WO2023209052A1 - Substrat transparent muni d'un empilement fonctionnel de couches minces - Google Patents
Substrat transparent muni d'un empilement fonctionnel de couches minces Download PDFInfo
- Publication number
- WO2023209052A1 WO2023209052A1 PCT/EP2023/061038 EP2023061038W WO2023209052A1 WO 2023209052 A1 WO2023209052 A1 WO 2023209052A1 EP 2023061038 W EP2023061038 W EP 2023061038W WO 2023209052 A1 WO2023209052 A1 WO 2023209052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- tungsten oxide
- nitride
- layers
- substrate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3435—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10174—Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
- B32B17/10201—Dielectric coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10431—Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
- B32B17/1044—Invariable transmission
- B32B17/10449—Wavelength selective transmission
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0015—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
- C23C14/0652—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
Definitions
- the invention relates to a transparent substrate provided with a functional stack of thin layers.
- Functional stacks of thin layers are commonly used to provide thermal insulation and/or solar protection functions to the glazing fitted to buildings. Their primary benefit is that they make it possible to reduce the air conditioning effort by avoiding excessive overheating (so-called “solar control” glazing) and/or by reducing the quantity of energy dissipated to the outside (so-called “low-emissive” glazing). ").
- Solar control functions are sought for glazing likely to be exposed to high levels of sunlight.
- the ability of a glazing to limit the amount of light energy transmitted is defined by the solar factor, g, which is the ratio of the total energy transmitted through the glazed surface or glazing towards the interior to the incident solar energy.
- EP 0 239 280 A2 [GORDON ROY GERALD] 09.30.1987 describes a transparent glass substrate provided with a stack of thin layers comprising, from the substrate, a first layer of tin oxide doped with fluorine, a layer of titanium nitride and a layer of tin oxide. Stacking imparts solar control properties with reduced light reflection and coloration.
- WO 2018/129135 A1[GUARDIAN GLASS LLC [US]] 12.07.2018 describes a transparent glass substrate provided with a stack of thin layers comprising three thin layers of silicon nitride between which are interposed two thin layers based on silicon nitride titanium reflective of infrared radiation. Stacking imparts solar control properties with reduced red color in reflection, maintaining chemical and mechanical durability and low emissivity.
- WO 2020/128327 A1 [SAINT GOBAIN [FR]] 06.25.2020 also describes a transparent glass substrate provided with a stack of thin layers comprising three thin layers of silicon nitride between which are interposed two thin layers based on silicon nitride titanium reflective of infrared radiation. Stacking provides solar control and exterior invisibility properties so that the occupants of a building are not or barely visible from the outside. The stack also presents, in the La*b* system, a reflection coefficient a* of between 10 and -10.
- WO 2021/170959 A1 [SAINT GOBAIN [FR]] 02.09.2021 describes a transparent glass substrate provided with a stack comprising two layer dielectric modules between which are inserted a thin layer based on titanium nitride reflecting infrared radiation and a metallic intermediate layer based on silicon, aluminum, titanium or their mixture. Stacking imparts solar control properties with light transmission greater than 30%, emissivity less than 50%. The stack also exhibits some chemical and mechanical durability when directly exposed.
- EP 3686312 A1 [SUMITOMO METAL MINING CO [JP]] 07.29.2020 describes a layer based on tungsten oxide doped with cesium, and a method of deposition of such a layer by cathode sputtering.
- the layer has a “solar control” function thanks in particular to its strong absorption of infrared radiation.
- a functional stack is qualified as a functional stack suitable for such applications when it satisfies a triple requirement: high light transmission, low solar factor value and low emissivity value.
- a functional stack is therefore suitable when it has a high selectivity value, s, defined as the ratio of light transmission to the solar factor, and low emissivity.
- a functional stack must have a certain chemical and mechanical durability, in particular when it is in contact with the external environment.
- a first aspect of the invention relates to a transparent substrate as described in claim 1, the dependent claims being advantageous embodiments.
- the transparent substrate is provided on one of its main surfaces with a stack of thin layers, said stack is made up of the following layers from the substrate: - a first dielectric module of one or more thin layers; - a layer based on titanium nitride; - a second dielectric module of one or more thin layers; in which the first dielectric module and/or the second dielectric module comprises, from the substrate: - a first thin layer based on nitride; - an absorbent layer based on tungsten oxide; - a second thin layer based on nitride; said tungsten oxide comprises at least one doping element selected from the chemical elements of group 1 according to the IUPAC nomenclature.
- single glazing and laminated glazing comprising a transparent substrate according to the first aspect of the invention.
- a method such as the manufacture of a transparent substrate according to the first aspect of the invention.
- a remarkable advantage of glazing comprising a transparent substrate according to the invention is a gain of up to more than 10% in selectivity while maintaining a sufficient level of light transmission, greater than 65% in single glazing application, and an emissivity of 5 W/m2.K or even lower.
- Another advantage of the invention is that the functional stack has better durability, in particular thanks to the encapsulation of the tungsten oxide layer by layers based on nitrides, as detailed in certain embodiments.
- the term “thickness” used for a layer corresponds to the physical, real or geometric thickness, e, of said layer. It is expressed in nanometers.
