WO2025052843A1 - Coating device, and method for manufacturing substrate with coating film - Google Patents
Coating device, and method for manufacturing substrate with coating film Download PDFInfo
- Publication number
- WO2025052843A1 WO2025052843A1 PCT/JP2024/028131 JP2024028131W WO2025052843A1 WO 2025052843 A1 WO2025052843 A1 WO 2025052843A1 JP 2024028131 W JP2024028131 W JP 2024028131W WO 2025052843 A1 WO2025052843 A1 WO 2025052843A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating liquid
- coating
- gas
- substrate
- discharge port
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/02—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
- B05B1/04—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/10—Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/04—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
Definitions
- the present invention relates to a coating device that applies a coating liquid in droplet form to a substrate such as a film, nonwoven fabric, or paper, and a method for manufacturing a substrate with a coating film.
- spray coating devices are known as coating devices that apply coating liquid to a substrate in the form of droplets. From the standpoint of substrate productivity and functionality, this type of spray coating device is required to apply minute droplets uniformly over almost the entire surface of a wide substrate.
- Patent Document 1 discloses a two-fluid slot-type spray nozzle (hereinafter, "spray nozzle” will also be simply referred to as “nozzle”) that can spray the coating liquid by discharging compressed air simultaneously with the coating liquid, forming droplets of the coating liquid using the discharged air.
- This spray nozzle has multiple coating liquid discharge ports in the width direction of the substrate, and air discharge ports are arranged to sandwich the coating liquid discharge ports from the upstream and downstream sides in the substrate transport direction. Therefore, the discharged droplet-like coating liquid forms a continuous band in the width direction of the substrate, and a uniform coating film can be formed without uneven coating thickness or application.
- an air outlet is disposed near the coating liquid outlet, and the discharged air promotes drying of the coating liquid at the coating liquid outlet.
- the coating liquid contains solids
- the solids may precipitate as the coating liquid dries, causing the coating liquid outlet to become clogged or the opening area to become smaller due to the precipitated solids.
- the coating liquid outlet becomes clogged or its opening area becomes smaller, continuous streaks of coating loss in the transport direction or areas with small coating thickness are formed at the coating position corresponding to the clogged area.
- the coating liquid outlet and the air outlet are located at the same height and on approximately the same plane, so the coating liquid from the coating liquid outlet may wet and spread, reach the air outlet, and dry at the air outlet.
- the coating liquid contains solids, the solids may precipitate as the coating liquid dries, causing the air outlet to become clogged or its opening area to become smaller. If the air outlet is clogged or its opening area becomes smaller, the coating liquid cannot be sufficiently ejected at that location, resulting in uneven coating, or the coating liquid that is not ejected may accumulate near the coating liquid outlet and then fall onto the substrate, significantly worsening the coating appearance.
- the coating liquid contains an organic solvent with a low boiling point, the coating liquid dries quickly, and clogging of the coating liquid discharge port and air discharge port due to precipitation of solids becomes a more serious problem.
- the present invention provides a spray coating device and a method for manufacturing a coated substrate that can prevent clogging of the coating fluid outlet and air outlet due to drying of the coating fluid.
- the present invention solves the above-mentioned problems by providing a coating device that applies a coating liquid in droplet form to a traveling substrate, comprising: a coating liquid discharge nozzle having a plurality of coating liquid discharge ports arranged in a width direction of the substrate; at least two gas ejection nozzles for blowing gas onto the plurality of columnar coating liquids ejected from the coating liquid ejection port,
- the two gas discharge nozzles are: When observed from the direction in which the coating liquid is discharged, the gas discharge ports are positioned between the rows of the coating liquid discharge ports, The gas discharge port is provided so as to be located toward the substrate away from an imaginary plane that passes through the coating liquid discharge port and is perpendicular to the coating liquid discharge direction, and when observed from the width direction of the substrate, an angle between an axis extending in the gas discharge direction from the gas discharge port and an axis extending in the coating liquid discharge direction from the coating liquid discharge port is less than 90°.
- the coating device of the present invention is preferably in the following embodiment [2] or [3]. [2] The coating device according to [1] above, wherein the gas discharge nozzle can change a discharge direction of the gas from the gas discharge port when observed from a width direction of the substrate.
- the method for producing a substrate having a coating film according to the present invention comprises: A coating liquid is discharged from a plurality of coating liquid discharge ports arranged in a width direction of the substrate toward the traveling substrate; blowing gas toward the coating liquid at a position away from the coating liquid discharge port toward the substrate from a direction that is symmetrical with respect to the discharged coating liquid and forms an angle of less than 90° with the discharge direction of the coating liquid when observed from the width direction of the traveling substrate; The coating liquid in the form of droplets is applied onto a substrate.
- the method for producing a substrate having a coating film of the present invention is preferably any one of the following steps [5] to [7].
- [5] The method for producing a substrate with a coating film according to [4] above, wherein the distance from the position at which the gas is blown in the coating liquid to the coating liquid discharge port is 2 mm or more.
- [6] The method for producing a substrate having a coating film according to the above [4] or [5], wherein the coating liquid contains solids.
- the coating device of the present invention By using the coating device of the present invention, clogging of the coating fluid outlet and air outlet due to drying of the coating fluid can be prevented, and the coating fluid can be applied stably.
- FIG. 1 is a schematic cross-sectional view of a coating apparatus 100 of the present invention.
- FIG. 2 is an exploded perspective view showing the configuration of the coating fluid discharge nozzle 110 of FIG.
- FIG. 3 is an exploded perspective view showing the configuration of the gas discharge nozzle 120 of FIG.
- FIG. 4 is a schematic cross-sectional view of the coating apparatus 100 of the present invention and a diagram showing a state in which a coating film is formed using the coating apparatus 100.
- FIG. 5 is a bottom view of the tip of the coating fluid discharge nozzle 110 in FIG. 1, as viewed from the coating fluid discharge port side.
- FIG. 6 is an exploded perspective view illustrating the configuration of a coating fluid discharging nozzle 210 according to another embodiment of the coating fluid discharging nozzle.
- FIG. 1 is a schematic cross-sectional view of a coating apparatus 100 of the present invention.
- FIG. 2 is an exploded perspective view showing the configuration of the coating fluid discharge nozzle 110 of FIG.
- FIG. 3 is an exploded perspective
- FIG. 7 is a bottom view of the tip of the gas discharge nozzle 120 in FIG. 1 as viewed from the gas discharge port side.
- FIG. 8 is an exploded perspective view showing the configuration of a gas ejection nozzle 220 according to another embodiment of the gas ejection nozzle.
- FIG. 9 is a schematic diagram showing an apparatus 10 for producing a coated substrate according to the present invention.
- FIG. 10 is a schematic cross-sectional view of a conventional integrated two-fluid nozzle 300 .
- Figure 1 is a schematic cross-sectional view of a coating device 100 according to a first embodiment of the present invention.
- the coating device 100 is composed of a coating liquid discharge nozzle 110 for discharging a coating liquid, and gas discharge nozzles 120, 120' for discharging a gas.
- FIG. 2 is an exploded perspective view showing the configuration of the coating liquid discharge nozzle 110 of FIG. 1.
- the coating liquid discharge nozzle 110 is composed of coating liquid nozzle blocks 111, 112 and a coating liquid shim 113.
- One of the coating liquid nozzle blocks 111 has a coating liquid supply port 114 that supplies the coating liquid to the inside of the coating liquid discharge nozzle 110, and a coating liquid manifold 115 that communicates with the coating liquid supply port 114 and spreads the coating liquid in the width direction.
- the coating liquid shim 113 is a comb-shaped shim sandwiched between the coating liquid nozzle blocks 111, 112, and by combining with the coating liquid nozzle blocks 111, 112, the gaps between the comb teeth of the coating liquid shim 113 form a plurality of coating liquid flow paths in the width direction. In addition, the gaps between the comb teeth of the coating liquid shim 113 communicate with the coating liquid manifold 115.
- the "width direction" corresponds to a direction perpendicular to the discharge direction X of the coating liquid and the transport direction Y of the substrate 1 (see FIG. 1).
- the coating liquid is discharged from the coating liquid outlets 116 located at the tip of the coating liquid discharge nozzle 110 and aligned in a row in the width direction.
- the gas is discharged from the gas outlets 126, 126' located at the tip of the gas discharge nozzles 120, 120'.
- the gas outlets 126, 126' are arranged so that the gas outlets 126, 126' sandwich the row of coating liquid outlets 116 of the coating liquid discharge nozzle 110, and the gas outlets 126, 126' are located farther away in the coating liquid discharge direction X than the imaginary plane A that passes through the coating liquid outlets 116 and is perpendicular to the coating liquid discharge direction X.
- the gas outlets 126, 126' are located closer to the substrate 1 than the imaginary plane A.
- the coating device 100 is installed at a certain distance from the substrate 1, and the coating liquid discharge port 116 of the coating liquid discharge nozzle 110 is arranged so that an extension line of the coating liquid discharge direction X intersects with the substrate 1.
- the coating liquid discharge nozzle 110 and the gas discharge nozzles 120, 120' extend in the short direction of the substrate 1, i.e., in a direction perpendicular to the transport direction Y of the substrate 1.
- FIG. 4 is a schematic cross-sectional view of the coating device 100 of the present invention and a diagram showing the state of coating a substrate using the coating device 100.
- the coating liquid 2 supplied to the coating liquid discharge nozzle 110 is discharged from a plurality of coating liquid discharge ports 116 provided at the tip of the coating liquid discharge nozzle 110, and the discharged coating liquid is continuously connected to form a columnar coating liquid 3.
