+

WO2023166873A1 - Operating system and operating unit - Google Patents

Operating system and operating unit Download PDF

Info

Publication number
WO2023166873A1
WO2023166873A1 PCT/JP2023/001249 JP2023001249W WO2023166873A1 WO 2023166873 A1 WO2023166873 A1 WO 2023166873A1 JP 2023001249 W JP2023001249 W JP 2023001249W WO 2023166873 A1 WO2023166873 A1 WO 2023166873A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilting
load
unit
operation system
angle
Prior art date
Application number
PCT/JP2023/001249
Other languages
French (fr)
Japanese (ja)
Inventor
智 高盛
光一 古澤
義人 石川
啓之 伊夫伎
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2023166873A1 publication Critical patent/WO2023166873A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/28Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
    • A63F13/285Generating tactile feedback signals via the game input device, e.g. force feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks

Definitions

  • the present invention relates to an operation system provided with an operation unit that accepts operations, and an operation unit that can be incorporated into such an operation system.
  • Patent Literature 1 proposes an operation device for a game machine having a plurality of operation buttons.
  • the operation device for a game machine proposed in Japanese Patent Laid-Open No. 2002-200002 creates a sense of realism by generating vibrations or the like in response to feedback from the game machine main body.
  • Another object of the present invention is to provide an operation unit that can be incorporated into such an operation system.
  • an operation system disclosed in the present application includes an operation unit that receives an operation, the operation unit has a tilting body that receives an operation of tilting at an arbitrary angle in an arbitrary direction from a reference position, An operation system for operating an operation target in accordance with a tilting state of a tilting body, wherein the operation unit includes a load section that applies a load to the tilting operation of the tilting body, and the load from the load section is applied in a tilting direction.
  • the present invention is characterized by further comprising a control unit that performs control according to the above.
  • control section is characterized by controlling the load applied by the load section according to the tilting angle.
  • the operation system further includes a detection unit used for detecting the tilting direction and the tilting angle, and a table indicating the degree of load in association with the tilting direction and the tilting angle, and the control unit controls the load based on the table. and controlling the load applied by the load section in accordance with the degree of load corresponding to the tilting direction and the tilting angle detected by the detection section.
  • control unit applies a load against tilting in a predetermined tilting direction.
  • control unit applies a load against tilting in directions other than two or four directions linearly extending from the reference position.
  • control unit applies a load against tilting in a fan-shaped direction with the reference position as the center of the fan.
  • the sector shape is a semicircular shape.
  • control unit applies a load when the tilting direction and tilting angle of the tilting body reach a predetermined tilting direction and tilting angle.
  • control unit applies a load to tilting outside a closed shape including the reference position within a virtual spherical crown that is a tilting range of the tilting body. .
  • control unit applies a load whose magnitude changes according to the tilt angle.
  • control unit applies a load that prevents tilting in a direction in which the tilting angle increases.
  • control unit applies a load that is transmitted as vibration.
  • control unit applies a load to maintain the tilted state by the tilting operation.
  • the operation system is characterized by comprising an operation device including the operation unit and a main unit including the control section.
  • the operation unit disclosed in the present application can be incorporated into the operation system, and is characterized by including the load section.
  • the operation system and the operation unit according to the present invention have excellent effects such as being able to control the feeling of operation by controlling the load on the tilting operation of the tilting body.
  • FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application;
  • FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application;
  • FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application;
  • FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application;
  • FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application; 2 is a schematic block diagram conceptually showing an example of a functional configuration of a control board included in a main unit used in the operation system disclosed in the present application;
  • FIG. FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;
  • the operation system disclosed in the present application includes an operation device such as a joystick-type game controller and a main device such as a game machine main body.
  • the operation device incorporates an operation unit such as a joystick.
  • the operation device disclosed in the present application can be used, for example, as a joystick controller to operate various objects to be operated, such as computer games, various toys, various moving bodies, various measuring devices, and various industrial robots. It is possible.
  • an operation system S including an operation device 1 applied to a joystick controller and an operation unit 2 incorporated in the operation device 1 will be described with reference to the drawings.
  • the operation device 1 included in the operation system S can be realized in various forms.
  • an operation system S including various forms of operation devices 1 will be described.
  • FIG. 1 is a schematic perspective view showing an example of the appearance of an operation device 1 and a main unit 3 used in an operation system S disclosed in the present application.
  • An operation system S includes an operation device 1 and a main body device 3 .
  • the operation device 1 includes a housing 10, and the housing 10 is formed at both ends with grip portions 11 to be gripped with the right hand and the left hand, respectively. When the gripping portions 11 at both ends are gripped, the positions on the upper surface where the fingers touch are opened in a substantially circular shape. Protruding.
  • the operation unit 12 is attached to a shaft member 20 (see FIG. 3 etc.) included in the operation unit 2 (see FIG.
  • a plurality of operation buttons 13 are arranged at positions that can be pressed by the operator's fingers.
  • two operation units 2, an operation unit 2 for detecting an operation based on a right hand operation and an operation unit 2 for detecting an operation based on a left hand operation are installed in one housing.
  • the operator can perform operations such as a tilting operation for tilting the shaft member 20 and a pressing operation for pushing the shaft member 20 toward the inside of the housing 10 on the operation unit 12 .
  • the side positioned upward when the operator operates in a general posture that is, the side where the operation button 13 is arranged and the operation section 12 protrudes will be described as the upper side. .
  • the main unit 3 incorporates a control board 30 that controls the operation load of the operation unit 2 provided in the operation device 1 .
  • FIG. 2 is a schematic perspective view showing an example of the appearance of the operating device 1 disclosed in the present application.
  • FIG. 2 shows another form of the operating device 1.
  • the operation device 1 illustrated in FIG. 2 incorporates various mechanisms such as one operation unit 2 in one housing 10, and is formed as a controller for one-handed operation.
  • It is also effective as a controller for a computer game in which different operating devices 1 are held with the left and right hands.
  • the operation unit 2 will be explained.
  • the operating unit 2 can be realized in various forms. Various forms of the operation unit 2 will be described below.
  • the operation unit 2 includes various members related to operations such as a shaft member 20, a tilting body 21, a holding member 22, and a detection unit 23 (detection section). Further, the operation unit 2 includes a support mechanism 24 for supporting members such as the holding member 22 on a substrate (not shown) incorporated in the operation device 1, and a load unit 25 (load section) that applies a load to the operation. and other various members.
  • a state in which a virtual central axis parallel to the longitudinal direction of the shaft member 20 and passing through the center of the tilting body 21 is oriented in the vertical direction is assumed to be the reference posture. defined as
  • the shaft member 20 has a long rod shape, and the operating part 12 can be attached to the upper end thereof as illustrated in FIGS. 1 and 2 .
  • a lower portion of the shaft member 20 is inserted into a substantially cylindrical insertion portion 210 formed in the tilting body 21 and formed to protrude from the upper end of the tilting body 21 .
  • the upper portion of the shaft member 20 is processed into a shape to which the operating portion 12 can be attached.
  • the shaft member 20 is inserted through the insertion portion 210 of the tilting body 21 and held by the insertion portion 210 so as to be rotatable in the circumferential direction.
  • the tilting body 21 is a substantially spherical hollow member, and is formed in a shape in which a substantially cylindrical insertion portion 210 through which the shaft member 20 is inserted is attached to a substantially spherical spherical portion 211 .
  • An opening 212 through which the connection line 230 of the detection unit 23 is passed is formed in the side surface of the spherical portion 211 , and the connection line 230 extends outside through the opening 212 .
  • the opening 212 has an oblong shape extending in the vertical direction.
  • a pressed portion 213 having a substantially disc shape is formed.
  • the tilting body 21 receives an operation from the outside (operator) via the operation portion 12 and the shaft member 20, and operates according to the operation.
  • the motion of the tilting body 21 in response to the operator's operation is about a virtual central axis parallel to the longitudinal direction of the shaft member 20 and passing through the center of the tilting body 21 .
  • the operation of the shaft member 20 is an operation of tilting the central axis with the center of the tilting body 21 as a fulcrum, and an operation of moving in the vertical direction (extending direction of the central axis).
  • the tilting body 21 performs a tilting motion with the center as a fulcrum in conjunction with the motion of the shaft member 20 .
  • the shaft member 20 and the tilting body 21 can be manipulated and tilted in any direction out of 360°.
  • the shaft member 20 and the tilting body 21 can be tilted at any angle between the reference posture and a predetermined tilting limit by receiving an operation.
  • the tilting body 21 moves up and down in conjunction with the motion of the shaft member 20 .
  • the holding member 22 is a member arranged so as to cover the tilting body 21, and has a substantially spherical outer shape.
  • the inner surface of the holding member 22 is formed in a substantially concave spherical shape along the outer surface of the tilting body 21, and holds the tilting body 21 operably from the outside.
  • the holding member 22 is assembled by joining two laterally separable halves and incorporates a slide ring 220 so as to be sandwiched inside the halves.
  • the slide ring 220 is formed in a substantially annular shape in plan view. More specifically, it has a substantially spherical shape cut by two horizontal planes.
  • the sliding ring 220 is made of resin such as polyacetal resin (POM), polyamide resin (PA), or polytetrafluoroethylene resin (PTFE), which has a low coefficient of friction.
  • the tilting body 21 held by the holding member 22 is operably held in contact with the sliding ring 220 . Since the tilting body 21 operates such as tilting while maintaining a state of contact with the sliding ring 220, the sliding ring 220 reduces the frictional force generated during the operation.
  • the support mechanism 24 attached to the lower portion of the holding member 22 includes a pressing member 240, a first biasing member 241, a movable member 242, a fixed member 243, a shaft support portion 244, a second biasing member 245, a depression detection portion 246, and the like.
  • a pressing member 240 a first biasing member 241, a movable member 242, a fixed member 243, a shaft support portion 244, a second biasing member 245, a depression detection portion 246, and the like.
  • a pressing member 240 includes a pressing member 240, a first biasing member 241, a movable member 242, a fixed member 243, a shaft support portion 244, a second biasing member 245, a depression detection portion 246, and the like.
  • Various members of are incorporated.
  • the pressing member 240 incorporated in the support mechanism 24 is a member that presses the pressed portion 213 at the lower end of the tilting body 21 from below to above.
