+

WO2024180769A1 - Simulation device and computer-readable storage medium - Google Patents

Simulation device and computer-readable storage medium Download PDF

Info

Publication number
WO2024180769A1
WO2024180769A1 PCT/JP2023/007856 JP2023007856W WO2024180769A1 WO 2024180769 A1 WO2024180769 A1 WO 2024180769A1 JP 2023007856 W JP2023007856 W JP 2023007856W WO 2024180769 A1 WO2024180769 A1 WO 2024180769A1
Authority
WO
WIPO (PCT)
Prior art keywords
industrial machine
simulation
unit
information
defect
Prior art date
Application number
PCT/JP2023/007856
Other languages
French (fr)
Japanese (ja)
Inventor
小次郎 有松
太郎 小木曽
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2023/007856 priority Critical patent/WO2024180769A1/en
Publication of WO2024180769A1 publication Critical patent/WO2024180769A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4069Simulating machining process on screen

Definitions

  • the present disclosure relates to a simulation device and a computer-readable storage medium.
  • Patent Document 1 discloses a technology that supports the task of identifying the cause of the abnormality.
  • Patent Document 1 Even if the technology disclosed in Patent Document 1 is used, it is ultimately up to the operator to determine the cause of the abnormality. Unskilled personnel may not be able to identify the cause of the abnormality due to lack of experience. Therefore, there is a demand for a device that can identify the cause of the abnormality.
  • the simulation device disclosed herein includes a selection unit that selects factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine and defect information indicating the type of defect that has occurred in the industrial machine, a simulation unit that executes an operation simulation of the industrial machine based on the factor information selected by the selection unit, an acquisition unit that acquires result information indicating the operation result of the industrial machine, a determination unit that compares the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine, and an output unit that outputs the determination result by the determination unit.
  • the computer-readable storage medium of the present disclosure stores instructions that cause a computer to execute the following: select factor information indicating the cause of a defect based on operation information indicating the type of operation of the industrial machine and defect information indicating the type of defect that occurs in the industrial machine, execute an operation simulation of the industrial machine based on the selected factor information, obtain result information indicating the operation result of the industrial machine, compare the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine, and output the determined result.
  • FIG. 1 illustrates an example of a system including a simulation device.
  • 1 is a block diagram showing an example of a hardware configuration of an industrial machine
  • FIG. 2 is a block diagram showing an example of a hardware configuration of the simulation device.
  • FIG. 2 is a block diagram showing an example of a function of the simulation device.
  • FIG. 1 is a diagram illustrating an example of a defect that occurs in an industrial machine.
  • FIG. 1 is a diagram illustrating an example of a defect that occurs in an industrial machine.
  • 4 is a diagram illustrating an example of factor information stored in a factor information storage unit.
  • FIG. FIG. 11 is a diagram showing an example of a result of an operation simulation.
  • FIG. 11 is a diagram illustrating an example of result information acquired by an acquisition unit.
  • FIG. 11 is a diagram showing an example of a display mode of a determination result.
  • 1 is a flowchart showing an example of a flow of a process executed by a simulation device.
  • 4 is a diagram illustrating an example of factor information stored in a factor information storage unit.
  • FIG. 11 is a diagram showing an example of a result of an operation simulation.
  • FIG. 11 is a diagram illustrating an example of result information acquired by an acquisition unit.
  • FIG. 11 is a diagram showing an example of a display mode of a determination result.
  • 4 is a diagram illustrating an example of factor information stored in a factor information storage unit.
  • FIG. FIG. 11 is a diagram showing an example of a result of an operation simulation.
  • FIG. 11 is a diagram illustrating an example of result information acquired by an acquisition unit.
  • FIG. 11 is a diagram showing an example of a display mode of a determination result.
  • based on XX means “based on at least XX,” and includes cases where it is based on other elements in addition to XX. Furthermore, “based on XX” is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been calculated or processed. "XX” is any element (for example, any information).
  • FIG. 1 is a diagram showing an example of a system including a simulation device of the present disclosure.
  • This system includes an industrial machine 1 and a simulation device 10.
  • the industrial machine 1 and the simulation device 10 are connected by a network N, such as an Internet line or a LAN (Local Area Network).
  • a network N such as an Internet line or a LAN (Local Area Network).
  • Industrial machine 1 is a machine that operates in an industrial site.
  • Industrial machine 1 is, for example, a machine tool, an injection molding machine, a laser processing machine, a three-dimensional printer, or a robot.
  • the simulation device 10 is a device that performs an operation simulation of the industrial machine 1.
  • the operation simulation is, for example, a machining simulation of a machine tool.
  • the operation simulation may also be an operation simulation of a robot.
  • the simulation device 10 is implemented in, for example, a server, a PC (Personal Computer), or a mobile terminal.
  • the simulation device 10 may also be implemented in a numerical control device, which will be described later.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the industrial machine 1.
  • the industrial machine 1 includes a numerical control device 2, an input/output device 3, a servo amplifier 4, a servo motor 5, a spindle amplifier 6, a spindle motor 7, an auxiliary device 8, and a measuring instrument 9.
  • the numerical control device 2 is a device for controlling the industrial machine 1.
  • the numerical control device 2 includes, for example, a hardware processor 201, a bus 202, a ROM (Read Only Memory) 203, a RAM (Random Access Memory) 204, and a non-volatile memory 205.
  • the hardware processor 201 is a processor that controls the entire numerical control device 2 using a system program.
  • the hardware processor 201 reads out the system program stored in the ROM 203 via the bus 202.
  • the hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
  • the bus 202 is a communication path that connects each piece of hardware in the numerical control device 2 to each other. Each piece of hardware in the numerical control device 2 exchanges data via the bus 202.
  • ROM 203 is a storage device that stores system programs and the like. ROM 203 is a computer-readable storage medium.
  • RAM 204 is a storage device that temporarily stores various data. RAM 204 functions as a working area for the hardware processor 201 to process various data.
  • the non-volatile memory 205 is a storage device that retains data even when the power to the numerical control device 2 is turned off.
  • the non-volatile memory 205 stores, for example, the operating program of the industrial machine 1.
  • the non-volatile memory 205 is a computer-readable storage medium.
  • the non-volatile memory 205 is, for example, a battery-backed memory or an SSD (Solid State Drive).
  • the numerical control device 2 further includes a first interface 206, an axis control circuit 207, a spindle control circuit 208, a PLC (Programmable Logic Controller) 209, an I/O unit 210, a second interface 211, and a third interface 212.
  • a PLC Programmable Logic Controller
  • the first interface 206 connects the bus 202 and the input/output device 3.
  • the first interface 206 sends, for example, various data processed by the hardware processor 201 to the input/output device 3.
  • the input/output device 3 receives various data via the first interface 206 and displays the various data on a display.
  • the input/output device 3 also receives input of various data and sends the various data via the first interface 206 to, for example, the hardware processor 201.
  • the input/output device 3 is, for example, a touch panel.
  • the input/output device 3 is, for example, a capacitive touch panel.
  • the touch panel is not limited to a capacitive touch panel, and may be a touch panel of another type.
  • the input/output device 3 is installed in an operation panel (not shown) in which the numerical control device 2 is stored.
  • the axis control circuit 207 is a circuit for controlling the servo motor 5.
  • the axis control circuit 207 receives control commands from the hardware processor 201 and sends various commands to the servo amplifier 4 for driving the servo motor 5.
  • the axis control circuit 207 sends, for example, a torque command for controlling the torque of the servo motor 5 to the servo amplifier 4.
  • the servo amplifier 4 receives commands from the axis control circuit 207 and supplies current to the servo motor 5.
  • the servo motors 5 are driven by receiving a current supply from the servo amplifier 4.
  • the servo motors 5 are provided corresponding to each control axis of the industrial machine 1. If the industrial machine 1 is a machine tool having five axes, the servo motors 5 include, for example, an X-axis servo motor, a Y-axis servo motor, a Z-axis servo motor, an A-axis servo motor, and a C-axis servo motor.
  • the axis control circuit 207 and the servo amplifier 4 are provided for each servo motor 5.
  • the servo motor 5 is connected to, for example, a ball screw that moves a structure of the industrial machine 1.
  • a structure of the industrial machine 1 such as a tool rest, moves along a predetermined control axis.
  • the servo motor 5 has a built-in encoder (not shown) that detects the position and feed speed of the control axis. Position feedback information and speed feedback information indicating the position of the control axis and the feed speed of the control axis detected by the encoder, respectively, are fed back to the axis control circuit 207. In this way, the axis control circuit 207 performs feedback control of each control axis.
  • the spindle control circuit 208 is a circuit for controlling the spindle motor 7.
  • the spindle control circuit 208 receives a control command from the hardware processor 201 and sends a command to the spindle amplifier 6 to drive the spindle motor 7.
  • the spindle control circuit 208 sends, for example, a spindle speed command to the spindle amplifier 6 to control the rotation speed of the spindle motor 7.
  • the spindle amplifier 6 receives commands from the spindle control circuit 208 and supplies current to the spindle motor 7.
  • the spindle motor 7 is driven by a current supplied from the spindle amplifier 6.
  • the spindle motor 7 is connected to the main shaft and rotates the main shaft.
  • the PLC 209 is a device that executes a ladder program to control the auxiliary device 8.
  • the PLC 209 sends commands to the auxiliary device 8 via the I/O unit 210.
  • the I/O unit 210 is an interface that connects the PLC 209 and the auxiliary device 8.
  • the I/O unit 210 sends commands received from the PLC 209 to the auxiliary device 8.
  • the auxiliary device 8 is installed in the industrial machine 1 and performs auxiliary operations in the industrial machine 1.
  • the auxiliary device 8 operates based on commands received from the I/O unit 210.
  • the auxiliary device 8 may be a device installed in the periphery of the industrial machine 1.
  • the auxiliary device 8 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door drive device.
  • the second interface 211 connects the bus 202 and the measuring instrument 9.
  • the second interface 211 sends, for example, measurement data measured by the measuring instrument 9 to the hardware processor 201.
  • the measuring instrument 9 is a device that measures various physical quantities.
  • the measuring instrument 9 is, for example, an ammeter, a distance measuring sensor, a three-dimensional scanner, and a camera.
  • the ammeter measures, for example, the current supplied to the servo motor 5 and the spindle motor 7.
  • the distance measuring sensor measures, for example, the dimensions of a specific position on the workpiece.
  • the distance measuring sensor includes a touch probe.
  • the camera obtains information such as the shape of the workpiece surface and the presence or absence of scratches.
  • the third interface 212 connects the bus 202 and the simulation device 10.
  • the third interface 212 sends, for example, measurement data measured by the measuring instrument 9 to the simulation device 10.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of the simulation device 10.
  • the simulation device 10 includes, for example, a hardware processor 101, a bus 102, a ROM 103, a RAM 104, a non-volatile memory 105, a first interface 106, an input/output device 107, and a second interface 108.
  • the hardware processor 101 is a processor that controls the entire simulation device 10 in accordance with a system program.
  • the hardware processor 101 reads the system program and the like stored in the ROM 103 via the bus 102.
  • the hardware processor 101 is, for example, a CPU or an electronic circuit.
  • the bus 102 is a communication path that connects each piece of hardware in the simulation device 10 to each other. Each piece of hardware in the simulation device 10 exchanges data via the bus 102.
  • ROM 103 is a storage device that stores system programs and the like. ROM 103 is a computer-readable storage medium.
  • RAM 104 is a storage device that temporarily stores various data. RAM 104 functions as a working area for the hardware processor 101 to process various data.
  • the non-volatile memory 105 is a storage device that retains data even when the power to the simulation device 10 is turned off.
  • the non-volatile memory 105 stores, for example, a simulation program.
  • the non-volatile memory 105 is a computer-readable storage medium.
  • the non-volatile memory 105 is, for example, a battery-backed memory or an SSD.
  • the first interface 106 connects the bus 102 and the input/output device 107.
  • the first interface 106 sends, for example, various data processed by the hardware processor 101 to the input/output device 107.
  • the input/output device 107 receives various data via the first interface 106 and displays the various data on a display.
  • the input/output device 107 also receives input of various data and sends the various data via the first interface 106 to, for example, the hardware processor 101.
  • the input/output device 107 is, for example, a touch panel.
  • the input/output device 107 is, for example, a capacitive touch panel.
  • the touch panel is not limited to a capacitive touch panel, and may be a touch panel of another type.
  • the second interface 108 connects the bus 102 and the numerical control device 2.
  • the second interface 108 receives, for example, measurement data measured by the measuring instrument 9 of the industrial machine 1 and sends the data to the non-volatile memory 105.
  • FIG. 4 is a block diagram showing an example of the functions of the simulation device 10.
  • the simulation device 10 includes, for example, an information receiving unit 111, a factor information storage unit 112, a selection unit 113, a model storage unit 114, a simulation unit 115, an acquisition unit 116, a determination unit 117, a correction unit 118, and an output unit 119.
  • the information receiving unit 111, the selection unit 113, the simulation unit 115, the acquisition unit 116, the determination unit 117, the correction unit 118 and the output unit 119 are realized, for example, by the hardware processor 101 performing calculations using the system program stored in the ROM 103 and various data stored in the non-volatile memory 105.
  • the factor information storage unit 112 is realized, for example, by storing factor information indicating defective factors in the non-volatile memory 105.
  • the model storage unit 114 is realized, for example, by storing data of various virtual models in the non-volatile memory 105.
  • the information receiving unit 111 receives operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1.
  • the type of operation is, for example, the type of machining.
  • the type of machining includes, for example, hole drilling and milling.
  • the type of defect includes, for example, shape distortion, scratches on the machined surface due to unstable rotation speed, and dimensional errors.
  • the information receiving unit 111 displays an image showing the operational information and an image showing the defect information stored in a storage unit (not shown) on the display of the input/output device 107 and receives an operation of selecting these images by the operator. This allows the information receiving unit 111 to receive the operational information and the defect information.
  • the information receiving unit 111 may also obtain operation information from an operation program.
  • the information receiving unit 111 may also obtain defect information from a measuring instrument 9.
  • FIGS. 5A and 5B are diagrams illustrating an example of a defect that occurs in industrial machine 1.
  • industrial machine 1 performs machining using polar coordinate interpolation around the Z axis.
  • Polar coordinate interpolation around the Z axis is a function that synchronizes the linear axis (X axis) and the rotational axis (C axis) and converts commands programmed in a Cartesian coordinate system into linear axis movement (tool movement) and rotational axis movement (workpiece rotation) to perform contour control.
  • Polar coordinate interpolation is used, for example, in machining to cut the cross section of workpiece W into a polygon (a rectangle in FIGS. 5A and 5B).
  • each face that constitutes a polygon parallel to the Z axis is machined to be almost flat. In other words, no defects have occurred in the industrial machine 1.
  • the information receiving unit 111 receives operation information indicating that polar coordinate interpolation is being performed, and defect information indicating that a distortion of the shape has occurred.
  • the factor information storage unit 112 stores factor information indicating the factors of defects.
  • a defect factor is a cause that causes a defect.
  • the factor information includes, for example, a numerical value indicating the rigidity of the industrial machine 1, a numerical value indicating the coefficient of friction when a structure constituting the industrial machine 1 operates, a numerical value indicating the geometric error of a structure constituting the industrial machine 1, and a numerical value indicating the amount of wear of a tool.
  • a geometric error is an error related to the positional relationship of the drive shaft, which affects the operating accuracy of the industrial machine 1.
  • FIG. 6 is a diagram showing an example of factor information stored in the factor information storage unit 112.
  • Defective factors indicated by the factor information include, for example, "Y-direction error of the C-axis center” and “eccentricity of the rotation axis.”
  • "Y-direction error of the C-axis center” is a type of geometric error, and means that there is a deviation in the Y direction between the coordinate setting of the C-axis center and the actual position of the C-axis center, as shown in FIG. 5B.
  • Eccentricity of the rotation axis means that the workpiece W is fixed to the chuck away from the center of the rotation axis.
  • the factor information may include a numerical value indicating the degree of defect.
  • the numerical value indicating the degree of defect may include, for example, a numerical value indicating the rigidity of the industrial machine 1, a numerical value indicating the coefficient of friction, a numerical value indicating the geometric error, and a numerical value indicating the amount of wear of the tool.
  • the factor information storage unit 112 stores factor information in association with operation information and defect information.
  • the factor information storage unit 112 stores defects that may occur when the industrial machine 1 performs a specific operation in association with the causes of the defects.
  • the factor information storage unit 112 stores "Y direction error at the center of the C axis" in association with “polar coordinate interpolation” and “shape distortion.”
  • the factor information storage unit 112 also stores “eccentricity of the rotation axis” in association with "polar coordinate interpolation” and “shape distortion.”
  • the selection unit 113 selects factor information indicating the cause of a defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect occurring in the industrial machine 1.
  • the selection unit 113 selects at least one piece of factor information from the multiple pieces of factor information stored in the factor information storage unit 112.
  • the selection unit 113 selects "Y direction error from the center of the C axis" as the factor information. If the information receiving unit 111 receives operation information indicating "polar coordinate interpolation” and defect information indicating "shape distortion", the selection unit 113 may select "eccentricity of the rotation axis" as the factor information.
  • the model storage unit 114 stores a virtual model of the industrial machine 1.
  • the virtual model of the industrial machine 1 includes a structure model, which is a virtual model of each structure of the industrial machine 1, a numerical control model, which is a virtual model of the numerical control device 2 that controls the industrial machine 1, and a work model, which is a virtual model of the workpiece W.
  • the numerical control model performs a simulation of the operation of the industrial machine 1 by operating the structure model.
  • the structure model includes, for example, a virtual model of the drive shaft, a virtual model of the bed, a virtual model of the drive shaft head, a virtual model of the column, a virtual model of the linear guide, a virtual model of the bearing, a virtual model of the tool, a virtual model of the motor, and a virtual model of the cutting fluid injection device.
  • the structure model also includes information indicating, for example, the shape, weight, material, friction coefficient, rigidity, heat capacity, thermal conductivity, and longitudinal elastic modulus of the structure.
  • the virtual model of the motor obtains virtual feedback information by driving the virtual model of the drive shaft.
  • the virtual model of the motor includes information about the specifications of the motor.
  • the information about the specifications includes, for example, information indicating the rated torque, rated output, rated rotational speed, maximum torque, maximum rotational speed, and encoder resolution.
  • the workpiece model includes information indicating, for example, the shape, weight, material, rigidity, heat capacity, thermal conductivity, and modulus of longitudinal elasticity of the workpiece W.
  • the simulation unit 115 executes an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113.
  • the simulation unit 115 executes the operation simulation using a virtual model of the industrial machine 1.
  • the simulation unit 115 executes the operation simulation using an operation program.
  • the simulation unit 115 shifts the Y direction position of the C-axis center in the virtual model and performs an operational simulation.
  • the simulation unit 115 executes the operation simulation by shifting the Y-direction position of the C-axis center by the numerical value indicating the Y-direction error around the C-axis center. For example, if the factor information includes a numerical value of 0.3 mm indicating the Y-direction error around the C-axis center, the simulation unit 115 executes the operation simulation by shifting the Y-direction position of the C-axis center by 0.3 mm.
  • the simulation unit 115 executes an operation simulation to obtain the results of the operation simulation.
  • Information indicating the operation simulation results includes, for example, information indicating the shape of the workpiece W or information indicating the dimensions of the workpiece W.
  • FIG. 7 shows an example of the results of an operation simulation.
  • the simulation unit 115 obtains information indicating the shape of the workpiece W when the operation simulation is performed with the deviation amount in the Y direction from the center of the C axis set to 0.3 mm.
  • the acquisition unit 116 acquires result information indicating the operation results of the industrial machine 1, for example, from the measuring instrument 9.
  • the result information indicating the operation results includes, for example, operation status information indicating the state when the industrial machine 1 is operating based on the operation program, or work status information indicating the state of the machined workpiece W.
  • the operating status information includes, for example, information indicating the torque of the servo motor 5 when the industrial machine 1 is operating, or information indicating the torque of the spindle motor 7 when the industrial machine 1 is operating.
  • the operating status information is time-series data.
  • the work status information is information indicating the measurement results such as the shape, dimensions, surface roughness, or the presence or absence of scratches of the machined workpiece W.
  • FIG. 8 is a diagram showing an example of result information acquired by the acquisition unit 116.
  • the result information is image data captured by a camera.
  • the image data may include data indicating the dimensions of each part of the workpiece W after machining. Now, we return to the explanation of FIG. 4.
  • the determination unit 117 compares the results of the operation simulation with result information indicating the operation results of the industrial machine 1 to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1.
  • the determination unit 117 compares the shape of the workpiece W indicated by the result information with the shape of the workpiece W obtained by executing the operation simulation.
  • the determination unit 117 determines that the shape of the workpiece W obtained by executing the operation simulation does not match the shape of the workpiece W indicated by the operation results acquired by the acquisition unit 116. Therefore, the determination unit 117 determines that the defect indicated by the factor information has not occurred.
  • the correction unit 118 corrects the factor information selected by the selection unit 113.
  • the correction of the factor information involves, for example, changing the numerical values that indicate the degree of defect contained in the factor information.
  • the numerical values that indicate the degree of defect include a numerical value that indicates the rigidity of each structure of the industrial machinery 1, a numerical value that indicates the coefficient of friction when each structure of the industrial machinery 1 operates, a numerical value that indicates the geometric error of each structure of the industrial machinery 1, and a numerical value that indicates the amount of wear on the tools.