- dielectric module designates one or more layers in contact with each other forming a set of generally dielectric layers, that is to say that it does not have the functions of a metallic functional layer. If the dielectric module comprises several layers, these can themselves be dielectric.
- the physical thickness, real or geometric, of a layer dielectric module corresponds to the sum of the physical thicknesses, real or geometric, of each of the layers that constitute it.
- the expressions “a layer of” or “a layer based on”, used to qualify a material or a layer as to what it or it contains, are used equivalently. They mean that the mass fraction of the constituent that he or she comprises is at least 50%, in particular at least 70%, preferably at least 90%. In particular, the presence of minority or doping elements is not excluded.
- transparent used to qualify a substrate, means that the substrate is preferably colorless, non-opaque and non-translucent in order to minimize the absorption of light and thus maintain maximum light transmission in the visible electromagnetic spectrum.
- light transmission means the light transmission, denoted TL, as defined and measured in section 4.2 of standard EN 410.
- the light transmission, TL, in the visible spectrum, the solar factor, g, and the selectivity, s, the internal reflection, Rint, and the external reflection, Rext, in the visible spectrum, as well as their measurement and/or calculation methods are defined in standards EN 410, ISO 9050 and ISO 10292 in the case of glazing.
- thermal transmission factor means the thermal transmission factor as defined according to EN 673 standards.
- group 1 of chemical elements includes hydrogen and the alkaline elements, i.e. lithium, sodium, potassium, rubidium, cesium and francium.
- optical refraction index and “optical extinction coefficient”, we mean the optical refraction index, n, and optical extinction coefficient, k, as defined in the technical field, in particular according to the Forouhi & Bloomer model described in the work Forouhi & Bloomer, Handbook of Optical Constants of Solids II, Palik, E.D. (ed.), Academic Press, 1991, Chapter 7.
- a transparent substrate 1000 is provided provided on one of its main surfaces with a stack 1001 of thin layers, said stack 1001 is made up of the following layers from the substrate: - a first dielectric module 1002 of one or more thin layers; - a layer 1003 based on titanium nitride; - a second dielectric module 1004 of one or more thin layers; in which the first dielectric module 1002 and/or the second dielectric module 1004 comprises, from the substrate 1001: - a first thin layer 1002a, 1004a based on nitride; - an absorbent layer 1002b, 1004b based on tungsten oxide; - a second thin layer 1002c, 1004c based on nitride; said tungsten oxide comprises at least one doping element selected from the chemical elements of group 1 according to the IUPAC nomenclature.
- the first dielectric module 1002 and/or the second dielectric module 1004 comprise a layer 1002b, 1004b of tungsten oxide.
- the first dielectric module 1002 comprises a layer 1002b of tungsten oxide.
- the second dielectric module 1004 comprises a layer 1004b of tungsten oxide.
- each of the dielectric modules 1002, 1004 comprises a layer 1002b, 1004b of tungsten oxide.
- the tungsten oxide of the two tungsten oxide layers may be of different composition.
- the transparent substrate 1000 may preferably be planar. It can be organic or inorganic, rigid or flexible. In particular, it may be a mineral glass, for example a soda-lime-silico glass.
- organic substrates which can be advantageously used for the implementation of the invention may be polymeric materials such as polyethylenes, polyesters, polyacrylates, polycarbonates, polyurethanes, polyamides. These polymers may be fluoropolymers.
- Examples of mineral substrates that can be advantageously used in the invention may be sheets of mineral glass or glass ceramic.
- the glass may preferably be a silico-soda-lime, borosilicate, aluminosilicate or even alumino-boro-silicate type glass.
- the transparent substrate 1000 is a sheet of silico-soda-lime mineral glass.
- the stack 1001 of thin layers does not include metallic functional layers reflecting infrared radiation, in particular not comprising metallic functional layers based on silver.
- the optical refractive index of the layer 1002b, 1004b of tungsten oxide decreases monotonically with the wavelength from a maximum value greater than 2.4 at 350 nm to a minimum value between 600 nm and 1400 nm so that the difference between the maximum value and the minimum value is greater than 0.8, preferably greater than 1.0, or even greater than 1.4.
- the value of the optical refractive index decreases monotonically by at least 0.8, preferably by at least 1.0, or even at least 1.4 between a maximum value greater than 2.4 at 350 nm and a minimum value between 600 nm and 1400 nm.
- the optical refractive index value can decrease monotonically by at least 0.8, preferably by at least 1.0, or even at least 1.4 between a maximum value greater than 2 .4 at 350 nm and a minimum value less than 2.3 between 600 nm and 1400 nm, in particular between 800 nm and 1100 nm.
- optical refractive index values can nevertheless be advantageous for improving the neutrality of colors in transmission and reflection.
- the optical extinction coefficient of the layer 1002b, 1004b of tungsten oxide can be less than 0.2, or even 0.1 at 500 nm and less than 2, or even less than 1.5 at 1200 nm.
- the selectivity can thus be favorably further increased.
- optical extinction coefficient and the optical diffraction index may vary depending on the nature and quantity of the doping element(s) selected from the elements of group 1 according to the IUPAC nomenclature. However, it is currently difficult to establish a general behavioral law for the optical extinction coefficient and the refractive index depending on the nature and/or quantity of the doping element(s).