  • the pressing member 240 has a disk portion 2400 having a disk shape at its upper portion, and a peripheral edge of the disk portion 2400 extends downward to form a cylindrical portion 2401 having a cylindrical shape.
  • a substantially cylindrical presser 2402 extending downward from the vicinity of the center of the lower surface of the disk portion 2400 of the pressing member 240 is arranged.
  • the support mechanism 24 is formed with an annular groove in plan view into which the cylindrical portion 2401 of the pressing member 240 is loosely fitted with some play.
  • the pusher 2402 passes through a through hole formed in the lower portion of the support mechanism 24 and protrudes downward.
  • the lower end of the pusher 2402 receives upward pressure from the load unit 25 .
  • the pressing member 240 moves up and down while the cylindrical portion 2401 is loosely fitted in the groove.
  • a first biasing member 241 using a return spring such as a compression coil spring is arranged in the groove.
  • the lower end of the first biasing member 241 is fixed to the inner bottom surface of the groove, and the upper end of the first biasing member 241 contacts the pressing member 240 to bias the pressing member 240 upward.
  • the pressing member 240 comes into contact with the pressed portion 213 formed at the lower end of the tilting body 21 on the top surface, and pushes the pressed portion 213 upward. press to.
  • the tilting body 21 operates so as to return to the reference posture even when it receives an operation and performs a tilting motion.
  • the operation unit 2 disclosed in the present application supports a pressing operation for pressing the operation unit 12 downward, that is, a so-called click operation.
  • the operation unit 2 receives an operation to press the operation portion 12, the shaft member 20 moves downward in the extending direction of the central axis, and holds the tilting body 21 to which the shaft member 20 is attached and the tilting body 21.
  • the holding member 22 moves downward in conjunction with the shaft member 20 .
  • the support mechanism 24 includes various members such as the movable member 242, the fixed member 243, the shaft supporting portion 244, the second biasing member 245, the pressing detection portion 246, and the like.
  • the movable member 242 is fixed to the lower end of the holding member 22, and performs a swinging motion in response to a pressing operation.
  • the fixed member 243 swingably supports the movable member 242 with a shaft support portion 244 using a shaft support pin, and the movable member 242 swings with the shaft support portion 244 as a swing fulcrum.
  • a second biasing member 245 using a return spring such as a compression coil spring is arranged above the fixed member 243, and the second biasing member 245 biases the movable member 242 upward.
  • the press detection unit 246 is arranged between the movable member 242 and the fixed member 243, and is configured using members such as a tactile switch and a pressure sensor that receive pressure based on the downward movement of the movable member 242.
  • FIG. As a result, the pressing detection unit 246 has functions such as detecting a pressing operation and generating an operation feeling called a click feeling.
  • the movable member 242 swings downward with the shaft support portion 244 as a swing axis, thereby providing a tactile switch and a pressure sensing function.
  • the press detection unit 246 such as a sensor is pressed.
  • the angle at which the movable member 242 swings due to the pressing operation is minute, so the swinging motion of the shaft can be regarded as substantially the same as a minute up-and-down motion.
  • the movable member 242 and the tilting body 21 arranged on the movable member 242 and through which the shaft member 20 is inserted are interlocked with the downward movement of the shaft member 20 based on the pressing operation, and move in the same direction as the pressing operation. Move downwards to become parallel.
  • the term "substantially parallel” as used herein means parallel (downward) or an angle slightly inclined from parallel considering the swing angle, and refers to an angle within a range that can be regarded as substantially parallel.
  • the press detection unit 246 detects press by the movable member 242 and outputs an electrical signal indicating the downward movement of the shaft member 20 via the connection line 230 branched from the detection unit 23 .
  • the second biasing member 245 biases the shaft member 20, the tilting body 21, the holding member 22, the movable member 242, and other members to return to the reference position.
  • the detection unit 23 includes members such as a magnet 231 fixed to the inner bottom, which is the lower end of the tilting body 21, and a magnetic field sensor 232 for detecting a magnetic field, in addition to the connection line 230 described above.
  • the magnet 231 is formed of a flat, substantially cylindrical permanent magnet, and is arranged so that the magnetic poles are oriented parallel to the central axis.
  • the direction of the magnetic poles means the direction connecting the two magnetic poles. Therefore, for example, the arrangement of the magnets 231 can be exemplified by a fixed configuration in which the north pole faces upward and the south pole faces downward.
  • the magnetic field sensor 232 is arranged near the center of the spherical portion 211 of the tilting body 21 .
  • the magnetic field sensor 232 has a gimbal structure capable of maintaining its posture regardless of the movement of the tilting body 21 .
  • the magnetic field sensor 232 is configured using an electronic element such as a Hall IC that detects a magnetic field and outputs an electric signal based on the detected magnetic field.
  • the magnetic field detected by the magnetic field sensor 232 is output to the outside via the connection line 230 as an electrical signal.
  • the load unit 25 is an actuator that pushes up the pressing member 240 from below, and by pushing up the pressing member 240, applies a load for the tilting operation.
  • the load unit 25 has a power source such as a solenoid, a VCM (Voice Coil Motor), a motor, etc. in order to push up the pressing member 240 .
  • the load unit 25 may be configured to directly push up the pusher 2402 as a pusher, or may have various intervening parts such as cams, gears, links, etc. interposed to push up the intervening part as a pusher.
  • the load unit 25 causes the pressure member 240 to move. It is also possible to apply a pull down load, ie a negative load. Also, the load by the load unit 25 can be applied as vibration by controlling the energization of the load unit 25 . Structurally, when the pusher of the load unit 25 is separable from the pusher 2402, it is preferable to provide a position detector 25PM (see FIG. 18, etc.) such as a potentiometer for detecting the position of the pusher 2402.
  • the position detection unit 25PM When the position detection unit 25PM is provided, the difference between the tilt angle of the tilting body 21 calculated from the position of the pusher 2402 detected by the position detection unit 25PM and the tilt angle of the tilting body 21 detected by the magnetic field sensor 232 is used. Then, the load unit 25 is controlled. This makes it possible to suppress deterioration in response due to the gap between the pusher 2402 and the load unit 25 .
  • FIG. 6 is a schematic cross-sectional view schematically showing an example of a cross section of the operation unit 2 disclosed in the present application.
  • FIG. 6 shows a state in which the shaft member 20 and the tilting body 21 of the operation unit 2 are tilted from the reference position in response to the operator's tilting operation from the state shown in FIG.
  • the shaft member 20 and the tilting body 21 of the operating unit 2 tilt with the center of the tilting body 21 as a fulcrum.
  • the shaft member 20 and the tilting body 21 are in the reference posture as illustrated in FIG. Since the shaft member 20 and the tilting body 21 are pressed toward each other, they assume a stable posture.
  • the pressed portion 213 presses the pressing member 240 downward at the peripheral edge portion.
  • the pressing member 240 presses the peripheral edge of the pressed portion 213 upward where the center of the tilting body 21 is located. force acts in the direction As illustrated in FIG.
  • the force associated with pressing the pressing member 240 is the resultant force of the force urged by the first urging member 241 and the force pushed up by the load unit 25 .
  • the force biased by the first biasing member 241 is determined by the spring constant and the length in the pressing direction.
  • the force exerted by load unit 25 is controlled in a manner to be described below.
  • the magnetic field generated by the magnet 231 detected by the magnetic field sensor 232 changes, and the changed state is output to the outside as a signal indicating the tilting direction and the tilting angle.
  • FIG. 7 is a schematic perspective view showing an example of the operation unit 2 disclosed in the present application.
  • FIG. 8 is a schematic exploded perspective view showing an example of part of the operation unit 2 disclosed in the present application.
  • 9 and 10 are schematic cross-sectional perspective views showing an example of a cross section of the operation unit 2 disclosed in the present application.
  • FIG. 9 is a cross section of the internal structure of the operation unit 2 cut along a vertical plane passing through the line segment CD shown in FIG. 7, and a part of the structure is shown in simplified form.
  • FIG. 9 is a cross section of the internal structure of the operation unit 2 cut along a vertical plane passing through the line segment CD shown in FIG. 7, and a part of the structure is shown in simplified form.
  • FIG. 10 is a cross section of the internal structure of the operation unit 2 taken along a vertical plane passing through the EF line segment shown in FIG. 7, and a part of the structure is shown in simplified form.
  • the direction of the line segment CD is defined as the X direction
  • the direction of the line segment EF is defined as the Y direction.
  • the operation unit 2 includes members such as a shaft member 20, a tilting body 21, and a holding member 22, and further includes a support member 26, a first load unit 25a (load section), a first detection unit 23a (detection section), a second It includes members and mechanisms such as a load unit 25b (loading section) and a second detection unit 23b (detection section). 7 to 10 show a state in which the operating portion 12 is attached to the upper end of the shaft member 20.
  • the tilting body 21 is a substantially spherical member, and has two first support shafts 214 protruding in a direction parallel to the X direction.
  • a straight line connecting the two protruding first support shafts 214 passes through the center of the ball of the tilting body 21, and the first support shaft 214 serves as a rotation shaft that supports the tilting body 21 so as to be rotatable.
  • the holding member 22 is a member with a substantially spherical outer shape formed so as to cover the tilting body 21 , and includes an inner shell portion 221 and an outer shell portion 222 .
  • the inner shell part 221 is an inner member that covers the tilting body 21, and the inner surface is formed in a substantially concave spherical shape along the outer surface of the tilting body 21, and the outer shape is formed in a substantially spherical shape.
  • the inner shell 221 is assembled by joining two longitudinally separable halves.
  • the inner shell portion 221 has two first bearing portions 2210 which serve as bearings for rotatably supporting the first support shaft 214 of the tilting body 21 and penetrate in the X direction at positions corresponding to the first support shaft 214. It is opened as a through hole of Further, the inner shell portion 221 is formed with two second support shafts 2211 protruding in a direction parallel to the Y direction. A straight line connecting the two protruding second support shafts 2211 passes through the center of the sphere of the holding member 22, and the second support shaft 2211 rotatably supports the tilting body 21 and the inner shell portion 221. It becomes the driving shaft.
  • the outer shell portion 222 is an outer member that covers the inner shell portion 221.
  • the inner surface of the outer shell portion 222 is formed in a substantially concave spherical shape along the outer surface of the inner shell portion 221, and the outer shape is formed in a substantially spherical shape. .
  • the shell 222 is assembled by joining two longitudinally separable halves.
  • a second bearing portion 2220 serving as a bearing that rotatably supports the second support shaft 2211 of the inner shell portion 221 penetrates in the Y direction at a position corresponding to the second support shaft 2211. It is opened as a through hole of the place.
  • the support member 26 is a plate-shaped frame formed in a semi-arc shape, and the inner surface is formed in a shape along the outer surface of the outer shell portion 222 of the holding member 22 .
  • the support member 26 has a third bearing portion 260 as a through hole formed at each end of the support member 26 as a bearing for rotatably supporting the third support shaft 2221 of the outer shell portion 222 . Since the third bearing portion 260 serves as a bearing for the third support shaft 2221, the support member 26 itself is also pivotally supported by the third support shaft 2221 so as to be swingable.
