WO2024261867A1 - Soil environment simulation device for observing soil microorganism - Google Patents
Soil environment simulation device for observing soil microorganism Download PDFInfo
- Publication number
- WO2024261867A1 WO2024261867A1 PCT/JP2023/022774 JP2023022774W WO2024261867A1 WO 2024261867 A1 WO2024261867 A1 WO 2024261867A1 JP 2023022774 W JP2023022774 W JP 2023022774W WO 2024261867 A1 WO2024261867 A1 WO 2024261867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soil
- environment simulator
- soil environment
- aggregates
- microorganisms
- Prior art date
Links
- 239000002689 soil Substances 0.000 title claims abstract description 132
- 244000005700 microbiome Species 0.000 title claims abstract description 46
- 238000004088 simulation Methods 0.000 title claims abstract description 29
- 239000000853 adhesive Substances 0.000 claims description 34
- 230000001070 adhesive effect Effects 0.000 claims description 34
- 239000000758 substrate Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000000813 microbial effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
Definitions
- This disclosure relates to a soil environment simulator for observing soil microorganisms.
- Soil generally contains 10 9 -10 10 microorganisms per gram, with 10 4 -10 5 species. These diverse and abundant microorganisms can coexist in soil because the microenvironment contains voids of a size suitable for the growth of each microorganism, isolating them from each other. Observing the behavior of microorganisms in such soil microenvironments can be important for understanding the functions of microorganisms and developing microbial utilization technologies in agriculture, environmental science, etc. However, many microorganisms are difficult to cultivate in a laboratory environment, and the ecology of many of them is unknown. In addition, soil is optically opaque, and there are limited techniques for observing microorganisms in the soil environment.
- Non-Patent Document 1 One of the major issues regarding soil microorganisms is that most microorganisms that live in soil are difficult to culture. This means that it is difficult to understand the microbial populations present in soil.
- One solution to this problem is the development of rRNA amplicon analysis, an analytical technique that does not require cultivation, which makes it possible to determine the types and proportions of microorganisms present in the target soil.
- rRNA amplicon analysis an analytical technique that does not require cultivation, which makes it possible to determine the types and proportions of microorganisms present in the target soil.
- microorganisms interact with each other, positional information about what other microorganisms these microorganisms have symbiotic relationships with is important in order to clarify the functions of microorganisms in soil.
- positional information about what other microorganisms these microorganisms have symbiotic relationships with is important in order to clarify the functions of microorganisms in soil.
- soil is optically opaque, it has been difficult to verify the positional relationships between microorganisms, such as microbial segregation and symbiotic relationships, in the diverse microbial communities that exist in natural soil.
- This disclosure was made in consideration of the above-mentioned problems, and aims to provide a soil environment simulator for observing soil microorganisms.
- a soil environment simulator for observing soil microorganisms includes a main body including an adhesive part and a processing part connected to the adhesive part, and a soil simulation structure is formed on the upper surface of the processing part, and the soil simulation structure includes a plurality of columnar structures, each of which has an upper surface at its upper end, and the upper surface of the columnar structure is included in approximately the same plane as the upper surface of the adhesive part.
- FIG. 1A is a schematic diagram (top view) showing the whole and a part of a soil environment simulator according to an embodiment.
- FIG. 1B is a schematic diagram (side view) showing the whole and a part of the soil environment simulator of the embodiment.
- FIG. 2A is a schematic diagram (top view) showing a cover part of the soil environment simulator of the embodiment.
- FIG. 2B is a schematic diagram (side view) showing the cover of the soil environment simulator of the embodiment.
- FIG. 3A is a schematic diagram (top view) showing a soil environment simulator including macro-aggregates according to an embodiment.
- FIG. 3B is a schematic diagram (side view) showing a soil environment simulator including macro-aggregates according to an embodiment.
- FIG. 4 is a schematic diagram (side view) showing a soil environment simulator including a plurality of main bodies stacked vertically according to the embodiment.
- the soil microorganisms in this disclosure are not limited to organisms that live in soil and are of a size that can be accommodated in the soil environment simulator of the embodiment.
- the soil microorganisms may be a variety of organisms including bacteria, archaea, fungi, animals, plants, or combinations thereof.
- the soil environment simulator of the embodiment allows observation of soil microorganisms.
- the soil microorganisms can be observed without any special staining treatment, or can be observed after staining (e.g., fluorescent staining) by a method known to those skilled in the art.
- staining e.g., fluorescent staining
- embodiments are contemplated in which chemically or genetically modified microorganisms are included to facilitate detection or for other purposes.
- the soil environment simulator of the embodiment is a device that simulates soil structure, and can advantageously be used by being embedded in soil for at least a certain period of time. By embedding the device in actual soil for a certain period of time, the microbial flora in the soil can expand within the device.
- the soil environment simulator of the embodiment is a device that reproduces the large and small gaps in soil, which are thought to be important for the differentiation of microorganisms, and by reproducing the soil microstructure with openings through which microorganisms in the soil can flow in and out on the substrate surface, it is possible to observe the distance relationship of the microbial population within the microstructure.
- Such a soil-embedded device can be embedded in soil for a certain period of time and then retrieved, and the microorganisms within the device can be observed.
- the soil simulation device of the embodiment can be composed of a substrate (e.g., glass, polymer, etc.) on whose surface a soil simulation structure is formed, and a cover portion (which can be, for example, glass, polymer, etc., and can be the same material as the substrate or a different material) adhered to the substrate surface, and the soil simulation structure formed on the substrate surface can reproduce three types of microstructure sizes: gaps within microaggregates (e.g., 1-10 ⁇ m), gaps between microaggregates (e.g., 10-50 ⁇ m), and gaps between macroaggregates (e.g., ⁇ 50 ⁇ m).
- This feature can provide the effect of making it possible to observe the distribution of microorganisms and/or the spatial relationships between microorganisms within the microstructure.
- FIG. 1A and 1B are schematic diagrams showing the whole (lower side of FIG. 1A and FIG. 1B) and a part (upper side of FIG. 1A, which is a partially enlarged view) of an example of a soil environment simulator of an embodiment.
- the soil environment simulator shown in these figures has a main body 1, which has an adhesive part 2, an upper surface 2' of the adhesive part, a processed part 3, an upper surface 3' of the processed part, a soil simulation structure 4, a columnar structure 5, and an upper surface part 5' at the upper end of the columnar structure, and the columnar structure 5 is clustered to form a micro aggregate 6.
