WO2023210713A1 - 心外膜細胞再生促進剤および心外膜細胞の再生促進方法 - Google Patents
心外膜細胞再生促進剤および心外膜細胞の再生促進方法 Download PDFInfo
- Publication number
- WO2023210713A1 WO2023210713A1 PCT/JP2023/016537 JP2023016537W WO2023210713A1 WO 2023210713 A1 WO2023210713 A1 WO 2023210713A1 JP 2023016537 W JP2023016537 W JP 2023016537W WO 2023210713 A1 WO2023210713 A1 WO 2023210713A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epicardial
- cells
- inhibitor
- cell
- cdkn1a
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0657—Cardiomyocytes; Heart cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
- C12N9/222—Clustered regularly interspaced short palindromic repeats [CRISPR]-associated [CAS] enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Definitions
- the present invention relates to an agent for promoting epicardial cell regeneration and a medicament containing the same for treating cardiac damage.
- the present invention also relates to a method for promoting regeneration of epicardial cells and a method for producing epicardial cells with enhanced regenerative potential.
- the ability of the heart to regenerate in response to injury differs depending on the species. Neonatal mice are able to regenerate their hearts and restore function after injury, but this regenerative ability is lost after birth. Furthermore, this regenerative ability is completely lacking in humans.
- the epicardium which surrounds the heart, has functions essential for heart regeneration. In species capable of heart regeneration during the neonatal period, the epicardium undergoes a transition from non-proliferation to reactivation upon cardiac injury. However, the adult human epicardium permanently has little proliferative capacity.
- Non-Patent Document 1 there are many approaches for differentiating epicardial cells derived from human pluripotent stem (iPS) cells (for example, Non-Patent Document 1).
- these approaches do not result in accelerated epicardial regeneration, nor do they explore the regenerative potential of human iPS cell-derived epicardial cells for clinical purposes.
- iPS pluripotent stem
- cyclin-dependent kinase inhibitor p21 affects epimorphic regeneration and is involved in liver regeneration.
- the effect of p21 on the regenerative ability of epicardial cells has not been reported. Because p21 is intricately involved in many cellular processes, it is difficult to predict what effect a decrease in p21 protein levels will have in a particular tissue or cell.
- An object of the present invention is to provide a drug for promoting regeneration of epicardial cells.
- the present invention aims to provide a drug for promoting epicardial cell regeneration and for treating cardiac damage.
- a further object of the present invention is to provide a method for promoting regeneration of epicardial cells.
- the present inventors conducted extensive research to solve the above problems and found that p21 is an important factor that inhibits the reactivation of epicardial cells, and by using a p21 inhibitor, The present invention was completed based on the discovery that the present invention can promote the regeneration of epicardial cells and exert therapeutic effects such as repair of damaged heart tissue.
- An epicardial cell regeneration promoter containing a p21 inhibitor [2] The epicardial cell regeneration promoter according to [1], wherein the p21 inhibitor is a CDKN1A gene expression inhibitor. [3] The epicardial cell regeneration promoter according to [2], wherein the CDKN1A gene expression inhibitor is a nucleic acid containing an siRNA sequence targeting the CDKN1A gene. [4] The epicardial cell regeneration promoter according to [3], wherein the siRNA sequence includes a sense strand having the sequence set forth in SEQ ID NO: 1 and an antisense strand having the sequence set forth in SEQ ID NO: 2.
- the p21 inhibitor includes a guide RNA for a CRISPR-Cas system
- the guide RNA for the CRISPR-Cas system is a guide RNA designed to target the CDKN1A gene.
- a pharmaceutical composition for treating cardiac damage comprising the epicardial cell regeneration promoter according to any one of [1] to [5].
- the method according to [7], wherein the step of inhibiting p21 is performed by inhibiting expression of the CDKN1A gene.
- p21 inhibitor for promoting epicardial cell regeneration [13] p21 inhibitor for promoting epicardial cell regeneration. [14] Use of a p21 inhibitor in the manufacture of an epicardial cell regeneration promoter. [15] p21 inhibitors to treat heart damage. [16] Use of p21 inhibitors in the manufacture of medicaments for treating heart damage. [17] A method for promoting epicardial cell regeneration in a subject, comprising the step of administering an effective amount of a p21 inhibitor to a subject in need thereof. [18] A method of treating cardiac damage in a subject comprising administering an effective amount of a p21 inhibitor to a subject in need thereof.
- regeneration of epicardial cells can be promoted. This promotes the regeneration of epicardial cells in damaged heart tissue, and also induces repair and regeneration of the myocardium, increasing the regenerative ability of the damaged heart and making it possible to treat heart damage. shall be.
- Epicardial cell regeneration promoter relates to an epicardial cell regeneration promoter containing a p21 inhibitor.
- Epicardial cells are cells that cover the surface of the myocardium and are characterized by the expression of markers such as WT1 (Wilms Tumor 1), TBX18 (T-Box Transcription Factor 18), and ALDH1A2 (Aldehyde Dehydrogenase 1 Family Member A2). .
- Promoting epicardial cell regeneration means, for example, improving the survival rate of epicardial cells, improving the proliferation ability of epicardial cells, improving the epicardial tissue repair ability, and/or regenerating the epicardium. It is characterized by increased gene expression associated with reactivation of brain function.
- the survival rate of epicardial cells can be shown, for example, by culturing epicardial cells and measuring the survival rate (percentage of living cells) after a certain period of time, by adding a p21 inhibitor to the medium. Sometimes, it can be determined that the survival rate of epicardial cells has improved when the survival rate of epicardial cells increases compared to when the p21 inhibitor is not added to the culture medium. The period for culturing the epicardial cells at this time may be, for example, 14 days.
- the proliferation ability of epicardial cells can be shown, for example, by culturing epicardial cells, measuring the number of cells over time over a certain period of time, and drawing a growth curve. It can be determined that the proliferation ability of epicardial cells has improved when the slope of the proliferation curve of epicardial cells increases compared to the case where no p21 inhibitor is added to the medium. At this time, the period for culturing the epicardial cells may be, for example, 7 days. Further, the cell number may be measured over time, for example, on a daily basis.
- the tissue repair capacity of the epicardium is demonstrated, for example, by wound healing assays.
- a wound healing assay involves, for example, culturing epicardial cells until they reach confluence, and then physically scraping some of the cells to create a simulated wound that is repaired after a certain period of time. If the degree of repair of epicardial cells is improved when a p21 inhibitor is added to the medium compared to when a p21 inhibitor is not added to the medium, the epicardial tissue repair ability is It can be judged that it has improved.
- genes related to reactivation of epicardial regeneration ability include the transcription factors WT1 and TBX18, and the aldehyde dehydrogenase ALDH1A2, and when cultured with a p21 inhibitor added to the medium, and when cultured with a p21 inhibitor added to the medium, In addition, when the expression level of these genes increased compared to when culturing without adding p21 inhibitor to the medium, the expression of genes related to reactivation of epicardial regenerative ability was improved. Can be judged. Gene expression level can be evaluated, for example, by a known method such as RT-PCR.
- p21 is a protein known as a cyclin-dependent kinase inhibitor, also called CDKN1A, and is expressed from the CDKN1A gene locus.
- CDKN1A cyclin-dependent kinase inhibitor
- the p21 protein is also simply referred to as p21, and the gene that expresses p21 is sometimes referred to as the CDKN1A gene or CDKN1A.
- p21 is known to have the function of binding to a complex of cyclin and cyclin-dependent kinase 2 or 4, inhibiting its activity, and controlling cycle progression in the G1 phase of the cell cycle.