  • a guide hole 261 having a substantially rounded rectangular shape with long sides extending in the longitudinal direction of the support member 26 is opened, and the shaft member 20 is inserted through the guide hole 261.
  • the tilting direction of the shaft member 20 is the X direction
  • the shaft member 20 tilts along the guide hole 261
  • the tilting direction is the Y direction
  • the shaft member 20 tilts together with the support member 26 .
  • the tilting direction is other than the X direction and the Y direction, the operation is performed in the X direction and the Y direction.
  • the first load unit 25a is a power source such as a motor for applying a load to the tilting body 21 for tilting in the X direction. Concatenated.
  • the first detection unit 23a has a reduction gear and an angle sensor, transmits power from the first load unit 25a to the tilting body 21, and detects the tilting angle of the tilting body 21 in the X direction.
  • the second load unit 25b is a power source such as a motor for applying a load for tilting the tilting body 21 in the Y direction. Concatenated. Further, the second detection unit 23b is tightly connected to the third bearing portion 260 of the support member 26. As shown in FIG. The second detection unit 23b has a reduction gear and an angle sensor, transmits the power from the second load unit 25b to the tilting body 21 via the support member 26, and detects the tilting angle of the tilting body 21 in the Y direction. It is detected via the angle of the supporting member 26 that tilts together with the tilting body 21 .
  • the first detection unit 23a and the second detection unit 23b detect tilt angles in the X direction and the Y direction, respectively, and output signals convertible to the tilt direction and the tilt angle. be.
  • the operation unit 2 disclosed in the present application can be implemented in various forms.
  • Control configuration example> Next, a control configuration example for the operation of the operation unit 2 disclosed in the present application will be described.
  • the operating unit 2 can be implemented with various control configurations.
  • Various forms of the control configuration of the operation unit 2 will be described below.
  • FIG. 11 is a schematic block diagram conceptually showing an example of the functional configuration of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application.
  • the main unit 3 includes various control chips such as LSI (Large Scale Integration) and VLSI (Very Large Scale Integration), various recording chips such as ROM (Read Only Memory) and RAM (Random Access Memory), and various elements. is provided with a control board 30 on which LSI (Large Scale Integration) and VLSI (Very Large Scale Integration), various recording chips such as ROM (Read Only Memory) and RAM (Random Access Memory), and various elements. is provided with a control board 30 on which
  • a control chip included in the control board 30 functions as a control unit 300 such as a CPU (Central Processing Unit) that controls the entire board.
  • the control chip and recording chip included in the control board 30 function as a configuration of a polar coordinate conversion unit 301, an output voltage determination unit 302, a driver 303, etc. using various integrated circuits, various software programs, various elements, etc.
  • the control unit 300 controls these configurations.
  • the recording chip included in the control board 30 has a storage area used as a storage unit 304 for storing various information, and the control unit 300 can read/write the contents stored in the storage unit 304. It is possible.
  • the control unit 300 receives signals used as the tilting direction and the tilting angle from the detection unit 23D of the operation unit 2 provided in the operation device 1, refers to the table selected by the selection unit 3S, and controls the operation of the load unit 25L. do.
  • the detection unit 23D is a circuit for detecting the tilting direction and the tilting angle of the tilting body 21, and includes the detection unit 23 shown as the first embodiment of the structure of the operation unit 2 and the first detection unit 23a explained as the second embodiment. and the second detection unit 23b. If the detection unit 23D detects values that can be converted into a tilt direction and a tilt angle, the tilt angle in the X direction and the tilt angle in the Y direction are detected like the first detection unit 23a and the second detection unit 23b. It can also be implemented as a form of detection.
  • FIG. 12 is a conceptual diagram showing a polar coordinate system.
  • the rectangular parallelepipeds shown in FIG. 12 indicate the X-axis, Y-axis and Z-axis in the orthogonal coordinate system. Arrows extending diagonally from the origin in FIG. 12 indicate the tilting direction of the tilting body 21 .
  • the tilting direction of the tilting body 21 can be indicated by the deflection angle ⁇ on the XY plane and the deflection angle ⁇ from the Z-axis.
  • the deflection angle ⁇ corresponds to the tilting direction
  • the deflection angle ⁇ corresponds to the tilting angle.
  • the tilt angle in the X direction and the tilt angle in the Y direction can be converted into the deflection angles ⁇ and ⁇ .
  • a polar coordinate conversion unit 301 included in the control unit 300 converts signals such as the tilt direction and the tilt angle detected by the detection unit 23D, the tilt angle in the X direction and the tilt angle in the Y direction, into information indicating polar coordinates.
  • FIG. 13 is an explanatory diagram conceptually showing an example of the weight table 3040 of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application.
  • a weighting table 3040 illustrated in FIG. 13 shows the relationship between the deflection angle ⁇ corresponding to the tilting direction, the deflection angle ⁇ corresponding to the tilting angle, and the load applied by the load section 25L.
  • values indicating loads are stored in association with cells forming a table in which the deflection angle ⁇ is indicated in the row direction and the deflection angle ⁇ is indicated in the column direction.
  • the control section 300 can determine the weight to be applied as the load from the argument ⁇ and the argument ⁇ .
  • the load from the load portion 25L is applied only to tilting in the tilting direction with the deflection angle ⁇ of 0 to 90°, and the load due to the load increases as the tilting angle indicated by the deflection angle ⁇ increases.
  • a weight table 3040 is illustrated.
  • FIG. 14 is an explanatory diagram conceptually showing an example of the vibration table 3041 of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application.
  • a vibration table 3041 illustrated in FIG. 14 is a table used for determining the presence or absence of vibration as a load.
  • the vibration table 3041 illustrated in FIG. 14 stores "1" indicating the presence of vibration or "0" indicating the absence of vibration in association with the deflection angles ⁇ classified into 36 stages and the deflection angles ⁇ classified into 26 stages. ing.
  • FIG. 14 shows that in tilting in the tilting direction with the deflection angle ⁇ of 0 to 90°, when the tilting angle becomes larger than a predetermined angle, a load as vibration is applied by the load portion 25L.
  • FIGS. 15 to 17 are explanatory diagrams conceptually showing an example of the vibration table 3041 of the control board 30 provided in the main unit 3 used in the operation system S disclosed in the present application.
  • a vibration table 3041 illustrated in FIGS. 15 to 17 shows another embodiment of the vibration table 3041 used when applying a load as vibration.
  • FIG. 15 is a vibration table 3041 showing the force related to vibration, and values classified into 256 steps from 0 to 255 in association with the angle of argument ⁇ classified into 36 steps and the angle of argument ⁇ classified into 26 steps. A force associated with the vibration is stored.
  • FIG. 15 is a vibration table 3041 showing the force related to vibration, and values classified into 256 steps from 0 to 255 in association with the angle of argument ⁇ classified into 36 steps and the angle of argument ⁇ classified into 26 steps.
  • a force associated with the vibration is stored.
  • FIG. 16 is a vibration table 3041 showing the vibration amplitude related to the vibration, and the values are classified into 256 steps from 0 to 255 in association with the angle of argument ⁇ classified into 36 steps and the angle of argument ⁇ classified into 26 steps. Vibration amplitude associated with the vibration is stored.
  • FIG. 17 is a vibration table 3041 showing frequencies related to vibration, and values classified into 256 steps from 0 to 255 in association with the angle of argument ⁇ classified into 36 steps and the angle of argument ⁇ classified into 26 steps. A frequency related to vibration is stored.
  • the control unit 300 can determine the vibration determined by the magnitude of the force, the vibration amplitude, and the frequency as the load from the deflection angle ⁇ and the deflection angle ⁇ .
  • tables such as the weighting table 3040 and the vibration table 3041 are set in the storage area of the storage unit 304 .
  • a plurality of patterns of tables are set in the storage unit 304 by, for example, loading a game program.
  • a table to be used among the plurality of patterns of tables stored in storage unit 304 is determined based on a selection signal received from selection unit 3S.
  • the selection unit 3S may be implemented as hardware such as a thumb rotary switch, or as a function of software that outputs a selection signal according to the progress of the loaded computer game.
  • the control unit 300 controls the output voltage determining unit 302 to determine the output voltage to be applied to the load unit 25L based on tables such as the weighting table 3040 and the vibration table 3041, and outputs a signal indicating the output voltage to the driver 303. .
  • the driver 303 drives the load section 25L based on the input signal indicating the output voltage. In this manner, the control section 300 controls the load section 25L based on the tilting direction and tilting angle of the tilting body 21 .
  • the load section 25L is a unit that serves as a power source such as a solenoid, a VCM, and a motor, and includes the load unit 25 described as the first embodiment of the structure of the operation unit 2, the first load unit 25a described as the second embodiment, and the It can be implemented in various forms such as the second load unit 25b.
  • the control board 30 is a part of various configurations provided in the main unit 3, and is a configuration for realizing the operation system S disclosed in the present application.
  • the main unit 3 has various components for realizing the functions of the main body of the game machine.
  • FIG. 18 is a schematic block diagram conceptually showing an example of the functional configuration of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application.
  • 2nd Embodiment is a form applied when the pusher of the load unit 25 is comprised in the form which the pusher 2402 can separate in the operation unit 2 demonstrated as 1st Embodiment of a structure.
  • the control board 30 includes a control unit 300, a polar coordinate conversion unit 301, an output voltage determination unit 302, a driver 303, a storage unit 304, etc.
  • the storage unit 304 stores tables such as a weighting table 3040 and a vibration table 3041. It is Further, the control board 30 includes a correction section 305 that corrects the output based on the position information received from the position detection section 25PM that detects the position of the pusher 2402 provided on the pressing member 240.
  • the correction unit 305 Under the control of the control unit 300, the correction unit 305 receives position information indicating the position of the pusher 2402 detected by the position detection unit 25PM. The correction unit 305 calculates the tilt angle of the tilting body 21 from the position of the pusher 2402 indicated by the position information, and compares the calculated tilting angle of the tilting body 21 with the tilting angle of the tilting body 21 detected by the detection unit 23D. Calculate the difference. Then, the correction section 305 corrects the output voltage applied to the load section 25L of the load unit 25 so that the load unit 25 performs an operation to eliminate the calculated difference.
  • the correction unit 305 does not perform correction processing, and the output voltage determination unit 302 outputs the determined output voltage to the driver 30 .
  • the rest of the configuration is the same as the configuration of the operation unit 2 in the first embodiment, so the first embodiment will be referred to and the description thereof will be omitted.
  • the operation system S disclosed in the present application can realize various loads according to the tilting direction and tilting angle of the tilting body 21 by appropriately setting the contents recorded in the tables such as the weighting table 3040 and the vibration table 3041. be.
  • load control modes in the operation system S disclosed in the present application will be described.
  • FIG. 19 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application.
