+

WO2024150370A1 - Insulated substrate and semiconductor device - Google Patents

Insulated substrate and semiconductor device Download PDF

Info

Publication number
WO2024150370A1
WO2024150370A1 PCT/JP2023/000594 JP2023000594W WO2024150370A1 WO 2024150370 A1 WO2024150370 A1 WO 2024150370A1 JP 2023000594 W JP2023000594 W JP 2023000594W WO 2024150370 A1 WO2024150370 A1 WO 2024150370A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit pattern
ceramic substrate
outer periphery
semiconductor element
semiconductor device
Prior art date
Application number
PCT/JP2023/000594
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 近藤
裕児 井本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/000594 priority Critical patent/WO2024150370A1/en
Priority to JP2024569943A priority patent/JPWO2024150370A1/ja
Publication of WO2024150370A1 publication Critical patent/WO2024150370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape

Definitions

  • This disclosure relates to insulating substrates and semiconductor devices.
  • Patent Document 1 proposes a semiconductor device that can improve the reliability of the connection between the circuit pattern and the semiconductor element.
  • Insulating substrates mounted on semiconductor devices undergo a plating process aimed at soldering the semiconductor element to the circuit pattern formed on the surface of the ceramic substrate contained in the insulating substrate, as well as a plating stripping process.
  • plating is applied to the entire insulating substrate.
  • plating stripping process only the areas necessary for soldering are masked with a resist material, and the plating is dissolved and removed from areas that do not require plating using a stripping solution, after which the plating residue is removed with an air blower.
  • solder reservoir recess is formed on the outer periphery of the circuit pattern, but the solder reservoir recess has only the function of storing the solder material used to join the semiconductor element and the circuit pattern, and does not take into consideration problems caused by plating residue.
  • the present disclosure therefore aims to provide a technology that can suppress deterioration of appearance quality and insulation defects such as short circuits between circuit patterns caused by plating residue in semiconductor devices.
  • the insulating substrate according to the present disclosure comprises a ceramic substrate and a circuit pattern bonded to the surface of the ceramic substrate and on which a semiconductor element is to be mounted, and a recessed portion that does not come into contact with the surface of the ceramic substrate is formed on the back side of the outer periphery of the circuit pattern that is bonded to the ceramic substrate.
  • the stripping solution in the plating stripping process carried out before bonding the circuit pattern to the semiconductor element, the stripping solution is more easily absorbed into the back side of the outer periphery of the circuit pattern, and the air blowing for removing the plating residue is more effectively applied, making it possible to more effectively remove the unnecessary plating residue.
  • This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between circuit patterns caused by plating residue in semiconductor devices.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a second embodiment.
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a third embodiment.
  • FIG. 13 is a cross-sectional view of a semiconductor device according to a first modification of the third embodiment.
  • FIG. 13 is a cross-sectional view of a semiconductor device according to a second modification of the third embodiment.
  • 13A to 13C are a top view, a cross-sectional view along line AA, and a cross-sectional view along line BB of a semiconductor device according to a fourth embodiment of the present invention, viewed from above a semiconductor element.
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a second embodiment.
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a third embodiment.
  • FIG. 13 is a cross-sectional
  • FIG. 13 is a top view of a part of a semiconductor device according to a first modification of the fourth embodiment, viewed from above a semiconductor element.
  • FIG. 13 is a top view of a part of a semiconductor device according to a second modification of the fourth embodiment, viewed from above a semiconductor element.
  • FIG. 13 is a top view of a part of a semiconductor device according to a third modification of the fourth embodiment, viewed from above a semiconductor element.
  • FIG. 1 is a cross-sectional view of a semiconductor device 100 according to a first embodiment.
  • the semiconductor device 100 includes a base plate 1, an insulating substrate 2, a semiconductor element 3, a main terminal 4, a resin case 5, and a sealing resin 6.
  • the base plate 1 has a rectangular shape when viewed from above, and is made of a material with relatively high thermal conductivity, such as copper, a copper alloy, aluminum, or an aluminum alloy.
  • the insulating substrate 2 has a front circuit pattern 2a, a ceramic substrate 2b, and a back circuit pattern 2c.
  • the ceramic substrate 2b is made of ceramics such as Al2O3 , AlN , and Si3N4 .
  • the front circuit pattern 2a and the back circuit pattern 2c are made of metals mainly composed of Cu.
  • the front circuit pattern 2a and the back circuit pattern 2c are respectively joined to the front and back surfaces of the ceramic substrate 2b by brazing material (not shown).
  • the front circuit pattern 2a is a circuit pattern on which the semiconductor element 3 is to be mounted, and is selectively patterned. That is, a plurality of front circuit patterns 2a are formed, and the circuits required for the semiconductor device 100 are formed.
  • the semiconductor element 3 is mounted on the front circuit pattern 2a by bonding the back electrode (e.g., collector electrode) of the semiconductor element 3 via a bonding material 7 made of lead-free solder such as Sn-Ag.
  • the semiconductor element 3 is a power semiconductor element made of, for example, Si, SiC, or GaN, and since power semiconductor elements generate high temperatures during operation, it is important to ensure high heat dissipation. Note that although two semiconductor elements 3 are shown in FIG. 1, the number is not limited to two and may be one or more.
  • the main terminal 4 which is mainly composed of Cu, is bonded to the surface electrode (e.g., emitter electrode or gate electrode) of the semiconductor element 3 via a bonding material 7 to form various wiring, thereby forming the circuits required for the semiconductor device 100.
  • the surface electrode e.g., emitter electrode or gate electrode
  • the resin case 5 is formed into a rectangular frame shape when viewed from above, using a high heat resistant resin such as PPS.
  • the resin case 5 is fixed to the outer periphery of the base plate 1 with an adhesive (not shown) or the like so as to surround the circuit including the semiconductor element 3.
  • the inside of the resin case 5 is filled with a sealing resin 6 such as an epoxy resin, protecting the circuit including the semiconductor element 3.
  • the manufacturing process for the insulating substrate 2 includes a plating process for soldering the surface circuit pattern 2a to the semiconductor element 3, and a plating stripping process.
  • plating is applied to the entire insulating substrate 2.
  • the plating stripping process only the areas necessary for soldering are masked with a resist material, and in areas that do not require plating, the plating is dissolved and removed with a stripping solution, and the plating residue is then removed with an air blower.
  • a recessed portion 8 that does not come into contact with the surface of the ceramic substrate 2b is formed on the back side of the outer periphery of the front circuit pattern 2a that is joined to the ceramic substrate 2b.
  • the recessed portion 8 is formed around the entire periphery of the front circuit pattern 2a.
  • the recessed portion 8 is provided as an opening larger than the small sagging portion in the area where the sagging portion is formed, which allows sufficient penetration of the plating remover solution to the back side of the outer periphery of the front circuit pattern 2a, and improves the air blowing effect. This makes it possible to reduce plating residue.
  • the semiconductor device 100 includes an insulating substrate 2, a semiconductor element 3 mounted on the surface of the surface circuit pattern 2a, and a base plate 1 joined to the back side of the ceramic substrate 2b.
  • the insulating substrate 2 also includes a ceramic substrate 2b and a surface circuit pattern 2a that is bonded to the surface of the ceramic substrate 2b and on which a semiconductor element 3 is to be mounted.
  • a recessed portion 8 that does not come into contact with the surface of the ceramic substrate 2b is formed on the back side of the outer periphery of the surface circuit pattern 2a that is bonded to the ceramic substrate 2b.
  • the stripping solution is more easily absorbed into the back side of the outer periphery of the surface circuit pattern 2a, and the air blowing for removing the plating residue is improved, making it possible to more effectively remove unnecessary plating residue.