- the layer 1002b, 1004b of tungsten oxide comprises the doping element X or the doping elements X1, W, or the sum of the molar ratios of each element on tungsten (X1+X2+...)/W is between 0.01 and 0.6, preferably between 0.02 and 0.3.
- the tungsten oxide layer 1002b, 1004b comprises at least one doping element selected from hydrogen, lithium, sodium, potassium and cesium.
- these particular elements can make it possible to obtain the most optimal optical extinction coefficient and refractive index values for the desired technical effects.
- the layer 1002b, 1004b of tungsten oxide comprises cesium as a doping element, and the molar ratio of cesium to tungsten is between 0.01 and 0.4, preferably between 0.01 and 0.2.
- the physical thickness of the layer(s) 1002b, 1004b of tungsten oxide can be between 6 nm and 350 nm, in particular between 20 nm and 250 nm, preferably between 40 nm and 200 nm. These thickness intervals are sufficient to obtain the remarkable advantages of the first aspect of the invention.
- the first 1002a, 1004a and the second 1002c, 1004c thin layers based on nitride of the first dielectric module 1002 and/or the second dielectric module 1004 can be chosen from aluminum nitride, silicon nitride and zirconium, or silicon nitride optionally doped with aluminum, zirconium and/or boron.
- the first 1002a, 1004a and second 1002c, 1004c nitride-based layers of the first 1002 and second 1004 dielectric modules are based on aluminum nitride or silicon nitride.
- the first 1002a, 1004a and second layers 1002c, 1004c based on nitride of the first dielectric module 1002 and/or the second dielectric module 1004 are located on either side of the layer 1002b, 1004b based on tungsten oxide.
- the layer 1002b, 1004b based on tungsten oxide is then encapsulated.
- This encapsulation allows double protection of the absorbent layer 1002b, 1004b based on tungsten oxide. On the one hand, it prevents possible contamination by elements likely to diffuse into the stack from the substrate, such as in particular alkaline ions or oxygen in the case of mineral glass substrate. On the other hand, it makes it possible to limit, in particular during an annealing heat treatment step, the diffusion of oxygen in the stack towards the absorbent layer based on tungsten oxide from the atmosphere and/or the substrate. .
- the chemical composition and degree of oxidation of the tungsten oxide absorbent layer vary little with time, or if they do vary, this variation is favorable for selectivity.
- the encapsulation ensures a correct level of selectivity.
- the substrate according to the first aspect of the invention is more durable, in particular its performance is preserved over the long term.
- the first dielectric module 1002 and the second dielectric module 1004 may include additional thin layers.
- these additional layers can have chemical compositions making it possible to confer particular optical properties, for example in terms of colors or filtering of certain wavelengths of the electromagnetic spectrum, to the substrate. They can also confer certain mechanical and/or chemical properties, such as resistance to abrasion, delamination and/or chemical attack.
- These layers are generally based on oxides or oxynitrides of metals or metal alloys.
- these additional layers can be sources of contamination of the absorbent layer based on tungsten oxide.
- These sources of contamination can be a diffusion of certain metal ions or dopants or even a diffusion of oxygen. They can take place during the deposition of additional layers, during possible certain heat treatments of the stack, or even during use.
- Such contaminations can alter the absorbent layer based on tungsten oxide and are detrimental to the performance of the substrate according to the first aspect of the invention.
- the first 1002a, 1004a and second 1002c, 1004c nitride-based layers of the first 1002 and second 1004 dielectric modules are in contact with the tungsten oxide layer 1002b, 1004b.
- the first dielectric module 1002 and/or the second dielectric module 1004 are constituted from the substrate 1000: - the first thin layer 1002a, 1004a based on nitride; - the absorbent layer 1002b, 1004b based on tungsten oxide; - the second thin layer 1002c, 1004c based on nitride.
- the first dielectric module 1002 and/or the second dielectric module 1004 are constituted in this way, that is to say they only include the nitride-based layers mentioned above, the risk of alteration of the absorbent layer based on The tungsten oxide by possible diffusion of oxygen is then limited, or even eliminated.
- the durability of the substrate according to the first aspect of the invention can then be maximum with regard to the desired “solar control” performances.
- the thickness of the layer 1003 of titanium nitride is between 5 nm and 25 nm, preferably between 10 nm and 20 nm
- the thickness of the absorbent layer(s) based on titanium oxide tungsten is between 5 and 100 nm, preferably between 10 and 50 nm
- the thicknesses of the layers 1002a, 1004a, 1002c, 1004c based on nitride of the first 1002 and the second 1004 dielectric modules are between 5 nm and 100 nm , preferably between 5 nm and 50 nm.
- a single glazing comprising a substrate according to the first aspect of the invention.
- a laminated glazing 2000 comprising a first transparent substrate 1000 according to the first aspect of the invention, a lamination interlayer 2001 and a second transparent substrate 2002, such that the first transparent substrate 1000 and the second transparent substrate 2002 are in adhesive contact with the lamination interlayer 2001 and the stack 1001 of thin layers of the first transparent substrate 1000 is in contact with the lamination interlayer 2001.