- the columnar coating liquid 3 collides with the gas discharged from the gas discharge ports 126, 126' provided at the tip of the gas discharge nozzle 120, 120' at a collision point B, and becomes fine droplets 4.
- the collision point B is the intersection point of the axis extending from the coating liquid discharge port 116 in the coating liquid discharge direction X and the axis extending from the gas discharge ports 126, 126' in the gas discharge direction.
- the fine droplets 4 land on the substrate 1 being transported and form a coating film 5.
- the gas discharge ports 126, 126' are located away from the imaginary plane A in the discharge direction X of the coating liquid, the gas discharged from the gas discharge ports 126, 126' does not hit the coating liquid discharge nozzle 110 and is not attenuated, and furthermore, the discharged gas does not hit the coating liquid discharge port 116 directly. In other words, drying of the coating liquid at the coating liquid discharge port 116 can be suppressed.
- the ejection amount can be adjusted appropriately depending on the type and viscosity of the coating liquid 2.
- the gas ejection nozzles 120, 120' do not need to be installed symmetrically with respect to the ejection direction X of the coating liquid ejected from the coating liquid ejection port 116, and the gas ejection nozzles 120, 120' may be installed so as to be asymmetrical when viewed from the coating liquid ejection nozzle 110.
- the gas ejected from the gas ejection nozzles 120, 120' may each have collision points B, B' with the columnar coating liquid 3, and the distances L2, L2' and the collision angles ⁇ , ⁇ ' can be changed as desired.
- each coating liquid discharge port 116 may be adjusted as appropriate depending on the viscosity of the coating liquid used and the flow rate of the coating liquid to be discharged, but in order to ensure that the coating liquid discharged from the coating liquid discharge port 116 has a constant flow rate and is discharged in a columnar shape, it is preferable to set the opening area to 50,000 ⁇ m 2 or less so that the average flow rate does not decrease, and more preferably to set the opening area to 20,000 ⁇ m 2 or less.
- the arrangement pitch W1 of the coating liquid discharge port is preferably 10 mm or less from the viewpoint of coating film uniformity.
- the coating liquid discharge width W2 is preferably smaller than the substrate width in order to minimize the scattering of the coating liquid outside the system.
- FIG. 6 is an exploded perspective view showing the configuration of a coating liquid discharge nozzle 210 according to another embodiment of the coating liquid discharge nozzle.
- the coating liquid discharge nozzle 210 is composed of coating liquid nozzle blocks 211 and 212.
- One of the coating liquid nozzle blocks 211 has a coating liquid supply port 214 that supplies the coating liquid to the inside of the coating liquid discharge nozzle 210.
- the other coating liquid nozzle block 212 has a coating liquid manifold 215 for expanding the coating liquid in the width direction and a coating liquid discharge flow path 217 that communicates with the coating liquid manifold 215, and a coating liquid discharge outlet 216 is formed at the tip of the coating liquid discharge flow path 217.
- the shape of the coating liquid discharge outlet 216 is not limited to a rectangle, and may be a circle or an ellipse.
- FIG. 7 is a bottom view of the gas discharge nozzle 120 of FIG. 1, with the tip of the gas discharge nozzle 120 seen from the gas discharge port side.
- the gas discharge port 126 of the gas discharge nozzle 120 has a slit shape, and the width of the gas discharge port 126 is the gas discharge width W4.
- the two-dot chain lines indicated by the symbols 116L and 116R indicate the positions of both ends of the coating liquid discharge width W2 in the coating liquid discharge nozzle 110.
- the gas discharge width W4 is longer than the coating liquid discharge width W2 in order to make all the columnar coating liquid 3 discharged from each coating liquid discharge port 116 into fine droplets 4.
- the shape of the gas discharge port 126 is not limited to a single slit continuous across the width as shown in FIG. 3 and FIG. 7, and may be open intermittently in the width direction so as to correspond one-to-one to the coating liquid discharge port 116.
- the openings are intermittent, it is preferable that the opening length in the width direction is greater than the width W3 of each coating fluid discharge port 116.
- FIG. 8 is an exploded perspective view showing the configuration of a gas discharge nozzle 220 according to another embodiment of the gas discharge nozzle.
- the gas discharge nozzle 220 is composed of gas nozzle blocks 221 and 222.
- One of the gas nozzle blocks 221 has a gas supply port 224 that supplies gas to the inside of the gas discharge nozzle 220.
- the other gas nozzle block 222 has a gas manifold 225 for expanding the gas in the width direction and a gas discharge flow path 227 that communicates with the gas manifold 225, and a gas discharge port 226 is formed at the tip of the gas discharge flow path 227.
- the shape of the gas discharge port 226 is not limited to a rectangle, and may be a circle or an ellipse.
- coating liquid can be stably applied without clogging the coating liquid outlet and gas outlet, even when a coating liquid containing solids is discharged.
- FIG. 9 is a schematic diagram showing an example of a coated substrate manufacturing apparatus 10 of the present invention.
- the coated substrate manufacturing apparatus 10 is provided with an unwinding section 11 that unwinds the substrate 1 and a winding section 12 that winds the coated substrate 6. Between the unwinding section 11 and the winding section 12, a coating device 100 for coating the substrate 1 with a coating liquid and a drying device 13 for drying the coating are provided. In addition, in order to prevent the substrate 1 from vibrating due to the gas discharged from the coating device 100 and the distance between the coating device 100 and the substrate 1 from changing over time, a backup roll 14 is provided on the opposite side of the substrate 1 of the coating device 100, which contacts the substrate 1 and supports the substrate 1.
- the coating liquid discharge mechanism includes a liquid supply pump 15 for supplying the coating liquid to the coating device 100 and a tank 16 for storing the coating liquid
- the gas discharge mechanism includes a pressurized gas source 17 for supplying gas to the coating device 100, a branch pipe 18 for branching the gas to each gas discharge nozzle, and pressure adjustment valves 19, 19' that can adjust the pressure of the gas supplied from each gas discharge nozzle.
- the coating device 100 and the backup roll 14 are surrounded by a booth 20, which has an opening 21 at the bottom and is connected to a waste liquid recovery tank 22.
- the booth 20 prevents some of the fine droplets 4 formed by the coating device 100 from scattering around without adhering to the substrate 1.
- the coating liquid adhering to the inner wall of the booth 20 drips down along the inner wall of the booth 20 and is collected in the waste liquid recovery tank 22 through the bottom opening 21. Since the booth 20 and the waste liquid recovery tank 22 come into contact with the coating liquid, it is preferable to select materials according to the coating liquid. For example, when the solvent of the coating liquid is acetone, which is a low-boiling organic solvent, it is preferable to use metal or a resin material with excellent acetone resistance, such as fluororesin.
- the coating liquid is discharged from the coating device 100 in a vertical downward direction, and the substrate 1 in that section is transported in a horizontal direction; however, this is not limited to the above as long as the coating device 100 is installed so as to be substantially opposite the coating surface of the substrate 1.
- the coating liquid may be discharged from the coating device 100 in a horizontal direction, and the substrate 1 in that section may be transported in a vertical direction.
- the substrate with a coating film is produced by forming a coating film 5 on a substrate 1 using the coating device 100.
- the basis weight of the coating film 5 can be controlled by the flow rate of the coating liquid 2 supplied to the coating liquid discharge nozzle 110, it is preferable to have a means for measuring the basis weight of the formed coating film 5 and adjusting the supply flow rate of the coating liquid 2.
- the size of the attached droplets is determined by the flow rate of the gas supplied to the gas discharge nozzles 120 and 120' and the collision angles ⁇ and ⁇ '.
- the flow rate of the gas supplied to the gas discharge nozzles 120 and 120' is increased, or the collision angles ⁇ and ⁇ ' are increased.
- the size of the droplets can be adjusted by decreasing the flow rate of the gas supplied to the gas discharge nozzles 120 and 120' or decreasing the collision angles ⁇ and ⁇ '.
- the discharge pressure of the coating liquid 2 discharged from the coating liquid discharge port 116 of the coating liquid discharge nozzle 110 is small, and the shape of the columnar coating liquid 3 may not be stable until the discharge pressure increases to a predetermined level. Therefore, it is preferable to retract the gas supply nozzles 120, 120' so that the coating liquid does not scatter at the gas supply nozzles 120, 120' until a stable columnar coating liquid 3 is formed. After that, after the shape of the columnar coating liquid 3 has stabilized, the gas discharge nozzles 120, 120' are brought close to the columnar coating liquid 3, and gas is discharged from the gas discharge ports 126, 126'. As a result, the coating liquid 2 does not adhere to the gas discharge ports 126, 126', and stable coating is possible without blocking the gas discharge ports 126, 126'.
- the coating device of the present invention is particularly effective for coating liquids containing solids, such as solutions of inorganic or organic substances or dispersions of inorganic or organic substances in a solvent.
- the viscosity of the coating liquid may be any viscosity as long as it can be made fine by the collision of the discharged gas, but the lower the viscosity, the finer the droplets that can be formed, and generally a good coating appearance can be obtained by making the viscosity 500 mPa ⁇ s or less. It is particularly preferable to make the viscosity 2.0 mPa ⁇ s or less.
- the effects of the present invention can be particularly achieved when the coating liquid contains an organic solvent as part of the solvent.
- the effects are high when the coating liquid contains at least one of the following low-boiling organic solvents having a boiling point of 100°C or less: acetaldehyde, acetone, acetonitrile, allyl alcohol, benzene, 2-butanol, methyl ethyl ketone, tert-butyl alcohol, carbon disulfide, chloroform, cyclohexane, 1,2-dichloroethane, dichloromethane, diethyl ether, ethanol, anhydrous ethanol, ethyl acetate, 1,2-dimethoxyethane, ethyl formate, ethyl propionate, heptane, hexane, ligroin, methanol, methyl acetate, methyl propionate, pentane, petroleum benzine, 1-propanol, prop
- the gas or gas components of the outside air used in the present invention there are no particular limitations on the gas or gas components of the outside air used in the present invention, so long as they are suitable for coating, and air, nitrogen gas, etc. can be used.