- the p21 protein and CDKN1A gene are not particularly limited, they can be selected based on epicardial cells that promote regeneration, and when promoting the regeneration of human epicardial cells, human p21 protein or human CDKN1A gene Preferably, inhibitors are used.
- An example of the amino acid sequence of the human p21 protein is shown in SEQ ID NO: 10
- an example of the nucleotide sequence of the human CDKN1A gene is shown in SEQ ID NO: 9.
- inhibitortion of p21 includes inhibition of p21 expression and activity.
- Inhibition of p21 expression means decreasing the amount of transcription (mRNA amount) or translation amount (amount of protein) of the gene encoding p21 protein (CDKN1A). Inhibition of p21 expression can be confirmed by comparing the expression level of p21 protein or CDKN1A gene per a certain number of epicardial cells before and after addition of the p21 inhibitor.
- the expression level of the p21 protein or CDKN1A gene may be reduced compared to the expression level before addition of the p21 inhibitor, for example, 50% or less, 20% or less, or 10% or less of the expression level before addition of the p21 inhibitor. It is preferable that the expression level decreases to below the detection limit level, and the expression level may disappear below the detection limit level.
- Expression of p21 protein or the gene encoding p21 protein can be measured by Western blotting, RT-PCR, etc.
- Inhibition of p21 expression can be achieved, for example, by an operation that reduces the expression of the gene encoding the p21 protein (CDKN1A gene).
- Inhibition of CDKN1A gene expression is not particularly limited, but includes, for example, introducing mutations into the CDKN1A gene that reduce transcription efficiency or translation efficiency, manipulating small molecules involved in transcription and translation control, and using nucleic acids such as siRNA that cause RNA interference. This is accomplished through manipulation, etc.
- CDKN1A gene expression can be achieved by disrupting the CDKN1A gene.
- Disruption of a gene means that the gene is modified so that it no longer produces a protein that functions normally. Failure to produce a protein that functions normally includes cases in which no protein is produced from the same gene, or cases in which a protein with reduced or lost function per molecule is produced from the same gene.
- Gene disruption or mutation introduction may be performed, for example, by using the CRISPR-Cas system. Specifically, for example, it may be carried out using a guide RNA designed for gene modification or mutation introduction and a CRISPR enzyme. Moreover, at the same time, DNA fragments for homologous recombination may be used.
- the p21 inhibitor is a substance for "p21 inhibition" described above. Specifically, it may be, for example, a p21 activity inhibitor, a nucleic acid such as siRNA that targets the CDKN1A gene and causes RNA interference, a guide RNA for a CRISPR-Cas system that targets the CDKN1A gene, and a CRISPR enzyme.
- nucleic acids such as siRNA that cause RNA interference include siRNA, shRNA, miRNA, and their precursors. That is, the p21 inhibitor may be a nucleic acid such as siRNA, shRNA, miRNA, or a precursor thereof that targets the CDKN1A gene, or a DNA containing a sequence for expressing these RNAs.
- a sequence of a nucleic acid such as siRNA that causes inhibition of CDKN1A gene expression can be designed by a known method based on the sequence of the CDKN1A gene.
- the sequence of guide RNA that causes inhibition of CDKN1A gene expression by the CRISPR-Cas system can be designed by a known method based on the sequence of the CDKN1A gene.
- the p21 inhibitor is an siRNA comprising a sense strand comprising the nucleotide sequence set forth in SEQ ID NO: 1 and an antisense strand comprising the nucleotide sequence set forth in SEQ ID NO: 2, or contained in these sequences. It may be shRNA containing the sequence as a core sequence, or DNA containing the sequence for expressing these RNAs.
- Examples of methods for introducing nucleic acids into cells or tissues include viral vectors and lipofection. Therefore, when the p21 inhibitor is a nucleic acid such as RNA or DNA, it may exist in the form of a viral vector or a complex for lipofection.
- the virus vector any known vector can be used, and examples thereof include adenovirus vectors, adeno-associated virus vectors, and Sendai virus vectors.
- substances that inhibit p21 protein activity include antibodies (including partial fragments) against p21 protein and compounds that bind to p21 protein and inhibit p21 protein activity. Inhibition of p21 protein activity can be confirmed by comparing the p21 protein activity per certain number of epicardial cells before and after addition of a p21 inhibitor. The activity of p21 protein only needs to be decreased compared to the cells before addition of the p21 inhibitor, but for example, the activity of p21 protein is 50% or less compared to the cells before addition of the p21 inhibitor, It is preferable that the activity is reduced to 20% or less or 10% or less, and the activity may be completely lost.
- An antibody against p21 protein can be obtained by a known method using p21 protein or a partial peptide thereof (for example, a partial peptide of the C-terminal region of p21) as an antigen.
- a commercially available anti-p21 antibody may be used.
- the p21 inhibitor can be added at a concentration that can inhibit the expression and function of p21.
- the p21 inhibitor is not particularly limited as long as it inhibits p21 expression or function, but specific examples include p21 antibodies, p21 siRNA, p21 shRNA, p21 antisense compounds, and 2-(2-chlorophenyl)- 5,7-dihydroxy-8-[(3S,4R)-3-hydroxy-1-methylpiperidin-4-yl]-4H-chromen-4-one (flavopiridol), (1R,2R,4S)- 4-[(2R)-2-[(1R, 9S, 12S, 15R, 16E, 18R, 19R, 21R, 23S, 24E, 26E, 28E, 30S, 32S, 35R)-1,18-dihydroxy-19, 30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.0 ⁇ 4 ,9 ⁇ ]hexatriacont
- Epicardial cells have essential functions in the heart's regeneration in response to injury. Therefore, the epicardial cell regeneration promoting agent of the present invention reactivates the regenerative ability of the epicardium and acquires the ability of the heart to regenerate in response to damage, so that it can be used as a medicine for treating heart damage. Therefore, the present invention provides a medicament for treating heart damage that contains a p21 inhibitor as an active ingredient.
- the above-mentioned p21 inhibitor can be used as a medicine for treating heart damage, but the p21 inhibitor can also be used as a pharmaceutical composition by combining it with a pharmacologically acceptable carrier.
- pharmacologically acceptable carriers carriers used in pharmaceuticals such as solvents, buffers, stabilizers, excipients, etc. can be used, and they are selected as appropriate depending on the type of p21 inhibitor and the dosage form of the pharmaceutical. sell.
- a medicament for treating cardiac damage may include reagents for delivering the nucleic acid to cells, such as lipofection reagents, and reagents for stabilizing the nucleic acid.
- the target of the medicament of the present invention is not particularly limited as long as the effects of the present invention can be obtained, but it is preferably a mammal, more preferably a primate such as a human or a rodent such as a mouse, and a human Even more preferably.
- the medicament of the present invention can be administered orally or parenterally, it is preferably administered locally to the damaged site of the heart.
- the dosage form of the pharmaceutical is not particularly limited, but it can be administered, for example, in the form of an injection solution or a drip preparation.
- the dosage of the medicament of the present invention varies depending on the type of p21 inhibitor, the age, sex, symptoms and administration method of the subject, and is selected as appropriate. 0.01 mg to 1000 mg per day, preferably 0.1 mg to 100 mg. Administration may be in a single dose or in multiple doses.
- the medicament of the present invention may be used in combination with other cardiac damage therapeutics.
- One embodiment of the method of the present invention is a method for promoting regeneration of epicardial cells in vitro, the method comprising the step of inhibiting p21 in the epicardial cells. It is.
- Another aspect of the method of the present invention is a method for producing epicardial cells with enhanced regenerative potential, comprising: A) providing epicardial cells; and B) inhibiting p21 in the epicardial cells of step A). Regarding the method.