- FIG. 1A shows the appearance of this soil environment simulator as seen from above
- FIG. 1B shows the appearance as seen from the side.
- Such a soil environment simulator can be provided in different sizes depending on the individual application, and can be, for example, a microfluidic device-like device with a diameter (or maximum diameter) of the processed part of 10 cm or less or 5 cm or less.
- the diameter (or maximum diameter) of the processed part is typically 0.5 cm or more or 1 cm or more, but the lower limit is not particularly limited.
- the processed portion 3 may be 2-6 cm wide by 2-3 cm long (at the boundary line with the adhesive portion 2), and such a processed portion can be fabricated in a substrate having the same dimensions as a normal microscope slide.
- the dimensions of the main body 1 may be 7-8 cm wide by 2-3 cm long.
- the thickness of the main body may be, for example, 0.5-5 mm.
- the main body 1 includes an adhesive portion 2 and a processed portion 3 connected thereto.
- the main body 1 may be formed from a transparent substrate, and examples of materials for the transparent substrate include glass and various synthetic resins. It is preferable that the processed portion 3 of the main body is transparent, and in particular, it is preferable that the area of the processed portion 3 that does not have the columnar structure 5 is transparent.
- the use of a transparent substrate can facilitate observation of the sample in the device using a microscope or the like. However, an embodiment in which a soil environment simulator made of an opaque substrate is observed using a microscope equipped with, for example, epi-illumination can also be contemplated.
- the thickness of the main body 1 is not limited, but it is preferable that the thickness is suitable for microscopic observation (for example, 25 ⁇ m to 1600 ⁇ m).
- the adhesive portion 2 typically has an upper surface 2' that is a flat surface.
- the adhesive portion 2 can be bonded to the cover portion 7 described below or to the underside of the main body 1 of another stacked soil environment simulator via the upper surface 2'.
- the underside of the cover portion 7 or the underside of the other stacked main body 1 can have a shape (typically a flat surface) corresponding to the upper surface 2' so as to enable bonding (e.g., bonding by close contact) with the upper surface 2' of the adhesive portion 2.
- the upper surface 2' of the adhesive portion 2 does not necessarily have to be flat all over.
- the upper surface 2' may have a protrusion and the underside of the cover portion 7 or the underside of the other stacked main body 1 may have a hole that engages with the protrusion, or vice versa.
- the processing unit 3 has a soil simulation structure 4 formed on its upper surface 3'. By storing soil microorganisms in the processing unit 3 on which the soil simulation structure 4 is formed, the behavior of the soil microorganisms in the simulated soil structure can be observed. As described later, the processing unit 3 can simulate soil structures of different sizes, including one or more of columnar structures 5, microaggregates 6, and macroaggregates 8. Each columnar structure 5 can mimic individual soil or sand grains in nature. The microaggregates 6 and macroaggregates 8 in the device of the embodiment can mimic aggregates in nature.
- aggregates are larger particles of soil or sand that have been consolidated, and are classified into microaggregates (diameter less than 250 ⁇ m) and macroaggregates (diameter 250 ⁇ m or more) according to size.
- Microaggregates in nature are typically soil grains that have been consolidated by bacterial secretions, and macroaggregates are typically formed by the entanglement of microaggregates, fungal hyphae, and plant roots.
- aggregates used in the context of the device is used to mean a structure that mimics aggregates found in nature.
- the processed portion 3 forms a flow path to allow microorganisms to flow in from the environment and to mimic the gaps between particles in real soil.
- the entire surface of the processed portion 3 is soil-simulating processed, and at least one side (two opposing sides in FIG. 1A) is connected to the outside of the device, allowing microorganisms to flow in from the environment into the device. Meanwhile, the area of the main body 1 that is left adjacent to (or connected to) the processed portion 3 without the soil-simulating process can form a "glue" or adhesive portion 2 for adhering the cover portion 7 to the main body 1.
- the surface when the substrate is glass, the surface may be subjected to a charge imparting treatment such as poly-L-lysine coating or other surface modification treatments known to those skilled in the art to adjust the adsorption of microorganisms.
- a charge imparting treatment such as poly-L-lysine coating or other surface modification treatments known to those skilled in the art to adjust the adsorption of microorganisms.
- the soil simulation structure 4 is a structure that mimics a natural soil structure, formed as a group of the upper surface 3' of the processed part 3 and the columnar structures 5 arranged thereon.
- the method for forming the soil simulation structure 4 can be selected appropriately by a person skilled in the art based on his/her general knowledge and is not particularly limited.
- the soil simulation structure 4 may be formed by directly engraving the substrate, or by using a laser processing method known to those skilled in the art.
- a glass etching method known to those skilled in the art can be used.
- the soil simulation structure 4 can be formed by a molding method such as PDMS molding known to those skilled in the art.
- a separately manufactured columnar structure 5 may be bonded to the upper surface 3' of the processed part, in which case the material of the columnar structure 5 may be the same as or different from the other parts of the processed part 3.
- the soil simulation structure 4 includes a plurality of columnar structures 5.
- Each column in the columnar structure 5 corresponds to an individual soil grain in the soil.
- the cross-sectional shape of the column may be circular, but is not limited thereto, and may be any shape, including, for example, elliptical, polygonal, and irregular.
- the upper surface part 5' which is the upper end of the columnar structure 5 forming the soil simulation structure, is formed so as to be included in approximately the same plane as the upper surface 2' of the adhesive part.
- the height of the upper surface part of the columnar structure can be, for example, 1 to 150 ⁇ m from the bottom surface (upper surface 3') of the processing part. This height may be varied according to the position within the soil simulation structure 4 by varying the depth of the bottom surface (upper surface 3') of the processed portion, as described below.
- the soil-simulating structure 4 may include a plurality of micro-aggregates 6.
- Each of the plurality of micro-aggregates 6 is a cluster with a diameter of 250 ⁇ m or less formed by a plurality of the columnar structures (5) densely packed together.
- the term "cluster" here means that a plurality of columnar structures are densely packed together at a density higher than the columnar structure density of the soil-simulating structure 4 as a whole, forming a visible outline in the soil-simulating structure 4, or a bundle of columns (or in some cases, a bundle of bundles of columns, like macro-aggregates described later).