  • the selection unit 113 selects the factor information after the correction. For example, when the correction unit 118 changes the value indicating the Y-direction error from the center of the C-axis from 0.3 [mm] to 0.4 [mm], the selection unit 113 selects the changed value of 0.4 [mm]. In this case, the simulation unit 115 again performs an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113.
  • the correction unit 118 further changes the value indicating the Y-direction error from the center of the C-axis from 0.4 mm to 0.5 mm.
  • the correction of factor information may involve changing the factor information selected by the selection unit 113 to other factor information.
  • the factor information storage unit 112 stores "eccentricity of rotation axis" in association with "polar coordinate interpolation” and "shape distortion.” Therefore, the correction unit 118 may change the factor information from "Y-direction error of the center of the C-axis" to "eccentricity of the rotation axis.”
  • the output unit 119 outputs the judgment result by the judgment unit 117.
  • the output unit 119 outputs the judgment result, for example, to the input/output device 107. If the judgment unit 117 judges that, for example, a Y-direction error has occurred about the C-axis, the output unit 119 outputs a judgment result indicating that a Y-direction error has occurred about the C-axis to the input/output device 107.
  • the output unit 119 may further output a numerical value indicating the degree of defect.
  • FIG. 9 is a diagram showing an example of the display mode of the judgment result.
  • the output unit 119 outputs to the input/output device 107 the shapes of each workpiece W obtained by executing the operation simulation.
  • the output unit 119 also outputs to the input/output device 107 a numerical value indicating the degree of defect that is set when the result of the operation simulation matches the result information indicating the operation result of the industrial machine 1.
  • an arrow indicates that when the Y direction error from the center of the C axis is set to 0.5 mm, the result of the operation simulation matches the result information.
  • the determination unit 117 may count the number of times that it has determined that the defect indicated by the factor information has not occurred in the industrial machine 1. For example, if the determination unit 117 determines that the defect indicated by the factor information has not occurred a predetermined number of times, the output unit 119 outputs a determination result indicating that the defect factor could not be identified.
  • FIG. 10 is a flowchart showing an example of the flow of processing executed by the simulation device 10.
  • the information receiving unit 111 receives operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1 (step S1). That is, the information receiving unit 111 receives the operation information and defect information after an operation is performed in the industrial machine 1.
  • the selection unit 113 selects factor information indicating the cause of the defect based on the operation information and the defect information (step S2).
  • the simulation unit 115 performs an operation simulation using a virtual model of the industrial machine 1 based on the factor information selected by the selection unit 113 (step S3).
  • the acquisition unit 116 acquires result information indicating the operation results of the industrial machine 1 (step S4).
  • the judgment unit 117 compares the results of the operation simulation with the result information indicating the operation results of the industrial machine 1 to judge whether or not a defect indicated by the factor information has occurred in the industrial machine 1 (step S5).
  • step S5 If the judgment unit 117 judges that a defect indicated by the factor information has occurred (Yes in step S5), the output unit 119 outputs the judgment result by the judgment unit 117 (step S6), and the process ends.
  • step S5 If the judgment unit 117 judges that the defect indicated by the factor information has not occurred (No in step S5), the judgment unit 117 judges whether or not it has been judged that the defect has not occurred more than a predetermined number of times (step S7).
  • step S7 If the number of times that it is determined that no defect has occurred exceeds a predetermined number (Yes in step S7), the output unit 119 outputs a determination result indicating that the cause of the defect cannot be identified (step S6), and the process ends. On the other hand, if the number of times that it is determined that no defect has occurred is equal to or less than the predetermined number (No in step S7), the correction unit 118 corrects the factor information (step S8).
  • step S2 the selection unit 113 selects the factor information corrected by the correction unit 118 (step S2), and the processing continues from step S3 onwards.
  • the information receiving unit 111 receives operation information indicating that hole machining has been performed, and defect information indicating that the rotation of the spindle is unstable and that the machined surface has been scratched.
  • FIG. 11 is a diagram showing an example of factor information stored in the factor information storage unit 112.
  • Defective factors indicated by the factor information include, for example, "decreased spindle stiffness” and “decreased feed shaft stiffness.”
  • “Decreased spindle stiffness” means a decrease in stiffness of the spindle and the parts surrounding the spindle. The parts surrounding the spindle include the bearings that grip the spindle. Also, a decrease in spindle stiffness includes increased runout of the spindle due to wear or damage to the bearings.
  • Decrease in feed axis rigidity means a decrease in the rigidity of the structure that constitutes the feed axis.
  • the feed axis rigidity decreases when the linear guide and ball screw that constitute the feed axis become worn or damaged.
  • the factor information may include a numerical value indicating the rigidity of the spindle or the rigidity of the feed shaft as a numerical value indicating the degree of defect.
  • the factor information storage unit 112 stores factor information in association with operation information and defect information. For example, the factor information storage unit 112 stores "reduction in spindle rigidity” in association with “hole machining” and “unstable rotation, scratches on the machining surface.” The factor information storage unit 112 also stores “reduction in feed axis rigidity” in association with "hole machining” and “unstable rotation, scratches on the machining surface.”
  • the selection unit 113 selects factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1.
  • the selection unit 113 selects “decreased spindle rigidity” as the factor information. If the information receiving unit 111 receives operation information indicating "hole drilling” and defect information indicating “unstable rotation, scratches on the machined surface,” the selection unit 113 may select "decreased feed axis rigidity" as the factor information.
  • the simulation unit 115 executes an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113.
  • the simulation unit 115 executes the operation simulation using a virtual model of the industrial machine 1.
  • the simulation unit 115 executes the operation simulation by setting the stiffness of the main shaft in the virtual model to a predetermined first value.
  • the simulation unit 115 executes an operation simulation to obtain the results of the operation simulation.
  • Information indicating the results of the operation simulation includes, for example, information indicating the torque of the servo motor 5 or information indicating the torque of the spindle motor 7.
  • FIG. 12 is a diagram showing an example of the results of an operation simulation.
  • the simulation unit 115 obtains information indicating the torque of the spindle motor 7 when an operation simulation is performed with the stiffness of the spindle set to a predetermined first value in the virtual model.
  • the information indicating the torque is a torque waveform.
  • the acquisition unit 116 acquires result information indicating the operation result of the industrial machine 1, for example, from the measuring instrument 9.
  • the information indicating the operation result is information indicating the torque of the spindle motor 7 when the industrial machine 1 is operating based on the operation program.
  • FIG. 13 is a diagram showing an example of result information acquired by the acquisition unit 116.
  • the result information is information indicating the torque of the spindle motor 7 acquired from the spindle amplifier 6 while the industrial machine 1 is in operation.
  • the determination unit 117 compares the results of the operation simulation with result information indicating the operation results of the industrial machine 1 to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1.
  • the determination unit 117 compares the torque waveform indicated by the result information with the torque waveform obtained by executing the operation simulation.
  • the determination unit 117 determines that the torque waveform obtained by executing the operation simulation does not match the torque waveform indicated by the operation result. Therefore, the determination unit 117 determines that the defect indicated by the factor information has not occurred.
  • the correction unit 118 corrects the factor information selected by the selection unit 113.
  • the correction unit 118 changes the numerical value indicating the stiffness of the spindle from a first value to a second value.
  • the selection unit 113 selects the factor information after the correction.
  • the correction unit 118 has changed the numerical value indicating the stiffness of the main shaft from a first value to a second value
  • the selection unit 113 selects the second value.
  • the simulation unit 115 again performs an operation simulation of the industrial machine 1 based on the second value selected by the selection unit 113.
  • the correction unit 118 changes, for example, the numerical value indicating the stiffness of the spindle from the second value to a third value.
  • the correction of factor information may involve changing the factor information selected by the selection unit 113 to other factor information.
  • the factor information storage unit 112 stores "decreased feed shaft stiffness” in association with "hole machining” and “unstable rotation, scratches on the machining surface.” Therefore, the correction unit 118 may change the factor information from “decreased spindle stiffness” to "decreased feed shaft stiffness.”
  • the output unit 119 outputs the result of the determination made by the determination unit 117. If the determination unit 117 determines that, for example, a "decrease in spindle stiffness" has occurred, the output unit 119 outputs a determination result indicating that a decrease in spindle stiffness has occurred to the input/output device 107. The output unit 119 may further output a numerical value indicating the degree of defect.
  • FIG. 14 is a diagram showing an example of a display mode of the judgment result.
  • the output unit 119 causes the input/output device 107 to display each of the torque waveforms obtained by executing the operation simulation.
  • the output unit 119 outputs to the input/output device 107 a numerical value indicating the degree of defect that is set when the result of the operation simulation matches the result information indicating the operation result of the industrial machine 1.
  • FIG. 14 shows by an arrow that when the value indicating the stiffness of the spindle is set to the third value, the result of the operation simulation matches the result information.
  • the operator may discover that a dimensional error has occurred in the height of the machined surface.
  • the operator inputs to the simulation device 10 operation information indicating that milling has been performed and defect information indicating that a dimensional error has occurred.
  • the information receiving unit 111 receives operation information indicating that milling has been performed, and defect information indicating that a dimensional error has occurred.
  • FIG. 15 is a diagram showing an example of factor information stored in the factor information storage unit 112.
  • Defective factors indicated by the factor information include, for example, “tool wear,” “reduction in spindle rigidity,” and “coordinate system deviation.”
  • Coordinat system deviation means that the position of the origin of the work coordinate system is deviated from the position where it should be set.
  • the factor information may include a numerical value indicating the degree of defect, such as a numerical value indicating the amount of wear on the tool, a numerical value indicating the rigidity of the spindle, or a numerical value indicating the amount of deviation in the coordinate system.
  • the factor information storage unit 112 stores factor information in association with operation information and defect information. For example, the factor information storage unit 112 stores "tool wear” in association with “milling” and "dimensional error”. The factor information storage unit 112 also stores “reduction in spindle rigidity” in association with “milling” and “dimensional error”. The factor information storage unit 112 also stores “coordinate system deviation” in association with “milling” and "dimensional error”.
  • the selection unit 113 selects factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1.
  • the selection unit 113 selects “tool wear” as the factor information. If the information receiving unit 111 receives operation information indicating "milling” and defect information indicating "dimensional error”, the selection unit 113 may select “reduction in spindle rigidity” as the factor information. If the information receiving unit 111 receives operation information indicating "milling” and defect information indicating "dimensional error", the selection unit 113 may select "misalignment of the coordinate system" as the factor information.
  • the simulation unit 115 executes an operation simulation using a virtual model of the industrial machine 1 based on the factor information selected by the selection unit 113.
  • the simulation unit 115 executes the operation simulation by setting the amount of tool wear in the virtual model to, for example, 0.1 mm.
  • the simulation unit 115 executes an operation simulation to obtain the results of the operation simulation.
  • the information indicating the results of the operation simulation includes, for example, information indicating the dimensions of the workpiece W.
  • the dimensions of the workpiece W may include, for example, the height of the machined surface of the workpiece W and the depth of the machined hole.
  • FIG. 16 is a diagram showing an example of the results of an operational simulation.
  • the simulation unit 115 sets the wear amount of the milling tool to, for example, 0.1 mm, and obtains information indicating the results of the operational simulation.
  • the acquisition unit 116 acquires result information indicating the operation results of the industrial machine 1, for example, from the measuring device 9.
  • the result information indicating the operation results is information indicating the height of the surface of the workpiece W machined based on the operation program.
  • FIG. 17 is a diagram showing an example of result information acquired by the acquisition unit 116.
  • the result information is, for example, an image of the workpiece W measured by a 3D scanner and information indicating the height of the surface of the workpiece W.
  • the determination unit 117 compares the results of the operation simulation with result information indicating the operation results of the industrial machine 1 to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1.
  • the determination unit 117 compares the height of the surface of the workpiece W indicated by the result information with the height of the surface of the workpiece W obtained by executing the operation simulation.
  • the determination unit 117 determines that the surface height of the workpiece W obtained by executing the operation simulation matches the surface height of the workpiece W indicated by the operation result acquired by the acquisition unit 116.
  • the output unit 119 outputs the determination result by the determination unit 117.
  • the determination unit 117 determines that the surface height of the workpiece W obtained by executing the operation simulation matches the surface height of the workpiece W indicated by the operation result
  • the output unit 119 outputs to the input/output device 107 a determination result indicating that tool wear is occurring.
  • FIG. 18 is a diagram showing an example of a display mode of the judgment result.
  • the output unit 119 causes the input/output device 107 to display the shape of the workpiece W obtained by executing the operation simulation.
  • the output unit 119 outputs to the input/output device 107 a numerical value indicating the degree of defect that is set when the result of the operation simulation matches the result information indicating the operation result of the industrial machine 1.
  • an arrow indicates that the result of the operation simulation matches the result information when the amount of tool wear is set to 0.1 [mm].
  • the correction unit 118 corrects the factor information and performs the operation simulation again.
  • the determination unit 117 may determine whether the results of the multiple operational simulations match the result information acquired by the acquisition unit 116.
  • the simulation unit 115 sets the numerical value indicating the Y-direction error from the center of the C-axis to 0.3 [mm], 0.4 [mm], and 0.5 [mm] and executes multiple operation simulations. After that, the determination unit 117 compares the results of each operation simulation with the result information acquired by the acquisition unit 116. In other words, the determination unit 117 determines which operation simulation result the result information acquired by the acquisition unit 116 matches.
  • the determination unit 117 may determine that the result of the operation simulation that is most similar to the result information acquired by the acquisition unit 116 is the result of the operation simulation that matches the result information.
  • the simulation device 10 identifies the cause of one abnormality.
  • the simulation device 10 may identify the causes of two or more abnormalities.
  • the selection unit 113 selects "Y-direction error from the center of the C-axis" and "eccentricity of the rotation axis" as the factor information.
  • the simulation unit 115 executes the operation simulation by changing the numerical values indicating the degree of defect contained in each of "Y-direction error from the center of the C-axis" and "eccentricity of the rotation axis" multiple times.
  • the simulation unit 115 first executes an operation simulation by setting the value indicating the degree of eccentricity of the rotation axis to -0.1 [mm] and the Y direction error around the C axis to 0.3 [mm]. Next, the simulation unit 115 executes an operation simulation by setting the value indicating the degree of eccentricity of the rotation axis to -0.1 [mm] and the Y direction error around the C axis to 0.4 [mm]. Next, the simulation unit 115 executes an operation simulation by setting the value indicating the degree of eccentricity of the rotation axis to -0.1 [mm] and the Y direction error around the C axis to 0.5 [mm].
  • the simulation unit 115 sets the value indicating the degree of eccentricity of the rotating shaft to 0.1 [mm] and the Y direction error around the C axis to 0.3 [mm], and executes an operation simulation.
  • the simulation unit 115 sets the value indicating the degree of eccentricity of the rotating shaft to 0.1 [mm] and the Y direction error around the C axis to 0.4 [mm], and executes an operation simulation.
  • the simulation unit 115 sets the value indicating the degree of eccentricity of the rotating shaft to 0.1 [mm] and the Y direction error around the C axis to 0.5 [mm], and executes an operation simulation.
  • the simulation device 10 can identify the causes of those multiple abnormalities.
  • the simulation device 10 includes a selection unit 113 that selects factor information indicating the cause of a defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect occurring in the industrial machine 1, a simulation unit 115 that executes an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113, an acquisition unit 116 that acquires result information indicating the operation result of the industrial machine 1, a determination unit 117 that compares the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1, and an output unit 119 that outputs the determination result by the determination unit 117.
  • the computer-readable storage medium also stores instructions that cause the computer to execute the following: select factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that occurs in the industrial machine 1; execute an operation simulation of the industrial machine 1 based on the selected factor information; obtain result information indicating the operation result of the industrial machine 1; compare the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1; and output the determined result.
  • the simulation device 10 can identify the cause of the abnormality in the industrial machine 1.
  • the factor information includes at least one of a numerical value indicating the rigidity of the industrial machine 1, a numerical value indicating the coefficient of friction, a numerical value indicating the geometric error, and a numerical value indicating the amount of wear of the tool.
  • the simulation device 10 further includes a correction unit 118 that corrects the factor information selected by the selection unit 113 when it is determined that the defect indicated by the factor information has not occurred.
  • the output unit 119 outputs a determination result indicating that the defect factor cannot be identified.
  • the simulation unit 115 also executes an operation simulation using a virtual model of the industrial machine 1. Therefore, the simulation device 10 can reliably identify the cause of an abnormality that is actually occurring in the industrial machine 1.
  • the simulation device 10 can also prevent the operation simulation from being repeated more than a predetermined number of times.
  • the information indicating the operation results includes operation status information indicating the state when the industrial machine 1 is operating based on the operation program, or work status information indicating the state of the machined workpiece W.
  • the operation status information includes information indicating the torque of the servo motor 5 when the industrial machine 1 is operating, or information indicating the torque of the spindle motor 7 when the industrial machine 1 is operating.
  • the work status information includes information indicating the measurement results of the shape, dimensions, surface roughness, or presence or absence of scratches on the machined workpiece W. Therefore, the simulation device 10 can identify the causes of various abnormalities that occur in the industrial machine 1.
  • Appendix [1] a simulation unit that executes an operation simulation of the industrial machine based on the factor information selected by the selection unit; an acquisition unit that acquires result information that indicates an operation result of the industrial machine; a determination unit that compares a result of the operation simulation with the result information to determine whether or not the defect indicated by the factor information has occurred in the industrial machine; and an output unit that outputs a result of the determination made by the determination unit.
  • Appendix [2] The simulation device according to claim 1, wherein the factor information includes at least one of a numerical value indicating a rigidity of the industrial machine, a numerical value indicating a coefficient of friction, a numerical value indicating a geometric error, and a numerical value indicating an amount of wear of a tool.
  • Appendix [3] The simulation apparatus according to claim 1, further comprising a correction unit that corrects the factor information selected by the selection unit when it is determined that the failure indicated by the factor information has not occurred.
  • Appendix [4] The simulation device according to claim 3, wherein, when the judgment unit judges that the defect has not occurred a predetermined number of times or more, the output unit outputs a judgment result indicating that a cause of the defect cannot be identified.
  • Appendix [5] The simulation device according to any one of appendices [1] to [4], wherein the simulation unit executes the operation simulation using a virtual model of the industrial machine.
  • Appendix [6] The simulation device according to any one of appendices [1] to [5], wherein the result information indicating the operation result includes operation status information indicating a state when the industrial machine is operating based on an operation program, or work status information indicating a state of a machined workpiece.
  • Appendix [7] The simulation device according to claim 6, wherein the operating state information is information indicating a torque of a servo motor when the industrial machine is operating, or information indicating a torque of a spindle motor when the industrial machine is operating.
  • Appendix [8] The simulation device according to claim 6, wherein the workpiece condition information is information indicating measurement results of the shape, dimensions, surface roughness, or presence or absence of scratches of the machined workpiece.
  • Appendix [9] A computer-readable storage medium storing instructions to cause a computer to execute the following: selecting factor information indicating a factor of a defect based on operation information indicating a type of operation of an industrial machine and defect information indicating a type of defect occurring in the industrial machine; executing an operation simulation of the industrial machine based on the selected factor information; obtaining result information indicating an operation result of the industrial machine; comparing a result of the operation simulation with the result information to determine whether or not the defect indicated by the factor information has occurred in the industrial machine; and outputting the determined result.
  • Reference Signs List 1 Industrial machine 2 Numerical control device 201 Hardware processor 202 Bus 203 ROM 204 RAM 205 Non-volatile memory 206 First interface 207 Axis control circuit 208 Spindle control circuit 209 PLC 210 I/O unit 211 Second interface 212 Third interface 3 Input/output device 4 Servo amplifier 5 Servo motor 6 Spindle amplifier 7 Spindle motor 8 Auxiliary device 9 Measuring instrument 10 Simulation device 101 Hardware processor 102 Bus 103 ROM 104 RAM REFERENCE SIGNS LIST 105 Non-volatile memory 106 First interface 107 Input/output device 108 Second interface 111 Information receiving section 112 Factor information storage section 113 Selection section 114 Model storage section 115 Simulation section 116 Acquisition section 117 Determination section 118 Correction section 119 Output section