- promoting the regeneration of epicardial cells means, for example, improving the survival rate of epicardial cells, improving the proliferation ability of epicardial cells, improving the ability of epicardial tissue repair, and and/or characterized by an increase in gene expression associated with reactivation of epicardial regenerative potential.
- enhanced regenerative ability means, for example, improved survival rate of epicardial cells, improved proliferative ability of epicardial cells, improved ability to repair epicardial tissue, and/or improved ability to repair epicardial tissue. It may also mean an increase in gene expression associated with reactivation of membrane regeneration capacity.
- the epicardial cells may be epicardial cells collected from a mammalian subject such as a human or a mouse, or may be epicardial cells induced to differentiate from pluripotent stem cells.
- pluripotent stem cells include, but are not particularly limited to, embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and embryonic stem cells derived from cloned embryos obtained by nuclear transfer (ntES). cells, spermatogonial stem cells ("GS cells”), embryonic germ cells (“EG cells”), cultured fibroblasts, and pluripotent cells derived from bone marrow stem cells (Muse cells).
- ES embryonic stem
- iPS induced pluripotent stem
- GS cells spermatogonial stem cells
- EG cells embryonic germ cells
- cultured fibroblasts and pluripotent cells derived from bone marrow stem cells (Muse cells).
- Preferred pluripotent stem cells are iPS cells and ES cells.
- the origin of the pluripotent stem cells is not particularly limited as long as the effects of the present invention can be obtained, but they are preferably derived from mammals, more preferably from primates such as humans or rodents such as mice, Even more preferably it is of human origin.
- the initialization factors are, for example, Oct3/4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15.
- Examples include genes or gene products such as -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, or Glis1, and these reprogramming factors may be used alone or in combination. Also good.
- Combinations of initialization factors include WO2007/069666, WO2008/118820, WO2009/007852, WO2009/032194, WO2009/058413, WO2009/057831, WO2009/075119, WO2009/079007, W O2009/091659, WO2009/101084, WO2009/ 101407, WO2009/102983, WO2009/114949, WO2009/117439, WO2009/126250, WO2009/126251, WO2009/126655, WO2009/157593, WO2010/009015, WO 2010/033906, WO2010/033920, WO2010/042800, WO2010/050626, WO2010/056831, WO2010/068955, WO2010/098419, WO2010/102267, WO2010/111409, WO2010/111422, WO2010/115050, WO2010/124290, WO2010/14 7395, WO2010/147612,
- Somatic cells used to obtain iPS cells include, but are not limited to, fetal somatic cells, neonatal somatic cells, and mature healthy or diseased somatic cells. It also includes primary cultured cells, subcultured cells, and established cell lines. Specifically, somatic cells include (1) tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue progenitor cells, and (3) blood cells (peripheral stem cells).
- tissue stem cells such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells
- tissue progenitor cells tissue progenitor cells
- blood cells peripheral stem cells
- lymphocytes epithelial cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, spleen cells, pancreatic cells (pancreatic exocrine cells) etc.), differentiated cells such as brain cells, lung cells, kidney cells, and fat cells.
- epicardial cells derived from pluripotent stem cells may be, for example, epicardial cells induced to differentiate from pluripotent stem cells in vitro. Any known method can be used to induce differentiation of epicardial cells from pluripotent stem cells. For example, differentiation may be induced by adding an appropriate differentiation-inducing factor to the culture medium.
- the method for inducing differentiation of epicardial cells from pluripotent stem cells is not particularly limited, and any known method may be used. Specifically, for example, embryoid bodies (EBs) are formed from pluripotent stem cells, and the EBs are treated with a GSK3 (Glycogen synthase kinase 3) inhibitor such as CHIR99021 or a TGF (Transforming growth factor) ⁇ inhibitor. Examples include monolayer culture in the presence of certain SB431542, BMP4 (Bone morphogenetic protein 4), and VEGF (Vascular endothelial growth factor). In addition, methods described in the following documents can also be used. 1. Witty A., et al. Nat Biotechnol.
- epicardial cells induced to differentiate from pluripotent stem cells may be used after isolation and purification, or a cell population containing epicardial cells may be used as is.
- the epicardial cells thus provided are treated to inhibit p21.
- inhibiting p21 means inhibiting p21 using the above-mentioned "p21 inhibitor”.
- the step of inhibiting p21 in epicardial cells may be carried out, for example, by adding the above p21 inhibitor to epicardial cells.
- An example of a method for treatment with a p21 inhibitor is a method in which a p21 inhibitor is added to a culture solution of epicardial cells and cultured for a sufficient time for regeneration of epicardial cells, for example, 5 hours to 10 days. Ru.
- the concentration of the p21 inhibitor added may be a concentration sufficient for the regeneration of epicardial cells, and can be appropriately set depending on the type of p21 inhibitor.
- a p21 inhibitor may be additionally administered. Furthermore, after the p21 inhibitory effect is exerted, it may be removed from the culture medium. Epicardial cells with enhanced regenerative capacity may be purified or concentrated before use.
- the epicardial cells produced by the method of the present invention may be used to treat cardiac damage by transplanting them into a subject as appropriate.
- iPS cell line (409B2) was used to induce differentiation of human epicardial cells.
- Human iPS cell lines are grown on radiation-treated mouse embryonic fibroblasts (MEFs) in ES cell medium (Primate ES Cell Medium (REPROCELL, Cat. RCHEMD001) supplemented with 4 ng/mL fibroblast growth factor (bFGF). )) was maintained.
- ES cell medium Primary ES Cell Medium (REPROCELL, Cat. RCHEMD001) supplemented with 4 ng/mL fibroblast growth factor (bFGF).
- bFGF fibroblast growth factor
- StemPro-34 medium (Gibco) supplemented with 2mM L-glutamine, 50 ⁇ M/mL ascorbic acid, 0.4 ⁇ M monothioglycerol, and 150mg/mL transferrin was used.
- 10 ⁇ M Y27632 Rock inhibitor
- 2 ng/mL human recombinant BMP4 0.5% Matrigel (Corning) were added to the differentiation medium.
- cell culture medium supplemented with 4 ng/mL activin A, 10 ng/mL human recombinant bFGF, 20 ng/mL human recombinant BMP4 was added 100% by volume.
- EBs were dissociated into single cells and replated onto gelatin-coated dishes using basal medium containing 3mM CHIR99021, 10 ⁇ M SB431542, 30ng/mL human recombinant BMP4, and 5ng/mL human recombinant VEGF. (0.3x10 5 cells/cm 2 ), and differentiation of human epicardial cells was induced.
- DMEM Dulbecco's modified Eagle's medium
- FBS fetal bovine serum
- siRNA transfection assay 0.8 x 106 human iPS cell-derived fetal epicardium cells were seeded per 10 cm dish, and transfection was performed using RNAiMax (Invitrogen). The medium was replaced with fresh medium 24 hours after transfection.
- Small interfering RNA (siRNA) targeting CDKN1A sense strand: CAAGGAGUCAGACAUUUUAtt (SEQ ID NO: 1), antisense strand: UAAAAUGUCUGACUCCUUGtt (SEQ ID NO: 2)
- negative control No. 1 derived from Ambion Silencer Select. 1 siRNA (4390843) was used according to the manufacturer's instructions.
- Quantitative RT-PCR RNA was extracted using QIAzol lysis reagent (QIAGEN), and cDNA was synthesized from the total amount of RNA using ReverTra Ace qPCR RT Master Mix with gDNA Remover (TOYOBO). Next, quantitative RT-PCR was performed using Thunderbird SYBR qPCR Mix (TOYOBO) in One Step Real-Time PCR System (Applied Biosystems). Gene expression results were quantified by the ⁇ Ct method and normalized with GAPDH.
