarbon character.
  • Each hydrocarbylene group is independently selected from divalent hydrocarbon substituents, and substituted divalent hydrocarbon substituents containing halo groups, alkyl groups, aryl groups, alkylaryl groups, arylalkyl groups, hydroxyl groups, alkoxy groups, mercapto groups, nitro groups, nitroso groups, amino groups, pyridyl groups, furyl groups, imidazolyl groups, oxygen and nitrogen, and wherein no more than two non-hydrocarbon substituents is present for every ten carbon atoms in the hydrocarbylene group.
  • percent by weight means the percentage the recited component represents to the weight of the entire composition.
  • percent by weight means the percentage the recited component represents to the weight of the entire composition.
  • the terms “soluble,” “oil-soluble,” or “dispersible” used herein may, but does not necessarily, indicate that the compounds or additives are soluble, dissolvable, miscible, or capable of being suspended in the oil in all proportions. The foregoing terms do mean, however, that they are, for instance, soluble, suspendable, dissolvable, or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
  • TBN Total Base Number in mg KOH/g as measured by the method of ASTM D2896.
  • lime refers to, for example, calcium hydroxide, calcium oxide, and the like compounds, also known as slaked lime or hydrated lime.
  • alkyl refers to straight, branched, cyclic, and/or substituted saturated chain moi eties of from about 1 to about 100 carbon atoms.
  • alkenyl refers to straight, branched, cyclic, and/or substituted unsaturated chain moieties of from about 3 to about 10 carbon atoms.
  • aryl refers to single and multi-ring aromatic compounds that may include alkyl, alkenyl, alkylaryl, amino, hydroxyl, alkoxy, halo substituents, and/or heteroatoms including, but not limited to, nitrogen, oxygen, and sulfur.
  • sulfurization ratio is a weight ratio of sulfurized alkyl phenate to unsulfurized alkyl phenate/unsulfurized alkyl phenol.
  • the methods herein are effective to form and maintain alkyl phenate additives with high sulfurization ratios.
  • unsulfurized alkyl phenate or a residual unsulfurized alkyl phenate both the phenate and phenol forms of the compound are contemplated because the phenate form could readily be acidified to the phenol.
  • the molecular weight for any embodiment herein may be determined with a gel permeation chromatography (GPC) instrument obtained from Waters or the like instrument and the data processed with Waters Empower Software or the like software.
  • the GPC instrument may be equipped with a Waters Separations Module and Waters Refractive Index detector (or the like optional equipment).
  • the GPC operating conditions may include a guard column, 4 Agilent PLgel columns (length of 300x7.5 mm; particle size of 5 p, and pore size ranging from 100- 10000 A) with the column temperature at about 40 °C.
  • Un-stabilized HPLC grade tetrahydrofuran (THF) may be used as solvent, at a flow rate of 1.0 mL/min.
  • the GPC instrument may be calibrated with commercially available polystyrene (PS) standards having a narrow molecular weight distribution ranging from 500 - 380,000 g/mol.
  • PS polystyrene
  • the calibration curve can be extrapolated for samples having a mass less than 500 g/mol.
  • Samples and PS standards can be in dissolved in THF and prepared at concentration of 0.1 to 0.5 wt. % and used without filtration.
  • GPC measurements are also described in US 5,266,223, which is incorporated herein by reference.
  • the GPC method additionally provides molecular weight distribution information; see, for example, W. W. Yau, J. J. Kirkland and D. D. Bly, “Modem Size Exclusion Liquid Chromatography”, John Wiley and Sons, New York, 1979, also incorporated herein by reference.
  • the concentration of unsulfurized alkyl phenate was determined, for instance and as described in US 8,933,022 B2, by reverse phase High Performance Liquid Chromatography (HPLC), such as when levels of unsulfurized alkyl phenate are at least about 0.3 weight percent or greater.
  • HPLC High Performance Liquid Chromatography
  • samples were prepared by weighing about 80 to 120 mg into a 10 ml volumetric flask, diluting to the level mark with methylene chloride, and mixing until the sample is fully dissolved.
  • the HPLC system used in the HPLC method included a HPLC pump, a thermostatted HPLC column compartment, HPLC fluorescence detector, and PC-based chromatography data acquisition system.
  • An exemplary system is an Agilent 1200 HPLC with ChemStation software or equivalent.
  • the HPLC column was a Phenomenex Luna C8(2) 150x4.6 mm 5 pm 100 A or equivalent
  • the area of the single largest peak of the unsulfurized alkyl phenate was measured, and this area was used to determine the concentration of the total unsulfurized alkyl phenate.
  • the area of the chosen peak is compared to a calibration curve to determine the weight percent of the unsulfurized alkyl phenate from which the amounts of sulfurized alkyl phenate can be determined.
  • the methods above are not generally sensitive enough to measure such low levels of unsulfurized alkyl phenate/alkyl phenol. Rather, the measurement was performed consistent to the above method but modified using a sample having a target phenate concentration of 5 mg/ml and as follows using liquid chromatography-mass spectrometry (LC-MS) using single quad or triple quad MS or equivalent via an Agilent MS 6420 QQQ equipped with and Agilent MSD XT equipped with Agilent 1260 LC Column, such as a Supelco Ascentis Express RP Amide 2.7u, 100mm x 2. ImmID column or equivalent equipment.