- the outline of the micro-aggregate 6 is drawn with a solid line to aid understanding, but this does not mean that the micro-aggregate 6 needs to be defined by some kind of outline structure, and the outline of the micro-aggregate 6 may simply be provided by the outer edge of the bundle of columns itself.
- the distance between adjacent columnar structures (5) in a cluster of micro-aggregates (6) may preferably be 1 to 10 ⁇ m.
- the distance between adjacent columnar structures (5) in a cluster of micro-aggregates (6) may also be expressed as the width of the "inter-micro-aggregate gap".
- the distance between adjacent microaggregates (6) may preferably be 10 to 50 ⁇ m, or 10 to 30 ⁇ m.
- the soil environment simulator of this embodiment may have a cover part 7 that is attached to the adhesive part 2 and covers the processing part 3.
- FIGS. 2A and 2B are schematic diagrams showing the cover part 7 of the soil environment simulator of the embodiment.
- FIG. 2A shows the appearance of the soil environment simulator with the cover part 7 attached as seen from above, with the outlines of the micro-aggregates and adhesive part 2 visible through the transparent cover part 7 shown by dashed lines.
- FIG. 2B shows the appearance of the device as seen from the side. The portion of FIG. 2B excluding the cover part 7 corresponds to FIG. 1B.
- the cover portion 7 may be adhered to the upper surface 2' of the adhesive portion 2.
- the cover portion 7 may also be in contact with or adhered to the upper surface portion 5' of the columnar structure 5.
- the cover part 7 can be bonded by a bonding method known to those skilled in the art.
- bonding can be performed by pressure bonding (see, for example, Funano et al., Lab Chip, 2021, 21, 2244-2254). More specifically, for example, bonding can be achieved by dropping a neutral detergent diluted with water onto the glass adhesive part 2, covering it with a glass cover part, firmly fastening it with a clip, and leaving it for 1 to 24 hours, preferably 8 to 12 hours, and more preferably about 10 hours.
- bonding can be achieved by a bonding method using plasma treatment known to those skilled in the art. An adhesive known to those skilled in the art may be used for bonding.
- the soil environment simulation device of the embodiment may include macro-aggregates 8.
- the macro-aggregates 8 are clusters with diameters of more than 250 ⁇ m formed by the close gathering of a plurality of the micro-aggregates 6.
- the distance between the macro-aggregates 8 may be, for example, 10 to 50 ⁇ m or 50 ⁇ m or more.
- the soil simulation structure 4 of the device may further include isolated micro-aggregates 6 and/or isolated columnar structures 5 that are not involved in the formation of the macro-aggregates.
- FIGS. 3A and 3B are schematic diagrams showing a soil environment simulation device including macro aggregates 8 according to an embodiment.
- FIG. 3A shows the appearance of the soil environment simulation device including macro aggregates 8 as seen from above, and
- FIG. 3B shows the appearance of the device as seen from the side.
- the intra-macro-aggregate gaps 9 are more generally understood to be one aspect of the "inter-micro-aggregate gaps". Outside the clusters of macro-aggregates, there are extra-macro-aggregate gaps 10. Two or more of the extra-macro-aggregate gaps 10, the intra-macro-aggregate gaps 9 (or the inter-micro-aggregate gaps), and the intra-micro-aggregate gaps described above may have different depths.
- depth refers to the distance from the bottom surface (the upper surface 3' of the processed portion) of the gap to the position of the upper surface 5' of the adjacent columnar structure 5.
- the depth of the extra-macro-aggregate gaps 10 is smaller than the depth of the intra-macro-aggregate gaps 9. In this way, it is possible to provide imitation of various soil environments not only by the difference in gap width but also by the difference in gap depth.
- the depth of the inter-macroaggregate gaps may be, for example, 50 to 1600 ⁇ m, preferably 50 to 150 ⁇ m or 50 to 60 ⁇ m.
- the depth of the inter-microaggregate gaps, with or without the presence of macroaggregates may be, for example, 1 to 1600 ⁇ m, preferably 1 to 150 ⁇ m or 1 to 5 ⁇ m.
- the soil environment simulator of the embodiment may include multiple main bodies 1 stacked one on top of the other.
- Figure 4 shows such an embodiment.
- the soil environment simulator of the embodiment illustrated in FIG. 4 includes a plurality of bodies 1 stacked one on top of the other, with the upper surface 2' of the adhesive portion 2 of a first body of the plurality of bodies 1 being adhered to the lower surface 2'' of a second body stacked directly above the first body.
- first and second used here are terms of convenience to describe any two bodies 1 directly stacked, and are not meant to specify, for example, the bottom two of the plurality of stacked bodies 1.
- the processing portion 3 of the first body can be closed by the lower surface of the second body instead of the cover portion 7.
- the soil environment simulator which includes multiple bodies 1 stacked one on top of the other in the embodiment, allows the stacked bodies 1 to be separated and dyed without compromising their condition after recovery from being buried in soil. For example, a neutral detergent diluted with water is dropped onto the adhesive part 2 of a glass body 1, another body 1 is placed on top of it, and the laminate of bodies 1 that has been bonded by firmly fastening and pressing with clips can be peeled off using a razor blade.
- the soil environment simulator including multiple main bodies 1 stacked vertically in the embodiment, for example when the main bodies 1 are made of resin, it is possible to observe not only on the intact soil environment simulator, but also after processing the sample, such as by sectioning with a microtome.
- a soil environment simulator can be used for preparing thin sections for a scanning electron microscope (SEM) and staining serial sections.
- a soil environment simulator for observing soil microorganisms comprising: The soil environment simulator includes a main body including an adhesive portion and a processing portion connected to the adhesive portion, A soil simulating structure is formed on the upper surface of the processed portion, The soil-simulating structure includes a plurality of columnar structures; The columnar structure has a top surface at an upper end, A soil environment simulator, wherein an upper surface of the columnar structure is included in approximately the same plane as an upper surface of the adhesive portion.
- the soil environment simulator includes a plurality of the bodies stacked vertically, and an upper surface of an adhesive portion of a first body among the plurality of the bodies is adhered to a lower surface of a second body stacked directly above the first body.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本開示は、土壌微生物を観察するための土壌環境模擬装置に関する。 This disclosure relates to a soil environment simulator for observing soil microorganisms.
