WO2024157579A1 - Light heating device - Google Patents
Light heating device Download PDFInfo
- Publication number
- WO2024157579A1 WO2024157579A1 PCT/JP2023/040863 JP2023040863W WO2024157579A1 WO 2024157579 A1 WO2024157579 A1 WO 2024157579A1 JP 2023040863 W JP2023040863 W JP 2023040863W WO 2024157579 A1 WO2024157579 A1 WO 2024157579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- light
- light source
- heating device
- heated
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
Definitions
- the present invention relates to a light heating device.
- Patent Document 1 describes an optical heating apparatus equipped with multiple straight tube-shaped heating lamps.
- the heating light emitted from the heating lamp that is not reflected by the reflective member has low directionality, so a relatively large amount of the light is absorbed by the inner wall surface of the chamber or travels to the outer area of the object to be heated. This type of light does not contribute to heating the object to be heated, and is therefore a factor in reducing the efficiency of light utilization.
- the heating light source Even if a solid-state light source such as an LED or LD is used as the heating light source, the light emitted from the solid-state light source is emitted at a constant divergence angle, so the same problems as with a heating lamp can occur.
- a solid-state light source such as an LED or LD
- one possible method for not wasting the light that travels outside the object to be heated is to additionally place a reflective member that reflects the light that is emitted from the heating light source toward the object to be heated and travels outside the object so that it is irradiated onto the object to be heated.
- adding additional reflective members may result in an increase in the size of the entire device. Also, depending on the configuration of the chamber in which the object to be heated is housed, there is a risk that the heating light may be partially blocked, making it impossible to place the reflective members described above in the desired position.
- the present invention aims to provide an optical heating device that improves the efficiency of using the light emitted from a heating light source.
- the light heating device of the present invention is A light heating device that irradiates a heating object with heating light, A chamber in which the object to be heated is accommodated; a light source unit disposed outside the chamber and configured to emit the heating light toward the object to be heated; a light transmitting portion for introducing the heating light emitted from the light source unit into the inside of the chamber,
- the light source unit includes: A heating light source that emits the heating light; a reflecting member that reflects a portion of the heating light emitted from the heating light source and traveling in a direction different from the object to be heated, toward the object to be heated;
- the heating light source is characterized by comprising a focusing optical system that reduces the divergence angle of the heating light emitted from the heating light source toward the object to be heated in the direction in which the heating light source and the chamber face each other.
- reducing the divergence angle is a concept that includes not only the case of converging incident light toward a single focal position, but also the case of changing the divergence angle in the direction of light travel in a direction that reduces it. It also includes the case of reducing the divergence angle so as to converge light toward a focal line formed in a line by the locus of the focal point, as in the case of a cylindrical lens, and the case of changing the divergence angle of light in the same direction in a direction that reduces it.
- converging is a broad concept that includes not only the gathering of light at a focal point, but also the case of simply changing the divergence angle in the direction of light travel in a direction that reduces it.
- converging optical system refers to an optical system such as a lens that not only gathers light at a focal point as described above, but also changes the divergence angle in the direction of light travel in a direction that reduces it.
- the divergence angle of a portion of the light emitted from the heating light source and traveling in a direction different from the reflecting member in the direction in which the heating light source faces the chamber is reduced by the focusing optical system.
- the heating light emitted from the heating light source is less likely to travel outside the object to be heated, compared to a conventional optical heating device with no focusing optical system. In other words, even when the same power is supplied to the heating light source, more heating light is irradiated to the object to be heated.
- optical heating devices that heat-treat objects generally come in a variety of configurations depending on the type of object, the heating method, and the process to be performed. Some optical heating devices are designed to ensure a distance of several centimeters to several tens of centimeters between the heating light source and the object to be heated.
- the above-mentioned effect becomes more pronounced as the distance between the heating light source and the object to be heated increases. This is because the heating light emitted from the heating light source at a predetermined divergence angle gradually diverges as it travels toward the object to be heated, and details will be described later in the section "Form for implementing the invention" with reference to Figure 8.
- the optical heating device configured as above has the effect of improving the efficiency of light utilization.
- the heat light source may be a heat lamp including a long arc tube and a pair of electrodes provided at both ends in the extending direction of the arc tube.
- long arc tube as used here is intended to include not only those that extend in a straight line (hereinafter sometimes referred to as “straight tube shape”), but also those that extend in a curved line.
- the optical heating device configured as above can use the most suitable heating lamp as the heating light source depending on the size and shape of the object to be heated, improving the efficiency of light utilization and enabling more precise control of the illuminance distribution and temperature distribution on the irradiated surface of the object to be heated.
- the light heating device is The light collecting optical system and the light emitting tube may be integrally constructed.
- the heating light source may be a halogen lamp.
- the heating light source may be a flash lamp.
- the light emitting tube of the heating light source may be configured to have a straight tube shape.
- the heating light source may be configured such that at least a portion of the light emitting tube extends along an arc shape.
- the focusing optical system may have a shape extending along an arc, and the heating light source and the focusing optical system may be configured such that, when viewed from the chamber, a first circle along the tube axis of the arc-extending portion of the light-emitting tube of the heating light source and a second circle along the locus of the focal position of the focusing optical system are concentric.
- the term "concentric” is used to include not only cases where the centers are perfectly aligned, but also cases where the centers are offset to an extent that is unavoidable during manufacturing. Specifically, it is acceptable for the amount of offset in the center position to be within 2% of the radius for each heating light source that extends along an arc.
- the light heating device configured as described above can irradiate the main surface of a plate-shaped, particularly a disk-shaped, object to be heated with more uniform light in the circumferential direction.
- the second circle may be configured to have a smaller radius than the first circle when viewed from the chamber.
- a focusing optical system When a focusing optical system is installed to reduce the divergence angle of light emitted from a light source, it is common to align the direction in which light is to be emitted as viewed from the light source with the optical axis of the focusing optical system. In other words, in the above configuration, it is common to align the first circle with the second circle as viewed from the chamber.
- the reflective member may extend along the tube axis of the light-emitting tube and have a reflective surface whose cross-sectional shape when cut along a plane perpendicular to the direction in which the reflective member extends is parabolic, elliptical, or circular.
- the light emitted from the heating light source and reflected by the reflecting member is reflected so as to be focused toward the object to be heated, compared to the case where a reflecting member with a reflective surface formed on a flat surface is used. Therefore, the utilization efficiency of the light emitted from the heating light source is further improved.
- the heat light source may be a single-ended heat lamp.
- the reflecting member may have a reflecting surface along a paraboloid of revolution, an ellipsoid of revolution, or a sphere.
- the heating light source may include a plurality of solid-state light sources.
- the light collecting optical system may be provided corresponding to each of the plurality of solid-state light sources.
- solid-state light sources require less space for placement. This allows the optical heating device configured as described above to be even more compact overall. In addition, solid-state light sources have a longer lifespan than these heat lamps. This allows the optical heating device configured as described above to require less frequent maintenance.
- the present invention provides a light heating device that improves the efficiency of using the light emitted from the heating light source.
- FIG. 2 is a schematic cross-sectional view of an embodiment of a light heating device when viewed in the Y direction.
- FIG. 2 is an enlarged view of a portion of the light source unit of FIG. 1 .
- 2 is a diagram of the light source unit of FIG. 1 as viewed from the ⁇ Z side. This is a drawing of the circle heater as seen from the +Z side. This is a drawing of the circle heater as seen from the +Y side.
- FIG. 2 is a perspective view showing a schematic shape of a light collecting optical system.
- 2 is a schematic cross-sectional view of an embodiment of a light irradiation device when viewed in the Y direction.
- 11 is a schematic cross-sectional view of a conventional light irradiation device as viewed in the Y direction.
- 13 is a graph showing illuminance distribution in the X direction in an example and a comparative example.
- 4 is a diagram illustrating a schematic positional relationship between a light source unit and an object to be heated.
- 1 is a diagram showing an example of the configuration of a light collecting optical system; 1 is a diagram showing an example of the configuration of a light collecting optical system; 2 is an enlarged view of a portion of a light source unit in one embodiment of a light heating device.
- 1 is a diagram showing a light source unit in an embodiment of a light heating device as viewed from the -Z side.
- FIG. 11 is a schematic cross-sectional view of another embodiment of the light heating device when viewed in the Y direction.
- FIG. 13 is a diagram of the light source unit in FIG. 12 as viewed from the ⁇ Z side. 13 is a schematic enlarged cross-sectional view of a light source unit in another embodiment of the light heating device as viewed in the Y direction.
- FIG. 13 is a schematic enlarged cross-sectional view of a light source unit in another embodiment of the light heating device as viewed in the Y direction.
- FIG. 16 is a diagram of the light source unit in FIG. 15 as viewed from the ⁇ Z side.
- optical heating device of the present invention will be described below with reference to the drawings. Note that the following drawings of the optical heating device are all schematic illustrations, and the dimensional ratios and numbers in the drawings do not necessarily match the actual dimensional ratios and numbers.
- Fig. 1 is a schematic cross-sectional view of a first embodiment of a light heating device 1 when viewed in the Y direction
- Fig. 2 is an enlarged view of a part of a light source unit 20 in Fig. 1.
- Fig. 3 is a view of the light source unit 20 in Fig. 1 when viewed from the -Z side.
- the light heating device 1 includes a chamber 10 and a light source unit 20.
- the light source unit 20 includes a lamp house 21, four circle heaters 22 that are heating light sources, and four focusing optical systems 23 provided corresponding to each of the circle heaters 22. Note that there may be only one circle heater 22 and one focusing optical system 23, depending on the shape and size of each, the size of the object to be heated W1, etc.
- FIG. 4A is a diagram of the circle heater 22 mounted on the light source unit 20 as viewed from the +Z side
- FIG. 4B is a diagram of the circle heater 22 as viewed from the +Y side.
- the plane parallel to the main surface W1a of the heating object W1, which is the object to be heated and housed in the chamber 10 is defined as the XY plane, and the direction perpendicular to the XY plane is defined as the Z direction.
- the X direction and the Y direction are defined appropriately according to the configuration of the heating light source.
- the direction in which the pair of electrodes (22c, 22c) of the circle heater 22 face each other is described as the Y direction.
- the heating object W1 is a disk-shaped silicon wafer, but it is also envisioned that the optical heating device 1 of the present invention can be used to heat a heating object W1 other than a silicon wafer (e.g., a glass substrate, etc.).
- a silicon wafer e.g., a glass substrate, etc.
- the chamber 10 includes a support member 12 for placing an object to be heated W1 inside, and a light-transmitting section 11 for guiding the heating light Lx emitted from the light source unit 20 to the inside.
- the light-transmitting section 11 is formed on a part of the wall surface on the +Z side of the chamber 10, and takes in the heating light Lx emitted from the light source unit 20 arranged outside the chamber 10 into the inside of the chamber 10.
- the light-transmitting section 11 is made of quartz glass that is transparent to the heating light Lx.
- the light-transmitting portion 11 is formed on a portion of the wall surface of the chamber 10.
- the upper surface and side surface of the chamber 10 may be made of quartz glass, and the entire upper surface and side surface of the chamber 10 may form the light-transmitting portion 11.
- the support member 12 is configured with a base 12a and multiple protrusions 12b, and the heating object W1 is placed and supported on the tips of the multiple protrusions 12b.
- the support member 12 of the first embodiment is provided with a rotation mechanism using multiple rollers 12c and is configured to be freely rotatable.
- the rollers 12c rotate, and the heating object W1 can be rotated on the XY plane around an axis z1 that passes through the center of the support member 12 in the Z direction as the rotation axis.
- the support member 12 does not have to be configured to rotate the object to be heated W1 if the light source unit 20 is configured to irradiate the heating light Lx uniformly in the circumferential direction of the main surface W1a of the object to be heated W1. Also, the support member 12 may be configured to support the object to be heated W1 by hooking, for example, the peripheral portion of the object to be heated W1.
- the lamp house 21 is a housing in which a space 21a is formed in which the circle heater 22 is housed.
- the lamp house 21 is made of aluminum, and the inner wall surface of the space 21a in which the circle heater 22 is housed is provided with reflective surfaces (21b, 21c) that reflect the heating light Lx emitted from the circle heater 22 and traveling in a direction different from the heating object W1 so that it travels toward the heating object (-Z side).
- the lamp house 21 corresponds to a reflective member.