- the ambient pressure of the outside air there are no particular limitations on the ambient pressure of the outside air, and it can be an atmospheric pressure environment or a reduced pressure environment.
- the temperature of the gas or outside air but using hot air as the gas promotes the drying of fine droplets in flight. This not only makes it possible to form finer droplets, but also reduces the amount of moisture adhering to the substrate, thereby reducing the drying load in subsequent processes.
- ⁇ Coating Fluid> As the solid content, polyvinylidene fluoride, a fluororesin, was prepared, and as the solvent, acetone (boiling point 56° C.), a low boiling point organic solvent, was prepared. The solid content was mixed to a concentration of 5 wt %, to prepare a coating liquid.
- Example 1 The coating device 100 of FIG. 1 was mounted on the coating film-coated substrate manufacturing apparatus 10 of FIG. 9 to produce a coating film-coated substrate 6. A coating film was formed on the substrate 1 unwound from the unwinding section 11 using the coating device 100, and the coating film was completely dried in the drying device 13, after which the coating film-coated substrate 6 was wound up in the winding section 12. The wound up coating film-coated substrate 6 was then removed, and the presence or absence of droplets attached and the coating appearance were evaluated by visual and microscope observation.
- the coating conditions in the coating device 100 were as follows: the distance from the imaginary plane A passing through the coating liquid discharge port 116 to the gas discharge ports 126, 126' was 7.5 mm, the distance L1 between the coating liquid discharge port 116 and the collision point B was 10 mm, the distances L2, L2' between the gas discharge ports 126, 126' and the collision point B were 5 mm, and the collision angles ⁇ , ⁇ ' were 60° (see FIG. 4).
- the coating liquid discharge nozzle 110 had a coating liquid discharge width W2 of 210.1 mm, an opening width W3 of the coating liquid discharge port of 100 ⁇ m, a coating liquid shim thickness t1 of 100 ⁇ m, and an arrangement pitch W1 of the coating liquid discharge ports of 7.5 mm.
- the number of coating liquid discharge ports 116 was 29 (see FIG. 5).
- the gas discharge nozzles 120 and 120' had a gas discharge width W4 of 250 mm and a gas shim thickness of 50 ⁇ m (see FIG. 7).
- the substrate 1 was transported at a speed of 50 m/min, the coating liquid was discharged from the coating liquid discharge nozzle 110 at 100 mL/min, and compressed air was discharged from each of the gas discharge nozzles 120 and 120' at 300 L/min.
- Example 2 Coating was carried out on the substrate 1 under the same conditions as in Example 1, except that the collision angles ⁇ and ⁇ ′ were set to 30°.
- Example 3 Coating was carried out on the substrate 1 under the same conditions as in Example 1, except that the distance L1 between the coating liquid discharge port 116 and the collision point B was set to 2 mm, and the collision angles ⁇ and ⁇ ′ were set to 80°.
- Comparative Example 1 Coating was performed on the substrate 1 under the same conditions as in Example 1, except that the distance L1 between the coating liquid discharge port 116 and the collision point B was set to 0.5 mm.
- the gas discharge ports 126, 126' are located on the opposite side to the substrate 1 side from the imaginary plane A. In other words, the gas discharge ports 126, 126' according to Comparative Example 1 are located on the coating liquid discharge nozzle 110 side from the imaginary plane A.
- a coating was carried out on a substrate 1 using a conventional integrated two-fluid nozzle 300 shown in FIG. 10.
- the integrated two-fluid nozzle 300 has a longitudinal direction perpendicular to the conveying direction Y of the substrate 1, i.e., the width direction of the substrate 1 (perpendicular to the paper surface), and is installed at a certain distance from the substrate 1 so as to face the substrate 1.
- the integrated two-fluid nozzle 300 is composed of outer die blocks 301, 301' and inner die blocks 302, 302'.
- the coating liquid is supplied to a coating liquid pocket 303 and discharged from a coating liquid discharge port 304, and the gas is supplied to gas pockets 305, 305' and discharged from gas discharge ports 306, 306'.
- the gas discharge ports 306, 306' are provided so as to sandwich the coating liquid discharge port 304 when observed from the discharge direction of the coating liquid.
- the coating liquid discharge port 304 and the gas discharge ports 306, 306' are on the same plane. Using this integrated two-fluid nozzle 300, coating was carried out on the substrate 1 in the same manner as in Example 1.
- the evaluation of whether or not droplets could be attached was judged as " ⁇ ” if it was 30% or more of the total solid content, and " ⁇ ” if it was less than 30%.
- the average particle size of the droplets was measured using a laser diffraction particle distribution meter (FLD-319A, manufactured by Seika Digital Image Co., Ltd.) for the droplets flying just before they were attached to the substrate.
- the average particle size shown here refers to the Sauter mean diameter.
- a pressure gauge (not shown) was installed so as to communicate with the coating liquid manifold 115, and the pressure in the coating liquid manifold was measured 15 minutes and 30 minutes after the start of coating.
- Example 1 it was confirmed that a part of the coating liquid discharge port 304 was clogged in a short time from the start of coating to 15 minutes.
- Example 1 even 30 minutes after the start of coating, the pressure inside the coating liquid manifold did not increase, and no blockage of the coating liquid outlet 116 and the gas outlets 126, 126' was observed, and a coating film 5 with a good coating appearance was formed.
- Example 2 [Comparison between Example 1 and Example 2] In Example 2, it was confirmed that by reducing the collision angles ⁇ and ⁇ ', the average particle size of the droplets became larger than that of Example 1. That is, it was confirmed that by changing the collision angles ⁇ and ⁇ ', the force of collision with the columnar coating liquid 3 could be controlled to change the average particle size of the droplets to a desired size. Furthermore, in both the cases of Examples 1 and 2, even 30 minutes after the start of coating, the pressure inside the coating liquid manifold did not increase, and no blockage of the coating liquid discharge port 116 and the gas discharge ports 126 and 126' was observed, and a coating film 5 with a good coating appearance could be formed.
- Example 3 [Comparison between Example 1 and Example 3]
- the distance L1 between the coating liquid discharge port and the collision point was set to 2 mm, and the collision angles ⁇ and ⁇ ' were set to 80° so that the gas discharge ports 126 and 126' were located away from the imaginary surface A toward the substrate 1. It was confirmed that the average particle size of the droplets was reduced by increasing the collision angles ⁇ and ⁇ ' compared to Example 1. Furthermore, in both the cases of Examples 1 and 3, the pressure inside the coating liquid manifold did not increase even 30 minutes after the start of coating, and no blockage of the coating liquid discharge port 116 and the gas discharge ports 126 and 126' was observed, and a coating film 5 with a good coating appearance could be formed.
- the collision angles ⁇ , ⁇ ' were adjusted with the positions of the gas discharge ports 126, 126' fixed, but in the range of L2 ⁇ 10 mm, the fine droplets 4 could not be formed, and in the range of L2>10 mm, the gas colliding with the columnar coating liquid 3 was attenuated, and the fine droplets 4 could not be formed.
- the present invention can be applied to, but is not limited to, a coating device that forms a coating film on a substrate film such as resin, paper, thin metal film, or cloth, and a manufacturing device and manufacturing method for a substrate with a coating film that is equipped with the coating device.
Landscapes
- Coating Apparatus (AREA)
Abstract
Description
本発明は、フィルムや不織布、紙などの基材に対して液滴状の塗液を塗布する塗布装置、および塗膜付き基材の製造方法に関する。 The present invention relates to a coating device that applies a coating liquid in droplet form to a substrate such as a film, nonwoven fabric, or paper, and a method for manufacturing a substrate with a coating film.
従来、基材に塗液を液滴状に塗布する塗布装置として、スプレー塗布装置が知られている。このスプレー塗布装置においては、基材の生産性や機能性の観点から、広い幅を持つ基材の略全面に、微小液滴を均一に塗布することが求められる。 Conventionally, spray coating devices are known as coating devices that apply coating liquid to a substrate in the form of droplets. From the standpoint of substrate productivity and functionality, this type of spray coating device is required to apply minute droplets uniformly over almost the entire surface of a wide substrate.