  • FIG. 19 shows the tilting range of the tilting body 21 as viewed from above by a circular solid line, and the range where the load is applied by the load section 25L is shown by oblique lines.
  • the center of the circle indicated by the solid line indicates the reference position of the tilting body 21, the upper side of the center indicates forward tilting, and the lower, left and right sides indicate rearward, leftward and rightward tilting, respectively. shall be shown.
  • the tilting direction (operation direction) for tilting the tilting body 21 is not applied by the load portion 25L in the four directions of front, back, left, and right extending linearly from the reference position.
  • 4 indicates that a load is applied by the load portion 25L.
  • the load applied by the load section 25L can be set as appropriate, such as a load that inhibits tilting in a direction that increases the tilting angle, a load that increases the force required for tilting, a vibration load, or the like. Moreover, it is also possible to set so that the contents of the load are changed according to the tilt angle.
  • various settings are possible, such as a setting to increase the force required for operation, a setting to change the period of vibration, and a setting to change from a force load to a vibration load.
  • the load set by the load section 25L is a load that suppresses the tilting operation
  • FIG. 20 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • the tilting direction in which the tilting body 21 is tilted does not apply the load from the load portion 25L to the front and rear two directions linearly extending from the reference position, and the tilting direction is deviated from the two directions. It shows that a load is applied by the load portion 25L when tilting in the direction shown in FIG.
  • the load applied by the load section 25L can be set in various forms as exemplified in the first control example.
  • the load setting by the load section 25L is vibration, it is possible to develop a mode such as an action game in which the operation unit 2 vibrates when a predetermined operation is not performed.
  • the load for tilting in directions other than the directions linearly extending from the reference position is not limited to the illustrated four directions and two directions, but can be developed in various forms such as six directions and eight directions.
  • FIG. 21 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • the tilting direction for tilting the tilting body 21 is in the range from the reference position to the front to the right, that is, the reference position is the center of the fan, and the central angle is 90°. It shows that a load is applied by the load portion 25L to tilting in the substantially fan-shaped direction.
  • the tilting direction in which the tilting body 21 is tilted is a predetermined angle.
  • the load applied by the load section 25L can be set in various forms, such as suppression of the tilting operation, change of the force associated with the tilting operation, and vibration.
  • the central angle of the substantially sectoral shape can be set to various angles other than 90°, such as an acute angle, an obtuse angle, and an angle of 180° or more.
  • FIG. 22 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application.
  • Control Example 4 illustrated in FIG. 22 indicates that the tilting direction of the tilting body 21 is a substantially fan-shaped tilting direction with a central angle of 90°, and a load is applied by the load portion 25L. Further, the load applied by the load section 25L is intermittently set with respect to the tilt angle.
  • the load applied by the load section 25L that has been set is an increase in the force required for the tilting operation or a vibration
  • an intermittent load a so-called click
  • FIG. 23 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • the tilting direction of the tilting body 21 is a substantially fan shape with a central angle of 180°, that is, a load is applied by the load part 25L to tilting in a substantially semicircular direction. It is shown that.
  • the load applied by the load section 25L schematically shows a setting that gradually increases as the tilt angle increases.
  • the load increases only when the operation target moves forward, and the tilt angle is increased to increase the movement speed of the operation target.
  • Control Example 5 exemplifies a form in which the load is applied by the load portion 25L only to the tilting forward, but the direction in which the load is applied can be appropriately set to backward, leftward, rightward, oblique, or the like. , and the central angle can also be set as appropriate.
  • FIG. 24 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 6 illustrated in FIG. 24 indicates that the tilting direction of the tilting body 21 is a substantially fan-shaped tilting direction with a central angle of 90°, and a load is applied by the load portion 25L.
  • the load applied by the load section 25L schematically shows a state in which it rotates in the direction indicated by the arrow over time.
  • Control Example 6 is a mode in which the load of the load section 25L changes over time.
  • the control according to Control Example 6 can be realized by rewriting various tables such as the weighting table 3040 and the vibration table 3041 according to the progress of the computer game.
  • FIG. 26 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application.
  • Control Example 8 illustrated in FIG. 26 indicates that a load is applied by the load portion 25L to tilting forward and backward in a substantially fan-shaped direction with a center angle of approximately 150°.
  • the tilting in the front-rear direction indicates that no load is applied by the load section 25L up to a predetermined angle, and the load is applied by the load section 25L for the tilting operation exceeding the predetermined angle.
  • the operator can feel that the tilting operation to the left and right is light and the operation is easy, and that the tilting operation to the front and back becomes heavy from the middle. Become.
  • FIG. 27 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 9 illustrated in FIG. 27 indicates that a load is applied by the load portion 25L to tilting forward and backward in substantially fan-shaped directions with a center angle of approximately 150°. Moreover, the tilting in the front-rear direction is not subject to the load from the load section 25L up to a predetermined angle. When the predetermined angle is exceeded, the load portion 25L applies a load as vibration with a different vibration frequency.
  • Control Example 9 it is said that the operator's load is light and the operation is easy with respect to the left and right tilting operations, and that vibration occurs in the middle of the forward and backward tilting operations, and the vibration period for further tilting changes. You will get a feel for the operation.
  • FIG. 28 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 10 illustrated in FIG. 28 indicates that the tilting direction of the tilting body 21 is a fan-shaped tilting direction with a central angle of 90°, and a load is applied by the load portion 25L. Further, the load applied by the load section 25L is intermittently set with respect to the tilting angle up to a predetermined tilting angle, and the load is applied to the tilting above the predetermined tilting angle indicated by diagonal lines in two directions. It is designed to be heavy.
  • the operator feels a click sensation up to a predetermined tilting angle with respect to a tilting operation in a specific tilting direction, and feels a heavy load with respect to a tilting operation at or above the predetermined angle. It will be.
  • FIG. 29 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 11 illustrated in FIG. 29 indicates that when the tilting body 21 is tilted to the vicinity of the tilting limit, a load that gives a click feeling is applied regardless of the tilting direction.
  • FIG. 30 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 12 illustrated in FIG. 30 indicates that the load is intermittently applied to the tilting operation at short intervals. When the operator performs the tilting operation, the operator feels a rough operation regardless of the operation direction.
  • FIG. 31 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application.
  • Control Example 13 illustrated in FIG. 31 indicates that the load unit 25 applies a load that pulls down the pressing member 240, that is, a negative load.
  • the operator gets a very light operational feeling.
  • FIG. 32 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 14 illustrated in FIG. 32 indicates that the load section 25L applies a large load against tilting in all directions. The operator will get a sense of operation that the tilting operation feels heavy.
  • FIG. 33 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 15 illustrated in FIG. 33 is a form in which a load is applied by the load section 25L to tilting outside the closed shape including the reference position within the virtual crown that is the tilting range of the tilting body 21 .
  • the tilting range of the tilting body 21 is limited to a square range with the reference position as the center of gravity. form.
  • the closed shape that becomes the tilt range is not limited to a square, and various shapes such as a circle, an equilateral triangle, a regular hexagon, and a rectangle can be set.
  • FIG. 34 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application.
  • Control Example 16 illustrated in FIG. 34 is a mode in which the tilting direction and tilting angle to which the load is applied by the load section 25L are set within a limited range close to a point, and the load by the load section 25L is set to vibration. It is In Control Example 16, the operator feels vibration when performing an operation to tilt the tilting body 21 to a specific position.
  • Control example 16 is set for a computer game such as a party game, a puzzle game, or an action game, so that the operator's sense of immersion in the computer game can be improved.
  • FIG. 35 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application.
  • Control Example 17 illustrated in FIG. 35 is a form in which the tilting direction and tilting angle to which the load is applied by the load section 25L are set at four points within a limited range close to a point. It is set to hold to maintain state. That is, when the operator performs a tilting operation to a predetermined position, a load is applied to maintain the tilted state by the tilting operation, and the tilting body 21 is fixed while maintaining the tilted state, and the tilting operation becomes impossible. perceive.
  • Control example 17 can improve the operator's sense of immersion in the computer game, for example, by setting the operation to be fixed when aiming in a computer game such as a shooting game. It is possible.
  • the operating system S disclosed in the present application is applied to the operating device 1 such as a joystick controller. It is possible to set the load for the tilting operation in various forms.
  • a form applied to a computer game controller has been described, but the present invention is not limited to this, and can be applied to various operation targets such as various toys, various moving bodies, various measuring devices, various industrial robots, and the like. It can be used for manipulation.
  • a controller of an industrial robot it is possible to perform control according to the operation situation, such as increasing the operation load when operating a heavy load.
  • a control device for radio control (so-called radio-controlled propeller) comprising an operation unit 2 that can be tilted only to the left and right and an operation unit 2 that can be tilted only to the front and back. ) can be performed.
  • the operation device 1 disclosed in the present application can be used in a variety of ways, such as a one-handed controller, a controller that can be attached to the housing of an arcade game machine, a control stick type controller for flight simulators, a VR (Virtual Reality) controller, and the like. It is possible to develop it for various purposes.
  • control board 30 is incorporated into the main unit 3, but the present invention is not limited to this. It is possible to expand to various forms.
  • a mode is shown in which information for determining the load is recorded by associating tables such as the weighting table 3040 and the vibration table 3041 with the angle of argument ⁇ and the angle of argument ⁇ .
  • information for determining the load is recorded by associating tables such as the weighting table 3040 and the vibration table 3041 with the angle of argument ⁇ and the angle of argument ⁇ .
  • the degree of classification can be appropriately set.
  • the degree of classification of the weight that is the load is not limited to the exemplified 256 steps, but can be appropriately set to 8 steps (4 bits), 1024 steps (10 bits), or the like.
  • the division of the deflection angle ⁇ is not limited to increments of 5°, but can be appropriately set to 1°, 10°, or the like. The same applies to the argument ⁇ .
  • the present invention is not limited to this.
  • the present invention can be developed in various forms, such as storing in advance a function for calculating the load from the argument ⁇ and the argument ⁇ in the storage unit 304 and deriving the load using the function. be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)
  • Mechanical Control Devices (AREA)