土壌中には一般に109~1010個/gの微生物が104~105種存在している。これら多種多様かつ多量の微生物が土壌中に共存することができるのは、微小環境中に各微生物の生育に適したサイズの空隙が存在し、お互いに隔離されているためである。微生物の機能の理解ならびに農業、環境科学等における微生物利用技術の開発のためには、こういった土壌微小環境における微生物の挙動を観察することが重要となり得る。しかしながら、微生物の多くは実験室環境での培養が難しく、生態が不明のものが多い。また、土壌は光学的に非透過性であり、土壌環境中の微生物を観察する技術が限られているという問題がある。 Soil generally contains 10 9 -10 10 microorganisms per gram, with 10 4 -10 5 species. These diverse and abundant microorganisms can coexist in soil because the microenvironment contains voids of a size suitable for the growth of each microorganism, isolating them from each other. Observing the behavior of microorganisms in such soil microenvironments can be important for understanding the functions of microorganisms and developing microbial utilization technologies in agriculture, environmental science, etc. However, many microorganisms are difficult to cultivate in a laboratory environment, and the ecology of many of them is unknown. In addition, soil is optically opaque, and there are limited techniques for observing microorganisms in the soil environment.
土壌微生物に関する大きな課題の一つとして、土壌に生息するほとんどの微生物が難培養性であることが挙げられる。このことは、土壌中に存在する微生物集団を把握すること自体に困難が存在することを意味する。その解決手法の1つとして、培養不要の解析技術であるrRNAアンプリコン解析が発達し、ターゲットとする土壌中にどのような微生物がどのような割合で存在するかを知ることができるようになってきた。また、中空糸膜を用いて微生物を環境中で培養することで難培養性微生物の採取率を向上させる技術も存在する(非特許文献1)。 One of the major issues regarding soil microorganisms is that most microorganisms that live in soil are difficult to culture. This means that it is difficult to understand the microbial populations present in soil. One solution to this problem is the development of rRNA amplicon analysis, an analytical technique that does not require cultivation, which makes it possible to determine the types and proportions of microorganisms present in the target soil. There is also technology that improves the collection rate of difficult-to-culture microorganisms by culturing microorganisms in the environment using hollow fiber membranes (Non-Patent Document 1).
微生物は互いに相互作用しあっているため、土壌内の微生物の機能を明らかにするためには、これら微生物が、どのような他の微生物と共生関係を結んでいるのかという位置的な情報は重要である。従来の技術では、土壌にどのような微生物が存在するかを知り、その微生物を採取することは可能であるものの、土壌環境においてどのように微生物が分布するかという位置的な情報を得ることはできなかった。また、土壌は光学的に不透過であるため、自然土壌に存在する多種多様な微生物のコミュニティにおける、微生物のすみ分け・共生関係といった微生物間の位置関係の検証は困難であった。 Because microorganisms interact with each other, positional information about what other microorganisms these microorganisms have symbiotic relationships with is important in order to clarify the functions of microorganisms in soil. With conventional technology, it is possible to know what microorganisms exist in soil and to collect those microorganisms, but it is not possible to obtain positional information about how microorganisms are distributed in the soil environment. In addition, because soil is optically opaque, it has been difficult to verify the positional relationships between microorganisms, such as microbial segregation and symbiotic relationships, in the diverse microbial communities that exist in natural soil.
本開示は、上記のような課題に鑑みてなされたものであり、土壌微生物を観察するための土壌環境模擬装置を提供することを目的とする。 This disclosure was made in consideration of the above-mentioned problems, and aims to provide a soil environment simulator for observing soil microorganisms.
本開示の一態様の、土壌微生物を観察するための土壌環境模擬装置は、接着部と、前記接着部に連結した加工部とを含む本体を含み、前記加工部の上表面には土壌模擬構造が形成されており、前記土壌模擬構造は複数の柱状構造を含み、前記柱状構造は上端に上面部を有し、前記柱状構造の上面部は、前記接着部の上表面と概同一平面内に含まれている。 In one embodiment of the present disclosure, a soil environment simulator for observing soil microorganisms includes a main body including an adhesive part and a processing part connected to the adhesive part, and a soil simulation structure is formed on the upper surface of the processing part, and the soil simulation structure includes a plurality of columnar structures, each of which has an upper surface at its upper end, and the upper surface of the columnar structure is included in approximately the same plane as the upper surface of the adhesive part.
本開示によれば、土壌微生物を観察するための土壌環境模擬装置を提供することができる。 According to the present disclosure, it is possible to provide a soil environment simulator for observing soil microorganisms.
以下、本開示の実施の形態について図面を参照しながら説明する。 The following describes an embodiment of the present disclosure with reference to the drawings.
本開示における土壌微生物は、土壌中に生息する生物であって、実施形態の土壌環境模擬装置に収容可能な大きさの生物であれば限定されない。前記土壌微生物は、細菌、古細菌、真菌類、動物、植物、またはそれらの組合せを含む多様な生物であり得る。 The soil microorganisms in this disclosure are not limited to organisms that live in soil and are of a size that can be accommodated in the soil environment simulator of the embodiment. The soil microorganisms may be a variety of organisms including bacteria, archaea, fungi, animals, plants, or combinations thereof.
実施形態の土壌環境模擬装置によって土壌微生物の観察を行うことができる。前記土壌微生物は、特段の染色処理を行わずに観察することもできるし、当業者によって知られた方法によって染色(例えば蛍光染色)した上で観察することもできる。観察直前の段階に限らず、例えば装置内に微生物を導入する段階で、検出を促進することまたはその他の目的のために化学的または遺伝的に改変された微生物を含ませる実施形態も企図される。 The soil environment simulator of the embodiment allows observation of soil microorganisms. The soil microorganisms can be observed without any special staining treatment, or can be observed after staining (e.g., fluorescent staining) by a method known to those skilled in the art. Not only at the stage immediately prior to observation, but also at the stage of introducing the microorganisms into the device, embodiments are contemplated in which chemically or genetically modified microorganisms are included to facilitate detection or for other purposes.