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

This simulation device comprises: a simulation unit that performs an industrial machine operation simulation on the basis of factor information selected by a selection unit; an acquisition unit that acquires result information indicating the results of operating the industrial machine; a determination unit that compares the operation simulation results and the result information to determine whether a defect indicated by the factor information is occurring in the industrial machine; and an output unit that outputs the determination results by the determination unit.

Description

シミュレーション装置およびコンピュータ読み取り可能な記憶媒体Simulation device and computer-readable storage medium
 本開示は、シミュレーション装置およびコンピュータ読み取り可能な記憶媒体に関する。 The present disclosure relates to a simulation device and a computer-readable storage medium.
 産業機械が動作した後に異常の発生が確認されると、異常の原因を特定することが行われる。例えば、特許文献1には、異常の原因を特定するための作業を支援する技術が開示されている。 If an abnormality is confirmed after an industrial machine is in operation, the cause of the abnormality is identified. For example, Patent Document 1 discloses a technology that supports the task of identifying the cause of the abnormality.
特許第7135225号公報Patent No. 7135225
 しかし、特許文献1に開示された技術を用いたとしても、最終的には、オペレータが異常の原因を判断することになる。非熟練者は、経験の不足により、異常の原因を特定できない場合がある。そのため、異常の原因を特定することが可能な装置が求められている。 However, even if the technology disclosed in Patent Document 1 is used, it is ultimately up to the operator to determine the cause of the abnormality. Unskilled personnel may not be able to identify the cause of the abnormality due to lack of experience. Therefore, there is a demand for a device that can identify the cause of the abnormality.
 本開示のシミュレーション装置は、産業機械の動作の種類を示す動作情報および産業機械において発生した不良の種類を示す不良情報に基づいて、不良の因子を示す因子情報を選択する選択部と、選択部によって選択された因子情報に基づいて、産業機械の動作シミュレーションを実行するシミュレーション部と、産業機械の動作結果を示す結果情報を取得する取得部と、動作シミュレーションの結果と結果情報とを比較して産業機械において因子情報が示す不良が発生しているか否かを判定する判定部と、判定部による判定結果を出力する出力部と、を備える。 The simulation device disclosed herein includes a selection unit that selects factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine and defect information indicating the type of defect that has occurred in the industrial machine, a simulation unit that executes an operation simulation of the industrial machine based on the factor information selected by the selection unit, an acquisition unit that acquires result information indicating the operation result of the industrial machine, a determination unit that compares the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine, and an output unit that outputs the determination result by the determination unit.
 本開示のコンピュータ読み取り可能な記憶媒体は、産業機械の動作の種類を示す動作情報および産業機械において発生する不良の種類を示す不良情報に基づいて、不良の因子を示す因子情報を選択することと、選択された因子情報に基づいて、産業機械の動作シミュレーションを実行することと、産業機械の動作結果を示す結果情報を取得することと、動作シミュレーションの結果と結果情報とを比較して産業機械において因子情報が示す不良が発生しているか否かを判定することと、判定された結果を出力することと、をコンピュータに実行させる命令を記憶する。 The computer-readable storage medium of the present disclosure stores instructions that cause a computer to execute the following: select factor information indicating the cause of a defect based on operation information indicating the type of operation of the industrial machine and defect information indicating the type of defect that occurs in the industrial machine, execute an operation simulation of the industrial machine based on the selected factor information, obtain result information indicating the operation result of the industrial machine, compare the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine, and output the determined result.
シミュレーション装置を含むシステムの一例を示す図である。FIG. 1 illustrates an example of a system including a simulation device. 産業機械のハードウェア構成の一例を示すブロック図である。1 is a block diagram showing an example of a hardware configuration of an industrial machine; シミュレーション装置のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a hardware configuration of the simulation device. シミュレーション装置の機能の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a function of the simulation device. 産業機械において発生する不良の一例について説明する図である。FIG. 1 is a diagram illustrating an example of a defect that occurs in an industrial machine. 産業機械において発生する不良の一例について説明する図である。FIG. 1 is a diagram illustrating an example of a defect that occurs in an industrial machine. 因子情報記憶部が記憶する因子情報の一例を示す図である。4 is a diagram illustrating an example of factor information stored in a factor information storage unit. FIG. 動作シミュレーションの結果の一例を示す図である。FIG. 11 is a diagram showing an example of a result of an operation simulation. 取得部が取得した結果情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of result information acquired by an acquisition unit. 判定結果の表示態様の一例を示す図である。FIG. 11 is a diagram showing an example of a display mode of a determination result. シミュレーション装置が実行する処理の流れの一例を示すフローチャートである。1 is a flowchart showing an example of a flow of a process executed by a simulation device. 因子情報記憶部が記憶する因子情報の一例を示す図である。4 is a diagram illustrating an example of factor information stored in a factor information storage unit. FIG. 動作シミュレーションの結果の一例を示す図である。FIG. 11 is a diagram showing an example of a result of an operation simulation. 取得部が取得した結果情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of result information acquired by an acquisition unit. 判定結果の表示態様の一例を示す図である。FIG. 11 is a diagram showing an example of a display mode of a determination result. 因子情報記憶部が記憶する因子情報の一例を示す図である。4 is a diagram illustrating an example of factor information stored in a factor information storage unit. FIG. 動作シミュレーションの結果の一例を示す図である。FIG. 11 is a diagram showing an example of a result of an operation simulation. 取得部が取得した結果情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of result information acquired by an acquisition unit. 判定結果の表示態様の一例を示す図である。FIG. 11 is a diagram showing an example of a display mode of a determination result.
 以下、本開示の実施形態に係るシミュレーション装置およびコンピュータ読み取り可能な記憶媒体について図面を参照して説明する。なお、以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は、省略する場合がある。 Below, a simulation device and a computer-readable storage medium according to an embodiment of the present disclosure will be described with reference to the drawings. In the following description, components having the same or similar functions will be given the same reference numerals. Furthermore, duplicate descriptions of those components may be omitted.
 本願でいう「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。 In this application, "based on XX" means "based on at least XX," and includes cases where it is based on other elements in addition to XX. Furthermore, "based on XX" is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been calculated or processed. "XX" is any element (for example, any information).
 図1は、本開示のシミュレーション装置を含むシステムの一例を示す図である。このシステムは、産業機械1と、シミュレーション装置10とを含む。産業機械1とシミュレーション装置10とは、例えば、インターネット回線、またはLAN(Local Area Network)などのネットワークNによって接続される。 FIG. 1 is a diagram showing an example of a system including a simulation device of the present disclosure. This system includes an industrial machine 1 and a simulation device 10. The industrial machine 1 and the simulation device 10 are connected by a network N, such as an Internet line or a LAN (Local Area Network).
 産業機械1は、産業現場で稼働する機械である。産業機械1は、例えば、工作機械、射出成形機、レーザ加工機、3次元プリンタ、または、ロボットである。 Industrial machine 1 is a machine that operates in an industrial site. Industrial machine 1 is, for example, a machine tool, an injection molding machine, a laser processing machine, a three-dimensional printer, or a robot.
 シミュレーション装置10は、産業機械1の動作シミュレーションを行う装置である。動作シミュレーションは、例えば、工作機械の加工シミュレーションである。動作シミュレーションは、ロボットの動作シミュレーションであってもよい。シミュレーション装置10は、例えば、サーバ、PC(Personal Computer)、または携帯端末に実装される。また、シミュレーション装置10は、後述する数値制御装置に実装されてもよい。 The simulation device 10 is a device that performs an operation simulation of the industrial machine 1. The operation simulation is, for example, a machining simulation of a machine tool. The operation simulation may also be an operation simulation of a robot. The simulation device 10 is implemented in, for example, a server, a PC (Personal Computer), or a mobile terminal. The simulation device 10 may also be implemented in a numerical control device, which will be described later.
 図2は、産業機械1のハードウェア構成の一例を示すブロック図である。産業機械1は、数値制御装置2と、入出力装置3と、サーボアンプ4と、サーボモータ5と、スピンドルアンプ6と、スピンドルモータ7と、補助機器8と、計測器9とを備える。 FIG. 2 is a block diagram showing an example of the hardware configuration of the industrial machine 1. The industrial machine 1 includes a numerical control device 2, an input/output device 3, a servo amplifier 4, a servo motor 5, a spindle amplifier 6, a spindle motor 7, an auxiliary device 8, and a measuring instrument 9.
 数値制御装置2は、産業機械1を制御するための装置である。数値制御装置2は、例えば、ハードウェアプロセッサ201と、バス202と、ROM(Read Only Memory)203と、RAM(Random Access Memory)204と、不揮発性メモリ205とを備える。 The numerical control device 2 is a device for controlling the industrial machine 1. The numerical control device 2 includes, for example, a hardware processor 201, a bus 202, a ROM (Read Only Memory) 203, a RAM (Random Access Memory) 204, and a non-volatile memory 205.
 ハードウェアプロセッサ201は、システムプログラムを用いて数値制御装置2全体を制御するプロセッサである。ハードウェアプロセッサ201は、バス202を介してROM203に格納されたシステムプログラムなどを読み出す。ハードウェアプロセッサ201は、例えば、CPU(Central Processing Unit)、または電子回路である。 The hardware processor 201 is a processor that controls the entire numerical control device 2 using a system program. The hardware processor 201 reads out the system program stored in the ROM 203 via the bus 202. The hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
 バス202は、数値制御装置2の各ハードウェアを互いに接続する通信路である。数値制御装置2の各ハードウェアはバス202を介してデータをやり取りする。 The bus 202 is a communication path that connects each piece of hardware in the numerical control device 2 to each other. Each piece of hardware in the numerical control device 2 exchanges data via the bus 202.
 ROM203は、システムプログラムなどを記憶する記憶装置である。ROM203は、コンピュータ読み取り可能な記憶媒体である。 ROM 203 is a storage device that stores system programs and the like. ROM 203 is a computer-readable storage medium.
 RAM204は、各種データを一時的に格納する記憶装置である。RAM204は、ハードウェアプロセッサ201が各種データを処理するための作業領域として機能する。 RAM 204 is a storage device that temporarily stores various data. RAM 204 functions as a working area for the hardware processor 201 to process various data.
 不揮発性メモリ205は、数値制御装置2の電源が切られた状態でもデータを保持する記憶装置である。不揮発性メモリ205は、例えば、産業機械1の動作プログラムを記憶する。不揮発性メモリ205は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ205は、例えば、バッテリでバックアップされたメモリ、または、SSD(Solid State Drive)で構成される。 The non-volatile memory 205 is a storage device that retains data even when the power to the numerical control device 2 is turned off. The non-volatile memory 205 stores, for example, the operating program of the industrial machine 1. The non-volatile memory 205 is a computer-readable storage medium. The non-volatile memory 205 is, for example, a battery-backed memory or an SSD (Solid State Drive).
 数値制御装置2は、さらに、第1のインタフェース206と、軸制御回路207と、スピンドル制御回路208と、PLC(Programmable Logic Controller)209と、I/Oユニット210と、第2のインタフェース211と、第3のインタフェース212とを備える。 The numerical control device 2 further includes a first interface 206, an axis control circuit 207, a spindle control circuit 208, a PLC (Programmable Logic Controller) 209, an I/O unit 210, a second interface 211, and a third interface 212.
 第1のインタフェース206は、バス202と入出力装置3とを接続する。第1のインタフェース206は、例えば、ハードウェアプロセッサ201によって処理された各種データを入出力装置3に送る。 The first interface 206 connects the bus 202 and the input/output device 3. The first interface 206 sends, for example, various data processed by the hardware processor 201 to the input/output device 3.
 入出力装置3は、第1のインタフェース206を介して各種データを受け、各種データをディスプレイに表示する。また、入出力装置3は、各種データの入力を受けて、各種データを第1のインタフェース206を介して、例えば、ハードウェアプロセッサ201に送る。 The input/output device 3 receives various data via the first interface 206 and displays the various data on a display. The input/output device 3 also receives input of various data and sends the various data via the first interface 206 to, for example, the hardware processor 201.
 入出力装置3は、例えば、タッチパネルである。入出力装置3がタッチパネルである場合、入出力装置3は、例えば、静電容量方式のタッチパネルである。タッチパネルは、静電容量方式に限らず、他の方式のタッチパネルであってもよい。入出力装置3は、数値制御装置2が格納される操作盤(不図示)に設置される。 The input/output device 3 is, for example, a touch panel. When the input/output device 3 is a touch panel, the input/output device 3 is, for example, a capacitive touch panel. The touch panel is not limited to a capacitive touch panel, and may be a touch panel of another type. The input/output device 3 is installed in an operation panel (not shown) in which the numerical control device 2 is stored.
 軸制御回路207は、サーボモータ5を制御するための回路である。軸制御回路207は、ハードウェアプロセッサ201からの制御指令を受けてサーボモータ5を駆動させるための各種指令をサーボアンプ4に送る。軸制御回路207は、例えば、サーボモータ5のトルクを制御するトルクコマンドをサーボアンプ4に送る。 The axis control circuit 207 is a circuit for controlling the servo motor 5. The axis control circuit 207 receives control commands from the hardware processor 201 and sends various commands to the servo amplifier 4 for driving the servo motor 5. The axis control circuit 207 sends, for example, a torque command for controlling the torque of the servo motor 5 to the servo amplifier 4.
 サーボアンプ4は、軸制御回路207からの指令を受けて、サーボモータ5に電流を供給する。 The servo amplifier 4 receives commands from the axis control circuit 207 and supplies current to the servo motor 5.
 サーボモータ5は、サーボアンプ4から電流の供給を受けて駆動する。サーボモータ5は、産業機械1の各制御軸に対応して設けられる。産業機械1が5軸を有する工作機械である場合、サーボモータ5は、例えば、X軸用サーボモータ、Y軸用サーボモータ、Z軸用サーボモータ、A軸用サーボモータ、およびC軸用サーボモータを含む。この場合、軸制御回路207、およびサーボアンプ4は、各サーボモータ5に対してそれぞれ設けられる。 The servo motors 5 are driven by receiving a current supply from the servo amplifier 4. The servo motors 5 are provided corresponding to each control axis of the industrial machine 1. If the industrial machine 1 is a machine tool having five axes, the servo motors 5 include, for example, an X-axis servo motor, a Y-axis servo motor, a Z-axis servo motor, an A-axis servo motor, and a C-axis servo motor. In this case, the axis control circuit 207 and the servo amplifier 4 are provided for each servo motor 5.
 サーボモータ5は、例えば、産業機械1の構造物を移動させるボールねじに連結される。サーボモータ5が駆動することにより、刃物台などの産業機械1の構造物が所定の制御軸に沿って移動する。 The servo motor 5 is connected to, for example, a ball screw that moves a structure of the industrial machine 1. When the servo motor 5 is driven, a structure of the industrial machine 1, such as a tool rest, moves along a predetermined control axis.
 サーボモータ5は、制御軸の位置および送り速度を検出するエンコーダ(不図示)を内蔵する。エンコーダによって検出される制御軸の位置、および制御軸の送り速度をそれぞれ示す位置フィードバック情報、および速度フィードバック情報は、軸制御回路207にフィードバックされる。これにより、軸制御回路207は、各制御軸のフィードバック制御を行う。 The servo motor 5 has a built-in encoder (not shown) that detects the position and feed speed of the control axis. Position feedback information and speed feedback information indicating the position of the control axis and the feed speed of the control axis detected by the encoder, respectively, are fed back to the axis control circuit 207. In this way, the axis control circuit 207 performs feedback control of each control axis.
 スピンドル制御回路208は、スピンドルモータ7を制御するための回路である。スピンドル制御回路208は、ハードウェアプロセッサ201からの制御指令を受けてスピンドルモータ7を駆動させるための指令をスピンドルアンプ6に送る。スピンドル制御回路208は、例えば、スピンドルモータ7の回転速度を制御するスピンドル速度コマンドをスピンドルアンプ6に送る。 The spindle control circuit 208 is a circuit for controlling the spindle motor 7. The spindle control circuit 208 receives a control command from the hardware processor 201 and sends a command to the spindle amplifier 6 to drive the spindle motor 7. The spindle control circuit 208 sends, for example, a spindle speed command to the spindle amplifier 6 to control the rotation speed of the spindle motor 7.
 スピンドルアンプ6は、スピンドル制御回路208からの指令を受けて、スピンドルモータ7に電流を供給する。 The spindle amplifier 6 receives commands from the spindle control circuit 208 and supplies current to the spindle motor 7.
 スピンドルモータ7は、スピンドルアンプ6から電流の供給を受けて駆動する。スピンドルモータ7は、主軸に連結され、主軸を回転させる。 The spindle motor 7 is driven by a current supplied from the spindle amplifier 6. The spindle motor 7 is connected to the main shaft and rotates the main shaft.
 PLC209は、ラダープログラムを実行して補助機器8を制御する装置である。PLC209は、I/Oユニット210を介して補助機器8に対して指令を送る。 The PLC 209 is a device that executes a ladder program to control the auxiliary device 8. The PLC 209 sends commands to the auxiliary device 8 via the I/O unit 210.
 I/Oユニット210は、PLC209と補助機器8とを接続するインタフェースである。I/Oユニット210は、PLC209から受けた指令を補助機器8に送る。 The I/O unit 210 is an interface that connects the PLC 209 and the auxiliary device 8. The I/O unit 210 sends commands received from the PLC 209 to the auxiliary device 8.
 補助機器8は、産業機械1に設置され、産業機械1において補助的な動作を行う機器である。補助機器8は、I/Oユニット210から受けた指令に基づいて動作する。補助機器8は、産業機械1の周辺に設置される機器であってもよい。補助機器8は、例えば、工具交換装置、切削液噴射装置、または開閉ドア駆動装置である。 The auxiliary device 8 is installed in the industrial machine 1 and performs auxiliary operations in the industrial machine 1. The auxiliary device 8 operates based on commands received from the I/O unit 210. The auxiliary device 8 may be a device installed in the periphery of the industrial machine 1. The auxiliary device 8 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door drive device.
 第2のインタフェース211は、バス202と計測器9とを接続する。第2のインタフェース211は、例えば、計測器9によって計測された計測データをハードウェアプロセッサ201に送る。 The second interface 211 connects the bus 202 and the measuring instrument 9. The second interface 211 sends, for example, measurement data measured by the measuring instrument 9 to the hardware processor 201.
 計測器9は、各種物理量を計測する装置である。計測器9は、例えば、電流計、測距センサ、3次元スキャナ、およびカメラである。電流計は、例えば、サーボモータ5、およびスピンドルモータ7に供給される電流を計測する。測距センサは、例えば、ワークの所定の位置の寸法を計測する。測距センサは、タッチプローブを含む。カメラは、例えば、ワークの表面の形状、傷の有無などの情報を取得する。 The measuring instrument 9 is a device that measures various physical quantities. The measuring instrument 9 is, for example, an ammeter, a distance measuring sensor, a three-dimensional scanner, and a camera. The ammeter measures, for example, the current supplied to the servo motor 5 and the spindle motor 7. The distance measuring sensor measures, for example, the dimensions of a specific position on the workpiece. The distance measuring sensor includes a touch probe. The camera obtains information such as the shape of the workpiece surface and the presence or absence of scratches.
 第3のインタフェース212は、バス202とシミュレーション装置10とを接続する。第3のインタフェース212は、例えば、計測器9によって計測された計測データをシミュレーション装置10に送る。 The third interface 212 connects the bus 202 and the simulation device 10. The third interface 212 sends, for example, measurement data measured by the measuring instrument 9 to the simulation device 10.
 図3は、シミュレーション装置10のハードウェア構成の一例を示すブロック図である。シミュレーション装置10は、例えば、ハードウェアプロセッサ101と、バス102と、ROM103と、RAM104と、不揮発性メモリ105と、第1のインタフェース106と、入出力装置107と、第2のインタフェース108とを備える。 FIG. 3 is a block diagram showing an example of the hardware configuration of the simulation device 10. The simulation device 10 includes, for example, a hardware processor 101, a bus 102, a ROM 103, a RAM 104, a non-volatile memory 105, a first interface 106, an input/output device 107, and a second interface 108.
 ハードウェアプロセッサ101は、システムプログラムに従ってシミュレーション装置10全体を制御するプロセッサである。ハードウェアプロセッサ101は、バス102を介してROM103に格納されたシステムプログラムなどを読み出す。ハードウェアプロセッサ101は、例えば、CPU、または電子回路である。 The hardware processor 101 is a processor that controls the entire simulation device 10 in accordance with a system program. The hardware processor 101 reads the system program and the like stored in the ROM 103 via the bus 102. The hardware processor 101 is, for example, a CPU or an electronic circuit.
 バス102は、シミュレーション装置10の各ハードウェアを互いに接続する通信路である。シミュレーション装置10の各ハードウェアはバス102を介してデータをやり取りする。 The bus 102 is a communication path that connects each piece of hardware in the simulation device 10 to each other. Each piece of hardware in the simulation device 10 exchanges data via the bus 102.
 ROM103は、システムプログラムなどを記憶する記憶装置である。ROM103は、コンピュータ読み取り可能な記憶媒体である。 ROM 103 is a storage device that stores system programs and the like. ROM 103 is a computer-readable storage medium.
 RAM104は、各種データを一時的に格納する記憶装置である。RAM104は、ハードウェアプロセッサ101が各種データを処理するための作業領域として機能する。 RAM 104 is a storage device that temporarily stores various data. RAM 104 functions as a working area for the hardware processor 101 to process various data.
 不揮発性メモリ105は、シミュレーション装置10の電源が切られた状態でもデータを保持する記憶装置である。不揮発性メモリ105は、例えば、シミュレーションプログラムを記憶する。不揮発性メモリ105は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ105は、例えば、バッテリでバックアップされたメモリ、または、SSDで構成される。 The non-volatile memory 105 is a storage device that retains data even when the power to the simulation device 10 is turned off. The non-volatile memory 105 stores, for example, a simulation program. The non-volatile memory 105 is a computer-readable storage medium. The non-volatile memory 105 is, for example, a battery-backed memory or an SSD.
 第1のインタフェース106は、バス102と入出力装置107とを接続する。第1のインタフェース106は、例えば、ハードウェアプロセッサ101によって処理された各種データを入出力装置107に送る。 The first interface 106 connects the bus 102 and the input/output device 107. The first interface 106 sends, for example, various data processed by the hardware processor 101 to the input/output device 107.