  • This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between the surface circuit patterns 2a caused by plating residue in the semiconductor device 100.
  • FIG. 2 is a cross-sectional view of the semiconductor device 200 according to the second embodiment. Note that in the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the recessed portion 8 is not formed in the surface circuit pattern 2a, but the recessed portion 9 is formed in the ceramic substrate 2b.
  • the recessed portion 9 is formed so as to be recessed downward in a portion of the ceramic substrate 2b adjacent to the outer periphery of the surface circuit pattern 2a. Specifically, the recessed portion 9 is formed from a portion of the ceramic substrate 2b facing the entire periphery of the surface circuit pattern 2a toward the outer periphery. Due to the recessed portion 9 being formed, the outer periphery of the surface circuit pattern 2a does not come into contact with the surface of the ceramic substrate 2b.
  • the recessed portion 9 is provided as an opening larger than the sagging portion in the portion adjacent to the portion where the minute sagging portion is formed, which allows sufficient penetration of the plating remover solution to the back side of the outer periphery of the front circuit pattern 2a and improves the air blowing effect. This makes it possible to reduce plating residue.
  • the insulating substrate 2 includes a ceramic substrate 2b and a surface circuit pattern 2a bonded to the surface of the ceramic substrate 2b and on which a semiconductor element 3 is to be mounted.
  • a recessed portion 9 recessed downward is formed in a portion of the ceramic substrate 2b adjacent to the outer periphery of the surface circuit pattern 2a.
  • the stripping solution is more likely to penetrate the back side of the outer periphery of the surface circuit pattern 2a, and the air blowing for removing the plating residue is improved, making it possible to more effectively remove unnecessary plating residue.
  • This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between the surface circuit patterns 2a caused by plating residue in the semiconductor device 200.
  • Fig. 3 is a cross-sectional view of the semiconductor device 300 according to the third embodiment. Note that in the third embodiment, the same components as those described in the first and second embodiments are denoted by the same reference numerals, and the description thereof will be omitted.
  • the recessed portions 8 and 9 are not formed, and the outer periphery of the surface circuit pattern 2a is formed in a tapered shape 10 in which the width of the surface circuit pattern 2a narrows from the back surface bonded to the ceramic substrate 2b toward the front surface on which the semiconductor element 3 is mounted.
  • the tapered shape 10 is formed around the entire periphery of the surface circuit pattern 2a.
  • the outer periphery of the surface circuit pattern 2a By forming the outer periphery of the surface circuit pattern 2a into a tapered shape 10, the outer periphery of the surface circuit pattern 2a faces upward, making it easier for the stripping solution to penetrate the entire outer periphery of the surface circuit pattern 2a, and improving the airflow for removing plating residue, making it possible to more effectively remove unnecessary plating residue.
  • the insulating substrate 2 includes a ceramic substrate 2b and a surface circuit pattern 2a bonded to the surface of the ceramic substrate 2b, on which the semiconductor element 3 is to be mounted.
  • the outer periphery of the surface circuit pattern 2a is formed in a tapered shape 10 in which the width of the surface circuit pattern 2a narrows from the back surface bonded to the ceramic substrate 2b toward the front surface on which the semiconductor element 3 is to be mounted.
  • the stripping solution is more likely to penetrate the entire outer periphery of the surface circuit pattern 2a, and the air blowing for removing the plating residue is improved, making it possible to more effectively remove unnecessary plating residue.
  • This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between the surface circuit patterns 2a caused by plating residue in the semiconductor device 300.
  • Fig. 4 is a cross-sectional view of a semiconductor device 400 according to a first modification of the third embodiment.
  • Fig. 5 is a cross-sectional view of a semiconductor device 500 according to a second modification of the third embodiment.
  • the tapered shape 11 of the outer periphery of the surface circuit pattern 2a may be formed in a curved shape.
  • the tapered shape 12 of the outer periphery of the surface circuit pattern 2a may be formed in a stepped shape. In these cases, the same effect as in the third embodiment can be obtained.
  • Fig. 6(a) is a top view of the semiconductor device 600 according to the fourth embodiment, viewed from above the semiconductor element 3.
  • Fig. 6(b) is a cross-sectional view taken along line A-A in Fig. 6(a)
  • Fig. 6(c) is a cross-sectional view taken along line B-B in Fig. 6(a). Note that in the fourth embodiment, the same components as those described in the first to third embodiments are denoted by the same reference numerals, and description thereof will be omitted.
  • cutout portions 13 are formed in place of the recessed portions 8 and 9 and the tapered shapes 10, 11, and 12.
  • a plurality of cutout portions 13 are formed continuously around the entire periphery of the outer periphery of the surface circuit pattern 2a.
  • the cutout portions 13 have a rectangular shape when viewed from above, and two are formed on each side of the surface circuit pattern 2a.
  • the cutout portion 13 is formed to the same thickness as the thickness of each surface circuit pattern 2a. Also, as shown in Figures 6(a) and (b), the portion of each surface circuit pattern 2a without the cutout portion 13 has the same width d2 as the conventional structure without the cutout portion 13.
  • the width of one side at the outer periphery of each surface circuit pattern 2a is d2, and if plating residue with a length equivalent to d2 remains, there is a possibility that the plating residue will flow across the length d1 between adjacent surface circuit patterns 2a during the manufacture of the semiconductor device, and there is a risk that the plating residue will cause insulation defects such as short circuits between the surface circuit patterns 2a.
  • d2 ⁇ d1.
  • the width d3 of one side at the outer periphery of each surface circuit pattern 2a which is the length between adjacent cutout portions 13 on the outer periphery of each surface circuit pattern 2a, is formed to be sufficiently shorter than the length d1 between adjacent surface circuit patterns 2a (d3 ⁇ d1). Therefore, even if plating residue having a length equivalent to d3 remains and flows across the length d1 between the surface circuit patterns 2a during the manufacture of the semiconductor device 600, it is possible to prevent the plating residue from coming into contact with the adjacent surface circuit patterns 2a.
  • the insulating substrate 2 includes a ceramic substrate 2b and a surface circuit pattern 2a that is bonded to the surface of the ceramic substrate 2b and on which a semiconductor element 3 is to be mounted.
  • a plurality of continuous cutout portions 13 are formed on the outer periphery of the surface circuit pattern 2a. Furthermore, each cutout portion 13 is formed in a rectangular shape when viewed from above.
  • Fig. 7 is a top view of a portion of a semiconductor device 700 according to modified example 1 of the fourth embodiment, viewed from above the semiconductor element 3.
  • Fig. 8 is a top view of a portion of a semiconductor device 800 according to modified example 2 of the fourth embodiment, viewed from above the semiconductor element 3.
  • Fig. 9 is a top view of a portion of a semiconductor device 900 according to modified example 3 of the fourth embodiment, viewed from above the semiconductor element 3.
  • each cutout 14 may be formed in a triangular shape when viewed from above.
  • each cutout 15 may be formed in a stepped shape when viewed from above.
  • each cutout 16 may be formed in an arc shape when viewed from above. In these cases, the same effect as in embodiment 4 can be obtained.
  • each embodiment can be freely combined, modified, or omitted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

The purpose of the present invention is to provide a technology that makes it possible, in a semiconductor device, to minimize insulating failure such as short-circuiting between circuit patterns and deterioration in appearance quality caused by a plating residue. An insulated substrate (2) comprises: a ceramic substrate (2b); and a circuit pattern (2a) which is joined to the surface of the ceramic substrate (2b) and on which a semiconductor element (3) is mounted. At the back surface side of the outer peripheral part of the circuit pattern (2a) joined to the ceramic substrate (2b), a dug part (8) which is not in contact with the surface of the ceramic substrate (2b) is formed.

