+

WO2024247950A1 - Stretchable sheet manufacturing method and stretchable sheet manufactured by same - Google Patents

Stretchable sheet manufacturing method and stretchable sheet manufactured by same Download PDF

Info

Publication number
WO2024247950A1
WO2024247950A1 PCT/JP2024/019346 JP2024019346W WO2024247950A1 WO 2024247950 A1 WO2024247950 A1 WO 2024247950A1 JP 2024019346 W JP2024019346 W JP 2024019346W WO 2024247950 A1 WO2024247950 A1 WO 2024247950A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fabric sheet
sheet
crystallinity
heat
Prior art date
Application number
PCT/JP2024/019346
Other languages
French (fr)
Japanese (ja)
Inventor
美和 腰島
泰隆 田中
Original Assignee
株式会社瑞光
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社瑞光 filed Critical 株式会社瑞光
Publication of WO2024247950A1 publication Critical patent/WO2024247950A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/04Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a layer being specifically extensible by reason of its structure or arrangement, e.g. by reason of the chemical nature of the fibres or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a method for manufacturing a stretchable sheet having a first sheet, a second sheet opposed to the first sheet, and an elastic member provided between the first sheet and the second sheet and joined to both sheets.
  • a manufacturing method for a stretchable sheet for example, as described in Patent Document 1, has been known for some time.
  • the manufacturing method described in Patent Document 1 includes the steps of introducing a first sheet onto the outer peripheral surface of an anvil roll, introducing an elastic member onto the first sheet on the anvil roll, introducing a second sheet onto the first sheet and the elastic member on the anvil roll, and ultrasonically vibrating a horn and sandwiching both sheets and the elastic member between the horn and the anvil roll to weld the first sheet and the second sheet to the elastic member.
  • the object of the present invention is to provide a method for manufacturing a stretchable sheet that can reliably weld both a first nonwoven fabric sheet and a second nonwoven fabric sheet to an elastic member while preventing an increase in equipment costs, and a stretchable sheet manufactured using the same.
  • the inventors of the present application discovered that by lowering the crystallinity of the nonwoven fabric sheet, the lower limit of the welding temperature range shifts to the lower temperature side, and came up with the method of the present invention in which a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared with a crystallinity set to have a temperature range that matches the temperature of both nonwoven fabric sheets heated by a heat supply member.
  • the first invention is a manufacturing method for manufacturing a stretchable sheet having a first nonwoven fabric sheet, a second nonwoven fabric sheet facing the first nonwoven fabric sheet, and an elastic member bonded to the first nonwoven fabric sheet and the second nonwoven fabric sheet between the first nonwoven fabric sheet and the second nonwoven fabric sheet, comprising the steps of: preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet; preparing a heat supply member for supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet for melting the first nonwoven fabric sheet and the second nonwoven fabric sheet; and preparing a sandwiching member that faces the heat supplying member in a predetermined opposing direction and sandwiches the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member between the heat supplying member and the sandwiching member; and bonding the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member to the first nonwoven fabric sheet, so that the second nonwoven fabric sheet, the elastic member, and the first nonwoven fabric sheet are aligne
  • a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared, each having a degree of crystallinity set to have a welding temperature range that includes the temperature of each nonwoven fabric sheet, although the temperatures of the first nonwoven fabric sheet and the second nonwoven fabric sheet differ depending on the distance in a specified direction from the heat supply member to both nonwoven fabric sheets.
  • both nonwoven fabric sheets can be reliably welded to the elastic member without the need for a separate structure for heating the first nonwoven fabric sheet.
  • both the first sheet and the second sheet can be reliably welded to the elastic member while preventing an increase in equipment costs.
  • FIG. 2 is a front view showing a schematic diagram of a manufacturing apparatus for manufacturing a stretch sheet.
  • 1 is a graph showing the relationship between the temperature applied to a nonwoven sheet and the heat absorbed in the nonwoven sheet.
  • FIG. 2 is a schematic diagram showing a fibrous state of an amorphous resin.
  • FIG. 2 is a schematic diagram showing a fibrous state of a crystalline resin.
  • FIG. 2 is a schematic diagram showing a state in which a part of the manufacturing apparatus of FIG. 1 is enlarged and inverted from side to side, for explaining a method for manufacturing a stretch sheet.
  • FIG. 2 is a cross-sectional view showing a schematic stacked state of a nonwoven fabric sheet according to a comparative example.
  • FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet.
  • FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet.
  • FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet.
  • FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet.
  • the stretchable sheet 1 has a first nonwoven fabric sheet 2, a second nonwoven fabric sheet 3 facing the first nonwoven fabric sheet 2, and an elastic member 4 bonded to the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 between the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3.
  • first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 they will be collectively referred to as nonwoven fabric sheets 2 and 3.
  • the stretchable sheet 1 is manufactured by sandwiching the two nonwoven fabric sheets 2, 3 and the elastic member 4 between a heat supply member (in this embodiment, an ultrasonic horn 11) and a clamping member (in this embodiment, an anvil 12), and then receiving heat from the heat supply member, welding the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 to the elastic member 4.
  • a heat supply member in this embodiment, an ultrasonic horn 11
  • a clamping member in this embodiment, an anvil 12
  • FIG. 5 shows the first nonwoven fabric sheet 2, the elastic member 4, and the second nonwoven fabric sheet 3 separated from each other between the ultrasonic horn 11 and the anvil 12, but in reality the two nonwoven fabric sheets 2, 3 and the elastic member 4 are in close contact with each other between the ultrasonic horn 11 and the anvil 12.
  • Figure 1 is a front view showing a schematic diagram of the manufacturing apparatus 10 for manufacturing the stretchable sheet 1.
  • the manufacturing device 10 has an ultrasonic horn (heat supply member) 11 that supplies heat to the nonwoven fabric sheets 2, 3 to melt the nonwoven fabric sheets 2, 3, and an anvil (clamping member) 12 that faces the ultrasonic horn 11 in a predetermined opposing direction (left-right direction in FIG. 1) and clamps the nonwoven fabric sheets 2, 3 and the elastic member 4 between the ultrasonic horn 11 and the anvil.
  • an ultrasonic horn heat supply member
  • an anvil clampping member 12 that faces the ultrasonic horn 11 in a predetermined opposing direction (left-right direction in FIG. 1) and clamps the nonwoven fabric sheets 2, 3 and the elastic member 4 between the ultrasonic horn 11 and the anvil.
  • FIG. 5 is a schematic diagram showing a state in which a part of the manufacturing apparatus of FIG. 1 is enlarged and inverted from left to right to explain the manufacturing method of the elastic sheet.
  • the ultrasonic horn 11 has a vibration surface 11a facing the anvil 12.
  • the anvil 12 has an anvil roll 12a that can rotate in a rotation direction D1 around a rotation axis J1 extending in an axial direction (direction perpendicular to the paper surface in FIG. 5) perpendicular to the facing direction, and a plurality of protrusions 12b protruding from the outer peripheral surface of the anvil roll 12a to the outside in the radial direction of the anvil roll 12a.
  • the rotation axis J1 is arranged at the center position of the vibration surface 11a of the ultrasonic horn 11 so as to be perpendicular (extending in the axial direction) to a virtual line (line extending in the facing direction) perpendicular to the vibration surface 11a.
  • the plurality of protrusions 12b are arranged at equal intervals around the rotation axis J1 and have an arc-shaped outer peripheral surface 12b1 centered on the rotation axis J1.
  • the nonwoven fabric sheets 2, 3 and the elastic member 4 are sandwiched between the vibration surface 11a of the ultrasonic horn 11 and the multiple outer peripheral surfaces 12b1 of the anvil 12 in the opposing direction, and the nonwoven fabric sheets 2, 3 are intermittently welded to the elastic member 4.
  • the elastic member 4 is a thread-like elastic member and is arranged between the vibration surface 11a and the outer peripheral surface 12b1 so as to extend in the opposing direction and in a direction perpendicular to the axial direction (tangential direction of the outer peripheral surface 12b1).
  • multiple grooves 12b2 are intermittently formed in the axial direction, extending in the circumferential direction around the rotation axis J1 to receive a part of the thickness direction of the elastic member 4 (only one is shown in FIG. 5).
  • multiple elastic members 4 are guided to the anvil 12, and one elastic member 4 is inserted into each groove 12b2 via the first nonwoven fabric sheet 2.
  • the manufacturing apparatus 10 further includes a guide member 13 for guiding the first nonwoven fabric sheet 2 to the outer peripheral surface of the anvil 12 (protruding portion 12b), an elastic member guide mechanism 14 for guiding the elastic member 4 to the anvil 12 so as to be placed on the first nonwoven fabric sheet 2 guided to the anvil 12, a second sheet guide mechanism 15 for guiding the second nonwoven fabric sheet 3 to the anvil 12 so as to cover the first nonwoven fabric sheet 2 and the elastic member 4 on the outer peripheral surface of the anvil 12, and a pull-out member 16 for pulling out the stretchable sheet 1 from between the ultrasonic horn 11 and the anvil 12.
  • a guide member 13 for guiding the first nonwoven fabric sheet 2 to the outer peripheral surface of the anvil 12 (protruding portion 12b)
  • an elastic member guide mechanism 14 for guiding the elastic member 4 to the anvil 12 so as to be placed on the first nonwoven fabric sheet 2 guided to the anvil 12
  • a second sheet guide mechanism 15 for guiding the second nonwoven fabric sheet 3 to the anvil 12
  • the guide member 13 defines a transport path for the first nonwoven fabric sheet 2 so that the first nonwoven fabric sheet 2 is guided from the raw roll (not shown) on which the first nonwoven fabric sheet 2 is wound to position P1 on the outer circumferential surface of the anvil 12.
  • the guide member 13 is a roller that can rotate around an axis that extends parallel to the rotation axis J1.
  • the elastic member guide mechanism 14 determines the transport path of the elastic member 4 so that the elastic member 4 is guided to position P2 downstream in the transport direction of the first nonwoven fabric sheet 2 based on position P1 on the outer peripheral surface of the anvil 12.
  • the elastic member guide mechanism 14 has transport members 14a, 14b, and 14c for transporting the multiple elastic members 4 from a holding roll (not shown) around which the elastic members 4 are wound to position P2, and a delivery member 14d for delivering the multiple elastic members 4 to the anvil 12.
  • the transport members 14a, 14b, and 14c transport the multiple elastic members 4 to the delivery member 14d while applying tension to the multiple elastic members 4.
  • the transport members 14a, 14b, and 14c are rollers that can rotate about an axis parallel to the rotation axis J1.
  • the delivery member 14d delivers the multiple elastic members 4 to the anvil 12 in a state where the multiple elastic members 4 transported by the transport members 14a, 14b, and 14c are positioned so that they are guided to the groove 12b2 (see FIG. 5) of the anvil 12.
  • the delivery member 14d has a tip 14d1 disposed adjacent to position P2 on the outer circumferential surface of the anvil 12.
  • the tip 14d1 has multiple grooves (not shown) intermittently formed in the axial direction for inserting the elastic members 4. These grooves are disposed to face the groove 12b2 of the anvil 12.
  • Each elastic member 4 is changed in direction by the tip 14d1 of the delivery member 14d while inserted into the groove and guided to position P2 (in the groove 12b2) of the anvil 12.
  • the second sheet guide mechanism 15 determines the conveying path of the second nonwoven fabric sheet 3 so that the second nonwoven fabric sheet 3 is guided to a position P3 downstream in the conveying direction of the first nonwoven fabric sheet 2, based on a position P2 on the outer peripheral surface of the anvil 12.
  • the position P2 is set to a position slightly upstream in the rotation direction of the anvil 12, centered on the rotation axis J1, based on the opposing position of the ultrasonic horn 11 and the anvil 12.
  • the second sheet guide mechanism 15 has conveying members 15a and 15b for conveying the second nonwoven fabric sheet 3 so that the second nonwoven fabric sheet 3 is guided to a position P3 on the outer peripheral surface of the anvil 12 from a raw roll (not shown) on which the second nonwoven fabric sheet 3 is wound.
  • the conveying members 15a and 15b are rollers that can rotate around the rotation axis J1.
  • the pull-out member 16 defines a path for transporting the stretchable sheet 1 from the opposing position between the ultrasonic horn 11 and the anvil 12 to a downstream device not shown in the figure.
  • the pull-out member 16 is a roller that can rotate around an axis that extends parallel to the rotation axis J1.
  • the manufacturing method for the stretchable sheet 1 includes a nonwoven fabric sheet preparation process, a member preparation process, an arrangement process, and a heat supply process.
  • a first nonwoven fabric sheet 2 and a second nonwoven fabric sheet 3 are prepared.
  • the nonwoven fabric sheet preparation process will be described in detail later.
  • an ultrasonic horn 11 is prepared, which supplies heat to both nonwoven fabric sheets 2, 3 to melt them, and an anvil 12 is prepared, which faces the ultrasonic horn 11 in the opposing direction and which sandwiches both nonwoven fabric sheets 2, 3 and the elastic member 4 between the ultrasonic horn 11 and the anvil 12.
  • the nonwoven fabric sheets 2, 3, and the elastic member 4 are arranged between the ultrasonic horn 11 and the anvil 12 so that the second nonwoven fabric sheet 3, the elastic member 4, and the first nonwoven fabric sheet 2 are arranged in this order in the direction away from the ultrasonic horn 11.
  • the anvil 12 is rotated in the rotation direction D1
  • the first nonwoven fabric sheet 2 is transported to position P1 on the outer circumferential surface of the anvil 12 using the guide member 13.
  • the elastic member 4 is transported to position P2 on the outer circumferential surface of the anvil 12 using the elastic member guide mechanism 14 while tension is applied to the elastic member 4.
  • the second nonwoven fabric sheet 3 is transported to position P3 on the outer circumferential surface of the anvil 12 using the second sheet guide mechanism 15.
  • the nonwoven fabric sheets 2, 3, and the elastic member 4 are arranged between the ultrasonic horn 11 and the anvil 12 in the above order.
  • ultrasonic vibrations are applied to the ultrasonic horn 11 from an ultrasonic generator (not shown) to supply heat to both nonwoven fabric sheets 2 and 3 arranged between the ultrasonic horn 11 and the anvil 12. This causes both nonwoven fabric sheets 2 and 3 to be welded to the elastic member 4, producing the stretchable sheet 1.
  • a first nonwoven fabric sheet 2 and a second nonwoven fabric sheet 3 are prepared that have properties that allow them to be reliably welded to the elastic member 4 by the heat supply step.
  • a first nonwoven fabric sheet 2 is prepared in which the crystallinity is set to have a first welding temperature range E1 that includes a first temperature T1 determined by the distance in a predetermined direction from the ultrasonic horn 11 to the first nonwoven fabric sheet 2 and the amount of heat from the ultrasonic horn 11 and is a temperature range in which the first nonwoven fabric sheet 2 can be welded to the elastic member 4.
  • a second nonwoven fabric sheet 3 is prepared in which the crystallinity is set to have a second welding temperature range E2 that includes a second temperature T2 determined by the distance in a predetermined direction from the ultrasonic horn 11 to the second nonwoven fabric sheet 3 and the amount of heat from the ultrasonic horn 11 and is a temperature range in which the second nonwoven fabric sheet 3 can be welded to the elastic member 4.
  • the first temperature T1 of the first nonwoven fabric sheet 2 is lower than the second temperature T2 of the second nonwoven fabric sheet 3, which is located closer to the ultrasonic horn 11 than the first nonwoven fabric sheet 2.
  • Fig. 3 is a schematic diagram showing the fibrous state of an amorphous resin
  • Fig. 4 is a schematic diagram showing the fibrous state of a crystalline resin.
  • a resin is composed of a plurality of string-like molecules extending in a certain direction intertwined with each other.
  • Thermoplastic resins are broadly classified into amorphous resins that do not have a crystal structure (Fig. 3) and crystalline resins that have a crystal structure (Fig. 4).
  • amorphous resins include polystyrene (PS), polyvinyl chloride (PVC), AS (Acrylonitrile Styrene) resin, ABS (Acrylonitrile Butadiene Styrene) resin, and acrylic resin.