 入出力装置107は、第1のインタフェース106を介して各種データを受け、各種データをディスプレイに表示する。また、入出力装置107は、各種データの入力を受けて、各種データを第1のインタフェース106を介して、例えば、ハードウェアプロセッサ101に送る。 The input/output device 107 receives various data via the first interface 106 and displays the various data on a display. The input/output device 107 also receives input of various data and sends the various data via the first interface 106 to, for example, the hardware processor 101.
 入出力装置107は、例えば、タッチパネルである。入出力装置107がタッチパネルである場合、入出力装置107は、例えば、静電容量方式のタッチパネルである。タッチパネルは、静電容量方式に限らず、他の方式のタッチパネルであってもよい。 The input/output device 107 is, for example, a touch panel. When the input/output device 107 is a touch panel, the input/output device 107 is, for example, a capacitive touch panel. The touch panel is not limited to a capacitive touch panel, and may be a touch panel of another type.
 第2のインタフェース108は、バス102と数値制御装置2とを接続する。第2のインタフェース108は、例えば、産業機械1の計測器9によって計測された計測データを受けて不揮発性メモリ105に送る。 The second interface 108 connects the bus 102 and the numerical control device 2. The second interface 108 receives, for example, measurement data measured by the measuring instrument 9 of the industrial machine 1 and sends the data to the non-volatile memory 105.
 図4は、シミュレーション装置10の機能の一例を示すブロック図である。シミュレーション装置10は、例えば、情報受付部111と、因子情報記憶部112と、選択部113と、モデル記憶部114と、シミュレーション部115と、取得部116と、判定部117と、補正部118と、出力部119とを備える。 FIG. 4 is a block diagram showing an example of the functions of the simulation device 10. The simulation device 10 includes, for example, an information receiving unit 111, a factor information storage unit 112, a selection unit 113, a model storage unit 114, a simulation unit 115, an acquisition unit 116, a determination unit 117, a correction unit 118, and an output unit 119.
 情報受付部111、選択部113、シミュレーション部115、取得部116、判定部117、補正部118および出力部119は、例えば、ハードウェアプロセッサ101が、ROM103に記憶されたシステムプログラム、および不揮発性メモリ105に記憶された各種データを用いて演算処理をすることにより実現される。 The information receiving unit 111, the selection unit 113, the simulation unit 115, the acquisition unit 116, the determination unit 117, the correction unit 118 and the output unit 119 are realized, for example, by the hardware processor 101 performing calculations using the system program stored in the ROM 103 and various data stored in the non-volatile memory 105.
 因子情報記憶部112は、例えば、不良因子を示す因子情報が不揮発性メモリ105に記憶されることにより実現される。モデル記憶部114は、例えば、各種仮想モデルのデータが不揮発性メモリ105に記憶されることにより実現される。 The factor information storage unit 112 is realized, for example, by storing factor information indicating defective factors in the non-volatile memory 105. The model storage unit 114 is realized, for example, by storing data of various virtual models in the non-volatile memory 105.
 情報受付部111は、産業機械1の動作の種類を示す動作情報および産業機械1において発生した不良の種類を示す不良情報を受け付ける。動作の種類は、例えば、加工の種類である。加工の種類は、例えば、穴加工、およびミリング加工を含む。不良の種類は、例えば、形状の歪み、回転数が不安定であり加工面に傷が付くこと、および寸法誤差を含む。 The information receiving unit 111 receives operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1. The type of operation is, for example, the type of machining. The type of machining includes, for example, hole drilling and milling. The type of defect includes, for example, shape distortion, scratches on the machined surface due to unstable rotation speed, and dimensional errors.
 情報受付部111は、例えば、記憶部(不図示)に記憶された動作情報を示す画像および不良情報を示す画像を入出力装置107のディスプレイに表示させてオペレータによるこれらの画像の選択操作を受け付ける。これにより、情報受付部111は、動作情報および不良情報を受け付けることができる。 The information receiving unit 111, for example, displays an image showing the operational information and an image showing the defect information stored in a storage unit (not shown) on the display of the input/output device 107 and receives an operation of selecting these images by the operator. This allows the information receiving unit 111 to receive the operational information and the defect information.
 なお、情報受付部111は、動作プログラムから動作情報を取得してもよい。また、情報受付部111は、計測器9から不良情報を取得してもよい。 The information receiving unit 111 may also obtain operation information from an operation program. The information receiving unit 111 may also obtain defect information from a measuring instrument 9.
 図5Aおよび図5Bは、産業機械1において発生する不良の一例について説明する図である。図5Aおよび図5Bに示す例では、産業機械1は、Z軸まわりの極座標補間による加工を行っている。Z軸まわりの極座標補間とは、直線軸(X軸)と回転軸(C軸)を同期させ、直交座標系でプログラムされた指令を、直線軸の移動(工具の移動)と回転軸の移動(ワークの回転)に変換して輪郭制御を行う機能である。極座標補間は、例えばワークWの断面を多角形(図5Aおよび図5Bでは四角形)に切削する加工に用いられる。 FIGS. 5A and 5B are diagrams illustrating an example of a defect that occurs in industrial machine 1. In the example shown in FIGS. 5A and 5B, industrial machine 1 performs machining using polar coordinate interpolation around the Z axis. Polar coordinate interpolation around the Z axis is a function that synchronizes the linear axis (X axis) and the rotational axis (C axis) and converts commands programmed in a Cartesian coordinate system into linear axis movement (tool movement) and rotational axis movement (workpiece rotation) to perform contour control. Polar coordinate interpolation is used, for example, in machining to cut the cross section of workpiece W into a polygon (a rectangle in FIGS. 5A and 5B).
 図5Aでは、Z軸に平行な多角形を構成する各面がほぼ平らな面に加工されている。つまり、産業機械1において不良が発生していない。 In FIG. 5A, each face that constitutes a polygon parallel to the Z axis is machined to be almost flat. In other words, no defects have occurred in the industrial machine 1.
 一方、図5Bでは、多角形を構成する各面に歪みが生じている。つまり、産業機械1において不良が発生している可能性がある。この場合、情報受付部111は、極座標補間が行われていることを示す動作情報、および形状の歪みが発生していることを示す不良情報を受け付ける。 On the other hand, in FIG. 5B, distortion has occurred on each face that constitutes the polygon. In other words, there is a possibility that a defect has occurred in the industrial machine 1. In this case, the information receiving unit 111 receives operation information indicating that polar coordinate interpolation is being performed, and defect information indicating that a distortion of the shape has occurred.
 因子情報記憶部112は、不良の因子を示す因子情報を記憶する。不良の因子とは、不良を引き起こす原因である。因子情報は、例えば、産業機械1の剛性を示す数値、産業機械1を構成する構造物が動作するときの摩擦係数を示す数値、産業機械1を構成する構造物の幾何誤差を示す数値、工具の摩耗量を示す数値を含む。幾何誤差とは、産業機械1の動作精度に影響する、駆動軸の位置関係に関する誤差である。 The factor information storage unit 112 stores factor information indicating the factors of defects. A defect factor is a cause that causes a defect. The factor information includes, for example, a numerical value indicating the rigidity of the industrial machine 1, a numerical value indicating the coefficient of friction when a structure constituting the industrial machine 1 operates, a numerical value indicating the geometric error of a structure constituting the industrial machine 1, and a numerical value indicating the amount of wear of a tool. A geometric error is an error related to the positional relationship of the drive shaft, which affects the operating accuracy of the industrial machine 1.
 図6は、因子情報記憶部112が記憶する因子情報の一例を示す図である。因子情報が示す不良の因子は、例えば、「C軸中心のY方向誤差」、および「回転軸の偏心」を含む。「C軸中心のY方向誤差」とは、幾何誤差の1つであり、図5BのようにC軸中心の座標設定と実際のC軸中心の位置の間にY方向のずれが生じていることを意味する。 FIG. 6 is a diagram showing an example of factor information stored in the factor information storage unit 112. Defective factors indicated by the factor information include, for example, "Y-direction error of the C-axis center" and "eccentricity of the rotation axis." "Y-direction error of the C-axis center" is a type of geometric error, and means that there is a deviation in the Y direction between the coordinate setting of the C-axis center and the actual position of the C-axis center, as shown in FIG. 5B.
 「回転軸の偏心」とは、ワークWが回転軸の中心からずれてチャックに固定されていることを意味する。 "Eccentricity of the rotation axis" means that the workpiece W is fixed to the chuck away from the center of the rotation axis.
 因子情報は、不良の度合いを示す数値を含んでいてもよい。不良の度合いを示す数値は、例えば、産業機械1の剛性を示す数値、摩擦係数を示す数値、幾何誤差を示す数値、および工具の摩耗量を示す数値を含む。 The factor information may include a numerical value indicating the degree of defect. The numerical value indicating the degree of defect may include, for example, a numerical value indicating the rigidity of the industrial machine 1, a numerical value indicating the coefficient of friction, a numerical value indicating the geometric error, and a numerical value indicating the amount of wear of the tool.
 因子情報記憶部112は、因子情報と、動作情報および不良情報とを関連付けて記憶する。すなわち、因子情報記憶部112は、産業機械1が特定の動作を行うときに発生しうる不良と、その不良の原因とを関連付けて記憶する。 The factor information storage unit 112 stores factor information in association with operation information and defect information. In other words, the factor information storage unit 112 stores defects that may occur when the industrial machine 1 performs a specific operation in association with the causes of the defects.
 因子情報記憶部112は、「極座標補間」および「形状の歪み」に関連付けて「C軸中心のY方向誤差」を記憶する。また、因子情報記憶部112は、「極座標補間」および「形状の歪み」に関連付けて「回転軸の偏心」を記憶する。ここで、図4の説明に戻る。 The factor information storage unit 112 stores "Y direction error at the center of the C axis" in association with "polar coordinate interpolation" and "shape distortion." The factor information storage unit 112 also stores "eccentricity of the rotation axis" in association with "polar coordinate interpolation" and "shape distortion." Now, let us return to the explanation of Figure 4.
 選択部113は、産業機械1の動作の種類を示す動作情報および産業機械1において発生する不良の種類を示す不良情報に基づいて、不良の因子を示す因子情報を選択する。選択部113は、因子情報記憶部112に記憶された複数の因子情報から少なくとも1つの因子情報を選択する。 The selection unit 113 selects factor information indicating the cause of a defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect occurring in the industrial machine 1. The selection unit 113 selects at least one piece of factor information from the multiple pieces of factor information stored in the factor information storage unit 112.
 例えば、情報受付部111が、「極座標補間」を示す動作情報、および「形状の歪み」を示す不良情報を受け付けた場合、選択部113は、因子情報として、「C軸中心のY方向誤差」を選択する。情報受付部111が、「極座標補間」を示す動作情報、および「形状の歪み」を示す不良情報を受け付けた場合、選択部113は、因子情報として、「回転軸の偏心」を選択してもよい。 For example, if the information receiving unit 111 receives operation information indicating "polar coordinate interpolation" and defect information indicating "shape distortion", the selection unit 113 selects "Y direction error from the center of the C axis" as the factor information. If the information receiving unit 111 receives operation information indicating "polar coordinate interpolation" and defect information indicating "shape distortion", the selection unit 113 may select "eccentricity of the rotation axis" as the factor information.
 モデル記憶部114は、産業機械1をモデル化した仮想モデルを記憶する。産業機械1の仮想モデルは、産業機械1の各構造物の仮想モデルである構造物モデル、産業機械1を制御する数値制御装置2の仮想モデルである数値制御モデル、およびワークWの仮想モデルであるワークモデルを含む。 The model storage unit 114 stores a virtual model of the industrial machine 1. The virtual model of the industrial machine 1 includes a structure model, which is a virtual model of each structure of the industrial machine 1, a numerical control model, which is a virtual model of the numerical control device 2 that controls the industrial machine 1, and a work model, which is a virtual model of the workpiece W.
 数値制御モデルは、構造物モデルを動作させることにより、産業機械1の動作シミュレーションを実行する。 The numerical control model performs a simulation of the operation of the industrial machine 1 by operating the structure model.
 構造物モデルは、例えば、駆動軸の仮想モデル、ベッドの仮想モデル、駆動軸頭の仮想モデル、コラムの仮想モデル、リニアガイドの仮想モデル、ベアリングの仮想モデル、工具の仮想モデル、モータの仮想モデル、および切削液噴射装置の仮想モデルを含む。また、構造物モデルは、例えば、構造物の形状、重量、材質、摩擦係数、剛性、熱容量、熱伝導率、縦弾性係数を示す情報を含む。 The structure model includes, for example, a virtual model of the drive shaft, a virtual model of the bed, a virtual model of the drive shaft head, a virtual model of the column, a virtual model of the linear guide, a virtual model of the bearing, a virtual model of the tool, a virtual model of the motor, and a virtual model of the cutting fluid injection device. The structure model also includes information indicating, for example, the shape, weight, material, friction coefficient, rigidity, heat capacity, thermal conductivity, and longitudinal elastic modulus of the structure.
 モータの仮想モデルは、駆動軸の仮想モデルを駆動させることで仮想フィードバック情報を取得する。モータの仮想モデルは、モータの仕様に関する情報を含む。仕様に関する情報は、例えば、定格トルク、定格出力、定格回転速度、最大トルク、最大回転速度、およびエンコーダの分解能を示す情報を含む。 The virtual model of the motor obtains virtual feedback information by driving the virtual model of the drive shaft. The virtual model of the motor includes information about the specifications of the motor. The information about the specifications includes, for example, information indicating the rated torque, rated output, rated rotational speed, maximum torque, maximum rotational speed, and encoder resolution.
 ワークモデルは、例えば、ワークWの形状、重量、材質、剛性、熱容量、熱伝導率、および縦弾性係数を示す情報を含む。 The workpiece model includes information indicating, for example, the shape, weight, material, rigidity, heat capacity, thermal conductivity, and modulus of longitudinal elasticity of the workpiece W.
 シミュレーション部115は、選択部113によって選択された因子情報に基づいて、産業機械1の動作シミュレーションを実行する。シミュレーション部115は、産業機械1の仮想モデルを用いて動作シミュレーションを実行する。シミュレーション部115は、動作プログラムを用いて動作シミュレーションを実行する。 The simulation unit 115 executes an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113. The simulation unit 115 executes the operation simulation using a virtual model of the industrial machine 1. The simulation unit 115 executes the operation simulation using an operation program.
 例えば、選択部113によって「C軸中心のY方向誤差」が選択された場合、シミュレーション部115は、仮想モデルにおいて、C軸中心のY方向の位置をずらして動作シミュレーションを実行する。 For example, if the selection unit 113 selects "Y direction error of the C-axis center," the simulation unit 115 shifts the Y direction position of the C-axis center in the virtual model and performs an operational simulation.
 因子情報にC軸中心のY方向誤差を示す数値が含まれる場合、シミュレーション部115は、C軸中心のY方向誤差を示す数値の分だけC軸中心のY方向の位置をずらして動作シミュレーションを実行する。例えば、因子情報にC軸中心のY方向誤差を示す数値0.3[mm]が含まれている場合、シミュレーション部115は、C軸中心のY方向の位置を0.3[mm]だけずらして動作シミュレーションを実行する。 If the factor information includes a numerical value indicating the Y-direction error around the C-axis, the simulation unit 115 executes the operation simulation by shifting the Y-direction position of the C-axis center by the numerical value indicating the Y-direction error around the C-axis center. For example, if the factor information includes a numerical value of 0.3 mm indicating the Y-direction error around the C-axis center, the simulation unit 115 executes the operation simulation by shifting the Y-direction position of the C-axis center by 0.3 mm.
 シミュレーション部115は、動作シミュレーションを実行して、動作シミュレーションの結果を得る。動作シミュレーション結果を示す情報は、例えば、ワークWの形状を示す情報、またはワークWの寸法を示す情報を含む。 The simulation unit 115 executes an operation simulation to obtain the results of the operation simulation. Information indicating the operation simulation results includes, for example, information indicating the shape of the workpiece W or information indicating the dimensions of the workpiece W.
 図7は、動作シミュレーションの結果の一例を示す図である。シミュレーション部115は、C軸中心のY方向のずれ量を0.3[mm]に設定して動作シミュレーションを実行したときのワークWの形状を示す情報を得る。 FIG. 7 shows an example of the results of an operation simulation. The simulation unit 115 obtains information indicating the shape of the workpiece W when the operation simulation is performed with the deviation amount in the Y direction from the center of the C axis set to 0.3 mm.
 取得部116は、産業機械1の動作結果を示す結果情報を、例えば、計測器9から取得する。動作結果を示す結果情報は、例えば、動作プログラムに基づいて産業機械1が動作しているときの状態を示す動作状態情報、または加工されたワークWの状態を示すワーク状態情報を含む。 The acquisition unit 116 acquires result information indicating the operation results of the industrial machine 1, for example, from the measuring instrument 9. The result information indicating the operation results includes, for example, operation status information indicating the state when the industrial machine 1 is operating based on the operation program, or work status information indicating the state of the machined workpiece W.
 動作状態情報は、例えば、産業機械1が動作しているときのサーボモータ5のトルクを示す情報、または産業機械1が動作しているときのスピンドルモータ7のトルクを示す情報を含む。動作状態情報は、時系列データである。ワーク状態情報は、加工されたワークWの形状、寸法、面粗度、または傷の有無などの計測結果を示す情報である。 The operating status information includes, for example, information indicating the torque of the servo motor 5 when the industrial machine 1 is operating, or information indicating the torque of the spindle motor 7 when the industrial machine 1 is operating. The operating status information is time-series data. The work status information is information indicating the measurement results such as the shape, dimensions, surface roughness, or the presence or absence of scratches of the machined workpiece W.
 図8は、取得部116が取得した結果情報の一例を示す図である。結果情報は、カメラによって撮像された画像データである。画像データには、加工後のワークWの各部の寸法を示すデータが含まれていてもよい。ここで、図4の説明に戻る。 FIG. 8 is a diagram showing an example of result information acquired by the acquisition unit 116. The result information is image data captured by a camera. The image data may include data indicating the dimensions of each part of the workpiece W after machining. Now, we return to the explanation of FIG. 4.
 判定部117は、動作シミュレーションの結果と産業機械1の動作結果を示す結果情報とを比較して産業機械1において因子情報が示す不良が発生しているか否かを判定する。判定部117は、例えば、結果情報が示すワークWの形状と、動作シミュレーションを実行することによって得られたワークWの形状とを比較する。 The determination unit 117 compares the results of the operation simulation with result information indicating the operation results of the industrial machine 1 to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1. The determination unit 117, for example, compares the shape of the workpiece W indicated by the result information with the shape of the workpiece W obtained by executing the operation simulation.
 図7および図8に示す例において、判定部117は、動作シミュレーションを実行して得られたワークWの形状と、取得部116によって取得された動作結果が示すワークWの形状とは一致しないと判定する。したがって、判定部117は、因子情報が示す不良が発生していないと判定する。 In the examples shown in Figures 7 and 8, the determination unit 117 determines that the shape of the workpiece W obtained by executing the operation simulation does not match the shape of the workpiece W indicated by the operation results acquired by the acquisition unit 116. Therefore, the determination unit 117 determines that the defect indicated by the factor information has not occurred.
 補正部118は、判定部117によって因子情報が示す不良が発生していないと判定された場合、選択部113によって選択された因子情報を補正する。 If the determination unit 117 determines that no defect indicated by the factor information has occurred, the correction unit 118 corrects the factor information selected by the selection unit 113.
 因子情報の補正は、例えば、因子情報に含まれる不良の度合いを示す数値を変更する。不良の度合いを示す数値は、産業機械1の各構造物の剛性を示す数値、産業機械1の各構造物が動作するときの摩擦係数を示す数値、産業機械1の各構造物の幾何誤差を示す数値、および工具の摩耗量を示す数値を含む。 The correction of the factor information involves, for example, changing the numerical values that indicate the degree of defect contained in the factor information. The numerical values that indicate the degree of defect include a numerical value that indicates the rigidity of each structure of the industrial machinery 1, a numerical value that indicates the coefficient of friction when each structure of the industrial machinery 1 operates, a numerical value that indicates the geometric error of each structure of the industrial machinery 1, and a numerical value that indicates the amount of wear on the tools.
 補正部118による補正が行われた場合、選択部113は、補正後の因子情報を選択する。例えば、補正部118がC軸中心のY方向誤差を示す数値を0.3[mm]から0.4[mm]に変更した場合、選択部113は、変更された数値0.4[mm]を選択する。この場合、シミュレーション部115は、選択部113によって選択された因子情報に基づいて、再び、産業機械1の動作シミュレーションを実行する。 When the correction unit 118 has performed a correction, the selection unit 113 selects the factor information after the correction. For example, when the correction unit 118 changes the value indicating the Y-direction error from the center of the C-axis from 0.3 [mm] to 0.4 [mm], the selection unit 113 selects the changed value of 0.4 [mm]. In this case, the simulation unit 115 again performs an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113.
 さらに、判定部117が、再び、因子情報が示す不良が発生していないと判定すると、補正部118は、さらに、C軸中心のY方向誤差を示す数値を0.4[mm]から0.5[mm]に変更する。 If the determination unit 117 again determines that the defect indicated by the factor information has not occurred, the correction unit 118 further changes the value indicating the Y-direction error from the center of the C-axis from 0.4 mm to 0.5 mm.
 因子情報の補正は、選択部113によって選択される因子情報を他の因子情報に変更することであってもよい。例えば、因子情報記憶部112は、図6に示すとおり、「極座標補間」および「形状の歪み」に関連付けて「回転軸の偏心」を記憶している。したがって、補正部118は、因子情報を「C軸中心のY方向誤差」から「回転軸の偏心」に変更してもよい。 The correction of factor information may involve changing the factor information selected by the selection unit 113 to other factor information. For example, as shown in FIG. 6, the factor information storage unit 112 stores "eccentricity of rotation axis" in association with "polar coordinate interpolation" and "shape distortion." Therefore, the correction unit 118 may change the factor information from "Y-direction error of the center of the C-axis" to "eccentricity of the rotation axis."