- the lamp house 21 is not limited to the above configuration, and may be configured, for example, by forming a metal film such as aluminum on the surface of a heat-resistant ceramic.
- the reflective surfaces (21b, 21c) have a first reflective surface 21b that is circular and a second reflective surface 21c that is parabolic in cross section when cut along a plane perpendicular to the direction in which the space 21a extends, i.e., in the cross section shown in the XZ plane in Figure 2.
- the first reflecting surface 21b reflects the heating light Lx emitted from the filament 22b in the radial direction of the light emitting tube 22a back toward the filament 22b and also reflects it directly toward the object to be heated W1.
- the second reflecting surface 21c reflects the heating light Lx emitted from the filament 22b that is not incident on the first reflecting surface 21b and the focusing optical system 23 toward the heating object W1.
- the central axis of the filament 22b is arranged to coincide with the focal position of the second reflecting surface 21c so that the heating light Lx emitted from the filament 22b travels approximately parallel to the Z direction.
- the shape of the reflective surfaces (21b, 21c) can be any shape depending on the shape of the heating light source, and may be only the first reflective surface 21b along a circular shape, or only the second reflective surface 21c along a parabolic shape. Furthermore, the shapes of the reflective surfaces (21b, 21c) are not limited to these shapes, and may be reflective surfaces along other curves such as an elliptical shape.
- the circle heater 22 of the light source unit 20 of the first embodiment includes, as shown in Figures 4A and 4B, a light emitting tube 22a, a portion of which extends along an arc, a filament 22b disposed along the tube axis 22p of the light emitting tube 22a, and a pair of electrodes (22c, 22c) provided at both ends in the direction in which the light emitting tube 22a extends.
- Heat lamps with this configuration are also called “double-ended type.” Heat lamps in which both of the pair of electrodes are provided on one end of the light-emitting tube are also called “single-ended type.”
- the circle heater 22 is a halogen lamp that emits infrared light with a peak wavelength of 850 nm.
- the pair of electrodes (22c, 22c) of the circle heater 22 are omitted, and the circle heater 22 is illustrated diagrammatically as a halogen lamp having a circular ring shape.
- the arc tube 22a has a shape in which the tube axis 22p extends along a circular arc.
- the arc tube 22a is filled with an emitting gas containing a Group 18 element gas such as argon, krypton, or xenon.
- the circular shape along the tube axis 22p corresponds to the first circle C1.
- the diameter of the circular heater 22 mounted on the light source unit 20 is 13 mm.
- the radii of the circular shape (first circle C1) along the tube axis 22p of the four light emitting tubes 22a are 27.5 mm, 62.5 mm, 97.5 mm, and 132.5 mm, respectively.
- the light-emitting tube 22a has a shape in which at least a portion of it extends along an arc.
- the shape of the main surface W1a of the object to be heated W1 is a rectangular plate or the like, the light-emitting tube 22a may have a straight tube shape extending in one direction.
- the arc tube 22a in the first embodiment is made of quartz glass.
- the filament 22b is made by winding a wire of tungsten (W) and is arranged so that the central axis of the wound part coincides with the tube axis 22p of the light-emitting tube 22a. Although not shown in Figures 4A and 4B, the filament 22b is supported by a ring-shaped supporter so that its position within the light-emitting tube 22a is stable.
- the filament 22b may be made of a wire other than tungsten (W).
- the pair of electrodes (22c, 22c) are inserted into holes provided in the lamp house 21 and connected to wiring provided on the +Z side of the lamp house 21. During operation, heating light Lx is emitted from the filament 22b when power is supplied from a power supply unit (not shown).
- FIG. 5 is a perspective view showing a schematic shape of the focusing optical system 23.
- the focusing optical system 23 in the first embodiment is a convex lens having a shape obtained by cutting a circular ring shape with a plane passing through the axis, and is an optical system that reduces the divergence angle in the Z direction of the heating light Lx emitted from the circle heater 22 toward the -Z side.
- the focusing optical system 23 having this configuration is also called a "circular ring cylindrical lens.”
- the focusing optical system 23 in the first embodiment has a planar entrance surface 23a and a convex exit surface 23b, as shown in Fig. 2 and Fig. 5.
- the locus of the focal position F1 of the focusing optical system 23 has a circular shape parallel to the XY plane, as shown in Fig. 5. This locus of the focal position F1 corresponds to a second circle C2.
- the light heating device 1 of the first embodiment is configured so that the first circle C1 and the second circle C2 are concentric when viewed in the Z direction. As shown in FIG. 2, the light heating device 1 of the first embodiment is configured so that the focal position F1 of the focusing optical system 23 along the second circle C2 is inside the tube axis 22p of the light emitting tube 22a along the first circle C1. In other words, the radius of the second circle C2 is configured to be smaller than the radius of the first circle C1.
- the radius of the second circle C2 may be configured to be the same as or larger than the radius of the first circle C1 for the purpose of adjusting the illuminance distribution on the heated object W1.
- Example 1 The first embodiment is a light heating device 1 having the configuration shown in FIG.
- Example 2 6A is a schematic cross-sectional view of one embodiment of the light heating device 1 when viewed in the Y direction.
- the tube axis 22p of the light emitting tube 22a and the focal position F1 of the light collecting optical system 231 are arranged along the Z direction. That is, the light heating device 1 in the second embodiment is configured such that the first circle C1 and the second circle C2 coincide with each other when viewed from the Z direction. Except for the above points, the second embodiment has the same configuration as the first embodiment.
- Comparative Example 6B is a schematic cross-sectional view of the optical heating device 100 when viewed in the Y direction.
- the optical heating device 100 as a comparative example has the same configuration as that of Example 1, except that a light source unit 200 not provided with a light collecting optical system 23 is mounted instead of the light source unit 20.
- the heat quantity ratio which is a parameter to be compared, was calculated as a relative value of Example 1 and Example 2 when the result of the comparative example was taken as 100%, with respect to the amount of heat absorbed by the heated object calculated based on the measured illuminance distribution when the circle heaters 22 mounted on the light source units of each of Example 1, Example 2, and Comparative Example were turned on by supplying the same power to them.
- Examples 1 and 2 the amount of heat absorbed by the heated object W1 is greater than in the comparative example. In other words, it is confirmed that Examples 1 and 2 have a higher utilization efficiency of the heating light Lx emitted from the circle heater 22 than in the comparative example.
- Figure 7 is a graph showing the illuminance distribution in the X direction for Example 1 and the Comparative Example. As shown in Figure 7, it is also confirmed that the illuminance distribution of the heating light Lx irradiated onto the main surface of the silicon wafer is generally higher in Example 1 than in the Comparative Example.
- the optical heating device 1 configured as described above is less likely to advance to the outside of the object to be heated W1, and more heating light Lx is irradiated onto the object to be heated W1, compared to an optical heating device of a conventional configuration that does not have a focusing optical system.
- the amount of heat absorbed by the heated object W1 is increased more than when the radius of the second circle C2 and the radius of the first circle C1 are configured to be the same.
- Figure 8 is a diagram that shows a schematic representation of the positional relationship between the light source unit 20 and the object to be heated W1.
- the light source unit 20 shown in Figure 8 has the same configuration as the light source unit 20 provided in the optical heating device 1 described above, and is disposed in the same positional relationship with respect to the object to be heated W1, but for ease of explanation, the positional relationship with respect to the object to be heated W1 is illustrated differently from that shown in Figure 1 etc.
- the distance between the tube axis 22p of the arc tube 22a and the main surface W1a of the object to be heated W1 is WD
- the distance between the tube axis 22p and the peripheral end W1b of the object to be heated W1 is D1
- the angle at which a line connecting the tube axis 22p and the peripheral end W1b of the object to be heated W1 is inclined with respect to the Z direction is ⁇ W
- the angle at which a line connecting the tube axis 22p and the reflective end 21p is inclined with respect to the Z direction is ⁇ R
- the arc tube 22a, the lamp house 21, and the object to be heated W1 are disposed in a positional relationship that satisfies ⁇ W ⁇ ⁇ R regardless of the magnitude of the distance WD.
- FIGS. 9A and 9B are diagrams showing an example of a configuration of the focusing optical system 23 that is different from the above configuration.
- a focusing optical system 23 having a circular ring shape is installed, but as shown in FIG. 9A, it is also possible to configure the focusing optical system 23 to have a circular ring shape as a whole by using multiple focusing optical systems 23.
- a plurality of focusing optical systems 23 mounted on the light source unit 20 may be arranged concentrically and integrally configured on a plate 23p made of a material that is transparent to the heating light Lx (not shown).
- Each of these focusing optical systems 23 has a shape that extends along an arc.
- FIG. 10 is an enlarged view of a portion of the light source unit 20 in the second embodiment of the optical heating device 1
- FIG. 11 is a view of the light source unit 20 in the second embodiment of the optical heating device 1 as viewed from the -Z side.
- the second embodiment of the optical heating device 1 is equipped with multiple LEDs 24, which are solid-state light sources, as heating light sources.
- the radius of the second circle C2 which is the locus of the focal position F1 of the corresponding focusing optical system 23, is smaller than the radius of the first circle C1 along the center point 24a of the LEDs 24 arranged on the same circumference.
- the light source unit 20 has a circular focusing optical system 23 arranged for multiple LEDs 24 arranged on the same circumference, but the light source unit 20 may be configured to include a collimating lens corresponding to each of the multiple LEDs 24, for example.
- Fig. 12 is a cross-sectional view of another embodiment of the light heating device 1 when viewed in the Y direction
- Fig. 13 is a drawing of the light source unit 20 of Fig. 12 when viewed from the -Z side.
- the light source unit 20 may be equipped with a flash lamp 25, which is a type of heating lamp.
- the flash lamp 25 has a straight light-emitting tube 22a and is equipped with a pair of discharge electrodes (25c, 25c) at both ends in the Y direction to which it extends.
- Figure 14 is a schematic enlarged cross-sectional view of the light source unit 20 in an embodiment of the light heating device 1 different from that in Figure 12, when viewed in the Y direction.
- the light source unit 20 may be equipped with a heat lamp 26 in which the light emitting tube 26a and the collective optical system 26b are integrally configured.
- the light source unit 20 can be made smaller.
- Figure 15 is a schematic enlarged cross-sectional view of a light source unit in an embodiment of the light heating device 1 different from those in Figures 12 and 14, when viewed in the Y direction
- Figure 16 is a drawing of the light source unit 20 in Figure 15 when viewed from the -Z side. Note that for ease of explanation, Figure 16 does not show the focusing optical system 29.
- the light source unit 20 is equipped with multiple light bulbs 28, which are single-ended heating lamps, and each light bulb 28 is equipped with multiple focusing optical systems 29 that are circular when viewed from the Z direction.
- the lamp house 27 has multiple spaces 27a with circular openings when viewed from the Z direction, and the light bulbs 28 are housed in each of the spaces 27a.
- the space 27a has a reflective surface 27b whose inner wall surface conforms to a spherical surface, and a reflective surface 27c whose inner wall surface conforms to a paraboloid of revolution.
- the light bulb 28 is installed as a single-ended heat lamp, but a single-ended heat lamp separate from the light bulb 28 may also be installed.
- a single-ended halogen lamp with a long bulb may also be used.
- the shapes of the reflecting surfaces (27b, 27c) are not limited to these shapes, and may be reflecting surfaces that conform to the surfaces of other rotating bodies, such as ellipsoids of revolution.
- Light heating device 10 Chamber 11: Light-transmitting portion 12: Support member 12a: Base 12b: Protrusion 12c: Roller 20: Light source unit 21: Lamp house 21a: Space 21b, 21c: Reflecting surface 22: Circle heater 22a: Arc tube 22b: Filament 22c: Electrode 22p: Tube axis 23: Light-collecting optical system 23a: Incident surface 23b: Emitting surface 23p: Plate 24: LED 24a: Center point 25: Flash lamp 25a: Arc tube 25c: Discharge electrode 26: Heat lamp 26a: Arc tube 26b: Light collecting optical system 27: Lamp house 27a: Space 27b, 27c: Reflecting surface 28: Light bulb 29: Light collecting optical system 100: Light heating device 200: Light source unit W1: Substrate to be processed W1a: Second main surface
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Control Of Resistance Heating (AREA)
Abstract
Provided is a light heating device that increases the efficiency of utilization of light emitted from a heating light source. The present invention comprises: a chamber which accommodates a heating target; a light source unit which emits heating light toward the heating target and which is disposed outside of the chamber; and a light transmitting part which is for allowing heating light that has been emitted from the light source unit to enter the inside of the chamber. The light source unit is provided with a heating light source that emits the heating light, a reflection member that reflects, toward the heating target, some of the heating light which is emitted from the heating light source and which progresses in in a direction differing from that of the heating target, and a condensing optical system that decreases the angle of divergence, with respect to the direction in which the heating light source and chamber face each other, of the heating light that has been emitted from the heating light source and toward the heating target.