  • examples of crystalline resins include polyethylene (PE), polypropylene (PP), nylon (polyamide synthetic resin), PET (Polyethylene terephthalate) resin, and PBT (Poly Butylene Terephthalate) resin.
  • the crystalline resin has a crystalline region C (region surrounded by a two-dot chain line) formed by regular alignment of a part of a plurality of molecules, and an amorphous region G other than the crystalline part of the plurality of molecules.
  • Figure 2 shows the results of measurements by differential scanning calorimetry. Specifically, Figure 2 shows the heat that a nonwoven fabric sheet can absorb at a certain temperature, that is, the extent to which the nonwoven fabric sheet melts at a certain temperature.
  • the waveforms W1 of both nonwoven fabric sheets 2 and 3 are shown by two-dot chain lines in Figure 2. A certain amount of material needs to be melted in the nonwoven fabric sheets 2 and 3 in order to weld them to the elastic member 4.
  • a waveform W2 of a nonwoven fabric sheet made of the same material as both nonwoven fabric sheets 2, 3 and having a higher degree of crystallinity than both nonwoven fabric sheets 2, 3 is shown by a solid line.
  • lowering the degree of crystallinity of the nonwoven fabric sheet reduces the lower limit temperature in the welding temperature range.
  • the lower limit temperature Min1 of the welding temperature ranges E1, E2 of waveform W1 is lower than the lower limit temperature Min2 of the welding temperature range E3 of waveform W2.
  • the upper limit of the welding temperature range E3 of waveform W2 is substantially the same as the upper limit Max1 of the welding temperature ranges E1, E2 of waveform W1.
  • nonwoven fabric sheets 2 and 3 are prepared that are mainly composed of polypropylene and have a crystallinity characteristic of the waveform W1.
  • the crystallinity of the nonwoven fabric sheets 2 and 3 is the same.
  • the welding temperature ranges E1 and E2 in the waveform W1 include a first temperature T1 determined by the distance in a specified direction from the ultrasonic horn 11 to the first nonwoven fabric sheet 2 and the amount of heat from the ultrasonic horn 11.
  • the welding temperature ranges E1 and E2 include a second temperature T2 determined by the distance in a specified direction from the ultrasonic horn 11 to the second nonwoven fabric sheet 3 and the amount of heat from the ultrasonic horn 11. Therefore, both nonwoven fabric sheets 2 and 3 can be sufficiently melted, and the elastic member 4 can be reliably welded.
  • the welding temperature range E3 of the waveform W2 does not include the first temperature T1, so the first nonwoven fabric sheet 2 cannot be sufficiently melted and the elastic member 4 cannot be reliably welded.
  • nonwoven fabric sheets 2 and 3 having multiple layers stacked in the opposing direction in which the ultrasonic horn 11 and the anvil 12 face each other are prepared.
  • the nonwoven fabric sheets 2 and 3 have three layers manufactured by the spunbond method. Note that S in the figure indicates that it was manufactured by the spunbond method.
  • the nonwoven fabric sheet having the characteristics shown by the waveform W2 in FIG. 2 also has three layers manufactured by the spunbond method as shown in FIG. 6.
  • H and L respectively indicate the degree of crystallinity, and L means that the crystallinity is lower than H.
  • a crystallinity of 40% is adopted as H, and a crystallinity of 34% is adopted as L.
  • the amount of heat generated by the ultrasonic horn 11, which is the premise of these, is substantially proportional to the conveying speed of the nonwoven fabric sheet 2. For example, when the conveying speed of the nonwoven fabric sheet 2 is 350 m/min, the amount of heat generated by the ultrasonic horn 11 is 765 W.
  • the distance in a specified direction from the ultrasonic horn 11 to the second nonwoven fabric sheet 3 is 0 mm (close contact state), and the distance in a specified direction from the ultrasonic horn 11 to the first nonwoven fabric sheet 2 (thickness of the second nonwoven fabric sheet 3 + width of the elastic member 4) is 1 mm or less.
  • the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 are prepared, each having a crystallinity set to have a welding temperature range E1, E2 that includes the temperatures T1, T2 of each nonwoven fabric sheet 2, 3, although the temperatures in the two nonwoven fabric sheets 2, 3 differ depending on the distance in a specified direction from the ultrasonic horn 11 to the two nonwoven fabric sheets 2, 3.
  • both nonwoven fabric sheets 2 and 3 can be reliably welded to the elastic member 4 without the need for a separate structure for heating the first nonwoven fabric sheet 2.
  • both nonwoven fabric sheets 2 and 3 having the same crystallinity are prepared, it is possible to use nonwoven fabric sheets having a common crystallinity as the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3. Therefore, compared to the case where the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 having different crystallinity are used, it is possible to reduce costs by reducing the number of types of nonwoven fabric sheets.
  • both nonwoven fabric sheets 2 and 3 have the same degree of crystallinity, but the degree of crystallinity of the first nonwoven fabric sheet 2 can be made lower than the degree of crystallinity of the second nonwoven fabric sheet 3.
  • a first nonwoven fabric sheet 2 having a crystallinity characteristic of waveform W1 may be adopted, and a second nonwoven fabric sheet 3 having a crystallinity characteristic of waveform W2 may be adopted.
  • the first welding temperature range E1 of the first nonwoven fabric sheet 2 includes the first temperature T1
  • the second welding temperature range of the second nonwoven fabric sheet 3 is the welding temperature range E3, which includes the second temperature T2. Therefore, both nonwoven fabric sheets 2 and 3 can be sufficiently melted by the heat from the ultrasonic horn 11, and the elastic member 4 can be reliably welded to both nonwoven fabric sheets 2 and 3.
  • a first nonwoven fabric sheet 2 is prepared that has a lower crystallinity than the second nonwoven fabric sheet 3, which is located closer to the ultrasonic horn 11 than the first nonwoven fabric sheet 2. Therefore, the first nonwoven fabric sheet 2 can be melted at a lower temperature than the second nonwoven fabric sheet 3, and this allows both nonwoven fabric sheets 2, 3 to be reliably welded to the elastic member 4.
  • the nonwoven fabric sheets 2 and 3 each having three layers are illustrated, but the number of layers of the nonwoven fabric sheets 2 and 3 may be one or four or more.
  • the lower limit of the welding temperature range can be lowered by lowering the crystallinity of at least one of the multiple layers. This is thought to be because at least one layer with a low crystallinity melts at a relatively low temperature, and the melting of the other layers is suppressed, thereby efficiently securing the molten material for welding and the base portion for welding (the portion that remains unmelted).
  • the nonwoven fabric preparation process it is also possible to prepare a first nonwoven fabric sheet 2 in which at least one of the multiple layers in the first nonwoven fabric sheet 2 has the first welding temperature range E1, and the crystallinity of the layers other than the at least one of the multiple layers is set to be higher than the crystallinity of the at least one layer.
  • the first welding temperature range E1 includes the first temperature T1.
  • a second nonwoven fabric sheet can be prepared in which at least one of the multiple layers in the second nonwoven fabric sheet 3 has a second welding temperature range E2, and the crystallinity of the layers other than the at least one of the multiple layers is set to be higher than the crystallinity of the at least one layer.
  • the second welding temperature range E2 includes the second temperature T2.
  • the welding temperature range E3 can be adopted as the second welding temperature range in the second nonwoven fabric sheet 3.
  • the degree of crystallinity of at least one layer may be set as described above for either the first nonwoven fabric sheet 2 or the second nonwoven fabric sheet 3, or the degree of crystallinity of at least one layer may be set as described above for both nonwoven fabric sheets 2, 3.
  • the second nonwoven fabric sheet 3 is adjacent to the ultrasonic horn 11, it is relatively easy to control the amount of heat supplied to the second nonwoven fabric sheet 3, whereas the first nonwoven fabric sheet 2 is located at a greater distance from the ultrasonic horn 11 than the second nonwoven fabric sheet 3, so it is difficult to control the amount of heat supplied to the first nonwoven fabric sheet 2. From this perspective, it is preferable that the degree of crystallinity is adjusted in the first nonwoven fabric sheet 2.
  • Figures 8 to 10 show examples in which the degree of crystallinity is adjusted as described above for both nonwoven fabric sheets 2 and 3.
  • the nonwoven fabric sheet has three layers (layers manufactured by the spunbond method), two of which have a low degree of crystallinity, and the remaining layer has a higher degree of crystallinity than the two layers.
  • a crystallinity of 40% can be used for H and a crystallinity of 34% can be used for L.
  • the nonwoven fabric sheet has four layers, one of which (the layer manufactured by the meltblown method [designated by symbol M]) has a low crystallinity, and the remaining three layers (the layers manufactured by the spunbond method) have a higher crystallinity than the one layer.
  • a crystallinity of over 40% can be used for H and a crystallinity of 10% can be used for L.
  • the nonwoven fabric sheet has five layers, two of which (layers manufactured by the meltblown method) have a low crystallinity, and the remaining three layers (layers manufactured by the spunbond method) have a higher crystallinity than the two layers.
  • a crystallinity of over 40% can be used for H and a crystallinity of 5% can be used for L.
  • the nonwoven fabric sheet it is preferable that at least one layer with a low crystallinity is sandwiched in a predetermined direction by layers other than the at least one layer.
  • the molten material of the at least one layer that melts preferentially impregnates the layers on both sides of that layer and also contributes to welding of the elastic member 4. Therefore, the molten portion of the nonwoven fabric sheet can be fused with the underlying portion to more firmly weld the elastic member 4.
  • the heat supply member is not limited to an ultrasonic horn 11.
  • a heater that generates heat by itself can also be used as the heat supply member.
  • polypropylene is used as the crystalline resin, but other crystalline resins can also be used.
  • the inventors of the present application discovered that by lowering the crystallinity of the nonwoven fabric sheet, the lower limit of the welding temperature range shifts to the lower temperature side, and came up with the method of the present invention in which a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared with a crystallinity set to have a temperature range that matches the temperature of both nonwoven fabric sheets heated by a heat supply member.
  • the first invention is a manufacturing method for manufacturing a stretchable sheet having a first nonwoven fabric sheet, a second nonwoven fabric sheet facing the first nonwoven fabric sheet, and an elastic member bonded to the first nonwoven fabric sheet and the second nonwoven fabric sheet between the first nonwoven fabric sheet and the second nonwoven fabric sheet, comprising the steps of: preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet; preparing a heat supply member for supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet for melting the first nonwoven fabric sheet and the second nonwoven fabric sheet; and preparing a sandwiching member that faces the heat supplying member in a predetermined opposing direction and sandwiches the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member between the heat supplying member and the sandwiching member; and bonding the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member to the first nonwoven fabric sheet, so that the second nonwoven fabric sheet, the elastic member, and the first nonwoven fabric sheet are aligne
  • a method for manufacturing a stretchable sheet comprising: disposing a material between the heat supplying member and the sandwiching member; supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet disposed between the heat supplying member and the sandwiching member using the heat supplying member; and preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the crystallization degrees of the first nonwoven fabric sheet and the second nonwoven fabric sheet are set so that the first nonwoven fabric sheet has a first welding temperature range that includes a first temperature determined by the distance from the heat supplying member to the first nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supplying member, and is a temperature range in which the first nonwoven fabric sheet can be welded to the elastic member; and the second nonwoven fabric sheet has a second welding temperature range that includes a second temperature determined by the distance from the heat supplying member to the second nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supplying member, and is a temperature range in which the second nonwoven fabric sheet
  • a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared, each having a degree of crystallinity set to have a welding temperature range that includes the temperature of each nonwoven fabric sheet, although the temperatures of the first nonwoven fabric sheet and the second nonwoven fabric sheet differ depending on the distance in a specified direction from the heat supply member to both nonwoven fabric sheets.
  • both nonwoven fabric sheets can be reliably welded to the elastic member without the need for a separate structure for heating the first nonwoven fabric sheet.
  • the second invention is the first invention, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the first nonwoven fabric sheet and the second nonwoven fabric sheet having the same crystallinity to set the same first welding temperature range and the same second welding temperature range that include both the first temperature and the second temperature.
  • nonwoven fabric sheets having a common crystallinity can be used as the first nonwoven fabric sheet and the second nonwoven fabric sheet. Therefore, compared to using a first nonwoven fabric sheet and a second nonwoven fabric sheet having different crystallinity, it is possible to reduce costs by reducing the number of types of nonwoven fabric sheets.
  • the third invention is the first invention, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the first nonwoven fabric sheet having a crystallinity lower than the crystallinity of the second nonwoven fabric sheet.
  • a first nonwoven fabric sheet is prepared that has a crystallinity lower than that of a second nonwoven fabric sheet that is located closer to the heat supply member than the first nonwoven fabric sheet. Therefore, the first nonwoven fabric sheet can be melted at a lower temperature than the second nonwoven fabric sheet, and both nonwoven fabric sheets can be reliably welded to the elastic member.
  • the fourth invention is any one of the first to third inventions, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the first nonwoven fabric sheet having a plurality of layers stacked in the opposing direction, and to prepare the first nonwoven fabric sheet such that at least one of the plurality of layers in the first nonwoven fabric sheet has the first welding temperature range, and the crystallinity of the layers other than the at least one of the plurality of layers is set to be higher than the crystallinity of the at least one layer.
  • the fifth invention is any one of the first to fourth inventions, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the second nonwoven fabric sheet having a plurality of layers stacked in the opposing direction, and to prepare the second nonwoven fabric sheet such that at least one of the plurality of layers in the second nonwoven fabric sheet has the second welding temperature range, and the crystallization degree of the layers other than the at least one of the plurality of layers is set to be higher than the crystallization degree of the at least one layer.
  • the inventors of the present application have found that when a first nonwoven fabric sheet and a second nonwoven fabric sheet are used in which multiple layers are laminated, the adhesion to the elastic member is improved by reducing the crystallinity of at least one of the multiple layers. This is believed to be because at least one layer with a low crystallinity melts at a relatively low temperature, and the melting of the other layers is suppressed, thereby efficiently securing the molten material for welding and the base portion for welding (the portion that remains unmelted).
  • the sixth invention provides a stretchable sheet manufactured using the manufacturing method of the first to fifth inventions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to reliably weld both a first nonwoven fabric sheet and a second nonwoven fabric sheet to an elastic member while preventing increase in device cost. A first nonwoven fabric sheet (2) and a second nonwoven fabric sheet (3) each having a set degree of crystallinity are prepared such that: the first nonwoven fabric sheet (2) has a first welding temperature range (E1), which is a temperature range including a first temperature (T1) determined by a heat quantity from an ultrasonic horn (11) and the distance in a prescribed direction from the ultrasonic horn (11) to the first nonwoven fabric (2) and enabling the first nonwoven fabric sheet (2) to be welded to an elastic member (4); and the second nonwoven fabric sheet (3) has a second welding temperature range (E2), which is a temperature range including a second temperature (T2) determined by the heat quantity from the ultrasonic horn (11) and the distance in the opposing direction from the ultrasonic horn (11) to the second nonwoven fabric sheet (3) and enabling the second nonwoven fabric sheet (3) to be welded to the elastic member (4).