実施形態の土壌環境模擬装置は、土壌構造を模擬したデバイスであり、有利なことに、少なくとも一定期間土に包埋して使用することも可能である。実際の土壌に当該装置を一定期間包埋することにより、その土壌における微生物叢が装置内に拡張し得る。実施形態の土壌環境模擬装置は、微生物同士のすみ分けに重要だと考えられる、土壌中の大小の間隙を再現したデバイスであり、土壌中の微生物が流入、流出可能な開口部を備える土壌の微細構造を基材表面に再現することで、その微細構造内における微生物集団の距離的な関係性を観察可能にするものである。このような土包埋デバイスを、土に一定期間包埋したのち回収した上で、装置内の微生物を観察することができる。しかしながら、土に包埋することなく、人為的に微生物集団を選択し装置に適用することも可能である。 The soil environment simulator of the embodiment is a device that simulates soil structure, and can advantageously be used by being embedded in soil for at least a certain period of time. By embedding the device in actual soil for a certain period of time, the microbial flora in the soil can expand within the device. The soil environment simulator of the embodiment is a device that reproduces the large and small gaps in soil, which are thought to be important for the differentiation of microorganisms, and by reproducing the soil microstructure with openings through which microorganisms in the soil can flow in and out on the substrate surface, it is possible to observe the distance relationship of the microbial population within the microstructure. Such a soil-embedded device can be embedded in soil for a certain period of time and then retrieved, and the microorganisms within the device can be observed. However, it is also possible to artificially select a microbial population and apply it to the device without embedding it in soil.
実施形態の土壌模擬デバイスは、表面に土壌模擬構造が形成された基材(例えばガラス、ポリマーなど)と、基材表面に接着されたカバー部(例えばガラス、ポリマーなどであり得、基材と同じ材質であっても異なった材質であってもよい)とから構成され得、基材表面に形成された土壌模擬構造は、ミクロ団粒内の間隙(例えば1~10μm)、ミクロ団粒間の間隙(例えば10~50μm)、およびマクロ団粒間の間隙(例えば≧50μm)の3種類のサイズの微小構造を再現することができる。この特徴により、微小構造内における微生物の分布および/または微生物間の距離的な関係性を観察できるという効果が奏され得る。 The soil simulation device of the embodiment can be composed of a substrate (e.g., glass, polymer, etc.) on whose surface a soil simulation structure is formed, and a cover portion (which can be, for example, glass, polymer, etc., and can be the same material as the substrate or a different material) adhered to the substrate surface, and the soil simulation structure formed on the substrate surface can reproduce three types of microstructure sizes: gaps within microaggregates (e.g., 1-10 μm), gaps between microaggregates (e.g., 10-50 μm), and gaps between macroaggregates (e.g., ≧50 μm). This feature can provide the effect of making it possible to observe the distribution of microorganisms and/or the spatial relationships between microorganisms within the microstructure.
図1Aおよび図1Bは、実施形態の土壌環境模擬装置の一例の全体(図1A下側と図1B)および部分(部分拡大図である図1A上側)を示す模式図である。これらの図に示す土壌環境模擬装置は、本体1を有し、その本体1が、接着部2、接着部の上表面2’、加工部3、加工部の上表面3’、土壌模擬構造4、柱状構造5、および柱状構造の上端にある上面部5’を有し、柱状構造5はクラスター化してミクロ団粒6を形成している。図1Aはこの土壌環境模擬装置を上から見た外観を示しており、図1Bは側面から見た外観を示している。このような土壌環境模擬装置は、個々のアプリケーションに応じて異なる大きさで提供することができ、例えば加工部の直径(あるいは最大径)が10cm以下または5cm以下であるマイクロ流体デバイス様装置とすることができる。加工部の直径(あるいは最大径)は典型的には0.5cm以上または1cm以上であるがその下限は特に限定されない。典型的な一例において、加工部3は横2~6cm×縦(接着部2との境界線)2~3cmであり得、そのような加工部は通常の顕微鏡用スライドガラスと同様の寸法の基材中に作製可能である。その場合の本体1の寸法は横7~8cm×縦2~3cmであり得る。本体の厚みは例えば0.5~5mmであり得る。
1A and 1B are schematic diagrams showing the whole (lower side of FIG. 1A and FIG. 1B) and a part (upper side of FIG. 1A, which is a partially enlarged view) of an example of a soil environment simulator of an embodiment. The soil environment simulator shown in these figures has a
本体1は、接着部2および、これに連結した加工部3を含む。本体1は透明な基材によって形成されていてもよく、透明な基材の材料の例にはガラスおよび各種合成樹脂が含まれる。本体のうち加工部3が透明であることが好ましく、特に、加工部3のうち柱状構造5を有さない領域が透明であることが好ましい。透明な基材を用いることで、顕微鏡等による装置内の試料の観察が促進され得る。しかしながら、不透明な基材で構成された土壌環境模擬装置を例えば落射照明を備える顕微鏡により観察する実施形態も企図され得る。本体1の厚みは限定されないが、顕微鏡観察に適した厚み(例えば25μm~1600μm)であることが好ましい。
The
接着部2は典型的には平坦面である上表面2’を有する。接着部2は上表面2’を介して、後述するカバー部7と、または積層された他の土壌環境模擬装置の本体1の下面と、接着することができる。カバー部7の下面、または積層される他の本体1の下面は、当該接着部2の上表面2’との接着(例えば密着による接着)を可能にするように上表面2’に対応する形状(典型的には平坦面)を有し得る。接着部2の上表面2’は必ずしも全面的に平坦でなくてもよい。例えば、図示していないが、上表面2’が突起を有しカバー部7の下面もしくは積層される他の本体1の下面がその突起と係合する穴を有してもよいし、またはその逆であってもよい。
The
加工部3は、その上表面3’に土壌模擬構造4が形成される。土壌模擬構造4が形成された加工部3に土壌微生物を収納することで、模倣された土壌構造中での土壌微生物の挙動を観察することができる。後述するように加工部3では、柱状構造5、ミクロ団粒6、およびマクロ団粒8のうちの1つ以上を含む、サイズの異なる土壌構造を模倣することができる。個々の柱状構造5は、自然界における個々の土粒または砂粒を模倣し得る。実施形態の装置におけるミクロ団粒6、およびマクロ団粒8は、自然界における団粒を模倣し得る。自然界において、団粒とは、土粒または砂の粒子が固まってより大きな粒となったものであり、大きさによってミクロ団粒(直径250μm未満のもの)とマクロ団粒(直径250μm以上のもの)に分類される。自然界におけるミクロ団粒は、典型的には、土粒が細菌分泌物等によって固まったものであり、マクロ団粒は典型的にはミクロ団粒、糸状菌菌糸、および植物の根などが絡まって形成されたものである。本明細書において、装置の文脈で用いられる団粒という用語は、自然界における団粒を模倣する構造を意味するものとして用いられる。
The
実施形態において、加工部3は、環境中から微生物が流入可能なように、そして本物の土壌中の粒子間間隙を模倣するように、流路を形成する。加工部3の全面に渡り土壌模擬加工が施されその少なくとも1側辺(図1Aでは対向する2側辺)が装置外部と通じることにより、環境から装置内に微生物が流入することが可能になる。一方、本体1のうち当該土壌模擬加工を施さずに加工部3に隣接して残された(あるいは結合された)領域は、カバー部7を本体1に接着するための「のりしろ」すなわち接着部2を構成し得る。
In an embodiment, the processed
実施形態において、例えば基材がガラスの場合、表面に当業者に知られるポリ-L-リジンコーティング等の電荷付与処理またはその他の表面改質処理を施すことで微生物の吸着性を調節してもよい。 In an embodiment, for example, when the substrate is glass, the surface may be subjected to a charge imparting treatment such as poly-L-lysine coating or other surface modification treatments known to those skilled in the art to adjust the adsorption of microorganisms.
