+

WO2024075669A1 - Method and device for suggesting positioning of electromagnetic sensors, and current source location estimation method - Google Patents

Method and device for suggesting positioning of electromagnetic sensors, and current source location estimation method Download PDF

Info

Publication number
WO2024075669A1
WO2024075669A1 PCT/JP2023/035835 JP2023035835W WO2024075669A1 WO 2024075669 A1 WO2024075669 A1 WO 2024075669A1 JP 2023035835 W JP2023035835 W JP 2023035835W WO 2024075669 A1 WO2024075669 A1 WO 2024075669A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
electromagnetic
sensor
arrangement
current source
Prior art date
Application number
PCT/JP2023/035835
Other languages
French (fr)
Japanese (ja)
Inventor
朋寛 五味
定 冨田
立 梅林
宙人 山下
祐輔 武田
Original Assignee
株式会社島津製作所
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 国立研究開発法人理化学研究所 filed Critical 株式会社島津製作所
Publication of WO2024075669A1 publication Critical patent/WO2024075669A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents

Definitions

  • This disclosure relates to a method and device for proposing placement of electromagnetic sensors, and a method for estimating the position of a current source.
  • a technology uses multiple electromagnetic sensors placed on the surface of a subject's body to detect biological activity inside the body.
  • MEG magnetoencephalography
  • multiple sensors placed on the subject's head can detect brain magnetism that occurs with neural activity.
  • current source estimation it is desirable to accurately estimate the location of the brain's active area, which acts as a current source (hereinafter referred to as "current source estimation").
  • current source estimation One measure to improve the accuracy of current source estimation is to measure the brain magnetism with high sensitivity.
  • the positional relationship between the sensor and the head is important. Specifically, it is important to bring the sensor close to the brain's active area and to place the sensor in an appropriate position according to brain activity.
  • SQUID superconducting quantum interference device
  • the present disclosure has been made to solve the above problems, and one objective of the present disclosure is to propose an arrangement of multiple sensors suitable for current source estimation. Another objective of the present disclosure is to provide a method for optimally utilizing the outputs of multiple sensors.
  • the method for proposing the placement of electromagnetic sensors is a method for proposing the placement of multiple electromagnetic sensors to be placed on the biological surface surrounding a target area inside the subject, using a forward model for estimating an electromagnetic field generated at the positions of the multiple electromagnetic sensors due to biological activity inside the subject, and includes the steps of setting calculation conditions including the position of the target area and possible positions for placing the multiple electromagnetic sensors, calculating a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the set calculation conditions, and outputting the proposed placement.
  • the current source position estimation method disclosed herein is a method for estimating the position of a current source inside a subject using the detection results of multiple electromagnetic sensors that are placed on the biological surface of the subject and each detects an electromagnetic field generated by biological activity taking place in a target area inside the subject, and includes the steps of setting calculation conditions including the position of the target area and the arrangement of the multiple electromagnetic sensors, calculating priorities of all or a part of the multiple electromagnetic sensors based on the calculation conditions, and estimating the position of the current source using the detection results of the electromagnetic sensors selected based on the priorities.
  • the electromagnetic sensor placement suggestion device is a device that proposes the placement of multiple electromagnetic sensors to be placed on the biological surface surrounding a target area inside the subject, using a forward model for estimating the electromagnetic field generated at the positions of the multiple electromagnetic sensors due to biological activity inside the subject, and includes an input unit to which calculation conditions including the position of the target area and possible positions of the multiple electromagnetic sensors are input, a calculation device that calculates a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the calculation conditions, and an output unit that outputs the proposed placement.
  • the layout proposal method and layout proposal device disclosed herein can propose a layout of multiple sensors suitable for current source estimation.
  • the position estimation method disclosed herein allows the position of a current source to be accurately estimated using the detection results of a high-priority sensor selected from among multiple electromagnetic sensors.
  • FIG. 1 is a diagram showing a schematic diagram of an overall configuration of a data processing system used in a method for proposing an arrangement of electromagnetic sensors
  • FIG. 13 is a diagram conceptually illustrating a method for proposing an arrangement of an OPM sensor.
  • 13 is a flowchart illustrating an example of a procedure for a placement proposal process.
  • FIG. 13 is a diagram showing an example of sensor arrangement and measurement results when magnetoencephalography is performed twice using 11 OPM sensors.
  • FIG. 5 is a diagram comparing the measurement accuracy of the first measurement (uniform arrangement) shown in FIG. 4 with the measurement accuracy of the second measurement (optimal arrangement).
  • System Configuration> 1 is a diagram showing a schematic diagram of an overall configuration of a data processing system 1 used in a method for proposing an arrangement of an electromagnetic sensor according to the present embodiment.
  • OPM sensor 2 which is a small magnetic sensor that operates at room temperature
  • the data processing system 1 includes a plurality of OPM sensors 2, an input device 3, an output device 4, and a processing device 10.
  • the data processing system 1 is configured to estimate the location of biological activity (current source) in the subject's brain using the detection results from the plurality of OPM sensors 2.
  • Each of the multiple OPM sensors 2 is placed on the surface of the subject's head by a user (medical personnel, etc.) and detects the magnetic field generated at each placement position by biological activity taking place in the subject's brain.
  • the multiple OPM sensors 2 may be in direct contact with the surface of the subject's head, or may not be in direct contact with the surface of the subject's head.
  • a cover member that holds the sensor 2 may be attached to the subject's head. Note that FIG. 1 shows an example in which four OPM sensors 2 are placed on the surface of the subject's head.
  • each OPM sensor 2 Since each OPM sensor 2 operates at room temperature, it does not need to be placed inside a Dewar like the SQUID described above. Therefore, the placement of multiple OPM sensors 2 can be easily changed depending on brain activity.
  • the input device 3 is, for example, a pointing device such as a keyboard or a mouse, and accepts input information (such as calculation conditions described below) from the user.
  • the information input to the input device 3 is sent to the processing device 10.
  • the output device 4 is, for example, a liquid crystal display (LCD) panel, and is a display that shows information to the user.
  • LCD liquid crystal display
  • the processing device 10 has, as its main hardware elements, a sensor interface 11, an input interface 12, an output interface 13, a storage device 14, and an arithmetic unit 15.
  • the processing device 10 may be realized, for example, by a general-purpose computer, or may be realized by a computer (such as a server) dedicated to the data processing system 1.
  • the sensor interface 11 is an interface for connecting the processing device 10 to the multiple OPM sensors 2, and realizes the input and output of signals between the processing device 10 and the multiple OPM sensors 2.
  • the input interface 12 is an interface for connecting the processing device 10 to the input device 3, and realizes the input and output of signals between the processing device 10 and the input device 3.
  • the output interface 13 is an interface for connecting the processing device 10 to the output device 4, and realizes the input and output of data between the processing device 10 and the output device 4.
  • the storage device 14 stores information (programs, etc.) used for processing by the arithmetic device 15. Note that input information (such as calculation conditions described below) input by the user to the input device 3 is stored in the storage device 14.
  • the calculation device 15 has a CPU (Central Processing Unit) and performs "current source estimation” to estimate the position of the current source (place of biological activity) in the subject's brain using the information stored in the storage device 14 and the measurement results of multiple OPM sensors 2.
  • CPU Central Processing Unit
  • the computing device 15 causes the output device 4 to display the position of the current source obtained by current source estimation as the location of biological activity. By looking at the content displayed on the output device 4, the user can grasp the location of the location of biological activity in the subject's brain.
  • ⁇ Proposal of sensor arrangement suitable for current source estimation> In order to accurately estimate the position of a current source in the brain, it is desirable to measure the brain magnetism with high sensitivity using multiple OPM sensors 2. In order to measure the brain magnetism with high sensitivity, the positional relationship between the multiple OPM sensors 2 and the current source in the brain is important. Specifically, it is important to place the multiple OPM sensors 2 in appropriate positions according to the position of the current source in the brain.
  • the calculation device 15 is configured to perform a process for proposing an arrangement of the OPM sensor 2 suitable for current source estimation (hereinafter also referred to as the "arrangement proposal process").
  • arrangement proposal process a process for proposing an arrangement of the OPM sensor 2 suitable for current source estimation
  • the arrangement proposal process is also simply referred to as the "proposed arrangement.”
  • FIG. 2 is a diagram conceptually showing a method for proposing the placement of the OPM sensor 2 by the placement proposal process.
  • the steps of setting calculation conditions, calculating the proposed placement, and outputting the proposed placement are carried out in this order.
  • calculation conditions used for calculating the proposed arrangement are set based on the input information input to the input device 3 and the information stored in the storage device 14.
  • the calculation conditions include "possible sensor arrangement positions,”"number of sensors s,””sensor SNR (Signal-to-Noise Ratio),”"brainmodel,””targetregion,””objective function f,” and the like.
  • Sensor placement positions is data indicating positions where OPM sensors 2 can be placed on the surface of the subject's head.
  • sensor placement positions includes the maximum number of OPM sensors 2 that can be placed (hereinafter also referred to as the "maximum number m") and the coordinates of the positions where the sensors can be placed.
  • the coordinates of the sensor placement positions can be determined, for example, based on image data obtained by MRI or a three-dimensional scanner of the subject's head.
  • FIG. 2 shows an example in which the coordinates of the possible sensor placement positions are discrete values
  • the coordinates of the possible sensor placement positions may be virtual positions where the OPM sensor 2 cannot actually be placed.
  • the “number of sensors s" is the number of OPM sensors 2 actually placed on the subject's head surface.
  • the number of sensors s is a value equal to or less than the maximum number of sensors m. In the example shown in FIG. 2, the number of sensors s is "4.”
  • the “sensor SNR” is the SNR of the OPM sensor 2.
  • the “sensor SNR” is used to determine the "constant ⁇ " used in the placement calculation described below.
  • the "brain model” is a model of the subject's brain structure using a triangular mesh or the like.
  • the brain model may be one that is generated based on the results of measuring the subject's brain by MRI, or it may be one that assumes the subject's brain is a standard brain and substitutes it with an existing standard brain model.
  • the "target region” is a location within the brain model where biological activity is expected to occur.
  • the vertices within the target region within the brain model will be treated as the positions of the current source (current dipole).
  • the number of vertices included in the target region may be one or multiple.
  • the "objective function f" is a function used in the calculation of the proposed placement, which will be described later. As will be described later, the “objective function f" is determined according to the "target area.”
  • the "objective function f" is set to a function that maximizes the diagonal sum (sum of diagonal components) of the vertices in the target region, but this is not limited to this. Any of the functions listed in Table 1 of Olaf Hauk et. al., "Towards an objective evaluation of EEGMEG source estimation methods - The linear approach (Olaf Hauk)" may be used as the objective function.
  • FIG. 3 is a flowchart showing an example of the procedure of the above-mentioned placement proposal process.
  • the calculation device 15 sets calculation conditions based on the input information input to the input device 3 and the information stored in the storage device 14 (step S10).
  • the calculation conditions include possible sensor placement positions (maximum number of placements m, coordinates of each placement), number of sensors s, sensor SNR, brain model, target region, objective function f, etc.
  • step S11 the calculation device 15 sets the priority p to the initial value "1" (step S11). After that, the calculation device 15 moves the process to step S30.
  • the computing device 15 arbitrarily selects one sensor position whose priority has not yet been determined from among the multiple possible sensor placement positions (step S30).
  • the forward model matrix G is a matrix that indicates a forward model solution that expresses the correspondence between the current dipole moment of a current source when a current dipole moment is applied to the vertices of the brain model to make them current sources, and the magnetic field generated at the position of the OPM sensor 2 (the magnetic field measured by the OPM sensor 2).
  • the forward model matrix G satisfies the following formula (1).
  • Equation (1) "B” is the magnetic field vector generated at the position of the OPM sensor 2
  • "J” is the density vector of the true current of the current source in the brain
  • “G” is the forward model matrix (a matrix that indicates the forward model solution).
  • the forward model matrix G is a matrix that converts the current of the current source into a magnetic field generated at the position of the OPM sensor 2, and is also called the “lead field matrix” in the field of magnetoencephalography. This forward model matrix G corresponds to an example of the "forward model” of this disclosure.
  • the calculation unit 15 calculates the forward model matrix G p of the priority level p by using the following formula (2).
  • the calculation device 15 calculates a forward model matrix G p of the priority level p by adding a forward model matrix g corresponding to one sensor whose priority level is undetermined and selected in step S30 to the forward model matrix G p- 1 of the previous priority level p -1 .
  • the size of the forward model matrix Gp is (priority p) ⁇ (number of vertices v). Therefore, when the priority p reaches the number of sensors s, the forward model matrix Gs becomes (number of sensors s) ⁇ (number of vertices v).
  • the number of vertices v is the number of vertices of the brain model (the number of points where current dipoles simulating neural activity are placed).
  • the calculation device 15 uses the forward model matrix G calculated in step S31 to calculate the estimated model matrix R (step S32).
  • the estimated model matrix R is a matrix corresponding to an estimated model for estimating the position of a current source in the brain from the detection results of the OPM sensor 2 placed on the head surface.
  • the estimated model matrix R satisfies the following equation (3).
  • Equation (3) "J" is the density vector of the true current of the current source in the brain, "J'” is the density vector of the estimated current of the current source in the brain, and “R” is the estimated model matrix (a matrix that indicates the estimated model solution).
  • the estimated model matrix R is a matrix that converts the true current (true value) of the current source into a magnetic field generated at the sensor position, and further converts the converted magnetic field back into an estimated current (estimated solution) of the current source.
  • the estimated model matrix R is also called a "resolution matrix” in the field of magnetoencephalography. This estimated model matrix R corresponds to an example of an "estimated model” in this disclosure.
  • the calculation unit 15 calculates the estimation model matrix R p of the priority level p by using the following formula (4).
  • G p ′ is a transposed matrix of the forward model matrix G p
  • is a constant determined according to the sensor SNR
  • I is a unit matrix. Note that the matrix size of the estimated model matrix R p is (number of vertices v) ⁇ (number of vertices v).
  • the calculation device 15 calculates the difference matrix ⁇ R p by using the following equation (5) (step S33).
  • R p is the estimated model matrix R of the priority order p
  • R p-1 is the estimated model matrix R of the priority order p-1.
  • the calculation device 15 determines whether or not the difference matrix ⁇ R p has been calculated for all sensor positions whose priorities have not yet been determined (step S34).
  • step S34 If the difference matrix ⁇ R p has not been calculated for all sensor positions whose priorities are undetermined (NO in step S34), the calculation device 15 returns the process to step S30 and repeats the processes of steps S30 to S34 until the difference matrix ⁇ R p has been calculated for all sensor positions whose priorities are undetermined.
  • the calculation device 15 identifies the sensor position whose priority is not yet determined and whose objective function f( ⁇ R p ) based on the difference matrix ⁇ R p is optimal, and sets the identified sensor position as the position whose priority is p (step S40).
  • the objective function f is determined according to the position of the target region, as described later.
  • the calculation device 15 determines whether the priority p has reached the number of sensors s (step S41). If the priority p has not reached the number of sensors s (NO in step S41), the calculation device 15 moves the process to step S20 and increments the priority p by 1, and then repeats the processes of steps S30 to S34. The processes of steps S30 to S34 are repeated until the priority p reaches the number of sensors s.
  • the processing device 10 can provide the user with a proposed placement of the s OPM sensors 2 (a sensor placement suitable for estimating the position of the current source in the subject's brain).
  • the user can accurately estimate the position of the current source by placing the s OPM sensors 2 according to the proposed placement displayed on the output device 4. If the proposed placement includes a virtual position where the OPM sensor 2 cannot actually be placed, the OPM sensor 2 can be placed in a position closest to the virtual position and where the OPM sensor 2 can actually be placed.
  • the forward model matrix G is a matrix that converts the current density vector "J" of a current source in the brain into a magnetic field vector "B" generated at the position of the OPM sensor 2.