Description

伸縮性シートの製造方法及びこれを用いて製造された伸縮性シートManufacturing method of elastic sheet and elastic sheet manufactured using the same

 本発明は、第1シートと、前記第1シートと対向する第2シートと、前記第1シートと前記第2シートとの間に設けられているとともに両シートに接合された弾性部材と、を有する伸縮性シートを製造するための方法に関するものである。 The present invention relates to a method for manufacturing a stretchable sheet having a first sheet, a second sheet opposed to the first sheet, and an elastic member provided between the first sheet and the second sheet and joined to both sheets.

 従来から、例えば、特許文献1に記載の伸縮性シートの製造方法が知られている。特許文献1に記載の製造方法は、アンビルロールの外周面に第1シートを導入する工程と、アンビルロールの第1シート上に弾性部材を導入する工程と、アンビルロールにおける第1シート及び弾性部材上に第2シートを導入する工程と、ホーンを超音波振動させるとともにホーンとアンビルロールとの間で両シート及び弾性部材を挟み込むことにより第1シート及び第2シートを弾性部材に溶着させる工程と、を有する。 A manufacturing method for a stretchable sheet, for example, as described in Patent Document 1, has been known for some time. The manufacturing method described in Patent Document 1 includes the steps of introducing a first sheet onto the outer peripheral surface of an anvil roll, introducing an elastic member onto the first sheet on the anvil roll, introducing a second sheet onto the first sheet and the elastic member on the anvil roll, and ultrasonically vibrating a horn and sandwiching both sheets and the elastic member between the horn and the anvil roll to weld the first sheet and the second sheet to the elastic member.

 このようにホーンの超音波振動により第1シート及び第2シートを溶融させる場合、熱源であるホーンから離れて位置する第1シートに供給される熱量が不足し、第1シートの弾性部材に対する溶着が不十分となるおそれがある。そこで、特許文献1の伸縮性シートの製造装置においては、第2シートの導入前におけるアンビル上の第1シートを加熱装置によって加熱している。 When melting the first and second sheets using ultrasonic vibrations from the horn in this way, there is a risk that the amount of heat supplied to the first sheet, which is located away from the horn (heat source), will be insufficient, resulting in insufficient welding of the first sheet to the elastic member. Therefore, in the stretchable sheet manufacturing device of Patent Document 1, the first sheet on the anvil is heated by a heating device before the second sheet is introduced.

 しかしながら、特許文献1に記載のように加熱装置を設ける場合、伸縮性シートを製造するための装置のコストが増大するという問題がある。 However, when a heating device is provided as described in Patent Document 1, there is a problem in that the cost of the device for manufacturing the stretchable sheet increases.

 一方、加熱装置を用いることなく第1シート及び第2シートを確実に溶融させるために両シートに供給される熱量(特許文献1ではホーンの超音波振動によるエネルギー)を増やすことが考えられる。しかし、この場合、熱源に近い第2シートに対して過剰の熱量が供給されることにより第2シートにおいて欠損が生じるおそれがあり、第2シートに欠損が生じた場合には弾性部材に対する第2シートの溶着が不十分となる。 On the other hand, it is possible to increase the amount of heat (energy from ultrasonic vibrations of the horn in Patent Document 1) supplied to both sheets in order to reliably melt the first and second sheets without using a heating device. However, in this case, there is a risk that damage will occur in the second sheet due to excessive heat being supplied to the second sheet, which is closer to the heat source, and if damage occurs in the second sheet, the welding of the second sheet to the elastic member will be insufficient.

国際公開第2018/070150号International Publication No. 2018/070150

 本発明の目的は、装置コストの増加を防止しながら第1不織布シート及び第2不織布シートの双方を弾性部材に確実に溶着することができる伸縮性シートの製造方法及びこれを用いて製造された伸縮性シートを提供することにある。 The object of the present invention is to provide a method for manufacturing a stretchable sheet that can reliably weld both a first nonwoven fabric sheet and a second nonwoven fabric sheet to an elastic member while preventing an increase in equipment costs, and a stretchable sheet manufactured using the same.

 本願発明者等は、不織布シートの結晶化度を低くすることにより溶着温度範囲における温度下限値が低温側にシフトする点を見出し、熱供給部材により加熱される両不織布シートの温度に見合った温度範囲を有する結晶化度に設定された第1不織布シート及び第2不織布シートを準備する本願発明の方法に想到した。 The inventors of the present application discovered that by lowering the crystallinity of the nonwoven fabric sheet, the lower limit of the welding temperature range shifts to the lower temperature side, and came up with the method of the present invention in which a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared with a crystallinity set to have a temperature range that matches the temperature of both nonwoven fabric sheets heated by a heat supply member.

 具体的に、上記課題を解決するために、第一の発明は、第1不織布シートと、前記第1不織布シートと対向する第2不織布シートと、前記第1不織布シートと前記第2不織布シートとの間で前記第1不織布シート及び前記第2不織布シートに接合された弾性部材と、を有する伸縮性シートを製造するための製造方法であって、前記第1不織布シート及び前記第2不織布シートを準備し、前記第1不織布シート及び前記第2不織布シートを溶融させるための熱を前記第1不織布シート及び前記第2不織布シートに供給するための熱供給部材と、所定の対向方向において前記熱供給部材と対向するとともに前記熱供給部材との間で前記第1不織布シート、前記第2不織布シート及び前記弾性部材を挟み込むための挟み込み部材と、を準備し、前記対向方向において前記熱供給部材から離れる方向に向けて前記第2不織布シート、前記弾性部材、及び前記第1不織布シートが順に並ぶように、前記第1不織布シート、前記第2不織布シート、及び前記弾性部材を前記熱供給部材と前記挟み込み部材との間に配置し、前記熱供給部材と前記挟み込み部材との間に配置された前記第1不織布シート及び前記第2不織布シートに対して前記熱供給部材を用いて熱を供給し、前記第1不織布シート及び前記第2不織布シートを準備するときには、前記熱供給部材から前記第1不織布シートまでの前記対向方向における距離と前記熱供給部材による熱量とにより定まる第1温度を含むとともに前記第1不織布シートを前記弾性部材に溶着可能な温度範囲である第1溶着温度範囲を前記第1不織布シートが有し、かつ、前記熱供給部材から前記第2不織布シートまでの前記対向方向における距離と前記熱供給部材による熱量とにより定まる第2温度を含むとともに前記第2不織布シートを前記弾性部材に溶着可能な温度範囲である第2溶着温度範囲を前記第2不織布シートが有するように、結晶化度がそれぞれ設定された前記第1不織布シート及び前記第2不織布シートを準備する、伸縮性シートの製造方法を提供する。 Specifically, in order to solve the above problem, the first invention is a manufacturing method for manufacturing a stretchable sheet having a first nonwoven fabric sheet, a second nonwoven fabric sheet facing the first nonwoven fabric sheet, and an elastic member bonded to the first nonwoven fabric sheet and the second nonwoven fabric sheet between the first nonwoven fabric sheet and the second nonwoven fabric sheet, comprising the steps of: preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet; preparing a heat supply member for supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet for melting the first nonwoven fabric sheet and the second nonwoven fabric sheet; and preparing a sandwiching member that faces the heat supplying member in a predetermined opposing direction and sandwiches the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member between the heat supplying member and the sandwiching member; and bonding the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member to the first nonwoven fabric sheet, so that the second nonwoven fabric sheet, the elastic member, and the first nonwoven fabric sheet are aligned in order in the opposing direction away from the heat supplying member. A method for manufacturing a stretchable sheet is provided, comprising: disposing a material between the heat supplying member and the sandwiching member; supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet disposed between the heat supplying member and the sandwiching member using the heat supplying member; and preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the crystallization degrees of the first nonwoven fabric sheet and the second nonwoven fabric sheet are set so that the first nonwoven fabric sheet has a first welding temperature range that includes a first temperature determined by the distance from the heat supplying member to the first nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supplying member, and is a temperature range in which the first nonwoven fabric sheet can be welded to the elastic member; and the second nonwoven fabric sheet has a second welding temperature range that includes a second temperature determined by the distance from the heat supplying member to the second nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supplying member, and is a temperature range in which the second nonwoven fabric sheet can be welded to the elastic member.

 第一の発明によれば、第1不織布シート及び第2不織布シートにおける温度が熱供給部材から両不織布シートへの所定方向における距離に応じて異なるものの、各不織布シートの温度を含む溶着温度範囲を有するように設定された結晶化度をそれぞれ持つ第1不織布シート及び第2不織布シートが準備される。 According to the first invention, a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared, each having a degree of crystallinity set to have a welding temperature range that includes the temperature of each nonwoven fabric sheet, although the temperatures of the first nonwoven fabric sheet and the second nonwoven fabric sheet differ depending on the distance in a specified direction from the heat supply member to both nonwoven fabric sheets.

 したがって、本発明によれば、第1不織布シートを加熱するための構成を別途設けることなく、両不織布シートを弾性部材に対して確実に溶着することができる。 Therefore, according to the present invention, both nonwoven fabric sheets can be reliably welded to the elastic member without the need for a separate structure for heating the first nonwoven fabric sheet.

 本発明によれば、装置コストの増加を防止しながら第1シート及び第2シートの双方を弾性部材に確実に溶着することができる。 According to the present invention, both the first sheet and the second sheet can be reliably welded to the elastic member while preventing an increase in equipment costs.