  • LC-MS liquid chromatography-mass spectrometry
  • the following system settings were used in the analysis: column temperature 45C, flow rate of 0.3 ml/min, injection volume of 3 pl, and run time of 22 minutes.
  • the MS system setting and conditions are as follows: ion source: ESI negative, mode SIM, gas temp of 300C, gas flow 13 1/min, nebulizer 35 psi, capillary 3000 (v), fragmentor of 135, and peak width of 0.07.
  • the percentage of unsulfurized alkyl phenol/alkyl phenate was determined using a MassHunter Quant Program or equivalent to generate a calibration curve and then to calculate the percent of unsulfurized alkyl phenol/phenate in the sample.
  • Example 1 and Example 3 therein describes sulfurization, neutralization, and overbasing of a tetrapropenylphenol with methanol and xylene, but such methods could only achieve a sulfurization ratio of 262:1 (i.e., residual unsulfurized TPP of 0.38).
  • step 1 was sulfurization of tetrapropenylphenol as follows: into a 4 liter round flask was charged 1620 g of tetrapropenyl phenol (available from Chevron Oronite Company LLC) at room temperature. The tetrapropenyl phenol was heated to 110°C in 30 minutes. At 60°C, 14 g of a 50 wt. % potassium hydroxide aqueous solution was added under agitation.
  • sulphur flakes i.e., elemental sulfur
  • the reaction temperature was then increased to 180°C in 30 minutes and the pressure was slowly decreased to 260 mmHg to facilitate the H2S release.
  • the H2S gas formed was trapped in concentrated potassium hydroxide solution located before the vacuum pump.
  • the reaction conditions were held for 2 hours and 45 minutes.
  • the pressure was the further reduced to 50 mmHg in for 15 minutes and held under those conditions for another 3 hours.
  • the sulfurized alkylphenol reaction product was allowed to cool down.
  • the ‘002 patent describes that the obtained sulfurized alkylphenol had the following analysis: sulfur of 6.85 percent, potassium of 2646 ppm, a viscosity at 100°C of 65.4 mm2/s, and TPP (that is, unreacted tetrapropenyl phenol and its calcium salt) of 26.5 percent.
  • Example 1 of the ‘002 patent further described Step 2 that was the distillation of sulfurized alkylphenol from Step 1 as follows: the sulfurized alkylphenol reaction product obtained in step 1 was preheated to about 140°C before being fed to a continuous 0.0385 m 2 wiped film evaporator at roughly 400 g/hour. The temperature of the evaporator was maintained at around 210°C and the pressure around 1.5 mbar.
  • Example 3 of the ‘002 patent neutralizing, overbasing, and post processing of the product from the ‘002 patent Example 1 was described using methanol and xylene as follows: 243.2 g hydrated lime was added into a 5 -liter double jacket glass reactor with 243.2 g of methanol and 876 g of xylene.
  • Example 3 of the ‘002 patent then describes that the resulting product was degassed over 4 hours at 150°C, and that the resulting product included 9.56 percent calcium, 4.71 percent sulfur, potassium of 1876 ppm, a kinematic viscosity at 100°C of 410.2 cSt, a TBN of 273 mg KOH/g and a residual content of unsulfurized tetrapropenylphenol (TPP) was reported as 0.38%, which is only a sulfurization ratio of 262: 1.
  • US 8,933,002 further describes that the obtained product was degassed over 4 hours at 150° C under air and that the product had the following analysis: 3.17% calcium, 4.86% sulfur, K: 1827 ppm, a kinematic viscosity at 100° C of 80.8 cSt, a TBN of 89 mg KOH/g and an unsulfurized tetrapropenylphenol (TPP) content was reported as 0.56%, which was a sulfurization ratio of only 178:1.
  • TPP unsulfurized tetrapropenylphenol
  • a tetrapropylene calcium phenate composition having a TBN of 118 mgKOH/g, about 4.26 weight percent calcium, and 1.8 weight percent of unsulfurized tetrapropylene phenol/phenate obtained from a catalyzed sulfur monochloride was overbased at 165°C for 3 hours and then vacuum distilled for 1 hour at 200°C. After overbasing and distillation, the product had a TBN of 314 mgKOH/g, but now had 4.4 weight percent of the unsulfurized tetrapropylene phenate/phenol.
  • Example 1 therein describes a sulfurized phenate product, but such method, when tested using the measurement methods of the present application, only achieves residual unsulfurized alkyl phenol of about 0.3 to about 0.5 weight percent and, thus, only achieve a sulfurization ratio of about 300:1.
  • Example 1 of the ‘411 patent utilized sulfur dichloride from Sigma Aldrich with 80 weight percent of sulfur dichloride and 20 percent of impurities including sulfur monochloride
  • Example 1 of US 4,973,411 was duplicated as follows: a charge of about 192 parts of dodecylphenol by weight was added into a 3 -liter four neck reaction flask along with about 840 parts of isooctane or heptane. Then, nitrogen gas was bubbled through the mixture at a rate of about 400 ml/min. Next, about 51 parts of the above-described sulfur dichloride (80% SCL and 20% S2CI2) was added via an addition funnel to keep the reaction temperature close to room temperature. The reactants were stirred for about 5 minutes and then the reaction was heated to about 80°C for half an hour. Then, the reactants were cooled to about 45°C.