このような場合の塗布装置として、例えば特許文献1では、塗液と同時に圧縮エアを吐出することで、吐出エアによって塗液を液滴化して噴霧することが可能な2流体型のスロット型スプレーノズル(以下、「スプレーノズル」を単に「ノズル」とも言う)が開示されている。このスプレーノズルでは、基材の幅方向に複数の塗液吐出口を有し、塗液吐出口に対して基材搬送方向の上流側と下流側から挟み込むように、エア吐出口が配置されている。そのため、吐出される液滴状の塗液は、基材の幅方向に連続した帯状の形態となり、塗膜厚みのムラや塗布ムラが発生せず、均一な塗膜を形成できる。
As an example of an application device for such a case,
しかしながら、特許文献1に開示されているスロット型のスプレーノズルでは、塗液吐出口の近傍にエア吐出口が配置されているため、吐出されたエアによって塗液吐出口において塗液の乾燥が促進される。この時、塗液に固形分を含む場合には、塗液の乾燥に伴って固形分が析出して、塗液吐出口が閉塞したり、析出した固形分によってその開口面積が小さくなったりすることがある。塗液吐出口が閉塞、あるいはその開口面積が小さくなった場合、当該箇所に対応する塗布位置において、搬送方向に連続的なスジ状の塗布抜けや、塗膜厚みの小さい領域が形成されてしまう。
また、スロット型のスプレーノズルでは、塗液吐出口とエア吐出口が同一高さの略同一面にあるため、塗液吐出口の塗液が濡れ広がってエア吐出口にまで到着し、エア吐出口で乾燥することがある。この時、塗液に固形分を含む場合には、塗液の乾燥に伴って固形分が析出して、エア吐出口が閉塞したり、その開口面積が小さくなったりすることがある。エア吐出口が閉塞、あるいはその開口面積が小さくなった場合、当該箇所では塗液が吐出されても液滴化に必要なエアが供給されないため、塗液が十分に噴出できず塗布ムラとなったり、噴出されなかった塗液が塗液吐出口近傍に溜まって、その後、基材上に落下して著しく塗布外観を悪化させたり、といった問題が生じる。
さらに、塗液に低沸点の有機溶剤などを含む場合には、塗液の乾燥が早いため、固形分の析出による塗液吐出口およびエア吐出口の閉塞がより顕著な問題となる。
However, in the slot-type spray nozzle disclosed in
In addition, in a slot-type spray nozzle, the coating liquid outlet and the air outlet are located at the same height and on approximately the same plane, so the coating liquid from the coating liquid outlet may wet and spread, reach the air outlet, and dry at the air outlet. At this time, if the coating liquid contains solids, the solids may precipitate as the coating liquid dries, causing the air outlet to become clogged or its opening area to become smaller. If the air outlet is clogged or its opening area becomes smaller, the coating liquid cannot be sufficiently ejected at that location, resulting in uneven coating, or the coating liquid that is not ejected may accumulate near the coating liquid outlet and then fall onto the substrate, significantly worsening the coating appearance.
Furthermore, when the coating liquid contains an organic solvent with a low boiling point, the coating liquid dries quickly, and clogging of the coating liquid discharge port and air discharge port due to precipitation of solids becomes a more serious problem.
このように、フィルムや不織布、紙などの基材に対して液滴状の塗液を塗布する塗布装置において、固形分を含む塗液を適用した場合でも、塗液の乾燥による塗液吐出口およびエア吐出口の閉塞を抑制して、塗液を塗布するスプレー塗布装置は見出されていない。 As described above, in a coating device that applies droplets of coating liquid to a substrate such as a film, nonwoven fabric, or paper, no spray coating device has been found that can apply a coating liquid while preventing clogging of the coating liquid outlet and air outlet due to drying of the coating liquid, even when the coating liquid contains solids.
そこで本発明は、塗液の乾燥による塗液吐出口およびエア吐出口の閉塞を抑制できる、スプレー塗布装置および塗膜付き基材の製造方法を提供する。 The present invention provides a spray coating device and a method for manufacturing a coated substrate that can prevent clogging of the coating fluid outlet and air outlet due to drying of the coating fluid.
[1] 上記課題を解決する本発明は、走行する基材に液滴状の塗液を塗布する塗布装置であって、
基材の幅方向に配列された複数の塗液吐出口を有する塗液吐出ノズルと、
上記塗液吐出口から吐出された複数の柱状の塗液に対して気体を吹き付けるための、少なくとも2つの気体吐出ノズルと、を有し、
上記2つの気体吐出ノズルは、
塗液の吐出方向から観察して、それぞれの気体吐出口が上記複数の塗液吐出口の列を挟み、
上記気体吐出口が、上記塗液吐出口をとおり塗液の吐出方向に直交する仮想面よりも、基材側に離れたところに位置するように設けられており
かつ、基材の幅方向から観察して、前記気体吐出口から気体の吐出方向に延びる軸が、前記塗液吐出口から塗液の吐出方向に延びる軸とのなす角度が90°未満である。
[1] The present invention solves the above-mentioned problems by providing a coating device that applies a coating liquid in droplet form to a traveling substrate, comprising:
a coating liquid discharge nozzle having a plurality of coating liquid discharge ports arranged in a width direction of the substrate;
at least two gas ejection nozzles for blowing gas onto the plurality of columnar coating liquids ejected from the coating liquid ejection port,
The two gas discharge nozzles are:
When observed from the direction in which the coating liquid is discharged, the gas discharge ports are positioned between the rows of the coating liquid discharge ports,
The gas discharge port is provided so as to be located toward the substrate away from an imaginary plane that passes through the coating liquid discharge port and is perpendicular to the coating liquid discharge direction, and when observed from the width direction of the substrate, an angle between an axis extending in the gas discharge direction from the gas discharge port and an axis extending in the coating liquid discharge direction from the coating liquid discharge port is less than 90°.
また、本発明の塗布装置は、以下の[2]または[3]の態様であることが好ましい。
[2] 上記気体吐出ノズルが、基材の幅方向から観察した上記気体吐出口からの気体の吐出方向を変更できる、上記[1]の塗布装置。
The coating device of the present invention is preferably in the following embodiment [2] or [3].
[2] The coating device according to [1] above, wherein the gas discharge nozzle can change a discharge direction of the gas from the gas discharge port when observed from a width direction of the substrate.
[3] 上記塗布装置を基材の幅方向から観察して、上記塗液吐出口から塗液の吐出方向に延びる軸と上記気体吐出口から気体の吐出方向に延びる軸との交点から上記塗液吐出口までの距離が2mm以上である、上記[1]または[2]の塗布装置。
[4] 上記課題を解決する本発明の塗膜付き基材の製造方法は、
走行する基材に向けて、基材の幅方向に配列された複数の塗液吐出口から塗液を吐出し、
走行する基材の幅方向から観察して、前記吐出される塗液に対して対称かつ塗液の吐出方向とのなす角度が90°未満となる方向から、上記塗液吐出口から基材側に離れた位置の塗液に向けて気体を吹き付け、
液滴化した上記塗液を基材に塗布する。
[3] The coating device according to [1] or [2] above, wherein, when the coating device is observed from the width direction of the substrate, the distance from the intersection of an axis extending in the coating liquid discharge direction from the coating liquid discharge port and an axis extending in the gas discharge direction from the gas discharge port to the coating liquid discharge port is 2 mm or more.
[4] The method for producing a substrate having a coating film according to the present invention, which solves the above problems, comprises:
A coating liquid is discharged from a plurality of coating liquid discharge ports arranged in a width direction of the substrate toward the traveling substrate;
blowing gas toward the coating liquid at a position away from the coating liquid discharge port toward the substrate from a direction that is symmetrical with respect to the discharged coating liquid and forms an angle of less than 90° with the discharge direction of the coating liquid when observed from the width direction of the traveling substrate;
The coating liquid in the form of droplets is applied onto a substrate.
また、本発明の塗膜付き基材の製造方法は、以下の[5]~[7]のいずれを行うことが好ましい。
[5] 上記塗液における上記気体を吹き付ける位置から上記塗液吐出口までの距離が2mm以上である、上記[4]の塗膜付き基材の製造方法。
[6] 上記塗液が固形分を含む、上記[4]または[5]の塗膜付き基材の製造方法。
[7] 上記塗液の溶媒が有機溶剤である、上記[4]~[6]のいずれかの塗膜付き基材の製造方法。
The method for producing a substrate having a coating film of the present invention is preferably any one of the following steps [5] to [7].
[5] The method for producing a substrate with a coating film according to [4] above, wherein the distance from the position at which the gas is blown in the coating liquid to the coating liquid discharge port is 2 mm or more.
[6] The method for producing a substrate having a coating film according to the above [4] or [5], wherein the coating liquid contains solids.
[7] The method for producing a substrate with a coating film according to any one of the above [4] to [6], wherein the solvent for the coating liquid is an organic solvent.
本発明の塗布装置を用いれば、塗液の乾燥による塗液吐出口およびエア吐出口の閉塞を抑制でき、塗液を安定的に塗布することができる。 By using the coating device of the present invention, clogging of the coating fluid outlet and air outlet due to drying of the coating fluid can be prevented, and the coating fluid can be applied stably.
本発明の望ましい実施の形態について図面を参照して説明する。ただし、本発明は図面に示された形態に限定されるものではなく、発明の目的を達成できて、かつ発明の要旨を逸脱しない範囲において、種々の変更は有り得る。 The preferred embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the form shown in the drawings, and various modifications are possible as long as the object of the invention can be achieved and the gist of the invention is not deviated from.
図1を参照する。図1は、本発明の第1の実施形態の塗布装置100の概略断面図である。塗布装置100は、塗液を吐出するための塗液吐出ノズル110と、気体を吐出するための気体吐出ノズル120、120’とから構成されている。
Refer to Figure 1. Figure 1 is a schematic cross-sectional view of a
図2を参照する。図2は、図1の塗液吐出ノズル110の構成を表す分解斜視図である。塗液吐出ノズル110は塗液ノズルブロック111、112および塗液シム113から構成されている。片方の塗液ノズルブロック111は、塗液を塗液吐出ノズル110内部に供給する塗液供給口114と、塗液供給口114に連通して塗液を幅方向に拡幅するための塗液マニホールド115とを有している。塗液シム113は塗液ノズルブロック111、112に挟まれる櫛歯状のシムであり、塗液ノズルブロック111、112と合わさることで、塗液シム113の櫛歯間の隙間が幅方向に複数の塗液流路を形成する。また、塗液シム113の櫛歯間の隙間は、塗液マニホールド115に連通している。
なお、「幅方向」とは、塗液の吐出方向Xおよび基材1の搬送方向Y(図1参照)と直交する方向に相当する。
Please refer to FIG. 2. FIG. 2 is an exploded perspective view showing the configuration of the coating
The "width direction" corresponds to a direction perpendicular to the discharge direction X of the coating liquid and the transport direction Y of the substrate 1 (see FIG. 1).