  • Equation (6) "B” is the magnetic field vector generated at the position of the OPM sensor 2, "r” is the position (coordinate) of the OPM sensor 2, “J” is the current density vector of the current source in the brain, and “r'” is the position (coordinate) of the current source in the brain.
  • the components of the forward model matrix G can be found by calculating equation (6) above.
  • "J" is a current density vector, and if its direction is not specified, a huge number of equations will have to be calculated; however, in the field of current source estimation, it is considered reasonable to assume that the current flows in a direction perpendicular to the brain model, so “J” can be uniquely determined.
  • the position "r" of the OPM sensor 2 can be determined by the possible sensor placement positions set in the calculation conditions.
  • the position "r'" of the current source can be determined by the vertex position of the brain model set in the calculation conditions. For this reason, by calculating the Biot-Savart equation for one current source (vertex) for the maximum number of sensor placements m, the components of the forward model matrix G for that one current source can be calculated.
  • Biot-Savart's law can be written as the maximum number m of sensors per current source, as shown in equation (7) below.
  • the calculation device 15 can calculate the components of the forward model matrix G using the above-mentioned method.
  • the "target region” set in the calculation conditions is used to set the "objective function f".
  • the relationship between the target region and the objective function f will be described in detail below.
  • the objective function f is a function based on the difference matrix ⁇ R.
  • the difference matrix ⁇ R is obtained by taking the difference of the estimated model matrix R
  • the objective function f will be described here as being based on the estimated model matrix R for ease of understanding.
  • the first to fourth rows and first to fourth columns of the estimated model matrix R are the matrix elements related to the target region, as shown in equation (10) below.
  • estimation model matrix R in detail, it is possible to see the influence that the true current of vertex 1 has on the estimated current of vertices 1 to v, and the influence that the true current of vertices 1 to v has on the estimated current of vertex 1.
  • the estimation model matrix R is a matrix that has values only in the diagonal components where true values exist.
  • the objective function f can be set to a function that maximizes the diagonal sum (the sum of the diagonal components) of the vertices in the target region.
  • the calculation device 15 determines the objective function f according to the position of the target region (more specifically, the vertices in the target region).
  • the objective function f can be set to a function that maximizes the diagonal sum of elements r11 to r44 of the estimated model matrix R, as shown in equation (11) below. In situations where the region where brain activity occurs can be predicted but the exact location cannot be narrowed down, it is conceivable to take a broad target region like this.
  • the objective function f can be set to a function that maximizes the diagonal component r11 of the estimated model matrix R. In situations where the region in which brain activity will occur can be predicted with pinpoint precision, it is expected that the target region will be narrowed in this way.
  • the objective function f may also be set to a function that maximizes the ratio between the diagonal sum (sum of diagonal components) and the off-diagonal sum (sum of off-diagonal components) of the target region, as shown in the following formula (12).
  • the objective function f may be set to a function that maximizes the ratio between the diagonal sum of the target region and other elements.
  • the calculation device 15 calculates the forward model matrix G and the estimated model matrix R based on calculation conditions including the target area and possible sensor placement positions.
  • the calculation device 15 sets and outputs a proposed placement (priority order p) of the OPM sensors 2 using as an index the optimum objective function f set based on the estimated model matrix R.
  • the layout proposal method according to this embodiment can propose a layout of multiple OPM sensors 2 suitable for current source estimation. This makes it possible to efficiently optimize the sensor layout, which was difficult with conventional SQUIDs. Furthermore, it enables highly sensitive (highly accurate) magnetoencephalography. It also makes it possible to reduce the number of sensors required for current source estimation, thereby reducing the hardware costs of the magnetoencephalography system.
  • Figure 4 shows an example of sensor arrangement and measurement results when performing two magnetoencephalographic measurements using 11 OPM sensors 2.
  • the entire brain is treated as the test area and 11 OPM sensors 2 are evenly placed on the surface of the head.
  • the position of the current source is then tentatively determined from the measurement results of the 11 evenly placed OPM sensors 2.
  • the left brain is tentatively determined as the tentative position of the current source. Note that the part of the left brain where intensity above a predetermined value is concentrated may also be determined as the tentative position of the current source.
  • the provisional position of the current source tentatively measured in the first measurement (left brain) is set as the "target area" and the above-mentioned placement proposal process is performed, and the 11 OPM sensors 2 are repositioned according to the proposed placement obtained in the placement proposal process.
  • the position of the current source is then officially measured from the measurement results of the 11 repositioned OPM sensors 2.
  • the measurement result of maximum intensity is seen in a position closer to the true value (true abnormal area). In other words, the estimation accuracy of the current source has improved in the second measurement.
  • Fig. 5 is a diagram comparing the measurement accuracy of the first measurement (uniform arrangement) and the second measurement (optimal arrangement) shown in Fig. 4. It can be said that the estimation accuracy of the current source is higher when the position error between the true value and the estimated value (i.e., the shortest distance between the coordinate j1 of the maximum intensity in the true value and the coordinate j2 of the maximum intensity in the estimated current) is smaller and when the spatial spread of the estimated current (the maximum length of the area where the estimated current is measured) is smaller.
  • the position error between the true value and the estimated value i.e., the shortest distance between the coordinate j1 of the maximum intensity in the true value and the coordinate j2 of the maximum intensity in the estimated current
  • the spatial spread of the estimated current the maximum length of the area where the estimated current is measured
  • the position error between the true value and the estimated value was 33.16 mm, and the spatial spread of the estimated current was 48.28 mm
  • the position error between the true value and the estimated value was 5.18 mm
  • the spatial spread of the estimated current was 34.38 mm, which is an improvement.
  • the position error between the true value and the estimated value has improved significantly (by about 28 mm), and with optimal placement, the maximum intensity of the estimated current is only about 5 mm away from the true value (the abnormal region that is the true source of activity).
  • multiple OPM sensors 2 are evenly arranged on the head surface to tentatively measure the position of the current source, the tentatively measured position of the current source is set as the target region and a placement proposal process is performed, and the multiple OPM sensors 2 are re-arranged according to the proposed placement obtained in the placement proposal process to determine the position of the current source for the second measurement.
  • the provisional position of the current source it is sufficient to measure the provisional position of the current source, and it is not necessarily limited to using the OPM sensor 2.
  • the provisional position of the current source may be measured using fMRI (functional Magnetic Resonance Imaging) or the like.
  • fMRI functional Magnetic Resonance Imaging
  • a doctor's opinion may be involved in determining the provisional position of the current source.
  • step S50 of FIG. 3 described above in addition to displaying the proposed layouts of each priority level on the output device 4, the position error between the target area and the result of current source estimation (the position error between the true current and the estimated current) for each proposed layout may be displayed on the output device 4.
  • the user can look at the output device 4 and check whether the position error in the proposed layout for each priority order is within an acceptable range, and then decide the number of sensors s to be used for current source estimation. Therefore, it is also possible to reduce the number of sensors s to be used for current source estimation as necessary, making it possible to reduce the hardware costs of the magnetoencephalography system.
  • the sensor to which the layout proposal method according to the present disclosure can be applied is not limited to the OPM sensor 2.
  • the layout proposal method according to the present disclosure can also be applied to, for example, a fluxgate sensor, a magneto resistance (MR) sensor, a magneto impedance (MI) sensor, a coil type sensor, or a nitrogen-vacancy center in diamond (NVC) sensor instead of or in addition to the OPM sensor 2.
  • MR magneto resistance
  • MI magneto impedance
  • NVC nitrogen-vacancy center in diamond
  • the field to which the placement proposal method according to the present disclosure can be applied is not limited to the field of magnetoencephalography.
  • the placement proposal method according to the present disclosure can also be applied to fields in which biomagnetic fields other than those of the brain (such as magnetic fields generated by biological activity in the heart, spinal cord, peripheral nerves, or muscles) are measured.
  • the sensors to which the layout proposal method according to the present disclosure can be applied are not limited to magnetic sensors. That is, the layout proposal method according to the present disclosure can also be applied to potential sensors that detect potentials generated by electrical activity of a living body, such as an electroencephalogram (EEG) sensor or an electromyogram (EMG) sensor.
  • EEG electroencephalogram
  • EMG electromyogram
  • the placement proposal method according to the present disclosure can also be applied to SQUIDs whose positions are difficult to change.
  • the SQUIDs are placed in a dewar filled with liquid helium, and it is difficult to easily change their positions.
  • the placement proposal method described above can be applied to a process of proposing the positions of SQUIDs useful for current source estimation among the large number of SQUIDs placed in advance on the subject's head.
  • multiple SQUIDs may be placed on the subject's head in advance, calculation conditions may be set including the position of the target area and the placement of the multiple SQUIDs, priorities of all or some of the multiple SQUIDs may be calculated based on the calculation conditions, and the position of the current source in the subject's brain may be estimated using the detection results of the electromagnetic sensor selected based on the priorities.
  • a high-priority SQUID can be selected from among the many SQUIDs pre-positioned on the subject's head, and the current source can be estimated using the measurement results of the selected SQUID. Therefore, even when using a SQUID whose position is difficult to change, it is possible to perform accurate current source estimation by pre-positioning a large number of electromagnetic sensors on the subject's head.
  • a method for proposing the placement of electromagnetic sensors is a method for proposing the placement of multiple electromagnetic sensors to be placed on a biological surface surrounding a target area inside a subject, using a forward model for estimating an electromagnetic field generated at the positions of the multiple electromagnetic sensors due to biological activity inside the subject, and includes the steps of setting calculation conditions including the position of the target area and possible positions for placing the multiple electromagnetic sensors, calculating a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the set calculation conditions, and outputting the proposed placement.
  • a proposed placement of sensors is calculated and output based on the calculation conditions. This makes it possible to provide the user with a proposed placement of sensors suitable for current source estimation. The user can accurately estimate the position of the current source by placing multiple electromagnetic sensors according to the proposed placement.
  • the step of calculating the proposed placement includes a step of calculating the priority of all or a part of the possible placement positions.
  • the placement suggestion method described in paragraph 2 can provide the user with the priorities of all or part of the possible placement locations.
  • the method for proposing an arrangement of an electromagnetic sensor described in 1 or 2 further includes a step of tentatively measuring the position of a current source.
  • the step of setting the calculation conditions includes a step of setting the tentatively measured position of the current source as the position of the target region.
  • the positions of the current sources are tentatively measured before the proposed placement is calculated, and the proposed placement is calculated based on the tentatively measured positions of the current sources. This allows the proposed placement to be calculated efficiently with high accuracy.
  • the step of setting the calculation conditions includes a step of setting the parameters of the forward model as the calculation conditions.
  • the proposed placement can be calculated by setting the parameters of the forward model as the calculation conditions.
  • the step of calculating the proposed arrangement includes a step of calculating the proposed arrangement using an estimation model for estimating the position of a current source from the detection results of all or a part of the multiple electromagnetic sensors.
  • the step of calculating the proposed arrangement includes a step of calculating the proposed arrangement so that the difference between the estimation result of the estimation model obtained by setting the parameters of the estimation model as the calculation conditions and the position of the target area is small.
  • the proposed layout can be calculated so that the difference between the estimation result of the estimation model (position of the estimated current) and the position of the target area (position of the true current) is small.
  • the step of outputting the proposed arrangement includes a step of presenting to a user the difference between the estimation result of the estimation model and the position of the target area in the proposed arrangement.
  • the user can confirm the difference between the estimation result of the estimation model and the position of the target region as the accuracy of the current source estimation in the proposed placement.
  • the calculation conditions include at least one of the number of multiple electromagnetic sensors and the SNR (signal-noise ratio) of the multiple electromagnetic sensors in addition to the position of the target area and the possible placement positions.
  • the proposed placement can be calculated taking into account at least one of the number of electromagnetic sensors and the SNR.
  • the electromagnetic sensor is an OPM (Optically Pumped Magnetometer) sensor, a fluxgate sensor, an MR (Magneto Resistance) sensor, an MI (Magneto Impedance) sensor, a coil-type sensor, or an NVC (Nitrogen-Vacancy Center in Diamond) sensor.
  • OPM Optically Pumped Magnetometer
  • MR Magnetic Resistance
  • MI Magnetic Impedance
  • coil-type sensor a coil-type sensor
  • NVC Nonrogen-Vacancy Center in Diamond
  • a suggested placement of an OPM sensor, fluxgate sensor, MR sensor, MI sensor, coil-type sensor, or NVC sensor can be provided to a user.
  • the electromagnetic sensor is a magnetic sensor or an electric potential sensor that detects a magnetic field generated by electrical activity in the brain, heart, spinal cord, peripheral nerves, or muscles.
  • the placement suggestion method described in paragraph 9 can provide a user with suggested placements for magnetic sensors or electric potential sensors that detect magnetic fields generated by electrical activity in the brain, heart, spinal cord, peripheral nerves, or muscles.
  • the step of outputting the proposed arrangement includes a step of presenting the proposed arrangement to a user.
  • a method for estimating the position of a current source is a method for estimating the position of a current source inside a subject using detection results of a plurality of electromagnetic sensors arranged on a biological surface of the subject, each of which detects an electromagnetic field generated by biological activity taking place in a target area inside the subject, and includes the steps of setting calculation conditions including the position of the target area and the arrangement of the plurality of electromagnetic sensors, calculating priorities of all or a part of the plurality of electromagnetic sensors based on the calculation conditions, and estimating the position of the current source using the detection results of the electromagnetic sensors selected based on the priorities.
  • current source estimation is performed using the detection results of high-priority electromagnetic sensors among a large number of electromagnetic sensors. Therefore, even when using electromagnetic sensors (such as SQUIDs) whose positions are difficult to change, by placing a large number of electromagnetic sensors on the biological surface of the subject in advance, current source estimation can be performed with high accuracy using the detection results of high-priority sensors selected from a large number of electromagnetic sensors.
  • electromagnetic sensors such as SQUIDs
  • An electromagnetic sensor placement suggestion device is a device that uses a forward model for estimating an electromagnetic field generated at the positions of the electromagnetic sensors due to biological activity inside the subject to suggest a placement of multiple electromagnetic sensors to be placed on a biological surface surrounding a target area inside the subject, and includes an input unit to which calculation conditions including the position of the target area and possible positions of the multiple electromagnetic sensors are input, a calculation device that calculates a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the calculation conditions, and an output unit that outputs the proposed placement.
  • the layout proposal method described in paragraph 12 can achieve the same effect as the layout proposal method described in paragraph 1.
  • 1 Data processing system 2 OPM sensor, 3 Input device, 4 Output device, 10 Processing device, 11 Sensor interface, 12 Input interface, 13 Output interface, 14 Storage device, 15 Arithmetic unit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

This method for suggesting the positioning of electromagnetic sensors involves suggesting the positioning of a plurality of electromagnetic sensors positioned on the surface of a living body around a target region inside a subject, using a forward model for estimating electromagnetic fields produced at the positions of the plurality of electromagnetic sensors by biological activity inside the subject, the method including: a step for setting calculation conditions including the position of the target region and the positions at which the plurality of electromagnetic sensors can be positioned; a step for calculating, on the basis of the calculation conditions that have been set, suggested positioning for all or some of the plurality of electromagnetic sensors, which are for estimating the position of a current source inside the subject; and a step for outputting the suggested positioning.