- the primers used are as follows.
- CDKN1A Forward 5'-AGGGGACAGCAGAGGAAG-3' (SEQ ID NO: 3); Reverse 5'-GCGTTTGGAGTGGTAGAAATCTG-3' (SEQ ID NO: 4), WT1: Forward 5'-CAGCTTGAATGCATGACCTG-3' (SEQ ID NO: 5); Reverse 5'- GATGCCGACCGTACAAGAGT-3' (SEQ ID NO: 6), GAPDH: forward 5'-TGATGACATCAAGAAGGTGGTGAAG-3' (SEQ ID NO: 7); reverse 5'-TCCTTGGAGGCCATGTGGCCAT-3' (SEQ ID NO: 8).
- Cell growth Curve Assay Cell growth time course curves were evaluated on 6-well plates. Cells were seeded at a density of 4 ⁇ 10 4 per well, and total cell counts were performed with trypan blue at 24-hour intervals for 8 days. Cell growth curves were generated by plotting cell number versus time. After seeding, cells were fixed with 4% paraformaldehyde (PFA) and stained with crystal violet on the day of counting. Values were expressed as cell proliferation rate of cells grown in the presence of 10% FBS. 0% means the number of cells on day 0.
- PFA paraformaldehyde
- Colony Formation Assay For the cell colony formation assay, 5000 cells were seeded in a 10 cm dish and cultured for 10 days. Colonies were then fixed with 4% PFA, stained with crystal violet and counted by Image-J.
- RNA-Seq analysis Data normalization in RNA-Seq analysis was performed using NOISeq. Adult epicardial data are released for analysis under GSE code GSE8484085. Primary data from RNA-Seq analysis was processed using RStudio for mapping and gene expression analysis. Gene expression data for exploration, loading, and preprocessing were processed using the Bioconductor package NOISeq to perform data analysis and differential expression analysis of RNA-Seq analysis data. A heat map for clustering differentially expressed genes (DEGs) was drawn using R script.
- DEGs differentially expressed genes
- CDKN1A knockout (KO) mouse CDKN1A knockout mouse was obtained from Jackson laboratory (strain #016565). The second exon of the Cdkn1a gene of the knockout mouse strain has been replaced with a neomycin resistance cassette (neo cassette). In addition, C57BL/6J mice were used as isogenic controls with similar genetic backgrounds.
- E12 epicardial Explants
- E12 mouse 12 day embryonic mice.
- mouse E12 hearts were placed on gelatin-coated dishes in low glucose DMEM supplemented with 15% FBS. Proliferating cultures appeared within 24 hours, and after 7 days, the length of the explants was observed under the microscope.
- Cells of explants were maintained in medium supplemented with 10 ⁇ M SB431542 to prevent spontaneous epithelial-mesenchymal transition (EMT).
- Example 1 An siRNA transfection assay was performed on human iPS cell-derived fetal epicardium using siRNA targeting CDKN1A (siCDKN1A) or negative control siRNA (control), and the relative mRNA expression level of CDKN1A was quantitatively determined. Measured by RT-PCR. The results are shown in Figure 1. In addition, the amounts of p21 protein and WT1 protein were measured by Western blotting in human epicardial cells subjected to transfection assay using each siRNA. The results are shown in Figure 2.
- siCDKN1A With siCDKN1A, the expression level of CDKN1A at the mRNA level in human iPS cell-derived fetal epicardium was reduced to 50% or less compared to the control, and a similar decrease was observed at the p21 protein level.
- a wound healing assay was performed on human iPS cell-derived fetal epicardium that had been subjected to a transfection assay using each siRNA.
- the percentage of the wound closure area over time is shown on the left of FIG. 5, and the photographs of the wound area after 0 and 24 hours are shown on the right of FIG.
- transcriptome analysis was performed to detect gene signatures of cell quiescence using RNA-Seq analysis ( Figure 6).
- the figure on the left shows a comparison between human iPS cell-derived fetal epicardium and adult epicardium. (Suppression of CDKN1A expression: siCDKN1A group) comparison is shown in the figure on the right.
- the gene groups whose expression decreased in the cell quiescence state the gene expression was lowest in the order of adult epicardium, human iPS cell-derived fetal epicardium, and siCDKN1A group.
- gene expression was highest in the order of adult epicardium, human iPS cell-derived fetal epicardium, and siCDKN1A group. Therefore, the adult epicardium, the human iPS cell-derived fetal epicardium, and the siCDKN1A group are strongly in a state of cell quiescence in that order.In other words, the siCDKN1A group has escaped the state of cell quiescence compared to the human epicardium. This was revealed at the gene expression level.
- Example 2 Ex vivo explant assays of CDKN1A knockout mice were performed. First, epicardial explants were prepared and cultured ex vivo using E12 hearts of CDKN1A knockout mice and control mice (C57BL/6J mice). The CDKN1A knockout mouse and control mouse are as described in "CDKN1A knockout (KO) mouse” above. In addition, epicardial explants were prepared and cultured using the method described in "Epicardial Explants" above. Next, the amounts of p21 protein and WT1 protein were measured for each epicardial explant by Western blotting. The results are shown in FIG.
- CDKN1A can reactivate the regenerative ability of epicardial cells and improve wound healing ability. It was also confirmed in explants.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Cardiology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cell Biology (AREA)
- Rheumatology (AREA)
- Oncology (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
p21阻害物質を含む、心外膜細胞再生促進剤。
[2]