土壌模擬構造4は、加工部3の上表面3’とその上に配置された柱状構造5の集団として形成される、自然界の土壌構造を模倣する構造である。土壌模擬構造4が形成される方法は当業者が通常の知識に基づいて適宜選択することができ特に限定されないが、例えば基材を直接彫ることによって行ってもよいし、当業者に知られたレーザー加工法を用いて行ってもよい。また、ガラス基材を用いる場合、例えば当業者によって知られたガラスエッチングの方法を用いることもできる。基材がポリジメチルシロキサン(PDMS)等のシリコーン系または非シリコーン系樹脂である場合も、例えば当業者によって知られたPDMS成型等の成型方法によって土壌模擬構造4を形成することができる。別途製造された柱状構造5を加工部の上表面3’に結合させてもよく、その場合、柱状構造5の材質は、加工部3の他部分と同じであっても異なってもよい。
The
土壌模擬構造4は複数の柱状構造5を含む。柱状構造5中の個々の柱が、土壌中の個々の土粒に相当する。柱の断面形状は円形とし得るがそれに限定されず、例えば楕円形、多角形、および不定形を含む任意の形状にし得る。カバー部7を接着することにより上側を閉じて加工部3に流路を形成するために、土壌模擬構造を形成する柱状構造5の上端である上面部5’は、接着部の上表面2’と概同一平面に含まれるように形成される。これは、カバー部7を本体1の接着部2に接着したときに、加工部3中の柱状構造5の上面部5’もカバー部7に接触できることを意味する。隣接する柱状構造5の間には液体および場合によっては微生物が流通できるように間隙が存在し、これらの間隙が上記流路を形成する。柱状構造の上面部の高さは、例えば加工部の底面(上表面3’)から1~150μmであり得る。この高さは、後述するように加工部の底面(上表面3’)の深さを変動させることにより、土壌模擬構造4内の位置に応じて変動させてもよい。
The
図1A、Bに示すように、土壌模擬構造4は複数のミクロ団粒6を含み得る。前記複数のミクロ団粒6の各々は、複数の前記柱状構造(5)が密集して形成する直径250μm以下のクラスターである。ここでいうクラスターとは、土壌模擬構造4全体としての柱状構造密度よりも高い密度で複数の柱状構造が密集することにより土壌模擬構造4中に視認可能な輪郭、あるいは柱の束(場合によっては、後述するマクロ団粒のように、柱の束の束)を形成しているものを意味する。図1A下側では、理解を補助するために、ミクロ団粒6の輪郭を実線で描いているが、これはミクロ団粒6が何らかの輪郭構造によって画定される必要があることは意味せず、ミクロ団粒6の輪郭はあくまで柱の束自体の外縁によって提供され得る。ミクロ団粒(6)のクラスター内の隣接する柱状構造(5)の間の距離は、好ましくは1~10μmであり得る。ミクロ団粒(6)のクラスター内の隣接する柱状構造(5)の間の距離は、「ミクロ団粒内間隙」の幅とも表現され得る。隣接するミクロ団粒(6)の間の距離は、好ましくは10~50μm、または10~30μmであり得る。
As shown in Figures 1A and 1B, the soil-simulating
実施形態の土壌環境模擬装置は、接着部2に接着しかつ加工部3を覆うカバー部7を有し得る。
The soil environment simulator of this embodiment may have a
図2Aおよび図2Bは、実施形態の土壌環境模擬装置のカバー部7を示す模式図である。図2Aはカバー部7が接着した土壌環境模擬装置を上から見た外観を示しており、透明なカバー部7を通して見えるミクロ団粒および接着部2の輪郭を破線で表している。図2Bは前記装置を側面から見た外観を示している。図2Bのうちカバー部7を除いた部分は図1Bに対応する。
FIGS. 2A and 2B are schematic diagrams showing the
カバー部7は接着部2の上表面2’に接着し得る。また、カバー部7は、柱状構造5の上面部5’にも接触または接着し得る。
The
カバー部7の接着は、当業者によって知られた接着法によって行い得る。例えば本体1の基材がガラスである場合、圧着によって接着を行い得る(例えばFunano et al., Lab Chip, 2021, 21, 2244-2254参照)。より具体的には、例えば、ガラス製の接着部2に水で薄めた中性洗剤を滴下してガラス製カバー部で覆い、クリップでしっかりと留めて1~24時間、好ましくは8~12時間、より好ましくは10時間程度放置することによって接着を達成し得る。本体1の基材が樹脂である場合、当業者によって知られたプラズマ処理による接合法により接着を達成し得る。接着のために当業者に知られた接着剤を用いてもよい。
The
図3を参照して、実施形態の土壌環境模擬装置は、マクロ団粒8を含み得る。前記マクロ団粒8は、複数の前記ミクロ団粒6が密集して形成する直径250μm超のクラスターである。マクロ団粒8が複数ある場合、マクロ団粒8間の距離は例えば10~50μmまたは50μm以上であり得る。前記装置の土壌模擬構造4は、マクロ団粒8に加えて、マクロ団粒の形成に関与していない隔離されたミクロ団粒6および/または隔離された柱状構造5をさらに含んでもよい。
Referring to FIG. 3, the soil environment simulation device of the embodiment may include macro-aggregates 8. The macro-aggregates 8 are clusters with diameters of more than 250 μm formed by the close gathering of a plurality of the
図3Aおよび図3Bは、実施形態のマクロ団粒8を含む土壌環境模擬装置を示す模式図である。図3Aはマクロ団粒8を含む土壌環境模擬装置を上から見た外観を示しており、図3Bは前記装置を側面から見た外観を示している。
FIGS. 3A and 3B are schematic diagrams showing a soil environment simulation device including