Abstract

Provided are an operating system and an operating unit which are devices usable in a game controller or the like that receives a tilting operation and which are capable of controlling an operation load relating to tilting. The operating system comprises an operating unit that receives an operation, the operating unit having a tilting body for receiving an operation of tilting from a reference position toward any direction to any angle, to operate an operation object according to the tilted state of the tilting body. The operating unit comprises a load unit 25L that applies a load corresponding to the tilting operation on the tilting body and a control unit 300 that controls the load applied by the load unit 25L according to the tilting direction.

Description

操作システム及び操作ユニットOperating system and operating unit

 本発明は、操作を受け付ける操作ユニットを備えた操作システム、及びそのような操作システムに組込可能な操作ユニットに関する。 The present invention relates to an operation system provided with an operation unit that accepts operations, and an operation unit that can be incorporated into such an operation system.

 コンピュータゲーム等の各種装置を操作するための操作装置として様々な装置が普及している。例えば、特許文献1では、複数の操作ボタンを備えたゲーム機用操作装置が提案されている。特許文献1にて提案されているゲーム機用操作装置は、ゲーム機本体からのフィードバックに対して、振動等が発生することで、臨場感を醸し出すものである。 Various devices are in widespread use as operating devices for operating various devices such as computer games. For example, Patent Literature 1 proposes an operation device for a game machine having a plurality of operation buttons. The operation device for a game machine proposed in Japanese Patent Laid-Open No. 2002-200002 creates a sense of realism by generating vibrations or the like in response to feedback from the game machine main body.

特開2002-263365号公報JP-A-2002-263365

 コンピュータゲームの発展に伴い、コンピュータゲームに対する没入感の向上等のエンターテインメント性を高めることが求められており、その一環として、新たな操作感覚を提供することが可能な操作装置が求められている。また、産業用装置等のコンピュータゲーム以外の用途に用いられる操作装置に対しても、操作に係る状況を認識し易くする等、操作感覚に関する設計自由度が高い操作装置が求められている。このような操作装置には、操作を受け付けるジョイスティック等の操作ユニットが組み込まれている。 With the development of computer games, there is a demand for enhanced entertainment such as improved immersion in computer games. Further, for operation devices used for purposes other than computer games, such as industrial devices, there is a demand for an operation device with a high degree of design freedom in terms of operational feeling, such as making it easier to recognize situations related to operations. Such an operation device incorporates an operation unit such as a joystick that receives operations.

 本発明は斯かる事情に鑑みてなされたものであり、操作に対する負荷を制御することにより、操作感覚を制御することが可能な操作システムの提供を目的とする。 The present invention has been made in view of such circumstances, and aims to provide an operation system that can control the operational feeling by controlling the load on the operation.

 また、本発明は、そのような操作システムに組込可能な操作ユニットの提供を他の目的とする。 Another object of the present invention is to provide an operation unit that can be incorporated into such an operation system.

 上記課題を解決するため、本願開示の操作システムは、操作を受け付ける操作ユニットを備え、前記操作ユニットは、基準位置から任意の方向へ任意の角度で傾倒させる操作を受け付ける傾倒体を有し、前記傾倒体の傾倒状態に応じて、操作対象を操作する操作システムであって、前記操作ユニットは、前記傾倒体の傾倒操作に対する負荷をかける負荷部を備え、前記負荷部による負荷を、傾倒方向に応じて制御する制御部を更に備えることを特徴とする。 In order to solve the above problems, an operation system disclosed in the present application includes an operation unit that receives an operation, the operation unit has a tilting body that receives an operation of tilting at an arbitrary angle in an arbitrary direction from a reference position, An operation system for operating an operation target in accordance with a tilting state of a tilting body, wherein the operation unit includes a load section that applies a load to the tilting operation of the tilting body, and the load from the load section is applied in a tilting direction. The present invention is characterized by further comprising a control unit that performs control according to the above.

 また、前記操作システムにおいて、前記制御部は、前記負荷部による負荷を、傾倒角度に応じて制御することを特徴とする。 Further, in the operation system, the control section is characterized by controlling the load applied by the load section according to the tilting angle.

 また、前記操作システムにおいて、傾倒方向及び傾倒角度の検出に用いる検出部と、傾倒方向及び傾倒角度に対応付けて、負荷の程度を示すテーブルとを更に備え、前記制御部は、前記テーブルに基づき、前記検出部が検出した傾倒方向及び傾倒角度に対応する負荷の程度に応じて、前記負荷部による負荷を制御することを特徴とする。 Further, the operation system further includes a detection unit used for detecting the tilting direction and the tilting angle, and a table indicating the degree of load in association with the tilting direction and the tilting angle, and the control unit controls the load based on the table. and controlling the load applied by the load section in accordance with the degree of load corresponding to the tilting direction and the tilting angle detected by the detection section.

 また、前記操作システムにおいて、前記制御部は、所定の傾倒方向への傾倒に対して負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load against tilting in a predetermined tilting direction.

 また、前記操作システムにおいて、前記制御部は、前記基準位置から直線状に延びる2方向又は4方向以外の方向への傾倒に対して負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load against tilting in directions other than two or four directions linearly extending from the reference position.

 また、前記操作システムにおいて、前記制御部は、前記基準位置を扇の中心とした扇形形状の方向への傾倒に対して負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load against tilting in a fan-shaped direction with the reference position as the center of the fan.

 また、前記操作システムにおいて、前記扇形形状は、半円形状であることを特徴とする。 Further, in the operation system, the sector shape is a semicircular shape.

 また、前記操作システムにおいて、前記制御部は、前記傾倒体の傾倒方向及び傾倒角度が、所定の傾倒方向及び傾倒角度になった場合に、負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load when the tilting direction and tilting angle of the tilting body reach a predetermined tilting direction and tilting angle.

 また、前記操作システムにおいて、前記制御部は、前記傾倒体の傾倒範囲となる仮想的な球冠内で、前記基準位置を含む閉じた形状から外れる傾倒に対して負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load to tilting outside a closed shape including the reference position within a virtual spherical crown that is a tilting range of the tilting body. .

 また、前記操作システムにおいて、前記制御部は、傾倒角度に応じて大きさが変化する負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load whose magnitude changes according to the tilt angle.

 また、前記操作システムにおいて、前記制御部は、傾倒角度が大きくなる方向への傾倒を抑止する負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load that prevents tilting in a direction in which the tilting angle increases.

 また、前記操作システムにおいて、前記制御部は、振動として伝わる負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load that is transmitted as vibration.

 また、前記操作システムにおいて、前記制御部は、傾倒操作により傾倒した状態を保持する負荷をかけることを特徴とする。 Further, in the operation system, the control unit applies a load to maintain the tilted state by the tilting operation.

 また、前記操作システムにおいて、前記操作ユニットを備える操作装置と、前記制御部を備える本体装置とを備えることを特徴とする。 Further, the operation system is characterized by comprising an operation device including the operation unit and a main unit including the control section.

 更に、本願開示の操作ユニットは、前記操作システムに組込可能であり、前記負荷部を備えることを特徴とする。 Furthermore, the operation unit disclosed in the present application can be incorporated into the operation system, and is characterized by including the load section.

 本発明に係る操作システム及び操作ユニットは、傾倒体の傾倒操作に対する負荷を制御することにより、操作感覚を制御することが可能である等、優れた効果を奏する。 The operation system and the operation unit according to the present invention have excellent effects such as being able to control the feeling of operation by controlling the load on the tilting operation of the tilting body.

本願開示の操作システムにて用いられる操作装置及び本体装置の外観の一例を示す概略斜視図である。1 is a schematic perspective view showing an example of the appearance of an operation device and a main body device used in the operation system disclosed in the present application; FIG. 本願開示の操作装置の外観の一例を示す概略斜視図である。1 is a schematic perspective view showing an example of the appearance of an operating device disclosed in the present application; FIG. 本願開示の操作ユニットの一例を示す概略斜視図である。It is a schematic perspective view showing an example of an operation unit disclosed in the present application. 本願開示の操作ユニットの一例を示す概略分解斜視図である。1 is a schematic exploded perspective view showing an example of an operation unit disclosed in the present application; FIG. 本願開示の操作ユニットの断面の一例を模式的に示す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically showing an example of a cross section of an operation unit disclosed in the present application; 本願開示の操作ユニットの断面の一例を模式的に示す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically showing an example of a cross section of an operation unit disclosed in the present application; 本願開示の操作ユニットの一例を示す概略斜視図である。It is a schematic perspective view showing an example of an operation unit disclosed in the present application. 本願開示の操作ユニットの一部の例を示す概略分解斜視図である。1 is a schematic exploded perspective view showing an example of part of an operation unit disclosed in the present application; FIG. 本願開示の操作ユニットの断面の一例を示す概略断面斜視図である。It is a schematic cross-sectional perspective view showing an example of a cross section of an operation unit disclosed in the present application. 本願開示の操作ユニットの断面の一例を示す概略断面斜視図である。It is a schematic cross-sectional perspective view showing an example of a cross section of an operation unit disclosed in the present application. 本願開示の操作システムにて用いられる本体装置が備える制御ボードの機能構成の一例を概念的に示す概略ブロック図である。2 is a schematic block diagram conceptually showing an example of a functional configuration of a control board included in a main unit used in the operation system disclosed in the present application; FIG. 極座標系を示す概念図である。1 is a conceptual diagram showing a polar coordinate system; FIG. 本願開示の操作システムにて用いられる本体装置が備える制御ボードの加重テーブルの一例を概念的に示す説明図である。FIG. 4 is an explanatory diagram conceptually showing an example of a weight table of a control board provided in a main unit used in the operation system disclosed in the present application; 本願開示の操作システムにて用いられる本体装置が備える制御ボードの振動テーブルの一例を概念的に示す説明図である。FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application; 本願開示の操作システムにて用いられる本体装置が備える制御ボードの振動テーブルの一例を概念的に示す説明図である。FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application; 本願開示の操作システムにて用いられる本体装置が備える制御ボードの振動テーブルの一例を概念的に示す説明図である。FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application; 本願開示の操作システムにて用いられる本体装置が備える制御ボードの振動テーブルの一例を概念的に示す説明図である。FIG. 4 is an explanatory diagram conceptually showing an example of a vibration table of a control board provided in a main unit used in the operation system disclosed in the present application; 本願開示の操作システムにて用いられる本体装置が備える制御ボードの機能構成の一例を概念的に示す概略ブロック図である。2 is a schematic block diagram conceptually showing an example of a functional configuration of a control board included in a main unit used in the operation system disclosed in the present application; FIG. 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application; 本願開示の操作システムにおける負荷の制御形態の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a load control mode in the operation system disclosed in the present application;

 <適用例>
 以下、実施形態について図面を参照しながら説明する。本願開示の操作システムは、ジョイスティック型のゲームコントローラ等の操作装置と、ゲーム機本体等の本体装置とを備えている。操作装置には、ジョイスティック等の操作ユニットが組み込まれている。本願開示の操作装置は、例えば、ジョイスティック型のコントローラとして用いることにより、コンピュータゲーム、その他、各種玩具、各種移動体、各種測定装置、各種産業用ロボット等の様々な操作対象の操作に用いることが可能である。以下では、図面を参照し、ジョイスティック型のコントローラに適用した操作装置1及び操作装置1に組み込まれた操作ユニット2を備える操作システムSを例示して説明する。
<Application example>
Hereinafter, embodiments will be described with reference to the drawings. The operation system disclosed in the present application includes an operation device such as a joystick-type game controller and a main device such as a game machine main body. The operation device incorporates an operation unit such as a joystick. The operation device disclosed in the present application can be used, for example, as a joystick controller to operate various objects to be operated, such as computer games, various toys, various moving bodies, various measuring devices, and various industrial robots. It is possible. Hereinafter, an operation system S including an operation device 1 applied to a joystick controller and an operation unit 2 incorporated in the operation device 1 will be described with reference to the drawings.