 出力部119は、判定部117による判定結果を出力する。出力部119は、例えば、入出力装置107に向けて判定結果を出力する。判定部117が、例えば、C軸中心のY方向誤差が生じていると判定した場合、出力部119は、入出力装置107に向けてC軸中心のY方向誤差が生じていることを示す判定結果を出力する。出力部119は、さらに、不良の度合いを示す数値を出力してもよい。 The output unit 119 outputs the judgment result by the judgment unit 117. The output unit 119 outputs the judgment result, for example, to the input/output device 107. If the judgment unit 117 judges that, for example, a Y-direction error has occurred about the C-axis, the output unit 119 outputs a judgment result indicating that a Y-direction error has occurred about the C-axis to the input/output device 107. The output unit 119 may further output a numerical value indicating the degree of defect.
 図9は、判定結果の表示態様の一例を示す図である。補正部118によってC軸中心のY方向誤差が0.3[mm]から0.4[mm]、0.4[mm]から0.5[mm]へと順に変更された場合、出力部119は、動作シミュレーションを実行して得られたそれぞれのワークWの形状を入出力装置107に出力する。また、出力部119は、動作シミュレーションの結果と、産業機械1の動作結果を示す結果情報とが一致するときに設定された不良の度合いを示す数値を入出力装置107に出力する。図9は、矢印によって、C軸中心のY方向誤差が0.5[mm]に設定された場合に、動作シミュレーションの結果と結果情報とが一致することを示している。 FIG. 9 is a diagram showing an example of the display mode of the judgment result. When the correction unit 118 changes the Y direction error from the center of the C axis from 0.3 mm to 0.4 mm, and from 0.4 mm to 0.5 mm in that order, the output unit 119 outputs to the input/output device 107 the shapes of each workpiece W obtained by executing the operation simulation. The output unit 119 also outputs to the input/output device 107 a numerical value indicating the degree of defect that is set when the result of the operation simulation matches the result information indicating the operation result of the industrial machine 1. In FIG. 9, an arrow indicates that when the Y direction error from the center of the C axis is set to 0.5 mm, the result of the operation simulation matches the result information.
 なお、判定部117は、産業機械1において因子情報が示す不良が発生していないと判定した回数をカウントしてもよい。例えば、判定部117が、所定回数を超えて、因子情報が示す不良が発生していないと判定した場合、出力部119は、不良の因子を特定できなかった旨の判定結果を出力する。 The determination unit 117 may count the number of times that it has determined that the defect indicated by the factor information has not occurred in the industrial machine 1. For example, if the determination unit 117 determines that the defect indicated by the factor information has not occurred a predetermined number of times, the output unit 119 outputs a determination result indicating that the defect factor could not be identified.
 図10は、シミュレーション装置10が実行する処理の流れの一例を示すフローチャートである。シミュレーション装置10では、まず、情報受付部111が、産業機械1の動作の種類を示す動作情報および産業機械1において発生した不良の種類を示す不良情報を受け付ける(ステップS1)。すなわち、情報受付部111は、産業機械1で動作が行われた後に、動作情報および不良情報を受け付ける。 FIG. 10 is a flowchart showing an example of the flow of processing executed by the simulation device 10. In the simulation device 10, first, the information receiving unit 111 receives operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1 (step S1). That is, the information receiving unit 111 receives the operation information and defect information after an operation is performed in the industrial machine 1.
 次に、選択部113が、動作情報および不良情報に基づいて、不良の因子を示す因子情報を選択する(ステップS2)。 Next, the selection unit 113 selects factor information indicating the cause of the defect based on the operation information and the defect information (step S2).
 次に、シミュレーション部115が、選択部113によって選択された因子情報に基づいて、産業機械1の仮想モデルを用いて動作シミュレーションを実行する(ステップS3)。 Next, the simulation unit 115 performs an operation simulation using a virtual model of the industrial machine 1 based on the factor information selected by the selection unit 113 (step S3).
 次に、取得部116が、産業機械1の動作結果を示す結果情報を取得する(ステップS4)。 Next, the acquisition unit 116 acquires result information indicating the operation results of the industrial machine 1 (step S4).
 次に、判定部117が、動作シミュレーションの結果と産業機械1の動作結果を示す結果情報とを比較して産業機械1において因子情報が示す不良が発生しているか否かを判定する(ステップS5)。 Next, the judgment unit 117 compares the results of the operation simulation with the result information indicating the operation results of the industrial machine 1 to judge whether or not a defect indicated by the factor information has occurred in the industrial machine 1 (step S5).
 判定部117によって因子情報が示す不良が発生していると判定された場合(ステップS5においてYesの場合)、出力部119が、判定部117による判定結果を出力して(ステップS6)、当該処理が終了する。 If the judgment unit 117 judges that a defect indicated by the factor information has occurred (Yes in step S5), the output unit 119 outputs the judgment result by the judgment unit 117 (step S6), and the process ends.
 判定部117によって因子情報が示す不良が発生していないと判定された場合(ステップS5においてNoの場合)、判定部117は、所定回数を超えて、不良が発生していないと判定したか否かを判定する(ステップS7)。 If the judgment unit 117 judges that the defect indicated by the factor information has not occurred (No in step S5), the judgment unit 117 judges whether or not it has been judged that the defect has not occurred more than a predetermined number of times (step S7).
 不良が発生していないと判定した回数が所定回数を超えている場合(ステップS7においてYesの場合)、出力部119は、不良の因子を特定できない旨の判定結果を出力して(ステップS6)、当該処理が終了する。一方、不良が発生していないと判定した回数が所定回数以下である場合(ステップS7においてNoの場合)、補正部118が因子情報を補正する(ステップS8)。 If the number of times that it is determined that no defect has occurred exceeds a predetermined number (Yes in step S7), the output unit 119 outputs a determination result indicating that the cause of the defect cannot be identified (step S6), and the process ends. On the other hand, if the number of times that it is determined that no defect has occurred is equal to or less than the predetermined number (No in step S7), the correction unit 118 corrects the factor information (step S8).
 その後、選択部113が補正部118によって補正された因子情報を選択し(ステップS2)、再び、ステップS3以降の処理が継続する。 Then, the selection unit 113 selects the factor information corrected by the correction unit 118 (step S2), and the processing continues from step S3 onwards.
 次に、穴加工が行われる場合の例について説明する。産業機械1によって穴加工が行われている間に主軸の回転が安定せず、穴加工後に、加工面に傷が付いていることをオペレータが発見する場合がある。この場合、オペレータは、穴加工が行われたことを示す動作情報、および主軸の回転が不安定であり加工面に傷が付いていることを示す不良情報をシミュレーション装置10に入力する。 Next, an example of a case where hole drilling is performed will be described. There are cases where the rotation of the spindle is unstable while the industrial machine 1 is performing hole drilling, and the operator discovers that the machined surface has been scratched after the hole drilling. In this case, the operator inputs to the simulation device 10 operation information indicating that hole drilling has been performed, and defect information indicating that the rotation of the spindle is unstable and that the machined surface has been scratched.
 この場合、情報受付部111は、穴加工が行われたことを示す動作情報、および主軸の回転が不安定であり加工面に傷が付いていることを示す不良情報を受け付ける。 In this case, the information receiving unit 111 receives operation information indicating that hole machining has been performed, and defect information indicating that the rotation of the spindle is unstable and that the machined surface has been scratched.
 図11は、因子情報記憶部112が記憶する因子情報の一例を示す図である。因子情報が示す不良の因子は、例えば、「主軸剛性の低下」、および「送り軸剛性の低下」を含む。「主軸剛性の低下」とは、主軸および主軸の周辺部分の剛性が低下することを意味する。主軸の周辺部分は、主軸を把持するベアリングを含む。また、主軸剛性の低下は、ベアリングの摩耗、または損傷により、主軸の振れが大きくなることを含む。 FIG. 11 is a diagram showing an example of factor information stored in the factor information storage unit 112. Defective factors indicated by the factor information include, for example, "decreased spindle stiffness" and "decreased feed shaft stiffness." "Decreased spindle stiffness" means a decrease in stiffness of the spindle and the parts surrounding the spindle. The parts surrounding the spindle include the bearings that grip the spindle. Also, a decrease in spindle stiffness includes increased runout of the spindle due to wear or damage to the bearings.
 「送り軸剛性の低下」とは、送り軸を構成する構造物の剛性が低下することを意味する。送り軸剛性は、例えば、送り軸を構成するリニアガイド、およびボールねじなどが摩耗または損傷することにより低下する。 "Decrease in feed axis rigidity" means a decrease in the rigidity of the structure that constitutes the feed axis. For example, the feed axis rigidity decreases when the linear guide and ball screw that constitute the feed axis become worn or damaged.
 因子情報は、不良の度合いを示す数値として、主軸の剛性を示す数値、または送り軸の剛性を示す数値を含んでいてもよい。 The factor information may include a numerical value indicating the rigidity of the spindle or the rigidity of the feed shaft as a numerical value indicating the degree of defect.
 因子情報記憶部112は、因子情報と、動作情報および不良情報とを関連付けて記憶する。因子情報記憶部112は、例えば、「穴加工」および「回転が不安定、加工面に傷」に関連付けて「主軸剛性の低下」を記憶する。また、因子情報記憶部112は、「穴加工」および「回転が不安定、加工面に傷」に関連付けて「送り軸剛性の低下」を記憶する。 The factor information storage unit 112 stores factor information in association with operation information and defect information. For example, the factor information storage unit 112 stores "reduction in spindle rigidity" in association with "hole machining" and "unstable rotation, scratches on the machining surface." The factor information storage unit 112 also stores "reduction in feed axis rigidity" in association with "hole machining" and "unstable rotation, scratches on the machining surface."
 選択部113は、産業機械1の動作の種類を示す動作情報および産業機械1において発生した不良の種類を示す不良情報に基づいて、不良の因子を示す因子情報を選択する。 The selection unit 113 selects factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1.
 例えば、情報受付部111が、「穴加工」を示す動作情報、および「回転が不安定、加工面に傷」を示す不良情報を受け付けた場合、選択部113は、因子情報として「主軸剛性の低下」を選択する。情報受付部111が、「穴加工」を示す動作情報、および「回転が不安定、加工面に傷」を示す不良情報を受け付けた場合、選択部113は、因子情報として、「送り軸剛性の低下」を選択してもよい。 For example, if the information receiving unit 111 receives operation information indicating "hole drilling" and defect information indicating "unstable rotation, scratches on the machined surface," the selection unit 113 selects "decreased spindle rigidity" as the factor information. If the information receiving unit 111 receives operation information indicating "hole drilling" and defect information indicating "unstable rotation, scratches on the machined surface," the selection unit 113 may select "decreased feed axis rigidity" as the factor information.
 シミュレーション部115は、選択部113によって選択された因子情報に基づいて、産業機械1の動作シミュレーションを実行する。シミュレーション部115は、産業機械1の仮想モデルを用いて動作シミュレーションを実行する。シミュレーション部115は、仮想モデルにおいて、主軸の剛性をあらかじめ定められた第1の値に設定して動作シミュレーションを実行する。 The simulation unit 115 executes an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113. The simulation unit 115 executes the operation simulation using a virtual model of the industrial machine 1. The simulation unit 115 executes the operation simulation by setting the stiffness of the main shaft in the virtual model to a predetermined first value.
 シミュレーション部115は、動作シミュレーションを実行して、動作シミュレーションの結果を得る。動作シミュレーションの結果を示す情報は、例えば、サーボモータ5のトルクを示す情報、またはスピンドルモータ7のトルクを示す情報を含む。 The simulation unit 115 executes an operation simulation to obtain the results of the operation simulation. Information indicating the results of the operation simulation includes, for example, information indicating the torque of the servo motor 5 or information indicating the torque of the spindle motor 7.
 図12は、動作シミュレーションの結果の一例を示す図である。シミュレーション部115は、仮想モデルにおいて主軸の剛性をあらかじめ定められた第1の値に設定して動作シミュレーションを実行したときのスピンドルモータ7のトルクを示す情報を得る。トルクを示す情報は、トルク波形である。 FIG. 12 is a diagram showing an example of the results of an operation simulation. The simulation unit 115 obtains information indicating the torque of the spindle motor 7 when an operation simulation is performed with the stiffness of the spindle set to a predetermined first value in the virtual model. The information indicating the torque is a torque waveform.
 取得部116は、産業機械1の動作結果を示す結果情報を、例えば、計測器9から取得する。動作結果を示す情報は、動作プログラムに基づいて産業機械1が動作しているときのスピンドルモータ7のトルクを示す情報である。 The acquisition unit 116 acquires result information indicating the operation result of the industrial machine 1, for example, from the measuring instrument 9. The information indicating the operation result is information indicating the torque of the spindle motor 7 when the industrial machine 1 is operating based on the operation program.
 図13は、取得部116が取得した結果情報の一例を示す図である。結果情報は、産業機械1の動作中にスピンドルアンプ6から取得されるスピンドルモータ7のトルクを示す情報である。 FIG. 13 is a diagram showing an example of result information acquired by the acquisition unit 116. The result information is information indicating the torque of the spindle motor 7 acquired from the spindle amplifier 6 while the industrial machine 1 is in operation.
 判定部117は、動作シミュレーションの結果と産業機械1の動作結果を示す結果情報とを比較して産業機械1において因子情報が示す不良が発生しているか否かを判定する。判定部117は、例えば、結果情報が示すトルク波形と、動作シミュレーションを実行することによって得られたトルク波形とを比較する。 The determination unit 117 compares the results of the operation simulation with result information indicating the operation results of the industrial machine 1 to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1. The determination unit 117, for example, compares the torque waveform indicated by the result information with the torque waveform obtained by executing the operation simulation.
 図12および図13に示す例において、判定部117は、動作シミュレーションを実行して得られたトルク波形と、動作結果が示すトルク波形とは一致しないと判定する。したがって、判定部117は、因子情報が示す不良が発生していないと判定する。 In the examples shown in Figures 12 and 13, the determination unit 117 determines that the torque waveform obtained by executing the operation simulation does not match the torque waveform indicated by the operation result. Therefore, the determination unit 117 determines that the defect indicated by the factor information has not occurred.
 この場合、補正部118は、選択部113によって選択された因子情報を補正する。補正部118は、主軸の剛性を示す数値を第1の値から第2の値に変更する。 In this case, the correction unit 118 corrects the factor information selected by the selection unit 113. The correction unit 118 changes the numerical value indicating the stiffness of the spindle from a first value to a second value.
 補正部118による補正が行われた場合、選択部113は、補正後の因子情報を選択する。補正部118が主軸の剛性を示す数値を第1の値から第2の値に変更した場合、選択部113は、第2の値を選択する。この場合、シミュレーション部115は、選択部113によって選択された第2の値に基づいて、再び、産業機械1の動作シミュレーションを実行する。 When the correction unit 118 has performed a correction, the selection unit 113 selects the factor information after the correction. When the correction unit 118 has changed the numerical value indicating the stiffness of the main shaft from a first value to a second value, the selection unit 113 selects the second value. In this case, the simulation unit 115 again performs an operation simulation of the industrial machine 1 based on the second value selected by the selection unit 113.
 さらに、判定部117が、再び、因子情報が示す不良が発生していないと判定すると、補正部118は、例えば、主軸の剛性を示す数値を第2の値から第3の値に変更する。 Furthermore, if the determination unit 117 again determines that the defect indicated by the factor information has not occurred, the correction unit 118 changes, for example, the numerical value indicating the stiffness of the spindle from the second value to a third value.
 因子情報の補正は、選択部113によって選択される因子情報を他の因子情報に変更することであってもよい。例えば、因子情報記憶部112は、図11に示すとおり、「穴加工」および「回転が不安定、加工面に傷」に関連付けて「送り軸剛性の低下」を記憶している。したがって、補正部118は、因子情報を「主軸剛性の低下」から「送り軸剛性の低下」に変更してもよい。 The correction of factor information may involve changing the factor information selected by the selection unit 113 to other factor information. For example, as shown in FIG. 11, the factor information storage unit 112 stores "decreased feed shaft stiffness" in association with "hole machining" and "unstable rotation, scratches on the machining surface." Therefore, the correction unit 118 may change the factor information from "decreased spindle stiffness" to "decreased feed shaft stiffness."
 出力部119は、判定部117による判定結果を出力する。判定部117が、例えば、「主軸剛性の低下」が生じていると判定した場合、出力部119は、入出力装置107に向けて主軸剛性の低下が生じていることを示す判定結果を出力する。出力部119は、さらに、不良の度合いを示す数値を出力してもよい。 The output unit 119 outputs the result of the determination made by the determination unit 117. If the determination unit 117 determines that, for example, a "decrease in spindle stiffness" has occurred, the output unit 119 outputs a determination result indicating that a decrease in spindle stiffness has occurred to the input/output device 107. The output unit 119 may further output a numerical value indicating the degree of defect.
 図14は、判定結果の表示態様の一例を示す図である。補正部118によって主軸の剛性を示す値が、第1の値から第2の値、第2の値から第3の値へと順に変更された場合、出力部119は、動作シミュレーションを実行して得られたそれぞれのトルク波形を入出力装置107に表示させる。また、出力部119は、動作シミュレーションの結果と、産業機械1の動作結果を示す結果情報とが一致するときに設定された不良の度合いを示す数値を入出力装置107に出力する。図14は、矢印によって、主軸の剛性を示す値が第3の値に設定された場合に、動作シミュレーションの結果と結果情報とが一致することを示している。 FIG. 14 is a diagram showing an example of a display mode of the judgment result. When the value indicating the stiffness of the spindle is changed by the correction unit 118 from a first value to a second value and from the second value to a third value in that order, the output unit 119 causes the input/output device 107 to display each of the torque waveforms obtained by executing the operation simulation. In addition, the output unit 119 outputs to the input/output device 107 a numerical value indicating the degree of defect that is set when the result of the operation simulation matches the result information indicating the operation result of the industrial machine 1. FIG. 14 shows by an arrow that when the value indicating the stiffness of the spindle is set to the third value, the result of the operation simulation matches the result information.
 次に、ミリング加工が行われる場合の例について説明する。産業機械1によってワークWの表面のミリング加工が行われた後に、加工面の高さの寸法誤差が生じていることをオペレータが発見する場合がある。この場合、オペレータは、ミリング加工が行われたことを示す動作情報、および寸法誤差が生じていることを示す不良情報をシミュレーション装置10に入力する。 Next, an example of a case where milling is performed will be described. After the industrial machine 1 mills the surface of the workpiece W, the operator may discover that a dimensional error has occurred in the height of the machined surface. In this case, the operator inputs to the simulation device 10 operation information indicating that milling has been performed and defect information indicating that a dimensional error has occurred.
 この場合、情報受付部111は、ミリング加工が行われたことを示す動作情報、および寸法誤差が生じていることを示す不良情報を受け付ける。 In this case, the information receiving unit 111 receives operation information indicating that milling has been performed, and defect information indicating that a dimensional error has occurred.
 図15は、因子情報記憶部112が記憶する因子情報の一例を示す図である。因子情報が示す不良の因子は、例えば、「工具摩耗」、「主軸剛性の低下」、および「座標系のずれ」を含む。「座標系のずれ」とは、ワーク座標系の原点の位置が設定されるべき位置からずれていることを意味する。 FIG. 15 is a diagram showing an example of factor information stored in the factor information storage unit 112. Defective factors indicated by the factor information include, for example, "tool wear," "reduction in spindle rigidity," and "coordinate system deviation." "Coordinate system deviation" means that the position of the origin of the work coordinate system is deviated from the position where it should be set.
 因子情報は、不良の度合いを示す数値として、工具の摩耗量を示す数値、主軸の剛性を示す数値、または座標系のずれ量を示す数値を含んでいてもよい。 The factor information may include a numerical value indicating the degree of defect, such as a numerical value indicating the amount of wear on the tool, a numerical value indicating the rigidity of the spindle, or a numerical value indicating the amount of deviation in the coordinate system.
 因子情報記憶部112は、因子情報と、動作情報および不良情報とを関連付けて記憶する。因子情報記憶部112は、例えば、「ミリング加工」および「寸法誤差」に関連付けて「工具摩耗」を記憶する。また、因子情報記憶部112は、「ミリング加工」および「寸法誤差」に関連付けて「主軸剛性の低下」を記憶する。また、因子情報記憶部112は、「ミリング加工」および「寸法誤差」に関連付けて「座標系のずれ」を記憶する。 The factor information storage unit 112 stores factor information in association with operation information and defect information. For example, the factor information storage unit 112 stores "tool wear" in association with "milling" and "dimensional error". The factor information storage unit 112 also stores "reduction in spindle rigidity" in association with "milling" and "dimensional error". The factor information storage unit 112 also stores "coordinate system deviation" in association with "milling" and "dimensional error".
 選択部113は、産業機械1の動作の種類を示す動作情報および産業機械1において発生した不良の種類を示す不良情報に基づいて、不良の因子を示す因子情報を選択する。 The selection unit 113 selects factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that has occurred in the industrial machine 1.
 例えば、情報受付部111が、「ミリング加工」を示す動作情報、および「寸法誤差」を示す不良情報を受け付けた場合、選択部113は、因子情報として「工具摩耗」を選択する。情報受付部111が、「ミリング加工」を示す動作情報、および「寸法誤差」を示す不良情報を受け付けた場合、選択部113は、因子情報として「主軸剛性の低下」を選択してもよい。情報受付部111が、「ミリング加工」を示す動作情報、および「寸法誤差」を示す不良情報を受け付けた場合、選択部113は、因子情報として「座標系のずれ」を選択してもよい。 For example, if the information receiving unit 111 receives operation information indicating "milling" and defect information indicating "dimensional error", the selection unit 113 selects "tool wear" as the factor information. If the information receiving unit 111 receives operation information indicating "milling" and defect information indicating "dimensional error", the selection unit 113 may select "reduction in spindle rigidity" as the factor information. If the information receiving unit 111 receives operation information indicating "milling" and defect information indicating "dimensional error", the selection unit 113 may select "misalignment of the coordinate system" as the factor information.