Description
本発明は、光加熱装置に関する。
The present invention relates to a light heating device.
半導体製造プロセスでは、半導体ウェハに対して、成膜処理、酸化拡散処理、改質処理、アニール処理といった様々な熱処理が行われる。これらの処理は、非接触での処理が可能な光照射による加熱処理方法が多く採用されている。
In the semiconductor manufacturing process, various heat treatments are performed on semiconductor wafers, such as film formation, oxidation and diffusion, modification, and annealing. These processes often use a heat treatment method that uses light irradiation, which allows for non-contact processing.
半導体ウェハ等の加熱対象物を加熱処理するための装置としては、ハロゲンランプ等の加熱ランプを搭載し、加熱対象物に対して加熱用の光(以下、「加熱光」という場合がある。)を照射する装置が知られている。例えば、下記特許文献1には、複数の直管形状を呈する加熱ランプを搭載した光加熱装置が記載されている。
As an apparatus for heat-treating a heating object such as a semiconductor wafer, there is known an apparatus equipped with a heating lamp such as a halogen lamp and irradiating the heating object with heating light (hereinafter sometimes referred to as "heating light"). For example, the following Patent Document 1 describes an optical heating apparatus equipped with multiple straight tube-shaped heating lamps.
加熱ランプを搭載した従来の光加熱装置は、光の利用効率を高めるため、上記特許文献1に記載されているように、加熱ランプから出射されて、加熱対象物とは反対側に向かって進行する加熱光を、加熱対象物側に向かって反射する反射部材を備えている場合が多い。
In order to increase the efficiency of light utilization, conventional optical heating devices equipped with a heat lamp often have a reflecting member that reflects the heating light emitted from the heat lamp and traveling in the direction opposite the object to be heated, toward the object to be heated, as described in the above-mentioned Patent Document 1.
しかしながら、加熱ランプから出射される加熱光のうちの、反射部材によって反射されない加熱光は、指向性が低いため、比較的多くの光がチャンバの内壁面で吸収されてしまう、又は加熱対象物の外側の領域へと進行してしまう。このような光は、加熱対象物の加熱に寄与しないため、光の利用効率を低下させる要因となっていた。
However, the heating light emitted from the heating lamp that is not reflected by the reflective member has low directionality, so a relatively large amount of the light is absorbed by the inner wall surface of the chamber or travels to the outer area of the object to be heated. This type of light does not contribute to heating the object to be heated, and is therefore a factor in reducing the efficiency of light utilization.
また、加熱光源として、LED、LD等の固体光源を採用する場合であっても、固体光源から出射される光は、一定の発散角で出射されるため、加熱ランプと同様の上記課題が生じ得る。
Even if a solid-state light source such as an LED or LD is used as the heating light source, the light emitted from the solid-state light source is emitted at a constant divergence angle, so the same problems as with a heating lamp can occur.
なお、加熱対象物の外側へと進行してしまう光を無駄にしない方法としては、例えば、加熱光源から加熱対象物に向かって出射されて、加熱対象物の外側へと進行してしまう光を、加熱対象物に照射されるように反射する反射部材を、追加的に配置することが考えられる。
In addition, one possible method for not wasting the light that travels outside the object to be heated is to additionally place a reflective member that reflects the light that is emitted from the heating light source toward the object to be heated and travels outside the object so that it is irradiated onto the object to be heated.
しかしながら、反射部材を追加的に配置することは、装置全体の大型化に繋がるおそれがある。また、加熱対象物が収容されるチャンバの構成によっては、部分的に加熱光を遮ってしまうおそれがあり、所望の位置に上述したような反射部材を配置できない場合がある。
However, adding additional reflective members may result in an increase in the size of the entire device. Also, depending on the configuration of the chamber in which the object to be heated is housed, there is a risk that the heating light may be partially blocked, making it impossible to place the reflective members described above in the desired position.
本発明は、上記課題に鑑み、加熱光源から出射される光の利用効率をより高めた光加熱装置を提供することを目的とする。
In view of the above problems, the present invention aims to provide an optical heating device that improves the efficiency of using the light emitted from a heating light source.
本発明の光加熱装置は、
加熱対象物に対して加熱光を照射する光加熱装置であって、
前記加熱対象物が収容されるチャンバと、
前記加熱対象物に向かって前記加熱光を出射する、前記チャンバの外側に配置された光源ユニットと、
前記光源ユニットから出射された前記加熱光を前記チャンバの内側へと取り込むための透光部とを備え、
前記光源ユニットは、
前記加熱光を発する加熱光源と、
前記加熱光源から出射されて、前記加熱対象物とは異なる方向に向かって進行する前記加熱光の一部を、前記加熱対象物へと向かうように反射する反射部材と、
前記加熱光源から前記加熱対象物側に向かって出射された前記加熱光の、前記加熱光源と前記チャンバとが対向する方向に係る発散角を縮小させる集光光学系とを備えることを特徴とする。 The light heating device of the present invention is
A light heating device that irradiates a heating object with heating light,
A chamber in which the object to be heated is accommodated;
a light source unit disposed outside the chamber and configured to emit the heating light toward the object to be heated;
a light transmitting portion for introducing the heating light emitted from the light source unit into the inside of the chamber,
The light source unit includes:
A heating light source that emits the heating light;
a reflecting member that reflects a portion of the heating light emitted from the heating light source and traveling in a direction different from the object to be heated, toward the object to be heated;
The heating light source is characterized by comprising a focusing optical system that reduces the divergence angle of the heating light emitted from the heating light source toward the object to be heated in the direction in which the heating light source and the chamber face each other.
加熱対象物に対して加熱光を照射する光加熱装置であって、
前記加熱対象物が収容されるチャンバと、
前記加熱対象物に向かって前記加熱光を出射する、前記チャンバの外側に配置された光源ユニットと、
前記光源ユニットから出射された前記加熱光を前記チャンバの内側へと取り込むための透光部とを備え、
前記光源ユニットは、
前記加熱光を発する加熱光源と、
前記加熱光源から出射されて、前記加熱対象物とは異なる方向に向かって進行する前記加熱光の一部を、前記加熱対象物へと向かうように反射する反射部材と、
前記加熱光源から前記加熱対象物側に向かって出射された前記加熱光の、前記加熱光源と前記チャンバとが対向する方向に係る発散角を縮小させる集光光学系とを備えることを特徴とする。 The light heating device of the present invention is
A light heating device that irradiates a heating object with heating light,
A chamber in which the object to be heated is accommodated;
a light source unit disposed outside the chamber and configured to emit the heating light toward the object to be heated;
a light transmitting portion for introducing the heating light emitted from the light source unit into the inside of the chamber,
The light source unit includes:
A heating light source that emits the heating light;
a reflecting member that reflects a portion of the heating light emitted from the heating light source and traveling in a direction different from the object to be heated, toward the object to be heated;
The heating light source is characterized by comprising a focusing optical system that reduces the divergence angle of the heating light emitted from the heating light source toward the object to be heated in the direction in which the heating light source and the chamber face each other.
本明細書において「発散角を縮小させる」とは、入射した光を一点の焦点位置に向かって集光する場合のみならず、光の進行方向における発散角を小さくする方向に変化させる場合も含む概念である。また、シリンドリカルレンズのように、焦点の軌跡によってライン状に形成される焦線に向かって集光するように発散角を縮小させる場合や、同方向に向かって光の発散角を小さくする方向に変化させる場合をも含む概念である。なお、本明細書における、「集光」とは、光が焦点に集まることはもちろん、単に光の進行方向における発散角を小さくする方向に変化させる場合も含む大きな概念である。そして、「集光光学系」とは、上記のように焦点に光を集めることはもちろん、光の進行方向における発散角を小さくする方向に変化させるためのレンズ等の光学系を指す。
In this specification, "reducing the divergence angle" is a concept that includes not only the case of converging incident light toward a single focal position, but also the case of changing the divergence angle in the direction of light travel in a direction that reduces it. It also includes the case of reducing the divergence angle so as to converge light toward a focal line formed in a line by the locus of the focal point, as in the case of a cylindrical lens, and the case of changing the divergence angle of light in the same direction in a direction that reduces it. Note that in this specification, "converging" is a broad concept that includes not only the gathering of light at a focal point, but also the case of simply changing the divergence angle in the direction of light travel in a direction that reduces it. And "converging optical system" refers to an optical system such as a lens that not only gathers light at a focal point as described above, but also changes the divergence angle in the direction of light travel in a direction that reduces it.
加熱光源から出射されて、反射部材とは異なる方向に進行する光の一部は、集光光学系によって、加熱光源とチャンバとが対向する方向に係る発散角が縮小される。つまり、上記構成の光加熱装置は、集光光学系を備えていない従来構成の光加熱装置と比べて、加熱光源から出射された加熱光が、加熱対象物の外側へと進行しにくくなる。つまり、加熱光源に対して同じ電力が供給された場合であっても、より多くの加熱光が加熱対象物に照射される。
The divergence angle of a portion of the light emitted from the heating light source and traveling in a direction different from the reflecting member in the direction in which the heating light source faces the chamber is reduced by the focusing optical system. In other words, in the optical heating device with the above configuration, the heating light emitted from the heating light source is less likely to travel outside the object to be heated, compared to a conventional optical heating device with no focusing optical system. In other words, even when the same power is supplied to the heating light source, more heating light is irradiated to the object to be heated.
なお、加熱対象物を加熱処理する光加熱装置は、一般的に加熱対象物の種類や、加熱方法、実施しようとする処理に応じて、様々な構成が存在する。そして、光加熱装置の中には、加熱光源と加熱対象物との間に、数cmから数十cm程度の距離を確保するように設計される装置が存在する。
Incidentally, optical heating devices that heat-treat objects generally come in a variety of configurations depending on the type of object, the heating method, and the process to be performed. Some optical heating devices are designed to ensure a distance of several centimeters to several tens of centimeters between the heating light source and the object to be heated.
上記構成の光加熱装置において、上述した効果は、加熱光源と加熱対象物との距離が大きくなるほど顕著になる。この理由は、所定の発散角で加熱光源から出射された加熱光が、加熱対象物に向かう経路において、徐々に広がりながら進行することによるが、詳細については、「発明を実施するための形態」の項目において、図8を参照しながら後述する。
In the optical heating device with the above configuration, the above-mentioned effect becomes more pronounced as the distance between the heating light source and the object to be heated increases. This is because the heating light emitted from the heating light source at a predetermined divergence angle gradually diverges as it travels toward the object to be heated, and details will be described later in the section "Form for implementing the invention" with reference to Figure 8.
ちなみに、加熱対象物と加熱光源との距離をできる限り近づけるように構成された場合であっても、少なからず加熱対象物の外側へと進行してしまう光が存在するため、上記構成の光加熱装置は、光の利用効率を向上させる効果がある。
Incidentally, even if the distance between the object to be heated and the heating light source is as close as possible, some light still travels outside the object to be heated, so the optical heating device configured as above has the effect of improving the efficiency of light utilization.
上記光加熱装置において、
前記加熱光源は、長尺状の発光管と、前記発光管が延伸する方向における両端部に設けられた一対の電極とを備えた加熱ランプであってもよい。 In the above-mentioned light heating device,
The heat light source may be a heat lamp including a long arc tube and a pair of electrodes provided at both ends in the extending direction of the arc tube.
前記加熱光源は、長尺状の発光管と、前記発光管が延伸する方向における両端部に設けられた一対の電極とを備えた加熱ランプであってもよい。 In the above-mentioned light heating device,
The heat light source may be a heat lamp including a long arc tube and a pair of electrodes provided at both ends in the extending direction of the arc tube.
ここでの長尺状の発光管とは、直線上に延伸する形状(以下、「直管形状」という場合がある。)のみならず、曲線状に延伸する形状をも含むことを意図している。
The term "long arc tube" as used here is intended to include not only those that extend in a straight line (hereinafter sometimes referred to as "straight tube shape"), but also those that extend in a curved line.