 <操作システム>
 操作システムSが備える操作装置1は、様々な形態で実現することが可能である。以降では、様々な形態の操作装置1を備える操作システムSについて説明する。
<Operation system>
The operation device 1 included in the operation system S can be realized in various forms. Hereinafter, an operation system S including various forms of operation devices 1 will be described.

  <操作装置の第1実施形態>
 先ず、操作装置1の第1実施形態について説明する。図1は、本願開示の操作システムSにて用いられる操作装置1及び本体装置3の外観の一例を示す概略斜視図である。操作システムSは、操作装置1及び本体装置3を備えている。操作装置1は、筐体10を備え、筐体10には、右手及び左手でそれぞれ把持する把持部11が両端に形成されている。両端の把持部11をそれぞれ把持した場合において、上面の指が当たる位置は、略円形状に開口しており、開口を通って、操作対象を操作するための操作部12が筐体10内から突出している。操作部12は、操作装置1の内部に組み込まれた操作ユニット2(図3等参照)が備える後述の軸部材20(図3等参照)に取り付けられている。更に、上面側には、操作者の指にて押下可能な位置に複数の操作ボタン13が配置されている。図1に例示する操作装置1内には、右手の操作に基づく動作を検出する操作ユニット2及び左手の操作に基づく動作を検出する操作ユニット2の2台の操作ユニット2が、一つの筐体10内に組み込まれている。操作者は、操作部12に対し、軸部材20を傾倒させる傾倒操作、筐体10の内側へ向かって押し込む押下操作等の操作を行うことができる。なお、本願では、説明の便宜上、操作者が、一般的な姿勢で操作する場合に上方に位置する側、即ち、操作ボタン13が配置され、操作部12が突出している側を上側として説明する。
<First Embodiment of Operating Device>
First, a first embodiment of the operating device 1 will be described. FIG. 1 is a schematic perspective view showing an example of the appearance of an operation device 1 and a main unit 3 used in an operation system S disclosed in the present application. An operation system S includes an operation device 1 and a main body device 3 . The operation device 1 includes a housing 10, and the housing 10 is formed at both ends with grip portions 11 to be gripped with the right hand and the left hand, respectively. When the gripping portions 11 at both ends are gripped, the positions on the upper surface where the fingers touch are opened in a substantially circular shape. Protruding. The operation unit 12 is attached to a shaft member 20 (see FIG. 3 etc.) included in the operation unit 2 (see FIG. 3 etc.) incorporated in the operation device 1 . Furthermore, on the upper surface side, a plurality of operation buttons 13 are arranged at positions that can be pressed by the operator's fingers. In the operation device 1 illustrated in FIG. 1, two operation units 2, an operation unit 2 for detecting an operation based on a right hand operation and an operation unit 2 for detecting an operation based on a left hand operation, are installed in one housing. Built in 10. The operator can perform operations such as a tilting operation for tilting the shaft member 20 and a pressing operation for pushing the shaft member 20 toward the inside of the housing 10 on the operation unit 12 . In the present application, for convenience of explanation, the side positioned upward when the operator operates in a general posture, that is, the side where the operation button 13 is arranged and the operation section 12 protrudes will be described as the upper side. .

 本体装置3は、操作装置1が備える操作ユニット2の操作負荷を制御する制御ボード30が組み込まれている。 The main unit 3 incorporates a control board 30 that controls the operation load of the operation unit 2 provided in the operation device 1 .

  <操作装置の第2実施形態>
 次に、操作装置1の他の実施形態となる第2実施形態について説明する。図2は、本願開示の操作装置1の外観の一例を示す概略斜視図である。図2は、操作装置1の他の形態を示している。図2に例示する操作装置1は、一つの筐体10内に一つの操作ユニット2等の各種機構が組み込まれており、片手操作用のコントローラとして形成されている。例えば、産業用ロボットのコントローラに適用する場合、一方の手で本発明に係る操作装置1を操作し、他方の手で他の作業をする形態も考えられるため、このような形態は特に有効である。また、左右の手で異なる操作装置1を把持するコンピュータゲームのコントローラとしても有効である。
<Second Embodiment of Operating Device>
Next, a second embodiment, which is another embodiment of the operating device 1, will be described. FIG. 2 is a schematic perspective view showing an example of the appearance of the operating device 1 disclosed in the present application. FIG. 2 shows another form of the operating device 1. As shown in FIG. The operation device 1 illustrated in FIG. 2 incorporates various mechanisms such as one operation unit 2 in one housing 10, and is formed as a controller for one-handed operation. For example, when applied to a controller of an industrial robot, it is possible to operate the operation device 1 according to the present invention with one hand and perform other work with the other hand, so such a configuration is particularly effective. be. It is also effective as a controller for a computer game in which different operating devices 1 are held with the left and right hands.

 <操作ユニット>
 次に、操作ユニット2について説明する。操作ユニット2は、様々な形態で実現することが可能である。以降では、操作ユニット2の様々な形態について説明する。
<Operation unit>
Next, the operation unit 2 will be explained. The operating unit 2 can be realized in various forms. Various forms of the operation unit 2 will be described below.

  <操作ユニットの構造の第1実施形態>
 先ず、操作ユニット2の構造の第1実施形態について説明する。図3は、本願開示の操作ユニット2の一例を示す概略斜視図である。図4は、本願開示の操作ユニット2の一例を示す概略分解斜視図である。図5は、本願開示の操作ユニット2の断面の一例を模式的に示す概略断面図である。図3乃至図5は、本願開示の操作装置1に組み込まれた操作ユニット2を例示している。図5は、図3に示すA-B線分を通る垂直面で切断した操作ユニット2の内部構造の断面であり、一部の構造については簡略化した模式図として示している。
<First Embodiment of Operation Unit Structure>
First, a first embodiment of the structure of the operation unit 2 will be described. FIG. 3 is a schematic perspective view showing an example of the operation unit 2 disclosed in the present application. FIG. 4 is a schematic exploded perspective view showing an example of the operation unit 2 disclosed in the present application. FIG. 5 is a schematic cross-sectional view schematically showing an example of a cross section of the operation unit 2 disclosed in the present application. 3 to 5 illustrate the operating unit 2 incorporated in the operating device 1 disclosed in the present application. FIG. 5 is a cross section of the internal structure of the operation unit 2 taken along a vertical plane passing through line AB shown in FIG. 3, and shows a part of the structure as a simplified schematic diagram.

 操作ユニット2は、軸部材20、傾倒体21、保持部材22、検出ユニット23(検出部)等の操作に係る各種部材を備えている。更に、操作ユニット2は、保持部材22等の部材を操作装置1内に組み込まれた基板(図示せず)上に支持する支持機構24、操作に対して負荷を加える負荷ユニット25(負荷部)等の各種部材を備えている。以降の説明では、図3乃至図5に示すように、軸部材20の長手方向に平行で、傾倒体21の中心を通る仮想的な中心軸の向きが垂直方向となっている状態を基準姿勢と定義する。 The operation unit 2 includes various members related to operations such as a shaft member 20, a tilting body 21, a holding member 22, and a detection unit 23 (detection section). Further, the operation unit 2 includes a support mechanism 24 for supporting members such as the holding member 22 on a substrate (not shown) incorporated in the operation device 1, and a load unit 25 (load section) that applies a load to the operation. and other various members. In the following description, as shown in FIGS. 3 to 5, a state in which a virtual central axis parallel to the longitudinal direction of the shaft member 20 and passing through the center of the tilting body 21 is oriented in the vertical direction is assumed to be the reference posture. defined as

 軸部材20は、長尺の棒状をなし、上端には図1及び図2で例示したように操作部12が取り付け可能である。軸部材20の下部は、傾倒体21に形成された略円筒状の挿通部210に挿通され、傾倒体21の上端から突出するように形成されている。軸部材20の上部は、操作部12が取り付け可能な形状に加工されている。軸部材20は、傾倒体21の挿通部210に挿通され、挿通部210により、周方向に回転可能に保持されている。 The shaft member 20 has a long rod shape, and the operating part 12 can be attached to the upper end thereof as illustrated in FIGS. 1 and 2 . A lower portion of the shaft member 20 is inserted into a substantially cylindrical insertion portion 210 formed in the tilting body 21 and formed to protrude from the upper end of the tilting body 21 . The upper portion of the shaft member 20 is processed into a shape to which the operating portion 12 can be attached. The shaft member 20 is inserted through the insertion portion 210 of the tilting body 21 and held by the insertion portion 210 so as to be rotatable in the circumferential direction.

 傾倒体21は、略球形状なす中空の部材であり、軸部材20が挿通される略円筒状の挿通部210を、略球形状の球体部211に取り付けた形状に形成されている。球体部211の側面には、検出ユニット23の接続線230を通す開口部212が開設されており、接続線230は、開口部212を通って外部に延伸されている。開口部212は、縦方向に延びる長円状に開設されている。傾倒体21の下端には、略円板状をなす被押圧部213が形成されている。 The tilting body 21 is a substantially spherical hollow member, and is formed in a shape in which a substantially cylindrical insertion portion 210 through which the shaft member 20 is inserted is attached to a substantially spherical spherical portion 211 . An opening 212 through which the connection line 230 of the detection unit 23 is passed is formed in the side surface of the spherical portion 211 , and the connection line 230 extends outside through the opening 212 . The opening 212 has an oblong shape extending in the vertical direction. At the lower end of the tilting body 21, a pressed portion 213 having a substantially disc shape is formed.