前記p21阻害物質が、CDKN1A遺伝子の発現阻害物質である、[1]に記載の心外膜細胞再生促進剤。
[3]
前記CDKN1A遺伝子の発現阻害物質が、CDKN1A遺伝子を標的とするsiRNA配列を含む核酸である、[2]に記載の心外膜細胞再生促進剤。
[4]
前記siRNA配列は、配列番号1に記載の配列を有するセンス鎖および配列番号2に記載の配列を有するアンチセンス鎖を含む、[3]に記載の心外膜細胞再生促進剤。
[5]
前記p21阻害物質が、CRISPR-CasシステムのためのガイドRNAを含み、前記CRISPR-CasシステムのためのガイドRNAは、CDKN1A遺伝子を標的として設計されたガイドRNAである、[1]または[2]に記載の心外膜細胞再生促進剤。
[6]
[1]~[5]のいずれか一項に記載の心外膜細胞再生促進剤を含む、心臓の損傷を治療するための医薬組成物。
[7]
in vitroで心外膜細胞の再生を促進するための方法であって、
前記心外膜細胞においてp21を阻害する工程を含む、方法。
[8]
前記p21を阻害する工程が、CDKN1A遺伝子の発現を阻害することによって行われる、[7]に記載の方法。
[9]
前記CDKN1A遺伝子の発現の阻害が、siRNAを前記心外膜細胞に導入することにより達成される、[8]に記載の方法。
[10]
前記p21を阻害する工程が、前記心外膜細胞にCDKN1A遺伝子を標的として設計されたガイドRNAおよびCRISPR酵素を導入することによって行われる、[8]に記載の方法。
[11]
再生能が高められた心外膜細胞を製造するための方法であって、
A)心外膜細胞を提供する工程、および
B)工程A)の心外膜細胞においてp21を阻害する工程を含む、方法。
[12]
工程A)の心外膜細胞が多能性幹細胞から分化誘導された心外膜細胞である、[11]に記載の方法。
[13]
心外膜細胞再生促進のためのp21阻害物質。
[14]
心外膜細胞再生促進剤の製造におけるp21阻害物質の使用。
[15]
心臓の損傷を治療するためのp21阻害物質。
[16]
心臓の損傷を治療するための医薬の製造におけるp21阻害物質の使用。
[17]
有効量のp21阻害物質を、それを必要とする対象に投与する工程を含む、対象における心外膜細胞再生促進方法。
[18]
有効量のp21阻害物質を、それを必要とする対象に投与する工程を含む、対象における心臓の損傷を治療する方法。
本発明は、p21阻害物質を含む、心外膜細胞再生促進剤に関する。
ヒトp21タンパク質のアミノ酸配列の一例を配列番号10に、ヒトCDKN1A遺伝子の塩基配列の一例を配列番号9に示す。
p21の発現の阻害は、一定数の心外膜細胞当たりのp21タンパク質またはCDKN1A遺伝子の発現量を、p21阻害剤添加前後で比較することにより確認することができる。p21タンパク質またはCDKN1A遺伝子の発現量は、p21阻害剤添加前の発現量と比較して減少すればよいが、例えば、p21阻害剤添加前の発現量の50%以下、20%以下または10%以下まで減少することが好ましく、発現量が検出限界レベル以下に消失していてもよい。
また、CRISPR-CasシステムによってCDKN1A遺伝子発現の阻害を引き起こすガイドRNAの配列は、CDKN1A遺伝子の配列に基づいて公知の方法により設計することができる。
p21タンパク質の活性の阻害は、一定数の心外膜細胞当たりのp21タンパク質の活性を、p21の阻害剤添加前後で比較することにより確認することができる。p21タンパク質の活性は、p21の阻害剤添加前の細胞と比較して減少していればよいが、例えば、p21の阻害剤添加前の細胞と比較して、p21タンパク質の活性が50%以下、20%以下または10%以下に減少することが好ましく、活性が完全に消失していてもよい。
心外膜細胞は、損傷に対する心臓の再生に不可欠な機能を持つ。そのため、本発明の心外膜細胞再生促進剤は、心外膜の再生能を再活性化し、損傷に対する心臓の再生能力の獲得により、心臓の損傷治療のための医薬として使用しうる。したがって、本発明は、p21阻害物質を有効成分とする心臓の損傷治療のための医薬を提供する。
p21の阻害物質が核酸である場合、心臓の損傷治療のための医薬は、リポフェクション試薬など核酸を細胞に送達するための試薬や核酸を安定化させるための試薬を含んでもよい。
投与は、単回投与でも複数回投与でもよい。
本発明の方法の一態様は、in vitroにおいて心外膜細胞の再生を促進するための方法であって、前記心外膜細胞においてp21を阻害する工程を含む、方法である。
A)心外膜細胞を提供する工程、および
B)工程A)の心外膜細胞においてp21を阻害する工程を含む、
方法に関する。
具体的には、例えば、多能性幹細胞から胚様体(embryoid body:EB)を形成し、EBをCHIR99021等のGSK3(Glycogen synthase kinase 3)阻害剤、TGF(Transforming growth factor)β阻害剤であるSB431542、BMP4(Bone morphogenetic protein 4)、およびVEGF(血管内皮細胞増殖因子)の存在下で単層培養することが挙げられる。
その他にも以下の文献に記載の方法も使用可能である。
1. Witty A., et al. Nat Biotechnol. 2014 Oct;32(10):1026-35. doi: 10.1038/nbt.3002. PMID: 25240927.
2. Iyer D, et al. Development. 2015 Apr 15;142(8):1528-41. doi: 10.1242/dev.119271. PMID: 25813541.
3. Bao X, et al. Nat Biomed Eng. 2016;1:0003. doi: 10.1038/s41551-016-0003. PMID: 28462012.
4. Guadix JA, et al. Stem Cell Reports. 2017 Dec 12;9(6):1754-1764. doi: 10.1016/j.stemcr.2017.10.023. PMID: 29173898.
ここで「p21を阻害する」とは、上述した「p21阻害物質」を使用してp21の阻害を実施することである。心外膜細胞においてp21を阻害する工程は、例えば、心外膜細胞に、上記p21阻害物質を添加することにより実施されてもよい。
再生能が高められた心外膜細胞は、精製または濃縮してから使用されてもよい。
ヒト心外膜細胞の分化誘導
ヒト心外膜細胞の分化誘導には、ヒトiPS細胞株(409B2)を用いた。ヒトiPS細胞株は、放射線処理されたマウス胎児線維芽細胞(MEF)上に、4ng/mLの線維芽細胞成長因子(bFGF)を添加したES細胞培地(Primate ES Cell Medium (REPROCELL, Cat. RCHEMD001))で維持した。
まず、胚様体(EB)を形成するために、ヒトiPS細胞をシングルセルの懸濁液として低付着性のポリHEMA(poly-2-hydroxyethyl methacrylate)コートディッシュに播種した。初期分化培地としては、2mM L-グルタミン、50μM/mL アスコルビン酸、0.4μM モノチオグリセロール、150mg/mL トランスフェリンを添加したStemPro-34培地(Gibco)を用いた。分化のトリガーのために、10μM Y27632(Rock阻害剤)、2ng/mL ヒト組換えBMP4および0.5% Matrigel(Corning社)を分化用培地に添加した。
siRNAのトランスフェクションアッセイでは、ヒトiPS細胞由来胎児性心外膜を10cmディッシュあたり0.8x106個播種し、RNAiMax(Invitrogen)を用いてトランスフェクションを行った。トランスフェクションから24時間後に新鮮な培地に交換した。CDKN1Aを標的とする低分子干渉RNA(siRNA)(センス鎖:CAAGGAGUCAGACAUUUUAtt(配列番号1)、アンチセンス鎖:UAAAAUGUCUGACUCCUUGtt(配列番号2))、およびAmbion Silencer Selectに由来するネガティブコントロールNo.1のsiRNA(4390843)を、製造者の指示に従って使用した。
QIAzol lysis reagent(QIAGEN)を用いてRNAを抽出し、ReverTra Ace qPCR RT Master Mix with gDNA Remover(TOYOBO)を用いて、RNA全量からcDNAを合成した。次に、One Step Real-Time PCR System(Applied Biosystems)において、Thunderbird SYBR qPCR Mix(TOYOBO)を用いて定量的RT-PCRを行った。遺伝子発現結果は、ΔΔCt法で定量し、GAPDHで正規化した。
使用したプライマーは以下の通りである。CDKN1A:フォワード5’-AGGGGACAGCAGAGGAAG-3’(配列番号3);リバース5’-GCGTTTGGAGTGGTAGAAATCTG-3’(配列番号4)、WT1:フォワード5’-CAGCTTGAATGCATGACCTG-3’(配列番号5);リバース5’-GATGCCGACCGTACAAGAGT-3’(配列番号6)、GAPDH:フォワード5’-TGATGACATCAAGAAGGTGGTGAAG-3’(配列番号7);リバース5’-TCCTTGGAGGCCATGTGGCCAT-3’(配列番号8)。
まず、細胞をM-PER Mammalian Protein Extraction Reagent(Thermo Fisher Scientific)で溶解して総タンパク質を得て、Protein Assay BCA Kit(Nacalai tesque)で定量した。ウエスタンブロットのために、8μgの総タンパク質をSDS-PAGEゲルの各ウェルにロードした。使用した抗体および希釈倍率は以下の通りである:p21(1:1000、Cell Signaling Technology、Cat#2947)、WT1(1:1000、Abcam; ab89901)、β-アクチン(1:1000、Sigma、A5441)。
細胞増殖の経時曲線は、6ウェルプレート上で評価した。細胞を1ウェルあたり4×104個の密度で播種し、8日間、24時間間隔でトリパンブルーによる全細胞数のカウントを行った。細胞増殖曲線は、細胞数を時間に対してプロットすることで作成した。播種後、細胞を4%パラホルムアルデヒド(PFA)で固定し、計数日にクリスタルバイオレットで染色した。値は、10% FBS存在下で増殖した細胞の細胞増殖率として表した。0%は0日目の細胞数を意味する。
細胞コロニー形成アッセイでは、10cmディッシュに5000個の細胞を播種し、10日間培養した。その後、コロニーを4%PFAで固定し、クリスタルバイオレットで染色してImage-Jによって計数した。
6ウェルプレートに細胞を播種し、100%コンフルエントになるまで培養した。次に、細胞単層をピペットチップでスクラッチし、手動で物理的な傷を作成した。スクラッチして0、12、16、20、24時間後に、スクラッチした領域を画像化した。最初の細胞がない領域と、12、16、20、24時間後の残存領域をImage-Jで定量化した。そして、移動する細胞が再集合したスクラッチ領域の割合(創傷閉鎖領域の割合)を、最初のスクラッチ領域に対して計算した。
RNA-Seq解析でのデータの正規化はNOISeqを用いて行った。成人心外膜データはGSEコードGSE8484085のもと、解析のために公開されている。RNA-Seq解析の一次データは、マッピングと遺伝子発現解析のためにRStudioを用いて処理された。探索、読み込み、前処理のための遺伝子発現データは、RNA-Seq解析データのデータ解析および差分発現解析を行うためにBioconductorパッケージNOISeqを用いて処理された。Rスクリプトを用いて差分発現遺伝子(DEG)をクラスタリングさせるためのヒートマップを描いた。
CDKN1Aノックアウトマウスは、Jackson laboratoryから得た(#016565系統)。当該ノックアウトマウス系統のCdkn1a遺伝子は、第2エクソンがネオマイシン耐性カセット(neoカセット)に置換されている。また、遺伝的な背景が近似しているアイソジェニックなコントロールとして、C57BL/6Jマウスを用いた。
ex vivoの外植片アッセイは、マウス12日齢胚(E12)の心臓を用いて行った。まず、マウスE12の心臓を、15%FBSを添加した低グルコースDMEM中の、ゼラチンコートディッシュ上に置いた。24時間以内に増殖した培養物が出現し、7日後に、顕微鏡下で外植片の長さを観察した。外植片の細胞は、自発的な上皮間葉転換(EMT)を防ぐために、10μMのSB431542を添加された培地で維持された。