上記構成の光加熱装置は、加熱対象物の大きさや形状に応じて、より適した加熱ランプを加熱光源として採用することができ、光の利用効率の向上とともに、加熱対象物の被照射面における照度分布、温度分布をより精細に制御することができる。
The optical heating device configured as above can use the most suitable heating lamp as the heating light source depending on the size and shape of the object to be heated, improving the efficiency of light utilization and enabling more precise control of the illuminance distribution and temperature distribution on the irradiated surface of the object to be heated.
上記光加熱装置は、
前記集光光学系と、前記発光管とが一体的に構成されていても構わない。 The light heating device is
The light collecting optical system and the light emitting tube may be integrally constructed.
前記集光光学系と、前記発光管とが一体的に構成されていても構わない。 The light heating device is
The light collecting optical system and the light emitting tube may be integrally constructed.
ここでの、「集光光学系と発光管とが一体的に構成されている」とは、集光光学系と発光管とが接合、接着された場合、及び発光管の管壁がレンズとして機能するように成形されている場合を含む。
Here, "the focusing optical system and the light-emitting tube are integrally configured" includes cases where the focusing optical system and the light-emitting tube are joined or bonded together, and cases where the wall of the light-emitting tube is molded to function as a lens.
上記光加熱装置において、
前記加熱光源は、ハロゲンランプであっても構わない。 In the above-mentioned light heating device,
The heating light source may be a halogen lamp.
前記加熱光源は、ハロゲンランプであっても構わない。 In the above-mentioned light heating device,
The heating light source may be a halogen lamp.
また、上記光加熱装置において、
前記加熱光源は、フラッシュランプであっても構わない。 In addition, in the above-mentioned light heating device,
The heating light source may be a flash lamp.
前記加熱光源は、フラッシュランプであっても構わない。 In addition, in the above-mentioned light heating device,
The heating light source may be a flash lamp.
上記光加熱装置において、
前記加熱光源の前記発光管は、直管形状を呈するように構成されていても構わない。 In the above-mentioned light heating device,
The light emitting tube of the heating light source may be configured to have a straight tube shape.
前記加熱光源の前記発光管は、直管形状を呈するように構成されていても構わない。 In the above-mentioned light heating device,
The light emitting tube of the heating light source may be configured to have a straight tube shape.
また、上記光加熱装置において、
前記加熱光源は、前記発光管の少なくとも一部が円弧状に沿って延伸する構成であっても構わない。 In addition, in the above-mentioned light heating device,
The heating light source may be configured such that at least a portion of the light emitting tube extends along an arc shape.
前記加熱光源は、前記発光管の少なくとも一部が円弧状に沿って延伸する構成であっても構わない。 In addition, in the above-mentioned light heating device,
The heating light source may be configured such that at least a portion of the light emitting tube extends along an arc shape.
さらに、上記光加熱装置は、
前記集光光学系が、円弧状に沿って延伸する形状を呈し、前記加熱光源と前記集光光学系に関し、前記チャンバから見たときに、前記加熱光源の前記発光管の円弧状に延伸する部分の管軸に沿う第一円と、前記集光光学系の焦点位置の軌跡に沿う第二円とが同心円状となるように構成されていても構わない。 Furthermore, the light heating device
The focusing optical system may have a shape extending along an arc, and the heating light source and the focusing optical system may be configured such that, when viewed from the chamber, a first circle along the tube axis of the arc-extending portion of the light-emitting tube of the heating light source and a second circle along the locus of the focal position of the focusing optical system are concentric.
前記集光光学系が、円弧状に沿って延伸する形状を呈し、前記加熱光源と前記集光光学系に関し、前記チャンバから見たときに、前記加熱光源の前記発光管の円弧状に延伸する部分の管軸に沿う第一円と、前記集光光学系の焦点位置の軌跡に沿う第二円とが同心円状となるように構成されていても構わない。 Furthermore, the light heating device
The focusing optical system may have a shape extending along an arc, and the heating light source and the focusing optical system may be configured such that, when viewed from the chamber, a first circle along the tube axis of the arc-extending portion of the light-emitting tube of the heating light source and a second circle along the locus of the focal position of the focusing optical system are concentric.
本明細書において「同心円状」とは、中心の位置が完全に一致するように配置された場合のみならず、中心の位置が製造上不可避的に生じ得る程度ずれている場合も含む意図で用いられる。具体的には、中心位置のずれ量が、円弧上に延伸する各加熱光源について、それぞれ半径の2%以内であれば許容される。
In this specification, the term "concentric" is used to include not only cases where the centers are perfectly aligned, but also cases where the centers are offset to an extent that is unavoidable during manufacturing. Specifically, it is acceptable for the amount of offset in the center position to be within 2% of the radius for each heating light source that extends along an arc.
上記構成の光加熱装置は、直管形状の加熱ランプのみで構成されている場合と比較して、板状、特に円板状の加熱対象物の主面に対して、周方向に関し、より均質な光を照射することができる。
Compared to a light heating device configured only with straight-tube heating lamps, the light heating device configured as described above can irradiate the main surface of a plate-shaped, particularly a disk-shaped, object to be heated with more uniform light in the circumferential direction.
さらに、上記光加熱装置は、
前記チャンバから見たときに、前記第二円の半径が前記第一円の半径よりも小さくなるように構成されていても構わない。 Furthermore, the light heating device
The second circle may be configured to have a smaller radius than the first circle when viewed from the chamber.
前記チャンバから見たときに、前記第二円の半径が前記第一円の半径よりも小さくなるように構成されていても構わない。 Furthermore, the light heating device
The second circle may be configured to have a smaller radius than the first circle when viewed from the chamber.
光源から出射される光の発散角を小さくする目的で集光光学系を搭載する場合、光源からみて光を照射したい方向と集光光学系の光軸とを一致させることが一般的である。すなわち、上記構成においては、チャンバから見たときに第一円と第二円とを一致させることが通常である。
When a focusing optical system is installed to reduce the divergence angle of light emitted from a light source, it is common to align the direction in which light is to be emitted as viewed from the light source with the optical axis of the focusing optical system. In other words, in the above configuration, it is common to align the first circle with the second circle as viewed from the chamber.
しかしながら、本発明者らは、上記構成とすることで、光の利用効率を高めるとともに、加熱対象物の被照射面における加熱光の照度分布を、より均質化できることを見出した。このような効果が得られることの詳細については、「発明を実施するための形態」の項目において、検証実験の詳細とともに詳述される。
However, the inventors have discovered that the above configuration can increase the light utilization efficiency and make the illuminance distribution of the heating light on the irradiated surface of the object to be heated more homogenous. Details of how such effects can be achieved are described in detail in the section "Form for carrying out the invention," along with details of the verification experiment.
上記光加熱装置において、
前記反射部材は、前記発光管の管軸に沿って延伸し、前記反射部材が延伸する方向と直交する平面で切断したときの断面の形状が放物線形状、楕円形状、又は円形状に沿う反射面を備えていても構わない。 In the above-mentioned light heating device,
The reflective member may extend along the tube axis of the light-emitting tube and have a reflective surface whose cross-sectional shape when cut along a plane perpendicular to the direction in which the reflective member extends is parabolic, elliptical, or circular.
前記反射部材は、前記発光管の管軸に沿って延伸し、前記反射部材が延伸する方向と直交する平面で切断したときの断面の形状が放物線形状、楕円形状、又は円形状に沿う反射面を備えていても構わない。 In the above-mentioned light heating device,
The reflective member may extend along the tube axis of the light-emitting tube and have a reflective surface whose cross-sectional shape when cut along a plane perpendicular to the direction in which the reflective member extends is parabolic, elliptical, or circular.
上記構成の光加熱装置は、加熱光源から出射されて、反射部材によって反射される光が、平面上に反射面が形成された反射部材を用いた場合に対して、加熱対象物に向かって集光するように反射される。したがって、加熱光源から出射される光の利用効率がより高められる。
In the optical heating device configured as described above, the light emitted from the heating light source and reflected by the reflecting member is reflected so as to be focused toward the object to be heated, compared to the case where a reflecting member with a reflective surface formed on a flat surface is used. Therefore, the utilization efficiency of the light emitted from the heating light source is further improved.
上記光加熱装置において、
前記加熱光源は、シングルエンド型の加熱ランプであっても構わない。 In the above-mentioned light heating device,
The heat light source may be a single-ended heat lamp.
前記加熱光源は、シングルエンド型の加熱ランプであっても構わない。 In the above-mentioned light heating device,
The heat light source may be a single-ended heat lamp.
さらに、上記光加熱装置において、
前記反射部材は、回転放物面、回転楕円面、又は球面に沿う反射面を備えていても構わない。 Furthermore, in the light heating device,
The reflecting member may have a reflecting surface along a paraboloid of revolution, an ellipsoid of revolution, or a sphere.
前記反射部材は、回転放物面、回転楕円面、又は球面に沿う反射面を備えていても構わない。 Furthermore, in the light heating device,
The reflecting member may have a reflecting surface along a paraboloid of revolution, an ellipsoid of revolution, or a sphere.
上記光加熱装置において、
前記加熱光源は、複数の固体光源を含んでいても構わない。 In the above-mentioned light heating device,
The heating light source may include a plurality of solid-state light sources.
前記加熱光源は、複数の固体光源を含んでいても構わない。 In the above-mentioned light heating device,
The heating light source may include a plurality of solid-state light sources.
さらに、上記光加熱装置において、
前記集光光学系は、前記複数の固体光源のそれぞれに対応して設けられていても構わない。 Furthermore, in the light heating device,
The light collecting optical system may be provided corresponding to each of the plurality of solid-state light sources.
前記集光光学系は、前記複数の固体光源のそれぞれに対応して設けられていても構わない。 Furthermore, in the light heating device,
The light collecting optical system may be provided corresponding to each of the plurality of solid-state light sources.
固体光源は、ハロゲンランプやフラッシュランプ等の加熱ランプと比較すると、配置するために必要な空間が小さい。このため、上記構成の光加熱装置は、装置全体をさらに小型化することができる。また、固体光源は、これらの加熱ランプと比較すると、寿命が長い。このため、上記構成の光加熱装置は、メンテナンスの頻度をより少なくすることができる。
Compared to heat lamps such as halogen lamps and flash lamps, solid-state light sources require less space for placement. This allows the optical heating device configured as described above to be even more compact overall. In addition, solid-state light sources have a longer lifespan than these heat lamps. This allows the optical heating device configured as described above to require less frequent maintenance.
本発明によれば、加熱光源から出射される光の利用効率をより高めた光加熱装置が実現される。
The present invention provides a light heating device that improves the efficiency of using the light emitted from the heating light source.
以下、本発明の光加熱装置について、図面を参照して説明する。なお、光加熱装置に関する以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。
The optical heating device of the present invention will be described below with reference to the drawings. Note that the following drawings of the optical heating device are all schematic illustrations, and the dimensional ratios and numbers in the drawings do not necessarily match the actual dimensional ratios and numbers.
[第一実施形態]
図1は、光加熱装置1の第一実施形態をY方向に見たときの模式的な断面図であって、図2は、図1の光源ユニット20の一部を拡大した図面である。また、図3は、図1の光源ユニット20を-Z側から見たときの図面である。図1に示すように、光加熱装置1は、チャンバ10と、光源ユニット20とを備える。 [First embodiment]
Fig. 1 is a schematic cross-sectional view of a first embodiment of a light heating device 1 when viewed in the Y direction, and Fig. 2 is an enlarged view of a part of a light source unit 20 in Fig. 1. Also, Fig. 3 is a view of the light source unit 20 in Fig. 1 when viewed from the -Z side. As shown in Fig. 1, the light heating device 1 includes a chamber 10 and a light source unit 20.
図1は、光加熱装置1の第一実施形態をY方向に見たときの模式的な断面図であって、図2は、図1の光源ユニット20の一部を拡大した図面である。また、図3は、図1の光源ユニット20を-Z側から見たときの図面である。図1に示すように、光加熱装置1は、チャンバ10と、光源ユニット20とを備える。 [First embodiment]
Fig. 1 is a schematic cross-sectional view of a first embodiment of a light heating device 1 when viewed in the Y direction, and Fig. 2 is an enlarged view of a part of a light source unit 20 in Fig. 1. Also, Fig. 3 is a view of the light source unit 20 in Fig. 1 when viewed from the -Z side. As shown in Fig. 1, the light heating device 1 includes a chamber 10 and a light source unit 20.