Description

絶縁基板および半導体装置Insulating substrate and semiconductor device

 本開示は、絶縁基板および半導体装置に関するものである。 This disclosure relates to insulating substrates and semiconductor devices.

 例えば特許文献1には、回路パターンと半導体素子との接合信頼性を向上させることが可能な半導体装置が提案されている。 For example, Patent Document 1 proposes a semiconductor device that can improve the reliability of the connection between the circuit pattern and the semiconductor element.

 半導体装置に搭載される絶縁基板に対して、絶縁基板に含まれるセラミックス基板の表面に形成された回路パターンと半導体素子とのはんだ接合を目的としためっき工程、およびめっき剥離工程が行われている。めっき工程では、絶縁基板全体にめっきを施す。めっき剥離工程では、はんだ接合に必要な部分のみレジスト材でマスクし、めっきが不要な部分については剥離液でめっきを溶かして除去した後、エアブローでめっきの残渣を除去する。  Insulating substrates mounted on semiconductor devices undergo a plating process aimed at soldering the semiconductor element to the circuit pattern formed on the surface of the ceramic substrate contained in the insulating substrate, as well as a plating stripping process. In the plating process, plating is applied to the entire insulating substrate. In the plating stripping process, only the areas necessary for soldering are masked with a resist material, and the plating is dissolved and removed from areas that do not require plating using a stripping solution, after which the plating residue is removed with an air blower.

特開2007-311527号公報JP 2007-311527 A

 しかしながら、回路パターンの製造時に回路パターンにおけるセラミックス基板との接合面の外周側に微小なダレ部が形成される場合がある。ダレ部ではエアブローの風当たりが悪いため、めっき剥離工程後もダレ部にめっきの残渣が残りやすくなる。めっき残渣が残った状態で半導体装置を製造する際、はんだ付け時の熱負荷および封止樹脂の流動に起因して、ダレ部に滞留していためっきの残渣が流出し、半導体装置の外観品質が低下する恐れがあった。さらに、めっきの残渣が回路パターン間を横断するように流出した場合、回路パターン間において短絡などの絶縁不良を引き起こす恐れもあった。 However, during the manufacture of the circuit pattern, small sagging parts may form on the outer periphery of the bonding surface of the circuit pattern with the ceramic substrate. Because the sagging parts are poorly exposed to the air blow, plating residue is likely to remain in the sagging parts even after the plating removal process. When manufacturing a semiconductor device with plating residue remaining, there is a risk that the plating residue that has remained in the sagging parts will flow out due to the thermal load during soldering and the flow of the sealing resin, degrading the external appearance quality of the semiconductor device. Furthermore, if the plating residue flows across circuit patterns, there is a risk of causing insulation failure such as a short circuit between the circuit patterns.

 特許文献1に記載の技術では、回路パターンの外周部にろう溜め凹部が形成されているが、ろう溜め凹部は半導体素子と回路パターンとの接合に用いられるろう材を溜める機能に限定されており、めっきの残渣に起因する問題については考慮されていない。 In the technology described in Patent Document 1, a solder reservoir recess is formed on the outer periphery of the circuit pattern, but the solder reservoir recess has only the function of storing the solder material used to join the semiconductor element and the circuit pattern, and does not take into consideration problems caused by plating residue.

 そこで、本開示は、半導体装置において、めっきの残渣に起因する外観品質の低下および回路パターン間の短絡などの絶縁不良を抑制することが可能な技術を提供することを目的とする。 The present disclosure therefore aims to provide a technology that can suppress deterioration of appearance quality and insulation defects such as short circuits between circuit patterns caused by plating residue in semiconductor devices.

 本開示に係る絶縁基板は、セラミックス基板と、前記セラミックス基板の表面に接合され、半導体素子が搭載されるべき回路パターンとを備え、前記回路パターンの外周部のうち前記セラミックス基板と接合された裏面側には、前記セラミックス基板の前記表面と接触しない掘り込み部が形成される。 The insulating substrate according to the present disclosure comprises a ceramic substrate and a circuit pattern bonded to the surface of the ceramic substrate and on which a semiconductor element is to be mounted, and a recessed portion that does not come into contact with the surface of the ceramic substrate is formed on the back side of the outer periphery of the circuit pattern that is bonded to the ceramic substrate.

 本開示によれば、回路パターンと半導体素子との接合前に行われるめっき剥離工程において、回路パターンの外周部の裏面側に剥離液が浸透しやすくなり、まためっきの残渣を除去するためのエアブローの風当たりが向上するため、不要なめっきの残渣をさらに効果的に除去することが可能となる。これにより、半導体装置において、めっきの残渣に起因する外観品質の低下および回路パターン間の短絡などの絶縁不良を抑制することが可能となる。 According to the present disclosure, in the plating stripping process carried out before bonding the circuit pattern to the semiconductor element, the stripping solution is more easily absorbed into the back side of the outer periphery of the circuit pattern, and the air blowing for removing the plating residue is more effectively applied, making it possible to more effectively remove the unnecessary plating residue. This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between circuit patterns caused by plating residue in semiconductor devices.

 この開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。  Objectives, features, aspects, and advantages of this disclosure will become more apparent from the following detailed description and accompanying drawings.

実施の形態1に係る半導体装置の断面図である。1 is a cross-sectional view of a semiconductor device according to a first embodiment; 実施の形態2に係る半導体装置の断面図である。FIG. 11 is a cross-sectional view of a semiconductor device according to a second embodiment. 実施の形態3に係る半導体装置の断面図である。FIG. 11 is a cross-sectional view of a semiconductor device according to a third embodiment. 実施の形態3の変形例1に係る半導体装置の断面図である。FIG. 13 is a cross-sectional view of a semiconductor device according to a first modification of the third embodiment. 実施の形態3の変形例2に係る半導体装置の断面図である。FIG. 13 is a cross-sectional view of a semiconductor device according to a second modification of the third embodiment. 実施の形態4に係る半導体装置を半導体素子の上方から視た上面図、A-A線断面図、およびB-B線断面図である。13A to 13C are a top view, a cross-sectional view along line AA, and a cross-sectional view along line BB of a semiconductor device according to a fourth embodiment of the present invention, viewed from above a semiconductor element. 実施の形態4の変形例1に係る半導体装置の一部を半導体素子の上方から視た上面図である。FIG. 13 is a top view of a part of a semiconductor device according to a first modification of the fourth embodiment, viewed from above a semiconductor element. 実施の形態4の変形例2に係る半導体装置の一部を半導体素子の上方から視た上面図である。FIG. 13 is a top view of a part of a semiconductor device according to a second modification of the fourth embodiment, viewed from above a semiconductor element. 実施の形態4の変形例3に係る半導体装置の一部を半導体素子の上方から視た上面図である。FIG. 13 is a top view of a part of a semiconductor device according to a third modification of the fourth embodiment, viewed from above a semiconductor element.