図3を参照する。図3は、図1の気体吐出ノズル120の構成を表す分解斜視図であり、図1の気体吐出ノズル120’も同様の構成である。気体吐出ノズル120は気体ノズルブロック121、122および気体シム123から構成されている。片方の気体ノズルブロック121は、気体を気体吐出ノズル120内部に供給する気体供給口124と、気体供給口124に連通して気体を幅方向に拡幅するための気体マニホールド125とを有している。気体シム123はコの字の形状をしたシムであり、気体ノズルブロック121、122に挟まれることで、幅方向にスリット状の気体流路を形成する。この際、気体シム123の気体流路は、気体マニホールド125に連通している。
Refer to FIG. 3. FIG. 3 is an exploded perspective view showing the configuration of the
再び図1を参照する。塗液は、塗液吐出ノズル110の先端に位置し、幅方向に一列に並ぶ塗液吐出口116から吐出される。気体は、気体吐出ノズル120、120’の先端に位置する気体吐出口126、126’から吐出される。気体吐出ノズル120、120’は、塗液の吐出方向Xから観察して、気体吐出口126、126’が塗液吐出ノズル110の塗液吐出口116の列を挟むように設けられており、気体吐出口126、126’は、塗液吐出口116を通って塗液の吐出方向Xに直交する仮想面Aよりも、塗液の吐出方向Xにおいて離れたところに位置している。この際、気体吐出口126、126’は、仮想面Aよりも基材1側に位置している。ここで、塗布装置100は基材1と一定の距離を空けて設置され、塗液吐出ノズル110の塗液吐出口116は塗液の吐出方向Xの延長線が基材1と交差するように配置されている。塗液吐出ノズル110および気体吐出ノズル120、120’は基材1の短手方向、すなわち基材1の搬送方向Yと直交する方向に延在している。
Refer to FIG. 1 again. The coating liquid is discharged from the coating
図4を参照する。図4は、本発明の塗布装置100の概略断面図および塗布装置100を用いて基材に塗液を塗布する様子を示した図である。まず、塗液吐出ノズル110に供給された塗液2は、塗液吐出ノズル110の先端に設けられた複数の塗液吐出口116から吐出され、吐出された塗液は連続に連なって柱状塗液3を形成する。次いで、柱状塗液3は気体吐出ノズル120、120’の先端に設けられた気体吐出口126、126’から吐出された気体と衝突点Bで衝突し、微細な液滴4となる。衝突点Bは、塗液吐出口116から塗液の吐出方向Xに延びる軸と気体吐出口126、126’から気体の吐出方向に延びる軸との交点である。微細な液滴4は搬送される基材1上に着滴し、塗膜5を形成する。ここで、気体吐出口126、126’は塗液の吐出方向Xにおいて仮想面Aから離れたところに位置しているため、気体吐出口126、126’から吐出された気体が塗液吐出ノズル110に当たって減衰することが無く、さらには、吐出した気体が塗液吐出口116に直接当たることがない。すなわち、塗液吐出口116での塗液の乾燥を抑制することができる。この時、気体吐出口126、126’から吐出された気体は、気体吐出口126、126’から遠ざかるにつれて拡散していくため、塗液吐出口116に直接気体を吹き付けないように、塗液吐出口116と衝突点Bとの距離L1は2mm以上であることが好ましい。塗液吐出口116を有する塗液吐出ノズル110と、気体吐出口126、126’を有する気体吐出ノズル120、120’とが互いに独立して配置されているため、塗液吐出口116から塗液が濡れ広がったとしても、気体吐出口126、126’に塗液が達することが無く、気体吐出口126、126’で塗液が乾燥することもない。
Refer to FIG. 4. FIG. 4 is a schematic cross-sectional view of the
また、塗液吐出ノズル110から吐出された柱状塗液3が気体吐出口126、126’に付着することを防ぐために、気体吐出口126、126’と衝突点Bとの距離L2、L2’は2mm以上であることが好ましい。また、柱状塗液3を微細な液滴4とするためには、気体吐出ノズル120、120’から高速で気体を吐出して、衝突点Bで柱状塗液3に衝突させる必要がある。従って、微細な液滴4とするためには、距離L2、L2’は10mm以下であることがより好ましい。
Furthermore, in order to prevent the
なお、塗液吐出口116から塗液2を柱状に吐出するためには、各塗液吐出口116から塗液2を勢いよく吐出させる必要があり、塗液2の種類や粘度に応じて吐出量を適宜調整すればよい。発明者が鋭意検討した結果、塗液吐出ノズル110内部の櫛歯状の塗液流路内における塗液2の平均流速を2m/s以上とすることが好ましく、塗液2の種類や粘度によらず、吐出後の柱状塗液3の形状を安定させるためには5m/s以上としておくことがより好ましい。
In order to eject the
一方、柱状塗液3を微細な液滴4とするためには、気体吐出口126、126’から気体を勢いよく吐出させる必要がある。発明者が鋭意検討した結果、気体吐出ノズル120、120’内部のスリット状の気体流路内における気体の平均流速を100m/s以上にすることが好ましい。さらに、塗液の吐出開始直後など、柱状塗液3の形状が安定しない場合を想定し、気体吐出ノズル120、120’は退避機構を有していても良い。
On the other hand, in order to turn the
また、気体吐出ノズル120、120’は気体吐出方向を任意に変更でき、塗液吐出口116から吐出される塗液の吐出方向Xと、気体吐出口126、126’から気体の吐出方向に延びる軸とのなす角度θ、θ’(以下、「衝突角θ、θ’」と言う)、を任意に変更することができるように設置される。衝突点Bで微細化した液滴4を基材1の方向に飛翔させて、基材1上に着滴させるためには、衝突角θ、θ’は90°未満とする必要がある。また、衝突角θ、θ’は基材1上に着滴する液滴の大きさに影響するため、適宜変更することがよく、衝突角θ、θ’を大きくすれば液滴の大きさは小さく、衝突角θ、θ’を小さくすれば液滴の大きさを大きくすることができる。
The
また、気体吐出ノズル120、120’は塗液吐出口116から吐出される塗液の吐出方向Xに対して左右対称に設置されている必要は無く、塗液吐出ノズル110から見て左右非対称となるように気体吐出ノズル120、120’を設置しても構わない。すなわち、気体吐出ノズル120、120’から吐出された気体がそれぞれ柱状塗液3と衝突点B、B’を有していてもよく、距離L2、L2’および衝突角θ、θ’を任意に変更することができる。
In addition, the
図5を参照する。図5は、図1の塗液吐出ノズル110の先端を塗液吐出口側から見た塗液吐出ノズル110の下面図である。塗液吐出ノズル110の塗液吐出口116は矩形の開口部であって、塗液吐出ノズル110の長手方向に所定の間隔W1(以下、「配列ピッチ」という)を空けて複数個配置されており、すべての塗液吐出口116を合わせて塗液吐出幅W2となる。この時、基材1上に形成できる塗膜の幅は塗液吐出幅W2と略同じ幅となる。各塗液吐出口116の開口幅W3は、各吐出口同士の加工バラツキが5μm程度発生しても、開口面積の変化率が小さくなるように50μm以上が好ましく、また、塗液シム113の厚みt1は、シム厚みムラが5μm程度発生しても、開口面積の変化率が小さくなるように50μm以上が好ましい。また、各塗液吐出口116の開口面積は、使用する塗液の粘度や吐出する塗液の流量によって適宜調整すればよいが、塗液吐出口116から吐出される塗液に一定の流速を持たせ、柱状で吐出するためにも、50000μm2以下として、平均流速が低下しないようにすることが好ましく、20000μm2以下とすることがより好ましい。また、塗液吐出口の配列ピッチW1は、塗膜均一性の観点から10mm以下であることが好ましい。さらに、塗液吐出幅W2は塗液の系外への飛散を最小限とするために、基材幅よりも小さくすることが好ましい。
Please refer to FIG. 5. FIG. 5 is a bottom view of the coating
図6を参照する。図6は塗液吐出ノズルの別の実施形態による塗液吐出ノズル210の構成を表す分解斜視図である。塗液吐出ノズル210は塗液ノズルブロック211、212から構成されている。片方の塗液ノズルブロック211は、塗液を塗液吐出ノズル210内部に供給する塗液供給口214を有している。もう片方の塗液ノズルブロック212は、塗液を幅方向に拡幅するための塗液マニホールド215と、塗液マニホールド215に連通した塗液吐出流路217を有しており、塗液吐出流路217の先端に塗液吐出口216が形成される。塗液吐出口216の形状は矩形に限定されず、円形や楕円形であってもよい。
Please refer to FIG. 6. FIG. 6 is an exploded perspective view showing the configuration of a coating
図7を参照する。図7は、図1の気体吐出ノズル120の先端を気体吐出口側から見た気体吐出ノズル120の下面図である。気体吐出ノズル120の気体吐出口126はスリット形状となっており、気体吐出口126の幅が気体吐出幅W4となる。ここで、符号116L、116Rが示す二点鎖線は、塗液吐出ノズル110における塗液吐出幅W2の両端部の位置を示している。気体吐出幅W4は各塗液吐出口116から吐出される全ての柱状塗液3を微細な液滴4にするために、塗液吐出幅W2よりも長くなっている。なお、気体吐出口126の形状は図3および図7に示すような幅方向に渡って連続する1つのスリットに限定されず、塗液吐出口116に一対一で対応するように、幅方向に間欠で開口していてもよい。間欠状に開口する場合は、幅方向の開口長さを各塗液吐出口116の幅W3より大きくすることが好ましい。
Refer to FIG. 7. FIG. 7 is a bottom view of the
図8を参照する。図8は気体吐出ノズルの別の実施形態による気体吐出ノズル220の構成を表す分解斜視図である。気体吐出ノズル220は気体ノズルブロック221、222から構成されている。片方の気体ノズルブロック221は、気体を気体吐出ノズル220内部に供給する気体供給口224を有している。もう片方の気体ノズルブロック222は、気体を幅方向に拡幅するための気体マニホールド225と、気体マニホールド225に連通した気体吐出流路227を有しており、気体吐出流路227の先端に気体吐出口226が形成される。気体吐出口226の形状は矩形に限定されず、円形や楕円形であってもよい。
Refer to FIG. 8. FIG. 8 is an exploded perspective view showing the configuration of a
上記の通り、本発明にかかるスプレー塗布装置を用いれば、固形分を含む塗液を吐出した場合でも、塗液吐出口および気体吐出口を閉塞させることなく、安定して塗液を塗布することができる。 As described above, by using the spray coating device of the present invention, coating liquid can be stably applied without clogging the coating liquid outlet and gas outlet, even when a coating liquid containing solids is discharged.