- the lamination interlayer 2001 may consist of one or more layers of thermoplastic material.
- thermoplastic material are polyurethane, polycarbonate, polyvinyl butyral (PVB), polymethyl methacrylate (PMMA), ethylene vinyl acetate (EA) or an ionomer resin.
- the lamination interlayer 2001 may be in the form of a multilayer film. It can also have particular functionalities such as, for example, acoustic or anti-UV properties.
- the lamination interlayer 2001 comprises at least one layer of PVB. Its thickness is between 50 ⁇ m and 4 mm. In general, it is less than 1 mm.
- the laminated glazing 2000 when used as glazing of a motor vehicle, for example as a windshield, is such that the substrate 1000 according to the first aspect of the invention is located inside of the vehicle.
- the stack is placed on face 2 of the glazing from the substrate 1000 oriented towards the interior of the vehicle, face 1 being the face oriented towards the interior; or even on face 3 of the glazing from the substrate 1000 oriented towards the outside of the vehicle, face 1 being the face oriented towards the outside.
- the second substrate 2002 may be a mass-tinted mineral glass.
- Dyeing or coloring in the mass of mineral glass is known and extensively detailed in the technical literature. Coloring can usually be achieved by adding oxide dyes to the glass chemistry.
- coloring oxides may be iron II oxide, copper oxide, chromium oxide, nickel oxide, gold oxide, manganese oxide, cobalt oxide , uranium oxide, neodymium oxide and erbium oxide.
- Mixtures of oxides such as copper and tin oxide, or ionic complexes, such as the iron-sulfur or cadmium-sulfur complex, can also be used.
- Laminated glazing manufacturing processes are well-known processes in the glass industry.
- a process for manufacturing laminated glazing can be a process for laminating a lamination interlayer between two sheets of glass.
- the glass sheets can be shaped beforehand, for example in a curved manner using a bending process. They can also be coated with one or more thin film coatings using any type of suitable thin film deposition process.
- the processes for depositing thin layers on substrates are well-known processes in the industry.
- the deposition of a stack of thin layers on a glass substrate is carried out by the successive deposition of each thin layer of said stack by passing the glass substrate through a succession of deposition cells adapted to deposit a given thin layer.
- Deposition cells can use deposition methods such as magnetic field-assisted sputtering (also called magnetron sputtering), ion beam-assisted deposition (IBAD), evaporation, chemical vapor deposition (CVD) , plasma-enhanced chemical vapor deposition (PECVD), low-pressure chemical vapor deposition (LPCVD), etc.
- deposition methods such as magnetic field-assisted sputtering (also called magnetron sputtering), ion beam-assisted deposition (IBAD), evaporation, chemical vapor deposition (CVD) , plasma-enhanced chemical vapor deposition (PECVD), low-pressure chemical vapor deposition (LPCVD), etc.
- the magnetic field-assisted sputtering deposition process is particularly used.
- the conditions for depositing layers are widely documented in the literature, for example in patent applications WO2012/093238 A1 and WO2017/00602 A1.
- a method of manufacturing a substrate 1000 according to the first aspect of the invention such that the layer(s) 1002b, 1004c of tungsten oxide are deposited by a method of magnetron cathode sputtering using a tungsten oxide target doped with a chemical element chosen from the chemical elements of group 1 according to the IUPAC nomenclature.
- the tungsten oxide target may in particular contain one or more doping elements in a proportion as described for the doped tungsten oxide layer in certain embodiments of the first aspect of the invention.
- the layer 1002b, 1004b of tungsten oxide can be deposited by sputtering using the aforementioned target under a deposition atmosphere composed of 60 to 100% argon and 0 to 40% dioxygen, preferably 70 to 85% argon and 15 to 30% oxygen.
- the layer 1002b, 1004b of tungsten oxide can be deposited under a pressure of between 1 to 15 mTorr, preferably 3 to 10 mTorr.
- the deposition can be carried out cold, that is to say at a temperature below 100°C, in particular between 20°C and 60°C, for the substrate.
- the deposition can also be carried out hot, in particular at a temperature between 100°C and 400°C.
- the substrate 1000 after deposition of the stack 1001, can undergo an annealing heat treatment.
- the annealing temperature can be between 450°C and 800°C, in particular between 550°C and 750°C, or even between 600°C and 700°C.
- the annealing time can be between 5 min and 30 min, in particular between 5 min and 20 min, or even between 5 min and 10 min.
- the layer denoted CWO, of tungsten oxide doped with cesium.
- the molar ratio of cesium to tungsten in the layer is approximately 0.05-0.06.
- Counterexample CE1 differs from the examples by the absence of a tungsten oxide layer.
- the thin layers of the functional coatings 1004 of examples E1 to E3 and counterexamples CE1 and CE2 were deposited by cathodic sputtering assisted by a magnetic field (magnetron process) whose characteristics are widely documented in the literature, for example in the applications patent WO2012/093238 and WO2017/00602.
- the functional coatings 1001 are deposited directly on the sheet of glass 1000.
- This sheet of glass 1000 is a sheet of silico-soda-lime mineral glass 6 mm thick. Immediately after deposition, the functional coatings were heat treated at 650°C for 10 min.