伸縮性シートを製造するための製造装置を概略的に示す正面図である。FIG. 2 is a front view showing a schematic diagram of a manufacturing apparatus for manufacturing a stretch sheet. 不織布シートに加えられる温度と不織布シートにおいて吸収される熱との関係を示すグラフである。1 is a graph showing the relationship between the temperature applied to a nonwoven sheet and the heat absorbed in the nonwoven sheet. 非晶性樹脂の繊維状態を示す模式図である。FIG. 2 is a schematic diagram showing a fibrous state of an amorphous resin. 結晶性樹脂の繊維状態を示す模式図である。FIG. 2 is a schematic diagram showing a fibrous state of a crystalline resin. 伸縮性シートの製造方法を説明するために、図1の製造装置の一部を拡大し、かつ、左右反転させた状態を示す模式図である。FIG. 2 is a schematic diagram showing a state in which a part of the manufacturing apparatus of FIG. 1 is enlarged and inverted from side to side, for explaining a method for manufacturing a stretch sheet. 不織布シートの比較例の積層状態を概略的に示す断面図である。FIG. 2 is a cross-sectional view showing a schematic stacked state of a nonwoven fabric sheet according to a comparative example. 不織布シートの実施例の積層状態を概略的に示す断面図である。FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet. 不織布シートの実施例の積層状態を概略的に示す断面図である。FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet. 不織布シートの実施例の積層状態を概略的に示す断面図である。FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet. 不織布シートの実施例の積層状態を概略的に示す断面図である。FIG. 2 is a cross-sectional view showing a schematic stacking state of an embodiment of a nonwoven fabric sheet.

 以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。 The following describes an embodiment of the present invention with reference to the attached drawings. Note that the following embodiment is an example of the present invention and is not intended to limit the technical scope of the present invention.

 図5は、本発明に係る伸縮性シート1の製造方法を概略的に示す側面図である。 FIG. 5 is a side view that shows a schematic diagram of a method for manufacturing the elastic sheet 1 according to the present invention.

 図5を参照して、伸縮性シート1は、第1不織布シート2と、第1不織布シート2と対向する第2不織布シート3と、第1不織布シート2と第2不織布シート3の間で第1不織布シート2及び第2不織布シート3に接合された弾性部材4と、を有する。以下、第1不織布シート2及び第2不織布シート3の区別を要しないときは、これらを不織布シート2、3と総称する。 Referring to FIG. 5, the stretchable sheet 1 has a first nonwoven fabric sheet 2, a second nonwoven fabric sheet 3 facing the first nonwoven fabric sheet 2, and an elastic member 4 bonded to the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 between the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3. Hereinafter, when there is no need to distinguish between the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3, they will be collectively referred to as nonwoven fabric sheets 2 and 3.

 伸縮性シート1は、熱供給部材(本実施形態では、超音波ホーン11)と挟み込み部材(本実施形態では、アンビル12)との間で両不織布シート2、3及び弾性部材4が挟み込まれた状態で熱供給部材からの熱を受けて第1不織布シート2及び第2不織布シート3が弾性部材4に溶着されることにより製造される。なお、図5では、説明の便宜上、第1不織布シート2、弾性部材4、及び第2不織布シート3が超音波ホーン11とアンビル12との間で互いに離れている状態が示されているが、実際には両不織布シート2、3及び弾性部材4は超音波ホーン11とアンビル12との間で互いに密着している。 The stretchable sheet 1 is manufactured by sandwiching the two nonwoven fabric sheets 2, 3 and the elastic member 4 between a heat supply member (in this embodiment, an ultrasonic horn 11) and a clamping member (in this embodiment, an anvil 12), and then receiving heat from the heat supply member, welding the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 to the elastic member 4. Note that, for the sake of convenience, FIG. 5 shows the first nonwoven fabric sheet 2, the elastic member 4, and the second nonwoven fabric sheet 3 separated from each other between the ultrasonic horn 11 and the anvil 12, but in reality the two nonwoven fabric sheets 2, 3 and the elastic member 4 are in close contact with each other between the ultrasonic horn 11 and the anvil 12.

 以下、図1を参照して、伸縮性シート1を製造するための製造装置10を説明する。図1は、伸縮性シート1を製造するための製造装置10を概略的に示す正面図である。 Below, a manufacturing apparatus 10 for manufacturing the stretchable sheet 1 will be described with reference to Figure 1. Figure 1 is a front view showing a schematic diagram of the manufacturing apparatus 10 for manufacturing the stretchable sheet 1.

 図1を参照して、製造装置10は、不織布シート2、3を溶融させるための熱を不織布シート2、3に供給する超音波ホーン(熱供給部材)11と、所定の対向方向(図1の左右方向)において超音波ホーン11と対向するとともに超音波ホーン11との間で不織布シート2、3及び弾性部材4を挟み込むためのアンビル(挟み込み部材)12と、を有する。 Referring to FIG. 1, the manufacturing device 10 has an ultrasonic horn (heat supply member) 11 that supplies heat to the nonwoven fabric sheets 2, 3 to melt the nonwoven fabric sheets 2, 3, and an anvil (clamping member) 12 that faces the ultrasonic horn 11 in a predetermined opposing direction (left-right direction in FIG. 1) and clamps the nonwoven fabric sheets 2, 3 and the elastic member 4 between the ultrasonic horn 11 and the anvil.

 図5は、伸縮性シートの製造方法を説明するために、図1の製造装置の一部を拡大し、かつ、左右反転させた状態を示す模式図である。図5に示すように、超音波ホーン11は、アンビル12側を向く振動面11aを有する。一方、アンビル12は、前記対向方向と直交する軸方向(図5における紙面と直交する方向)に延びる回転軸J1を中心として回転方向D1に回転可能なアンビルロール12aと、アンビルロール12aの外周面からアンビルロール12aの径方向の外側に突出する複数の突出部12bと、を有する。回転軸J1は、超音波ホーン11の振動面11aの中心位置において当該振動面11aに直交する仮想線(対向方向に延びる線)に対して直交するように(軸方向に延びるように)配置されている。また、複数の突出部12bは、回転軸J1を中心として等間隔に配置されているとともに回転軸J1を中心とする円弧状の外周面12b1を有する。超音波ホーン11の振動面11aとアンビル12の複数の外周面12b1との間で不織布シート2、3及び弾性部材4が対向方向に順次挟み込まれることにより、両不織布シート2、3が弾性部材4に対して間欠的に溶着される。なお、本実施形態において、弾性部材4は、糸状の弾性部材であり、対向方向及び軸方向と直交する方向(外周面12b1の接線方向)に延びるように振動面11aと外周面12b1との間に配置される。突出部12bの外周面12b1には、弾性部材4の太さ方向の一部を受け入れるために回転軸J1を中心とする周方向に延びる複数の溝12b2が軸方向に間欠的に形成されている(図5では一つのみ示している)。本実施形態では、複数本の弾性部材4がアンビル12に導かれ、各溝12b2には、第1不織布シート2を介して1本の弾性部材4が挿入される。 5 is a schematic diagram showing a state in which a part of the manufacturing apparatus of FIG. 1 is enlarged and inverted from left to right to explain the manufacturing method of the elastic sheet. As shown in FIG. 5, the ultrasonic horn 11 has a vibration surface 11a facing the anvil 12. On the other hand, the anvil 12 has an anvil roll 12a that can rotate in a rotation direction D1 around a rotation axis J1 extending in an axial direction (direction perpendicular to the paper surface in FIG. 5) perpendicular to the facing direction, and a plurality of protrusions 12b protruding from the outer peripheral surface of the anvil roll 12a to the outside in the radial direction of the anvil roll 12a. The rotation axis J1 is arranged at the center position of the vibration surface 11a of the ultrasonic horn 11 so as to be perpendicular (extending in the axial direction) to a virtual line (line extending in the facing direction) perpendicular to the vibration surface 11a. In addition, the plurality of protrusions 12b are arranged at equal intervals around the rotation axis J1 and have an arc-shaped outer peripheral surface 12b1 centered on the rotation axis J1. The nonwoven fabric sheets 2, 3 and the elastic member 4 are sandwiched between the vibration surface 11a of the ultrasonic horn 11 and the multiple outer peripheral surfaces 12b1 of the anvil 12 in the opposing direction, and the nonwoven fabric sheets 2, 3 are intermittently welded to the elastic member 4. In this embodiment, the elastic member 4 is a thread-like elastic member and is arranged between the vibration surface 11a and the outer peripheral surface 12b1 so as to extend in the opposing direction and in a direction perpendicular to the axial direction (tangential direction of the outer peripheral surface 12b1). In the outer peripheral surface 12b1 of the protrusion 12b, multiple grooves 12b2 are intermittently formed in the axial direction, extending in the circumferential direction around the rotation axis J1 to receive a part of the thickness direction of the elastic member 4 (only one is shown in FIG. 5). In this embodiment, multiple elastic members 4 are guided to the anvil 12, and one elastic member 4 is inserted into each groove 12b2 via the first nonwoven fabric sheet 2.

 再び図1を参照して、製造装置10は、第1不織布シート2をアンビル12(突出部12b)の外周面に導くためのガイド部材13と、アンビル12に導かれた第1不織布シート2上に載置されるように弾性部材4をアンビル12に導くための弾性部材案内機構14と、アンビル12の外周面上の第1不織布シート2及び弾性部材4を覆うように第2不織布シート3をアンビル12に導くための第2シート案内機構15と、超音波ホーン11とアンビル12との間から伸縮性シート1を引き出す引出部材16と、をさらに有する。 Referring again to FIG. 1, the manufacturing apparatus 10 further includes a guide member 13 for guiding the first nonwoven fabric sheet 2 to the outer peripheral surface of the anvil 12 (protruding portion 12b), an elastic member guide mechanism 14 for guiding the elastic member 4 to the anvil 12 so as to be placed on the first nonwoven fabric sheet 2 guided to the anvil 12, a second sheet guide mechanism 15 for guiding the second nonwoven fabric sheet 3 to the anvil 12 so as to cover the first nonwoven fabric sheet 2 and the elastic member 4 on the outer peripheral surface of the anvil 12, and a pull-out member 16 for pulling out the stretchable sheet 1 from between the ultrasonic horn 11 and the anvil 12.

 ガイド部材13は、第1不織布シート2が巻き付けられた図外の原反ロールからアンビル12の外周面における位置P1に第1不織布シート2が導かれるように第1不織布シート2の搬送経路を規定する。具体的に、ガイド部材13は、回転軸J1と平行に延びる軸を中心として回転可能なローラである。 The guide member 13 defines a transport path for the first nonwoven fabric sheet 2 so that the first nonwoven fabric sheet 2 is guided from the raw roll (not shown) on which the first nonwoven fabric sheet 2 is wound to position P1 on the outer circumferential surface of the anvil 12. Specifically, the guide member 13 is a roller that can rotate around an axis that extends parallel to the rotation axis J1.

 弾性部材案内機構14は、アンビル12の外周面において位置P1を基準として第1不織布シート2の搬送方向の下流側の位置P2に弾性部材4が導かれるように弾性部材4の搬送経路を規定する。具体的に、弾性部材案内機構14は、弾性部材4が巻き付けられた図外の保持ロールから位置P2へ複数本の弾性部材4を搬送するための搬送部材14a、14b、14cと、複数の弾性部材4をアンビル12に引き渡す引き渡し部材14dと、を有する。搬送部材14a、14b、14cは、複数本の弾性部材4に対して張力を付与した状態で弾性部材4を引き渡し部材14dまで搬送する。具体的に、搬送部材14a、14b、14cは、回転軸J1と平行する軸を中心として回転可能なローラである。引き渡し部材14dは、搬送部材14a、14b、14cにより搬送された複数本の弾性部材4がそれぞれアンビル12の溝12b2(図5参照)に導かれるように位置決めした状態で複数の弾性部材4をアンビル12に引き渡す。具体的に、引き渡し部材14dは、アンビル12の外周面における位置P2に隣接して配置された先端部14d1を有する。先端部14d1には、弾性部材4を挿入するための複数の溝(図示省略)が軸方向に間欠的に形成されている。これらの溝は、アンビル12の溝12b2に対向するように配置されている。各弾性部材4は、溝に挿入された状態で引き渡し部材14dの先端部14d1によって方向変換されてアンビル12の位置P2(溝12b2内)に導かれる。 The elastic member guide mechanism 14 determines the transport path of the elastic member 4 so that the elastic member 4 is guided to position P2 downstream in the transport direction of the first nonwoven fabric sheet 2 based on position P1 on the outer peripheral surface of the anvil 12. Specifically, the elastic member guide mechanism 14 has transport members 14a, 14b, and 14c for transporting the multiple elastic members 4 from a holding roll (not shown) around which the elastic members 4 are wound to position P2, and a delivery member 14d for delivering the multiple elastic members 4 to the anvil 12. The transport members 14a, 14b, and 14c transport the multiple elastic members 4 to the delivery member 14d while applying tension to the multiple elastic members 4. Specifically, the transport members 14a, 14b, and 14c are rollers that can rotate about an axis parallel to the rotation axis J1. The delivery member 14d delivers the multiple elastic members 4 to the anvil 12 in a state where the multiple elastic members 4 transported by the transport members 14a, 14b, and 14c are positioned so that they are guided to the groove 12b2 (see FIG. 5) of the anvil 12. Specifically, the delivery member 14d has a tip 14d1 disposed adjacent to position P2 on the outer circumferential surface of the anvil 12. The tip 14d1 has multiple grooves (not shown) intermittently formed in the axial direction for inserting the elastic members 4. These grooves are disposed to face the groove 12b2 of the anvil 12. Each elastic member 4 is changed in direction by the tip 14d1 of the delivery member 14d while inserted into the groove and guided to position P2 (in the groove 12b2) of the anvil 12.