次に、本発明の塗布装置100を用いて塗膜付き基材を製造する塗膜付き基材製造装置10について図9を用いて説明する。図9は、本発明の塗膜付き基材製造装置10の一例を示す概略図である。
Next, a coated
塗膜付き基材製造装置10は、基材1を巻き出す巻出部11と塗膜付き基材6を巻き取る巻取部12が備えられている。巻出部11と巻取部12との間には、基材1に塗液を塗布するための塗布装置100および塗膜を乾燥させるための乾燥装置13が備えられている。また、塗布装置100から吐出される気体によって基材1が振動し、塗布装置100と基材1との距離が経時で変化することを抑制するために、塗布装置100の基材1を挟んで反対側には、バックアップロール14が設けられており、基材1と接触して基材1を支持している。この時、基材1をバックアップロール14に抱かせることで、基材1の搬送によってバックアップロール14が回転し、基材1がバックアップロール14上で滑って傷が付くことを防止することもできる。さらに、塗液吐出機構として、塗布装置100に塗液を送液するための送液ポンプ15、塗液を貯留しておくタンク16を備えており、気体吐出機構として、塗布装置100に気体を供給するための加圧気体源17、気体を各気体吐出ノズルに分岐させる分岐管18、各気体吐出ノズルから供給する気体の圧力をそれぞれ調整することのできる圧力調整弁19、19’を備えている。なお、塗布装置100とバックアップロール14はブース20で囲まれており、ブース20の底部には開口部21を有し、廃液回収タンク22と連通している。
The coated
ブース20は、塗布装置100から吐出して形成された微細な液滴4のうち、基材1に付着せずに飛散した一部が周囲に飛散することを防止する。ブース20の内壁に付着した塗液は、ブース20の内壁に沿って垂れ落ち、底部開口部21を通って廃液回収タンク22に回収される。ブース20、廃液回収タンク22は塗液と接触するため、塗液に応じて材料を選定することが好ましく、例えば、塗液の溶媒が低沸点有機溶剤であるアセトンの場合は金属、あるいは耐アセトン性に優れる樹脂材料、例えば、フッ素樹脂を用いることが好ましい。
The
なお、図9で示す塗膜付き基材製造装置10において、塗布装置100からの塗液吐出方向は鉛直下方向であり、当該部の基材1の搬送方向は水平方向であるが、塗布装置100が基材1の塗布面に略対向するように設置されていればこれに限らず、例えば、塗布装置100からの塗液吐出方向を水平方向とし、当該部の搬送方向を鉛直方向としても構わない。
In the coated
次に、本発明の塗布装置100を用いた塗膜付き基材の製造方法について、再び図4を用いて説明する。塗膜付き基材は、基材1上に塗布装置100によって塗膜5を形成させることで製造される。この時、塗膜5の目付量は塗液吐出ノズル110に供給する塗液2の流量によって制御することができるため、形成した塗膜5の目付量を測定して、塗液2の供給流量を調整する手段を有することが好ましい。また、付着した液滴の大きさは気体吐出ノズル120、120’に供給する気体の流量および衝突角θ、θ’によって決まる。液滴の大きさを小さくしたい場合は、気体吐出ノズル120、120’に供給する気体の流量を大きくしたり、衝突角θ、θ’を大きくしたりする。一方、液滴の大きさを大きくしたい場合には、気体吐出ノズル120、120’に供給する気体の流量を小さくしたり、衝突角θ、θ’を小さくしたりすることで液滴の大きさを調整することができる。
Next, the method for producing a substrate with a coating film using the
また、塗液の吐出直後は塗液吐出ノズル110の塗液吐出口116から吐出される塗液2の吐出圧力が小さく、所定の吐出圧力に上昇するまでの間、柱状塗液3の形状が安定しないことがあるため、安定した柱状塗液3が形成されるまでは、気体供給ノズル120、120’に塗液が飛散しないよう、気体供給ノズル120、120’を退避させておくことが好ましい。その後、柱状塗液3の形状が安定した後に、気体吐出ノズル120、120’を柱状塗液3に接近させ、気体吐出口126、126’より気体を吐出する。これにより、気体吐出口126、126’に塗液2が付着することが無いため、気体吐出口126、126’を閉塞させずに安定した塗布が可能となる。
In addition, immediately after the coating liquid is discharged, the discharge pressure of the
本発明の塗布装置は、無機物や有機物の溶液あるいは無機物や有機物を溶媒に分散させたものなど、特に固形分を含んだ塗液に対して、大きな効果を得ることができる。また、塗液の粘度としては、吐出気体の衝突によって塗液を微細化できればいかなる粘度でも良いが、粘度が低いほど微細な液滴を形成でき、一般的に500mPa・s以下とすることで良好な塗布外観を得ることができる。特に2.0mPa・s以下とすることが好ましい。 The coating device of the present invention is particularly effective for coating liquids containing solids, such as solutions of inorganic or organic substances or dispersions of inorganic or organic substances in a solvent. The viscosity of the coating liquid may be any viscosity as long as it can be made fine by the collision of the discharged gas, but the lower the viscosity, the finer the droplets that can be formed, and generally a good coating appearance can be obtained by making the viscosity 500 mPa·s or less. It is particularly preferable to make the viscosity 2.0 mPa·s or less.
また、塗液の溶媒の一部に有機溶剤を含む場合に、特に本発明の効果を得ることができる。中でも、沸点が100℃以下の低沸点有機溶剤として、アセトアルデヒド、アセトン、アセトニトリル、アリルアルコール、ベンゼン、2-ブタノール、メチルエチルケトン、tert-ブチルアルコール、二硫化炭素、クロロホルム、シクロヘキサン、1、2、ジクロロエタン、ジクロロメタン、ジエチルエーテル、エタノール、無水エタノール、酢酸エチル、1,2、ジメトキシエタン、ギ酸エチル、プロピオン酸エチル、ヘプタン、ヘキサン、リグロイン、メタノール、酢酸メチル、プロピオン酸メチル、ペンタン、石油ベンジン、1-プロパノール、酸化プロピレン、n-プロピルエーテル、テトラヒドロフラン、トリクロロエチレン、トリエチルアミン、トリフルオロ酢酸のうち少なくとも1種を含む塗液に対して、高い効果を得ることができる。 The effects of the present invention can be particularly achieved when the coating liquid contains an organic solvent as part of the solvent. In particular, the effects are high when the coating liquid contains at least one of the following low-boiling organic solvents having a boiling point of 100°C or less: acetaldehyde, acetone, acetonitrile, allyl alcohol, benzene, 2-butanol, methyl ethyl ketone, tert-butyl alcohol, carbon disulfide, chloroform, cyclohexane, 1,2-dichloroethane, dichloromethane, diethyl ether, ethanol, anhydrous ethanol, ethyl acetate, 1,2-dimethoxyethane, ethyl formate, ethyl propionate, heptane, hexane, ligroin, methanol, methyl acetate, methyl propionate, pentane, petroleum benzine, 1-propanol, propylene oxide, n-propyl ether, tetrahydrofuran, trichloroethylene, triethylamine, and trifluoroacetic acid.
本発明に用いる気体や外気の気体成分としては、塗布に適した気体であれば特に制限はなく、空気や窒素ガス等を用いることができる。外気の雰囲気圧としては特に制限はなく、大気圧環境下や減圧環境下とすることができる。また、気体や外気の温度に特に制限はないが、気体に熱風を使うことで飛翔中の微細な液滴の乾燥が促進される。これにより、より微細な液滴を形成できることに加え、基材へ付着する水分量が減ることで、後工程の乾燥負荷も軽減することができる。 There are no particular limitations on the gas or gas components of the outside air used in the present invention, so long as they are suitable for coating, and air, nitrogen gas, etc. can be used. There are no particular limitations on the ambient pressure of the outside air, and it can be an atmospheric pressure environment or a reduced pressure environment. There are also no particular limitations on the temperature of the gas or outside air, but using hot air as the gas promotes the drying of fine droplets in flight. This not only makes it possible to form finer droplets, but also reduces the amount of moisture adhering to the substrate, thereby reducing the drying load in subsequent processes.
以下、実施例により本発明をさらに詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples. Note that the present invention is not limited to the following examples.
<塗液>
固形分としては、フッ素樹脂であるポリフッ化ビニリデンを、溶媒としては、低沸点有機溶剤であるアセトン(沸点56℃)を用意し、固形分濃度が5wt%となるように調合して塗液を作製した。
<Coating Fluid>
As the solid content, polyvinylidene fluoride, a fluororesin, was prepared, and as the solvent, acetone (boiling point 56° C.), a low boiling point organic solvent, was prepared. The solid content was mixed to a concentration of 5 wt %, to prepare a coating liquid.