 シミュレーション部115は、選択部113によって選択された因子情報に基づいて、産業機械1の仮想モデルを用いて動作シミュレーションを実行する。シミュレーション部115は、仮想モデルにおいて、工具の摩耗量を、例えば、0.1[mm]に設定して動作シミュレーションを実行する。 The simulation unit 115 executes an operation simulation using a virtual model of the industrial machine 1 based on the factor information selected by the selection unit 113. The simulation unit 115 executes the operation simulation by setting the amount of tool wear in the virtual model to, for example, 0.1 mm.
 シミュレーション部115は、動作シミュレーションを実行して、動作シミュレーションの結果を得る。動作シミュレーションの結果を示す情報は、例えば、ワークWの寸法を示す情報を含む。ワークWの寸法は、例えば、ワークWの加工面の高さ、および加工された穴の深さを含んでいてよい。 The simulation unit 115 executes an operation simulation to obtain the results of the operation simulation. The information indicating the results of the operation simulation includes, for example, information indicating the dimensions of the workpiece W. The dimensions of the workpiece W may include, for example, the height of the machined surface of the workpiece W and the depth of the machined hole.
 図16は、動作シミュレーションの結果の一例を示す図である。シミュレーション部115は、ミリング工具の摩耗量を、例えば、0.1[mm]に設定して、動作シミュレーションの結果を示す情報を得る。 FIG. 16 is a diagram showing an example of the results of an operational simulation. The simulation unit 115 sets the wear amount of the milling tool to, for example, 0.1 mm, and obtains information indicating the results of the operational simulation.
 取得部116は、産業機械1の動作結果を示す結果情報を、例えば、計測器9から取得する。動作結果を示す結果情報は、動作プログラムに基づいて加工されたワークWの表面の高さを示す情報である。 The acquisition unit 116 acquires result information indicating the operation results of the industrial machine 1, for example, from the measuring device 9. The result information indicating the operation results is information indicating the height of the surface of the workpiece W machined based on the operation program.
 図17は、取得部116が取得した結果情報の一例を示す図である。結果情報は、例えば、3次元スキャナによって計測されたワークWの画像、およびワークWの表面の高さを示す情報である。 FIG. 17 is a diagram showing an example of result information acquired by the acquisition unit 116. The result information is, for example, an image of the workpiece W measured by a 3D scanner and information indicating the height of the surface of the workpiece W.
 判定部117は、動作シミュレーションの結果と産業機械1の動作結果を示す結果情報とを比較して産業機械1において因子情報が示す不良が発生しているか否かを判定する。判定部117は、例えば、結果情報が示すワークWの表面の高さと、動作シミュレーションを実行することによって得られたワークWの表面の高さとを比較する。 The determination unit 117 compares the results of the operation simulation with result information indicating the operation results of the industrial machine 1 to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1. The determination unit 117, for example, compares the height of the surface of the workpiece W indicated by the result information with the height of the surface of the workpiece W obtained by executing the operation simulation.
 図16および図17に示す例において、判定部117は、動作シミュレーションを実行して得られたワークWの表面の高さは、取得部116によって取得された動作結果が示すワークWの表面の高さに一致すると判定する。 In the example shown in Figures 16 and 17, the determination unit 117 determines that the surface height of the workpiece W obtained by executing the operation simulation matches the surface height of the workpiece W indicated by the operation result acquired by the acquisition unit 116.
 出力部119は、判定部117による判定結果を出力する。判定部117が、動作シミュレーションを実行して得られたワークWの表面の高さと、動作結果が示すワークWの表面の高さが一致すると判定した場合、出力部119は、入出力装置107に向けて工具の摩耗が発生していることを示す判定結果を出力する。 The output unit 119 outputs the determination result by the determination unit 117. When the determination unit 117 determines that the surface height of the workpiece W obtained by executing the operation simulation matches the surface height of the workpiece W indicated by the operation result, the output unit 119 outputs to the input/output device 107 a determination result indicating that tool wear is occurring.
 図18は、判定結果の表示態様の一例を示す図である。出力部119は、動作シミュレーションを実行して得られたワークWの形状を入出力装置107に表示させる。また、出力部119は、動作シミュレーションの結果と、産業機械1の動作結果を示す結果情報とが一致するときに設定された不良の度合いを示す数値を入出力装置107に出力する。図18は、矢印によって、工具の摩耗量が0.1[mm]に設定された場合に、動作シミュレーションの結果と結果情報とが一致することを示している。 FIG. 18 is a diagram showing an example of a display mode of the judgment result. The output unit 119 causes the input/output device 107 to display the shape of the workpiece W obtained by executing the operation simulation. In addition, the output unit 119 outputs to the input/output device 107 a numerical value indicating the degree of defect that is set when the result of the operation simulation matches the result information indicating the operation result of the industrial machine 1. In FIG. 18, an arrow indicates that the result of the operation simulation matches the result information when the amount of tool wear is set to 0.1 [mm].
 上述した実施形態では、判定部117によって因子情報が示す不良が発生していないと判定された場合にのみ、補正部118が因子情報の補正を行って、再び、動作シミュレーションが行われる。 In the above-described embodiment, only when the determination unit 117 determines that no defect indicated by the factor information has occurred, the correction unit 118 corrects the factor information and performs the operation simulation again.
 しかし、シミュレーション部115が複数回の動作シミュレーションを連続して実行した後に、判定部117が、複数回の動作シミュレーションの結果と取得部116によって取得された結果情報とが一致するか否かを判定してもよい。 However, after the simulation unit 115 executes multiple operational simulations in succession, the determination unit 117 may determine whether the results of the multiple operational simulations match the result information acquired by the acquisition unit 116.
 例えば、上述した極座標補間が行なわれる例において、シミュレーション部115は、C軸中心のY方向誤差を示す数値を0.3[mm]、0.4[mm]、および0.5[mm]に設定して複数回の動作シミュレーションを実行する。その後、判定部117が、動作シミュレーションのそれぞれの結果と、取得部116によって取得された結果情報とを比較する。すなわち、判定部117は、取得部116によって取得された結果情報が、どの動作シミュレーションの結果に一致するかを判定する。 For example, in the example where the polar coordinate interpolation described above is performed, the simulation unit 115 sets the numerical value indicating the Y-direction error from the center of the C-axis to 0.3 [mm], 0.4 [mm], and 0.5 [mm] and executes multiple operation simulations. After that, the determination unit 117 compares the results of each operation simulation with the result information acquired by the acquisition unit 116. In other words, the determination unit 117 determines which operation simulation result the result information acquired by the acquisition unit 116 matches.
 この場合、判定部117は、取得部116によって取得された結果情報に最も近似する動作シミュレーションの結果を、結果情報に一致する動作シミュレーションの結果と判定すればよい。 In this case, the determination unit 117 may determine that the result of the operation simulation that is most similar to the result information acquired by the acquisition unit 116 is the result of the operation simulation that matches the result information.
 上述した実施形態では、図9、図14、および図18に示すとおり、シミュレーション装置10は、1つの異常の原因を特定している。しかし、シミュレーション装置10は、2つ以上の異常の原因を特定してもよい。 In the above-described embodiment, as shown in FIG. 9, FIG. 14, and FIG. 18, the simulation device 10 identifies the cause of one abnormality. However, the simulation device 10 may identify the causes of two or more abnormalities.
 例えば、図6に示す例において、選択部113は、因子情報として、「C軸中心のY方向誤差」および「回転軸の偏心」を選択する。この場合、シミュレーション部115は、「C軸中心のY方向誤差」および「回転軸の偏心」にそれぞれ含まれる不良の度合いを示す数値を複数回変更して、動作シミュレーションを実行する。 For example, in the example shown in FIG. 6, the selection unit 113 selects "Y-direction error from the center of the C-axis" and "eccentricity of the rotation axis" as the factor information. In this case, the simulation unit 115 executes the operation simulation by changing the numerical values indicating the degree of defect contained in each of "Y-direction error from the center of the C-axis" and "eccentricity of the rotation axis" multiple times.
 例えば、シミュレーション部115は、まず、回転軸の偏心の度合いを示す数値を-0.1[mm]、C軸中心のY方向誤差を0.3[mm]に設定して動作シミュレーションを実行する。次に、シミュレーション部115は、回転軸の偏心の度合いを示す数値を-0.1[mm]、C軸中心のY方向誤差を0.4[mm]に設定して動作シミュレーションを実行する。次に、シミュレーション部115は、回転軸の偏心の度合いを示す数値を-0.1[mm]、C軸中心のY方向誤差を0.5[mm]に設定して動作シミュレーションを実行する。 For example, the simulation unit 115 first executes an operation simulation by setting the value indicating the degree of eccentricity of the rotation axis to -0.1 [mm] and the Y direction error around the C axis to 0.3 [mm]. Next, the simulation unit 115 executes an operation simulation by setting the value indicating the degree of eccentricity of the rotation axis to -0.1 [mm] and the Y direction error around the C axis to 0.4 [mm]. Next, the simulation unit 115 executes an operation simulation by setting the value indicating the degree of eccentricity of the rotation axis to -0.1 [mm] and the Y direction error around the C axis to 0.5 [mm].
 次に、シミュレーション部115は、回転軸の偏心の度合いを示す数値を0.1[mm]、C軸中心のY方向誤差を0.3[mm]に設定して動作シミュレーションを実行する。次に、シミュレーション部115は、回転軸の偏心の度合いを示す数値を0.1[mm]、C軸中心のY方向誤差を0.4[mm]に設定して動作シミュレーションを実行する。次に、シミュレーション部115は、回転軸の偏心の度合いを示す数値を0.1[mm]、C軸中心のY方向誤差を0.5[mm]に設定して動作シミュレーションを実行する。 Then, the simulation unit 115 sets the value indicating the degree of eccentricity of the rotating shaft to 0.1 [mm] and the Y direction error around the C axis to 0.3 [mm], and executes an operation simulation. The simulation unit 115 then sets the value indicating the degree of eccentricity of the rotating shaft to 0.1 [mm] and the Y direction error around the C axis to 0.4 [mm], and executes an operation simulation. The simulation unit 115 then sets the value indicating the degree of eccentricity of the rotating shaft to 0.1 [mm] and the Y direction error around the C axis to 0.5 [mm], and executes an operation simulation.
 これにより、異常の原因が複数ある場合であっても、シミュレーション装置10は、それら複数の異常の原因を特定することができる。 As a result, even if there are multiple causes of an abnormality, the simulation device 10 can identify the causes of those multiple abnormalities.
 以上説明したように、シミュレーション装置10は、産業機械1の動作の種類を示す動作情報および産業機械1において発生する不良の種類を示す不良情報に基づいて、不良の因子を示す因子情報を選択する選択部113と、選択部113によって選択された因子情報に基づいて、産業機械1の動作シミュレーションを実行するシミュレーション部115と、産業機械1の動作結果を示す結果情報を取得する取得部116と、動作シミュレーションの結果と結果情報とを比較して産業機械1において因子情報が示す不良が発生しているか否かを判定する判定部117と、判定部117による判定結果を出力する出力部119と、を備える。 As described above, the simulation device 10 includes a selection unit 113 that selects factor information indicating the cause of a defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect occurring in the industrial machine 1, a simulation unit 115 that executes an operation simulation of the industrial machine 1 based on the factor information selected by the selection unit 113, an acquisition unit 116 that acquires result information indicating the operation result of the industrial machine 1, a determination unit 117 that compares the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1, and an output unit 119 that outputs the determination result by the determination unit 117.
 また、コンピュータ読み取り可能な記憶媒体が、産業機械1の動作の種類を示す動作情報および産業機械1において発生する不良の種類を示す不良情報に基づいて、不良の因子を示す因子情報を選択することと、選択された因子情報に基づいて、産業機械1の動作シミュレーションを実行することと、産業機械1の動作結果を示す結果情報を取得することと、動作シミュレーションの結果と結果情報とを比較して産業機械1において因子情報が示す不良が発生しているか否かを判定することと、判定された結果を出力することと、をコンピュータに実行させる命令を記憶する。 The computer-readable storage medium also stores instructions that cause the computer to execute the following: select factor information indicating the cause of the defect based on operation information indicating the type of operation of the industrial machine 1 and defect information indicating the type of defect that occurs in the industrial machine 1; execute an operation simulation of the industrial machine 1 based on the selected factor information; obtain result information indicating the operation result of the industrial machine 1; compare the result of the operation simulation with the result information to determine whether or not a defect indicated by the factor information has occurred in the industrial machine 1; and output the determined result.
 したがって、シミュレーション装置10は、産業機械1の異常の原因を特定することができる。 Therefore, the simulation device 10 can identify the cause of the abnormality in the industrial machine 1.
 また、因子情報は、産業機械1の剛性を示す数値、摩擦係数を示す数値、幾何誤差を示す数値、工具の摩耗量を示す数値の少なくともいずれかを含む。また、シミュレーション装置10は、因子情報が示す不良が発生していないと判定された場合、選択部113によって選択された因子情報を補正する補正部118をさらに備える。また、判定部117が、所定回数を超えて、不良が発生していないと判定した場合、出力部119は、不良の因子を特定できない旨の判定結果を出力する。また、シミュレーション部115は、産業機械1の仮想モデルを用いて動作シミュレーションを実行する。したがって、シミュレーション装置10は、産業機械1で実際に起こっている異常の原因を確実に特定することができる。また、シミュレーション装置10は、所定回数を超えて動作シミュレーションが繰り返し行われることを防ぐことができる。 The factor information includes at least one of a numerical value indicating the rigidity of the industrial machine 1, a numerical value indicating the coefficient of friction, a numerical value indicating the geometric error, and a numerical value indicating the amount of wear of the tool. The simulation device 10 further includes a correction unit 118 that corrects the factor information selected by the selection unit 113 when it is determined that the defect indicated by the factor information has not occurred. When the determination unit 117 determines that the defect has not occurred more than a predetermined number of times, the output unit 119 outputs a determination result indicating that the defect factor cannot be identified. The simulation unit 115 also executes an operation simulation using a virtual model of the industrial machine 1. Therefore, the simulation device 10 can reliably identify the cause of an abnormality that is actually occurring in the industrial machine 1. The simulation device 10 can also prevent the operation simulation from being repeated more than a predetermined number of times.
 また、動作結果を示す情報は、動作プログラムに基づいて産業機械1が動作しているときの状態を示す動作状態情報、または加工されたワークWの状態を示すワーク状態情報を含む。動作状態情報は、産業機械1が動作しているときのサーボモータ5のトルクを示す情報、または産業機械1が動作しているときのスピンドルモータ7のトルクを示す情報を含む。ワーク状態情報は、加工されたワークWの形状、寸法、面粗度、または傷の有無の計測結果を示す情報を含む。したがって、シミュレーション装置10は、産業機械1で起こる様々な異常の原因を特定することができる。 In addition, the information indicating the operation results includes operation status information indicating the state when the industrial machine 1 is operating based on the operation program, or work status information indicating the state of the machined workpiece W. The operation status information includes information indicating the torque of the servo motor 5 when the industrial machine 1 is operating, or information indicating the torque of the spindle motor 7 when the industrial machine 1 is operating. The work status information includes information indicating the measurement results of the shape, dimensions, surface roughness, or presence or absence of scratches on the machined workpiece W. Therefore, the simulation device 10 can identify the causes of various abnormalities that occur in the industrial machine 1.
 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、請求の範囲に記載された内容とその均等物から導き出される本開示の要旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the gist of the present disclosure derived from the contents described in the claims and their equivalents. These embodiments can also be implemented in combination.
 以下に、本開示の実施形態に係る付記を示す。
付記[1]
 産業機械の動作の種類を示す動作情報および前記産業機械において発生する不良の種類を示す不良情報に基づいて、前記不良の因子を示す因子情報を選択する選択部と、前記選択部によって選択された前記因子情報に基づいて、前記産業機械の動作シミュレーションを実行するシミュレーション部と、前記産業機械の動作結果を示す結果情報を取得する取得部と、前記動作シミュレーションの結果と前記結果情報とを比較して前記産業機械において前記因子情報が示す前記不良が発生しているか否かを判定する判定部と、前記判定部による判定結果を出力する出力部と、を備えるシミュレーション装置。
付記[2]
 前記因子情報は、前記産業機械の剛性を示す数値、摩擦係数を示す数値、幾何誤差を示す数値、工具の摩耗量を示す数値の少なくともいずれかを含む付記[1]に記載のシミュレーション装置。
付記[3]
 前記因子情報が示す前記不良が発生していないと判定された場合、前記選択部によって選択された前記因子情報を補正する補正部をさらに備える付記[1]または[2]に記載のシミュレーション装置。
付記[4]
 前記判定部が、所定回数を超えて、前記不良が発生していないと判定した場合、前記出力部は、前記不良の因子を特定できない旨の判定結果を出力する付記[3]に記載のシミュレーション装置。
付記[5]
 前記シミュレーション部は、前記産業機械の仮想モデルを用いて前記動作シミュレーションを実行する付記[1]~[4]のいずれかに記載のシミュレーション装置。
付記[6]
 前記動作結果を示す前記結果情報は、動作プログラムに基づいて前記産業機械が動作しているときの状態を示す動作状態情報、または加工されたワークの状態を示すワーク状態情報を含む付記[1]~[5]のいずれかに記載のシミュレーション装置。
付記[7]
 前記動作状態情報は、前記産業機械が動作しているときのサーボモータのトルクを示す情報、または前記産業機械が動作しているときのスピンドルモータのトルクを示す情報である付記[6]に記載のシミュレーション装置。
付記[8]
 前記ワーク状態情報は、加工されたワークの形状、寸法、面粗度、または傷の有無の計測結果を示す情報である付記[6]に記載のシミュレーション装置。
付記[9]
 産業機械の動作の種類を示す動作情報および前記産業機械において発生する不良の種類を示す不良情報に基づいて、前記不良の因子を示す因子情報を選択することと、選択された前記因子情報に基づいて、前記産業機械の動作シミュレーションを実行することと、前記産業機械の動作結果を示す結果情報を取得することと、前記動作シミュレーションの結果と前記結果情報とを比較して前記産業機械において前記因子情報が示す前記不良が発生しているか否かを判定することと、判定された結果を出力することと、をコンピュータに実行させる命令を記憶するコンピュータ読み取り可能な記憶媒体。
Below, notes relating to embodiments of the present disclosure are provided.
Appendix [1]
a simulation unit that executes an operation simulation of the industrial machine based on the factor information selected by the selection unit; an acquisition unit that acquires result information that indicates an operation result of the industrial machine; a determination unit that compares a result of the operation simulation with the result information to determine whether or not the defect indicated by the factor information has occurred in the industrial machine; and an output unit that outputs a result of the determination made by the determination unit.
Appendix [2]
The simulation device according to claim 1, wherein the factor information includes at least one of a numerical value indicating a rigidity of the industrial machine, a numerical value indicating a coefficient of friction, a numerical value indicating a geometric error, and a numerical value indicating an amount of wear of a tool.
Appendix [3]
The simulation apparatus according to claim 1, further comprising a correction unit that corrects the factor information selected by the selection unit when it is determined that the failure indicated by the factor information has not occurred.
Appendix [4]
The simulation device according to claim 3, wherein, when the judgment unit judges that the defect has not occurred a predetermined number of times or more, the output unit outputs a judgment result indicating that a cause of the defect cannot be identified.
Appendix [5]
The simulation device according to any one of appendices [1] to [4], wherein the simulation unit executes the operation simulation using a virtual model of the industrial machine.
Appendix [6]
The simulation device according to any one of appendices [1] to [5], wherein the result information indicating the operation result includes operation status information indicating a state when the industrial machine is operating based on an operation program, or work status information indicating a state of a machined workpiece.
Appendix [7]
The simulation device according to claim 6, wherein the operating state information is information indicating a torque of a servo motor when the industrial machine is operating, or information indicating a torque of a spindle motor when the industrial machine is operating.
Appendix [8]
The simulation device according to claim 6, wherein the workpiece condition information is information indicating measurement results of the shape, dimensions, surface roughness, or presence or absence of scratches of the machined workpiece.
Appendix [9]
A computer-readable storage medium storing instructions to cause a computer to execute the following: selecting factor information indicating a factor of a defect based on operation information indicating a type of operation of an industrial machine and defect information indicating a type of defect occurring in the industrial machine; executing an operation simulation of the industrial machine based on the selected factor information; obtaining result information indicating an operation result of the industrial machine; comparing a result of the operation simulation with the result information to determine whether or not the defect indicated by the factor information has occurred in the industrial machine; and outputting the determined result.
  1       産業機械
  2       数値制御装置
  201     ハードウェアプロセッサ
  202     バス
  203     ROM
  204     RAM
  205     不揮発性メモリ
  206     第1のインタフェース
  207     軸制御回路
  208     スピンドル制御回路
  209     PLC
  210     I/Oユニット
  211     第2のインタフェース
  212     第3のインタフェース
  3       入出力装置
  4       サーボアンプ
  5       サーボモータ
  6       スピンドルアンプ
  7       スピンドルモータ
  8       補助機器
  9       計測器
  10      シミュレーション装置
  101     ハードウェアプロセッサ
  102     バス
  103     ROM
  104     RAM
  105     不揮発性メモリ
  106     第1のインタフェース
  107     入出力装置
  108     第2のインタフェース
  111     情報受付部
  112     因子情報記憶部
  113     選択部
  114     モデル記憶部
  115     シミュレーション部
  116     取得部
  117     判定部
  118     補正部
  119     出力部
Reference Signs List 1 Industrial machine 2 Numerical control device 201 Hardware processor 202 Bus 203 ROM
204 RAM
205 Non-volatile memory 206 First interface 207 Axis control circuit 208 Spindle control circuit 209 PLC
210 I/O unit 211 Second interface 212 Third interface 3 Input/output device 4 Servo amplifier 5 Servo motor 6 Spindle amplifier 7 Spindle motor 8 Auxiliary device 9 Measuring instrument 10 Simulation device 101 Hardware processor 102 Bus 103 ROM
104 RAM
REFERENCE SIGNS LIST 105 Non-volatile memory 106 First interface 107 Input/output device 108 Second interface 111 Information receiving section 112 Factor information storage section 113 Selection section 114 Model storage section 115 Simulation section 116 Acquisition section 117 Determination section 118 Correction section 119 Output section