光源ユニット20は、ランプハウス21と、加熱光源である四つのサークルヒータ22と、サークルヒータ22のそれぞれに対応して設けられた四つの集光光学系23とを備える。なお、サークルヒータ22と集光光学系23は、それぞれの形状や大きさ、加熱対象物W1の大きさ等に応じて、それぞれ一つのみであってもよい。
The light source unit 20 includes a lamp house 21, four circle heaters 22 that are heating light sources, and four focusing optical systems 23 provided corresponding to each of the circle heaters 22. Note that there may be only one circle heater 22 and one focusing optical system 23, depending on the shape and size of each, the size of the object to be heated W1, etc.
図4Aは、光源ユニット20に搭載されるサークルヒータ22を+Z側から見たときの図面であり、図4Bは、サークルヒータ22を+Y側から見たときの図面である。
FIG. 4A is a diagram of the circle heater 22 mounted on the light source unit 20 as viewed from the +Z side, and FIG. 4B is a diagram of the circle heater 22 as viewed from the +Y side.
以下の説明においては、図1に示すように、チャンバ10内に収容された加熱処理対象である加熱対象物W1の主面W1aと平行な平面をXY平面とし、XY平面と直交する方向をZ方向とする。本発明において、X方向とY方向に関しては、特段区別されないが、図4A及び図4Bに示すような、サークルヒータ22等の加熱光源の構成を説明するような場合においては、当該加熱光源の構成に応じて適宜X方向とY方向とを定義して説明する。なお、第一実施形態におけるサークルヒータ22の説明においては、サークルヒータ22が一対の電極(22c,22c)が対向している方向をY方向として説明する。
In the following description, as shown in FIG. 1, the plane parallel to the main surface W1a of the heating object W1, which is the object to be heated and housed in the chamber 10, is defined as the XY plane, and the direction perpendicular to the XY plane is defined as the Z direction. In the present invention, no particular distinction is made between the X direction and the Y direction, but when describing the configuration of a heating light source such as the circle heater 22 shown in FIG. 4A and FIG. 4B, the X direction and the Y direction are defined appropriately according to the configuration of the heating light source. In the description of the circle heater 22 in the first embodiment, the direction in which the pair of electrodes (22c, 22c) of the circle heater 22 face each other is described as the Y direction.
また、方向を表現する際に、正負の向きを区別する場合には、「+Z方向」、「-Z方向」のように、正負の符号を付して記載され、正負の向きを区別せずに方向を表現する場合には、単に「Z方向」と記載される。
In addition, when expressing a direction, if a distinction is made between positive and negative, it is written with a positive or negative sign, such as "+Z direction" and "-Z direction." When expressing a direction without distinguishing between positive and negative, it is simply written as "Z direction."
また、第一実施形態の説明においては、加熱対象物W1が円板状のシリコンウェハであることを前提として説明するが、本発明の光加熱装置1は、シリコンウェハ以外の加熱対象物W1(例えば、ガラス基板等)の加熱処理に利用することも想定される。
In addition, in the explanation of the first embodiment, it is assumed that the heating object W1 is a disk-shaped silicon wafer, but it is also envisioned that the optical heating device 1 of the present invention can be used to heat a heating object W1 other than a silicon wafer (e.g., a glass substrate, etc.).
チャンバ10は、図1に示すように、内側に加熱対象物W1を載置するための支持部材12と、光源ユニット20から出射された加熱光Lxを内側へと導くための透光部11とを備える。
As shown in FIG. 1, the chamber 10 includes a support member 12 for placing an object to be heated W1 inside, and a light-transmitting section 11 for guiding the heating light Lx emitted from the light source unit 20 to the inside.
透光部11は、チャンバ10の+Z側の壁面の一部に構成されており、チャンバ10の外側に配置された光源ユニット20から出射された加熱光Lxを、チャンバ10の内側に取り込む。第一実施形態における透光部11は、加熱光Lxに対して透過性を示す、石英ガラスで構成されている。
The light-transmitting section 11 is formed on a part of the wall surface on the +Z side of the chamber 10, and takes in the heating light Lx emitted from the light source unit 20 arranged outside the chamber 10 into the inside of the chamber 10. In the first embodiment, the light-transmitting section 11 is made of quartz glass that is transparent to the heating light Lx.
なお、第一実施形態では、図1に示すように、チャンバ10の壁面の一部に透光部11が構成されているが、例えば、チャンバ10の上面及び側面が石英ガラスによって構成されており、チャンバ10の上面、及び側面全体が透光部11を構成していてもよい。
In the first embodiment, as shown in FIG. 1, the light-transmitting portion 11 is formed on a portion of the wall surface of the chamber 10. However, for example, the upper surface and side surface of the chamber 10 may be made of quartz glass, and the entire upper surface and side surface of the chamber 10 may form the light-transmitting portion 11.
支持部材12は、図1に示すように、台座12aに複数の突起12bが設けられた構成であり、加熱対象物W1は、複数の突起12bの先端に載置されて支持される。
As shown in FIG. 1, the support member 12 is configured with a base 12a and multiple protrusions 12b, and the heating object W1 is placed and supported on the tips of the multiple protrusions 12b.
第一実施形態の支持部材12は、図1に示すように、複数のローラ12cによる回転機構が設けられており、回転自在に構成されている。加熱処理が行われる際には、ローラ12cが回転することで、支持部材12の中心をZ方向に通過する軸z1を回転軸として、加熱対象物W1をXY平面上で回転させることができる。
As shown in FIG. 1, the support member 12 of the first embodiment is provided with a rotation mechanism using multiple rollers 12c and is configured to be freely rotatable. When the heat treatment is performed, the rollers 12c rotate, and the heating object W1 can be rotated on the XY plane around an axis z1 that passes through the center of the support member 12 in the Z direction as the rotation axis.
なお、支持部材12は、光源ユニット20が、加熱対象物W1の主面W1aにおける周方向に均質に加熱光Lxを照射するように構成されている場合、加熱対象物W1を回転させる構成でなくてもよい。また、支持部材12は、例えば、加熱対象物W1の周縁部を引掛けて加熱対象物W1を支持するような構成であっても構わない。
Note that the support member 12 does not have to be configured to rotate the object to be heated W1 if the light source unit 20 is configured to irradiate the heating light Lx uniformly in the circumferential direction of the main surface W1a of the object to be heated W1. Also, the support member 12 may be configured to support the object to be heated W1 by hooking, for example, the peripheral portion of the object to be heated W1.
ランプハウス21は、図1~図3に示すように、サークルヒータ22が収容される空間21aが形成された筐体である。そして、ランプハウス21は、アルミニウム製であり、サークルヒータ22が収容される空間21aの内壁面が、サークルヒータ22から出射されて、加熱対象物W1とは異なる方向に進行する加熱光Lxを、加熱対象物側(-Z側)へと進行するように反射する反射面(21b,21c)を備える。すなわち、ランプハウス21は、反射部材に相当する。なお、ランプハウス21は、上記構成に限られず、例えば、耐熱性セラミックの表面にアルミニウム等の金属膜を形成することで構成されていても構わない。
As shown in Figures 1 to 3, the lamp house 21 is a housing in which a space 21a is formed in which the circle heater 22 is housed. The lamp house 21 is made of aluminum, and the inner wall surface of the space 21a in which the circle heater 22 is housed is provided with reflective surfaces (21b, 21c) that reflect the heating light Lx emitted from the circle heater 22 and traveling in a direction different from the heating object W1 so that it travels toward the heating object (-Z side). In other words, the lamp house 21 corresponds to a reflective member. Note that the lamp house 21 is not limited to the above configuration, and may be configured, for example, by forming a metal film such as aluminum on the surface of a heat-resistant ceramic.
反射面(21b,21c)は、空間21aが延伸する方向と直交する平面で切断したときの断面、すなわち、図2においてXZ平面で示す断面において、円形状に沿う第一反射面21bと、放物線形状に沿う第二反射面21cとを備える。
The reflective surfaces (21b, 21c) have a first reflective surface 21b that is circular and a second reflective surface 21c that is parabolic in cross section when cut along a plane perpendicular to the direction in which the space 21a extends, i.e., in the cross section shown in the XZ plane in Figure 2.
第一反射面21bは、フィラメント22bから発光管22aの径方向に出射された加熱光Lxを、フィラメント22b側へと戻すとともに、そのまま加熱対象物W1へと向かうように反射する。
The first reflecting surface 21b reflects the heating light Lx emitted from the filament 22b in the radial direction of the light emitting tube 22a back toward the filament 22b and also reflects it directly toward the object to be heated W1.
第二反射面21cは、フィラメント22bから発せられて、第一反射面21b及び集光光学系23に入射しなかった加熱光Lxを加熱対象物W1へと向かうように反射する。なお、第一実施形態では、フィラメント22bから発せられた加熱光Lxが、Z方向と略平行に進行するように、フィラメント22b中心軸が、第二反射面21cの焦点位置と一致するように配置されている。
The second reflecting surface 21c reflects the heating light Lx emitted from the filament 22b that is not incident on the first reflecting surface 21b and the focusing optical system 23 toward the heating object W1. In the first embodiment, the central axis of the filament 22b is arranged to coincide with the focal position of the second reflecting surface 21c so that the heating light Lx emitted from the filament 22b travels approximately parallel to the Z direction.
なお、反射面(21b,21c)の形状は、加熱光源の形状に応じて任意であり、円形状に沿う第一反射面21bのみ、又は放物線形状に沿う第二反射面21cのみであっても構わない。また、反射面(21b,21c)の形状はこれらの形状に限られず、楕円形状等の他の曲線に沿う反射面であってもよい。
The shape of the reflective surfaces (21b, 21c) can be any shape depending on the shape of the heating light source, and may be only the first reflective surface 21b along a circular shape, or only the second reflective surface 21c along a parabolic shape. Furthermore, the shapes of the reflective surfaces (21b, 21c) are not limited to these shapes, and may be reflective surfaces along other curves such as an elliptical shape.
第一実施形態の光源ユニット20が備えるサークルヒータ22は、図4A及び図4Bに示すように、一部が円弧状に沿って延伸する発光管22aと、発光管22aの管軸22pに沿って配設されたフィラメント22bと、発光管22aが延伸する方向における両端部に設けられた、一対の電極(22c,22c)とを備える。
The circle heater 22 of the light source unit 20 of the first embodiment includes, as shown in Figures 4A and 4B, a light emitting tube 22a, a portion of which extends along an arc, a filament 22b disposed along the tube axis 22p of the light emitting tube 22a, and a pair of electrodes (22c, 22c) provided at both ends in the direction in which the light emitting tube 22a extends.
当該構成の加熱ランプは、「ダブルエンド型」とも称される。また、発光管の一端部側に、一対の電極のいずれもが設けられた加熱ランプは、「シングルエンド型」とも称される。
Heat lamps with this configuration are also called "double-ended type." Heat lamps in which both of the pair of electrodes are provided on one end of the light-emitting tube are also called "single-ended type."
第一実施形態におけるサークルヒータ22は、ピーク波長が850nmの赤外光を出射するハロゲンランプである。なお、図1~図3においては、図示の都合上、サークルヒータ22は、一対の電極(22c,22c)が省略されており、円環形状を呈するハロゲンランプとして模式的に図示されている。
In the first embodiment, the circle heater 22 is a halogen lamp that emits infrared light with a peak wavelength of 850 nm. For convenience of illustration, in Figs. 1 to 3, the pair of electrodes (22c, 22c) of the circle heater 22 are omitted, and the circle heater 22 is illustrated diagrammatically as a halogen lamp having a circular ring shape.
発光管22aは、図4Aに示すように、管軸22pが円弧状に沿うように延伸する形状を呈している。また、発光管22aは、内側にアルゴン、クリプトン、キセノン等の第18族元素ガスを含む発光ガスが封入されている。なお、管軸22pに沿う円形状が第一円C1に相当する。
As shown in FIG. 4A, the arc tube 22a has a shape in which the tube axis 22p extends along a circular arc. The arc tube 22a is filled with an emitting gas containing a Group 18 element gas such as argon, krypton, or xenon. The circular shape along the tube axis 22p corresponds to the first circle C1.