Description

電磁気センサの配置提案方法および配置提案装置、ならびに電流源の位置推定方法Electromagnetic sensor layout proposal method and layout proposal device, and current source position estimation method

 本開示は、電磁気センサの配置提案方法および配置提案装置、ならびに電流源の位置推定方法に関する。 This disclosure relates to a method and device for proposing placement of electromagnetic sensors, and a method for estimating the position of a current source.

 被検体の生体表面に配置した複数の電磁気センサを用い、生体内部の生体活動を検出する技術が知られている。たとえば脳磁図(MEG;Magnetoencephalography)では、被検者の頭部に配置された複数のセンサによって、神経活動に伴って生じる脳磁を検出することができる。脳機能を明らかにするためには、電流源となる脳活動部位の位置を正確に推定すること(以下「電流源推定」とも称する)が望ましい。電流源推定の精度を向上させる対策の一つは、脳磁を高感度に計測することである。脳磁を高感度に計測するためには、センサと頭部の位置関係が重要となる。具体的には、センサと脳活動部位とを近づけること、脳活動に応じてセンサを適切な位置に配置することが重要となる。 A technology is known that uses multiple electromagnetic sensors placed on the surface of a subject's body to detect biological activity inside the body. For example, in magnetoencephalography (MEG), multiple sensors placed on the subject's head can detect brain magnetism that occurs with neural activity. In order to clarify brain function, it is desirable to accurately estimate the location of the brain's active area, which acts as a current source (hereinafter referred to as "current source estimation"). One measure to improve the accuracy of current source estimation is to measure the brain magnetism with high sensitivity. To measure the brain magnetism with high sensitivity, the positional relationship between the sensor and the head is important. Specifically, it is important to bring the sensor close to the brain's active area and to place the sensor in an appropriate position according to brain activity.

 従来の脳磁図は、各々が液体ヘリウムによる冷却が必要な複数の超伝導量子干渉素子(SQUID;Superconducting Quantum Interference Device)センサを使用している。各SQUIDセンサは、液体ヘリウムが充填されたデュワー内に配置されており、各SQUIDの配置は固定されている。 Conventional magnetoencephalography uses multiple superconducting quantum interference device (SQUID) sensors, each of which requires cooling with liquid helium. Each SQUID sensor is placed in a dewar filled with liquid helium, and the placement of each SQUID is fixed.

 一方、OPM(Optically Pumped Magnetometer)センサ、TMR(Tunnel Magneto Resistance)センサ、NVC(Nitrogen-Vacancy Center in Diamond)センサなど、室温で動作する小型磁気センサの開発が盛んに行われてきている。これらのセンサは、液体ヘリウムによる冷却は不要であり容易に位置を変えることができるため、従来困難であった脳活動位置に応じたセンサの配置変更を容易に行なうことが可能である。たとえば、特開2020-151023号公報には、被検者の頭部のMRI(Magnetic Resonance Imaging)画像から被検者の頭部のブロードマン領域の位置を特定し、特定されたブロードマン領域に近い頭部表面に1つのOPMセンサを配置することが開示されている。 On the other hand, there has been active development of small magnetic sensors that operate at room temperature, such as OPM (Optically Pumped Magnetometer) sensors, TMR (Tunnel Magneto Resistance) sensors, and NVC (Nitrogen-Vacancy Center in Diamond) sensors. These sensors do not require cooling with liquid helium and can be easily repositioned, making it easy to change the position of the sensor according to the location of brain activity, which was previously difficult. For example, JP 2020-151023 A discloses identifying the location of the Brodmann's area of the subject's head from an MRI (Magnetic Resonance Imaging) image of the subject's head, and placing one OPM sensor on the surface of the head close to the identified Brodmann's area.

特開2020-151023号公報JP 2020-151023 A

 OPMセンサ等の室温で動作する小型電磁気センサを用いて電流源推定を行なう場合においても、従来のSQUIDと同様に、生体表面に1つではなく複数のセンサを配置することが望ましい。そして、何らかの理由によりセンサの数に限りがある場合には、その限られた数のセンサを適切な位置に配置することが望ましい。しかしながら、特開2020-151023号公報には、複数のセンサの適切な配置について、何ら言及されていない。 Even when current source estimation is performed using a small electromagnetic sensor that operates at room temperature, such as an OPM sensor, it is desirable to place multiple sensors on the surface of the living body, rather than just one, as with conventional SQUIDs. Furthermore, if the number of sensors is limited for some reason, it is desirable to place the limited number of sensors in appropriate positions. However, JP 2020-151023 A does not mention anything about the appropriate placement of multiple sensors.

 また、SQUIDのように各センサの配置が固定されている場合であっても、複数のセンサの出力のうちいずれを用いるのか、については従来十分検討されていない。 Also, even when the placement of each sensor is fixed, as in the case of SQUID, there has been no sufficient consideration given to which of the outputs of multiple sensors should be used.

 本開示は上記の問題を解決するためになされたものであり、本開示の1つの目的は、電流源推定に適した複数のセンサの配置を提案することである。本開示の他の目的は、複数のセンサの出力の最適な利用方法を提供することである。 The present disclosure has been made to solve the above problems, and one objective of the present disclosure is to propose an arrangement of multiple sensors suitable for current source estimation. Another objective of the present disclosure is to provide a method for optimally utilizing the outputs of multiple sensors.

 本開示による電磁気センサの配置提案方法は、被検体の内部の生体活動により複数の電磁気センサの位置で生じる電磁場を推定するための順モデルを用いて、被検体の内部にある対象領域の周囲の生体表面に配置される複数の電磁気センサの配置を提案する方法であって、対象領域の位置と複数の電磁気センサの配置可能位置とを含む計算条件を設定するステップと、設定された計算条件に基づいて、被検体の内部の電流源の位置を推定するための複数の電磁気センサの全部または一部の提案配置を計算するステップと、提案配置を出力するステップとを含む。 The method for proposing the placement of electromagnetic sensors according to the present disclosure is a method for proposing the placement of multiple electromagnetic sensors to be placed on the biological surface surrounding a target area inside the subject, using a forward model for estimating an electromagnetic field generated at the positions of the multiple electromagnetic sensors due to biological activity inside the subject, and includes the steps of setting calculation conditions including the position of the target area and possible positions for placing the multiple electromagnetic sensors, calculating a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the set calculation conditions, and outputting the proposed placement.

 本開示による電流源の位置推定方法は、被検体の生体表面に配置され、被検体の内部の対象領域で行なわれる生体活動により生じる電磁場を各々が検出する複数の電磁気センサの検出結果を用いて、被検体の内部の電流源の位置を推定する方法であって、対象領域の位置と複数の電磁気センサの配置とを含む計算条件を設定するステップと、計算条件に基づいて複数の電磁気センサの全部または一部の優先度を計算するステップと、優先度に基づいて選択された電磁気センサの検出結果を用いて電流源の位置を推定するステップとを含む。 The current source position estimation method disclosed herein is a method for estimating the position of a current source inside a subject using the detection results of multiple electromagnetic sensors that are placed on the biological surface of the subject and each detects an electromagnetic field generated by biological activity taking place in a target area inside the subject, and includes the steps of setting calculation conditions including the position of the target area and the arrangement of the multiple electromagnetic sensors, calculating priorities of all or a part of the multiple electromagnetic sensors based on the calculation conditions, and estimating the position of the current source using the detection results of the electromagnetic sensors selected based on the priorities.

 本開示による電磁気センサの配置提案装置は、被検体の内部の生体活動により複数の電磁気センサの位置で生じる電磁場を推定するための順モデルを用いて、被検体の内部にある対象領域の周囲の生体表面に配置される複数の電磁気センサの配置を提案する装置であって、対象領域の位置と複数の電磁気センサの配置可能位置とを含む計算条件が入力される入力部と、被検体の内部の電流源の位置を推定するための複数の電磁気センサの全部または一部の提案配置を計算条件に基づいて計算する演算装置と、提案配置を出力する出力部とを備える。 The electromagnetic sensor placement suggestion device according to the present disclosure is a device that proposes the placement of multiple electromagnetic sensors to be placed on the biological surface surrounding a target area inside the subject, using a forward model for estimating the electromagnetic field generated at the positions of the multiple electromagnetic sensors due to biological activity inside the subject, and includes an input unit to which calculation conditions including the position of the target area and possible positions of the multiple electromagnetic sensors are input, a calculation device that calculates a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the calculation conditions, and an output unit that outputs the proposed placement.

 本開示による配置提案方法および配置提案装置によれば、電流源推定に適した複数のセンサの配置を提案することができる。 The layout proposal method and layout proposal device disclosed herein can propose a layout of multiple sensors suitable for current source estimation.

 本開示による位置推定方法によれば、複数の電磁気センサのうちから選択された優先度の高いセンサの検出結果を用いて電流源の位置を精度良く推定することができる。 The position estimation method disclosed herein allows the position of a current source to be accurately estimated using the detection results of a high-priority sensor selected from among multiple electromagnetic sensors.

電磁気センサの配置提案方法に用いられるデータ処理システムの全体構成を模式的に示す図である。1 is a diagram showing a schematic diagram of an overall configuration of a data processing system used in a method for proposing an arrangement of electromagnetic sensors; OPMセンサの配置提案方法を概念的に示す図である。FIG. 13 is a diagram conceptually illustrating a method for proposing an arrangement of an OPM sensor. 配置提案処理の手順の一例を示すフローチャートである。13 is a flowchart illustrating an example of a procedure for a placement proposal process. 11個のOPMセンサを用いて2回の脳磁計測を行なう場合のセンサ配置例および測定結果を示す図である。FIG. 13 is a diagram showing an example of sensor arrangement and measurement results when magnetoencephalography is performed twice using 11 OPM sensors. 図4に示す1回目(均等配置)の測定精度と2回目(最適配置)の測定精度とを比較した図である。FIG. 5 is a diagram comparing the measurement accuracy of the first measurement (uniform arrangement) shown in FIG. 4 with the measurement accuracy of the second measurement (optimal arrangement).

 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Below, the embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the same or equivalent parts in the drawings will be given the same reference numerals and their description will not be repeated.

 [実施の形態1]
 <システム構成>
 図1は、本実施の形態による電磁気センサの配置提案方法に用いられるデータ処理システム1の全体構成を模式的に示す図である。本実施の形態では、電磁気センサの一例として、室温で動作する小型磁気センサであるOPMセンサ2を用いる場合について説明する。
[First embodiment]
<System Configuration>
1 is a diagram showing a schematic diagram of an overall configuration of a data processing system 1 used in a method for proposing an arrangement of an electromagnetic sensor according to the present embodiment. In this embodiment, a case where an OPM sensor 2, which is a small magnetic sensor that operates at room temperature, is used as an example of an electromagnetic sensor will be described.

 データ処理システム1は、複数のOPMセンサ2と、入力装置3と、出力装置4と、処理装置10とを備える。データ処理システム1は、複数のOPMセンサ2による検出結果を用いて、被検者の脳内の生体活動場所(電流源)の位置を推定するように構成される。 The data processing system 1 includes a plurality of OPM sensors 2, an input device 3, an output device 4, and a processing device 10. The data processing system 1 is configured to estimate the location of biological activity (current source) in the subject's brain using the detection results from the plurality of OPM sensors 2.

 複数のOPMセンサ2の各々は、ユーザ(医療関係者等)によって被検者の頭部表面に配置され、被検者の脳内で行なわれる生体活動によって各配置位置に生じる磁気を検出する。複数のOPMセンサ2は、被検者の頭部表面に各センサ2が直接に当接してもよいし、被検者の頭部表面に直接には当接していなくてもよい。例えば、センサ2を保持するカバー部材を被験者の頭部に装着してもよい。なお、図1には、被検者の頭部表面に、4つのOPMセンサ2が配置される例が示されている。 Each of the multiple OPM sensors 2 is placed on the surface of the subject's head by a user (medical personnel, etc.) and detects the magnetic field generated at each placement position by biological activity taking place in the subject's brain. The multiple OPM sensors 2 may be in direct contact with the surface of the subject's head, or may not be in direct contact with the surface of the subject's head. For example, a cover member that holds the sensor 2 may be attached to the subject's head. Note that FIG. 1 shows an example in which four OPM sensors 2 are placed on the surface of the subject's head.

 各OPMセンサ2は、室温で動作するため、上述のSQUIDのようにデュワー内に配置する必要はない。そのため、複数のOPMセンサ2の配置は、脳活動に応じて容易に変更可能である。 Since each OPM sensor 2 operates at room temperature, it does not need to be placed inside a Dewar like the SQUID described above. Therefore, the placement of multiple OPM sensors 2 can be easily changed depending on brain activity.

 入力装置3は、たとえばキーボードあるいはマウスなどのポインティングデバイスであり、ユーザからの入力情報(後述の計算条件等)を受け付ける。入力装置3に入力された情報は、処理装置10に送られる。出力装置4は、たとえば液晶(LCD:Liquid Crystal Display)パネルで構成され、ユーザに情報を表示するディスプレイである。 The input device 3 is, for example, a pointing device such as a keyboard or a mouse, and accepts input information (such as calculation conditions described below) from the user. The information input to the input device 3 is sent to the processing device 10. The output device 4 is, for example, a liquid crystal display (LCD) panel, and is a display that shows information to the user.

 処理装置10は、主なハードウェア要素として、センサインターフェース11と、入力インターフェース12と、出力インターフェース13と、記憶装置14と、演算装置15とを備える。なお、処理装置10は、たとえば、汎用コンピュータで実現されてもよいし、データ処理システム1専用のコンピュータ(サーバ等)で実現されてもよい。 The processing device 10 has, as its main hardware elements, a sensor interface 11, an input interface 12, an output interface 13, a storage device 14, and an arithmetic unit 15. The processing device 10 may be realized, for example, by a general-purpose computer, or may be realized by a computer (such as a server) dedicated to the data processing system 1.

 センサインターフェース11は、処理装置10と複数のOPMセンサ2とを接続するためのインターフェースであり、処理装置10と複数のOPMセンサ2との間の信号の入出力を実現する。入力インターフェース12は、処理装置10と入力装置3とを接続するためのインターフェースであり、処理装置10と入力装置3との間の信号の入出力を実現する。出力インターフェース13は、処理装置10と出力装置4とを接続するためのインターフェースであり、処理装置10と出力装置4との間のデータの入出力を実現する。 The sensor interface 11 is an interface for connecting the processing device 10 to the multiple OPM sensors 2, and realizes the input and output of signals between the processing device 10 and the multiple OPM sensors 2. The input interface 12 is an interface for connecting the processing device 10 to the input device 3, and realizes the input and output of signals between the processing device 10 and the input device 3. The output interface 13 is an interface for connecting the processing device 10 to the output device 4, and realizes the input and output of data between the processing device 10 and the output device 4.