ヒトiPS細胞由来胎児性心外膜に、CDKN1Aを標的とするsiRNA(siCDKN1A)またはネガティブコントロールsiRNA(コントロール)を用いて、siRNAのトランスフェクションアッセイを行い、CDKN1Aの相対的なmRNA発現量を定量的RT-PCRで測定した。その結果を図1に示す。
また、各々のsiRNAを用いてトランスフェクションアッセイを行ったヒト心外膜細胞について、p21タンパク質およびWT1タンパク質の量をウエスタンブロットにより計測した。結果を図2に示す。
siCDKN1Aにより、ヒトiPS細胞由来胎児性心外膜におけるCDKN1AのmRNAレベルでの発現量はコントロールと比較して50%以下に減少し、p21タンパク質レベルでも同様の減少が見られた。
同様に、ヒト心外膜細胞の生存性を測定するため、コロニー形成アッセイを行った。結果を図4に示す。CDKN1Aの発現を減少させることで、ヒト心外膜細胞の生存性の有意な上昇が見られた。
ヒト心外膜細胞においてCDKN1Aの発現を減少させることで、スクラッチ後の20時間後から24時間にかけて創傷治癒能力の有意な上昇が見られた。
細胞静止状態において発現減少する遺伝子群は、成人心外膜、ヒトiPS細胞由来胎児性心外膜、siCDKN1A群の順で遺伝子発現が低かった。また、細胞静止状態において発現増加する遺伝子群においても、成人心外膜、ヒトiPS細胞由来胎児性心外膜、siCDKN1A群の順で遺伝子発現が高かった。よって、成人心外膜、ヒトiPS細胞由来胎児性心外膜、siCDKN1A群の順で強く細胞静止状態にあり、言い換えれば、siCDKN1A群はヒト心外膜と比較して細胞静止状態から脱していることが遺伝子発現レベルで明らかとなった。
CDKN1Aノックアウトマウスのex vivo外植片アッセイを行った。まず、CDKN1Aノックアウトマウス及びコントロールマウス(C57BL/6Jマウス)のE12の心臓を用いて、ex vivoで心外膜外植片を作製し培養した。CDKN1Aノックアウトマウス及びコントロールマウスについては、上記「CDKN1Aノックアウト(KO)マウス」に記載の通りである。また、心外膜外植片の作製及び培養は、上記「心外膜外植片」に記載の手法で行った。次に、それぞれの心外膜外植片について、p21タンパク質およびWT1タンパク質の量をウエスタンブロットにより計測した。結果を図7に示す。
Claims (12)
- p21阻害物質を含む、心外膜細胞再生促進剤。
- 前記p21阻害物質が、CDKN1A遺伝子の発現阻害物質である、請求項1に記載の心外膜細胞再生促進剤。
- 前記CDKN1A遺伝子の発現阻害物質が、CDKN1A遺伝子を標的とするsiRNA配列を含む核酸である、請求項2に記載の心外膜細胞再生促進剤。
- 前記siRNA配列は、配列番号1に記載の配列を有するセンス鎖および配列番号2に記載の配列を有するアンチセンス鎖を含む、請求項3に記載の心外膜細胞再生促進剤。
- 前記p21阻害物質が、CRISPR-CasシステムのためのガイドRNAを含み、前記CRISPR-CasシステムのためのガイドRNAは、CDKN1A遺伝子を標的として設計されたガイドRNAである、請求項1または2に記載の心外膜細胞再生促進剤。
- 請求項1~5のいずれか一項に記載の心外膜細胞再生促進剤を含む、心臓の損傷を治療するための医薬組成物。
- in vitroで心外膜細胞の再生を促進するための方法であって、
前記心外膜細胞においてp21を阻害する工程を含む、方法。 - 前記p21を阻害する工程が、CDKN1A遺伝子の発現を阻害することによって行われる、請求項7に記載の方法。
- 前記CDKN1A遺伝子の発現の阻害が、siRNAを前記心外膜細胞に導入することにより達成される、請求項8に記載の方法。
- 前記p21を阻害する工程が、前記心外膜細胞にCDKN1A遺伝子を標的として設計されたガイドRNAおよびCRISPR酵素を導入することによって行われる、請求項8に記載の方法。
- 再生能が高められた心外膜細胞を製造するための方法であって、
A)心外膜細胞を提供する工程、および
B)工程A)の心外膜細胞においてp21を阻害する工程を含む、方法。 - 工程A)の心外膜細胞が多能性幹細胞から分化誘導された心外膜細胞である、請求項11に記載の方法。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18/860,566 US20250290076A1 (en) | 2022-04-27 | 2023-04-26 | Epicardial cell regeneration promoter and method for promoting epicardial cell regeneration |
| JP2024518006A JPWO2023210713A1 (ja) | 2022-04-27 | 2023-04-26 | |
| EP23796450.7A EP4516905A1 (en) | 2022-04-27 | 2023-04-26 | Epicardial cell regeneration promoter and method for promoting epicardial cell regeneration |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022073500 | 2022-04-27 | ||
| JP2022-073500 | 2022-04-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2023210713A1 true WO2023210713A1 (ja) | 2023-11-02 |
Family
ID=88518739
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/016537 Ceased WO2023210713A1 (ja) | 2022-04-27 | 2023-04-26 | 心外膜細胞再生促進剤および心外膜細胞の再生促進方法 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20250290076A1 (ja) |
| EP (1) | EP4516905A1 (ja) |
| JP (1) | JPWO2023210713A1 (ja) |
| WO (1) | WO2023210713A1 (ja) |
Citations (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
| JP2007517001A (ja) * | 2003-12-30 | 2007-06-28 | ビオネトス・ホールディング・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 組織再生法 |
| WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
| WO2009007852A2 (en) | 2007-06-15 | 2009-01-15 | Izumi Bio, Inc | Multipotent/pluripotent cells and methods |
| WO2009032194A1 (en) | 2007-08-31 | 2009-03-12 | Whitehead Institute For Biomedical Research | Wnt pathway stimulation in reprogramming somatic cells |
| WO2009058413A1 (en) | 2007-10-29 | 2009-05-07 | Shi-Lung Lin | Generation of human embryonic stem-like cells using intronic rna |
| WO2009057831A1 (ja) | 2007-10-31 | 2009-05-07 | Kyoto University | 核初期化方法 |
| WO2009075119A1 (ja) | 2007-12-10 | 2009-06-18 | Kyoto University | 効率的な核初期化方法 |
| WO2009079007A1 (en) | 2007-12-17 | 2009-06-25 | Gliamed, Inc. | Stem-like cells and method for reprogramming adult mammalian somatic cells |
| WO2009091659A2 (en) | 2008-01-16 | 2009-07-23 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents |
| WO2009102983A2 (en) | 2008-02-15 | 2009-08-20 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| WO2009101084A1 (en) | 2008-02-13 | 2009-08-20 | Fondazione Telethon | Method for reprogramming differentiated cells |
| WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
| WO2009114949A1 (en) | 2008-03-20 | 2009-09-24 | UNIVERSITé LAVAL | Methods for deprogramming somatic cells and uses thereof |
| WO2009117439A2 (en) | 2008-03-17 | 2009-09-24 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
| WO2009126250A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through rna interference |
| WO2009157593A1 (en) | 2008-06-27 | 2009-12-30 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
| WO2010009015A2 (en) | 2008-07-14 | 2010-01-21 | Oklahoma Medical Research Foundation | Production of pluripotent cells through inhibition of bright/arid3a function |
| WO2010033920A2 (en) | 2008-09-19 | 2010-03-25 | Whitehead Institute For Biomedical Research | Compositions and methods for enhancing cell reprogramming |
| WO2010033906A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| WO2010042800A1 (en) | 2008-10-10 | 2010-04-15 | Nevada Cancer Institute | Methods of reprogramming somatic cells and methods of use for such cells |
| WO2010050626A1 (en) | 2008-10-30 | 2010-05-06 | Kyoto University | Method for producing induced pluripotent stem cells |
| WO2010056831A2 (en) | 2008-11-12 | 2010-05-20 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
| WO2010068955A2 (en) | 2008-12-13 | 2010-06-17 | Dna Microarray | MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING |
| WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
| WO2010102267A2 (en) | 2009-03-06 | 2010-09-10 | Ipierian, Inc. | Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells |
| WO2010111409A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Pluripotent stem cells |
| WO2010111422A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Induced pluripotent stem cell generation using two factors and p53 inactivation |
| WO2010115050A2 (en) | 2009-04-01 | 2010-10-07 | The Regents Of The University Of California | Embryonic stem cell specific micrornas promote induced pluripotency |
| WO2010124290A2 (en) | 2009-04-24 | 2010-10-28 | Whitehead Institute For Biomedical Research | Compositions and methods for deriving or culturing pluripotent cells |
| WO2010147395A2 (en) | 2009-06-16 | 2010-12-23 | Korea Research Institute Of Bioscience And Biotechnology | Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same |
| WO2010147612A1 (en) | 2009-06-18 | 2010-12-23 | Lixte Biotechnology, Inc. | Methods of modulating cell regulation by inhibiting p53 |
| JP2015524385A (ja) * | 2012-07-02 | 2015-08-24 | フィブロスタティン,エス.エル. | Gpbp−1阻害およびその治療的使用 |
| JP2018512456A (ja) * | 2015-04-09 | 2018-05-17 | リジェンコア, インコーポレイテッド | 心組織を修復するための心外膜由来パラクリン因子 |
| JP2018513668A (ja) * | 2014-12-26 | 2018-05-31 | 日東電工株式会社 | P21遺伝子調節のためのrna剤 |
| WO2021016663A1 (en) * | 2019-07-30 | 2021-02-04 | Victor Chang Cardiac Research Institute | Klf induced cardiomyogenesis |
-
2023
- 2023-04-26 WO PCT/JP2023/016537 patent/WO2023210713A1/ja not_active Ceased
- 2023-04-26 US US18/860,566 patent/US20250290076A1/en active Pending
- 2023-04-26 EP EP23796450.7A patent/EP4516905A1/en active Pending
- 2023-04-26 JP JP2024518006A patent/JPWO2023210713A1/ja active Pending
Patent Citations (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007517001A (ja) * | 2003-12-30 | 2007-06-28 | ビオネトス・ホールディング・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 組織再生法 |
| WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
| WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
| WO2009007852A2 (en) | 2007-06-15 | 2009-01-15 | Izumi Bio, Inc | Multipotent/pluripotent cells and methods |
| WO2009032194A1 (en) | 2007-08-31 | 2009-03-12 | Whitehead Institute For Biomedical Research | Wnt pathway stimulation in reprogramming somatic cells |
| WO2009058413A1 (en) | 2007-10-29 | 2009-05-07 | Shi-Lung Lin | Generation of human embryonic stem-like cells using intronic rna |
| WO2009057831A1 (ja) | 2007-10-31 | 2009-05-07 | Kyoto University | 核初期化方法 |
| WO2009075119A1 (ja) | 2007-12-10 | 2009-06-18 | Kyoto University | 効率的な核初期化方法 |
| WO2009079007A1 (en) | 2007-12-17 | 2009-06-25 | Gliamed, Inc. | Stem-like cells and method for reprogramming adult mammalian somatic cells |
| WO2009091659A2 (en) | 2008-01-16 | 2009-07-23 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents |
| WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
| WO2009101084A1 (en) | 2008-02-13 | 2009-08-20 | Fondazione Telethon | Method for reprogramming differentiated cells |
| WO2009102983A2 (en) | 2008-02-15 | 2009-08-20 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| WO2009117439A2 (en) | 2008-03-17 | 2009-09-24 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
| WO2009114949A1 (en) | 2008-03-20 | 2009-09-24 | UNIVERSITé LAVAL | Methods for deprogramming somatic cells and uses thereof |
| WO2009126250A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through rna interference |
| WO2009126251A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
| WO2009126655A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator |
| WO2009157593A1 (en) | 2008-06-27 | 2009-12-30 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
| WO2010009015A2 (en) | 2008-07-14 | 2010-01-21 | Oklahoma Medical Research Foundation | Production of pluripotent cells through inhibition of bright/arid3a function |
| WO2010033920A2 (en) | 2008-09-19 | 2010-03-25 | Whitehead Institute For Biomedical Research | Compositions and methods for enhancing cell reprogramming |
| WO2010033906A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| WO2010042800A1 (en) | 2008-10-10 | 2010-04-15 | Nevada Cancer Institute | Methods of reprogramming somatic cells and methods of use for such cells |
| WO2010050626A1 (en) | 2008-10-30 | 2010-05-06 | Kyoto University | Method for producing induced pluripotent stem cells |
| WO2010056831A2 (en) | 2008-11-12 | 2010-05-20 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
| WO2010068955A2 (en) | 2008-12-13 | 2010-06-17 | Dna Microarray | MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING |
| WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
| WO2010102267A2 (en) | 2009-03-06 | 2010-09-10 | Ipierian, Inc. | Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells |
| WO2010111409A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Pluripotent stem cells |
| WO2010111422A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Induced pluripotent stem cell generation using two factors and p53 inactivation |
| WO2010115050A2 (en) | 2009-04-01 | 2010-10-07 | The Regents Of The University Of California | Embryonic stem cell specific micrornas promote induced pluripotency |
| WO2010124290A2 (en) | 2009-04-24 | 2010-10-28 | Whitehead Institute For Biomedical Research | Compositions and methods for deriving or culturing pluripotent cells |
| WO2010147395A2 (en) | 2009-06-16 | 2010-12-23 | Korea Research Institute Of Bioscience And Biotechnology | Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same |