また、第一実施形態における光源ユニット20に搭載されているサークルヒータ22の、円形状に沿って延伸している部分の管径は、13mmである。また、四つの発光管22aの管軸22pに沿う円形状(第一円C1)の半径は、それぞれ、27.5mm、62.5mm、97.5mm、132.5mmである。
In the first embodiment, the diameter of the circular heater 22 mounted on the light source unit 20 is 13 mm. The radii of the circular shape (first circle C1) along the tube axis 22p of the four light emitting tubes 22a are 27.5 mm, 62.5 mm, 97.5 mm, and 132.5 mm, respectively.
発光管22aは、加熱対象物W1が円板状である場合は、少なくとも一部が円弧状に沿って延伸する形状であることが好ましいが、例えば、加熱対象物W1の主面W1aの形状が四角形状の板材等の場合においては、一方向に延伸する直管形状であっても構わない。
If the object to be heated W1 is disc-shaped, it is preferable that the light-emitting tube 22a has a shape in which at least a portion of it extends along an arc. However, for example, if the shape of the main surface W1a of the object to be heated W1 is a rectangular plate or the like, the light-emitting tube 22a may have a straight tube shape extending in one direction.
第一実施形態における発光管22aは、石英ガラスで作製されている。
The arc tube 22a in the first embodiment is made of quartz glass.
フィラメント22bは、タングステン(W)の線材を巻回して作製されたおり、巻回部の中心軸が発光管22aの管軸22pと一致するように配置されている。なお、図4A及び図4Bでは図示されていないが、フィラメント22bは、発光管22a内で位置が安定するように、リング状のサポーターによって支持されている。なお、フィラメント22bは、タングステン(W)以外の線材で作製されていても構わない。
The filament 22b is made by winding a wire of tungsten (W) and is arranged so that the central axis of the wound part coincides with the tube axis 22p of the light-emitting tube 22a. Although not shown in Figures 4A and 4B, the filament 22b is supported by a ring-shaped supporter so that its position within the light-emitting tube 22a is stable. The filament 22b may be made of a wire other than tungsten (W).
一対の電極(22c,22c)は、ランプハウス21に設けられた穴に差し込まれて、ランプハウス21の+Z側に設けられた配線と接続される。動作時には、電源装置(不図示)から電力が供給されることで、フィラメント22bから加熱光Lxが発せられる。
The pair of electrodes (22c, 22c) are inserted into holes provided in the lamp house 21 and connected to wiring provided on the +Z side of the lamp house 21. During operation, heating light Lx is emitted from the filament 22b when power is supplied from a power supply unit (not shown).
図5は、集光光学系23の形状を模式的に示す斜視図である。図5に示すように、第一実施形態における集光光学系23は、円環形状を軸が通過する平面で切断した形状を呈する凸レンズであって、サークルヒータ22から-Z側に向かって出射された加熱光Lxの、Z方向に係る発散角を縮小させる光学系である。当該構成の集光光学系23は、「円環状シリンドリカルレンズ」とも称される。
FIG. 5 is a perspective view showing a schematic shape of the focusing optical system 23. As shown in FIG. 5, the focusing optical system 23 in the first embodiment is a convex lens having a shape obtained by cutting a circular ring shape with a plane passing through the axis, and is an optical system that reduces the divergence angle in the Z direction of the heating light Lx emitted from the circle heater 22 toward the -Z side. The focusing optical system 23 having this configuration is also called a "circular ring cylindrical lens."
第一実施形態における集光光学系23は、図2及び図5に示すように、平面状の入射面23aと、凸状の出射面23bを備える。集光光学系23の焦点位置F1の軌跡は、図5に示すように、XY平面に平行な円形状を呈する。この焦点位置F1の軌跡は、第二円C2に相当する。
The focusing optical system 23 in the first embodiment has a planar entrance surface 23a and a convex exit surface 23b, as shown in Fig. 2 and Fig. 5. The locus of the focal position F1 of the focusing optical system 23 has a circular shape parallel to the XY plane, as shown in Fig. 5. This locus of the focal position F1 corresponds to a second circle C2.
第一実施形態の光加熱装置1は、Z方向に見たときに、第一円C1と第二円C2とが、同心円状となるように構成されている。また、第一実施形態の光加熱装置1は、図2に示すように、第二円C2に沿う集光光学系23の焦点位置F1が、第一円C1に沿う発光管22aの管軸22pよりも内側になるように構成されている。つまり、第二円C2の半径が第一円C1の半径よりも小さくなるように構成されている。
The light heating device 1 of the first embodiment is configured so that the first circle C1 and the second circle C2 are concentric when viewed in the Z direction. As shown in FIG. 2, the light heating device 1 of the first embodiment is configured so that the focal position F1 of the focusing optical system 23 along the second circle C2 is inside the tube axis 22p of the light emitting tube 22a along the first circle C1. In other words, the radius of the second circle C2 is configured to be smaller than the radius of the first circle C1.
なお、第二円C2の半径は、加熱対象物W1における照度分布を調整する目的で、第一円C1の半径と同じ、又は第一円C1の半径よりも大きくなるように構成されていても構わない。
The radius of the second circle C2 may be configured to be the same as or larger than the radius of the first circle C1 for the purpose of adjusting the illuminance distribution on the heated object W1.
[検証実験]
ここで、集光光学系を搭載することで、加熱対象物W1の主面W1aにおける加熱光Lxの利用効率が向上することを確認する検証実験を行ったので、以下、詳細を説明する。 [Verification experiment]
Here, a verification experiment was carried out to confirm that the use efficiency of the heating light Lx on the main surface W1a of the heating object W1 is improved by installing a focusing optical system, and details thereof will be described below.
ここで、集光光学系を搭載することで、加熱対象物W1の主面W1aにおける加熱光Lxの利用効率が向上することを確認する検証実験を行ったので、以下、詳細を説明する。 [Verification experiment]
Here, a verification experiment was carried out to confirm that the use efficiency of the heating light Lx on the main surface W1a of the heating object W1 is improved by installing a focusing optical system, and details thereof will be described below.
(実施例1)
実施例1は、上述した図1に示す構成の光加熱装置1である。 Example 1
The first embodiment is a light heating device 1 having the configuration shown in FIG.
実施例1は、上述した図1に示す構成の光加熱装置1である。 Example 1
The first embodiment is a light heating device 1 having the configuration shown in FIG.
(実施例2)
図6Aは、光加熱装置1の一実施例をY方向に見たときの模式的な断面図である。実施例2は、発光管22aの管軸22pと、集光光学系231の焦点位置F1とがZ方向に沿って並ぶように構成されている。すなわち、光加熱装置1に実施例2は、Z方向から見たときに、第一円C1と第二円C2とが一致するように構成されている。実施例2は、上記の点を除いて、実施例1と同じ構成である。 Example 2
6A is a schematic cross-sectional view of one embodiment of the light heating device 1 when viewed in the Y direction. In the second embodiment, the tube axis 22p of the light emitting tube 22a and the focal position F1 of the light collecting optical system 231 are arranged along the Z direction. That is, the light heating device 1 in the second embodiment is configured such that the first circle C1 and the second circle C2 coincide with each other when viewed from the Z direction. Except for the above points, the second embodiment has the same configuration as the first embodiment.
図6Aは、光加熱装置1の一実施例をY方向に見たときの模式的な断面図である。実施例2は、発光管22aの管軸22pと、集光光学系231の焦点位置F1とがZ方向に沿って並ぶように構成されている。すなわち、光加熱装置1に実施例2は、Z方向から見たときに、第一円C1と第二円C2とが一致するように構成されている。実施例2は、上記の点を除いて、実施例1と同じ構成である。 Example 2
6A is a schematic cross-sectional view of one embodiment of the light heating device 1 when viewed in the Y direction. In the second embodiment, the tube axis 22p of the light emitting tube 22a and the focal position F1 of the light collecting optical system 231 are arranged along the Z direction. That is, the light heating device 1 in the second embodiment is configured such that the first circle C1 and the second circle C2 coincide with each other when viewed from the Z direction. Except for the above points, the second embodiment has the same configuration as the first embodiment.
(比較例)
図6Bは、光加熱装置100をY方向に見たときの模式的な断面図である。なお、比較例である光加熱装置100は、光源ユニット20に代えて、集光光学系23が設けられていない光源ユニット200が搭載されている点を除いて、実施例1と同じ構成である。 Comparative Example
6B is a schematic cross-sectional view of the optical heating device 100 when viewed in the Y direction. The optical heating device 100 as a comparative example has the same configuration as that of Example 1, except that a light source unit 200 not provided with a light collecting optical system 23 is mounted instead of the light source unit 20.
図6Bは、光加熱装置100をY方向に見たときの模式的な断面図である。なお、比較例である光加熱装置100は、光源ユニット20に代えて、集光光学系23が設けられていない光源ユニット200が搭載されている点を除いて、実施例1と同じ構成である。 Comparative Example
6B is a schematic cross-sectional view of the optical heating device 100 when viewed in the Y direction. The optical heating device 100 as a comparative example has the same configuration as that of Example 1, except that a light source unit 200 not provided with a light collecting optical system 23 is mounted instead of the light source unit 20.
(条件)
φ300mmのシリコンウェハを加熱処理することを想定し、Z方向に関し、サークルヒータ22からの離間距離が450mmの位置において、シリコンウェハの主面上の軸z1(図1参照)を通過する点を原点として、半径150mmの範囲内における加熱光Lxの照度を測定した。そして、対比するパラメータである熱量比は、実施例1、実施例2、及び比較例のそれぞれの光源ユニットに搭載されたサークルヒータ22に対し、同じ電力を供給して点灯させた場合において、測定した照度分布に基づいて算出した加熱対象物に吸収される熱量に関し、比較例の結果を100%としたときの実施例1及び実施例2の相対値として求めた。 (conditions)
Assuming that a silicon wafer with a diameter of 300 mm was to be heated, the illuminance of the heating light Lx was measured within a radius of 150 mm, with the origin being a point passing through the axis z1 (see FIG. 1) on the main surface of the silicon wafer at a position 450 mm away from the circle heater 22 in the Z direction. The heat quantity ratio, which is a parameter to be compared, was calculated as a relative value of Example 1 and Example 2 when the result of the comparative example was taken as 100%, with respect to the amount of heat absorbed by the heated object calculated based on the measured illuminance distribution when the circle heaters 22 mounted on the light source units of each of Example 1, Example 2, and Comparative Example were turned on by supplying the same power to them.
φ300mmのシリコンウェハを加熱処理することを想定し、Z方向に関し、サークルヒータ22からの離間距離が450mmの位置において、シリコンウェハの主面上の軸z1(図1参照)を通過する点を原点として、半径150mmの範囲内における加熱光Lxの照度を測定した。そして、対比するパラメータである熱量比は、実施例1、実施例2、及び比較例のそれぞれの光源ユニットに搭載されたサークルヒータ22に対し、同じ電力を供給して点灯させた場合において、測定した照度分布に基づいて算出した加熱対象物に吸収される熱量に関し、比較例の結果を100%としたときの実施例1及び実施例2の相対値として求めた。 (conditions)
Assuming that a silicon wafer with a diameter of 300 mm was to be heated, the illuminance of the heating light Lx was measured within a radius of 150 mm, with the origin being a point passing through the axis z1 (see FIG. 1) on the main surface of the silicon wafer at a position 450 mm away from the circle heater 22 in the Z direction. The heat quantity ratio, which is a parameter to be compared, was calculated as a relative value of Example 1 and Example 2 when the result of the comparative example was taken as 100%, with respect to the amount of heat absorbed by the heated object calculated based on the measured illuminance distribution when the circle heaters 22 mounted on the light source units of each of Example 1, Example 2, and Comparative Example were turned on by supplying the same power to them.
(結果)
結果は、以下の表1のとおりとなった。 (result)
The results are as shown in Table 1 below.
結果は、以下の表1のとおりとなった。 (result)
The results are as shown in Table 1 below.
上記表1からわかるように、実施例1及び実施例2では、比較例よりも加熱対象物W1に吸収される熱量が多くなっている。つまり、実施例1及び実施例2は、比較例よりもサークルヒータ22から出射される加熱光Lxの利用効率が高いことが確認される。
As can be seen from Table 1 above, in Examples 1 and 2, the amount of heat absorbed by the heated object W1 is greater than in the comparative example. In other words, it is confirmed that Examples 1 and 2 have a higher utilization efficiency of the heating light Lx emitted from the circle heater 22 than in the comparative example.