 記憶装置14は、演算装置15の処理に用いられる情報(プログラム等)を記憶する。なお、ユーザが入力装置3に入力した入力情報(後述の計算条件等)は、記憶装置14に記憶されている。 The storage device 14 stores information (programs, etc.) used for processing by the arithmetic device 15. Note that input information (such as calculation conditions described below) input by the user to the input device 3 is stored in the storage device 14.

 演算装置15は、CPU(Central Processing Unit)を有し、記憶装置14に記憶されている情報と、複数のOPMセンサ2の計測結果とを用いて、被検者の脳内の電流源(生体活動場所)の位置を推定する「電流源推定」を行なう。 The calculation device 15 has a CPU (Central Processing Unit) and performs "current source estimation" to estimate the position of the current source (place of biological activity) in the subject's brain using the information stored in the storage device 14 and the measurement results of multiple OPM sensors 2.

 演算装置15は、電流源推定によって得られた電流源の位置を生体活動場所として出力装置4に表示させる。ユーザは、出力装置4に表示される内容を見ることによって、被検者の脳内の生体活動場所の位置を把握することができる。 The computing device 15 causes the output device 4 to display the position of the current source obtained by current source estimation as the location of biological activity. By looking at the content displayed on the output device 4, the user can grasp the location of the location of biological activity in the subject's brain.

 <電流源推定に適したセンサ配置の提案>
 脳内の電流源の位置を精度良く推定するためには、複数のOPMセンサ2によって脳磁を高感度に計測することが望ましい。脳磁を高感度に計測するためには、複数のOPMセンサ2と脳内の電流源との位置関係が重要となる。具体的には、複数のOPMセンサ2を、脳内の電流源の位置に応じて適切な位置に配置することが重要となる。
<Proposal of sensor arrangement suitable for current source estimation>
In order to accurately estimate the position of a current source in the brain, it is desirable to measure the brain magnetism with high sensitivity using multiple OPM sensors 2. In order to measure the brain magnetism with high sensitivity, the positional relationship between the multiple OPM sensors 2 and the current source in the brain is important. Specifically, it is important to place the multiple OPM sensors 2 in appropriate positions according to the position of the current source in the brain.

 本実施の形態による演算装置15は、電流源推定に適したOPMセンサ2の配置を提案するための処理(以下「配置提案処理」とも称する)を行なうように構成される。以下では、配置提案処理によって提案されるOPMセンサ2の配置を、単に「提案配置」とも称する。 The calculation device 15 according to this embodiment is configured to perform a process for proposing an arrangement of the OPM sensor 2 suitable for current source estimation (hereinafter also referred to as the "arrangement proposal process"). Hereinafter, the arrangement of the OPM sensor 2 proposed by the arrangement proposal process is also simply referred to as the "proposed arrangement."

 図2は、配置提案処理によるOPMセンサ2の配置提案方法を概念的に示す図である。
 配置提案処理においては、計算条件の設定、提案配置の計算、提案配置の出力の各ステップが、この順に行なわれる。
FIG. 2 is a diagram conceptually showing a method for proposing the placement of the OPM sensor 2 by the placement proposal process.
In the placement proposal process, the steps of setting calculation conditions, calculating the proposed placement, and outputting the proposed placement are carried out in this order.

 [計算条件の設定]
 計算条件を設定するステップでは、入力装置3に入力される入力情報、および記憶装置14に記憶されている情報に基づいて、提案配置の計算に用いられる計算条件が設定される。計算条件には、「センサ配置可能位置」、「センサ数s」、「センサSNR(Signal-to-Noise Ratio、信号対雑音比)」、「脳モデル」、「対象領域」、「目的関数f」などが含まれる。
[Calculation condition settings]
In the step of setting the calculation conditions, the calculation conditions used for calculating the proposed arrangement are set based on the input information input to the input device 3 and the information stored in the storage device 14. The calculation conditions include "possible sensor arrangement positions,""number of sensors s,""sensor SNR (Signal-to-Noise Ratio),""brainmodel,""targetregion,""objective function f," and the like.

 「センサ配置可能位置」は、被検者の頭部表面における、OPMセンサ2の配置可能位置を示すデータである。具体的には、「センサ配置可能位置」には、OPMセンサ2を配置可能な最大数(以下「最大配置数m」ともいう)と、配置可能な位置の座標とが含まれる。センサ配置可能位置の座標は、たとえば、被検者の頭部のMRIあるいは三次元スキャナで取得された画像データに基づいて決めることができる。 "Sensor placement positions" is data indicating positions where OPM sensors 2 can be placed on the surface of the subject's head. Specifically, "sensor placement positions" includes the maximum number of OPM sensors 2 that can be placed (hereinafter also referred to as the "maximum number m") and the coordinates of the positions where the sensors can be placed. The coordinates of the sensor placement positions can be determined, for example, based on image data obtained by MRI or a three-dimensional scanner of the subject's head.

 なお、図2にはセンサ配置可能位置の座標が離散値である例が示されているが、頭部の表面座標を球面や平面の方程式のような形で定めることで、センサ配置可能位置の座標を連続値として扱うことも可能である。また、センサ配置可能位置の座標は、実際にはOPMセンサ2を配置できない仮想的な位置であってもよい。 Note that while FIG. 2 shows an example in which the coordinates of the possible sensor placement positions are discrete values, it is also possible to treat the coordinates of the possible sensor placement positions as continuous values by defining the surface coordinates of the head in a form similar to an equation for a sphere or a plane. In addition, the coordinates of the possible sensor placement positions may be virtual positions where the OPM sensor 2 cannot actually be placed.

 「センサ数s」は、被検者の頭部表面に実際に配置されるOPMセンサ2の数である。センサ数sは、最大配置数m以下の値である。図2に示す例では、センサ数sは「4」である。 The "number of sensors s" is the number of OPM sensors 2 actually placed on the subject's head surface. The number of sensors s is a value equal to or less than the maximum number of sensors m. In the example shown in FIG. 2, the number of sensors s is "4."

 「センサSNR」は、OPMセンサ2のSNRである。なお、「センサSNR」は、後述する配置計算に用いられる「定数λ」の決定に用いられる。 The "sensor SNR" is the SNR of the OPM sensor 2. The "sensor SNR" is used to determine the "constant λ" used in the placement calculation described below.

 「脳モデル」は、被検者の脳構造を三角メッシュなどを用いてモデル化したものである。脳モデルは、被検者の脳をMRIによって計測した結果に基づいて生成されたものであってもよいし、被検者の脳を標準的な脳と仮定して既存の標準脳モデルで代用したものであってもよい。 The "brain model" is a model of the subject's brain structure using a triangular mesh or the like. The brain model may be one that is generated based on the results of measuring the subject's brain by MRI, or it may be one that assumes the subject's brain is a standard brain and substitutes it with an existing standard brain model.

 「対象領域」は、脳モデル内における生体活動があると予想される場所である。後述する提案配置の計算においては、脳モデル内における対象領域内の頂点が電流源(電流ダイポール)の位置として扱われることになる。なお、対象領域に含まれる頂点の数は、1点であってもよいし、複数点であってもよい。 The "target region" is a location within the brain model where biological activity is expected to occur. In the calculation of the proposed layout described below, the vertices within the target region within the brain model will be treated as the positions of the current source (current dipole). The number of vertices included in the target region may be one or multiple.

 「目的関数f」は、後述する提案配置の計算に用いられる関数である。なお、後述するように、「目的関数f」は、「対象領域」に応じて決定される。 The "objective function f" is a function used in the calculation of the proposed placement, which will be described later. As will be described later, the "objective function f" is determined according to the "target area."

 本実施形態では、「目的関数f」として、対象領域内の頂点の対角和(対角成分の和)を最大化する関数に設定しているが、これに限らず、Olaf Hauk et.al., ’Towards an objective evaluation of EEGMEG source estimation methods - The linear approach(Olaf Hauk)’のTable 1に記載の各関数を目的関数として用いてもよい。 In this embodiment, the "objective function f" is set to a function that maximizes the diagonal sum (sum of diagonal components) of the vertices in the target region, but this is not limited to this. Any of the functions listed in Table 1 of Olaf Hauk et. al., "Towards an objective evaluation of EEGMEG source estimation methods - The linear approach (Olaf Hauk)" may be used as the objective function.

 [提案配置の計算]
 提案配置を計算するステップでは、設定された計算条件に適したセンサ配置が提案配置として理論計算により導出される。本実施の形態においては、各提案配置に、重要度の順番を示す「優先順位p」が付される。提案配置の計算方法については、後に詳述する。
[Calculation of proposed placement]
In the step of calculating the proposed layout, a sensor layout suitable for the set calculation conditions is derived as the proposed layout by theoretical calculation. In this embodiment, each proposed layout is assigned a "priority p" indicating the order of importance. The calculation method of the proposed layout will be described in detail later.

 [提案配置の出力]
 提案配置を出力するステップでは、理論計算から得られた提案配置のデータが出力される。たとえば、提案配置のデータが出力装置4に出力されると、出力装置4に提案配置が表示される。
[Output of proposed layout]
In the step of outputting the proposed layout, data of the proposed layout obtained from the theoretical calculation is output. For example, when the data of the proposed layout is output to the output device 4, the proposed layout is displayed on the output device 4.

 なお、図2に示される例では、提案配置が優先順位毎に表示される例が示されている。具体的には、最も重要な配置が「優先順位p=1」として示され、その上部に優先順位1の配置が表示されている。2番目に重要な配置が「優先順位p=2」として示され、その上部に優先順位1,2の配置が表示されている。3番目に重要な配置が「優先順位p=3」として示され、その上部に優先順位1~3の配置が表示されている。4番目に重要な配置が「優先順位p=4」として示され、その上部に優先順位1~4の配置が表示されている。 In the example shown in Figure 2, the proposed layouts are displayed by priority order. Specifically, the most important layout is shown as "priority order p=1", with the layout with priority order 1 displayed above it. The second most important layout is shown as "priority order p=2", with the layouts with priorities 1 and 2 displayed above it. The third most important layout is shown as "priority order p=3", with the layouts with priorities 1 to 3 displayed above it. The fourth most important layout is shown as "priority order p=4", with the layouts with priorities 1 to 4 displayed above it.

 [配置提案処理の手順]
 図3は、上述の配置提案処理の手順の一例を示すフローチャートである。
[Procedure for placement proposal processing]
FIG. 3 is a flowchart showing an example of the procedure of the above-mentioned placement proposal process.

 まず、演算装置15は、入力装置3に入力される入力情報、および記憶装置14に記憶されている情報に基づいて、計算条件を設定する(ステップS10)。計算条件には、上述したように、センサ配置可能位置(最大配置数m、各配置の座標)、センサ数s、センサSNR、脳モデル、対象領域、目的関数fなどが含まれる。 First, the calculation device 15 sets calculation conditions based on the input information input to the input device 3 and the information stored in the storage device 14 (step S10). As described above, the calculation conditions include possible sensor placement positions (maximum number of placements m, coordinates of each placement), number of sensors s, sensor SNR, brain model, target region, objective function f, etc.

 次いで、演算装置15は、優先順位pを初期値「1」に設定する(ステップS11)。その後、演算装置15は、処理をステップS30に移す。 Then, the calculation device 15 sets the priority p to the initial value "1" (step S11). After that, the calculation device 15 moves the process to step S30.

 次いで、演算装置15は、複数のセンサ配置可能位置のうち、優先順位が未定のセンサ位置を任意に1つ選択する(ステップS30)。 Then, the computing device 15 arbitrarily selects one sensor position whose priority has not yet been determined from among the multiple possible sensor placement positions (step S30).

 次いで、演算装置15は、順モデル行列Gを計算する(ステップS31)。順モデル行列Gは、脳モデルの頂点に電流ダイポールモーメントを与えて電流源としたときの、電流源の電流ダイポールモーメントと、OPMセンサ2の位置で生じる磁場(OPMセンサ2で計測される磁場)との対応関係を表現した順モデル解を示す行列である。すなわち、順モデル行列Gは、下記の式(1)を満たす。 Then, the calculation device 15 calculates the forward model matrix G (step S31). The forward model matrix G is a matrix that indicates a forward model solution that expresses the correspondence between the current dipole moment of a current source when a current dipole moment is applied to the vertices of the brain model to make them current sources, and the magnetic field generated at the position of the OPM sensor 2 (the magnetic field measured by the OPM sensor 2). In other words, the forward model matrix G satisfies the following formula (1).

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 式(1)において、「B」はOPMセンサ2の位置で生じる磁場ベクトル、「J」は脳内の電流源の真値電流の密度ベクトル、「G」は順モデル行列(順モデル解を示す行列)である。順モデル行列Gは、電流源の電流を、OPMセンサ2の位置で生じる磁場に変換する行列であり、脳磁図の分野では「リードフィールド行列」とも称される。この順モデル行列Gが、本開示の「順モデル」の一例に相当する。 In equation (1), "B" is the magnetic field vector generated at the position of the OPM sensor 2, "J" is the density vector of the true current of the current source in the brain, and "G" is the forward model matrix (a matrix that indicates the forward model solution). The forward model matrix G is a matrix that converts the current of the current source into a magnetic field generated at the position of the OPM sensor 2, and is also called the "lead field matrix" in the field of magnetoencephalography. This forward model matrix G corresponds to an example of the "forward model" of this disclosure.

 演算装置15は、優先順位pの順モデル行列Gを、下記の式(2)を用いて計算する。 The calculation unit 15 calculates the forward model matrix G p of the priority level p by using the following formula (2).

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

 具体的には、演算装置15は、1つ前の優先順位p-1の順モデル行列Gp-1に、ステップS30で選択された優先順位未定のセンサ1個に該当する順モデル行列gを追加した行列を、優先順位pの順モデル行列Gとして算出する。 Specifically, the calculation device 15 calculates a forward model matrix G p of the priority level p by adding a forward model matrix g corresponding to one sensor whose priority level is undetermined and selected in step S30 to the forward model matrix G p- 1 of the previous priority level p -1 .

 順モデル行列Gの行列サイズは、(優先順位p)×(頂点数v)である。したがって、優先順位pがセンサ数sに達した場合の順モデル行列Gは、(センサ数s)×(頂点数v)となる。なお、頂点数vとは、脳モデルの頂点の数(神経活動を模擬した電流ダイポールが置かれる点の数)である。なお、優先順位p=1の位置を決める際には、優先順位が決まったセンサ位置が未だ存在せず順モデル行列Gは空の行列となる。したがって、優先順位1の順モデル行列Gは、G=gとなる。 The size of the forward model matrix Gp is (priority p) × (number of vertices v). Therefore, when the priority p reaches the number of sensors s, the forward model matrix Gs becomes (number of sensors s) × (number of vertices v). The number of vertices v is the number of vertices of the brain model (the number of points where current dipoles simulating neural activity are placed). When determining the position of priority p=1, there is no sensor position with a determined priority yet, and the forward model matrix G0 is an empty matrix. Therefore, the forward model matrix G1 of priority 1 becomes G1 =g.