  • sulfur dichloride 80% SCL and 20% S2CI2
  • the tetrapropylene phenol was charged to a kettle and the sulfur monochloride added dropwise at about 100°C, thereafter the temperature was increased to about 180°C and held for about 1 hour, then increased to about 190°C and held for about 1 hour, after which a vacuum strip was performed at about 200°C for about 1 hour, the mixture was then cooled to about 150°C, and about 252 grams of process oil added. After sulfurization, the intermediate sulfurized product had a sulfurization ratio of about 499: 1.
  • Each sulfurized tetrapropylene phenol SI, S2, or S3 was then neutralized with calcium oxide in the presence of an ammonium sulfonate composition, a solvent system, and process oil as set forth in Table 4.
  • the neutralized composition was then overbased in the solvent system by treatment with gaseous carbon dioxide at about 208 seem as set forth in Tables 5 and 6.
  • Table 3 provides the characterization of the neutralized and overbased product.
  • Unsulfunzed alkyl phenol refers to both unsulfurized alkyl phenate and any unsulfurized alkyl phenol in the product.
  • Example 1 of US 8,933,002 B2 for the sulfurization of tetrapropenylphenol.
  • Sulfurization in Step 1 of Example 1 of the ‘002 patent was followed and the resulting intermediate product had 6.88 percent sulfur, a KV100 of 56.8 mm 2 /s, potassium of 1958 ppm, and an unsulfurized tetrapropenylphenol content of 30.4 percent.
  • Example 2 The duplicated sulfurized alkylphenol from Example 2 above was then neutralized and overbased consistent with Example 3 of US 8,933,002 B2 except the solvent was heptane and methanol and the neutralization, overbasing, and post processing was conducted at low temperatures not to exceed about 100°C.
  • the solvent mixture for this Example was about 90% heptane and about 10% methanol.
  • the crude product of Example 2 above was centrifuged at temperatures not to exceed 100°C and then the product was degassed at temperatures not to exceed 100°C to form the final sulfurized product having the following: 4.24% sulfur, a KV100 of 298.8 mm 2 /s, potassium of 1048 ppm, an unsulfurized alkylphenol content of less than 0.03% (that is, undetectable amounts or a sulfurization ratio of 3333: 1 or higher), a TBN of 270.4 mgKOH/g, and a calcium content of 10.52 percent.
  • Table 7 0.66 Predicted to be about 0.05
  • Various sulfurized compounds suitable for a lubricating composition of an engine crankcase were prepared as follows: about 21 grams of tetrapropylene phenol and about 7 grams of process oil were dissolved into about 50 g of heptane and added to a three neck round bottom flask fitted with a condenser and a nitrogen sweep. Next, about 5.9 grams of a sulfur chloride blend (from Table 8 below) including sulfur dichloride (SCh) and sulfur monochloride (S2CI2) was slowly added to the mixture in the flask at room temperature (about 20 to about 25°C). The molar ratio of the sulfur chloride blend to the tetrapropylene phenol of the compounds in this Example was about 0.65 : 1.
  • the sulfurized tetrapropylene phenol was neutralized as follows: about 21 grams of the sulfurized tetrapropylene phenol was added along with about 4.1 grams calcium hydroxide, about 10.6 grams of an API Group II base oil, about 45 grams heptane, and about 3.5 grams alkyl sulfonic acid (molecular weight of about 500) to a second three neck round bottom flask fitted with a condenser, a nitrogen blanket, and a heating mantle. The mixture in the second flask was slowly stirred at room temperature and about 5 grams methanol was added. The mixture was then heated to reflux at about 64°C for about 3 hours.
  • the resultant mixture was then filtered, and the solvent removed to form a neutral sulfurized phenate product.
  • the resultant neutral sulfurized phenate product was evaluated for presence of residual organic chlorides using ASTM D4929 by X-ray fluorescence (XRF) spectrometry, residual unsulfurized tetrapropylene phenol/phenate as described in the above Examples, and copper corrosion as a fully formulated crankcase lubricant pursuant to D6594. Results are also provided in Table 8 below.
  • ⁇ Percent copper corrosion improvement was relative to sample F made using 100% sulfur monochloride
  • percent copper corrosion improvement of Sample A was 100-((65ppm/371ppm)*100) or 82.5%
  • sample A had a low level of unsulfurized alkyl phenate and low copper corrosion
  • Sample A had a high level of residual chloride, which is undesired in finished lubricants.
  • Samples E and F had low levels of residual chloride and low levels of unsulfurized alkyl phenate, these samples had unacceptably high copper corrosion when used in a fully formulated lubricant.
  • each range disclosed herein is to be interpreted as a disclosure of each specific value within the disclosed range that has the same number of significant digits.
  • a range from 1 to 4 is to be interpreted as an express disclosure of the values 1, 2, 3 and 4 as well as any range of such values.
  • each lower limit of each range disclosed herein is to be interpreted as disclosed in combination with each upper limit of each range and each specific value within each range disclosed herein for the same component, compounds, substituent or parameter.
  • this disclosure to be interpreted as a disclosure of all ranges derived by combining each lower limit of each range with each upper limit of each range or with each specific value within each range, or by combining each upper limit of each range with each specific value within each range. That is, it is also further understood that any range between the endpoint values within the broad range is also discussed herein.