 <実施の形態1>
 実施の形態1について、図面を用いて以下に説明する。図1は、実施の形態1に係る半導体装置100の断面図である。
<First embodiment>
First Embodiment A first embodiment will be described below with reference to the drawings. Fig. 1 is a cross-sectional view of a semiconductor device 100 according to a first embodiment.

 図1に示すように、半導体装置100は、ベース板1と、絶縁基板2と、半導体素子3と、主端子4と、樹脂ケース5と、封止樹脂6とを備えている。 As shown in FIG. 1, the semiconductor device 100 includes a base plate 1, an insulating substrate 2, a semiconductor element 3, a main terminal 4, a resin case 5, and a sealing resin 6.

 ベース板1は、上面視で矩形形状を有し、銅、銅合金、アルミ、またはアルミ合金などの比較的熱伝導率が高い材料で構成されている。 The base plate 1 has a rectangular shape when viewed from above, and is made of a material with relatively high thermal conductivity, such as copper, a copper alloy, aluminum, or an aluminum alloy.

 絶縁基板2は、表面回路パターン2aと、セラミックス基板2bと、裏面回路パターン2cとを有している。セラミックス基板2bは、例えばAl23、AlN、およびSi34等のセラミックスで構成されている。表面回路パターン2aおよび裏面回路パターン2cは、例えばCuを主成分とする金属で構成されている。表面回路パターン2aおよび裏面回路パターン2cは、それぞれセラミックス基板2bの表面および裏面にろう材(図示しない)などで接合されている。また、表面回路パターン2aは、半導体素子3が搭載されるべき回路パターンであり、選択的にパターン形成されている。すなわち、表面回路パターン2aは複数形成され、半導体装置100に必要な回路が形成されている。 The insulating substrate 2 has a front circuit pattern 2a, a ceramic substrate 2b, and a back circuit pattern 2c. The ceramic substrate 2b is made of ceramics such as Al2O3 , AlN , and Si3N4 . The front circuit pattern 2a and the back circuit pattern 2c are made of metals mainly composed of Cu. The front circuit pattern 2a and the back circuit pattern 2c are respectively joined to the front and back surfaces of the ceramic substrate 2b by brazing material (not shown). The front circuit pattern 2a is a circuit pattern on which the semiconductor element 3 is to be mounted, and is selectively patterned. That is, a plurality of front circuit patterns 2a are formed, and the circuits required for the semiconductor device 100 are formed.

 表面回路パターン2a上には、Sn-Ag系などの鉛フリー半田などで構成される接合材7を介して、半導体素子3の裏面電極(例えばコレクタ電極)が接合されることで、半導体素子3が搭載されている。半導体素子3は、例えばSi、SiC、またはGaN等で構成されたパワー半導体素子であり、パワー半導体素子は動作時に高温を発生させるため、高い放熱性の確保が重要となる。なお、図1には半導体素子3は2つ示されているが、2つに限定されることなく1つ以上であればよい。 The semiconductor element 3 is mounted on the front circuit pattern 2a by bonding the back electrode (e.g., collector electrode) of the semiconductor element 3 via a bonding material 7 made of lead-free solder such as Sn-Ag. The semiconductor element 3 is a power semiconductor element made of, for example, Si, SiC, or GaN, and since power semiconductor elements generate high temperatures during operation, it is important to ensure high heat dissipation. Note that although two semiconductor elements 3 are shown in FIG. 1, the number is not limited to two and may be one or more.

 半導体素子3の表面電極(例えばエミッタ電極またはゲート電極)には、Cuを主成分とする主端子4が接合材7を介して接合されることで各種配線が形成され、半導体装置100に必要な回路が形成される。 The main terminal 4, which is mainly composed of Cu, is bonded to the surface electrode (e.g., emitter electrode or gate electrode) of the semiconductor element 3 via a bonding material 7 to form various wiring, thereby forming the circuits required for the semiconductor device 100.

 樹脂ケース5は、例えばPPSなどの高耐熱樹脂により上面視で矩形枠形状に形成されている。樹脂ケース5は、半導体素子3を含む回路を囲むように、ベース板1の外周部に接着剤(図示しない)などで固定されている。樹脂ケース5の内部には、例えばエポキシ樹脂などの封止樹脂6が充填され、半導体素子3を含む回路が保護されている。 The resin case 5 is formed into a rectangular frame shape when viewed from above, using a high heat resistant resin such as PPS. The resin case 5 is fixed to the outer periphery of the base plate 1 with an adhesive (not shown) or the like so as to surround the circuit including the semiconductor element 3. The inside of the resin case 5 is filled with a sealing resin 6 such as an epoxy resin, protecting the circuit including the semiconductor element 3.

 次に、絶縁基板2の製造時に発生する問題について説明する。絶縁基板2の製造工程では、表面回路パターン2aと半導体素子3とのはんだ接合を目的としためっき工程、およびめっき剥離工程が行われている。めっき工程では、絶縁基板2全体にめっきを施す。めっき剥離工程では、はんだ接合に必要な部分のみレジスト材でマスクし、めっきが不要な部分については剥離液でめっきを溶かして除去した後、エアブローでめっきの残渣を除去する。 Next, we will explain the problems that occur when manufacturing the insulating substrate 2. The manufacturing process for the insulating substrate 2 includes a plating process for soldering the surface circuit pattern 2a to the semiconductor element 3, and a plating stripping process. In the plating process, plating is applied to the entire insulating substrate 2. In the plating stripping process, only the areas necessary for soldering are masked with a resist material, and in areas that do not require plating, the plating is dissolved and removed with a stripping solution, and the plating residue is then removed with an air blower.

 表面回路パターン2aの製造時に表面回路パターン2aにおけるセラミックス基板2bとの接合面の外周側に微小なダレ部が形成される場合がある。ダレ部ではエアブローの風当たりが悪いため、めっき剥離工程後もダレ部にめっきの残渣が残りやすくなる。めっき残渣が残った状態で半導体装置100を製造する際、はんだ付け時の熱負荷および封止樹脂6の流動に起因して、ダレ部に滞留していためっきの残渣が流出し、半導体装置100の外観品質が低下する恐れがあった。また、めっきの残渣が表面回路パターン2a間を横断するように流出した場合、表面回路パターン2a間において短絡などの絶縁不良を引き起こす恐れがあった。 When manufacturing the surface circuit pattern 2a, small sagging parts may form on the outer periphery of the joint surface of the surface circuit pattern 2a with the ceramic substrate 2b. Because the sagging parts are poorly exposed to the air blow, plating residue is likely to remain in the sagging parts even after the plating removal process. When manufacturing the semiconductor device 100 with plating residue remaining, there is a risk that the plating residue that has remained in the sagging parts will flow out due to the thermal load during soldering and the flow of the sealing resin 6, degrading the appearance quality of the semiconductor device 100. Furthermore, if the plating residue flows across the surface circuit patterns 2a, there is a risk of causing insulation failure such as a short circuit between the surface circuit patterns 2a.