 次いで、演算装置15は、ステップS31で計算された順モデル行列Gを用いて、推定モデル行列Rを計算する(ステップS32)。推定モデル行列Rは、頭部表面に配置されるOPMセンサ2の検出結果から脳内の電流源の位置を推定するための推定モデルに相当する行列である。推定モデル行列Rは、下記の式(3)を満たす。 Then, the calculation device 15 uses the forward model matrix G calculated in step S31 to calculate the estimated model matrix R (step S32). The estimated model matrix R is a matrix corresponding to an estimated model for estimating the position of a current source in the brain from the detection results of the OPM sensor 2 placed on the head surface. The estimated model matrix R satisfies the following equation (3).

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

 式(3)において、「J」は脳内の電流源の真値電流の密度ベクトル、「J’」は脳内の電流源の推定電流の密度ベクトル、「R」は推定モデル行列(推定モデル解を示す行列)である。推定モデル行列Rは、電流源の真値電流(真値)をセンサ位置で生じる磁場に変換し、さらに、その変換された磁場を電流源の推定電流(推定解)に変換し直す行列である。推定モデル行列Rは、脳磁図の分野では「レゾリューション行列」とも称される。この推定モデル行列Rが、本開示の「推定モデル」の一例に相当する。 In equation (3), "J" is the density vector of the true current of the current source in the brain, "J'" is the density vector of the estimated current of the current source in the brain, and "R" is the estimated model matrix (a matrix that indicates the estimated model solution). The estimated model matrix R is a matrix that converts the true current (true value) of the current source into a magnetic field generated at the sensor position, and further converts the converted magnetic field back into an estimated current (estimated solution) of the current source. The estimated model matrix R is also called a "resolution matrix" in the field of magnetoencephalography. This estimated model matrix R corresponds to an example of an "estimated model" in this disclosure.

 演算装置15は、優先順位pの推定モデル行列Rを下記の式(4)を用いて計算する。 The calculation unit 15 calculates the estimation model matrix R p of the priority level p by using the following formula (4).

Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004

 式(4)において、「G’」は順モデル行列Gの転置行列であり、「λ」はセンサSNRに応じて決まる定数であり、「I」は単位行列である。なお、推定モデル行列Rの行列サイズは、(頂点数v)×(頂点数v)である。 In equation (4), “G p ′” is a transposed matrix of the forward model matrix G p , “λ” is a constant determined according to the sensor SNR, and “I” is a unit matrix. Note that the matrix size of the estimated model matrix R p is (number of vertices v) × (number of vertices v).

 次いで、演算装置15は、差分行列ΔRを下記の式(5)を用いて計算する(ステップS33)。 Next, the calculation device 15 calculates the difference matrix ΔR p by using the following equation (5) (step S33).

Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005

 式(5)において、「R」は優先順位pの推定モデル行列Rであり、「Rp-1」は優先順位p-1の推定モデル行列Rである。 In equation (5), "R p " is the estimated model matrix R of the priority order p, and "R p-1 " is the estimated model matrix R of the priority order p-1.

 次いで、演算装置15は、優先順位が未定のセンサ位置すべてに対して差分行列ΔRを計算したか否かを判定する(ステップS34)。 Next, the calculation device 15 determines whether or not the difference matrix ΔR p has been calculated for all sensor positions whose priorities have not yet been determined (step S34).

 優先順位が未定のセンサ位置すべてに対して差分行列ΔRを計算していない場合(ステップS34においてNO)、演算装置15は、処理をステップS30に戻し、優先順位が未定のセンサ位置すべてに対して差分行列ΔRが計算されるまでステップS30~ステップS34の処理を繰り返す。 If the difference matrix ΔR p has not been calculated for all sensor positions whose priorities are undetermined (NO in step S34), the calculation device 15 returns the process to step S30 and repeats the processes of steps S30 to S34 until the difference matrix ΔR p has been calculated for all sensor positions whose priorities are undetermined.

 優先順位が未定のセンサ位置すべてに対して差分行列ΔRが計算された場合(ステップS34においてYES)、演算装置15は、優先順位が未定のセンサ位置のうち、差分行列ΔRに基づく目的関数f(ΔR)が最適となるセンサ位置を特定し、特定されたセンサ位置を優先順位pの位置に設定する(ステップS40)。目的関数fは、後述するように、対象領域の位置に応じて決定される。 When the difference matrix ΔR p has been calculated for all the sensor positions whose priority is not yet determined (YES in step S34), the calculation device 15 identifies the sensor position whose priority is not yet determined and whose objective function f(ΔR p ) based on the difference matrix ΔR p is optimal, and sets the identified sensor position as the position whose priority is p (step S40). The objective function f is determined according to the position of the target region, as described later.

 次いで、演算装置15は、優先順位pがセンサ数sに達したか否かを判定する(ステップS41)。優先順位pがセンサ数sに達していない場合(ステップS41においてNO)、演算装置15は、処理をステップS20に移して優先順位pを1インクリメントし、その後、ステップS30~S34の処理を繰り返す。ステップS30~S34の処理は、優先順位pがセンサ数sに達するまで繰り返される。 Then, the calculation device 15 determines whether the priority p has reached the number of sensors s (step S41). If the priority p has not reached the number of sensors s (NO in step S41), the calculation device 15 moves the process to step S20 and increments the priority p by 1, and then repeats the processes of steps S30 to S34. The processes of steps S30 to S34 are repeated until the priority p reaches the number of sensors s.

 このような繰り返し処理によって、優先順位p=1~sのセンサ配置が、優先度の高い順に逐次的に決められる。 By repeating this process, the placement of sensors with priority levels p = 1 to s is determined sequentially in descending order of priority.

 たとえば、最大配置数mが「10」、センサ数sが「3」である場合を想定する。この場合、まず、優先順位p=1の位置が決められ、次に優先順位p=2の位置が決められ、最後に優先順位p=3の位置が決められる。 For example, assume that the maximum placement number m is "10" and the number of sensors s is "3." In this case, first the position of priority p=1 is determined, then the position of priority p=2 is determined, and finally the position of priority p=3 is determined.

 優先順位p=1の位置を決める段階では、10箇所すべての配置可能位置の優先順位が未定であるため、優先順位p=1の位置を決めるための順モデル行列G、推定モデル行列Rおよび差分行列ΔRが、10箇所すべての配置可能位置に対してそれぞれ別々に計算される。そして、差分行列ΔRに基づく目的関数fが最適となる位置が、優先順位p=1の位置に設定される。 At the stage of determining the position of priority level p=1, the priorities of all 10 possible placement positions have not yet been determined, so the forward model matrix G 1 , the estimated model matrix R 1 and the difference matrix ΔR 1 for determining the position of priority level p=1 are calculated separately for each of the 10 possible placement positions. Then, the position at which the objective function f based on the difference matrix ΔR 1 is optimal is set as the position of priority level p=1.

 優先順位p=1の位置が設定されると、次の優先順位p=2の位置を決める処理が行なわれる。この段階では、順モデル行列G、推定モデル行列Rおよび差分行列ΔRが、優先順位p=1の位置を除く残り9箇所の配置可能位置に対してそれぞれ別々に計算される。この際、G、RおよびΔRは、1つ前の優先順位p=1の位置を決めるためのG、RおよびΔRを用いて計算される。そのため、G、RおよびΔRは、優先順位p=1の位置にセンサを配置した時の影響が反映された値となる。そして、ΔRに基づく目的関数fが最適となる位置が、優先順位p=2の位置に設定される。したがって、優先順位p=2の位置は、1つ前の優先順位p=1の位置を加味して設定されることになる。 When the position of the priority p=1 is set, a process of determining the position of the next priority p=2 is performed. At this stage, the forward model matrix G 2 , the estimated model matrix R 2 and the difference matrix ΔR 2 are calculated separately for the remaining nine possible positions excluding the position of the priority p=1. At this time, G 2 , R 2 and ΔR 2 are calculated using G 1 , R 1 and ΔR 1 for determining the position of the previous priority p=1. Therefore, G 2 , R 2 and ΔR 2 are values that reflect the influence when a sensor is placed at the position of the priority p=1. Then, the position where the objective function f based on ΔR 2 is optimal is set as the position of the priority p=2. Therefore, the position of the priority p=2 is set by taking into account the position of the previous priority p=1.

 優先順位p=2の位置が設定されると、最後の優先順位p=3の位置を決める処理が行なわれる。この段階では、順モデル行列G、推定モデル行列Rおよび差分行列ΔRが、優先順位p=1,2の位置を除く残り8箇所の配置可能位置に対してそれぞれ別々に計算される。この際、G、RおよびΔRは、1つ前の優先順位p=2のG、RおよびΔRを用いて計算される。そして、G、RおよびΔRは、さらに1つ前の優先順位p=1のG、RおよびΔRを用いて計算されている。そのため、G、RおよびΔRは、優先順位p=1,2の位置の影響が反映された値となる。そして、ΔRに基づく目的関数fが最適となる位置が、優先順位p=3の位置に設定される。したがって、優先順位p=3の位置は、1つ前までの優先順位p=1,2の位置を加味して設定されることになる。 When the position of priority p=2 is set, a process of determining the position of the final priority p=3 is performed. At this stage, the forward model matrix G 3 , the estimated model matrix R 3 and the difference matrix ΔR 3 are calculated separately for the remaining eight possible placement positions excluding the positions of priority p=1, 2. At this time, G 3 , R 3 and ΔR 3 are calculated using G 2 , R 2 and ΔR 2 of the immediately previous priority p=2. G 2 , R 2 and ΔR 2 are further calculated using G 1 , R 1 and ΔR 1 of the immediately previous priority p=1. Therefore, G 3 , R 3 and ΔR 3 are values that reflect the influence of the positions of priority p=1, 2. Then, the position where the objective function f based on ΔR 3 is optimal is set to the position of priority p=3. Therefore, the position of priority p=3 is set taking into account the positions of priorities p=1, 2 up to the immediately previous priority.

 優先順位pがセンサ数sに達した場合(ステップS41においてYES)、演算装置15は、優先順位p=1~sまでのセンサ配置を提案配置として出力する(ステップS50)。たとえば、優先順位p=1~sまでの各々の提案配置を、出力装置4に表示させる。 When the priority p reaches the number of sensors s (YES in step S41), the calculation device 15 outputs the sensor placements with priority p=1 to s as proposed placements (step S50). For example, the output device 4 displays each of the proposed placements with priority p=1 to s.

 以上のような配置提案処理によって、処理装置10は、s個のOPMセンサ2の提案配置(被検者の脳内の電流源の位置を推定するの適したセンサ配置)をユーザに提供することができる。ユーザは、出力装置4に表示された提案配置に従ってs個のOPMセンサ2を配置することによって、電流源の位置を精度良く推定することができる。なお、提案配置のなかに、実際にはOPMセンサ2を配置できない仮想的な位置が含まれている場合には、当該仮想的な位置に最も近く、かつ実際にOPMセンサ2を配置できる位置に、OPMセンサ2を配置するようにすればよい。 By performing the above-described placement suggestion process, the processing device 10 can provide the user with a proposed placement of the s OPM sensors 2 (a sensor placement suitable for estimating the position of the current source in the subject's brain). The user can accurately estimate the position of the current source by placing the s OPM sensors 2 according to the proposed placement displayed on the output device 4. If the proposed placement includes a virtual position where the OPM sensor 2 cannot actually be placed, the OPM sensor 2 can be placed in a position closest to the virtual position and where the OPM sensor 2 can actually be placed.

 [順モデル行列Gの計算]
 以下、順モデル行列Gの計算手法について詳細に説明する。順モデル行列Gは、上述したように、式(1)に示す「B=GJ」を満たす行列である。具体的には、順モデル行列Gは、脳内の電流源の電流密度ベクトル「J」を、OPMセンサ2の位置で生じる磁場ベクトル「B」に変換する行列である。
[Calculation of forward model matrix G]
A detailed description will be given below of a method for calculating the forward model matrix G. As described above, the forward model matrix G is a matrix that satisfies "B = GJ" shown in equation (1). Specifically, the forward model matrix G is a matrix that converts the current density vector "J" of a current source in the brain into a magnetic field vector "B" generated at the position of the OPM sensor 2.

 脳内の電流源で生じる電流と、OPMセンサ2の位置で生じる磁場との関係は、ビオサバールの法則を用いて、下記の式(6)のように表わすことができる。 The relationship between the current generated by the current source in the brain and the magnetic field generated at the position of the OPM sensor 2 can be expressed by the following equation (6) using Biot-Savart's law.

Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006

 式(6)において、「B」はOPMセンサ2の位置で生じる磁場ベクトル、「r」はOPMセンサ2の位置(座標)、「J」は脳内の電流源の電流密度ベクトル、「r’」は脳内の電流源の位置(座標)である。 In equation (6), "B" is the magnetic field vector generated at the position of the OPM sensor 2, "r" is the position (coordinate) of the OPM sensor 2, "J" is the current density vector of the current source in the brain, and "r'" is the position (coordinate) of the current source in the brain.

 順モデル行列Gの成分は、上記の式(6)を計算することで求めることができる。「J」は電流密度ベクトルであり、その方向性を指定しなければ膨大な式を計算することになるが、電流源推定の分野では、脳モデルに垂直な方向に電流が流れると仮定することが妥当であると考えられているため、「J」は一意に決めることができる。OPMセンサ2の位置「r」は、計算条件で設定されるセンサ配置可能位置によって決めることができる。電流源の位置「r’」は、計算条件で設定される脳モデルの頂点位置によって決めることができる。このため、1つの電流源(頂点)につきビオサバールの式をセンサの最大配置数mだけ計算することで、当該1つの電流源についての順モデル行列Gの成分要素を計算することができる。 The components of the forward model matrix G can be found by calculating equation (6) above. "J" is a current density vector, and if its direction is not specified, a huge number of equations will have to be calculated; however, in the field of current source estimation, it is considered reasonable to assume that the current flows in a direction perpendicular to the brain model, so "J" can be uniquely determined. The position "r" of the OPM sensor 2 can be determined by the possible sensor placement positions set in the calculation conditions. The position "r'" of the current source can be determined by the vertex position of the brain model set in the calculation conditions. For this reason, by calculating the Biot-Savart equation for one current source (vertex) for the maximum number of sensor placements m, the components of the forward model matrix G for that one current source can be calculated.

 具体的に、ビオサバールの法則は、下記の式(7)に示すように、1つの電流源につき、センサの最大配置数mだけ書くことができる。 Specifically, Biot-Savart's law can be written as the maximum number m of sensors per current source, as shown in equation (7) below.

Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007

 ここで、電流源の電流の大きさを単位電流とすることで、単位電流あたりのOPMセンサ2の位置で生じる磁場Bを求めることができる。 Here, by taking the magnitude of the current from the current source as unit current, it is possible to determine the magnetic field B generated at the position of the OPM sensor 2 per unit current.

 さらに、理解し易くするために、OPMセンサ2が1軸方向にのみ感度を持つ場合を考える。この場合、上述の式(1)に示す「B=GJ」は、各行列の成分要素を可視化すると、下記の式(8)のようになる。 Furthermore, to make it easier to understand, consider the case where the OPM sensor 2 has sensitivity in only one axial direction. In this case, when the components of each matrix are visualized, "B = GJ" in the above formula (1) becomes the following formula (8).

Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008

 演算装置15は、上述の手法により順モデル行列Gの成分要素を計算することができる。 The calculation device 15 can calculate the components of the forward model matrix G using the above-mentioned method.

 [対象領域と目的関数fとの関係性]
 計算条件で設定される「対象領域」は、「目的関数f」の設定に用いられる。以下、対象領域と目的関数fとの関係性について詳しく説明する。なお、目的関数fは、上述したように差分行列ΔRに基づく関数であるが、差分行列ΔRは推定モデル行列Rの差分を取ったものであるため、ここでは、理解し易くするために、目的関数fが推定モデル行列Rに基づくものとして説明する。
[Relationship between target area and objective function f]
The "target region" set in the calculation conditions is used to set the "objective function f". The relationship between the target region and the objective function f will be described in detail below. As described above, the objective function f is a function based on the difference matrix ΔR. However, since the difference matrix ΔR is obtained by taking the difference of the estimated model matrix R, the objective function f will be described here as being based on the estimated model matrix R for ease of understanding.

 推定モデル行列Rは、上述したように、式(3)に示す「J’=RJ」を満たす行列である。具体的には、推定モデル行列Rは、真値電流Jを推定電流J’に変換する行列である。 As described above, the estimated model matrix R is a matrix that satisfies "J' = RJ" shown in equation (3). Specifically, the estimated model matrix R is a matrix that converts the true current J into the estimated current J'.

 式(3)の各行列の成分要素を可視化すると、下記の式(9)のようになる。 If we visualize each matrix element in equation (3), it becomes as shown in equation (9) below.

Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009

 式(9)において、「j~j」は脳モデルの各頂点における真値電流であり、「j’~j’」は、脳モデルの各頂点における推定電流である。 In equation (9), "j 1 to j n " are true currents at each vertex of the brain model, and "j 1 ' to j n '" are estimated currents at each vertex of the brain model.

 対象領域が脳モデルの4つの頂点(頂点1、2,3,4)を含む領域であるとした場合、下記の式(10)に示すように、推定モデル行列Rの1~4行目および1~4列目が、対象領域に関係する行列要素となる。 If the target region is an area including the four vertices of the brain model (vertices 1, 2, 3, and 4), then the first to fourth rows and first to fourth columns of the estimated model matrix R are the matrix elements related to the target region, as shown in equation (10) below.

Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010

 推定モデル行列Rを詳細に見ると、頂点1の真値電流が頂点1~vの推定電流に与える影響、および頂点1~vの真値電流が頂点1の推定電流に与える影響を読み取ることができる。これらを考慮すれば、推定モデル行列Rの理想的な形の一つとして、真値が存在する対角成分にのみ値を持つ行列が考えられる。つまり、目的関数fを、対象領域内の頂点の対角和(対角成分の和)を最大化する関数に設定することができる。この点に鑑み、演算装置15は、目的関数fを、対象領域(より詳しくは対象領域内の頂点)の位置に応じて決定する。 Looking at the estimation model matrix R in detail, it is possible to see the influence that the true current of vertex 1 has on the estimated current of vertices 1 to v, and the influence that the true current of vertices 1 to v has on the estimated current of vertex 1. Taking these into consideration, one ideal form of the estimation model matrix R is a matrix that has values only in the diagonal components where true values exist. In other words, the objective function f can be set to a function that maximizes the diagonal sum (the sum of the diagonal components) of the vertices in the target region. In view of this, the calculation device 15 determines the objective function f according to the position of the target region (more specifically, the vertices in the target region).

 最適化したい対象領域を広く取って対象領域内に頂点1~4が含まれる場合、下記の式(11)に示すように推定モデル行列Rの成分r11~r44の対角和を最大化する関数を目的関数fに設定することができる。脳活動が生じる領域は予想できているが、詳細な場所を絞り込めていない状況では、このように対象領域を広く取っておくことが想定される。 If the target region to be optimized is taken broadly and includes vertices 1 to 4, the objective function f can be set to a function that maximizes the diagonal sum of elements r11 to r44 of the estimated model matrix R, as shown in equation (11) below. In situations where the region where brain activity occurs can be predicted but the exact location cannot be narrowed down, it is conceivable to take a broad target region like this.

Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011

 一方、最適化したい対象領域を狭く取って対象領域内に頂点1のみが含まれる場合、推定モデル行列Rの対角成分r11を最大化する関数を目的関数fに設定することができる。脳活動が生じる領域をピンポイントに予想出来ている状況では、このように対象領域を狭く取っておくことが想定される。 On the other hand, if the target region to be optimized is narrowed to include only vertex 1, the objective function f can be set to a function that maximizes the diagonal component r11 of the estimated model matrix R. In situations where the region in which brain activity will occur can be predicted with pinpoint precision, it is expected that the target region will be narrowed in this way.

 また、目的関数fを、下記の式(12)に示す対象領域の対角和(対角成分の和)と非対角和(非対角成分の和)との比率を最大化する関数に設定するようにしてもよい。あるいは、目的関数fを、対象領域の対角和とそれ以外の要素との比率を最大化する関数に設定するようにしてもよい。 The objective function f may also be set to a function that maximizes the ratio between the diagonal sum (sum of diagonal components) and the off-diagonal sum (sum of off-diagonal components) of the target region, as shown in the following formula (12). Alternatively, the objective function f may be set to a function that maximizes the ratio between the diagonal sum of the target region and other elements.

Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012

 以上のように、本実施の形態による演算装置15は、対象領域およびセンサ配置可能位置等を含むの計算条件に基づいて、順モデル行列Gおよび推定モデル行列Rを計算する。そして、演算装置15は、推定モデル行列Rに基づいて設定される目的関数fが最適となる等を指標として、OPMセンサ2の提案配置(優先順位p)を設定して出力する。ユーザは、複数のOPMセンサ2を提案配置に従って配置することで、高感度な脳磁計測を効率良く行なうことができる。 As described above, the calculation device 15 according to this embodiment calculates the forward model matrix G and the estimated model matrix R based on calculation conditions including the target area and possible sensor placement positions. The calculation device 15 then sets and outputs a proposed placement (priority order p) of the OPM sensors 2 using as an index the optimum objective function f set based on the estimated model matrix R. By placing multiple OPM sensors 2 according to the proposed placement, the user can efficiently perform highly sensitive magnetoencephalography.

 本実施の形態による配置提案方法によれば、電流源推定に適した複数のOPMセンサ2の配置を提案することができる。これにより、従来のSQUIDで困難であったセンサ配置の最適化を効率良く行なうことができる。さらには、高感度(高精度)な脳磁計測が可能となる。また、電流源推定に必要なセンサ数を減らすことも可能となり、脳磁計測システムのハードウェアコストを低下させることが可能となる。 The layout proposal method according to this embodiment can propose a layout of multiple OPM sensors 2 suitable for current source estimation. This makes it possible to efficiently optimize the sensor layout, which was difficult with conventional SQUIDs. Furthermore, it enables highly sensitive (highly accurate) magnetoencephalography. It also makes it possible to reduce the number of sensors required for current source estimation, thereby reducing the hardware costs of the magnetoencephalography system.

 [実施の形態2]
 本実施の形態2では、限られた数のOPMセンサ2を用いてさらに高精度の脳磁計測を効率良く行なうために、以下のように脳磁計測を2回に分けて行なう。
[Embodiment 2]
In the second embodiment, in order to efficiently perform magnetoencephalography with higher accuracy using a limited number of OPM sensors 2, the magnetoencephalography is performed in two steps as described below.

 図4は、11個のOPMセンサ2を用いて2回の脳磁計測を行なう場合のセンサ配置例および測定結果を示す図である。 Figure 4 shows an example of sensor arrangement and measurement results when performing two magnetoencephalographic measurements using 11 OPM sensors 2.

 1回目の測定では、脳内の何処に電流源(真の異常領域)があるのかが不明であることから、全脳を検査対象領域として11個のOPMセンサ2を頭部表面に均等に配置する。そして、均等配置された11個のOPMセンサ2の計測結果から、電流源の位置が仮測定される。図4に示す例では、1回目の測定結果において、右脳よりも左脳に強い強度の測定結果が多く見られるため、左脳が電流源の暫定位置として仮測定される。なお、左脳内における、所定値以上の強度が集中している部分を、電流源の暫定位置としてもよい。 In the first measurement, since it is unclear where in the brain the current source (the true abnormal area) is located, the entire brain is treated as the test area and 11 OPM sensors 2 are evenly placed on the surface of the head. The position of the current source is then tentatively determined from the measurement results of the 11 evenly placed OPM sensors 2. In the example shown in Figure 4, since the first measurement results show more measurement results with stronger intensity in the left brain than in the right brain, the left brain is tentatively determined as the tentative position of the current source. Note that the part of the left brain where intensity above a predetermined value is concentrated may also be determined as the tentative position of the current source.

 2回目の測定では、1回目で仮測定された電流源の暫定位置(左脳)を「対象領域」に設定して上述の配置提案処理が行なわれ、配置提案処理で得られた提案配置に従って11個のOPMセンサ2が再配置される。そして、再配置された11個のOPMセンサ2の計測結果から、電流源の位置が正式に測定される。2回目の測定では、1回目の計測結果に基づいてOPMセンサ2を最適な位置に再配置することで、真値(真の異常領域)により近い位置に最大強度の測定結果が見られる。すなわち、2回目の測定では、電流源の推定精度が向上している。 In the second measurement, the provisional position of the current source tentatively measured in the first measurement (left brain) is set as the "target area" and the above-mentioned placement proposal process is performed, and the 11 OPM sensors 2 are repositioned according to the proposed placement obtained in the placement proposal process. The position of the current source is then officially measured from the measurement results of the 11 repositioned OPM sensors 2. In the second measurement, by repositioning the OPM sensors 2 to the optimal position based on the measurement results of the first measurement, the measurement result of maximum intensity is seen in a position closer to the true value (true abnormal area). In other words, the estimation accuracy of the current source has improved in the second measurement.

 図5は、図4に示す1回目(均等配置)の測定精度と2回目(最適配置)の測定精度とを比較した図である。電流源の推定精度は、真値と推定値との位置誤差(すなわち真値で最大強度の座標jと推定電流で最大強度の座標jとの最短距離)が小さいほど、また、推定電流の空間広がり(推定電流が計測された領域の最大長)が小さいほど、高いと言える。 Fig. 5 is a diagram comparing the measurement accuracy of the first measurement (uniform arrangement) and the second measurement (optimal arrangement) shown in Fig. 4. It can be said that the estimation accuracy of the current source is higher when the position error between the true value and the estimated value (i.e., the shortest distance between the coordinate j1 of the maximum intensity in the true value and the coordinate j2 of the maximum intensity in the estimated current) is smaller and when the spatial spread of the estimated current (the maximum length of the area where the estimated current is measured) is smaller.

 図5に示すように、1回目(均等配置)の測定では真値と推定値との位置誤差が33.16mm、推定電流の空間広がりが48.28mmであるのに対し、2回目(最適配置)の測定では真値と推定値との位置誤差が5.18mm、推定電流の空間広がりが34.38mmに改善していることが理解できる。特に、真値と推定値との位置誤差が大幅(約28mm)に改善しており、最適配置にすることで推定電流の最大強度は真値(真の活動源である異常領域)に対して5mm程度しか離れていない。 As shown in Figure 5, in the first measurement (even placement), the position error between the true value and the estimated value was 33.16 mm, and the spatial spread of the estimated current was 48.28 mm, whereas in the second measurement (optimal placement), the position error between the true value and the estimated value was 5.18 mm, and the spatial spread of the estimated current was 34.38 mm, which is an improvement. In particular, the position error between the true value and the estimated value has improved significantly (by about 28 mm), and with optimal placement, the maximum intensity of the estimated current is only about 5 mm away from the true value (the abnormal region that is the true source of activity).

 このように、本実施の形態2においては、1回目の測定では、複数のOPMセンサ2を頭部表面に均等に配置して電流源の位置を仮測定し、仮測定された電流源の位置を対象領域に設定して配置提案処理を行ない、配置提案処理で得られた提案配置に従って複数のOPMセンサ2を再配置して2回目の電流源の位置を行なう。これにより、限られた数のOPMセンサ2を用いて高精度の脳磁計測を効率良く行なうことができる。 In this way, in the first measurement in the second embodiment, multiple OPM sensors 2 are evenly arranged on the head surface to tentatively measure the position of the current source, the tentatively measured position of the current source is set as the target region and a placement proposal process is performed, and the multiple OPM sensors 2 are re-arranged according to the proposed placement obtained in the placement proposal process to determine the position of the current source for the second measurement. This makes it possible to efficiently perform high-precision magnetoencephalography using a limited number of OPM sensors 2.

 なお、1回目の仮測定では、電流源の暫定位置を測定できれよく、必ずしものOPMセンサ2を用いることに限定されない。たとえば、1回目の仮測定で、fMRI(functional Magnetic Resonance Imaging)等で電流源の暫定位置を測定するようにしてもよい。また、電流源の暫定位置を決めるにあたっては、医師の所見が介在してもよい。 In the first provisional measurement, it is sufficient to measure the provisional position of the current source, and it is not necessarily limited to using the OPM sensor 2. For example, in the first provisional measurement, the provisional position of the current source may be measured using fMRI (functional Magnetic Resonance Imaging) or the like. In addition, a doctor's opinion may be involved in determining the provisional position of the current source.

 [変形例1]
 たとえば上述の図3のステップS50において、各優先順位の提案配置を出力装置4に表示させることに加えて、各々の提案配置における、対象領域と電流源推定の結果との位置誤差(真値電流と推定電流との位置誤差)を出力装置4に表示させるようにしてもよい。
[Modification 1]
For example, in step S50 of FIG. 3 described above, in addition to displaying the proposed layouts of each priority level on the output device 4, the position error between the target area and the result of current source estimation (the position error between the true current and the estimated current) for each proposed layout may be displayed on the output device 4.

 このようにすることで、ユーザは、出力装置4を見て、各優先順位の提案配置における位置誤差が許容範囲であるか否かを確認した上で、電流源推定に用いるセンサ数sを決めることができる。したがって、必要に応じて電流源推定に用いるセンサ数sを減らすことも可能となり、脳磁計測システムのハードウェアコストを低下させることが可能となる。 In this way, the user can look at the output device 4 and check whether the position error in the proposed layout for each priority order is within an acceptable range, and then decide the number of sensors s to be used for current source estimation. Therefore, it is also possible to reduce the number of sensors s to be used for current source estimation as necessary, making it possible to reduce the hardware costs of the magnetoencephalography system.

 [変形例2]
 本開示による配置提案方法が適用可能なセンサは、OPMセンサ2であることに限定されない。本開示による配置提案方法は、たとえば、OPMセンサ2に代えてあるいは加えて、フラックスゲートセンサ、MR(Magneto Resistance)センサ、MI(Magneto Impedance)センサ、コイル型センサ、またはNVC(Nitrogen-Vacancy Center in Diamond)センサにも適用可能である。
[Modification 2]
The sensor to which the layout proposal method according to the present disclosure can be applied is not limited to the OPM sensor 2. The layout proposal method according to the present disclosure can also be applied to, for example, a fluxgate sensor, a magneto resistance (MR) sensor, a magneto impedance (MI) sensor, a coil type sensor, or a nitrogen-vacancy center in diamond (NVC) sensor instead of or in addition to the OPM sensor 2.