  • a range from 1 to 4 also means a range from 1 to 3, 1 to 2, 2 to 4, 2 to 3, and so forth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

La présente divulgation concerne un procédé de préparation d'un produit phénate d'alkyle sulfuré pour obtenir un rapport de sulfuration élevé de phénate d'alkyle sulfuré à un phénate/phénol d'alkyle non sulfuré dans le contexte d'un additif neutralisé et éventuellement surbasique. Le produit de phénate d'alkyle sulfuré est obtenu par sulfuration d'un phénol d'alkyle avec un mélange de chlorure de soufre qui comprend environ 40 à environ 75 pour cent en poids de dichlorure de soufre.
PCT/US2024/051881 2023-10-25 2024-10-18 Additifs à sulfuration élevée pour compositions d'huile lubrifiante WO2025090369A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18/494,466 2023-10-25
US18/494,466 US12270003B2 (en) 2022-04-27 2023-10-25 Additives with high sulfurization for lubricating oil compositions

Publications (1)

Publication Number Publication Date
WO2025090369A1 true WO2025090369A1 (fr) 2025-05-01

Family

ID=93376421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2024/051881 WO2025090369A1 (fr) 2023-10-25 2024-10-18 Additifs à sulfuration élevée pour compositions d'huile lubrifiante

Country Status (1)

Country Link
WO (1) WO2025090369A1 (fr)

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178663A (en) 1961-06-26 1965-04-13 Bendix Corp Single speed and multispeed unitary synchro structure
US3185647A (en) 1962-09-28 1965-05-25 California Research Corp Lubricant composition
US3189544A (en) 1962-12-19 1965-06-15 Shell Oil Co Non-ash-containing lubricating oil composition
US3256185A (en) 1961-06-12 1966-06-14 Lubrizol Corp Lubricant containing acylated aminecarbon disulfide product
US3278550A (en) 1959-03-30 1966-10-11 Lubrizol Corp Reaction products of a hydrocarbonsubstituted succinic acid-producing compound, an amine and an alkenyl cyanide
US3312619A (en) 1963-10-14 1967-04-04 Monsanto Co 2-substituted imidazolidines and their lubricant compositions
GB1065595A (en) 1963-07-22 1967-04-19 Monsanto Co Imidazolines and imidazolidines and oil compositions containing the same
US3366569A (en) 1959-03-30 1968-01-30 Lubrizol Corp Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide
US3390086A (en) 1964-12-29 1968-06-25 Exxon Research Engineering Co Sulfur containing ashless disperant
US3403102A (en) 1963-05-17 1968-09-24 Lubrizol Corp Lubricant containing phosphorus acid esters
US3458530A (en) 1962-11-21 1969-07-29 Exxon Research Engineering Co Multi-purpose polyalkenyl succinic acid derivative
US3502677A (en) 1963-06-17 1970-03-24 Lubrizol Corp Nitrogen-containing and phosphorus-containing succinic derivatives
US3519564A (en) 1967-08-25 1970-07-07 Lubrizol Corp Heterocyclic nitrogen-sulfur compositions and lubricants containing them
US3546243A (en) 1966-10-01 1970-12-08 Orobis Ltd Reaction products of diketene with certain substituted n-(alkylamino) succinimides
US3573205A (en) 1968-12-17 1971-03-30 Chevron Res Diisocyanate modified polyisobutenyl-succinimides as lubricating oil detergents
US3634515A (en) 1968-11-08 1972-01-11 Standard Oil Co Alkylene polyamide formaldehyde
US3649229A (en) 1969-12-17 1972-03-14 Mobil Oil Corp Liquid hydrocarbon fuels containing high molecular weight mannich bases
US3708522A (en) 1969-12-29 1973-01-02 Lubrizol Corp Reaction products of high molecular weight carboxylic acid esters and certain carboxylic acid acylating reactants
US3749695A (en) 1971-08-30 1973-07-31 Chevron Res Lubricating oil additives
US3859318A (en) 1969-05-19 1975-01-07 Lubrizol Corp Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides
US3865813A (en) 1968-01-08 1975-02-11 Lubrizol Corp Thiourea-acylated polyamine reaction product
US3865740A (en) 1972-05-22 1975-02-11 Chevron Res Multifunctional lubricating oil additive
US3954639A (en) 1974-03-14 1976-05-04 Chevron Research Company Lubricating oil composition containing sulfate rust inhibitors
US4152499A (en) 1977-01-22 1979-05-01 Basf Aktiengesellschaft Polyisobutenes
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4259194A (en) 1979-06-28 1981-03-31 Chevron Research Company Reaction product of ammonium tetrathiomolybdate with basic nitrogen compounds and lubricants containing same
US4259195A (en) 1979-06-28 1981-03-31 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4261843A (en) 1979-06-28 1981-04-14 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4263152A (en) 1979-06-28 1981-04-21 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4265773A (en) 1979-06-28 1981-05-05 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4272387A (en) 1979-06-28 1981-06-09 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4283295A (en) 1979-06-28 1981-08-11 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition
US4285822A (en) 1979-06-28 1981-08-25 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition
US4379064A (en) 1981-03-20 1983-04-05 Standard Oil Company (Indiana) Oxidative passivation of polyamine-dispersants
US4482464A (en) 1983-02-14 1984-11-13 Texaco Inc. Hydrocarbyl-substituted mono- and bis-succinimide having polyamine chain linked hydroxyacyl radicals and mineral oil compositions containing same