 これに対して、実施の形態1では、図1に示すように、表面回路パターン2aの外周部のうちセラミックス基板2bと接合された裏面側には、セラミックス基板2bの表面と接触しない掘り込み部8が形成されている。掘り込み部8は、表面回路パターン2aの外周部の全周に渡って形成されている。 In contrast, in the first embodiment, as shown in FIG. 1, a recessed portion 8 that does not come into contact with the surface of the ceramic substrate 2b is formed on the back side of the outer periphery of the front circuit pattern 2a that is joined to the ceramic substrate 2b. The recessed portion 8 is formed around the entire periphery of the front circuit pattern 2a.

 掘り込み部8は、微小なダレ部が形成される部分にダレ部よりも大きな開口として設けられているため、表面回路パターン2aの外周部の裏面側に対して十分なめっき剥離液の浸透、およびエアブローの風当たりを向上させることが可能となる。これにより、めっきの残渣を低減することが可能となる。 The recessed portion 8 is provided as an opening larger than the small sagging portion in the area where the sagging portion is formed, which allows sufficient penetration of the plating remover solution to the back side of the outer periphery of the front circuit pattern 2a, and improves the air blowing effect. This makes it possible to reduce plating residue.

 以上のように、実施の形態1に係る半導体装置100は、絶縁基板2と、表面回路パターン2aの表面に搭載された半導体素子3と、セラミックス基板2bの裏面側に接合されたベース板1とを備えている。 As described above, the semiconductor device 100 according to the first embodiment includes an insulating substrate 2, a semiconductor element 3 mounted on the surface of the surface circuit pattern 2a, and a base plate 1 joined to the back side of the ceramic substrate 2b.

 また、絶縁基板2は、セラミックス基板2bと、セラミックス基板2bの表面に接合され、半導体素子3が搭載されるべき表面回路パターン2aとを備えている。表面回路パターン2aの外周部のうちセラミックス基板2bと接合された裏面側には、セラミックス基板2bの表面と接触しない掘り込み部8が形成されている。 The insulating substrate 2 also includes a ceramic substrate 2b and a surface circuit pattern 2a that is bonded to the surface of the ceramic substrate 2b and on which a semiconductor element 3 is to be mounted. A recessed portion 8 that does not come into contact with the surface of the ceramic substrate 2b is formed on the back side of the outer periphery of the surface circuit pattern 2a that is bonded to the ceramic substrate 2b.

 したがって、表面回路パターン2aと半導体素子3との接合前に行われるめっき剥離工程において、表面回路パターン2aの外周部の裏面側に剥離液が浸透しやすくなり、まためっきの残渣を除去するためのエアブローの風当たりが向上するため、不要なめっきの残渣をさらに効果的に除去することが可能となる。これにより、半導体装置100において、めっきの残渣に起因する外観品質の低下および表面回路パターン2a間の短絡などの絶縁不良を抑制することが可能となる。 Therefore, in the plating stripping process carried out before bonding the surface circuit pattern 2a to the semiconductor element 3, the stripping solution is more easily absorbed into the back side of the outer periphery of the surface circuit pattern 2a, and the air blowing for removing the plating residue is improved, making it possible to more effectively remove unnecessary plating residue. This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between the surface circuit patterns 2a caused by plating residue in the semiconductor device 100.

 以上より、絶縁基板2と半導体装置100の耐久性向上、および歩留り向上を実現することが可能となる。 As a result, it is possible to improve the durability of the insulating substrate 2 and the semiconductor device 100, and to improve the yield.

 <実施の形態2>
 次に、実施の形態2に係る半導体装置200について説明する。図2は、実施の形態2に係る半導体装置200の断面図である。なお、実施の形態2において、実施の形態1で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 2>
Next, a semiconductor device 200 according to a second embodiment will be described. Fig. 2 is a cross-sectional view of the semiconductor device 200 according to the second embodiment. Note that in the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.

 図2に示すように、実施の形態2では、表面回路パターン2aに掘り込み部8が形成されておらず、セラミックス基板2bに掘り込み部9が形成されている。 As shown in FIG. 2, in the second embodiment, the recessed portion 8 is not formed in the surface circuit pattern 2a, but the recessed portion 9 is formed in the ceramic substrate 2b.

 掘り込み部9は、セラミックス基板2bにおける表面回路パターン2aの外周部に隣接する部分に下方に凹むように形成されている。具体的には、掘り込み部9は、セラミックス基板2bにおける表面回路パターン2aの外周部の全周と対面する部分から外周側にかけて形成されている。掘り込み部9が形成されていることで、表面回路パターン2aの外周部はセラミックス基板2bの表面と接触しない。 The recessed portion 9 is formed so as to be recessed downward in a portion of the ceramic substrate 2b adjacent to the outer periphery of the surface circuit pattern 2a. Specifically, the recessed portion 9 is formed from a portion of the ceramic substrate 2b facing the entire periphery of the surface circuit pattern 2a toward the outer periphery. Due to the recessed portion 9 being formed, the outer periphery of the surface circuit pattern 2a does not come into contact with the surface of the ceramic substrate 2b.

 掘り込み部9は、微小なダレ部が形成される部分に隣接する部分にダレ部よりも大きな開口として設けられているため、表面回路パターン2aの外周部の裏面側に十分なめっき剥離液の浸透、およびエアブローの風当たりを向上させることが可能となる。これにより、めっきの残渣を低減することが可能となる。 The recessed portion 9 is provided as an opening larger than the sagging portion in the portion adjacent to the portion where the minute sagging portion is formed, which allows sufficient penetration of the plating remover solution to the back side of the outer periphery of the front circuit pattern 2a and improves the air blowing effect. This makes it possible to reduce plating residue.

 以上のように、実施の形態2に係る半導体装置200では、絶縁基板2は、セラミックス基板2bと、セラミックス基板2bの表面に接合され、半導体素子3が搭載されるべき表面回路パターン2aとを備えている。セラミックス基板2bにおける表面回路パターン2aの外周部に隣接する部分には、下方に凹む掘り込み部9が形成されている。 As described above, in the semiconductor device 200 according to the second embodiment, the insulating substrate 2 includes a ceramic substrate 2b and a surface circuit pattern 2a bonded to the surface of the ceramic substrate 2b and on which a semiconductor element 3 is to be mounted. A recessed portion 9 recessed downward is formed in a portion of the ceramic substrate 2b adjacent to the outer periphery of the surface circuit pattern 2a.

 したがって、表面回路パターン2aと半導体素子3との接合前に行われるめっき剥離工程において、表面回路パターン2aの外周部の裏面側に剥離液が浸透しやすくなり、まためっきの残渣を除去するためのエアブローの風当たりが向上するため、不要なめっきの残渣をさらに効果的に除去することが可能となる。これにより、半導体装置200において、めっきの残渣に起因する外観品質の低下および表面回路パターン2a間の短絡などの絶縁不良を抑制することが可能となる。 Therefore, in the plating stripping process carried out before bonding the surface circuit pattern 2a to the semiconductor element 3, the stripping solution is more likely to penetrate the back side of the outer periphery of the surface circuit pattern 2a, and the air blowing for removing the plating residue is improved, making it possible to more effectively remove unnecessary plating residue. This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between the surface circuit patterns 2a caused by plating residue in the semiconductor device 200.