 [変形例3]
 本開示による配置提案方法が適用可能な分野は、脳磁計測の分野に限定されない。本開示による配置提案方法は、脳以外の生体磁場(心臓、脊髄、末梢神経または筋肉における生体活動により生じる磁場等)を計測する分野にも適用可能である。
[Modification 3]
The field to which the placement proposal method according to the present disclosure can be applied is not limited to the field of magnetoencephalography. The placement proposal method according to the present disclosure can also be applied to fields in which biomagnetic fields other than those of the brain (such as magnetic fields generated by biological activity in the heart, spinal cord, peripheral nerves, or muscles) are measured.

 [変形例4]
 本開示による配置提案方法が適用可能なセンサは、磁気センサに限定されない。すなわち、本開示による配置提案方法は、たとえば脳電図(EEG;ElectroEncephaloGraphy)センサ、あるいは筋電図(EMG;ElectroMyoGraphy)センサなどの、生体の電気的活動により生じる電位を検出する電位センサにも適用可能である。
[Modification 4]
The sensors to which the layout proposal method according to the present disclosure can be applied are not limited to magnetic sensors. That is, the layout proposal method according to the present disclosure can also be applied to potential sensors that detect potentials generated by electrical activity of a living body, such as an electroencephalogram (EEG) sensor or an electromyogram (EMG) sensor.

 [変形例5]
 本開示による配置提案方法は、位置変更が難しいSQUIDにも応用することができる。上述のように、SQUIDは、液体ヘリウムが充填されたデュワー内に配置されており、配置を容易に変更することは難しい。しかしながら、被検者の頭部に多数(たとえば数十あるいは数百)のSQUIDを予め配置しておくことは可能である。上述の配置提案方法は、被検者の頭部に予め配置された多数のSQUIDのうち、電流源推定に有用なSQUIDの位置を提案する処理に応用することができる。
[Modification 5]
The placement proposal method according to the present disclosure can also be applied to SQUIDs whose positions are difficult to change. As described above, the SQUIDs are placed in a dewar filled with liquid helium, and it is difficult to easily change their positions. However, it is possible to place a large number of SQUIDs (e.g., tens or hundreds) on the subject's head in advance. The placement proposal method described above can be applied to a process of proposing the positions of SQUIDs useful for current source estimation among the large number of SQUIDs placed in advance on the subject's head.

 具体的には、被検者の頭部に複数のSQUIDを予め配置しておき、対象領域の位置と複数のSQUIDの配置とを含む計算条件を設定し、計算条件に基づいて複数のSQUIDの全部または一部の優先度を計算し、優先度に基づいて選択された電磁気センサの検出結果を用いて被検体の脳内の電流源の位置を推定するようにしてもよい。 Specifically, multiple SQUIDs may be placed on the subject's head in advance, calculation conditions may be set including the position of the target area and the placement of the multiple SQUIDs, priorities of all or some of the multiple SQUIDs may be calculated based on the calculation conditions, and the position of the current source in the subject's brain may be estimated using the detection results of the electromagnetic sensor selected based on the priorities.

 このようにすることで、被検者の頭部に予め配置された多数のSQUIDのうちから優先度の高いSQUIDを選択し、選択されたSQUIDの測定結果を用いて電流源推定を行なうことができる。そのため、位置変更が難しいSQUIDを用いる場合であっても、多数の電磁気センサを被検者の頭部に予め配置しておくことによって、電流源推定を精度良く行なうことができる。 In this way, a high-priority SQUID can be selected from among the many SQUIDs pre-positioned on the subject's head, and the current source can be estimated using the measurement results of the selected SQUID. Therefore, even when using a SQUID whose position is difficult to change, it is possible to perform accurate current source estimation by pre-positioning a large number of electromagnetic sensors on the subject's head.

 [態様]
 上述した実施の形態およびその変形例は、以下の態様の具体例であることが当業者により理解される。
[Aspects]
It will be understood by those skilled in the art that the above-described embodiment and its modifications are specific examples of the following aspects.

 (第1項) 一態様に係る電磁気センサの配置提案方法は、被検体の内部の生体活動により複数の電磁気センサの位置で生じる電磁場を推定するための順モデルを用いて、被検体の内部にある対象領域の周囲の生体表面に配置される複数の電磁気センサの配置を提案する方法であって、対象領域の位置と複数の電磁気センサの配置可能位置とを含む計算条件を設定するステップと、設定された計算条件に基づいて、被検体の内部の電流源の位置を推定するための複数の電磁気センサの全部または一部の提案配置を計算するステップと、提案配置を出力するステップとを含む。 (Section 1) A method for proposing the placement of electromagnetic sensors according to one embodiment is a method for proposing the placement of multiple electromagnetic sensors to be placed on a biological surface surrounding a target area inside a subject, using a forward model for estimating an electromagnetic field generated at the positions of the multiple electromagnetic sensors due to biological activity inside the subject, and includes the steps of setting calculation conditions including the position of the target area and possible positions for placing the multiple electromagnetic sensors, calculating a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the set calculation conditions, and outputting the proposed placement.

 第1項に記載の配置提案方法によれば、計算条件に基づいてセンサの提案配置が計算されて出力される。これにより、電流源推定に適したセンサの提案配置をユーザに提供することができる。ユーザは、提案配置に従って複数の電磁気センサを配置することによって、電流源の位置を精度良く推定することができる。 According to the placement suggestion method described in paragraph 1, a proposed placement of sensors is calculated and output based on the calculation conditions. This makes it possible to provide the user with a proposed placement of sensors suitable for current source estimation. The user can accurately estimate the position of the current source by placing multiple electromagnetic sensors according to the proposed placement.

 (第2項) 第1項に記載の電磁気センサの配置提案方法において、提案配置を計算するステップは、配置可能位置の全部または一部の優先度を計算するステップを含む。 (2) In the method for proposing placement of an electromagnetic sensor described in 1, the step of calculating the proposed placement includes a step of calculating the priority of all or a part of the possible placement positions.

 第2項に記載の配置提案方法によれば、配置可能位置の全部または一部の優先度をユーザに提供することができる。 The placement suggestion method described in paragraph 2 can provide the user with the priorities of all or part of the possible placement locations.

 (第3項) 第1または2項に記載の電磁気センサの配置提案方法において、電流源の位置を仮測定するステップをさらに含む。計算条件を設定するステップは、仮測定された電流源の位置を対象領域の位置として設定するステップを含む。 (3) The method for proposing an arrangement of an electromagnetic sensor described in 1 or 2 further includes a step of tentatively measuring the position of a current source. The step of setting the calculation conditions includes a step of setting the tentatively measured position of the current source as the position of the target region.

 第3項に記載の配置提案方法によれば、提案配置を計算する前に電流源の位置が仮測定され、仮測定された電流源の位置に基づいて提案配置が計算される。これにより、提案配置を高精度に効率良く計算することができる。 According to the placement proposal method described in Section 3, the positions of the current sources are tentatively measured before the proposed placement is calculated, and the proposed placement is calculated based on the tentatively measured positions of the current sources. This allows the proposed placement to be calculated efficiently with high accuracy.

 (第4項) 第1~3項のいずれかに記載の電磁気センサの配置提案方法において、計算条件を設定するステップは、順モデルのパラメータを計算条件に設定するステップを含む。 (4) In the method for proposing an arrangement of an electromagnetic sensor described in any one of paragraphs 1 to 3, the step of setting the calculation conditions includes a step of setting the parameters of the forward model as the calculation conditions.

 第4項に記載の配置提案方法によれば、順モデルのパラメータを計算条件に設定することによって提案配置を計算することができる。 According to the placement proposal method described in Section 4, the proposed placement can be calculated by setting the parameters of the forward model as the calculation conditions.

 (第5項) 第1~4項のいずれかに記載の電磁気センサの配置提案方法において、提案配置を計算するステップは、複数の電磁気センサの全部または一部の検出結果から電流源の位置を推定するための推定モデルを用いて提案配置を計算するステップを含む。提案配置を計算するステップは、推定モデルのパラメータを計算条件に設定することによって求まる推定モデルの推定結果と対象領域の位置との差が小さくなるように、提案配置を計算するステップを含む。 (5) In the method for proposing an arrangement of an electromagnetic sensor described in any one of 1 to 4, the step of calculating the proposed arrangement includes a step of calculating the proposed arrangement using an estimation model for estimating the position of a current source from the detection results of all or a part of the multiple electromagnetic sensors. The step of calculating the proposed arrangement includes a step of calculating the proposed arrangement so that the difference between the estimation result of the estimation model obtained by setting the parameters of the estimation model as the calculation conditions and the position of the target area is small.

 第5項に記載の配置提案方法によれば、推定モデルの推定結果(推定電流の位置)と対象領域の位置(真値電流の位置)との差が小さくなるように、提案配置を計算することができる。 According to the layout proposal method described in Section 5, the proposed layout can be calculated so that the difference between the estimation result of the estimation model (position of the estimated current) and the position of the target area (position of the true current) is small.

 (第6項) 第5項に記載の電磁気センサの配置提案方法において、提案配置を出力するステップは、提案配置における、推定モデルの推定結果と対象領域の位置との差をユーザに提示するステップを含む。 (Section 6) In the method for proposing an arrangement of an electromagnetic sensor described in Section 5, the step of outputting the proposed arrangement includes a step of presenting to a user the difference between the estimation result of the estimation model and the position of the target area in the proposed arrangement.

 第6項に記載の配置提案方法によれば、ユーザは、推定モデルの推定結果と対象領域の位置との差を、提案配置における電流源推定の精度として確認することができる。 According to the placement proposal method described in Section 6, the user can confirm the difference between the estimation result of the estimation model and the position of the target region as the accuracy of the current source estimation in the proposed placement.

 (第7項) 第1~6項のいずれかに記載の電磁気センサの配置提案方法において、計算条件は、対象領域の位置および配置可能位置に加えて、複数の電磁気センサの数、および複数の電磁気センサのSNR(Signal-Noise Ratio)の少なくとも一方を含む。 (7) In the method for proposing placement of an electromagnetic sensor described in any one of 1 to 6, the calculation conditions include at least one of the number of multiple electromagnetic sensors and the SNR (signal-noise ratio) of the multiple electromagnetic sensors in addition to the position of the target area and the possible placement positions.

 第7項に記載の配置提案方法によれば、電磁気センサの数およびSNRの少なくとも一方を加味して提案配置を計算することができる。 According to the placement proposal method described in Section 7, the proposed placement can be calculated taking into account at least one of the number of electromagnetic sensors and the SNR.

 (第8項) 第1~7項のいずれかに記載の電磁気センサの配置提案方法において、電磁気センサは、OPM(Optically Pumped Magnetometer)センサ、フラックスゲートセンサ、MR(Magneto Resistance)センサ、MI(Magneto Impedance)センサ、コイル型センサ、またはNVC(Nitrogen-Vacancy Center in Diamond)センサである。 (8) In the method for proposing an arrangement of an electromagnetic sensor described in any one of 1 to 7, the electromagnetic sensor is an OPM (Optically Pumped Magnetometer) sensor, a fluxgate sensor, an MR (Magneto Resistance) sensor, an MI (Magneto Impedance) sensor, a coil-type sensor, or an NVC (Nitrogen-Vacancy Center in Diamond) sensor.

 第8項に記載の配置提案方法によれば、OPMセンサ、フラックスゲートセンサ、MRセンサ、MIセンサ、コイル型センサまたはNVCセンサの提案配置をユーザに提供することができる。 According to the placement suggestion method described in Section 8, a suggested placement of an OPM sensor, fluxgate sensor, MR sensor, MI sensor, coil-type sensor, or NVC sensor can be provided to a user.

 (第9項) 第1~8項のいずれかに記載の電磁気センサの配置提案方法において、電磁気センサは、脳、心臓、脊髄、末梢神経または筋肉における電気的活動により生じる磁界を検出する磁気センサまたは電位センサである。 (9) In the method for proposing an electromagnetic sensor placement described in any one of 1 to 8, the electromagnetic sensor is a magnetic sensor or an electric potential sensor that detects a magnetic field generated by electrical activity in the brain, heart, spinal cord, peripheral nerves, or muscles.

 第9項に記載の配置提案方法によれば、脳、心臓、脊髄、末梢神経または筋肉における電気的活動により生じる磁界を検出する磁気センサまたは電位センサの提案配置をユーザに提供することができる。 The placement suggestion method described in paragraph 9 can provide a user with suggested placements for magnetic sensors or electric potential sensors that detect magnetic fields generated by electrical activity in the brain, heart, spinal cord, peripheral nerves, or muscles.

 (第10項) 第1~9項のいずれかに記載の電磁気センサの配置提案方法において、提案配置を出力するステップは、提案配置をユーザに提示するステップを含む。 (10) In the method for proposing an arrangement of an electromagnetic sensor described in any one of paragraphs 1 to 9, the step of outputting the proposed arrangement includes a step of presenting the proposed arrangement to a user.

 第10項に記載の配置提案方法によれば、提案配置をユーザに提示することができる。
 (第11項) 一態様に係る電流源の位置推定方法は、被検体の生体表面に配置され、被検体の内部の対象領域で行なわれる生体活動により生じる電磁場を各々が検出する複数の電磁気センサの検出結果を用いて、被検体の内部の電流源の位置を推定する方法であって、対象領域の位置と複数の電磁気センサの配置とを含む計算条件を設定するステップと、計算条件に基づいて複数の電磁気センサの全部または一部の優先度を計算するステップと、優先度に基づいて選択された電磁気センサの検出結果を用いて電流源の位置を推定するステップとを含む。
According to the method for proposing an arrangement described in the tenth aspect, the proposed arrangement can be presented to the user.
(Clause 11) A method for estimating the position of a current source according to one embodiment is a method for estimating the position of a current source inside a subject using detection results of a plurality of electromagnetic sensors arranged on a biological surface of the subject, each of which detects an electromagnetic field generated by biological activity taking place in a target area inside the subject, and includes the steps of setting calculation conditions including the position of the target area and the arrangement of the plurality of electromagnetic sensors, calculating priorities of all or a part of the plurality of electromagnetic sensors based on the calculation conditions, and estimating the position of the current source using the detection results of the electromagnetic sensors selected based on the priorities.

 第11項に記載の配置提案方法によれば、多数の電磁気センサのうち、優先度の高い電磁気センサの検出結果を用いて電流源推定が行なわれる。そのため、位置変更が難しい電磁気センサ(SQUIDなど)を用いる場合であっても、多数の電磁気センサを被検体の生体表面に予め配置しておくことによって、多数の電磁気センサのうちから選択された優先度の高いセンサの検出結果を用いて電流源推定を精度良く行なうことができる。 According to the placement proposal method described in Section 11, current source estimation is performed using the detection results of high-priority electromagnetic sensors among a large number of electromagnetic sensors. Therefore, even when using electromagnetic sensors (such as SQUIDs) whose positions are difficult to change, by placing a large number of electromagnetic sensors on the biological surface of the subject in advance, current source estimation can be performed with high accuracy using the detection results of high-priority sensors selected from a large number of electromagnetic sensors.