- the emissivity were measured for each example E1 to E2 and the counterexamples CE1.
- Light transmission in the visible spectrum, TL, solar factor, g, selectivity, s, and internal reflection, Rint, and external reflection, Rext, in the visible spectrum are defined, measured and calculated in accordance with standards EN 410, ISO 9050 and/or ISO 10292.
- the emissivity, Ug is defined, measured and calculated in accordance with standards EN 410 and EN 12898.
- color used to qualify a transparent substrate provided with a stack, is meant the color as defined in the L*a*b* CIE 1976 color space according to the ISO 11664 standard, in particular with a illuminant D65 and a visual field of 2° or 10° for the reference observer. It is measured in accordance with said standard.
- Measurements of emissivity, solar factor, selectivity, light transmission, internal reflection, external reflection, color parameters a* and b*, in transmission (a*T, b*T), in external reflection (a*Rext, b*Rext) and in internal reflection (a*Rint, b*Rint) are grouped in table 3.
- examples E1 and E2 Compared to counter-example CE1, examples E1 and E2 have a lower solar factor for the same light transmission. Their selectivity is therefore higher.
- the thermal transmittance of examples E1 and E2 is similar to that of the counter-example, or even slightly lower for example E1.
- the parameters of the parameters a* and b* are close to zero in both transmission and reflection, indicating that examples E1 and E2 present a relatively neutral color in transmission and/or reflection.
- Examples E1 and E2 also exhibit lower levels of internal and external reflection, if not comparable, to those in counterexample CE1.
- the stacks 1001 of examples E1 to E2 and counter-example CE1 were also used to form laminated glazing, denoted respectively VFE1, VFE2 and VFCE1.
- the functional coatings 1001 were deposited under the same conditions as previously on sheets 1000 of silico-soda-lime mineral glass 4 mm thick. Immediately after deposition, the functional coatings were heat treated at 650°C for 10 min.
- each of the sheets of glass 1000 provided with a functional coating 1001 is laminated with a lamination interlayer 2001 in PVB with a thickness of 0.38 mm and a second sheet of glass 2002 in silico-soda-lime mineral glass with a thickness of 4mm in order to form laminated glazing according to the diagram of the .
- the emissivity were measured for each example VFE1 to VFE2 and the counterexamples VFCE1.
- the thermal transmittance, Ug is defined, measured and calculated in accordance with standard EN 673.
- color used to qualify a transparent substrate provided with a stack, is meant the color as defined in the L*a*b* CIE 1976 color space according to the ISO 11664 standard, in particular with a illuminant D65 and a visual field of 2° or 10° for the reference observer. It is measured in accordance with said standard.
- Measurements of emissivity, solar factor, selectivity, light transmission, internal reflection, external reflection, color parameters a* and b*, in transmission (a*T, b*T), in external reflection (a*Rext, b*Rext) and in internal reflection (a*Rint, b*Rint) are grouped in table 4.
- the VFE1 and VFE2 examples exhibit higher selectivity.
- the emissivity of examples E1 and E2 is similar to that of the counterexample.
- the parameters of the parameters a* and b* are close to zero in both transmission and reflection, indicating that examples E1 and E2 present a relatively neutral color in transmission and/or reflection.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Surface Treatment Of Glass (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- un premier module diélectrique d’une ou plusieurs couches minces ;
- une couche à base de nitrure de titane ;
- un deuxième module diélectrique d’une ou plusieurs couches minces ;
dans lequel le premier modules diélectrique et/ou le deuxième module diélectrique comprend à partir du substrat :
- une première couche mince à base de nitrure ;
- une couche absorbante à base d’oxyde de tungstène ;
- une deuxième couche mince à base de nitrure ;
ledit oxyde de tungstène comprend au moins un élément dopant sélectionné parmi les éléments chimiques du groupe 1 selon la nomenclature de l’IUPAC.
- un premier module diélectrique 1002 d’une ou plusieurs couches minces ;
- une couche 1003 à base de nitrure de titane ;
- un deuxième module diélectrique 1004 d’une ou plusieurs couches minces ;
dans lequel le premier modules diélectrique 1002 et/ou le deuxième module diélectrique 1004 comprend à partir du substrat 1001 :
- une première couche mince 1002a, 1004a à base de nitrure ;
- une couche absorbante 1002b, 1004b à base d’oxyde de tungstène ;
- une deuxième couche mince 1002c, 1004c à base de nitrure ;
ledit oxyde de tungstène comprend au moins un élément dopant sélectionné parmi les éléments chimiques du groupe 1 selon la nomenclature de l’IUPAC.
- de la première couche mince 1002a, 1004a à base de nitrure ;
- de la couche absorbante 1002b, 1004b à base d’oxyde de tungstène ;
- de la deuxième couche mince 1002c, 1004c à base de nitrure.