[実施例1]
図9の塗膜付き基材製造装置10に図1の塗布装置100を搭載して、塗膜付き基材6を製造した。巻出部11から巻き出した基材1の上に塗布装置100を用いて塗膜を形成し、乾燥装置13で塗膜を完全に乾燥させた後に、巻取部12で塗膜付き基材6を巻き取った。その後、巻き取った塗膜付き基材6を取り出して、目視およびマイクロスコープでの観察により、液滴の付着有無や塗布外観の評価を実施した。塗布装置100での塗布条件は、塗液吐出口116をとおる仮想面Aから気体吐出口126、126’までの距離を7.5mm、塗液吐出口116と衝突点Bとの距離L1を10mm、気体吐出口126、126’と衝突点Bとの距離L2、L2’を5mm、衝突角θ、θ’を60°とした(図4参照)。塗液吐出ノズル110は、塗液吐出幅W2を210.1mm、塗液吐出口の開口幅W3を100μm、塗液シムの厚みt1を100μm、塗液吐出口の配列ピッチW1を7.5mmとした。この場合、塗液吐出口116の個数は29個となる(図5参照)。気体吐出ノズル120、120’は、気体吐出幅W4を250mm、気体シムの厚みを50μmとした(図7参照)。塗布手順としては、基材1を速度50m/minで搬送させ、塗液吐出ノズル110から塗液を100mL/minで吐出、各気体吐出ノズル120、120’から圧縮空気をそれぞれ300L/minで吐出した。
[Example 1]
The
[実施例2]
衝突角θ、θ’を30°とした以外は、実施例1と同じ条件で基材1上に塗布を実施した。
[Example 2]
Coating was carried out on the
[実施例3]
塗液吐出口116と衝突点Bとの距離L1を2mmに、衝突角θ、θ’を80°とした以外は、実施例1と同じ条件で基材1上に塗布を実施した。
[Example 3]
Coating was carried out on the
[比較例1]
塗液吐出口116と衝突点Bとの距離L1を0.5mmとした以外は、実施例1と同じ条件で基材1上に塗布を実施した。比較例1では、距離L1との関係上、気体吐出口126、126’が、仮想面Aよりも基材1側とは反対の側に位置する。すなわち、比較例1に係る気体吐出口126、126’は、仮想面Aよりも塗液吐出ノズル110側に位置する。
[Comparative Example 1]
Coating was performed on the
[比較例2]
衝突角θ、θ’を90°とした以外は、実施例1と同じ条件で基材1上に塗布を実施した。
[Comparative Example 2]
Coating was carried out on the
[比較例3]
図10に示す従来の一体型の2流体ノズル300を用いて、基材1上に塗布を実施した。一体型の2流体ノズル300は、基材1の搬送方向Yと直交する方向、すなわち基材1の幅方向(紙面と直交する方向)に長手方向を持ち、基材1と対向するように、基材1と一定の距離を設けて設置されている。一体型の2流体ノズル300は、外側ダイブロック301,301’と内側ダイブロック302、302’から構成されている。塗液は塗液ポケット303に供給され、塗液吐出口304から吐出され、気体は気体ポケット305、305’に供給され、気体吐出口306、306’から吐出される。気体吐出口306、306’は塗液の吐出方向から観察して、塗液吐出口304を挟むようにして設けられている。塗液吐出口304、気体吐出口306、306’は同一平面上にある。この一体型の2流体ノズル300を用いて、実施例1と同じ手順で基材1上に塗布を実施した。
[Comparative Example 3]
A coating was carried out on a
<評価方法>
上記の実施例、比較例において、連続して30分間の塗布を実施した。巻取部12で巻き取った塗膜付き基材6を用いて塗布状態の評価を実施した。評価結果を表1、2に示す。表中の液滴付着可否は、基材への液滴付着率を判断基準とした。基材への液滴付着率の導出は、塗膜付き基材と塗布前の基材について、それぞれ目付量を測定することで、基材上に形成した塗膜の目付量を算出し、その目付量が塗液吐出ノズルに供給した塗液に含まれる全固形分に対する割合を算出して求めた。液滴付着可否の評価としては、全固形分のうち30%以上であれば“○”、30%未満であれば“×”と判定した。また、液滴の平均粒径は、基材に付着する直前の飛翔する液滴を対象としてレーザー回折式粒子分布計(西華デジタルイメージ株式会社製、FLD-319A)を用いて計測した。なお、ここで示す平均粒径はザウター平均径をさす。また、塗布動作中における塗液吐出口116の閉塞状況を確認するために、塗液マニホールド115に連通するように圧力計(図示無し)を設置し、塗布開始から15分後と30分後に塗液マニホールド内の圧力を計測した。塗布外観において、塗布抜けとは、基材搬送方向に発生するスジ状に塗布がなされていない塗布抜け領域を表し、塗布ムラとは、基材搬送方向に発生する線状の外観ムラであり、基材への着液率が異なることで生じる塗布ムラを表す。また、塗液吐出口閉塞および気体吐出口閉塞の評価については、30分間の連続塗布の後に各吐出ノズルの先端を観察し、部分的にでも閉塞が見られた場合には、閉塞有りと判定した。なお、塗布開始直後はいずれの実施例、比較例においても塗膜の外観は良好であり、塗液マニホールド内の圧力は0.1MPaであった。
<Evaluation method>
In the above examples and comparative examples, coating was performed continuously for 30 minutes. The coating state was evaluated using the substrate 6 with the coating film wound up by the winding
[実施例1と比較例3の対比]
比較例3に記載の従来の一体型の2流体ノズル300では、塗布開始から30分後の塗液吐出口304および気体吐出口306、306’の両方で塗液の固形分が析出し、各吐出口において閉塞が確認できた。また、それに起因して塗布後の基材には、スジ状の塗布抜け領域や、線状の塗布ムラが見られた。さらに、塗液マニホールドの圧力は、塗布開始から15分が経過した段階で0.2MPaにまで上昇していた。塗液吐出口が閉塞した場合、塗液吐出口の開口面積が小さくなるため、送液ポンプで定量の塗液を送り続けると、塗液マニホールド内部の圧力が高くなる。すなわち、塗布開始から15分経過するまでの短時間の間に塗液吐出口304の一部が閉塞していたことが確認できた。一方、実施例1では、塗布開始から30分後においても塗液マニホールド内部の圧力が上昇することなく、塗液吐出口116および気体吐出口126、126’の閉塞も見られず、塗布外観が良好な塗膜5を形成することができた。
[Comparison between Example 1 and Comparative Example 3]
In the conventional integrated two-
[実施例1と実施例2の対比]
実施例2では、衝突角θ、θ’を小さくすることで、実施例1と比較して液滴の平均粒径が大きくなることを確認した。すなわち、衝突角θ、θ’を変えることで、柱状塗液3に衝突する力を制御して、液滴の平均粒径を所望の大きさに変更できることを確認した。また、実施例1、2どちらの場合においても、塗布開始から30分経過後でも塗液マニホールド内部の圧力が上昇することなく、塗液吐出口116および気体吐出口126、126’の閉塞も見られず、塗布外観が良好な塗膜5を形成することができた。
[Comparison between Example 1 and Example 2]
In Example 2, it was confirmed that by reducing the collision angles θ and θ', the average particle size of the droplets became larger than that of Example 1. That is, it was confirmed that by changing the collision angles θ and θ', the force of collision with the
[実施例1と実施例3の対比]
実施例3は塗液吐出口と衝突点との距離L1を2mmに設定し、気体吐出口126、126’が仮想面Aから基材1側に離れたところに位置するように衝突角θ、θ’を80°に設定した。実施例1と比較して衝突角θ、θ’を大きくすることで、液滴の平均粒径が小さくなることを確認した。また、実施例1、3どちらの場合においても、塗布開始から30分経過後でも塗液マニホールド内部の圧力が上昇することなく、塗液吐出口116および気体吐出口126、126’の閉塞も見られず、塗布外観が良好な塗膜5を形成することができた。
[Comparison between Example 1 and Example 3]
In Example 3, the distance L1 between the coating liquid discharge port and the collision point was set to 2 mm, and the collision angles θ and θ' were set to 80° so that the
[実施例1と比較例1の対比]
比較例1は気体吐出口126、126’が仮想面Aよりも基材1側とは反対の側に位置している。気体吐出口126、126’から吐出された気体は、塗液吐出ノズル110に当たることで、柱状塗液3に当たらず、微細化した液滴4は形成されなかった。その後、気体吐出口126、126’から吐出された気体を柱状塗液3に当てるために、気体吐出口126、126’の位置を固定した状態で衝突角θ、θ’を調整したが、L2≦10mmの範囲において、微細化した液滴4を形成することはできず、L2>10mmの範囲では、柱状塗液3に衝突する気体が減衰して、微細な液滴4を形成することができなかった。
[Comparison between Example 1 and Comparative Example 1]
In Comparative Example 1, the
[実施例1と比較例2の対比]
比較例2は衝突角θ、θ’が90°である。そのため、衝突点Bで微細化した液滴4は基材1へと向かわず、結果、液滴付着率が10%と著しく低下した。また、塗液吐出口116に向かった微細な液滴4の一部が塗液吐出口116で析出して、塗液吐出口116の一部が閉塞した。
[Comparison between Example 1 and Comparative Example 2]
In Comparative Example 2, the collision angles θ and θ' were 90°. Therefore, the
本発明は、樹脂や紙、金属薄膜、布などの基材フィルム上に塗膜を形成する塗布装置、およびその塗布装置を備えた塗膜付き基材の製造装置および製造方法に適用できるが、これに限られるものではない。 The present invention can be applied to, but is not limited to, a coating device that forms a coating film on a substrate film such as resin, paper, thin metal film, or cloth, and a manufacturing device and manufacturing method for a substrate with a coating film that is equipped with the coating device.