 第2シート案内機構15は、アンビル12の外周面において位置P2を基準として第1不織布シート2の搬送方向の下流側の位置P3に第2不織布シート3が導かれるように第2不織布シート3の搬送経路を規定する。本実施形態において、位置P2は、超音波ホーン11とアンビル12との対向位置を基準として回転軸J1を中心とするアンビル12の回転方向の少し上流の位置に設定されている。具体的に、第2シート案内機構15は、第2不織布シート3が巻き付けられた図外の原反ロールからアンビル12の外周面における位置P3に第2不織布シート3が導かれるように第2不織布シート3を搬送するための搬送部材15a、15bを有する。搬送部材15a、15bは、回転軸J1を中心として回転可能なローラである。 The second sheet guide mechanism 15 determines the conveying path of the second nonwoven fabric sheet 3 so that the second nonwoven fabric sheet 3 is guided to a position P3 downstream in the conveying direction of the first nonwoven fabric sheet 2, based on a position P2 on the outer peripheral surface of the anvil 12. In this embodiment, the position P2 is set to a position slightly upstream in the rotation direction of the anvil 12, centered on the rotation axis J1, based on the opposing position of the ultrasonic horn 11 and the anvil 12. Specifically, the second sheet guide mechanism 15 has conveying members 15a and 15b for conveying the second nonwoven fabric sheet 3 so that the second nonwoven fabric sheet 3 is guided to a position P3 on the outer peripheral surface of the anvil 12 from a raw roll (not shown) on which the second nonwoven fabric sheet 3 is wound. The conveying members 15a and 15b are rollers that can rotate around the rotation axis J1.

 引出部材16は、超音波ホーン11とアンビル12との対向位置から図外の下流側の装置へ伸縮性シート1を搬送するための経路を規定する。具体的に、引出部材16は、回転軸J1と平行に延びる軸を中心として回転可能なローラである。 The pull-out member 16 defines a path for transporting the stretchable sheet 1 from the opposing position between the ultrasonic horn 11 and the anvil 12 to a downstream device not shown in the figure. Specifically, the pull-out member 16 is a roller that can rotate around an axis that extends parallel to the rotation axis J1.

 以下、製造装置10を用いた伸縮性シート1を製造するための製造方法について説明する。伸縮性シート1の製造方法は、不織布シート準備工程と、部材準備工程と、配置工程と、熱供給工程と、を含む。 Below, a manufacturing method for manufacturing the stretchable sheet 1 using the manufacturing device 10 is described. The manufacturing method for the stretchable sheet 1 includes a nonwoven fabric sheet preparation process, a member preparation process, an arrangement process, and a heat supply process.

 不織布シート準備工程では、第1不織布シート2及び第2不織布シート3を準備する。不織布シート準備工程については、後に詳述する。 In the nonwoven fabric sheet preparation process, a first nonwoven fabric sheet 2 and a second nonwoven fabric sheet 3 are prepared. The nonwoven fabric sheet preparation process will be described in detail later.

 部材準備工程では、両不織布シート2、3を溶融させるための熱を両不織布シート2、3に供給する超音波ホーン11と、前記対向方向において超音波ホーン11と対向するとともに超音波ホーン11との間で両不織布シート2、3及び弾性部材4を挟み込むためのアンビル12と、を準備する。 In the component preparation process, an ultrasonic horn 11 is prepared, which supplies heat to both nonwoven fabric sheets 2, 3 to melt them, and an anvil 12 is prepared, which faces the ultrasonic horn 11 in the opposing direction and which sandwiches both nonwoven fabric sheets 2, 3 and the elastic member 4 between the ultrasonic horn 11 and the anvil 12.

 配置工程では、超音波ホーン11から離れる方向に向けて第2不織布シート3、弾性部材4、及び第1不織布シート2がこの順に並ぶように、両不織布シート2、3、及び弾性部材4を超音波ホーン11とアンビル12との間に配置する。具体的に、配置工程では、アンビル12を回転方向D1に回転させるとともにガイド部材13を用いて第1不織布シート2をアンビル12の外周面における位置P1に搬送する。また、配置工程では、弾性部材案内機構14を用いて弾性部材4に張力を付与した状態でアンビル12の外周面における位置P2に弾性部材4を搬送する。さらに、配置工程では、第2シート案内機構15を用いて第2不織布シート3をアンビル12の外周面における位置P3に搬送する。これらによって、両不織布シート2、3及び弾性部材4が上記の順で超音波ホーン11とアンビル12との間に配置される。 In the arrangement process, the nonwoven fabric sheets 2, 3, and the elastic member 4 are arranged between the ultrasonic horn 11 and the anvil 12 so that the second nonwoven fabric sheet 3, the elastic member 4, and the first nonwoven fabric sheet 2 are arranged in this order in the direction away from the ultrasonic horn 11. Specifically, in the arrangement process, the anvil 12 is rotated in the rotation direction D1, and the first nonwoven fabric sheet 2 is transported to position P1 on the outer circumferential surface of the anvil 12 using the guide member 13. In addition, in the arrangement process, the elastic member 4 is transported to position P2 on the outer circumferential surface of the anvil 12 using the elastic member guide mechanism 14 while tension is applied to the elastic member 4. Furthermore, in the arrangement process, the second nonwoven fabric sheet 3 is transported to position P3 on the outer circumferential surface of the anvil 12 using the second sheet guide mechanism 15. As a result, the nonwoven fabric sheets 2, 3, and the elastic member 4 are arranged between the ultrasonic horn 11 and the anvil 12 in the above order.

 熱供給工程では、図外の超音波発生器から超音波ホーン11に対して超音波振動を与えることにより、超音波ホーン11とアンビル12との間に配置された両不織布シート2、3に対して熱を供給する。これにより、両不織布シート2、3と弾性部材4とが溶着され、伸縮性シート1が製造される。 In the heat supply process, ultrasonic vibrations are applied to the ultrasonic horn 11 from an ultrasonic generator (not shown) to supply heat to both nonwoven fabric sheets 2 and 3 arranged between the ultrasonic horn 11 and the anvil 12. This causes both nonwoven fabric sheets 2 and 3 to be welded to the elastic member 4, producing the stretchable sheet 1.

 ここで、不織布準備工程では、熱供給工程による弾性部材4に対して確実に溶着することができる特性を有する第1不織布シート2及び第2不織布シート3が準備される。具体的に、不織布準備工程では、図5に示すように、超音波ホーン11から第1不織布シート2までの所定方向における距離と超音波ホーン11による熱量とにより定まる第1温度T1を含むとともに第1不織布シート2を弾性部材4に溶着可能な温度範囲である第1溶着温度範囲E1を有するように結晶化度が設定された第1不織布シート2を準備する。さらに、不織布準備工程では、超音波ホーン11から第2不織布シート3までの所定方向における距離と超音波ホーン11による熱量とにより定まる第2温度T2を含むとともに第2不織布シート3を弾性部材4に溶着可能な温度範囲である第2溶着温度範囲E2を有するように結晶化度が設定された第2不織布シート3を準備する。なお、図5に示すように、第1不織布シート2の第1温度T1は、第1不織布シート2と比較して超音波ホーン11の近くに位置する第2不織布シート3の第2温度T2よりも低い。以下、図3及び図4を参照して、結晶化度を説明するために樹脂の構造について説明する。 Here, in the nonwoven fabric preparation step, a first nonwoven fabric sheet 2 and a second nonwoven fabric sheet 3 are prepared that have properties that allow them to be reliably welded to the elastic member 4 by the heat supply step. Specifically, in the nonwoven fabric preparation step, as shown in FIG. 5, a first nonwoven fabric sheet 2 is prepared in which the crystallinity is set to have a first welding temperature range E1 that includes a first temperature T1 determined by the distance in a predetermined direction from the ultrasonic horn 11 to the first nonwoven fabric sheet 2 and the amount of heat from the ultrasonic horn 11 and is a temperature range in which the first nonwoven fabric sheet 2 can be welded to the elastic member 4. Furthermore, in the nonwoven fabric preparation step, a second nonwoven fabric sheet 3 is prepared in which the crystallinity is set to have a second welding temperature range E2 that includes a second temperature T2 determined by the distance in a predetermined direction from the ultrasonic horn 11 to the second nonwoven fabric sheet 3 and the amount of heat from the ultrasonic horn 11 and is a temperature range in which the second nonwoven fabric sheet 3 can be welded to the elastic member 4. As shown in FIG. 5, the first temperature T1 of the first nonwoven fabric sheet 2 is lower than the second temperature T2 of the second nonwoven fabric sheet 3, which is located closer to the ultrasonic horn 11 than the first nonwoven fabric sheet 2. Below, the structure of the resin will be described with reference to FIG. 3 and FIG. 4 to explain the degree of crystallinity.

 図3は、非晶性樹脂の繊維状態を示す模式図であり、図4は、結晶性樹脂の繊維状態を示す模式図である。図3及び図4に示すように、樹脂は、ある方向に延びるひも状の複数の分子が絡み合うことにより構成されている。また、熱可塑性樹脂は、結晶構造を有しない非晶性樹脂(図3)と、結晶構造を有する結晶性樹脂(図4)と、に大別される。非晶性樹脂としては、例えば、ポリスチレン(Polystyrene:PS)、ポリ塩化ビニル(Polyvinyl Chloride:PVC)、AS(Acrylonitrile Styrene)樹脂、ABS(Acrylonitrile Butadiene Styrene)樹脂、及びアクリル樹脂が挙げられる。一方、結晶性樹脂としては、例えば、ポリエチレン(Polyethylene:PE)、ポリプロピレン(Polypropylene:PP)、ナイロン(ポリアミド合成樹脂)、PET(Polyethylene terephthalate)樹脂、PBT(Poly Butylene Terephtalate)樹脂が挙げられる。結晶性樹脂は、複数の分子における一部が規則的に整列されることにより形成された結晶領域C(二点鎖線により囲まれた領域)と、複数の分子における結晶部分以外の非晶領域Gと、を有する。そして、結晶化度は、以下の式(1)により定義される。
  結晶化度=C/(C+G)×100・・・(1)
Fig. 3 is a schematic diagram showing the fibrous state of an amorphous resin, and Fig. 4 is a schematic diagram showing the fibrous state of a crystalline resin. As shown in Figs. 3 and 4, a resin is composed of a plurality of string-like molecules extending in a certain direction intertwined with each other. Thermoplastic resins are broadly classified into amorphous resins that do not have a crystal structure (Fig. 3) and crystalline resins that have a crystal structure (Fig. 4). Examples of amorphous resins include polystyrene (PS), polyvinyl chloride (PVC), AS (Acrylonitrile Styrene) resin, ABS (Acrylonitrile Butadiene Styrene) resin, and acrylic resin. On the other hand, examples of crystalline resins include polyethylene (PE), polypropylene (PP), nylon (polyamide synthetic resin), PET (Polyethylene terephthalate) resin, and PBT (Poly Butylene Terephthalate) resin. The crystalline resin has a crystalline region C (region surrounded by a two-dot chain line) formed by regular alignment of a part of a plurality of molecules, and an amorphous region G other than the crystalline part of the plurality of molecules. The degree of crystallinity is defined by the following formula (1).
Crystallinity = C/(C+G)×100...(1)

 図2は、示差走査熱量測定(Differential Scanning Calorimetry)による測定結果を示したものである。具体的に、図2は、ある温度において不織布シートが吸収することができる熱を示しており、つまり、ある温度でどの程度不織布シートが溶融するかを示したものである。両不織布シート2、3の波形W1は、図2において二点鎖線により示されている。弾性部材4に溶着するために不織布シート2、3においてある程度の量の材料が溶融している必要がある。そのため、図2において、不織布シート2、3の溶着温度範囲E1、E2における下限値Min1は、熱を吸収していない状態におけるヒートフロー値H0を基準として所定の熱を吸収している状態におけるヒートフロー値H1に対応する温度として定義されている。一方、このように定義された温度下限値を超える温度であって、不織布シート2、3が欠損する温度である溶着温度範囲E1、E2における上限値Max1は、これ以上の熱を吸収できない温度(図2の波形においてヒートフロー値の実質的な変動が無くなり始める温度)として定義されている。 Figure 2 shows the results of measurements by differential scanning calorimetry. Specifically, Figure 2 shows the heat that a nonwoven fabric sheet can absorb at a certain temperature, that is, the extent to which the nonwoven fabric sheet melts at a certain temperature. The waveforms W1 of both nonwoven fabric sheets 2 and 3 are shown by two-dot chain lines in Figure 2. A certain amount of material needs to be melted in the nonwoven fabric sheets 2 and 3 in order to weld them to the elastic member 4. Therefore, in Figure 2, the lower limit Min1 of the welding temperature ranges E1 and E2 of the nonwoven fabric sheets 2 and 3 is defined as the temperature corresponding to the heat flow value H1 in a state in which a certain amount of heat is absorbed, based on the heat flow value H0 in a state in which no heat is absorbed. On the other hand, the upper limit Max1 in the welding temperature ranges E1 and E2, which is the temperature above the lower limit defined in this way and at which the nonwoven fabric sheets 2 and 3 are damaged, is defined as the temperature at which no more heat can be absorbed (the temperature at which the heat flow value begins to substantially stop fluctuating in the waveform in Figure 2).

 また、図2には、両不織布シート2、3と同じ材質により構成され、両不織布シート2、3の結晶化度よりも高い結晶化度を有する不織布シートの波形W2が実線により示されている。図2における波形W1、W2から明らかなように、不織布シートの結晶化度を低下させることにより、溶着温度範囲における温度下限値が低減する。具体的に、波形W1の溶着温度範囲E1、E2の温度の下限値Min1は、波形W2の溶着温度範囲E3の温度の下限値Min2よりも低い。一方、波形W2の溶着温度範囲E3の上限値は、波形W1の溶着温度範囲E1、E2の上限値Max1と実質的に同一である。 Furthermore, in Figure 2, a waveform W2 of a nonwoven fabric sheet made of the same material as both nonwoven fabric sheets 2, 3 and having a higher degree of crystallinity than both nonwoven fabric sheets 2, 3 is shown by a solid line. As is clear from the waveforms W1 and W2 in Figure 2, lowering the degree of crystallinity of the nonwoven fabric sheet reduces the lower limit temperature in the welding temperature range. Specifically, the lower limit temperature Min1 of the welding temperature ranges E1, E2 of waveform W1 is lower than the lower limit temperature Min2 of the welding temperature range E3 of waveform W2. On the other hand, the upper limit of the welding temperature range E3 of waveform W2 is substantially the same as the upper limit Max1 of the welding temperature ranges E1, E2 of waveform W1.