Tab. 1 | E1 | E2 | CE1 | ||
1004 | SiN | 29 | 11 | 41 | |
CWO | 20 | 29 | |||
SiN | 5 | 5 | |||
1003 | TiN | 9,8 | 12,8 | 9,8 | |
1002 | SiN | 5 | 5 | ||
CWO | 9 | 10 | |||
SiN | 33 | 33 | 33 | ||
1000 | verre | 6mm | 6mm | 6mm |
Tab. 2 | Cible | Pression (µbar) | Ar (sccm) |
O2 (sccm) |
N2 (sccm) |
Power (W) |
TiN | Ti | 2 | 32 | 0 | 15 | 2500 |
SiN | Si:Al | 5 | 7 | 0 | 14 | 2000 |
CWO | CWO : Cs/W 0,3-0,4 | 4-10 | 30-40 | 2-10 | 0 | 1300 |
Tab. 3 | E1 | E2 | CE1 |
g | 57,2 | 56.0 | 61,5 |
s | 1,15 | 1,18 | 1,07 |
TL | 66.0 | 66.0 | 66.0 |
a*T | -3,8 | -3,6 | -1,3 |
b*T | -3,9 | -2,7 | -2,4 |
Rext | 12,1 | 15,8 | 15,0 |
a*Rext | -3,7 | -5,1 | -2,1 |
b*Rext | -0,1 | 0,0 | -2,1 |
Rint | 7,9 | 9,6 | 12,1 |
a*Rint | 2,0 | 2,0 | -4,0 |
b*Rint | 6,0 | 4,1 | 6,1 |
Ug | 5,0 | 4,8 | 5,0 |
Tab. 4 | VFE1 | VFE2 | VFCE1 |
g | 58,8 | 56,1 | 57,9 |
s | 1,16 | 1,19 | 1,14 |
TL | 68,3 | 66,5 | 66 |
a*T | -4,0 | -4,0 | -3,4 |
b*T | 0,0 | 0,0 | 0,0 |
Rext | 8,1 | 12,7 | 8,0 |
a*Rext | 0,9 | -3,6 | 0,5 |
b*Rext | -2,3 | -0,1 | 0,0 |
Rint | 7,2 | 7,2 | 8,1 |
a*Rint | 1,4 | 1,9 | 0,3 |
b*Rint | -5,0 | -6,4 | 0,5 |
Ug | 5,6 | 5,6 | 5,6 |
Claims (15)
- Substrat transparent (1000) muni sur une de ses surfaces principales d’un empilement (1001) de couches minces, ledit empilement (1001) est constitué des couches suivantes à partir du substrat :
- un premier module diélectrique (1002) d’une ou plusieurs couches minces ;
- une couche (1003) à base de nitrure de titane ;
- un deuxième module diélectrique (1004) d’une ou plusieurs couches minces ;
dans lequel le premier modules diélectrique (1002) et/ou le deuxième module diélectrique (1004) comprend à partir du substrat (1001) :
- une première couche mince (1002a, 1004a) à base de nitrure ;
- une couche absorbante (1002b, 1004b) à base d’oxyde de tungstène ;
- une deuxième couche mince (1002c, 1004c) à base de nitrure ;
ledit oxyde de tungstène comprend au moins un élément dopant sélectionné parmi les éléments chimiques du groupe 1 selon la nomenclature de l’IUPAC. - Substrat selon la revendication 1, tel que couche (1002b, 1004b) d’oxyde de tungstène comprend l’élément dopant X ou les éléments dopants X1,X2,… dans des proportions telles que le rapport molaire, X/W dudit élément sur le tungstène , W, ou la somme des rapports molaires de chaque élément sur le tungstène (X1+X2+…)/W est comprise entre 0,01 et 0,6, de préférence entre 0,02 et 0,3.
- Substrat selon l’une quelconque des revendications 1 à 2, tel que la couche (1002b, 1004b) d’oxyde de tungstène comprend au moins un élément dopant sélectionné parmi l’hydrogène, le lithium, le sodium, le potassium et le césium.
- Substrat selon la revendication 3, tel que la couche (1002b, 1004b) d’oxyde de tungstène comprend le césium comme élément dopant, et le rapport molaire du césium sur le tungstène est compris entre 0,01 et 0,4, de préférence entre 0,01 et 0,2.
- Substrat selon l’une quelconque des revendications 1 à 4, tel que l’épaisseur physique de la ou des couches (1002b, 1004b) d’oxyde de tungstène peut être comprise entre 6 nm et 350 nm, en particulier entre 20 nm et 250 nm, de préférence entre 40 nm et 200 nm.
- Substrat selon l’une quelconque des revendications 1 à 5, tel que les premières (1002a, 1004a) et deuxièmes (1002c, 1004c) couches à base de nitrure des premier (1002) et deuxième (1004) modules diélectriques sont à base de nitrure d’aluminium ou de nitrure de silicium.
- Substrat selon l’une quelconque des revendications 1 à 6, tel que les premières (1002a, 1004a) et deuxièmes (1002c, 1004c) couches à base de nitrure des premier (1002) et deuxième (1004) modules diélectriques sont en contact avec la couche (1002b, 1004b) d’oxyde de tungstène.