 (第12項) 一態様に係る電磁気センサの配置提案装置は、被検体の内部の生体活動により複数の電磁気センサの位置で生じる電磁場を推定するための順モデルを用いて、被検体の内部にある対象領域の周囲の生体表面に配置される複数の電磁気センサの配置を提案する装置であって、対象領域の位置と複数の電磁気センサの配置可能位置とを含む計算条件が入力される入力部と、被検体の内部の電流源の位置を推定するための複数の電磁気センサの全部または一部の提案配置を計算条件に基づいて計算する演算装置と、提案配置を出力する出力部とを備える。 (Clause 12) An electromagnetic sensor placement suggestion device according to one embodiment is a device that uses a forward model for estimating an electromagnetic field generated at the positions of the electromagnetic sensors due to biological activity inside the subject to suggest a placement of multiple electromagnetic sensors to be placed on a biological surface surrounding a target area inside the subject, and includes an input unit to which calculation conditions including the position of the target area and possible positions of the multiple electromagnetic sensors are input, a calculation device that calculates a proposed placement of all or a part of the multiple electromagnetic sensors to estimate the position of a current source inside the subject based on the calculation conditions, and an output unit that outputs the proposed placement.

 第12項に記載の配置提案方法によれば、第1項に記載の配置提案方法と同様の作用効果を奏することができる。 The layout proposal method described in paragraph 12 can achieve the same effect as the layout proposal method described in paragraph 1.

 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The scope of the present invention is indicated by the claims, not by the description of the embodiments above, and is intended to include all modifications within the meaning and scope of the claims.

 1 データ処理システム、2 OPMセンサ、3 入力装置、4 出力装置、10 処理装置、11 センサインターフェース、12 入力インターフェース、13 出力インターフェース、14 記憶装置、15 演算装置。 1 Data processing system, 2 OPM sensor, 3 Input device, 4 Output device, 10 Processing device, 11 Sensor interface, 12 Input interface, 13 Output interface, 14 Storage device, 15 Arithmetic unit.

Claims (12)

 被検体の内部の生体活動により複数の電磁気センサの位置で生じる電磁場を推定するための順モデルを用いて、前記被検体の内部にある対象領域の周囲の生体表面に配置される前記複数の電磁気センサの配置を提案する方法であって、
 前記対象領域の位置と前記複数の電磁気センサの配置可能位置とを含む計算条件を設定するステップと、
 設定された前記計算条件に基づいて、前記被検体の内部の電流源の位置を推定するための前記複数の電磁気センサの全部または一部の提案配置を計算するステップと、
 前記提案配置を出力するステップとを含む、電磁気センサの配置提案方法。
1. A method for proposing an arrangement of a plurality of electromagnetic sensors to be placed on a biological surface around a region of interest within a subject, using a forward model for estimating an electromagnetic field generated at the locations of the plurality of electromagnetic sensors due to biological activity within the subject, the method comprising:
setting a calculation condition including a position of the target area and possible positions of the plurality of electromagnetic sensors;
calculating a proposed arrangement of all or a part of the plurality of electromagnetic sensors for estimating a position of a current source inside the subject based on the set calculation conditions;
and outputting the proposed placement.
 前記提案配置を計算するステップは、前記配置可能位置の全部または一部の優先度を計算するステップを含む、請求項1に記載の電磁気センサの配置提案方法。 The method for proposing placement of an electromagnetic sensor according to claim 1, wherein the step of calculating the proposed placement includes a step of calculating priorities of all or a part of the possible placement positions.  前記電流源の位置を仮測定するステップをさらに含み、
 前記計算条件を設定するステップは、仮測定された前記電流源の位置を前記対象領域の位置として設定するステップを含む、請求項1または2に記載の電磁気センサの配置提案方法。
determining a location of the current source;
3. The method for proposing an arrangement of electromagnetic sensors according to claim 1, wherein the step of setting the calculation conditions includes a step of setting a tentatively measured position of the current source as a position of the target region.
 前記計算条件を設定するステップは、前記順モデルのパラメータを前記計算条件に設定するステップを含む、請求項1に記載の電磁気センサの配置提案方法。 The method for proposing an arrangement of an electromagnetic sensor according to claim 1, wherein the step of setting the calculation conditions includes a step of setting parameters of the forward model to the calculation conditions.  前記提案配置を計算するステップは、前記複数の電磁気センサの全部または一部の検出結果から前記電流源の位置を推定するための推定モデルを用いて前記提案配置を計算するステップを含み、
 前記提案配置を計算するステップは、前記推定モデルのパラメータを前記計算条件に設定することによって求まる前記推定モデルの推定結果と前記対象領域の位置との差が小さくなるように、前記提案配置を計算するステップを含む、請求項1に記載の電磁気センサの配置提案方法。
The step of calculating the proposed arrangement includes a step of calculating the proposed arrangement using an estimation model for estimating a position of the current source from detection results of all or a part of the plurality of electromagnetic sensors;
The method for proposing an arrangement of an electromagnetic sensor as described in claim 1, wherein the step of calculating the proposed arrangement includes a step of calculating the proposed arrangement so that a difference between the estimation result of the estimation model obtained by setting parameters of the estimation model to the calculation conditions and the position of the target area is small.
 前記提案配置を出力するステップは、前記提案配置における、前記推定モデルの推定結果と前記対象領域の位置との差をユーザに提示するステップを含む、請求項5に記載の電磁気センサの配置提案方法。 The method for proposing an arrangement of an electromagnetic sensor according to claim 5, wherein the step of outputting the proposed arrangement includes a step of presenting to a user a difference between the estimation result of the estimation model and the position of the target area in the proposed arrangement.  前記計算条件は、前記対象領域の位置および前記配置可能位置に加えて、前記複数の電磁気センサの数、および前記複数の電磁気センサのSNR(Signal-Noise Ratio)の少なくとも一方を含む、請求項1に記載の電磁気センサの配置提案方法。 The method for proposing placement of electromagnetic sensors according to claim 1, wherein the calculation conditions include at least one of the number of the plurality of electromagnetic sensors and the SNR (Signal-Noise Ratio) of the plurality of electromagnetic sensors in addition to the position of the target area and the possible placement positions.  前記電磁気センサは、OPM(Optically Pumped Magnetometer)センサ、フラックスゲートセンサ、MR(Magneto Resistance)センサ、MI(Magneto Impedance)センサ、コイル型センサ、またはNVC(Nitrogen-Vacancy Center in Diamond)センサである、請求項1に記載の電磁気センサの配置提案方法。 The method for proposing an arrangement of an electromagnetic sensor according to claim 1, wherein the electromagnetic sensor is an OPM (Optically Pumped Magnetometer) sensor, a fluxgate sensor, an MR (Magneto Resistance) sensor, an MI (Magneto Impedance) sensor, a coil-type sensor, or an NVC (Nitrogen-Vacancy Center in Diamond) sensor.  前記電磁気センサは、
  脳、心臓、脊髄、末梢神経または筋肉における電気的活動により生じる磁界を検出する磁気センサまたは電位センサである、請求項1に記載の電磁気センサの配置提案方法。
The electromagnetic sensor includes:
2. The method for proposing an arrangement of electromagnetic sensors according to claim 1, wherein the sensors are magnetic sensors or electric potential sensors that detect magnetic fields generated by electrical activity in the brain, heart, spinal cord, peripheral nerves, or muscles.
 前記提案配置を出力するステップは、前記提案配置をユーザに提示するステップを含む、請求項1に記載の電磁気センサの配置提案方法。 The method for proposing an arrangement of an electromagnetic sensor according to claim 1, wherein the step of outputting the proposed arrangement includes a step of presenting the proposed arrangement to a user.  被検体の生体表面に配置され、前記被検体の内部の対象領域で行なわれる生体活動により生じる電磁場を各々が検出する複数の電磁気センサの検出結果を用いて、前記被検体の内部の電流源の位置を推定する方法であって、
 前記対象領域の位置と前記複数の電磁気センサの配置とを含む計算条件を設定するステップと、
 前記計算条件に基づいて前記複数の電磁気センサの全部または一部の優先度を計算するステップと、
 前記優先度に基づいて選択された電磁気センサの検出結果を用いて前記電流源の位置を推定するステップとを含む、電流源の位置推定方法。
A method for estimating a position of a current source inside a subject using detection results of a plurality of electromagnetic sensors arranged on a biological surface of the subject, each of which detects an electromagnetic field generated by biological activity occurring in a target region inside the subject, comprising:
setting a calculation condition including a position of the target area and an arrangement of the plurality of electromagnetic sensors;
calculating priorities of all or a portion of the plurality of electromagnetic sensors based on the calculation conditions;
and estimating a position of the current source using detection results of the electromagnetic sensors selected based on the priority.
 被検体の内部の生体活動により複数の電磁気センサの位置で生じる電磁場を推定するための順モデルを用いて、前記被検体の内部にある対象領域の周囲の生体表面に配置される前記複数の電磁気センサの配置を提案する装置であって、
 前記対象領域の位置と前記複数の電磁気センサの配置可能位置とを含む計算条件が入力される入力部と、
 前記被検体の内部の電流源の位置を推定するための前記複数の電磁気センサの全部または一部の提案配置を前記計算条件に基づいて計算する演算装置と、
 前記提案配置を出力する出力部とを備える、電磁気センサの配置提案装置。
1. An apparatus for proposing an arrangement of a plurality of electromagnetic sensors to be placed on a biological surface around a target region inside a subject, using a forward model for estimating an electromagnetic field generated at the positions of the plurality of electromagnetic sensors due to biological activity inside the subject, the apparatus comprising:
an input unit to which calculation conditions including a position of the target area and possible positions of the plurality of electromagnetic sensors are input;
a calculation device that calculates a proposed arrangement of all or a part of the plurality of electromagnetic sensors for estimating a position of a current source inside the subject based on the calculation conditions;
and an output unit that outputs the proposed arrangement.
PCT/JP2023/035835 2022-10-05 2023-10-02 Method and device for suggesting positioning of electromagnetic sensors, and current source location estimation method WO2024075669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022160978 2022-10-05
JP2022-160978 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024075669A1 true WO2024075669A1 (en) 2024-04-11

Family

ID=90608517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035835 WO2024075669A1 (en) 2022-10-05 2023-10-02 Method and device for suggesting positioning of electromagnetic sensors, and current source location estimation method

Country Status (1)

Country Link
WO (1) WO2024075669A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289877A (en) * 1995-04-24 1996-11-05 Toshiba Corp Simulation method for excitation propagation process of tissue and intra-tissue electromagnetic phenomenon diagnostic device
WO2003057035A1 (en) * 2001-12-28 2003-07-17 Japan Science And Technology Agency Intercerebral current source estimation method, intercerebral current source estimation program, recording medium containing the intercerebral current source estimation program, and intercerebral current source estimation apparatus
US20050234329A1 (en) * 2004-04-15 2005-10-20 Kraus Robert H Jr Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors
JP2008161637A (en) * 2007-01-03 2008-07-17 Elekta Ab Analysis of multi-channel measurement data using orthogonal virtual channel
JP2013244403A (en) * 2012-05-23 2013-12-09 Seiko Epson Corp Image processing method
US20160157742A1 (en) * 2013-08-05 2016-06-09 The Regents Of The University Of California Magnetoencephalography source imaging for neurological functionality characterizations
JP2016540563A (en) * 2013-12-04 2016-12-28 オバロン・セラピューティクス、インコーポレイテッドObalon Therapeutics, Inc. Systems and methods for deploying and / or characterizing intragastric devices
JP2019516434A (en) * 2016-03-30 2019-06-20 ブレイン エフ.アイ.ティー. イメージング, エルエルシー Method and magnetic imaging device for cataloging cortical function of human brain

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289877A (en) * 1995-04-24 1996-11-05 Toshiba Corp Simulation method for excitation propagation process of tissue and intra-tissue electromagnetic phenomenon diagnostic device
WO2003057035A1 (en) * 2001-12-28 2003-07-17 Japan Science And Technology Agency Intercerebral current source estimation method, intercerebral current source estimation program, recording medium containing the intercerebral current source estimation program, and intercerebral current source estimation apparatus
US20050234329A1 (en) * 2004-04-15 2005-10-20 Kraus Robert H Jr Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors
JP2008161637A (en) * 2007-01-03 2008-07-17 Elekta Ab Analysis of multi-channel measurement data using orthogonal virtual channel
JP2013244403A (en) * 2012-05-23 2013-12-09 Seiko Epson Corp Image processing method
US20160157742A1 (en) * 2013-08-05 2016-06-09 The Regents Of The University Of California Magnetoencephalography source imaging for neurological functionality characterizations
JP2016540563A (en) * 2013-12-04 2016-12-28 オバロン・セラピューティクス、インコーポレイテッドObalon Therapeutics, Inc. Systems and methods for deploying and / or characterizing intragastric devices
JP2019516434A (en) * 2016-03-30 2019-06-20 ブレイン エフ.アイ.ティー. イメージング, エルエルシー Method and magnetic imaging device for cataloging cortical function of human brain

Similar Documents

Publication Publication Date Title
Marhl et al. Transforming and comparing data between standard SQUID and OPM-MEG systems
Güllmar et al. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study
Douw et al. Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native M RI for co‐registration
Wang et al. Geometric distortion in clinical MRI systems: Part I: evaluation using a 3D phantom
JP3231847B2 (en) Biomagnetic measurement device
Holmes et al. Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding
US5228443A (en) Method for estimation and display of current source distribution from electric and magnetic measurements and 3D anatomical data
Oyama et al. Dry phantom for magnetoencephalography—Configuration, calibration, and contribution
Fuchs et al. Confidence limits of dipole source reconstruction results
Von Ellenrieder et al. Electrode and brain modeling in stereo-EEG
JP2006502776A5 (en)
Hutton et al. Phase informed model for motion and susceptibility
Medani et al. Realistic head modeling of electromagnetic brain activity: an integrated Brainstorm-DUNEuro pipeline from MRI data to the FEM solutions
Koessler et al. Automatic localization and labeling of EEG sensors (ALLES) in MRI volume
Li et al. AtlasGuide: software for stereotaxic guidance using 3D CT/MRI hybrid atlases of developing mouse brains
Su et al. Vector magnetocardiography using compact optically-pumped magnetometers
Taulu et al. Unified expression of the quasi-static electromagnetic field: Demonstration with MEG and EEG signals
WO2024075669A1 (en) Method and device for suggesting positioning of electromagnetic sensors, and current source location estimation method
Bai et al. On the estimation of the number of dipole sources in EEG source localization
JPH04319334A (en) Biomagnetism imaging system
Singh et al. Neuromagnetic localization using magnetic resonance images
Jaiswal et al. On electromagnetic head digitization in MEG and EEG
Estler et al. Deep learning‐accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality
Nagarajan et al. Magnetoencephalographic imaging
Engels et al. Factors influencing the spatial precision of electromagnetic tracking systems used for MEG/EEG source imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024555782

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载