 本実施形態では、不織布準備工程において、ポリプロピレンを主成分とするとともに波形W1の特性を有する結晶化度を有する不織布シート2、3を準備する。つまり、本実施形態において、不織布シート2、3の結晶化度は同一である。図5に示すように、波形W1における溶着温度範囲E1、E2は、超音波ホーン11から第1不織布シート2までの所定方向における距離と超音波ホーン11による熱量とにより定まる第1温度T1を含む。また、溶着温度範囲E1、E2は、超音波ホーン11から第2不織布シート3までの所定方向における距離と超音波ホーン11による熱量とにより定まる第2温度T2を含む。したがって、両不織布シート2、3を十分に溶融させることができ、確実に弾性部材4を溶着することができる。一方、例えば、第1不織布シート2として、波形W2を有する不織布シートを準備した場合、波形W2の溶着温度範囲E3は、第1温度T1を含まないため、第1不織布シート2を十分に溶融させることができず、確実に弾性部材4を溶着することができない。 In this embodiment, in the nonwoven fabric preparation process, nonwoven fabric sheets 2 and 3 are prepared that are mainly composed of polypropylene and have a crystallinity characteristic of the waveform W1. In other words, in this embodiment, the crystallinity of the nonwoven fabric sheets 2 and 3 is the same. As shown in FIG. 5, the welding temperature ranges E1 and E2 in the waveform W1 include a first temperature T1 determined by the distance in a specified direction from the ultrasonic horn 11 to the first nonwoven fabric sheet 2 and the amount of heat from the ultrasonic horn 11. In addition, the welding temperature ranges E1 and E2 include a second temperature T2 determined by the distance in a specified direction from the ultrasonic horn 11 to the second nonwoven fabric sheet 3 and the amount of heat from the ultrasonic horn 11. Therefore, both nonwoven fabric sheets 2 and 3 can be sufficiently melted, and the elastic member 4 can be reliably welded. On the other hand, for example, if a nonwoven fabric sheet having a waveform W2 is prepared as the first nonwoven fabric sheet 2, the welding temperature range E3 of the waveform W2 does not include the first temperature T1, so the first nonwoven fabric sheet 2 cannot be sufficiently melted and the elastic member 4 cannot be reliably welded.

 また、本実施形態における不織布準備工程では、図7に示すように、超音波ホーン11とアンビル12とが対向する対向方向に積層された複数の層を有する不織布シート2、3を準備する。具体的に、不織布シート2、3は、スパンボンド法により製造された3つの層を有する。なお、図中のSは、スパンボンド法により製造されたことを示す。一方、図2において波形W2で示された特性を有する不織布シートも、図6に示されるように、スパンボンド法により製造された3つの層を有する。図6及び図7において、H及びLは、それぞれ結晶化度の程度を示すものであり、Lは、Hよりも結晶化度が低いことを意味する。本実施形態において、Hとして、結晶化度40%を採用し、Lとして、結晶化度34%を採用している。これらの前提となる超音波ホーン11による熱量は、不織布シート2の搬送速度に実質的に比例し、例えば、不織布シート2の搬送速度が350m/minの場合、超音波ホーン11の熱量は、765Wである。また、超音波ホーン11から第2不織布シート3までの所定方向における距離は、0mmであり(密着状態であり)、超音波ホーン11から第1不織布シート2までの所定方向における距離(第2不織布シート3の厚み+弾性部材4の太さ)は、1mm以下である。 In addition, in the nonwoven fabric preparation process in this embodiment, as shown in FIG. 7, nonwoven fabric sheets 2 and 3 having multiple layers stacked in the opposing direction in which the ultrasonic horn 11 and the anvil 12 face each other are prepared. Specifically, the nonwoven fabric sheets 2 and 3 have three layers manufactured by the spunbond method. Note that S in the figure indicates that it was manufactured by the spunbond method. On the other hand, the nonwoven fabric sheet having the characteristics shown by the waveform W2 in FIG. 2 also has three layers manufactured by the spunbond method as shown in FIG. 6. In FIGS. 6 and 7, H and L respectively indicate the degree of crystallinity, and L means that the crystallinity is lower than H. In this embodiment, a crystallinity of 40% is adopted as H, and a crystallinity of 34% is adopted as L. The amount of heat generated by the ultrasonic horn 11, which is the premise of these, is substantially proportional to the conveying speed of the nonwoven fabric sheet 2. For example, when the conveying speed of the nonwoven fabric sheet 2 is 350 m/min, the amount of heat generated by the ultrasonic horn 11 is 765 W. In addition, the distance in a specified direction from the ultrasonic horn 11 to the second nonwoven fabric sheet 3 is 0 mm (close contact state), and the distance in a specified direction from the ultrasonic horn 11 to the first nonwoven fabric sheet 2 (thickness of the second nonwoven fabric sheet 3 + width of the elastic member 4) is 1 mm or less.

 以上説明したように、両不織布シート2、3における温度が超音波ホーン11から両不織布シート2、3への所定方向における距離に応じて異なるものの、各不織布シート2、3の温度T1、T2を含む溶着温度範囲E1、E2を有するように設定された結晶化度をそれぞれ持つ第1不織布シート2及び第2不織布シート3が準備される。 As explained above, the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 are prepared, each having a crystallinity set to have a welding temperature range E1, E2 that includes the temperatures T1, T2 of each nonwoven fabric sheet 2, 3, although the temperatures in the two nonwoven fabric sheets 2, 3 differ depending on the distance in a specified direction from the ultrasonic horn 11 to the two nonwoven fabric sheets 2, 3.

 したがって、第1不織布シート2を加熱するための構成を別途設けることなく、両不織布シート2、3を弾性部材4に対して確実に溶着することができる。 Therefore, both nonwoven fabric sheets 2 and 3 can be reliably welded to the elastic member 4 without the need for a separate structure for heating the first nonwoven fabric sheet 2.

 また、前記実施形態によれば、同一の結晶化度を有する両不織布シート2、3が準備されるため、第1不織布シート2及び第2不織布シート3として共通の結晶化度を有する不織布シートを用いることができる。そのため、結晶化度の互いに異なる第1不織布シート2及び第2不織布シート3を用いる場合と比較して、不織布シートの種類を低減することによるコスト低減を図ることができる。 Furthermore, according to the above embodiment, since both nonwoven fabric sheets 2 and 3 having the same crystallinity are prepared, it is possible to use nonwoven fabric sheets having a common crystallinity as the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3. Therefore, compared to the case where the first nonwoven fabric sheet 2 and the second nonwoven fabric sheet 3 having different crystallinity are used, it is possible to reduce costs by reducing the number of types of nonwoven fabric sheets.

 なお、上記実施形態では、両不織布シート2、3として、同一の結晶化度を有するものを採用しているが、第1不織布シート2の結晶化度を第2不織布シート3の結晶化度よりも低くすることもできる。 In the above embodiment, both nonwoven fabric sheets 2 and 3 have the same degree of crystallinity, but the degree of crystallinity of the first nonwoven fabric sheet 2 can be made lower than the degree of crystallinity of the second nonwoven fabric sheet 3.

 具体的に、図5に示すように、波形W1の特性を示す結晶化度を有する第1不織布シート2を採用し、かつ、波形W2の特性を示す結晶化度を有する第2不織布シート3を採用することもできる。この場合、第1不織布シート2の第1溶着温度範囲E1は、第1温度T1を含み、第2不織布シート3の第2溶着温度範囲は、溶着温度範囲E3であり、第2温度T2を含む。したがって、超音波ホーン11による熱によって両不織布シート2、3を十分に溶融させることができ、これにより、弾性部材4を両不織布シート2、3に対して確実に溶着することができる。 Specifically, as shown in FIG. 5, a first nonwoven fabric sheet 2 having a crystallinity characteristic of waveform W1 may be adopted, and a second nonwoven fabric sheet 3 having a crystallinity characteristic of waveform W2 may be adopted. In this case, the first welding temperature range E1 of the first nonwoven fabric sheet 2 includes the first temperature T1, and the second welding temperature range of the second nonwoven fabric sheet 3 is the welding temperature range E3, which includes the second temperature T2. Therefore, both nonwoven fabric sheets 2 and 3 can be sufficiently melted by the heat from the ultrasonic horn 11, and the elastic member 4 can be reliably welded to both nonwoven fabric sheets 2 and 3.

 このようにすれば、第1不織布シート2に比べて超音波ホーン11の近くに位置する第2不織布シート3の結晶化度よりも低い結晶化度を有する第1不織布シート2が準備される。そのため、第1不織布シート2を第2不織布シート3よりも低い温度で溶融させることができ、これにより、両不織布シート2、3を弾性部材4に確実に溶着することができる。 In this way, a first nonwoven fabric sheet 2 is prepared that has a lower crystallinity than the second nonwoven fabric sheet 3, which is located closer to the ultrasonic horn 11 than the first nonwoven fabric sheet 2. Therefore, the first nonwoven fabric sheet 2 can be melted at a lower temperature than the second nonwoven fabric sheet 3, and this allows both nonwoven fabric sheets 2, 3 to be reliably welded to the elastic member 4.

 なお、前記実施形態では、3つの層を有する不織布シート2、3を例示したが、不織布シート2、3の層の数は、1でも4以上でもよい。 In the above embodiment, the nonwoven fabric sheets 2 and 3 each having three layers are illustrated, but the number of layers of the nonwoven fabric sheets 2 and 3 may be one or four or more.

 また、不織布シート2、3が複数の層を有する場合、複数の層のうちの少なくとも一層について結晶化度を下げることにより溶着温度範囲の下限値を下げることができることが確認されている。これは、結晶化度の低い少なくとも一層については比較的低温で溶融し、かつ、それ以外の層については溶融を抑えることにより、溶着のための溶融材料と溶着のための下地部分(溶融せずに残る部分)とを効率的に確保することができるためであると考えられる。そのため、不織布準備工程では、第1不織布シート2における複数の層のうちの少なくとも一層が第1溶着温度範囲E1を有し、かつ、複数の層のうちの前記少なくとも一層以外の層の結晶化度が少なくとも一層の結晶化度よりも高くなるように設定された第1不織布シート2を準備することもできる。ここで、第1溶着温度範囲E1は、第1温度T1を含んでいる。さらに、不織布準備工程では、第2不織布シート3における複数の層のうちの少なくとも一層が第2溶着温度範囲E2を有し、かつ、複数の層のうちの少なくとも一層以外の層の結晶化度が少なくとも一層の結晶化度よりも高くなるように結晶化度が設定された第2不織布シートを準備することもできる。ここで、第2溶着温度範囲E2は、第2温度T2を含んでいる。また、上述のように、第2不織布シート3における第2溶着温度範囲として、溶着温度範囲E3を採用することもできる。 In addition, it has been confirmed that when the nonwoven fabric sheets 2 and 3 have multiple layers, the lower limit of the welding temperature range can be lowered by lowering the crystallinity of at least one of the multiple layers. This is thought to be because at least one layer with a low crystallinity melts at a relatively low temperature, and the melting of the other layers is suppressed, thereby efficiently securing the molten material for welding and the base portion for welding (the portion that remains unmelted). Therefore, in the nonwoven fabric preparation process, it is also possible to prepare a first nonwoven fabric sheet 2 in which at least one of the multiple layers in the first nonwoven fabric sheet 2 has the first welding temperature range E1, and the crystallinity of the layers other than the at least one of the multiple layers is set to be higher than the crystallinity of the at least one layer. Here, the first welding temperature range E1 includes the first temperature T1. Furthermore, in the nonwoven fabric preparation step, a second nonwoven fabric sheet can be prepared in which at least one of the multiple layers in the second nonwoven fabric sheet 3 has a second welding temperature range E2, and the crystallinity of the layers other than the at least one of the multiple layers is set to be higher than the crystallinity of the at least one layer. Here, the second welding temperature range E2 includes the second temperature T2. Also, as described above, the welding temperature range E3 can be adopted as the second welding temperature range in the second nonwoven fabric sheet 3.

 第1不織布シート2又は第2不織布シート3の一方について、上記のような少なくとも一層の結晶化度を設定してもよく、両不織布シート2、3において上記のような少なくとも一層の結晶化度を設定してもよい。ただし、第2不織布シート3は、超音波ホーン11に隣接しているため、第2不織布シート3に供給される熱量の制御は、比較的容易であるのに対し、第1不織布シート2は、第2不織布シート3と比較して超音波ホーン11からの距離が大きいため、第1不織布シート2に供給される熱量の制御は、難しい。この観点から結晶化度の調整は、第1不織布シート2において行われることが好ましい。 The degree of crystallinity of at least one layer may be set as described above for either the first nonwoven fabric sheet 2 or the second nonwoven fabric sheet 3, or the degree of crystallinity of at least one layer may be set as described above for both nonwoven fabric sheets 2, 3. However, since the second nonwoven fabric sheet 3 is adjacent to the ultrasonic horn 11, it is relatively easy to control the amount of heat supplied to the second nonwoven fabric sheet 3, whereas the first nonwoven fabric sheet 2 is located at a greater distance from the ultrasonic horn 11 than the second nonwoven fabric sheet 3, so it is difficult to control the amount of heat supplied to the first nonwoven fabric sheet 2. From this perspective, it is preferable that the degree of crystallinity is adjusted in the first nonwoven fabric sheet 2.