図7は、実施例1と比較例のX方向に関する照度分布を示すグラフである。また、図7に示すように、シリコンウェハの主面に照射される加熱光Lxの照度分布は、実施例1の方が、比較例よりも全体的に高くなっていることが確認される。
Figure 7 is a graph showing the illuminance distribution in the X direction for Example 1 and the Comparative Example. As shown in Figure 7, it is also confirmed that the illuminance distribution of the heating light Lx irradiated onto the main surface of the silicon wafer is generally higher in Example 1 than in the Comparative Example.
以上より、上記構成の光加熱装置1は、集光光学系を備えていない、従来構成の光加熱装置と比べて、加熱対象物W1の外側へと進行しにくくなり、より多くの加熱光Lxが加熱対象物W1に照射される。
As a result, the optical heating device 1 configured as described above is less likely to advance to the outside of the object to be heated W1, and more heating light Lx is irradiated onto the object to be heated W1, compared to an optical heating device of a conventional configuration that does not have a focusing optical system.
また、対応する加熱ランプと集光光学系に関し、第二円C2の半径が第一円C1の半径よりも小さくなるように構成することで、第二円C2の半径と第一円C1の半径とが同じになるように構成した場合よりも、加熱対象物W1に吸収される熱量、すなわち、光エネルギーがより高められる。
Furthermore, by configuring the corresponding heating lamp and focusing optical system so that the radius of the second circle C2 is smaller than the radius of the first circle C1, the amount of heat absorbed by the heated object W1, i.e., the light energy, is increased more than when the radius of the second circle C2 and the radius of the first circle C1 are configured to be the same.
ここで、光加熱装置1が特に好適となる構成について説明する。図8は、光源ユニット20と加熱対象物W1との位置関係を模式的に示す図面である。なお、図8に記載の光源ユニット20は、上述の光加熱装置1が備える光源ユニット20と同じ構成で、加熱対象物W1に対して同じ位置関係で配置されているが、説明の便宜のため、加熱対象物W1に対する位置関係が、図1等とは異ならせて図示されている。
Here, we will explain the configuration for which the optical heating device 1 is particularly suitable. Figure 8 is a diagram that shows a schematic representation of the positional relationship between the light source unit 20 and the object to be heated W1. Note that the light source unit 20 shown in Figure 8 has the same configuration as the light source unit 20 provided in the optical heating device 1 described above, and is disposed in the same positional relationship with respect to the object to be heated W1, but for ease of explanation, the positional relationship with respect to the object to be heated W1 is illustrated differently from that shown in Figure 1 etc.
図8に示すように、発光管22aの管軸22pと加熱対象物W1の主面W1aとの離間距離をWD、管軸22pと加熱対象物W1の周端部W1bとの離間距離をD1、Z方向に対して、管軸22pと加熱対象物W1の周端部W1bとを結ぶ線が傾斜している角度をθW、Z方向に対して、管軸22pと反射の端部21pとを結ぶ線が傾斜している角度をθRとした場合に、発光管22aと、ランプハウス21と、加熱対象物W1とは、距離WDの大きさに係わらず、θW<θRを満たす位置関係で配置される。
As shown in FIG. 8, if the distance between the tube axis 22p of the arc tube 22a and the main surface W1a of the object to be heated W1 is WD, the distance between the tube axis 22p and the peripheral end W1b of the object to be heated W1 is D1, the angle at which a line connecting the tube axis 22p and the peripheral end W1b of the object to be heated W1 is inclined with respect to the Z direction is θ W , and the angle at which a line connecting the tube axis 22p and the reflective end 21p is inclined with respect to the Z direction is θ R , the arc tube 22a, the lamp house 21, and the object to be heated W1 are disposed in a positional relationship that satisfies θ W < θ R regardless of the magnitude of the distance WD.
図9A及び図9Bは、集光光学系23の上記構成とは別の構成例を示す図面である。第一実施形態では、円環形状を呈する集光光学系23が搭載されているが、図9Aに示すように、複数の集光光学系23によって、全体で円環形状を呈するように構成されていても構わない。
FIGS. 9A and 9B are diagrams showing an example of a configuration of the focusing optical system 23 that is different from the above configuration. In the first embodiment, a focusing optical system 23 having a circular ring shape is installed, but as shown in FIG. 9A, it is also possible to configure the focusing optical system 23 to have a circular ring shape as a whole by using multiple focusing optical systems 23.
また、図9Bに示すように、加熱光Lx(不図示)に対して透過性を示す材料で作製されたプレート23p上に、光源ユニット20に搭載される複数の集光光学系23が同心円状に並べられて、一体的に構成されていても構わない。これらの集光光学系23の形状は、いずれもが円弧状に沿って延伸する形状である。
Also, as shown in FIG. 9B, a plurality of focusing optical systems 23 mounted on the light source unit 20 may be arranged concentrically and integrally configured on a plate 23p made of a material that is transparent to the heating light Lx (not shown). Each of these focusing optical systems 23 has a shape that extends along an arc.
[第二実施形態]
本発明の光加熱装置の第二実施形態の構成につき、第一実施形態と異なる箇所を中心に説明する。 [Second embodiment]
The configuration of the second embodiment of the light heating device of the present invention will be described, focusing on the differences from the first embodiment.
本発明の光加熱装置の第二実施形態の構成につき、第一実施形態と異なる箇所を中心に説明する。 [Second embodiment]
The configuration of the second embodiment of the light heating device of the present invention will be described, focusing on the differences from the first embodiment.
図10は、光加熱装置1の第二実施形態における光源ユニット20の一部を拡大した図面であり、図11は、光加熱装置1の第二実施形態における光源ユニット20を-Z側から見たときの図面である。図10に示すように、光加熱装置1の第二実施形態は、加熱光源として、固体光源であるLED24が複数搭載されている。
FIG. 10 is an enlarged view of a portion of the light source unit 20 in the second embodiment of the optical heating device 1, and FIG. 11 is a view of the light source unit 20 in the second embodiment of the optical heating device 1 as viewed from the -Z side. As shown in FIG. 10, the second embodiment of the optical heating device 1 is equipped with multiple LEDs 24, which are solid-state light sources, as heating light sources.
そして、第二実施形態においては、同一円周上に配置されたLED24の中心点24aに沿う第一円C1の半径よりも、対応する集光光学系23の焦点位置F1の軌跡である第二円C2の半径が小さくなるように構成されている。
In the second embodiment, the radius of the second circle C2, which is the locus of the focal position F1 of the corresponding focusing optical system 23, is smaller than the radius of the first circle C1 along the center point 24a of the LEDs 24 arranged on the same circumference.
なお、第二実施形態の光源ユニット20は、同一円周上に配置された複数のLED24に対して、円環形状を呈する集光光学系23が配置されているが、光源ユニット20は、例えば、複数のLED24それぞれに対応するコリメートレンズが搭載された構成であっても構わない。
In the second embodiment, the light source unit 20 has a circular focusing optical system 23 arranged for multiple LEDs 24 arranged on the same circumference, but the light source unit 20 may be configured to include a collimating lens corresponding to each of the multiple LEDs 24, for example.
[別実施形態]
以下、別実施形態につき説明する。 [Another embodiment]
Another embodiment will be described below.
以下、別実施形態につき説明する。 [Another embodiment]
Another embodiment will be described below.
〈1〉 図12は、光加熱装置1の別実施形態をY方向に見たときの断面図であり、図13は、図12の光源ユニット20を-Z側から見たときの図面である。光源ユニット20は、加熱ランプの一種であるフラッシュランプ25が搭載されていても構わない。フラッシュランプ25は、図13に示すように、発光管22aが直管形状を呈し、延伸するY方向に係る両端部において、一対の放電電極(25c,25c)を備える。
<1> Fig. 12 is a cross-sectional view of another embodiment of the light heating device 1 when viewed in the Y direction, and Fig. 13 is a drawing of the light source unit 20 of Fig. 12 when viewed from the -Z side. The light source unit 20 may be equipped with a flash lamp 25, which is a type of heating lamp. As shown in Fig. 13, the flash lamp 25 has a straight light-emitting tube 22a and is equipped with a pair of discharge electrodes (25c, 25c) at both ends in the Y direction to which it extends.
〈2〉 図14は、光加熱装置1の図12とは別の光加熱装置1の実施形態における光源ユニット20をY方向に見たときの模式的な拡大断面図である。図14に示すように、光源ユニット20は、発光管26aと集合光学系26bとが一体的に構成された加熱ランプ26が搭載されていても構わない。
<2> Figure 14 is a schematic enlarged cross-sectional view of the light source unit 20 in an embodiment of the light heating device 1 different from that in Figure 12, when viewed in the Y direction. As shown in Figure 14, the light source unit 20 may be equipped with a heat lamp 26 in which the light emitting tube 26a and the collective optical system 26b are integrally configured.
上記構成とすることで、光源ユニット20は、より小型化することができる。
By using the above configuration, the light source unit 20 can be made smaller.
〈3〉 図15は、図12及び図14とはさらに別の光加熱装置1の実施形態における光源ユニットをY方向に見たときの模式的な拡大断面図であり、図16は、図15の光源ユニット20を-Z側から見たときの図面である。なお、図16は、説明の便宜のため、集光光学系29が図示されていない。図15に示すように、光源ユニット20は、シングルエンド型の加熱ランプである電球28が複数搭載されており、電球28それぞれに対して、Z方向から見たときの形状が円形状を呈する複数の集光光学系29が搭載されている。
<3> Figure 15 is a schematic enlarged cross-sectional view of a light source unit in an embodiment of the light heating device 1 different from those in Figures 12 and 14, when viewed in the Y direction, and Figure 16 is a drawing of the light source unit 20 in Figure 15 when viewed from the -Z side. Note that for ease of explanation, Figure 16 does not show the focusing optical system 29. As shown in Figure 15, the light source unit 20 is equipped with multiple light bulbs 28, which are single-ended heating lamps, and each light bulb 28 is equipped with multiple focusing optical systems 29 that are circular when viewed from the Z direction.
また、本実施形態におけるランプハウス27は、Z方向から見たときに、円形状の開口部を有する空間27aが複数形成されており、電球28は、空間27aにそれぞれ収容されている。
In addition, in this embodiment, the lamp house 27 has multiple spaces 27a with circular openings when viewed from the Z direction, and the light bulbs 28 are housed in each of the spaces 27a.
空間27aは、図15及び図16からわかるように、内壁面が球面に沿う反射面27bと、回転放物面に沿う反射面27cとを構成している。
As can be seen from Figures 15 and 16, the space 27a has a reflective surface 27b whose inner wall surface conforms to a spherical surface, and a reflective surface 27c whose inner wall surface conforms to a paraboloid of revolution.
本実施形態においては、シングルエンド型の加熱ランプとして電球28が搭載されているが、電球28とは別のシングルエンド型の加熱ランプが搭載されていても構わない。例えば、バルブが長尺状のシングルエンド型ハロゲンランプを採用しても構わない。
In this embodiment, the light bulb 28 is installed as a single-ended heat lamp, but a single-ended heat lamp separate from the light bulb 28 may also be installed. For example, a single-ended halogen lamp with a long bulb may also be used.
また、反射面(27b,27c)の形状はこれらの形状に限られず、回転楕円面等の他の回転体表面に沿う反射面であってもよい。
In addition, the shapes of the reflecting surfaces (27b, 27c) are not limited to these shapes, and may be reflecting surfaces that conform to the surfaces of other rotating bodies, such as ellipsoids of revolution.
〈4〉 上述した光加熱装置1が備える構成は、あくまで一例であり、本発明は、図示された各構成に限定されない。
〈4〉 The configuration of the light heating device 1 described above is merely an example, and the present invention is not limited to the configurations shown in the drawings.