 <実施の形態3>
 次に、実施の形態3に係る半導体装置300について説明する。図3は、実施の形態3に係る半導体装置300の断面図である。なお、実施の形態3において、実施の形態1,2で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Third embodiment>
Next, a semiconductor device 300 according to a third embodiment will be described. Fig. 3 is a cross-sectional view of the semiconductor device 300 according to the third embodiment. Note that in the third embodiment, the same components as those described in the first and second embodiments are denoted by the same reference numerals, and the description thereof will be omitted.

 図3に示すように、実施の形態3では、掘り込み部8,9が形成されておらず、表面回路パターン2aの外周部は、セラミックス基板2bと接合された裏面から半導体素子3が搭載される表面に向かって表面回路パターン2aの幅が狭くなるテーパ形状10に形成されている。テーパ形状10は、表面回路パターン2aの外周部の全周に渡って形成されている。 As shown in FIG. 3, in the third embodiment, the recessed portions 8 and 9 are not formed, and the outer periphery of the surface circuit pattern 2a is formed in a tapered shape 10 in which the width of the surface circuit pattern 2a narrows from the back surface bonded to the ceramic substrate 2b toward the front surface on which the semiconductor element 3 is mounted. The tapered shape 10 is formed around the entire periphery of the surface circuit pattern 2a.

 表面回路パターン2aの外周部をテーパ形状10に形成することで、表面回路パターン2aの外周面が上向きになり、表面回路パターン2aの外周部全体に剥離液が浸透しやすくなり、まためっきの残渣を除去するためのエアブローの風当たりが向上するため、不要なめっきの残渣をさらに効果的に除去することが可能となる。 By forming the outer periphery of the surface circuit pattern 2a into a tapered shape 10, the outer periphery of the surface circuit pattern 2a faces upward, making it easier for the stripping solution to penetrate the entire outer periphery of the surface circuit pattern 2a, and improving the airflow for removing plating residue, making it possible to more effectively remove unnecessary plating residue.

 以上のように、実施の形態3に係る半導体装置300では、絶縁基板2は、セラミックス基板2bと、セラミックス基板2bの表面に接合され、半導体素子3が搭載されるべき表面回路パターン2aとを備えている。表面回路パターン2aの外周部は、セラミックス基板2bと接合された裏面から半導体素子3が搭載されるべき表面に向かって表面回路パターン2aの幅が狭くなるテーパ形状10に形成されている。 As described above, in the semiconductor device 300 according to the third embodiment, the insulating substrate 2 includes a ceramic substrate 2b and a surface circuit pattern 2a bonded to the surface of the ceramic substrate 2b, on which the semiconductor element 3 is to be mounted. The outer periphery of the surface circuit pattern 2a is formed in a tapered shape 10 in which the width of the surface circuit pattern 2a narrows from the back surface bonded to the ceramic substrate 2b toward the front surface on which the semiconductor element 3 is to be mounted.

 したがって、表面回路パターン2aと半導体素子3との接合前に行われるめっき剥離工程において、表面回路パターン2aの外周部全体に剥離液が浸透しやすくなり、まためっきの残渣を除去するためのエアブローの風当たりが向上するため、不要なめっきの残渣をさらに効果的に除去することが可能となる。これにより、半導体装置300において、めっきの残渣に起因する外観品質の低下および表面回路パターン2a間の短絡などの絶縁不良を抑制することが可能となる。 Therefore, in the plating stripping process carried out before bonding the surface circuit pattern 2a to the semiconductor element 3, the stripping solution is more likely to penetrate the entire outer periphery of the surface circuit pattern 2a, and the air blowing for removing the plating residue is improved, making it possible to more effectively remove unnecessary plating residue. This makes it possible to suppress deterioration of the appearance quality and insulation defects such as short circuits between the surface circuit patterns 2a caused by plating residue in the semiconductor device 300.

 <実施の形態3の変形例>
 次に、実施の形態3の変形例1,2について説明する。図4は、実施の形態3の変形例1に係る半導体装置400の断面図である。図5は、実施の形態3の変形例2に係る半導体装置500の断面図である。
<Modification of the Third Embodiment>
Next, first and second modifications of the third embodiment will be described. Fig. 4 is a cross-sectional view of a semiconductor device 400 according to a first modification of the third embodiment. Fig. 5 is a cross-sectional view of a semiconductor device 500 according to a second modification of the third embodiment.

 図4に示すように、表面回路パターン2aの外周部のテーパ形状11は曲面形状に形成されていてもよい。また、図5に示すように、表面回路パターン2aの外周部のテーパ形状12は段付き形状に形成されていてもよい。これらの場合においても、実施の形態3の場合と同様の効果が得られる。 As shown in FIG. 4, the tapered shape 11 of the outer periphery of the surface circuit pattern 2a may be formed in a curved shape. Also, as shown in FIG. 5, the tapered shape 12 of the outer periphery of the surface circuit pattern 2a may be formed in a stepped shape. In these cases, the same effect as in the third embodiment can be obtained.

 <実施の形態4>
 次に、実施の形態4に係る半導体装置600について説明する。図6(a)は、実施の形態4に係る半導体装置600を半導体素子3の上方から視た上面図である。図6(b)は、図6(a)のA-A線断面図であり、図6(c)は、図6(a)のB-B線断面図である。なお、実施の形態4において、実施の形態1~3で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Fourth embodiment>
Next, a semiconductor device 600 according to a fourth embodiment will be described. Fig. 6(a) is a top view of the semiconductor device 600 according to the fourth embodiment, viewed from above the semiconductor element 3. Fig. 6(b) is a cross-sectional view taken along line A-A in Fig. 6(a), and Fig. 6(c) is a cross-sectional view taken along line B-B in Fig. 6(a). Note that in the fourth embodiment, the same components as those described in the first to third embodiments are denoted by the same reference numerals, and description thereof will be omitted.

 図6(a)に示すように、実施の形態4では、掘り込み部8,9およびテーパ形状10,11,12に代えて、切り欠き部13が形成されている。切り欠き部13は、表面回路パターン2aの外周部の全周に渡って連続して複数形成されている。具体的には、切り欠き部13は、上面視で矩形形状を有し、表面回路パターン2aの各辺に2つずつ形成されている。 As shown in FIG. 6(a), in the fourth embodiment, cutout portions 13 are formed in place of the recessed portions 8 and 9 and the tapered shapes 10, 11, and 12. A plurality of cutout portions 13 are formed continuously around the entire periphery of the outer periphery of the surface circuit pattern 2a. Specifically, the cutout portions 13 have a rectangular shape when viewed from above, and two are formed on each side of the surface circuit pattern 2a.

 図6(a),(b),(c)に示すように、切り欠き部13は、各表面回路パターン2aの厚みと同じ厚みに形成されている。また、図6(a),(b)に示すように、各表面回路パターン2aにおける切り欠き部13のない部分は、切り欠き部13が設けられていない従来の構造と同じ幅d2を有している。 As shown in Figures 6(a), (b), and (c), the cutout portion 13 is formed to the same thickness as the thickness of each surface circuit pattern 2a. Also, as shown in Figures 6(a) and (b), the portion of each surface circuit pattern 2a without the cutout portion 13 has the same width d2 as the conventional structure without the cutout portion 13.