GB2140811A (en) 1980-08-25 1984-12-05 Exxon Research Engineering Co Lubricating oil with improved diesel dispersancy
US4521318A (en) 1983-11-14 1985-06-04 Texaco Inc. Lubricant compositions containing both hydrocarbyl substituted mono and bissuccinimide having polyamine chain linked hydroxacyl radicals, and neopentyl derivative
US4554086A (en) 1984-04-26 1985-11-19 Texaco Inc. Borate esters of hydrocarbyl-substituted mono- and bis-succinimides containing polyamine chain linked hydroxyacyl groups and lubricating oil compositions containing same
US4579675A (en) 1983-11-09 1986-04-01 Texaco Inc. N-substituted enaminones and oleaginous compositions containing same
US4612132A (en) 1984-07-20 1986-09-16 Chevron Research Company Modified succinimides
US4614522A (en) 1985-04-12 1986-09-30 Chevron Research Company Fuel compositions containing modified succinimides (VI)
US4614603A (en) 1985-04-12 1986-09-30 Chevron Research Company Modified succinimides (III)
US4617137A (en) 1984-11-21 1986-10-14 Chevron Research Company Glycidol modified succinimides
US4617138A (en) 1985-04-12 1986-10-14 Chevron Research Company Modified succinimides (II)
US4636322A (en) 1985-11-04 1987-01-13 Texaco Inc. Lubricating oil dispersant and viton seal additives
US4645515A (en) 1985-04-12 1987-02-24 Chevron Research Company Modified succinimides (II)
US4647390A (en) 1985-04-12 1987-03-03 Chevron Research Company Lubricating oil compositions containing modified succinimides (V)
US4646860A (en) 1985-07-03 1987-03-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Personnel emergency carrier vehicle
US4648886A (en) 1985-04-12 1987-03-10 Chevron Research Company Modified succinimides (V)
US4648980A (en) 1983-09-22 1987-03-10 Chevron Research Company Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts
US4652387A (en) 1986-07-30 1987-03-24 Mobil Oil Corporation Borated reaction products of succinic compounds as lubricant dispersants and antioxidants
US4663064A (en) 1986-03-28 1987-05-05 Texaco Inc. Dibaisic acid lubricating oil dispersant and viton seal additives
US4663062A (en) 1985-04-12 1987-05-05 Chevron Research Company Lubricating oil compositions containing modified succinimides (VII)
US4666460A (en) 1985-04-12 1987-05-19 Chevron Research Company Modified succinimides (III)
US4668246A (en) 1985-04-12 1987-05-26 Chevron Research Company Modified succinimides (IV)
US4670170A (en) 1985-04-12 1987-06-02 Chevron Research Company Modified succinimides (VIII)
US4699724A (en) 1986-08-20 1987-10-13 Texaco Inc. Post-coupled mono-succinimide lubricating oil dispersant and viton seal additives
US4713191A (en) 1986-12-29 1987-12-15 Texaco Inc. Diiscyanate acid lubricating oil dispersant and viton seal additives
US4713189A (en) 1986-08-20 1987-12-15 Texaco, Inc. Precoupled mono-succinimide lubricating oil dispersants and viton seal additives
US4857214A (en) 1988-09-16 1989-08-15 Ethylk Petroleum Additives, Inc. Oil-soluble phosphorus antiwear additives for lubricants
US4948386A (en) 1988-11-07 1990-08-14 Texaco Inc. Middle distillate containing storage stability additive
US4963278A (en) 1988-12-29 1990-10-16 Mobil Oil Corporation Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles
US4963275A (en) 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US4971598A (en) 1988-08-30 1990-11-20 Mobil Oil Corporation Reaction products of alkenyl succinimides with ethylenediamine carboxy acids as fuel detergents
US4971711A (en) 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US4973412A (en) 1990-05-07 1990-11-27 Texaco Inc. Multifunctional lubricant additive with Viton seal capability
US4973411A (en) 1989-09-15 1990-11-27 Texaco Inc. Process for the preparation of sulfurized overbased phenate detergents
US4981492A (en) 1989-12-13 1991-01-01 Mobil Oil Corporation Borated triazole-substituted polyalkenyl succinimides as multifunctional lubricant and fuel additives
US5026495A (en) 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5030249A (en) 1990-10-01 1991-07-09 Texaco Inc. Gasoline detergent additive
US5039307A (en) 1990-10-01 1991-08-13 Texaco Inc. Diesel fuel detergent additive
US5075383A (en) 1990-04-11 1991-12-24 Texaco Inc. Dispersant and antioxidant additive and lubricating oil composition containing same
US5241003A (en) 1990-05-17 1993-08-31 Ethyl Petroleum Additives, Inc. Ashless dispersants formed from substituted acylating agents and their production and use
US5266223A (en) 1988-08-01 1993-11-30 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid dispersant additives
WO1994006897A1 (fr) 1992-09-11 1994-03-31 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Composition de carburant pour moteurs deux-temps
US5334321A (en) 1993-03-09 1994-08-02 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Modified high molecular weight succinimides
EP0612839A1 (fr) 1993-02-18 1994-08-31 The Lubrizol Corporation Compositions liquides pour systèmes de réfrigeration contenant des amines grasses, des amides d'acides gras ou produits de réaction avec des agents gras d'acylation