- Substrat selon l’une quelconque des revendications 1 à 7, tel que le premier module diélectrique (1002) et/ou le deuxième module diélectrique (1004) sont constitués à partir du substrat (1000) :
- de la première couche mince (1002a, 1004a) à base de nitrure ;
- de la couche absorbante (1002b, 1004b) à base d’oxyde de tungstène ;
- de la deuxième couche mince (1002c, 1004c) à base de nitrure. - Substrat transparent selon l’une quelconque des revendications 1 à 8, tel que l’épaisseur de la couche (1003) de nitrure de titane est comprise entre 5 nm et 100 nm, de préférence entre 10 nm et 50 nm, l’épaisseur de la ou les couches absorbantes à base d’oxyde de tungstène est comprise entre 5 et 100 nm, de préférence entre 10 et 50 nm, et les épaisseurs des couches (1002a, 1004a, 1002c, 1004c) à base de nitrure du premier (1002) et du deuxième (1004) modules diélectriques sont comprises entre 5 nm et 100 nm, de préférence entre 5 nm et 50 nm.
- Simple vitrage comprenant un substrat selon l’une quelconque des revendication 1 à 9.
- Vitrage feuilleté (2000) comprenant un premier substrat (1000) transparent selon l’une quelconque des revendications 1 à 9, un intercalaire de feuilletage (2001) et un deuxième substrat transparent (2002), tel que le premier substrat transparent (1000) et le deuxième substrat transparent (2002) sont en contact adhésif avec l’intercalaire de feuilletage (2001) et l’empilement (1001) de couches minces du premier substrat transparent (1000) est en contact avec l’intercalaire de feuilletage (2001).
- Procédé de fabrication d’un substrat transparent selon l’une quelconque de revendications 1 à 9, tel que la ou les couches (1002b, 1004c) d’oxyde de tungstène sont déposées par une méthode de pulvérisation cathodique magnétron à l’aide d’une cible en oxyde de tungstène dopé à l’aide d’un élément chimique choisi parmi les éléments chimiques du groupe 1 selon la nomenclature de l’IUPAC.
- Procédé de fabrication selon la revendication 12, tel que la ou les couches absorbantes d’oxyde de tungstène est déposée à une température de substrat inférieure à 100°C, de préférence comprise entre 20 et 60°C.
- Procédé de fabrication selon l’une quelconque des revendications 12 à 13, tel que la couche à base d’oxyde de tungstène est déposée dans une atmosphère de dépôt composée de 60 à 100 % d’argon et 0 à 40 % de dioxygène, de préférence de 70 à 85 % d’argon et de 15 à 30% de dioxygène.
- Procédé de fabrication selon l’une quelconque des revendications 12 à 14, tel que la couche d’oxyde de tungstène est déposée à une pression comprise entre 1 et 15 mTorr, de préférence entre 3 et 10 mTorr.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380036599.1A CN119095809A (zh) | 2022-04-28 | 2023-04-26 | 提供有薄层功能堆叠体的透明基材 |
EP23722866.3A EP4514762A1 (fr) | 2022-04-28 | 2023-04-26 | Substrat transparent muni d'un empilement fonctionnel de couches minces |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2203984A FR3135080B1 (fr) | 2022-04-28 | 2022-04-28 | Substrat transparent muni d’un empilement fonctionnel de couches minces |
FRFR2203984 | 2022-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023209052A1 true WO2023209052A1 (fr) | 2023-11-02 |
Family
ID=83355265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/061038 WO2023209052A1 (fr) | 2022-04-28 | 2023-04-26 | Substrat transparent muni d'un empilement fonctionnel de couches minces |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4514762A1 (fr) |
CN (1) | CN119095809A (fr) |
FR (1) | FR3135080B1 (fr) |
WO (1) | WO2023209052A1 (fr) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0239280A2 (fr) | 1986-03-10 | 1987-09-30 | GORDON, Roy Gerald | Revêtement de protection pour films de protection solaire |
JP2010180449A (ja) | 2009-02-04 | 2010-08-19 | Sumitomo Metal Mining Co Ltd | 複合タングステン酸化物ターゲット材とその製造方法 |
WO2012093238A1 (fr) | 2011-01-06 | 2012-07-12 | Saint-Gobain Glass France | Substrat muni d'un empilement a proprietes thermiques, en particulier pour realiser un vitrage chauffant |
WO2017000602A1 (fr) | 2015-06-30 | 2017-01-05 | 比亚迪股份有限公司 | Alliage d'aluminium, son procédé de préparation et son utilisation |
US20180186691A1 (en) * | 2017-01-05 | 2018-07-05 | Guardian Glass, LLC | Heat treatable coated article having titanium nitride based ir reflecting layer(s) |
WO2020079375A1 (fr) * | 2018-10-18 | 2020-04-23 | Saint-Gobain Glass France | Vitrage comprenant un revetement fonctionnel et un revetement absorbant d'ajustement colorimetrique |
WO2020128327A1 (fr) | 2018-12-21 | 2020-06-25 | Saint-Gobain Glass France | Vitrage de controle solaire comprenant deux couches a base de nitrure de titane |