 切り欠き部13が設けられていない従来の構造では、各表面回路パターン2aの外周部における一辺の幅はd2となり、d2相当の長さを有するめっきの残渣が滞留することで、半導体装置の製造時に隣り合う表面回路パターン2a間の長さd1をめっきの残渣が横断するように流出する可能性があり、めっきの残渣が表面回路パターン2a間の短絡などの絶縁不良を引き起こす恐れがあった。ここで、d2≧d1である。 In a conventional structure without the notch 13, the width of one side at the outer periphery of each surface circuit pattern 2a is d2, and if plating residue with a length equivalent to d2 remains, there is a possibility that the plating residue will flow across the length d1 between adjacent surface circuit patterns 2a during the manufacture of the semiconductor device, and there is a risk that the plating residue will cause insulation defects such as short circuits between the surface circuit patterns 2a. Here, d2≧d1.

 これに対して、実施の形態4では、各表面回路パターン2aの外周部のうち隣り合う切り欠き部13間の長さである、各表面回路パターン2aの外周部における一辺の幅d3は、隣り合う表面回路パターン2a間の長さd1よりも十分短く形成されている(d3<d1)。そのため、d3相当の長さを有するめっきの残渣が滞留し、半導体装置600の製造時に表面回路パターン2a間の長さd1をめっきの残渣が横断するように流出した場合にも、めっきの残渣が隣り合う表面回路パターン2aとの接触を抑制することが可能となる。 In contrast, in the fourth embodiment, the width d3 of one side at the outer periphery of each surface circuit pattern 2a, which is the length between adjacent cutout portions 13 on the outer periphery of each surface circuit pattern 2a, is formed to be sufficiently shorter than the length d1 between adjacent surface circuit patterns 2a (d3<d1). Therefore, even if plating residue having a length equivalent to d3 remains and flows across the length d1 between the surface circuit patterns 2a during the manufacture of the semiconductor device 600, it is possible to prevent the plating residue from coming into contact with the adjacent surface circuit patterns 2a.

 以上のように、実施の形態4に係る半導体装置600では、絶縁基板2は、セラミックス基板2bと、セラミックス基板2bの表面に接合され、半導体素子3が搭載されるべき表面回路パターン2aとを備えている。表面回路パターン2aの外周部には、連続した複数の切り欠き部13が形成されている。また、各切り欠き部13は上面視にて矩形形状に形成されている。 As described above, in the semiconductor device 600 according to the fourth embodiment, the insulating substrate 2 includes a ceramic substrate 2b and a surface circuit pattern 2a that is bonded to the surface of the ceramic substrate 2b and on which a semiconductor element 3 is to be mounted. A plurality of continuous cutout portions 13 are formed on the outer periphery of the surface circuit pattern 2a. Furthermore, each cutout portion 13 is formed in a rectangular shape when viewed from above.

 したがって、半導体装置600の製造時に隣り合う表面回路パターン2a間をめっきの残渣が横断するように流出した場合にも、めっきの残渣が隣り合う表面回路パターン2aとの接触を抑制することができる。これにより、半導体装置600において、めっきの残渣に起因する外観品質の低下および表面回路パターン2a間の短絡などの絶縁不良を抑制することが可能となる。 Therefore, even if plating residue flows across adjacent surface circuit patterns 2a during the manufacture of the semiconductor device 600, it is possible to prevent the plating residue from coming into contact with the adjacent surface circuit patterns 2a. This makes it possible to prevent deterioration of the appearance quality and insulation defects such as short circuits between the surface circuit patterns 2a in the semiconductor device 600, which are caused by plating residue.

 <実施の形態4の変形例>
 次に、実施の形態4の変形例1~3について説明する。図7は、実施の形態4の変形例1に係る半導体装置700の一部を半導体素子3の上方から視た上面図である。図8は、実施の形態4の変形例2に係る半導体装置800の一部を半導体素子3の上方から視た上面図である。図9は、実施の形態4の変形例3に係る半導体装置900の一部を半導体素子3の上方から視た上面図である。
<Modification of the Fourth Embodiment>
Next, modified examples 1 to 3 of the fourth embodiment will be described. Fig. 7 is a top view of a portion of a semiconductor device 700 according to modified example 1 of the fourth embodiment, viewed from above the semiconductor element 3. Fig. 8 is a top view of a portion of a semiconductor device 800 according to modified example 2 of the fourth embodiment, viewed from above the semiconductor element 3. Fig. 9 is a top view of a portion of a semiconductor device 900 according to modified example 3 of the fourth embodiment, viewed from above the semiconductor element 3.

 図7に示すように、各切り欠き部14は、上面視にて三角形状に形成されていてもよい。また、図8に示すように、各切り欠き部15は、上面視にて段付き形状に形成されていてもよい。また、図9に示すように、各切り欠き部16は、上面視にて円弧形状に形成されていてもよい。これらの場合においても、実施の形態4の場合と同様の効果が得られる。 As shown in FIG. 7, each cutout 14 may be formed in a triangular shape when viewed from above. Also, as shown in FIG. 8, each cutout 15 may be formed in a stepped shape when viewed from above. Also, as shown in FIG. 9, each cutout 16 may be formed in an arc shape when viewed from above. In these cases, the same effect as in embodiment 4 can be obtained.

 この開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。 Although this disclosure has been described in detail, the above description is illustrative in all respects and is not limiting. It is understood that countless variations not illustrated can be envisioned.

 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In addition, each embodiment can be freely combined, modified, or omitted as appropriate.

 1 ベース板、2 絶縁基板、2a 表面回路パターン、2b セラミックス基板、3 半導体素子、8,9 掘り込み部、10 テーパ形状、11 曲面形状、12 段付き形状、13,14,15,16 切り欠き部、100,200,300,400,500,600,700,800,900 半導体装置。 1 base plate, 2 insulating substrate, 2a surface circuit pattern, 2b ceramic substrate, 3 semiconductor element, 8, 9 recessed portion, 10 tapered shape, 11 curved shape, 12 stepped shape, 13, 14, 15, 16 notched portion, 100, 200, 300, 400, 500, 600, 700, 800, 900 semiconductor device.

Claims (9)