マクロ団粒8に含まれるミクロ団粒6の間には、マクロ団粒内間隙9が含まれる。マクロ団粒内間隙9は、より一般的に、「ミクロ団粒間間隙」の一態様であることが理解される。マクロ団粒のクラスターの外には、マクロ団粒外間隙10が存在する。マクロ団粒外間隙10、マクロ団粒内間隙9(またはミクロ団粒間間隙)、および上述したミクロ団粒内間隙のうちの2つ以上は、互いに深さが異なっていてもよい。この文脈における「深さ」とは、その間隙についての底面(加工部上表面3’)から、隣接する柱状構造5の上面部5’の位置までの距離である。図3Bに例示する実施形態では、マクロ団粒外間隙10の深さが、マクロ団粒内間隙9の深さよりも小さくされている。このようにして、間隙の幅の違いだけでなく、間隙の深さの違いによっても、多様な土壌環境の模倣を提供することができる。マクロ団粒外間隙の深さは例えば50~1600μmであり得、好ましくは50~150μmまたは50~60μmであり得る。マクロ団粒の存在の有無に関わらず、ミクロ団粒間間隙の深さは、例えば1~1600μmであり得、好ましくは1~150μmまたは1~5μmであり得る。
Between the
実施形態の土壌環境模擬装置は、上下に積層された複数の前記本体1を含み得る。図4はそのような実施形態を示している。
The soil environment simulator of the embodiment may include multiple
図4に例示された実施形態の土壌環境模擬装置は、上下に積層された複数の本体1を含み、複数の本体1のうちの第1の本体の接着部2の上表面2’が、第1の本体の直上に積層された第2の本体の下表面2’’に接着されている。ここで用いられる「第1の」「第2の」という用語は、直接重ねられた任意の2つの本体1を記述する便宜のための用語であり、例えば積層された複数の本体1のうちの最下の2つを特定する意味ではない。図4に示すように、第1の本体の加工部3は、カバー部7の代わりに第2の本体の下表面によって閉じられ得る。
The soil environment simulator of the embodiment illustrated in FIG. 4 includes a plurality of
実施形態の上下に積層された複数の本体1を含む土壌環境模擬装置は、土壌中包埋から回収した後の状態を損なうことなく、重ねた本体1の乖離および染色操作が可能である。例えば、ガラス製の本体1の接着部2に水で薄めた中性洗剤を滴下して別の本体1を重ね、クリップでしっかりと留めて圧着することにより接着した本体1の積層体は、カミソリの刃を用いて剥離することができる。
The soil environment simulator, which includes
実施形態の上下に積層された複数の本体1を含む土壌環境模擬装置は、例えば本体1を樹脂で形成した場合には、インタクトな土壌環境模擬装置上での観察だけでなく、ミクロトーム等による切片化など、試料加工したうえでの観察が可能なものにすることができる。例えばこのような土壌環境模擬装置を、走査型電子顕微鏡(SEM)用の薄切切片の作製および連続切片の染色等に用いることもできる。
In the soil environment simulator including multiple
<付記>
本開示は以下の実施形態を含む。
(付記1)
土壌微生物を観察するための土壌環境模擬装置であって、
前記土壌環境模擬装置は、接着部と、前記接着部に連結した加工部とを含む本体を含み、
前記加工部の上表面には土壌模擬構造が形成されており、
前記土壌模擬構造は複数の柱状構造を含み、
前記柱状構造は上端に上面部を有し、
前記柱状構造の上面部は、前記接着部の上表面と概同一平面内に含まれている
土壌環境模擬装置。
(付記2)
前記土壌模擬構造が、複数のミクロ団粒を含み、前記複数のミクロ団粒の各々は、複数の前記柱状構造が密集して形成する直径250μm以下のクラスターである、付記1に記載の土壌環境模擬装置。
(付記3)
前記ミクロ団粒のクラスター内の隣接する柱状構造の間の距離は1~10μmである、付記1または2に記載の土壌環境模擬装置。
(付記4)
前記複数のミクロ団粒である複数のクラスターのうち隣接するクラスターの間の距離は10~50μmである、付記1~3のいずれか一項に記載の土壌環境模擬装置。
(付記5)
前記柱状構造の上面部の高さは、前記加工部の底面から1~150μmである、付記1~4のいずれか一項に記載の土壌環境模擬装置。
(付記6)
さらに、前記接着部に接着しかつ前記加工部を覆うカバー部を有する、付記1~5のいずれか一項に記載の土壌環境模擬装置。
(付記7)
前記土壌模擬構造が、マクロ団粒を含み、前記マクロ団粒は、複数の前記ミクロ団粒が密集して形成する直径250μm超のクラスターである、付記1~6のいずれか一項に記載の土壌環境模擬装置。
(付記8)
前記土壌環境模擬装置は上下に積層された複数の前記本体を含み、複数の前記本体のうちの第1の本体の接着部の上表面が、前記第1の本体の直上に積層された第2の本体の下表面に接着されている、付記1~7のいずれか一項に記載の土壌環境模擬装置。
<Additional Notes>
The present disclosure includes the following embodiments.
(Appendix 1)
A soil environment simulator for observing soil microorganisms, comprising:
The soil environment simulator includes a main body including an adhesive portion and a processing portion connected to the adhesive portion,
A soil simulating structure is formed on the upper surface of the processed portion,
The soil-simulating structure includes a plurality of columnar structures;
The columnar structure has a top surface at an upper end,
A soil environment simulator, wherein an upper surface of the columnar structure is included in approximately the same plane as an upper surface of the adhesive portion.