Claims (9)

  1.  産業機械の動作の種類を示す動作情報および前記産業機械において発生する不良の種類を示す不良情報に基づいて、前記不良の因子を示す因子情報を選択する選択部と、
     前記選択部によって選択された前記因子情報に基づいて、前記産業機械の動作シミュレーションを実行するシミュレーション部と、
     前記産業機械の動作結果を示す結果情報を取得する取得部と、
     前記動作シミュレーションの結果と前記結果情報とを比較して前記産業機械において前記因子情報が示す前記不良が発生しているか否かを判定する判定部と、
     前記判定部による判定結果を出力する出力部と、
    を備えるシミュレーション装置。
    a selection unit that selects factor information indicating a factor of the defect based on operation information indicating a type of operation of the industrial machine and defect information indicating a type of defect occurring in the industrial machine;
    a simulation unit that executes an operation simulation of the industrial machine based on the factor information selected by the selection unit;
    an acquisition unit that acquires result information indicating an operation result of the industrial machine;
    a determination unit that compares a result of the operation simulation with the result information to determine whether or not the defect indicated by the factor information has occurred in the industrial machine;
    an output unit that outputs a determination result by the determination unit;
    A simulation device comprising:
  2.  前記因子情報は、前記産業機械の剛性を示す数値、摩擦係数を示す数値、幾何誤差を示す数値、工具の摩耗量を示す数値の少なくともいずれかを含む請求項1に記載のシミュレーション装置。 The simulation device according to claim 1, wherein the factor information includes at least one of a numerical value indicating the rigidity of the industrial machine, a numerical value indicating the coefficient of friction, a numerical value indicating a geometric error, and a numerical value indicating the amount of wear of a tool.
  3.  前記因子情報が示す前記不良が発生していないと判定された場合、前記選択部によって選択された前記因子情報を補正する補正部をさらに備える請求項1または2に記載のシミュレーション装置。 The simulation device according to claim 1 or 2, further comprising a correction unit that corrects the factor information selected by the selection unit when it is determined that the defect indicated by the factor information has not occurred.
  4.  前記判定部が、所定回数を超えて、前記不良が発生していないと判定した場合、前記出力部は、前記不良の因子を特定できない旨の判定結果を出力する請求項3に記載のシミュレーション装置。 The simulation device according to claim 3, wherein if the determination unit determines that the defect has not occurred a predetermined number of times, the output unit outputs a determination result indicating that the cause of the defect cannot be identified.
  5.  前記シミュレーション部は、前記産業機械の仮想モデルを用いて前記動作シミュレーションを実行する請求項1~4のいずれか1項に記載のシミュレーション装置。 The simulation device according to any one of claims 1 to 4, wherein the simulation unit executes the operation simulation using a virtual model of the industrial machine.
  6.  前記動作結果を示す前記結果情報は、動作プログラムに基づいて前記産業機械が動作しているときの状態を示す動作状態情報、または加工されたワークの状態を示すワーク状態情報を含む請求項1~5のいずれか1項に記載のシミュレーション装置。 The simulation device according to any one of claims 1 to 5, wherein the result information indicating the operation result includes operation status information indicating the state when the industrial machine is operating based on an operation program, or work status information indicating the state of a machined workpiece.
  7.  前記動作状態情報は、前記産業機械が動作しているときのサーボモータのトルクを示す情報、または前記産業機械が動作しているときのスピンドルモータのトルクを示す情報である請求項6に記載のシミュレーション装置。 The simulation device according to claim 6, wherein the operating state information is information indicating the torque of a servo motor when the industrial machine is operating, or information indicating the torque of a spindle motor when the industrial machine is operating.
  8.  前記ワーク状態情報は、加工されたワークの形状、寸法、面粗度、または傷の有無の計測結果を示す情報である請求項6に記載のシミュレーション装置。 The simulation device according to claim 6, wherein the workpiece condition information is information indicating the measurement results of the shape, dimensions, surface roughness, or presence or absence of scratches of the machined workpiece.
  9.  産業機械の動作の種類を示す動作情報および前記産業機械において発生する不良の種類を示す不良情報に基づいて、前記不良の因子を示す因子情報を選択することと、
     選択された前記因子情報に基づいて、前記産業機械の動作シミュレーションを実行することと、
     前記産業機械の動作結果を示す結果情報を取得することと、
     前記動作シミュレーションの結果と前記結果情報とを比較して前記産業機械において前記因子情報が示す前記不良が発生しているか否かを判定することと、
     判定された結果を出力することと、
    をコンピュータに実行させる命令を記憶するコンピュータ読み取り可能な記憶媒体。
    selecting factor information indicating a factor of the defect based on operation information indicating a type of operation of the industrial machine and defect information indicating a type of defect occurring in the industrial machine;
    executing an operation simulation of the industrial machine based on the selected factor information;
    Obtaining result information indicating an operation result of the industrial machine;
    comparing a result of the operation simulation with the result information to determine whether or not the defect indicated by the factor information has occurred in the industrial machine;
    Outputting the determined result; and
    A computer-readable storage medium that stores instructions for causing a computer to execute the above.
PCT/JP2023/007856 2023-03-02 2023-03-02 Simulation device and computer-readable storage medium WO2024180769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/007856 WO2024180769A1 (en) 2023-03-02 2023-03-02 Simulation device and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/007856 WO2024180769A1 (en) 2023-03-02 2023-03-02 Simulation device and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2024180769A1 true WO2024180769A1 (en) 2024-09-06