1 : 光加熱装置
10 : チャンバ
11 : 透光部
12 : 支持部材
12a : 台座
12b : 突起
12c : ローラ
20 : 光源ユニット
21 : ランプハウス
21a : 空間
21b,21c : 反射面
22 : サークルヒータ
22a : 発光管
22b : フィラメント
22c : 電極
22p : 管軸
23 : 集光光学系
23a : 入射面
23b : 出射面
23p : プレート
24 : LED
24a : 中心点
25 : フラッシュランプ
25a : 発光管
25c : 放電電極
26 : 加熱ランプ
26a : 発光管
26b : 集光光学系
27 : ランプハウス
27a : 空間
27b,27c : 反射面
28 : 電球
29 : 集光光学系
100 : 光加熱装置
200 : 光源ユニット
W1 : 被処理基板
W1a : 第二主面
1: Light heating device 10: Chamber 11: Light-transmitting portion 12: Support member 12a: Base 12b: Protrusion 12c: Roller 20: Light source unit 21: Lamp house 21a: Space 21b, 21c: Reflecting surface 22: Circle heater 22a: Arc tube 22b: Filament 22c: Electrode 22p: Tube axis 23: Light-collecting optical system 23a: Incident surface 23b: Emitting surface 23p: Plate 24: LED
24a: Center point 25: Flash lamp 25a: Arc tube 25c: Discharge electrode 26: Heat lamp 26a: Arc tube 26b: Light collecting optical system 27: Lamp house 27a: Space 27b, 27c: Reflecting surface 28: Light bulb 29: Light collecting optical system 100: Light heating device 200: Light source unit W1: Substrate to be processed W1a: Second main surface
10 : チャンバ
11 : 透光部
12 : 支持部材
12a : 台座
12b : 突起
12c : ローラ
20 : 光源ユニット
21 : ランプハウス
21a : 空間
21b,21c : 反射面
22 : サークルヒータ
22a : 発光管
22b : フィラメント
22c : 電極
22p : 管軸
23 : 集光光学系
23a : 入射面
23b : 出射面
23p : プレート
24 : LED
24a : 中心点
25 : フラッシュランプ
25a : 発光管
25c : 放電電極
26 : 加熱ランプ
26a : 発光管
26b : 集光光学系
27 : ランプハウス
27a : 空間
27b,27c : 反射面
28 : 電球
29 : 集光光学系
100 : 光加熱装置
200 : 光源ユニット
W1 : 被処理基板
W1a : 第二主面
1: Light heating device 10: Chamber 11: Light-transmitting portion 12: Support member 12a: Base 12b: Protrusion 12c: Roller 20: Light source unit 21: Lamp house 21a: Space 21b, 21c: Reflecting surface 22: Circle heater 22a: Arc tube 22b: Filament 22c: Electrode 22p: Tube axis 23: Light-collecting optical system 23a: Incident surface 23b: Emitting surface 23p: Plate 24: LED
24a: Center point 25: Flash lamp 25a: Arc tube 25c: Discharge electrode 26: Heat lamp 26a: Arc tube 26b: Light collecting optical system 27: Lamp house 27a: Space 27b, 27c: Reflecting surface 28: Light bulb 29: Light collecting optical system 100: Light heating device 200: Light source unit W1: Substrate to be processed W1a: Second main surface
Claims (14)
- 加熱対象物に対して加熱光を照射する光加熱装置であって、
前記加熱対象物が収容されるチャンバと、
前記加熱対象物に向かって前記加熱光を出射する、前記チャンバの外側に配置された光源ユニットと、
前記光源ユニットから出射された前記加熱光を前記チャンバの内側へと取り込むための透光部とを備え、
前記光源ユニットは、
前記加熱光を発する加熱光源と、
前記加熱光源から出射されて、前記加熱対象物とは異なる方向に向かって進行する前記加熱光の一部を、前記加熱対象物へと向かうように反射する反射部材と、
前記加熱光源から前記加熱対象物側に向かって出射された前記加熱光に対して、前記加熱光源と前記チャンバとが対向する方向に係る発散角を縮小させる集光光学系とを備えることを特徴とする光加熱装置。 A light heating device that irradiates a heating object with heating light,
A chamber in which the object to be heated is accommodated;
a light source unit disposed outside the chamber and configured to emit the heating light toward the object to be heated;
a light transmitting portion for introducing the heating light emitted from the light source unit into the inside of the chamber,
The light source unit includes:
A heating light source that emits the heating light;
a reflecting member that reflects a portion of the heating light emitted from the heating light source and traveling in a direction different from the object to be heated, toward the object to be heated;
An optical heating device comprising: a focusing optical system that reduces the divergence angle of the heating light emitted from the heating light source toward the object to be heated in a direction in which the heating light source and the chamber face each other. - 前記加熱光源は、長尺状の発光管と、前記発光管が延伸する方向における両端部に設けられた一対の電極とを備えた加熱ランプであることを特徴とする請求項1に記載の光加熱装置。 The optical heating device according to claim 1, characterized in that the heating light source is a heating lamp having a long arc tube and a pair of electrodes provided at both ends in the direction in which the arc tube extends.
- 前記集光光学系と、前記発光管とが一体的に構成されていることを特徴とする請求項2に記載の光加熱装置。 The optical heating device according to claim 2, characterized in that the focusing optical system and the light emitting tube are integrally constructed.
- 前記加熱光源は、ハロゲンランプであることを特徴とする請求項2に記載の光加熱装置。 The optical heating device according to claim 2, characterized in that the heating light source is a halogen lamp.
- 前記加熱光源は、フラッシュランプであることを特徴とする請求項2に記載の光加熱装置。 The optical heating device according to claim 2, characterized in that the heating light source is a flash lamp.
- 前記加熱光源の前記発光管は、直管形状を呈することを特徴とする請求項2に記載の光加熱装置。 The light heating device according to claim 2, characterized in that the light emitting tube of the heating light source has a straight tube shape.
- 前記加熱光源は、前記発光管の少なくとも一部が円弧状に沿って延伸することを特徴とする請求項2に記載の光加熱装置。 The optical heating device according to claim 2, characterized in that at least a portion of the light-emitting tube of the heating light source extends along an arc.
- 前記集光光学系が、円弧状に沿って延伸する形状を呈し、前記加熱光源と前記集光光学系に関し、前記チャンバから見たときに、前記加熱光源の前記発光管の円弧状に延伸する部分の管軸に沿う第一円と、前記集光光学系の焦点位置の軌跡に沿う第二円とが同心円状であることを特徴とする請求項7に記載の光加熱装置。 The optical heating device according to claim 7, characterized in that the focusing optical system has a shape that extends along an arc, and when viewed from the chamber, a first circle along the tube axis of the arc-extending portion of the light-emitting tube of the heating light source and a second circle along the locus of the focal position of the focusing optical system are concentric with each other with respect to the heating light source and the focusing optical system.
- 前記チャンバから見たときに、前記第二円の半径が前記第一円の半径よりも小さいことを特徴とする請求項8に記載の光加熱装置。 The optical heating device of claim 8, characterized in that the radius of the second circle is smaller than the radius of the first circle when viewed from the chamber.
- 前記反射部材は、前記発光管の管軸に沿って延伸し、前記反射部材が延伸する方向と直交する平面で切断したときの断面の形状が放物線形状、楕円形状、又は円形状に沿う反射面を備えることを特徴とする請求項2に記載の光加熱装置。 The light heating device according to claim 2, characterized in that the reflecting member extends along the tube axis of the light-emitting tube and has a reflecting surface whose cross-sectional shape when cut along a plane perpendicular to the direction in which the reflecting member extends is parabolic, elliptical, or circular.
- 前記加熱光源は、シングルエンド型の加熱ランプであることを特徴とする請求項1に記載の光加熱装置。 The optical heating device according to claim 1, characterized in that the heating light source is a single-ended heating lamp.
- 前記反射部材は、回転放物面、回転楕円面、又は球面に沿う反射面を備えることを特徴とする請求項11に記載の光加熱装置。 The optical heating device according to claim 11, characterized in that the reflecting member has a reflecting surface along a paraboloid of revolution, an ellipsoid of revolution, or a sphere.
- 前記加熱光源は、複数の固体光源を含むことを特徴とする請求項1に記載の光加熱装置。 The optical heating device according to claim 1, characterized in that the heating light source includes a plurality of solid-state light sources.
- 前記集光光学系は、前記複数の固体光源のそれぞれに対応して設けられていることを特徴とする請求項13に記載の光加熱装置。
14. The light heating device according to claim 13, wherein the light collecting optical system is provided corresponding to each of the plurality of solid-state light sources.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023010686A JP2024106437A (en) | 2023-01-27 | 2023-01-27 | Light heating device |
JP2023-010686 | 2023-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024157579A1 true WO2024157579A1 (en) | 2024-08-02 |
Family
ID=91970270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/040863 WO2024157579A1 (en) | 2023-01-27 | 2023-11-14 | Light heating device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024106437A (en) |
WO (1) | WO2024157579A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03116828A (en) * | 1989-09-29 | 1991-05-17 | Hitachi Ltd | Semiconductor wafer heat treatment equipment |
JPH03276625A (en) * | 1990-03-26 | 1991-12-06 | Toshiba Corp | Manufacturing equipment of semiconductor device |
JP2000349038A (en) * | 1999-06-02 | 2000-12-15 | Kokusai Electric Co Ltd | Substrate processing equipment |
JP2002064069A (en) * | 2000-08-17 | 2002-02-28 | Tokyo Electron Ltd | Heat treatment equipment |
JP2002075895A (en) * | 2000-08-25 | 2002-03-15 | Anelva Corp | Sputtering equipment for reflow |
WO2012157298A1 (en) * | 2011-05-17 | 2012-11-22 | 株式会社エフティーエル | Substrate heat-treatment device and substrate heat-treatment method |
JP2015119180A (en) * | 2013-12-18 | 2015-06-25 | エーピー システムズ インコーポレイテッド | Substrate processing equipment |
WO2023210656A1 (en) * | 2022-04-27 | 2023-11-02 | ローム株式会社 | Heating processing device and method for operating same |
-
2023
- 2023-01-27 JP JP2023010686A patent/JP2024106437A/en active Pending
- 2023-11-14 WO PCT/JP2023/040863 patent/WO2024157579A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03116828A (en) * | 1989-09-29 | 1991-05-17 | Hitachi Ltd | Semiconductor wafer heat treatment equipment |
JPH03276625A (en) * | 1990-03-26 | 1991-12-06 | Toshiba Corp | Manufacturing equipment of semiconductor device |
JP2000349038A (en) * | 1999-06-02 | 2000-12-15 | Kokusai Electric Co Ltd | Substrate processing equipment |
JP2002064069A (en) * | 2000-08-17 | 2002-02-28 | Tokyo Electron Ltd | Heat treatment equipment |
JP2002075895A (en) * | 2000-08-25 | 2002-03-15 | Anelva Corp | Sputtering equipment for reflow |
WO2012157298A1 (en) * | 2011-05-17 | 2012-11-22 | 株式会社エフティーエル | Substrate heat-treatment device and substrate heat-treatment method |
JP2015119180A (en) * | 2013-12-18 | 2015-06-25 | エーピー システムズ インコーポレイテッド | Substrate processing equipment |
WO2023210656A1 (en) * | 2022-04-27 | 2023-11-02 | ローム株式会社 | Heating processing device and method for operating same |
Also Published As
Publication number | Publication date |
---|---|
JP2024106437A (en) | 2024-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW457532B (en) | Lamp unit and light radiating type heating device | |
US12230518B2 (en) | Light irradiation type heat treatment apparatus | |
TWI672747B (en) | Heat treatment apparatus | |
US20170243770A1 (en) | Light-irradiation heat treatment apparatus | |
TW201642349A (en) | Heat treatment apparatus | |
KR102706653B1 (en) | Heating lamp | |
KR20190010431A (en) | Heat treatment apparatus | |
WO2006137439A1 (en) | Heat treating device | |
CN101431001A (en) | Filament lamp and light irradiation type heat treatment device | |
WO2024157579A1 (en) | Light heating device | |
JP2019057613A (en) | Heat treatment apparatus | |
CN110007565B (en) | Light source device and exposure device provided with same | |
JP3876665B2 (en) | Light irradiation type heat treatment equipment | |
CN114242612A (en) | Heat treatment device | |
TWI703638B (en) | Heat treatment apparatus | |
JPS62181422A (en) | Light projecting apparatus | |
JP7580079B2 (en) | Heating unit and heating device | |
JP2024008369A (en) | Heating lamps, heating light source units, and light heating devices | |
JP5274846B2 (en) | Heat treatment equipment | |
TWI879664B (en) | Conical coil for rapid thermal anneal lamps | |
JP3784662B2 (en) | Heat treatment equipment | |
JPS63241923A (en) | Apparatus for light irradiation | |
JP2018206838A (en) | Heat treatment device | |
TW202518646A (en) | Conical coil for rapid thermal anneal lamps | |
JPH0546697B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23918534 Country of ref document: EP Kind code of ref document: A1 |