 上記のような少なくとも一層の結晶化度の設定として、例えば、図8~図10に記載のようなものが挙げられる。なお、図8~図10は、両不織布シート2、3に対して上記結晶化度の調整を行った場合を例示している。 Examples of the setting of the degree of crystallinity of at least one layer as described above are shown in Figures 8 to 10. Note that Figures 8 to 10 show examples in which the degree of crystallinity is adjusted as described above for both nonwoven fabric sheets 2 and 3.

 図8に示す例では、不織布シートが3つの層(スパンボンド法により製造された層)を有し、そのうち2層の結晶化度が低く、残りの1層の結晶化度が前記2層の結晶化度よりも高い。超音波ホーン11による熱量及び超音波ホーン11からの両不織布シート2、3までの距離が上記実施形態と同様であることを前提として、Hの結晶化度として40%、Lの結晶化度として34%を採用することができる。 In the example shown in Figure 8, the nonwoven fabric sheet has three layers (layers manufactured by the spunbond method), two of which have a low degree of crystallinity, and the remaining layer has a higher degree of crystallinity than the two layers. Assuming that the amount of heat from the ultrasonic horn 11 and the distance from the ultrasonic horn 11 to both nonwoven fabric sheets 2 and 3 are the same as in the above embodiment, a crystallinity of 40% can be used for H and a crystallinity of 34% can be used for L.

 図9に示す例では、不織布シートが4つの層を有し、そのうち1層(メルトブローン法[符号Mで示す]により製造された層)の結晶化度が低く、残りの3層(スパンボンド法により製造された層)の結晶化度が前記1層の結晶化度よりも高い。超音波ホーン11による熱量及び超音波ホーン11から両不織布シート2、3までの距離が上記実施形態と同様であることを前提として、Hの結晶化度として40%を超えるもの、Lの結晶化度として10%を採用することができる。 In the example shown in Figure 9, the nonwoven fabric sheet has four layers, one of which (the layer manufactured by the meltblown method [designated by symbol M]) has a low crystallinity, and the remaining three layers (the layers manufactured by the spunbond method) have a higher crystallinity than the one layer. Assuming that the amount of heat from the ultrasonic horn 11 and the distance from the ultrasonic horn 11 to both nonwoven fabric sheets 2 and 3 are the same as in the above embodiment, a crystallinity of over 40% can be used for H and a crystallinity of 10% can be used for L.

 図10に示す例では、不織布シートが5つの層を有し、そのうち2層(メルトブローン法により製造された層)の結晶化度が低く、残りの3層(スパンボンド法により製造された層)の結晶化度が前記2層の結晶化度よりも高い。超音波ホーン11による熱量及び超音波ホーン11から両不織布シート2、3までの距離が上記実施形態と同様であることを前提として、Hの結晶化度として40%を超えるもの、Lの結晶化度として5%を採用することができる。 In the example shown in FIG. 10, the nonwoven fabric sheet has five layers, two of which (layers manufactured by the meltblown method) have a low crystallinity, and the remaining three layers (layers manufactured by the spunbond method) have a higher crystallinity than the two layers. Assuming that the amount of heat from the ultrasonic horn 11 and the distance from the ultrasonic horn 11 to both nonwoven fabric sheets 2 and 3 are the same as in the above embodiment, a crystallinity of over 40% can be used for H and a crystallinity of 5% can be used for L.

 なお、図9及び図10に示すように、不織布シートにおいて、結晶化度の低く設定された少なくとも一層は、当該少なくとも一層以外の層によって所定方向に挟まれていることが好ましい。このように構成された不織布シートは、優先的に溶融する少なくとも一層の溶融材料がその層の両側に位置する層に含浸しながら弾性部材4の溶着にも寄与する。そのため、不織布シートにおいて溶融した部分と下地となる部分とを融合させて弾性部材4をより強固に溶着することができる。 As shown in Figures 9 and 10, in the nonwoven fabric sheet, it is preferable that at least one layer with a low crystallinity is sandwiched in a predetermined direction by layers other than the at least one layer. In a nonwoven fabric sheet configured in this manner, the molten material of the at least one layer that melts preferentially impregnates the layers on both sides of that layer and also contributes to welding of the elastic member 4. Therefore, the molten portion of the nonwoven fabric sheet can be fused with the underlying portion to more firmly weld the elastic member 4.

 上記のように少なくとも一層の結晶化度については第1又は第2溶着温度範囲E1、E2を有するように設定し、かつ、それ以外の層の結晶化度をそれよりも高くすることにより、少なくとも一層において溶融性を高めて接着性の向上を図るとともに、それ以外の層において溶融性を下げることにより強度の向上を図ることができる。 As described above, by setting the crystallinity of at least one layer to fall within the first or second welding temperature range E1, E2, and by making the crystallinity of the other layers higher, it is possible to increase the meltability of at least one layer and improve adhesion, and to decrease the meltability of the other layers and improve strength.

 なお、本発明は、前記実施形態に限定されるものではなく、例えば、以下の態様を採用することもできる。 The present invention is not limited to the above embodiment, and may also be modified in the following ways:

 前記実施形態において、複数種類の結晶化の設定を説明したが、これらの結晶化の設定のいくつかを組み合わせることもできる。 In the above embodiment, multiple types of crystallization settings are described, but it is also possible to combine several of these crystallization settings.

 熱供給部材として超音波ホーン11を例示したが、熱供給部材は、超音波ホーン11に限定されない。例えば、熱供給部材として、それ自体が発熱するヒータを採用することもできる。 Although an ultrasonic horn 11 has been exemplified as a heat supply member, the heat supply member is not limited to an ultrasonic horn 11. For example, a heater that generates heat by itself can also be used as the heat supply member.

 前記実施形態では、結晶性樹脂としてポリプロピレンを採用しているが、他の結晶性樹脂を採用することもできる。 In the above embodiment, polypropylene is used as the crystalline resin, but other crystalline resins can also be used.

 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions with the following configurations:

 本願発明者等は、不織布シートの結晶化度を低くすることにより溶着温度範囲における温度下限値が低温側にシフトする点を見出し、熱供給部材により加熱される両不織布シートの温度に見合った温度範囲を有する結晶化度に設定された第1不織布シート及び第2不織布シートを準備する本願発明の方法に想到した。 The inventors of the present application discovered that by lowering the crystallinity of the nonwoven fabric sheet, the lower limit of the welding temperature range shifts to the lower temperature side, and came up with the method of the present invention in which a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared with a crystallinity set to have a temperature range that matches the temperature of both nonwoven fabric sheets heated by a heat supply member.

 具体的に、上記課題を解決するために、第一の発明は、第1不織布シートと、前記第1不織布シートと対向する第2不織布シートと、前記第1不織布シートと前記第2不織布シートとの間で前記第1不織布シート及び前記第2不織布シートに接合された弾性部材と、を有する伸縮性シートを製造するための製造方法であって、前記第1不織布シート及び前記第2不織布シートを準備し、前記第1不織布シート及び前記第2不織布シートを溶融させるための熱を前記第1不織布シート及び前記第2不織布シートに供給するための熱供給部材と、所定の対向方向において前記熱供給部材と対向するとともに前記熱供給部材との間で前記第1不織布シート、前記第2不織布シート及び前記弾性部材を挟み込むための挟み込み部材と、を準備し、前記対向方向において前記熱供給部材から離れる方向に向けて前記第2不織布シート、前記弾性部材、及び前記第1不織布シートが順に並ぶように、前記第1不織布シート、前記第2不織布シート、及び前記弾性部材を前記熱供給部材と前記挟み込み部材との間に配置し、前記熱供給部材と前記挟み込み部材との間に配置された前記第1不織布シート及び前記第2不織布シートに対して前記熱供給部材を用いて熱を供給し、前記第1不織布シート及び前記第2不織布シートを準備するときには、前記熱供給部材から前記第1不織布シートまでの前記対向方向における距離と前記熱供給部材による熱量とにより定まる第1温度を含むとともに前記第1不織布シートを前記弾性部材に溶着可能な温度範囲である第1溶着温度範囲を前記第1不織布シートが有し、かつ、前記熱供給部材から前記第2不織布シートまでの前記対向方向における距離と前記熱供給部材による熱量とにより定まる第2温度を含むとともに前記第2不織布シートを前記弾性部材に溶着可能な温度範囲である第2溶着温度範囲を前記第2不織布シートが有するように、結晶化度がそれぞれ設定された前記第1不織布シート及び前記第2不織布シートを準備する、伸縮性シートの製造方法を提供する。 Specifically, in order to solve the above problem, the first invention is a manufacturing method for manufacturing a stretchable sheet having a first nonwoven fabric sheet, a second nonwoven fabric sheet facing the first nonwoven fabric sheet, and an elastic member bonded to the first nonwoven fabric sheet and the second nonwoven fabric sheet between the first nonwoven fabric sheet and the second nonwoven fabric sheet, comprising the steps of: preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet; preparing a heat supply member for supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet for melting the first nonwoven fabric sheet and the second nonwoven fabric sheet; and preparing a sandwiching member that faces the heat supplying member in a predetermined opposing direction and sandwiches the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member between the heat supplying member and the sandwiching member; and bonding the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member to the first nonwoven fabric sheet, so that the second nonwoven fabric sheet, the elastic member, and the first nonwoven fabric sheet are aligned in order in the opposing direction away from the heat supplying member. A method for manufacturing a stretchable sheet is provided, comprising: disposing a material between the heat supplying member and the sandwiching member; supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet disposed between the heat supplying member and the sandwiching member using the heat supplying member; and preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the crystallization degrees of the first nonwoven fabric sheet and the second nonwoven fabric sheet are set so that the first nonwoven fabric sheet has a first welding temperature range that includes a first temperature determined by the distance from the heat supplying member to the first nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supplying member, and is a temperature range in which the first nonwoven fabric sheet can be welded to the elastic member; and the second nonwoven fabric sheet has a second welding temperature range that includes a second temperature determined by the distance from the heat supplying member to the second nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supplying member, and is a temperature range in which the second nonwoven fabric sheet can be welded to the elastic member.

 第一の発明によれば、第1不織布シート及び第2不織布シートにおける温度が熱供給部材から両不織布シートへの所定方向における距離に応じて異なるものの、各不織布シートの温度を含む溶着温度範囲を有するように設定された結晶化度をそれぞれ持つ第1不織布シート及び第2不織布シートが準備される。 According to the first invention, a first nonwoven fabric sheet and a second nonwoven fabric sheet are prepared, each having a degree of crystallinity set to have a welding temperature range that includes the temperature of each nonwoven fabric sheet, although the temperatures of the first nonwoven fabric sheet and the second nonwoven fabric sheet differ depending on the distance in a specified direction from the heat supply member to both nonwoven fabric sheets.

 したがって、本発明によれば、第1不織布シートを加熱するための構成を別途設けることなく、両不織布シートを弾性部材に対して確実に溶着することができる。 Therefore, according to the present invention, both nonwoven fabric sheets can be reliably welded to the elastic member without the need for a separate structure for heating the first nonwoven fabric sheet.

 第二の発明は、第一の発明であって、前記第1不織布シート及び前記第2不織布シートを準備するときには、前記第1温度及び前記第2温度の双方を含む同一の前記第1溶着温度範囲及び前記第2溶着温度範囲を設定するための同一の結晶化度を有する前記第1不織布シート及び前記第2不織布シートを準備することが好ましい。 The second invention is the first invention, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the first nonwoven fabric sheet and the second nonwoven fabric sheet having the same crystallinity to set the same first welding temperature range and the same second welding temperature range that include both the first temperature and the second temperature.

 第二の発明によれば、第1不織布シート及び第2不織布シートとして共通の結晶化度を有する不織布シートを用いることができる。そのため、結晶化度の互いに異なる第1不織布シート及び第2不織布シートを用いる場合と比較して、不織布シートの種類を低減することによるコスト低減を図ることができる。 According to the second invention, nonwoven fabric sheets having a common crystallinity can be used as the first nonwoven fabric sheet and the second nonwoven fabric sheet. Therefore, compared to using a first nonwoven fabric sheet and a second nonwoven fabric sheet having different crystallinity, it is possible to reduce costs by reducing the number of types of nonwoven fabric sheets.

 第三の発明は、第一の発明であって、前記第1不織布シート及び前記第2不織布シートを準備するときには、前記第2不織布シートの結晶化度よりも低い結晶化度を有する前記第1不織布シートを準備することが好ましい。 The third invention is the first invention, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the first nonwoven fabric sheet having a crystallinity lower than the crystallinity of the second nonwoven fabric sheet.

 第三の発明によれば、第1不織布シートに比べて熱供給部材の近くに位置する第2不織布シートの結晶化度よりも低い結晶化度を有する第1不織布シートが準備される。そのため、第1不織布シートを第2不織布シートよりも低い温度で溶融させることができ、これにより、両不織布シートを弾性部材に確実に溶着することができる。 According to the third invention, a first nonwoven fabric sheet is prepared that has a crystallinity lower than that of a second nonwoven fabric sheet that is located closer to the heat supply member than the first nonwoven fabric sheet. Therefore, the first nonwoven fabric sheet can be melted at a lower temperature than the second nonwoven fabric sheet, and both nonwoven fabric sheets can be reliably welded to the elastic member.