US5650381A (en) 1995-11-20 1997-07-22 Ethyl Corporation Lubricant containing molybdenum compound and secondary diarylamine
US5739355A (en) 1995-02-15 1998-04-14 Institut Francais Du Petrole Process for production of polyisobutenylsuccinic anhydrides without formation of resins
US5883057A (en) 1996-01-16 1999-03-16 The Lubrizol Corporation Lubricating compositions
US6107257A (en) 1997-12-09 2000-08-22 Ethyl Corporation Highly grafted, multi-functional olefin copolymer VI modifiers
US6300291B1 (en) 1999-05-19 2001-10-09 Infineum Usa L.P. Lubricating oil composition
US6723685B2 (en) 2002-04-05 2004-04-20 Infineum International Ltd. Lubricating oil composition
USRE38929E1 (en) 1995-11-20 2006-01-03 Afton Chemical Intangibles Llc Lubricant containing molybdenum compound and secondary diarylamine
US7214649B2 (en) 2003-12-31 2007-05-08 Afton Chemical Corporation Hydrocarbyl dispersants including pendant polar functional groups
US7253231B2 (en) 2005-01-31 2007-08-07 Afton Chemical Corporation Grafted multi-functional olefin copolymer VI modifiers and uses thereof
GB2440811A (en) 2006-07-28 2008-02-13 Mcalpine & Co Ltd Waste outlet for a shower
US7485603B2 (en) 2005-02-18 2009-02-03 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US7645726B2 (en) 2004-12-10 2010-01-12 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
US7732390B2 (en) 2004-11-24 2010-06-08 Afton Chemical Corporation Phenolic dimers, the process of preparing same and the use thereof
US7786057B2 (en) 2007-02-08 2010-08-31 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US7897696B2 (en) 2007-02-01 2011-03-01 Afton Chemical Corporation Process for the preparation of polyalkenyl succinic anhydrides
US20120101017A1 (en) 2010-10-25 2012-04-26 Akhilesh Duggal Lubricant additive
US20130123157A1 (en) * 2011-11-10 2013-05-16 Chevron Oronite Company Llc Lubricating oil compositions
US20140142347A1 (en) * 2012-11-20 2014-05-22 Chevron Oronite Company Llc Process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition
US8933022B2 (en) 2011-03-01 2015-01-13 Jds Therapeutics, Llc Methods and compositions for the treatment and prevention Hypoglycemia and related disorders
WO2023212165A1 (fr) * 2022-04-27 2023-11-02 Afton Chemical Corporation Additifs à sulfuration élevée pour compositions d'huile lubrifiante

Patent Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278550A (en) 1959-03-30 1966-10-11 Lubrizol Corp Reaction products of a hydrocarbonsubstituted succinic acid-producing compound, an amine and an alkenyl cyanide
US3366569A (en) 1959-03-30 1968-01-30 Lubrizol Corp Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide
US3256185A (en) 1961-06-12 1966-06-14 Lubrizol Corp Lubricant containing acylated aminecarbon disulfide product
US3178663A (en) 1961-06-26 1965-04-13 Bendix Corp Single speed and multispeed unitary synchro structure
US3185647A (en) 1962-09-28 1965-05-25 California Research Corp Lubricant composition
US3458530A (en) 1962-11-21 1969-07-29 Exxon Research Engineering Co Multi-purpose polyalkenyl succinic acid derivative
US3189544A (en) 1962-12-19 1965-06-15 Shell Oil Co Non-ash-containing lubricating oil composition
US3403102A (en) 1963-05-17 1968-09-24 Lubrizol Corp Lubricant containing phosphorus acid esters
US3502677A (en) 1963-06-17 1970-03-24 Lubrizol Corp Nitrogen-containing and phosphorus-containing succinic derivatives
GB1065595A (en) 1963-07-22 1967-04-19 Monsanto Co Imidazolines and imidazolidines and oil compositions containing the same
US3312619A (en) 1963-10-14 1967-04-04 Monsanto Co 2-substituted imidazolidines and their lubricant compositions
US3390086A (en) 1964-12-29 1968-06-25 Exxon Research Engineering Co Sulfur containing ashless disperant
US3470098A (en) 1964-12-29 1969-09-30 Exxon Research Engineering Co Sulfur and chlorine containing ashless dispersant,and lubricating oil containing same
US3546243A (en) 1966-10-01 1970-12-08 Orobis Ltd Reaction products of diketene with certain substituted n-(alkylamino) succinimides
US3519564A (en) 1967-08-25 1970-07-07 Lubrizol Corp Heterocyclic nitrogen-sulfur compositions and lubricants containing them
US3865813A (en) 1968-01-08 1975-02-11 Lubrizol Corp Thiourea-acylated polyamine reaction product
US3634515A (en) 1968-11-08 1972-01-11 Standard Oil Co Alkylene polyamide formaldehyde
US3573205A (en) 1968-12-17 1971-03-30 Chevron Res Diisocyanate modified polyisobutenyl-succinimides as lubricating oil detergents
US3859318A (en) 1969-05-19 1975-01-07 Lubrizol Corp Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides
US3649229A (en) 1969-12-17 1972-03-14 Mobil Oil Corp Liquid hydrocarbon fuels containing high molecular weight mannich bases
US3708522A (en) 1969-12-29 1973-01-02 Lubrizol Corp Reaction products of high molecular weight carboxylic acid esters and certain carboxylic acid acylating reactants
US3749695A (en) 1971-08-30 1973-07-31 Chevron Res Lubricating oil additives
US3865740A (en) 1972-05-22 1975-02-11 Chevron Res Multifunctional lubricating oil additive
US3954639A (en) 1974-03-14 1976-05-04 Chevron Research Company Lubricating oil composition containing sulfate rust inhibitors