 傾倒体21は、操作部12及び軸部材20を介して外部(操作者)からの操作を受け付け、操作に応じて動作する。操作者の操作に応じた傾倒体21の動作は、軸部材20の長手方向に平行で傾倒体21の中心を通る仮想上の中心軸に対する動作である。軸部材20の動作は、具体的には、傾倒体21の中心を支点に中心軸が傾倒する動作、上下方向(中心軸の延伸方向)へ移動する動作である。軸部材20が傾倒する動作を行った場合、傾倒体21は、軸部材20の動作に連動して、中心を支点に傾倒する動作を行う。軸部材20及び傾倒体21は、操作を受けて360°の全方向のうちの任意の方向へ傾倒させることが可能である。また、軸部材20及び傾倒体21は、操作を受けて、基準姿勢から所定の傾倒限界までの間の任意の角度に傾倒させることが可能である。軸部材20が上下に移動する動作を行った場合、傾倒体21は、軸部材20の動作に連動して、上下に移動する動作を行う。 The tilting body 21 receives an operation from the outside (operator) via the operation portion 12 and the shaft member 20, and operates according to the operation. The motion of the tilting body 21 in response to the operator's operation is about a virtual central axis parallel to the longitudinal direction of the shaft member 20 and passing through the center of the tilting body 21 . Specifically, the operation of the shaft member 20 is an operation of tilting the central axis with the center of the tilting body 21 as a fulcrum, and an operation of moving in the vertical direction (extending direction of the central axis). When the shaft member 20 performs a tilting motion, the tilting body 21 performs a tilting motion with the center as a fulcrum in conjunction with the motion of the shaft member 20 . The shaft member 20 and the tilting body 21 can be manipulated and tilted in any direction out of 360°. In addition, the shaft member 20 and the tilting body 21 can be tilted at any angle between the reference posture and a predetermined tilting limit by receiving an operation. When the shaft member 20 moves up and down, the tilting body 21 moves up and down in conjunction with the motion of the shaft member 20 .

 保持部材22は、傾倒体21を覆うように配置された部材であり、外形が略球形状に形成されている。保持部材22の内面は、傾倒体21の外面に沿った略凹球面状に形成されており、傾倒体21を外側から動作可能に保持している。保持部材22は、横方向に分離可能な2つの半体を結合して組み立てられており、半体の内側に挟まれるようにして、摺動環220が組み込まれている。摺動環220は、平面視で略環状に形成されている。より具体的には、2つの水平面で切断した略球帯状をなしている。摺動環220は、摩擦係数が低いポリアセタール樹脂(POM)、ポリアミド樹脂(PA)、ポリテトラフルオロエチレン樹脂(PTFE)等の樹脂にて形成されている。保持部材22に保持された傾倒体21は、摺動環220に当接した状態で動作可能に保持されている。傾倒体21は、摺動環220に当接した状態を維持しながら傾倒等の動作をするため、摺動環220により動作の際に発生する摩擦力が軽減される。 The holding member 22 is a member arranged so as to cover the tilting body 21, and has a substantially spherical outer shape. The inner surface of the holding member 22 is formed in a substantially concave spherical shape along the outer surface of the tilting body 21, and holds the tilting body 21 operably from the outside. The holding member 22 is assembled by joining two laterally separable halves and incorporates a slide ring 220 so as to be sandwiched inside the halves. The slide ring 220 is formed in a substantially annular shape in plan view. More specifically, it has a substantially spherical shape cut by two horizontal planes. The sliding ring 220 is made of resin such as polyacetal resin (POM), polyamide resin (PA), or polytetrafluoroethylene resin (PTFE), which has a low coefficient of friction. The tilting body 21 held by the holding member 22 is operably held in contact with the sliding ring 220 . Since the tilting body 21 operates such as tilting while maintaining a state of contact with the sliding ring 220, the sliding ring 220 reduces the frictional force generated during the operation.

 保持部材22の下部に取り付けられた支持機構24には、押圧部材240、第1付勢部材241、可動部材242、固定部材243、軸支部244、第2付勢部材245、押下検出部246等の各種部材が組み込まれている。 The support mechanism 24 attached to the lower portion of the holding member 22 includes a pressing member 240, a first biasing member 241, a movable member 242, a fixed member 243, a shaft support portion 244, a second biasing member 245, a depression detection portion 246, and the like. Various members of are incorporated.

 支持機構24に組み込まれた押圧部材240は、傾倒体21下端の被押圧部213を下方から上方へ押圧する部材である。押圧部材240は、上部が円板状の円板部2400となっており、円板部2400の周縁が下方へ延伸して円筒状の円筒部2401が形成されている。また、押圧部材240の円板部2400の下面の中心近傍から下方へ延びる略円柱状の押し子2402が配置されている。支持機構24には、押圧部材240の円筒部2401が若干の遊びをもって遊嵌する平面視で環状の溝が形成されている。押し子2402は、支持機構24の下部に形成された貫通孔を貫通して下方へ突き抜けている。押し子2402の下端は、負荷ユニット25から上方へ向けての押圧を受ける。押圧部材240は、円筒部2401が溝に遊嵌し、上下に移動する。また、溝には、圧縮コイルバネ等の復帰バネを用いた第1付勢部材241が配置されている。第1付勢部材241は、下端が溝の内底面に固定されており、上端で押圧部材240に当接し、押圧部材240を上方へ付勢する。第1付勢部材241が押圧部材240を上方へ付勢することにより、押圧部材240は、上面で、傾倒体21の下端に形成された被押圧部213に当接し、被押圧部213を上方へ押圧する。これにより、傾倒体21は、操作を受けて傾倒動作を行った場合でも、基準姿勢に復帰するように動作する。 The pressing member 240 incorporated in the support mechanism 24 is a member that presses the pressed portion 213 at the lower end of the tilting body 21 from below to above. The pressing member 240 has a disk portion 2400 having a disk shape at its upper portion, and a peripheral edge of the disk portion 2400 extends downward to form a cylindrical portion 2401 having a cylindrical shape. A substantially cylindrical presser 2402 extending downward from the vicinity of the center of the lower surface of the disk portion 2400 of the pressing member 240 is arranged. The support mechanism 24 is formed with an annular groove in plan view into which the cylindrical portion 2401 of the pressing member 240 is loosely fitted with some play. The pusher 2402 passes through a through hole formed in the lower portion of the support mechanism 24 and protrudes downward. The lower end of the pusher 2402 receives upward pressure from the load unit 25 . The pressing member 240 moves up and down while the cylindrical portion 2401 is loosely fitted in the groove. A first biasing member 241 using a return spring such as a compression coil spring is arranged in the groove. The lower end of the first biasing member 241 is fixed to the inner bottom surface of the groove, and the upper end of the first biasing member 241 contacts the pressing member 240 to bias the pressing member 240 upward. When the first biasing member 241 biases the pressing member 240 upward, the pressing member 240 comes into contact with the pressed portion 213 formed at the lower end of the tilting body 21 on the top surface, and pushes the pressed portion 213 upward. press to. As a result, the tilting body 21 operates so as to return to the reference posture even when it receives an operation and performs a tilting motion.

 本願開示の操作ユニット2は、操作部12を下方へ押下する押下操作、所謂クリック操作に対応している。操作ユニット2が操作部12を押下する操作を受け付けた場合、軸部材20は、中心軸の延伸方向となる下方へ動作し、軸部材20が取り付けられた傾倒体21及び傾倒体21を保持する保持部材22は、軸部材20に連動して下方へ動作する。押下操作に対応する機構として、支持機構24は、前述の可動部材242、固定部材243、軸支部244、第2付勢部材245、押下検出部246等の各種部材を備えている。 The operation unit 2 disclosed in the present application supports a pressing operation for pressing the operation unit 12 downward, that is, a so-called click operation. When the operation unit 2 receives an operation to press the operation portion 12, the shaft member 20 moves downward in the extending direction of the central axis, and holds the tilting body 21 to which the shaft member 20 is attached and the tilting body 21. The holding member 22 moves downward in conjunction with the shaft member 20 . As a mechanism corresponding to the pressing operation, the support mechanism 24 includes various members such as the movable member 242, the fixed member 243, the shaft supporting portion 244, the second biasing member 245, the pressing detection portion 246, and the like.

 可動部材242は、保持部材22の下端に固定されており、押下操作に伴い揺動動作を行う。固定部材243は、軸支ピンを用いた軸支部244により、可動部材242を揺動可能に支持しており、可動部材242は、軸支部244を揺動支点として揺動する。固定部材243の上部には、圧縮コイルバネ等の復帰バネを用いた第2付勢部材245が配置されており、第2付勢部材245は、可動部材242を上方へ付勢している。押下検出部246は、可動部材242及び固定部材243の間に配置され、可動部材242の下方への移動に基づく押圧を受けるタクタイルスイッチ、感圧センサ等の部材を用いて構成されている。これにより、押下検出部246は、押下操作の検出、クリック感と呼ばれる操作感触の発生等の機能を有している。 The movable member 242 is fixed to the lower end of the holding member 22, and performs a swinging motion in response to a pressing operation. The fixed member 243 swingably supports the movable member 242 with a shaft support portion 244 using a shaft support pin, and the movable member 242 swings with the shaft support portion 244 as a swing fulcrum. A second biasing member 245 using a return spring such as a compression coil spring is arranged above the fixed member 243, and the second biasing member 245 biases the movable member 242 upward. The press detection unit 246 is arranged between the movable member 242 and the fixed member 243, and is configured using members such as a tactile switch and a pressure sensor that receive pressure based on the downward movement of the movable member 242. FIG. As a result, the pressing detection unit 246 has functions such as detecting a pressing operation and generating an operation feeling called a click feeling.

 操作ユニット2において、操作部12に対する押下操作に基づく軸部材20の下方への移動に連動して、可動部材242は、軸支部244を揺動軸として下方へ揺動し、タクタイルスイッチ、感圧センサ等の押下検出部246を押圧する。操作ユニット2において、押下操作により可動部材242が揺動する角度は微小であるため、軸部の揺動動作は、微小な上下動と実質的に同一と見做すことができる。即ち、可動部材242、及び可動部材242上に配置され軸部材20が挿通された傾倒体21は、押下操作に基づく軸部材20の下方への移動に連動して、押下操作の操作方向と略平行となる下方へ移動する。ここでいう略平行とは、平行(下方)又は揺動角度を考慮した平行から若干傾いた角度であり、実質的に平行と見做せる範囲の角度をいう。押下検出部246は、可動部材242による押圧を検出し、軸部材20が下方へ移動する動作を示す電気信号を、検出ユニット23から分岐した接続線230を介して出力する。操作部12に対する押下が解除されると、第2付勢部材245に付勢されて、軸部材20、傾倒体21、保持部材22、可動部材242等の部材は、基準位置に復帰する。 In the operation unit 2, in conjunction with the downward movement of the shaft member 20 based on the pressing operation on the operation portion 12, the movable member 242 swings downward with the shaft support portion 244 as a swing axis, thereby providing a tactile switch and a pressure sensing function. The press detection unit 246 such as a sensor is pressed. In the operation unit 2, the angle at which the movable member 242 swings due to the pressing operation is minute, so the swinging motion of the shaft can be regarded as substantially the same as a minute up-and-down motion. That is, the movable member 242 and the tilting body 21 arranged on the movable member 242 and through which the shaft member 20 is inserted are interlocked with the downward movement of the shaft member 20 based on the pressing operation, and move in the same direction as the pressing operation. Move downwards to become parallel. The term "substantially parallel" as used herein means parallel (downward) or an angle slightly inclined from parallel considering the swing angle, and refers to an angle within a range that can be regarded as substantially parallel. The press detection unit 246 detects press by the movable member 242 and outputs an electrical signal indicating the downward movement of the shaft member 20 via the connection line 230 branched from the detection unit 23 . When the pressing of the operating portion 12 is released, the second biasing member 245 biases the shaft member 20, the tilting body 21, the holding member 22, the movable member 242, and other members to return to the reference position.