 第四の発明は、第一~第三の何れか一つの発明であって、前記第1不織布シート及び前記第2不織布シートを準備するときには、前記対向方向に積層された複数の層を有する前記第1不織布シートを準備するとともに、前記第1不織布シートにおける前記複数の層のうちの少なくとも一層が前記第1溶着温度範囲を有し、かつ、前記複数の層のうちの前記少なくとも一層以外の層の結晶化度が前記少なくとも一層の結晶化度よりも高くなるように前記結晶化度が設定された前記第1不織布シートを準備することが好ましい。 The fourth invention is any one of the first to third inventions, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the first nonwoven fabric sheet having a plurality of layers stacked in the opposing direction, and to prepare the first nonwoven fabric sheet such that at least one of the plurality of layers in the first nonwoven fabric sheet has the first welding temperature range, and the crystallinity of the layers other than the at least one of the plurality of layers is set to be higher than the crystallinity of the at least one layer.

 また、第五の発明は、第一~第四の何れか一つの発明であって、前記第1不織布シート及び前記第2不織布シートを準備するときには、前記対向方向に積層された複数の層を有する前記第2不織布シートを準備するとともに、前記第2不織布シートにおける前記複数の層のうちの少なくとも一層が前記第2溶着温度範囲を有し、かつ、前記複数の層のうちの前記少なくとも一層以外の層の結晶化度が前記少なくとも一層の結晶化度よりも高くなるように前記結晶化度が設定された前記第2不織布シートを準備することが好ましい。 The fifth invention is any one of the first to fourth inventions, and when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, it is preferable to prepare the second nonwoven fabric sheet having a plurality of layers stacked in the opposing direction, and to prepare the second nonwoven fabric sheet such that at least one of the plurality of layers in the second nonwoven fabric sheet has the second welding temperature range, and the crystallization degree of the layers other than the at least one of the plurality of layers is set to be higher than the crystallization degree of the at least one layer.

 本願発明者等は、複数の層が積層された第1不織布シート及び第2不織布シートを用いる場合、複数の層のうち少なくとも一層について結晶化度を低下させることにより弾性部材に対する接着性が向上する点を見出した。これは、結晶化度の低い少なくとも一層については比較的低温で溶融し、かつ、それ以外の層については溶融を抑えることにより、溶着のための溶融材料と溶着のための下地部分(溶融せずに残る部分)とを効率的に確保することができるためであると考えられる。そのため、第四及び第五の発明のように少なくとも一層の結晶化度については上記第1又は第2溶着温度範囲を有するように設定し、かつ、それ以外の層の結晶化度をそれよりも高くすることにより、少なくとも一層において溶融性を高めて接着性の向上を図るとともに、それ以外の層において溶融性を下げることにより強度の向上を図ることができる。 The inventors of the present application have found that when a first nonwoven fabric sheet and a second nonwoven fabric sheet are used in which multiple layers are laminated, the adhesion to the elastic member is improved by reducing the crystallinity of at least one of the multiple layers. This is believed to be because at least one layer with a low crystallinity melts at a relatively low temperature, and the melting of the other layers is suppressed, thereby efficiently securing the molten material for welding and the base portion for welding (the portion that remains unmelted). Therefore, as in the fourth and fifth inventions, by setting the crystallinity of at least one layer to have the first or second welding temperature range described above and setting the crystallinity of the other layers higher than that, it is possible to increase the meltability of at least one layer to improve adhesion, and reduce the meltability of the other layers to improve strength.

 さらに、第六の発明は、第一~第五の発明の製造方法を用いて製造された伸縮性シートを提供する。 Furthermore, the sixth invention provides a stretchable sheet manufactured using the manufacturing method of the first to fifth inventions.

Claims (6)

 第1不織布シートと、前記第1不織布シートと対向する第2不織布シートと、前記第1不織布シートと前記第2不織布シートとの間で前記第1不織布シート及び前記第2不織布シートに接合された弾性部材と、を有する伸縮性シートを製造するための製造方法であって、
 前記第1不織布シート及び前記第2不織布シートを準備し、
 前記第1不織布シート及び前記第2不織布シートを溶融させるための熱を前記第1不織布シート及び前記第2不織布シートに供給するための熱供給部材と、所定の対向方向において前記熱供給部材と対向するとともに前記熱供給部材との間で前記第1不織布シート、前記第2不織布シート及び前記弾性部材を挟み込むための挟み込み部材と、を準備し、
 前記対向方向において前記熱供給部材から離れる方向に向けて前記第2不織布シート、前記弾性部材、及び前記第1不織布シートが順に並ぶように、前記第1不織布シート、前記第2不織布シート、及び前記弾性部材を前記熱供給部材と前記挟み込み部材との間に配置し、
 前記熱供給部材と前記挟み込み部材との間に配置された前記第1不織布シート及び前記第2不織布シートに対して前記熱供給部材を用いて熱を供給し、
 前記第1不織布シート及び前記第2不織布シートを準備するときには、前記熱供給部材から前記第1不織布シートまでの前記対向方向における距離と前記熱供給部材による熱量とにより定まる第1温度を含むとともに前記第1不織布シートを前記弾性部材に溶着可能な温度範囲である第1溶着温度範囲を前記第1不織布シートが有し、かつ、前記熱供給部材から前記第2不織布シートまでの前記対向方向における距離と前記熱供給部材による熱量とにより定まる第2温度を含むとともに前記第2不織布シートを前記弾性部材に溶着可能な温度範囲である第2溶着温度範囲を前記第2不織布シートが有するように、結晶化度がそれぞれ設定された前記第1不織布シート及び前記第2不織布シートを準備する、伸縮性シートの製造方法。
A manufacturing method for manufacturing a stretchable sheet having a first nonwoven fabric sheet, a second nonwoven fabric sheet facing the first nonwoven fabric sheet, and an elastic member bonded to the first nonwoven fabric sheet and the second nonwoven fabric sheet between the first nonwoven fabric sheet and the second nonwoven fabric sheet, comprising:
providing the first nonwoven fabric sheet and the second nonwoven fabric sheet;
a heat supplying member for supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet for melting the first nonwoven fabric sheet and the second nonwoven fabric sheet, and a sandwiching member for sandwiching the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member between the heat supplying member and the heat supplying member, the sandwiching member being opposed to the heat supplying member in a predetermined opposing direction;
the first nonwoven fabric sheet, the second nonwoven fabric sheet, and the elastic member are disposed between the heat supplying member and the sandwiching member such that the second nonwoven fabric sheet, the elastic member, and the first nonwoven fabric sheet are aligned in this order in the opposing direction toward a direction away from the heat supplying member;
supplying heat to the first nonwoven fabric sheet and the second nonwoven fabric sheet disposed between the heat supply member and the sandwiching member using the heat supply member;
A method for manufacturing an elastic sheet, comprising the steps of: preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the first nonwoven fabric sheet and the second nonwoven fabric sheet each having a degree of crystallinity set so that the first nonwoven fabric sheet has a first welding temperature range that includes a first temperature determined by the distance from the heat supply member to the first nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supply member, and is a temperature range in which the first nonwoven fabric sheet can be welded to the elastic member; and preparing the second nonwoven fabric sheet has a second welding temperature range that includes a second temperature determined by the distance from the heat supply member to the second nonwoven fabric sheet in the opposing direction and the amount of heat provided by the heat supply member, and is a temperature range in which the second nonwoven fabric sheet can be welded to the elastic member.
 前記第1不織布シート及び前記第2不織布シートを準備するときには、前記第1温度及び前記第2温度の双方を含む同一の前記第1溶着温度範囲及び前記第2溶着温度範囲を設定するための同一の結晶化度を有する前記第1不織布シート及び前記第2不織布シートを準備する、請求項1に記載の伸縮性シートの製造方法。 The method for producing a stretchable sheet according to claim 1, wherein when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the first nonwoven fabric sheet and the second nonwoven fabric sheet are prepared to have the same crystallinity in order to set the same first welding temperature range and the same second welding temperature range that include both the first temperature and the second temperature.  前記第1不織布シート及び前記第2不織布シートを準備するときには、前記第2不織布シートの結晶化度よりも低い結晶化度を有する前記第1不織布シートを準備する、請求項1に記載の伸縮性シートの製造方法。 The method for producing a stretchable sheet according to claim 1, wherein when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the first nonwoven fabric sheet is prepared to have a crystallinity lower than that of the second nonwoven fabric sheet.  前記第1不織布シート及び前記第2不織布シートを準備するときには、前記対向方向に積層された複数の層を有する前記第1不織布シートを準備するとともに、前記第1不織布シートにおける前記複数の層のうちの少なくとも一層が前記第1溶着温度範囲を有し、かつ、前記複数の層のうちの前記少なくとも一層以外の層の結晶化度が前記少なくとも一層の結晶化度よりも高くなるように前記結晶化度が設定された前記第1不織布シートを準備する、請求項1~3の何れか1項に記載の伸縮性シートの製造方法。 The method for producing a stretchable sheet according to any one of claims 1 to 3, wherein when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the first nonwoven fabric sheet is prepared having a plurality of layers stacked in the opposing direction, and the first nonwoven fabric sheet is prepared such that at least one of the plurality of layers in the first nonwoven fabric sheet has the first welding temperature range, and the crystallinity of the layers other than the at least one of the plurality of layers is set to be higher than the crystallinity of the at least one layer.  前記第1不織布シート及び前記第2不織布シートを準備するときには、前記対向方向に積層された複数の層を有する前記第2不織布シートを準備するとともに、前記第2不織布シートにおける前記複数の層のうちの少なくとも一層が前記第2溶着温度範囲を有し、かつ、前記複数の層のうちの前記少なくとも一層以外の層の結晶化度が前記少なくとも一層の結晶化度よりも高くなるように前記結晶化度が設定された前記第2不織布シートを準備する、請求項1~3の何れか1項に記載の伸縮性シートの製造方法。 The method for producing a stretchable sheet according to any one of claims 1 to 3, wherein when preparing the first nonwoven fabric sheet and the second nonwoven fabric sheet, the second nonwoven fabric sheet is prepared having a plurality of layers stacked in the opposing direction, and at least one of the plurality of layers in the second nonwoven fabric sheet has the second welding temperature range, and the crystallinity of the layers other than the at least one of the plurality of layers is set to be higher than the crystallinity of the at least one layer.  請求項1~3の何れか1項に記載の製造方法を用いて製造された伸縮性シート。 An elastic sheet manufactured using the manufacturing method described in any one of claims 1 to 3.
PCT/JP2024/019346 2023-06-01 2024-05-27 Stretchable sheet manufacturing method and stretchable sheet manufactured by same WO2024247950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023091136 2023-06-01
JP2023-091136 2023-06-01

Publications (1)

Publication Number Publication Date
WO2024247950A1 true WO2024247950A1 (en) 2024-12-05

Family

ID=93657994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/019346 WO2024247950A1 (en) 2023-06-01 2024-05-27 Stretchable sheet manufacturing method and stretchable sheet manufactured by same

Country Status (1)

Country Link
WO (1) WO2024247950A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104853A (en) * 2006-09-29 2008-05-08 Daio Paper Corp Expansion part forming method in absorptive article, and forming device therefor
JP2013500359A (en) * 2009-07-24 2013-01-07 ボスティック,インコーポレイテッド Hot melt adhesives based on olefin block copolymers
JP2022550466A (en) * 2019-10-04 2022-12-01 フィテサ フィルム プロダクツ エルエルシー BREATHABLE ELASTIC LAMINATES FOR WEARABLE ARTICLES AND METHOD OF MANUFACTURE THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104853A (en) * 2006-09-29 2008-05-08 Daio Paper Corp Expansion part forming method in absorptive article, and forming device therefor
JP2013500359A (en) * 2009-07-24 2013-01-07 ボスティック,インコーポレイテッド Hot melt adhesives based on olefin block copolymers
JP2022550466A (en) * 2019-10-04 2022-12-01 フィテサ フィルム プロダクツ エルエルシー BREATHABLE ELASTIC LAMINATES FOR WEARABLE ARTICLES AND METHOD OF MANUFACTURE THEREOF

Similar Documents

Publication Publication Date Title
EP1693193B1 (en) Stiffened lane elastic laminate and method of forming
CN1965749B (en) Cleaning member, cleaning member with handle, production method of cleaning member
US8956477B2 (en) Method of making a web from which elastic diaper closures can be stamped
KR101234125B1 (en) Coated fabric from monoaxially drawn plastic tapes and bag produced therefrom
JP5250898B2 (en) Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material
US11173072B2 (en) Curved elastic with entrapment
CA2396285A1 (en) Stiffened lane elastic laminate and method of forming
WO2024247950A1 (en) Stretchable sheet manufacturing method and stretchable sheet manufactured by same
JP5827505B2 (en) Joining method of fiber reinforced thermoplastic resin
CN113694419A (en) Sheet filter, mask, and sheet manufacturing apparatus
JP7505965B2 (en) Manufacturing method and manufacturing device for elastic composite sheet
WO2013051312A1 (en) Mesh body
JP2003205554A (en) Connection structure of flat belt and connection method
JP2010143156A (en) Ultrasonic welding process
JP5194086B2 (en) Cleaning member, cleaning member with gripper, and method for manufacturing cleaning member
KR102184469B1 (en) Fiber reinforced plastic composite sheet, method for manufacturing the same and device for manufacturing the smae
JPH01148857A (en) Nonwoven fabric and apparatus for producing the same
JP7253522B2 (en) Elastic sheet manufacturing method and sheet splicing device
KR20170029557A (en) Adhesive packaging system and laminating methods using the same
JP5959959B2 (en) Method for producing hollow structure plate
JP7605724B2 (en) Reinforced fiber laminated substrate
JPS58212935A (en) Corrugated cardboard sheet and its manufacture
JP7212432B2 (en) Method for manufacturing elastic sheet
KR20180121113A (en) Manufacturing method for continuous fiber reinforced thermoplastic composite
JP2023514302A (en) Fiber-reinforced polymer strip with improved durability and grid-like geogrid using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24815433

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载