1 基材
2 塗液
3 柱状塗液
4 微細な液滴
5 塗膜
6 塗膜付き基材
10 塗膜付き基材製造装置
11 巻出部
12 巻取部
13 乾燥装置
14 バックアップロール
15 送液ポンプ
16 タンク
17 加圧気体源
18 分岐管
19、19’ 圧力調整弁
20 ブース
21 底部開口部
22 廃液回収タンク
100 塗布装置
110 塗液吐出ノズル
111、112 塗液ノズルブロック
113 塗液シム
114 塗液供給口
115 塗液マニホールド
116 塗液吐出口
120、120’ 気体吐出ノズル
121、122 気体ノズルブロック
123 気体シム
124 気体供給口
125、125’ 気体マニホールド
126、126’ 気体吐出口
210 塗液吐出ノズル
211、212 塗液ノズルブロック
214 塗液供給口
215 塗液マニホールド
216 塗液吐出口
217 塗液吐出流路
220 気体吐出ノズル
221、222 気体ノズルブロック
224 気体供給口
225 気体マニホールド
226 気体吐出口
227 気体吐出流路
300 一体型の2流体ノズル
301、301’ 外側ダイブロック
302、302’ 内側ダイブロック
303 塗液ポケット
304 塗液吐出口
305、305’ 気体ポケット
306、306’ 気体吐出口
A 仮想面
B、B’ 衝突点
L1 塗液吐出口と衝突点との距離
L2、L2’ 気体吐出口と衝突点との距離
t1 塗液シムの厚み
W1 塗液吐出口の配列ピッチ
W2 塗液吐出幅
W3 各塗液吐出口の開口幅
W4 気体吐出幅
X 塗液の吐出方向
Y 基材の搬送方向
θ、θ’ 衝突角
Reference Signs List 1 Substrate 2 Coating liquid 3 Columnar coating liquid 4 Fine droplets 5 Coating film 6 Substrate with coated film 10 Apparatus for manufacturing substrate with coated film 11 Unwinding section 12 Winding section 13 Drying device 14 Backup roll 15 Liquid delivery pump 16 Tank 17 Pressurized gas source 18 Branch pipes 19, 19' Pressure regulating valve 20 Booth 21 Bottom opening 22 Waste liquid recovery tank 100 Coating device 110 Coating liquid discharge nozzle 111, 112 Coating liquid nozzle block 113 Coating liquid shim 114 Coating liquid supply port 115 Coating liquid manifold 116 Coating liquid discharge port 120, 120' Gas discharge nozzle 121, 122 Gas nozzle block 123 Gas shim 124 Gas supply port 125, 125' Gas manifold 126, 126' Gas discharge port 210 Coating fluid discharge nozzles 211, 212 Coating fluid nozzle block 214 Coating fluid supply port 215 Coating fluid manifold 216 Coating fluid discharge port 217 Coating fluid discharge flow path 220 Gas discharge nozzles 221, 222 Gas nozzle block 224 Gas supply port 225 Gas manifold 226 Gas discharge port 227 Gas discharge flow path 300 Integrated two-fluid nozzle 301, 301' Outer die block 302, 302' Inner die block 303 Coating fluid pocket 304 Coating fluid discharge port 305, 305' Gas pocket 306, 306' Gas discharge port A Virtual planes B, B' Collision point L1 Distance L2, L2' between coating fluid discharge port and collision point Distance t1 between gas discharge port and collision point Thickness W1 of coating fluid shim Array pitch W2 of coating fluid discharge ports Coating fluid discharge width W3 Opening width W4 of each coating fluid discharge port Gas discharge width X Coating fluid discharge direction Y Substrate transport direction θ, θ' Collision angle
Claims (7)
基材の幅方向に配列された複数の塗液吐出口を有する塗液吐出ノズルと、
前記塗液吐出口から吐出された複数の柱状の塗液に対して気体を吹き付けるための、少なくとも2つの気体吐出ノズルと、を有し、
前記2つの気体吐出ノズルは、
塗液の吐出方向から観察して、それぞれの気体吐出口が前記複数の塗液吐出口の列を挟み、
前記気体吐出口が、前記塗液吐出口をとおり塗液の吐出方向に直交する仮想面よりも、基材側に離れたところに位置するように設けられており、
かつ、基材の幅方向から観察して、前記気体吐出口から気体の吐出方向に延びる軸が、前記塗液吐出口から塗液の吐出方向に延びる軸とのなす角度が90°未満である、
塗布装置。 A coating device that applies a coating liquid in droplet form to a traveling substrate,
a coating liquid discharge nozzle having a plurality of coating liquid discharge ports arranged in a width direction of the substrate;
at least two gas ejection nozzles for blowing gas onto the plurality of columnar coating liquids ejected from the coating liquid ejection port;
The two gas discharge nozzles are:
When observed from the direction of discharging the coating liquid, each gas discharge port sandwiches a row of the plurality of coating liquid discharge ports,
the gas discharge port is provided so as to be located away from a virtual plane that passes through the coating liquid discharge port and is perpendicular to a discharge direction of the coating liquid, toward the substrate;
and when observed from the width direction of the substrate, an angle between an axis extending in a gas discharge direction from the gas discharge port and an axis extending in a coating liquid discharge direction from the coating liquid discharge port is less than 90°.
Coating equipment.
走行する基材の幅方向から観察して、前記吐出される塗液に対して対称かつ塗液の吐出方向とのなす角度が90°未満となる方向から、前記塗液吐出口から基材側に離れた位置の塗液に向けて気体を吹き付け、
液滴化した前記塗液を基材に塗布する、
塗膜付き基材の製造方法。 A coating liquid is discharged from a plurality of coating liquid discharge ports arranged in a width direction of the substrate toward the traveling substrate;
blowing gas toward the coating liquid at a position away from the coating liquid discharge port toward the substrate from a direction that is symmetrical with respect to the discharged coating liquid and forms an angle of less than 90° with the discharge direction of the coating liquid when observed from the width direction of the traveling substrate;
The droplets of the coating liquid are applied to a substrate.
A method for producing a substrate with a coating.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023142691 | 2023-09-04 | ||
JP2023-142691 | 2023-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025052843A1 true WO2025052843A1 (en) | 2025-03-13 |
Family
ID=94923593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/028131 WO2025052843A1 (en) | 2023-09-04 | 2024-08-06 | Coating device, and method for manufacturing substrate with coating film |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025052843A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005193229A (en) * | 2003-12-09 | 2005-07-21 | Konica Minolta Photo Imaging Inc | Coating apparatus and coating method |
JP2006026576A (en) * | 2004-07-20 | 2006-02-02 | Konica Minolta Photo Imaging Inc | Coating method and slot nozzle spray device used therefor |
JP2012183469A (en) * | 2011-03-04 | 2012-09-27 | Toray Ind Inc | Coating device and coating method |
JP2019130491A (en) * | 2018-02-01 | 2019-08-08 | パナソニックIpマネジメント株式会社 | Coating method and coating device |
-
2024
- 2024-08-06 WO PCT/JP2024/028131 patent/WO2025052843A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005193229A (en) * | 2003-12-09 | 2005-07-21 | Konica Minolta Photo Imaging Inc | Coating apparatus and coating method |
JP2006026576A (en) * | 2004-07-20 | 2006-02-02 | Konica Minolta Photo Imaging Inc | Coating method and slot nozzle spray device used therefor |
JP2012183469A (en) * | 2011-03-04 | 2012-09-27 | Toray Ind Inc | Coating device and coating method |
JP2019130491A (en) * | 2018-02-01 | 2019-08-08 | パナソニックIpマネジメント株式会社 | Coating method and coating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3432819B1 (en) | Liquid spraying apparatus, liquid spraying method using the same, and chemical liquid | |
EP1142647B1 (en) | Coating apparatus and coating method | |
JP2583780Y2 (en) | Low pressure high volume spray type | |
CN100444973C (en) | Coated device and method | |
KR19980701874A (en) | Method and apparatus for applying a thin fluid coated stripe | |
US5654040A (en) | Methods and apparatus using movable member for spraying a liquid or hot melt material | |
JP2019166425A (en) | Application device | |
US9597697B2 (en) | Apparatus for the coating of a substrate | |
WO2009122004A1 (en) | Method and apparatus for coating an article using a spray-coating method | |
WO2025052843A1 (en) | Coating device, and method for manufacturing substrate with coating film | |
US9868136B2 (en) | Device for producing coated steel sheet and method for producing coated steel sheet | |
EP1584377A2 (en) | Coating apparatus | |
WO2012121026A1 (en) | Coating device and coating method | |
US20050208225A1 (en) | Coating apparatus and coating method | |
CN101204691B (en) | Coating apparatus | |
US20250041885A1 (en) | Slot-type spray nozzle, coating device, and manufacturing method of film-coated member | |
JP2022120899A (en) | SPRAY NOZZLE, COATING APPARATUS, AND METHOD FOR MANUFACTURING MEMBER WITH COATING FILM | |
JP2005262703A (en) | Coating device and coating method | |
TW202416777A (en) | Coating device and coating method capable of suppressing uneven film thickness of a coating film | |
JP4639705B2 (en) | Depressurized web tension die coater | |
TW202432258A (en) | Coating device | |
JP2005046724A (en) | Coating method and coating apparatus | |
JP2009136751A (en) | Curtain coater | |
JPH08281156A (en) | Manufacture of coated film formed plate body and sprayer of solution for forming coated film | |
JP2020179339A (en) | Film manufacturing method and film manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24862497 Country of ref document: EP Kind code of ref document: A1 |