 セラミックス基板と、
 前記セラミックス基板の表面に接合され、半導体素子が搭載されるべき回路パターンと、を備え、
 前記回路パターンの外周部のうち前記セラミックス基板と接合された裏面側には、前記セラミックス基板の前記表面と接触しない掘り込み部が形成される、絶縁基板。
A ceramic substrate;
A circuit pattern bonded to a surface of the ceramic substrate and on which a semiconductor element is to be mounted;
an insulating substrate, wherein a recessed portion is formed on the outer periphery of the circuit pattern on the back side bonded to the ceramic substrate, the recessed portion not in contact with the front surface of the ceramic substrate;
 セラミックス基板と、
 前記セラミックス基板の表面に接合され、半導体素子が搭載されるべき回路パターンと、を備え、
 前記セラミックス基板における前記回路パターンの外周部に隣接する部分には、下方に凹む掘り込み部が形成される、絶縁基板。
A ceramic substrate;
A circuit pattern bonded to a surface of the ceramic substrate and on which a semiconductor element is to be mounted;
an insulating substrate, wherein a recessed portion recessed downward is formed in a portion of the ceramic substrate adjacent to an outer periphery of the circuit pattern;
 セラミックス基板と、
 前記セラミックス基板の表面に接合され、半導体素子が搭載されるべき回路パターンと、を備え、
 前記回路パターンの外周部は、前記セラミックス基板と接合された裏面から前記半導体素子が搭載されるべき表面に向かって前記回路パターンの幅が狭くなるテーパ形状に形成される、絶縁基板。
A ceramic substrate;
A circuit pattern bonded to a surface of the ceramic substrate and on which a semiconductor element is to be mounted;
An insulating substrate, wherein the outer periphery of the circuit pattern is formed in a tapered shape in which the width of the circuit pattern narrows from the back surface joined to the ceramic substrate toward the front surface on which the semiconductor element is to be mounted.
 前記回路パターンの前記外周部の前記テーパ形状は曲面形状に形成される、請求項3に記載の絶縁基板。 The insulating substrate according to claim 3, wherein the tapered shape of the outer periphery of the circuit pattern is formed into a curved shape.  前記回路パターンの前記外周部の前記テーパ形状は段付き形状に形成される、請求項3に記載の絶縁基板。 The insulating substrate according to claim 3, wherein the tapered shape of the outer periphery of the circuit pattern is formed into a stepped shape.  セラミックス基板と、
 前記セラミックス基板の表面に接合され、半導体素子が搭載されるべき回路パターンと、を備え、
 前記回路パターンの外周部には、連続した複数の切り欠き部が形成される、絶縁基板。
A ceramic substrate;
A circuit pattern bonded to a surface of the ceramic substrate and on which a semiconductor element is to be mounted;
The insulating substrate has a plurality of continuous cutouts formed in an outer periphery of the circuit pattern.
 各前記切り欠き部は上面視にて、矩形形状、三角形状、段付き形状、または円弧形状に形成される、請求項6に記載の絶縁基板。 The insulating substrate according to claim 6, wherein each of the cutouts is formed in a rectangular shape, a triangular shape, a stepped shape, or an arc shape when viewed from above.  前記回路パターンを複数備え、
 各前記回路パターンの前記外周部のうち隣り合う前記切り欠き部間の長さは、隣り合う前記回路パターン間の長さよりも短い、請求項6または請求項7に記載の絶縁基板。
A plurality of the circuit patterns are provided,
8. The insulating substrate according to claim 6, wherein a length between adjacent said cutout portions in said outer periphery of each said circuit pattern is shorter than a length between adjacent said circuit patterns.
 請求項1から請求項8のいずれかに記載の絶縁基板と、
 前記回路パターンの表面に搭載された前記半導体素子と、
 前記セラミックス基板の裏面側に接合されたベース板と、
 を備える、半導体装置。
An insulating substrate according to any one of claims 1 to 8;
The semiconductor element mounted on a surface of the circuit pattern;
A base plate joined to the rear surface side of the ceramic substrate;
A semiconductor device comprising:
PCT/JP2023/000594 2023-01-12 2023-01-12 Insulated substrate and semiconductor device WO2024150370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2023/000594 WO2024150370A1 (en) 2023-01-12 2023-01-12 Insulated substrate and semiconductor device
JP2024569943A JPWO2024150370A1 (en) 2023-01-12 2023-01-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000594 WO2024150370A1 (en) 2023-01-12 2023-01-12 Insulated substrate and semiconductor device

Publications (1)

Publication Number Publication Date
WO2024150370A1 true WO2024150370A1 (en) 2024-07-18

Family

ID=91896560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000594 WO2024150370A1 (en) 2023-01-12 2023-01-12 Insulated substrate and semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2024150370A1 (en)
WO (1) WO2024150370A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080063A (en) * 1996-08-27 2004-03-11 Dowa Mining Co Ltd High reliability semiconductor substrate
JP2007311527A (en) * 2006-05-18 2007-11-29 Mitsubishi Materials Corp Power module, substrate thereof, and manufacturing method thereof
JP2009158611A (en) * 2007-12-25 2009-07-16 Kyocera Corp Circuit board, package using the same, and electronic device
JP2014027221A (en) * 2012-07-30 2014-02-06 Kyocera Corp Circuit board and electronic apparatus using the same
JP2015028998A (en) * 2013-07-30 2015-02-12 株式会社豊田自動織機 Semiconductor device
JP2015070107A (en) * 2013-09-30 2015-04-13 三菱電機株式会社 Semiconductor device and manufacturing method of the same
WO2016098431A1 (en) * 2014-12-18 2016-06-23 三菱電機株式会社 Insulated circuit board, power module, and power unit
JP2020161842A (en) * 2015-09-28 2020-10-01 株式会社東芝 Circuit substrate and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080063A (en) * 1996-08-27 2004-03-11 Dowa Mining Co Ltd High reliability semiconductor substrate
JP2007311527A (en) * 2006-05-18 2007-11-29 Mitsubishi Materials Corp Power module, substrate thereof, and manufacturing method thereof
JP2009158611A (en) * 2007-12-25 2009-07-16 Kyocera Corp Circuit board, package using the same, and electronic device
JP2014027221A (en) * 2012-07-30 2014-02-06 Kyocera Corp Circuit board and electronic apparatus using the same
JP2015028998A (en) * 2013-07-30 2015-02-12 株式会社豊田自動織機 Semiconductor device
JP2015070107A (en) * 2013-09-30 2015-04-13 三菱電機株式会社 Semiconductor device and manufacturing method of the same
WO2016098431A1 (en) * 2014-12-18 2016-06-23 三菱電機株式会社 Insulated circuit board, power module, and power unit
JP2020161842A (en) * 2015-09-28 2020-10-01 株式会社東芝 Circuit substrate and semiconductor device

Also Published As

Publication number Publication date
JPWO2024150370A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
WO2018173921A1 (en) Ceramic metal circuit board and semiconductor device using same
JP2001223293A (en) Semiconductor device and its manufacturing method
JP2008187101A (en) Semiconductor device and mounting structure of semiconductor device
JP2010238753A (en) Heat dissipation member and module using the same
JP2010097963A (en) Circuit board and method for manufacturing the same, and electronic component module
JP2009212367A (en) Semiconductor light-emitting device
JP2002343911A (en) Substrate
US7776426B2 (en) Ceramic circuit substrate and manufacturing method thereof
JPH04343287A (en) Circuit board
WO2024150370A1 (en) Insulated substrate and semiconductor device
JP5960522B2 (en) Ceramic circuit board and electronic device using the same
JP2629635B2 (en) Semiconductor device with metal plate for heat dissipation
JP4427154B2 (en) Ceramic circuit board
JP3531133B2 (en) Power module substrate and method of manufacturing the same
JP4765110B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
JP2013236037A (en) Semiconductor module and manufacturing method of the same
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
JP3573955B2 (en) Power semiconductor device and method of manufacturing the same
JP2014146644A (en) Semiconductor device and manufacturing method of the same
JPH10242330A (en) Substrate for power module and manufacture thereof
JPH04225296A (en) Ceramic board provided with copper circuit and manufacture thereof
JP2006228918A (en) Ceramics circuit board and semiconductor module using the same
TWI851015B (en) Embedded ceramic substrate circuit board structure and manufacturing process thereof
JPH1070212A (en) Substrate for power module
JP7267869B2 (en) Power module and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024569943

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载