Family

ID=92589537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007856 WO2024180769A1 (en) 2023-03-02 2023-03-02 Simulation device and computer-readable storage medium

Country Status (1)

Country Link
WO (1) WO2024180769A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071951A (en) * 2019-10-31 2021-05-06 ファナック株式会社 Simulator, numerical controller, and method of simulation
JP2021149397A (en) * 2020-03-18 2021-09-27 コマツ産機株式会社 Method and system for collecting learning data and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071951A (en) * 2019-10-31 2021-05-06 ファナック株式会社 Simulator, numerical controller, and method of simulation
JP2021149397A (en) * 2020-03-18 2021-09-27 コマツ産機株式会社 Method and system for collecting learning data and system

Similar Documents

Publication Publication Date Title
CN110405532B (en) Tool selection device and machine learning device
US11745298B2 (en) Method for correcting tool parameters of a machine tool for machining of workpieces
JP7524230B2 (en) CONTROL DEVICE FOR USE IN A NUMERICALLY CONTROLLED MACHINE TOOL, AND MACHINE TOOL COMPRISING THE CONTROL DEVICE - Patent application
JP5710391B2 (en) Processing abnormality detection device and processing abnormality detection method for machine tools
JP4291386B2 (en) Numerical control device having workpiece setting error correction means
JP6942577B2 (en) Numerical control device and numerical control method for machine tools
JP4531023B2 (en) Crankshaft machining method, crankshaft machining apparatus, control apparatus, and program
KR20190013344A (en) An Intelligent CNC machine control system for smart monitering, smart diagnosis and smart control by using the physical cutting characteristic map in which the cutting characteristics are mapped in accordance to cutting location in terms of cutting time on working coordinate
US11567470B2 (en) Computer-aided optimization of numerically controlled machining of a workpiece
WO2014181424A1 (en) Numerical control device
CN112068484B (en) Real-time interrupt processing method for CNC (computerized numerical control) system of numerical control machine tool
JP7000295B2 (en) Feed shaft and worm gear abnormality judgment system
CN112748699A (en) Simulation device, numerical controller, and simulation method
EP1803530A2 (en) Tool displacement controlling and correcting device for machine tool
JP2020116666A (en) Tool management system of machine tool
JP6618656B1 (en) Maintenance support system, numerical control device, and maintenance support system control method
WO2024180769A1 (en) Simulation device and computer-readable storage medium
KR20190106241A (en) Machine tool and method for controlling the same
KR20190085429A (en) Apparatus and method for compensating spindle of machine tool
JP2006235776A (en) Machine tool and processing method by this machine tool
JP2008004124A (en) Numerical control machining device
JP2022018836A (en) Cutting supporting system
WO2023067699A1 (en) Machined surface estimation device and computer-readable storage medium
US12350749B2 (en) Gear machining apparatus
JP2005034961A (en) Numerical control machining device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23925324

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载