(Appendix 2)
The soil environment simulator according to
(Appendix 3)
The soil environment simulator according to
(Appendix 4)
The soil environment simulator according to any one of
(Appendix 5)
The soil environment simulator according to any one of
(Appendix 6)
The soil environment simulator according to any one of
(Appendix 7)
The soil environment simulator according to any one of
(Appendix 8)
The soil environment simulator includes a plurality of the bodies stacked vertically, and an upper surface of an adhesive portion of a first body among the plurality of the bodies is adhered to a lower surface of a second body stacked directly above the first body. The soil environment simulator described in any one of
1 本体
2 接着部
2’ 接着部上表面
2’’ 接着部下表面
3 加工部
3’ 加工部上表面
4 土壌模擬構造
5 柱状構造
5’ 柱状構造上面部
6 ミクロ団粒
7 カバー部
8 マクロ団粒
9 マクロ団粒内間隙
10 マクロ団粒外間隙
1
Claims (8)
前記土壌環境模擬装置は、接着部と、前記接着部に連結した加工部とを含む本体を含み、
前記加工部の上表面には土壌模擬構造が形成されており、
前記土壌模擬構造は複数の柱状構造を含み、
前記柱状構造は上端に上面部を有し、
前記柱状構造の上面部は、前記接着部の上表面と概同一平面内に含まれている
土壌環境模擬装置。 A soil environment simulator for observing soil microorganisms, comprising:
The soil environment simulator includes a main body including an adhesive portion and a processing portion connected to the adhesive portion,
A soil simulating structure is formed on the upper surface of the processed portion,
The soil-simulating structure includes a plurality of columnar structures;
The columnar structure has a top surface at an upper end,
A soil environment simulator, wherein an upper surface of the columnar structure is included in approximately the same plane as an upper surface of the adhesive portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/022774 WO2024261867A1 (en) | 2023-06-20 | 2023-06-20 | Soil environment simulation device for observing soil microorganism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/022774 WO2024261867A1 (en) | 2023-06-20 | 2023-06-20 | Soil environment simulation device for observing soil microorganism |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024261867A1 true WO2024261867A1 (en) | 2024-12-26 |
Family
ID=93935108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/022774 WO2024261867A1 (en) | 2023-06-20 | 2023-06-20 | Soil environment simulation device for observing soil microorganism |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024261867A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0376572A (en) * | 1989-08-17 | 1991-04-02 | Osaka Gas Co Ltd | Method for proliferating vesicular-arbuscular mycorrhizal fungus and apparatus therefor |
CN105841995A (en) * | 2016-03-18 | 2016-08-10 | 中国科学院亚热带农业生态研究所 | Plant rhizosphere and non-rhizosphere soil sampling device and sampling method |
JP2017532970A (en) * | 2014-10-29 | 2017-11-09 | コーニング インコーポレイテッド | Perfusion bioreactor platform |
JP2020527346A (en) * | 2017-07-14 | 2020-09-10 | コーニング インコーポレイテッド | 3D cell culture vessel for manual or automatic medium replacement |
WO2023089732A1 (en) * | 2021-11-18 | 2023-05-25 | 日本電信電話株式会社 | Microorganism observation device |
-
2023
- 2023-06-20 WO PCT/JP2023/022774 patent/WO2024261867A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0376572A (en) * | 1989-08-17 | 1991-04-02 | Osaka Gas Co Ltd | Method for proliferating vesicular-arbuscular mycorrhizal fungus and apparatus therefor |
JP2017532970A (en) * | 2014-10-29 | 2017-11-09 | コーニング インコーポレイテッド | Perfusion bioreactor platform |
CN105841995A (en) * | 2016-03-18 | 2016-08-10 | 中国科学院亚热带农业生态研究所 | Plant rhizosphere and non-rhizosphere soil sampling device and sampling method |
JP2020527346A (en) * | 2017-07-14 | 2020-09-10 | コーニング インコーポレイテッド | 3D cell culture vessel for manual or automatic medium replacement |
WO2023089732A1 (en) * | 2021-11-18 | 2023-05-25 | 日本電信電話株式会社 | Microorganism observation device |
Non-Patent Citations (1)
Title |
---|
ITO, MANAMI: "Aiming to control soil carbon/nitrogen cycles for greenhouse gas reduction", BIJINESU KOMYUNIKESHON - BUSINESS COMMUNICATION, KIKAKU SENTA, TOKYO, JP, vol. 59, no. 12, 1 January 2022 (2022-01-01), JP , pages 16 - 17, XP009559722, ISSN: 0385-695X * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1109747C (en) | Compact cell culture slide | |
US20170247652A1 (en) | Device and Method for High Throughput Bacterial Isolation | |
Doan et al. | Artificial surfaces in phyllosphere microbiology | |
US10787639B2 (en) | Ecosystem for determining plant-microbe interactions | |
WO2013148745A1 (en) | Nanofluidic device for isolating, growing, and characterizing microbial cells | |
CN103710263A (en) | cell culture device | |
KR20180085749A (en) | Selective particle transfer from one device to another | |
CN114276930A (en) | Gas-liquid culture type organ chip and application thereof | |
Skibbe et al. | Gomphoneis tegelensis sp. nov.(Bacillariophyceae): a morphological and molecular investigation based on selected single cells | |
US9249382B2 (en) | Devices and methods for the selective isolation of microorganisms | |
KR101395203B1 (en) | Micro fluidic culture apparatus for cell culture, process of thereof and method for cell culture using the same | |
CN203065491U (en) | Cell culture device | |
WO2024261867A1 (en) | Soil environment simulation device for observing soil microorganism | |
Ciniglia et al. | Cyanidium chilense (Cyanidiophyceae, Rhodophyta) from tuff rocks of the archeological site of Cuma, Italy | |
Avery et al. | Effect of photoperiod and host distribution on the horizontal transmission of Isaria fumosorosea (Hypocreales: Cordycipitaceae) in greenhouse whitefly assessed using a novel model bioassay | |
JP5166399B2 (en) | Devices and methods for isolation and culture of microorganisms | |
CN102796659A (en) | Porous single cell observation plate and use thereof | |
Bos et al. | A bacterial antibiotic resistance accelerator and applications | |
CN103060197A (en) | Reagent concentration responsive microfluidic cell culture chip and preparation method thereof | |
CN103060193A (en) | Novel temperature response micro-fluidic cell culturing chip and preparation method thereof | |
CN115044469A (en) | Single cell in-situ culture chip and separation method of in-situ pure culture thereof | |
Van Nieuwenhoven | Mechanical bactericide by biomimetics of the nanopillars on insect wings | |
Reiser et al. | Single Cell Microarrays Fabricated by Microscale Plasma-Initiated Protein Patterning (μ PIPP) | |
US11993764B2 (en) | Devices for studying plant-fungus interactions and for imaging plant roots | |
Anstett et al. | Growing foliose lichens on cover slips: a method for asexual propagation and observing development |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23942304 Country of ref document: EP Kind code of ref document: A1 |