US4152499A (en) 1977-01-22 1979-05-01 Basf Aktiengesellschaft Polyisobutenes
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4272387A (en) 1979-06-28 1981-06-09 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4261843A (en) 1979-06-28 1981-04-14 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4263152A (en) 1979-06-28 1981-04-21 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4265773A (en) 1979-06-28 1981-05-05 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4259194A (en) 1979-06-28 1981-03-31 Chevron Research Company Reaction product of ammonium tetrathiomolybdate with basic nitrogen compounds and lubricants containing same
US4283295A (en) 1979-06-28 1981-08-11 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition
US4285822A (en) 1979-06-28 1981-08-25 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition
US4259195A (en) 1979-06-28 1981-03-31 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
GB2140811A (en) 1980-08-25 1984-12-05 Exxon Research Engineering Co Lubricating oil with improved diesel dispersancy
US4379064A (en) 1981-03-20 1983-04-05 Standard Oil Company (Indiana) Oxidative passivation of polyamine-dispersants
US4482464A (en) 1983-02-14 1984-11-13 Texaco Inc. Hydrocarbyl-substituted mono- and bis-succinimide having polyamine chain linked hydroxyacyl radicals and mineral oil compositions containing same
US4648980A (en) 1983-09-22 1987-03-10 Chevron Research Company Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts
US4579675A (en) 1983-11-09 1986-04-01 Texaco Inc. N-substituted enaminones and oleaginous compositions containing same
US4521318A (en) 1983-11-14 1985-06-04 Texaco Inc. Lubricant compositions containing both hydrocarbyl substituted mono and bissuccinimide having polyamine chain linked hydroxacyl radicals, and neopentyl derivative
US4554086A (en) 1984-04-26 1985-11-19 Texaco Inc. Borate esters of hydrocarbyl-substituted mono- and bis-succinimides containing polyamine chain linked hydroxyacyl groups and lubricating oil compositions containing same
US4612132A (en) 1984-07-20 1986-09-16 Chevron Research Company Modified succinimides
US4617137A (en) 1984-11-21 1986-10-14 Chevron Research Company Glycidol modified succinimides
US4648886A (en) 1985-04-12 1987-03-10 Chevron Research Company Modified succinimides (V)
US4614522A (en) 1985-04-12 1986-09-30 Chevron Research Company Fuel compositions containing modified succinimides (VI)
US4670170A (en) 1985-04-12 1987-06-02 Chevron Research Company Modified succinimides (VIII)
US4645515A (en) 1985-04-12 1987-02-24 Chevron Research Company Modified succinimides (II)
US4647390A (en) 1985-04-12 1987-03-03 Chevron Research Company Lubricating oil compositions containing modified succinimides (V)
US4668246A (en) 1985-04-12 1987-05-26 Chevron Research Company Modified succinimides (IV)
US4614603A (en) 1985-04-12 1986-09-30 Chevron Research Company Modified succinimides (III)
US4617138A (en) 1985-04-12 1986-10-14 Chevron Research Company Modified succinimides (II)
US4666459A (en) 1985-04-12 1987-05-19 Chevron Research Company Modified succinimides (VII)
US4666460A (en) 1985-04-12 1987-05-19 Chevron Research Company Modified succinimides (III)
US4663062A (en) 1985-04-12 1987-05-05 Chevron Research Company Lubricating oil compositions containing modified succinimides (VII)
US4646860A (en) 1985-07-03 1987-03-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Personnel emergency carrier vehicle
US4636322A (en) 1985-11-04 1987-01-13 Texaco Inc. Lubricating oil dispersant and viton seal additives
US4663064A (en) 1986-03-28 1987-05-05 Texaco Inc. Dibaisic acid lubricating oil dispersant and viton seal additives
US4652387A (en) 1986-07-30 1987-03-24 Mobil Oil Corporation Borated reaction products of succinic compounds as lubricant dispersants and antioxidants
US4699724A (en) 1986-08-20 1987-10-13 Texaco Inc. Post-coupled mono-succinimide lubricating oil dispersant and viton seal additives
US4713189A (en) 1986-08-20 1987-12-15 Texaco, Inc. Precoupled mono-succinimide lubricating oil dispersants and viton seal additives
US4963275A (en) 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US4713191A (en) 1986-12-29 1987-12-15 Texaco Inc. Diiscyanate acid lubricating oil dispersant and viton seal additives
US4971711A (en) 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US5026495A (en) 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
US5266223A (en) 1988-08-01 1993-11-30 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid dispersant additives
US4971598A (en) 1988-08-30 1990-11-20 Mobil Oil Corporation Reaction products of alkenyl succinimides with ethylenediamine carboxy acids as fuel detergents
US4857214A (en) 1988-09-16 1989-08-15 Ethylk Petroleum Additives, Inc. Oil-soluble phosphorus antiwear additives for lubricants
US4948386A (en) 1988-11-07 1990-08-14 Texaco Inc. Middle distillate containing storage stability additive
US4963278A (en) 1988-12-29 1990-10-16 Mobil Oil Corporation Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles
US4973411A (en) 1989-09-15 1990-11-27 Texaco Inc. Process for the preparation of sulfurized overbased phenate detergents