EP3686312A1 (fr) | 2017-09-22 | 2020-07-29 | Sumitomo Metal Mining Co., Ltd. | Film d'oxyde de césium-tungstène et son procédé de fabrication |
WO2021170959A1 (fr) | 2020-02-28 | 2021-09-02 | Saint-Gobain Glass France | Vitrage de controle solaire comprenant une couche de nitrure de titane |
FR3111631A1 (fr) * | 2020-06-19 | 2021-12-24 | Saint-Gobain Glass France | Vitrage de controle solaire comprenant une couche a base de nitrure de titane et une couche a base d’ito |
-
2022
- 2022-04-28 FR FR2203984A patent/FR3135080B1/fr active Active
-
2023
- 2023-04-26 CN CN202380036599.1A patent/CN119095809A/zh active Pending
- 2023-04-26 WO PCT/EP2023/061038 patent/WO2023209052A1/fr active Application Filing
- 2023-04-26 EP EP23722866.3A patent/EP4514762A1/fr active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0239280A2 (fr) | 1986-03-10 | 1987-09-30 | GORDON, Roy Gerald | Revêtement de protection pour films de protection solaire |
JP2010180449A (ja) | 2009-02-04 | 2010-08-19 | Sumitomo Metal Mining Co Ltd | 複合タングステン酸化物ターゲット材とその製造方法 |
WO2012093238A1 (fr) | 2011-01-06 | 2012-07-12 | Saint-Gobain Glass France | Substrat muni d'un empilement a proprietes thermiques, en particulier pour realiser un vitrage chauffant |
WO2017000602A1 (fr) | 2015-06-30 | 2017-01-05 | 比亚迪股份有限公司 | Alliage d'aluminium, son procédé de préparation et son utilisation |
US20180186691A1 (en) * | 2017-01-05 | 2018-07-05 | Guardian Glass, LLC | Heat treatable coated article having titanium nitride based ir reflecting layer(s) |
WO2018129135A1 (fr) | 2017-01-05 | 2018-07-12 | Guardian Glass, LLC | Article revêtu pouvant être traité thermiquement, présentant au moins une couche réfléchissant les infrarouges, à base de nitrure de titane |
EP3686312A1 (fr) | 2017-09-22 | 2020-07-29 | Sumitomo Metal Mining Co., Ltd. | Film d'oxyde de césium-tungstène et son procédé de fabrication |
WO2020079375A1 (fr) * | 2018-10-18 | 2020-04-23 | Saint-Gobain Glass France | Vitrage comprenant un revetement fonctionnel et un revetement absorbant d'ajustement colorimetrique |
WO2020128327A1 (fr) | 2018-12-21 | 2020-06-25 | Saint-Gobain Glass France | Vitrage de controle solaire comprenant deux couches a base de nitrure de titane |
WO2021170959A1 (fr) | 2020-02-28 | 2021-09-02 | Saint-Gobain Glass France | Vitrage de controle solaire comprenant une couche de nitrure de titane |
FR3111631A1 (fr) * | 2020-06-19 | 2021-12-24 | Saint-Gobain Glass France | Vitrage de controle solaire comprenant une couche a base de nitrure de titane et une couche a base d’ito |
Non-Patent Citations (1)
Title |
---|
FOROUHIBLOOMER: "Handbook of Optical Constants of Solids II", 1991, ACADEMIC PRESS |
Also Published As
Publication number | Publication date |
---|---|
CN119095809A (zh) | 2024-12-06 |
EP4514762A1 (fr) | 2025-03-05 |
FR3135080B1 (fr) | 2024-04-26 |
FR3135080A1 (fr) | 2023-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE1019346A3 (fr) | Vitrage de controle solaire. | |
BE1019345A3 (fr) | Vitrage de controle solaire a faible facteur solaire. | |
BE1020331A4 (fr) | Vitrage de contrôle solaire. | |
CH691857A5 (fr) | Substrat revêtu destiné à un vitrage transparent à haute sélectivité. | |
EP3233747B1 (fr) | Vitrage de controle thermique muni d'un film polymere protecteur | |
WO2023209052A1 (fr) | Substrat transparent muni d'un empilement fonctionnel de couches minces | |
WO2023143884A1 (fr) | Substrat transparent muni d'un empilement fonctionnel de couches minces | |
WO2023144222A1 (fr) | Substrat transparent muni d'un empilement fonctionnel de couches minces | |
EP4204226A1 (fr) | Element vitre antisolaire avec reflexion diffuse | |
FR3074091B1 (fr) | Vitrage fonctionnel muni d'un film protecteur permanent | |
EP4469412A1 (fr) | Substrat transparent muni d'un empilement fonctionnel de couches minces | |
WO2023117725A1 (fr) | Substrat transparent muni d'un empilement fonctionnel de couches minces | |
WO2023203192A1 (fr) | Vitrage antisolaire comprenant une seule couche fonctionnelle de nitrure de titane | |
WO2024160764A1 (fr) | Vitrage feuillete comprenant un revetement fonctionnel a base d'argent | |
WO2023209051A1 (fr) | Vitrage feuilleté pour affichage tête haute | |
WO2024223577A1 (fr) | Substrat transparent muni d'un empilement fonctionnel de couches minces | |
WO2021004873A1 (fr) | Vitrage a double couche de tin pour controle solaire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23722866 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380036599.1 Country of ref document: CN Ref document number: 18860318 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023722866 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023722866 Country of ref document: EP Effective date: 20241128 |