| WO2010147612A1 (en) | 2009-06-18 | 2010-12-23 | Lixte Biotechnology, Inc. | Methods of modulating cell regulation by inhibiting p53 |
| JP2015524385A (ja) * | 2012-07-02 | 2015-08-24 | フィブロスタティン,エス.エル. | Gpbp−1阻害およびその治療的使用 |
| JP2018513668A (ja) * | 2014-12-26 | 2018-05-31 | 日東電工株式会社 | P21遺伝子調節のためのrna剤 |
| JP2018512456A (ja) * | 2015-04-09 | 2018-05-17 | リジェンコア, インコーポレイテッド | 心組織を修復するための心外膜由来パラクリン因子 |
| WO2021016663A1 (en) * | 2019-07-30 | 2021-02-04 | Victor Chang Cardiac Research Institute | Klf induced cardiomyogenesis |
Non-Patent Citations (19)
| Title |
|---|
| BAO X ET AL., NAT BIOMED ENG, vol. 1, 2016, pages 0003 |
| CELL STEM CELL, vol. 5, 2009, pages 491 - 503 |
| EMINLI S ET AL., STEM CELLS, vol. 26, 2008, pages 2467 - 2474 |
| FENG B ET AL., NAT. CELL BIOL., vol. 11, 2009, pages 197 - 203 |
| GUADIX JA ET AL., STEM CELL REPORTS, vol. 9, no. 6, 12 December 2017 (2017-12-12), pages 1754 - 1764 |
| HAN J ET AL., NATURE, vol. 463, 2010, pages 1096 - 100 |
| HENG J. C. ET AL., CELL STEM CELL, vol. 6, 2010, pages 167 - 74 |
| HUANGFU D ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 1269 - 1275 |
| IYER D ET AL., DEVELOPMENT, vol. 142, no. 8, 15 April 2015 (2015-04-15), pages 1528 - 41 |
| JUNGHOF J ET AL., NPJ REGEN MED, vol. 7, no. 1, 2 February 2022 (2022-02-02), pages 14 |
| KIM J. B. ET AL., NATURE, vol. 461, 2009, pages 649 - 643 |
| LI BING, LI MENGSHA, LI XINZHONG, LI HAIRUI, LAI YANXIAN, HUANG SENLIN, HE XIANG, SI XIAOYUN, ZHENG HAO, LIAO WANGJUN, LIAO YULIN,: "Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation", AGING, vol. 11, no. 24, 26 December 2019 (2019-12-26), pages 12546 - 12567, XP093104661, DOI: 10.18632/aging.102587 * |
| LYSSIOTIS C. A. ET AL., PROC NATL ACAD SCI U S A., vol. 106, 2009, pages 8912 - 8917 |
| MAEKAWA M ET AL., NATURE, vol. 474, 2011, pages 225 - 9 |
| MALI P ET AL., STEM CELLS, vol. 28, 2010, pages 713 - 720 |
| R. L. JUDSON ET AL., NAT. BIOTECHNOL., vol. 27, 2009, pages 459 - 461 |
| WITTY A. ET AL., NAT BIOTECHNOL, vol. 32, no. 10, October 2014 (2014-10-01), pages 1026 - 35 |
| XIAO CHENGLU, GAO LU, HOU YU, XU CONGFEI, CHANG NANNAN, WANG FANG, HU KEPING, HE AIBIN, LUO YING, WANG JUN, PENG JINRONG, TANG FUC: "Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish", NATURE COMMUNICATIONS, vol. 7, no. 1, XP093104655, DOI: 10.1038/ncomms13787 * |
| ZHAO Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 132 - 135 |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2023210713A1 (ja) | 2023-11-02 |
| US20250290076A1 (en) | 2025-09-18 |
| EP4516905A1 (en) | 2025-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kukreja et al. | MicroRNAs: new players in cardiac injury and protection | |
| US12391943B2 (en) | MicroRNAs for cardiac regeneration through induction of cardiac myocyte proliferation | |
| Okumura et al. | Cell surface markers of functional phenotypic corneal endothelial cells | |
| Liu et al. | miR-371-5p down-regulates pre mRNA processing factor 4 homolog B (PRPF4B) and facilitates the G1/S transition in human hepatocellular carcinoma cells | |
| Judd et al. | Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes | |
| CN104726500B (zh) | MicroRNA26b‑3p抑制剂在制备人脐带来源间充质干细胞中的应用 | |
| CN103421886B (zh) | Ciz1基因的用途及其相关药物 | |
| CN113423817A (zh) | 用于将非肝细胞重编程为肝细胞的组合物和方法 | |
| Zhang et al. | LncRNA AZIN1-AS1 ameliorates myocardial ischemia–reperfusion injury by targeting miR-6838-5p/WNT3A axis to activate Wnt-β/catenin signaling pathway | |
| Ménendez et al. | MDM4 downregulates p53 transcriptional activity and response to stress during differentiation | |
| WO2008015028A1 (en) | Uses and compositions comprising mirnas | |
| CN110251529A (zh) | miR-124-3p与其类似物在制备抗乳腺癌疾病药物中的应用 | |
| WO2023210713A1 (ja) | 心外膜細胞再生促進剤および心外膜細胞の再生促進方法 | |
| Li et al. | DNA damage down-regulates ΔNp63α and induces apoptosis independent of wild type p53 | |
| CN108465108B (zh) | 一种预防或治疗脑胶质瘤的特异性基因靶点 | |
| US10238755B2 (en) | Methods and compositions for regulation of cell aging, carcinogenesis and reprogramming | |
| Pei et al. | Inhibition of cell proliferation and migration after HTRA1 knockdown in retinal pigment epithelial cells | |
| CN112725436A (zh) | 一种人circMKLN1基因的用途及相关产品 | |
| Alam et al. | MCM2 mediates post-MI cardioprotection by promoting the pro-angiogenic cardiosome signaling | |
| Luo et al. | High glucose facilitates cell cycle arrest of rat bone marrow multipotent adult progenitor cells through transforming growth factor-β1 and extracellular signal-regulated kinase 1/2 signalling without changing Oct4 expression. | |
| Li et al. | miR-6216 regulates neural stem cell proliferation by targeting RAB6B | |
| Rizzari et al. | Elucidating the role of DYRK1a kinase in controlling cardiomyocyte proliferation | |
| Wan et al. | LINC00885 promotes the development of lung adenocarcinoma through AKT/MTOR/P70 signaling LINC00885 may regulate migration, proliferation, and invasion through the mTOR pathway in lung adenocarcinoma | |
| Chen et al. | and Differentiation of Chicken Myoblast Cells by Sponging miR-30a-3p | |
| WO2025170010A1 (ja) | 成熟心外膜細胞の製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23796450 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2024518006 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 18860566 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2023796450 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2023796450 Country of ref document: EP Effective date: 20241127 |
|
| WWP | Wipo information: published in national office |
Ref document number: 18860566 Country of ref document: US |