US4981492A (en) 1989-12-13 1991-01-01 Mobil Oil Corporation Borated triazole-substituted polyalkenyl succinimides as multifunctional lubricant and fuel additives
US5075383A (en) 1990-04-11 1991-12-24 Texaco Inc. Dispersant and antioxidant additive and lubricating oil composition containing same
US4973412A (en) 1990-05-07 1990-11-27 Texaco Inc. Multifunctional lubricant additive with Viton seal capability
US5241003A (en) 1990-05-17 1993-08-31 Ethyl Petroleum Additives, Inc. Ashless dispersants formed from substituted acylating agents and their production and use
US5030249A (en) 1990-10-01 1991-07-09 Texaco Inc. Gasoline detergent additive
US5039307A (en) 1990-10-01 1991-08-13 Texaco Inc. Diesel fuel detergent additive
WO1994006897A1 (fr) 1992-09-11 1994-03-31 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Composition de carburant pour moteurs deux-temps
EP0612839A1 (fr) 1993-02-18 1994-08-31 The Lubrizol Corporation Compositions liquides pour systèmes de réfrigeration contenant des amines grasses, des amides d'acides gras ou produits de réaction avec des agents gras d'acylation
US5334321A (en) 1993-03-09 1994-08-02 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Modified high molecular weight succinimides
US5739355A (en) 1995-02-15 1998-04-14 Institut Francais Du Petrole Process for production of polyisobutenylsuccinic anhydrides without formation of resins
USRE38929E1 (en) 1995-11-20 2006-01-03 Afton Chemical Intangibles Llc Lubricant containing molybdenum compound and secondary diarylamine
US5650381A (en) 1995-11-20 1997-07-22 Ethyl Corporation Lubricant containing molybdenum compound and secondary diarylamine
USRE40595E1 (en) 1995-11-20 2008-12-02 Afton Chemical Intangibles Llc Lubricant containing molybdenum compound and secondary diarylamine
USRE37363E1 (en) 1995-11-20 2001-09-11 Ethyl Corporation Lubricant containing molybdenum compound and secondary diarylamine
US5883057A (en) 1996-01-16 1999-03-16 The Lubrizol Corporation Lubricating compositions
US6107257A (en) 1997-12-09 2000-08-22 Ethyl Corporation Highly grafted, multi-functional olefin copolymer VI modifiers
US6300291B1 (en) 1999-05-19 2001-10-09 Infineum Usa L.P. Lubricating oil composition
US6723685B2 (en) 2002-04-05 2004-04-20 Infineum International Ltd. Lubricating oil composition
US7214649B2 (en) 2003-12-31 2007-05-08 Afton Chemical Corporation Hydrocarbyl dispersants including pendant polar functional groups
US7732390B2 (en) 2004-11-24 2010-06-08 Afton Chemical Corporation Phenolic dimers, the process of preparing same and the use thereof
US8048831B2 (en) 2004-12-10 2011-11-01 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
US7645726B2 (en) 2004-12-10 2010-01-12 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
US7253231B2 (en) 2005-01-31 2007-08-07 Afton Chemical Corporation Grafted multi-functional olefin copolymer VI modifiers and uses thereof
US7485603B2 (en) 2005-02-18 2009-02-03 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
GB2440811A (en) 2006-07-28 2008-02-13 Mcalpine & Co Ltd Waste outlet for a shower
US7897696B2 (en) 2007-02-01 2011-03-01 Afton Chemical Corporation Process for the preparation of polyalkenyl succinic anhydrides
US7786057B2 (en) 2007-02-08 2010-08-31 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US20120101017A1 (en) 2010-10-25 2012-04-26 Akhilesh Duggal Lubricant additive
US8933022B2 (en) 2011-03-01 2015-01-13 Jds Therapeutics, Llc Methods and compositions for the treatment and prevention Hypoglycemia and related disorders
US20130123157A1 (en) * 2011-11-10 2013-05-16 Chevron Oronite Company Llc Lubricating oil compositions
US8933002B2 (en) 2011-11-10 2015-01-13 Chevron Oronite Company Llc Lubricating oil compositions
US20140142347A1 (en) * 2012-11-20 2014-05-22 Chevron Oronite Company Llc Process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition
WO2023212165A1 (fr) * 2022-04-27 2023-11-02 Afton Chemical Corporation Additifs à sulfuration élevée pour compositions d'huile lubrifiante

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. W. YAUJ. J. KIRKLANDD. D. BLY: "Modern Size Exclusion Liquid Chromatography", 1979, AMERICAN PETROLEUM INSTITUTE

Similar Documents

Publication Publication Date Title
US11976250B2 (en) Sulfurized additives with low levels of alkyl phenols
US12270003B2 (en) Additives with high sulfurization for lubricating oil compositions
US11479736B1 (en) Lubricant composition for reduced engine sludge
US11976252B2 (en) Polyalphaolefin phenols with high para-position selectivity
WO2025090369A1 (fr) Additifs à sulfuration élevée pour compositions d'huile lubrifiante
US12146115B2 (en) Low ash lubricating compositions for controlling steel corrosion
US11807827B2 (en) Lubricating compositions for reduced high temperature deposits
US20230043947A1 (en) Methods of reducing lead corrosion in an internal combustion engine
EP3613831A1 (fr) Lubrifiants destinés à être utilisés dans des moteurs suralimentés
US20240209277A1 (en) Detergent- free and low- ash lubricating composition
KR20240010426A (ko) 윤활제에서 산화 저항을 위한 세제 시스템
KR20240018377A (ko) 개선된 피스톤 청정도를 위한 세제 시스템
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载