 検出ユニット23は、前述の接続線230の他、傾倒体21内の下端となる内底に固定された磁石231、磁界を検出する磁界センサ232等の部材を備えている。磁石231は、扁平な略円柱状の永久磁石にて形成されており、中心軸に対して平行な方向に磁極が向くように配置されている。本願において、磁極の方向とは、両磁極を結ぶ方向のことを示す。従って、例えば、磁石231の配置は、N極が上方を向き、S極が下方を向くように固定された形態を例示することができる。磁界センサ232は、傾倒体21の球体部211内の中心近傍に配置されている。磁界センサ232は、傾倒体21の動作にかかわらず姿勢を維持可能なジンバル構造となっている。磁界センサ232は、磁界を検出し、検出した磁界に基づく電気信号を出力するホールIC等の電子素子を用いて構成されている。磁界センサ232にて検出された磁界は、電気信号として、接続線230を介して外部へ出力される。 The detection unit 23 includes members such as a magnet 231 fixed to the inner bottom, which is the lower end of the tilting body 21, and a magnetic field sensor 232 for detecting a magnetic field, in addition to the connection line 230 described above. The magnet 231 is formed of a flat, substantially cylindrical permanent magnet, and is arranged so that the magnetic poles are oriented parallel to the central axis. In the present application, the direction of the magnetic poles means the direction connecting the two magnetic poles. Therefore, for example, the arrangement of the magnets 231 can be exemplified by a fixed configuration in which the north pole faces upward and the south pole faces downward. The magnetic field sensor 232 is arranged near the center of the spherical portion 211 of the tilting body 21 . The magnetic field sensor 232 has a gimbal structure capable of maintaining its posture regardless of the movement of the tilting body 21 . The magnetic field sensor 232 is configured using an electronic element such as a Hall IC that detects a magnetic field and outputs an electric signal based on the detected magnetic field. The magnetic field detected by the magnetic field sensor 232 is output to the outside via the connection line 230 as an electrical signal.

 負荷ユニット25は、押圧部材240を下方から押し上げるアクチュエータであり、押圧部材240を押し上げることにより、傾倒操作に対する負荷をかける。負荷ユニット25は、押圧部材240を押し上げるため、ソレノイド、VCM(Voice Coil Motor)、モータ等の動力源を備えている。負荷ユニット25は、プッシャとして、直接、押し子2402を押し上げる構成としてもよく、カム、ギア、リンク等の様々な介在部を介在し、介在部をプッシャとして押し上げるようにしてもよい。押圧部材240の円板部2400と押し子2402とが分離不可能に連結及び固定され、かつ押し子2402と負荷ユニット25とが連結及び固定されている場合、負荷ユニット25は、押圧部材240を引き下げる負荷、即ち負の負荷をかけることも可能である。また、負荷ユニット25による負荷は、負荷ユニット25への通電を制御することにより、振動としてかけることも可能である。構造上、負荷ユニット25のプッシャが、押し子2402から分離可能な形態で構成する場合、押し子2402の位置を検出するポテンショメータ等の位置検出部25PM(図18等参照)を設けることが好ましい。位置検出部25PMを設けた場合、位置検出部25PMが検出した押し子2402の位置から算出される傾倒体21の傾倒角度と、磁界センサ232が検出した傾倒体21の傾倒角度との差異に基づいて、負荷ユニット25の制御が行われる。これにより、押し子2402及び負荷ユニット25の間の隙間に起因するレスポンスの悪化を抑えることが可能となる。 The load unit 25 is an actuator that pushes up the pressing member 240 from below, and by pushing up the pressing member 240, applies a load for the tilting operation. The load unit 25 has a power source such as a solenoid, a VCM (Voice Coil Motor), a motor, etc. in order to push up the pressing member 240 . The load unit 25 may be configured to directly push up the pusher 2402 as a pusher, or may have various intervening parts such as cams, gears, links, etc. interposed to push up the intervening part as a pusher. When the disk portion 2400 of the pressing member 240 and the pusher 2402 are connected and fixed inseparably, and the pusher 2402 and the load unit 25 are connected and fixed, the load unit 25 causes the pressure member 240 to move. It is also possible to apply a pull down load, ie a negative load. Also, the load by the load unit 25 can be applied as vibration by controlling the energization of the load unit 25 . Structurally, when the pusher of the load unit 25 is separable from the pusher 2402, it is preferable to provide a position detector 25PM (see FIG. 18, etc.) such as a potentiometer for detecting the position of the pusher 2402. When the position detection unit 25PM is provided, the difference between the tilt angle of the tilting body 21 calculated from the position of the pusher 2402 detected by the position detection unit 25PM and the tilt angle of the tilting body 21 detected by the magnetic field sensor 232 is used. Then, the load unit 25 is controlled. This makes it possible to suppress deterioration in response due to the gap between the pusher 2402 and the load unit 25 .

 以上のように構成された操作ユニット2の動作について説明する。図6は、本願開示の操作ユニット2の断面の一例を模式的に示す概略断面図である。図6は、図5に示す状態から、操作者の傾倒操作を受けて、操作ユニット2の軸部材20及び傾倒体21が、基準位置から傾倒した状態を示している。 The operation of the operation unit 2 configured as above will be described. FIG. 6 is a schematic cross-sectional view schematically showing an example of a cross section of the operation unit 2 disclosed in the present application. FIG. 6 shows a state in which the shaft member 20 and the tilting body 21 of the operation unit 2 are tilted from the reference position in response to the operator's tilting operation from the state shown in FIG.

 操作部12が傾倒操作を受けた場合、操作ユニット2の軸部材20及び傾倒体21は、傾倒体21の中心を支点として傾倒する。図5に例示するように軸部材20及び傾倒体21が、基準姿勢にある場合、押圧部材240は、被押圧部213の平坦な中心近傍に対して、傾倒体21の中心が位置する上方へ向けて押圧するため、軸部材20及び傾倒体21は安定した姿勢となる。図6に例示するように、軸部材20及び傾倒体21が傾倒すると、被押圧部213は、周縁部で押圧部材240を下方へ押下する。図6に例示する状態において、押圧部材240は、被押圧部213の周縁部に対して、傾倒体21の中心が位置する上方へ向けて押圧するため、傾倒体21が基準姿勢に復帰する回転方向に力が働く。図6に例示するように、軸部材20及び傾倒体21が基準姿勢から傾倒した場合、基準姿勢に復帰する方向に力が働き不安定な状態となる。このため操作者による傾倒させる力が解除されると軸部材20及び傾倒体21は基準位置に復帰する。 When the operating portion 12 receives a tilting operation, the shaft member 20 and the tilting body 21 of the operating unit 2 tilt with the center of the tilting body 21 as a fulcrum. When the shaft member 20 and the tilting body 21 are in the reference posture as illustrated in FIG. Since the shaft member 20 and the tilting body 21 are pressed toward each other, they assume a stable posture. As illustrated in FIG. 6, when the shaft member 20 and the tilting body 21 are tilted, the pressed portion 213 presses the pressing member 240 downward at the peripheral edge portion. In the state illustrated in FIG. 6, the pressing member 240 presses the peripheral edge of the pressed portion 213 upward where the center of the tilting body 21 is located. force acts in the direction As illustrated in FIG. 6, when the shaft member 20 and the tilting body 21 are tilted from the reference posture, a force acts in the direction of returning to the reference posture, resulting in an unstable state. Therefore, when the tilting force applied by the operator is released, the shaft member 20 and the tilting body 21 return to their reference positions.

 押圧部材240に対する押圧に係る力は、第1付勢部材241にて付勢された力と、負荷ユニット25により押し上げられる力との合力である。第1付勢部材241にて付勢される力は、バネ定数及び押圧方向の長さにより定まる。負荷ユニット25による力は、後述する方法で制御される。 The force associated with pressing the pressing member 240 is the resultant force of the force urged by the first urging member 241 and the force pushed up by the load unit 25 . The force biased by the first biasing member 241 is determined by the spring constant and the length in the pressing direction. The force exerted by load unit 25 is controlled in a manner to be described below.

 操作者は、傾倒体21を基準位置に復帰させる押圧部材240による力を、操作に対する負荷として感得する。本願開示の操作ユニット2は、第1付勢部材241による押圧だけでなく、制御可能な負荷ユニット25の動作によっても、押圧部材240を押圧する。負荷ユニット25の動作を制御することにより、操作者が感得する操作に対する負荷を制御することができる。 The operator perceives the force of the pressing member 240 that returns the tilting body 21 to the reference position as a load for the operation. The operation unit 2 disclosed in the present application presses the pressing member 240 not only by pressing by the first biasing member 241 but also by the operation of the controllable load unit 25 . By controlling the operation of the load unit 25, the load felt by the operator can be controlled.

 軸部材20及び傾倒体21が傾倒した場合、磁界センサ232が検出する磁石231による磁界が変化し、変化した状態は、傾倒方向及び傾倒角度を示す信号として外部へ出力される。 When the shaft member 20 and the tilting body 21 tilt, the magnetic field generated by the magnet 231 detected by the magnetic field sensor 232 changes, and the changed state is output to the outside as a signal indicating the tilting direction and the tilting angle.

  <操作ユニットの構造の第2実施形態>
 次に、操作ユニット2の構造の第2実施形態について説明する。図7は、本願開示の操作ユニット2の一例を示す概略斜視図である。図8は、本願開示の操作ユニット2の一部の例を示す概略分解斜視図である。図9及び図10は、本願開示の操作ユニット2の断面の一例を示す概略断面斜視図である。図9は、図7に示すC-D線分を通る垂直面で切断した操作ユニット2の内部構造の断面であり、一部の構造については簡略化して示している。図10は、図7に示すE-F線分を通る垂直面で切断した操作ユニット2の内部構造の断面であり、一部の構造については簡略化して示している。なお、操作ユニット2の構造の第2実施形態における以下の説明においては、説明の便宜上、C-D線分の方向をX方向とし、E-F線分の方向をY方向として説明する。
<Second Embodiment of Operation Unit Structure>
Next, a second embodiment of the structure of the operation unit 2 will be described. FIG. 7 is a schematic perspective view showing an example of the operation unit 2 disclosed in the present application. FIG. 8 is a schematic exploded perspective view showing an example of part of the operation unit 2 disclosed in the present application. 9 and 10 are schematic cross-sectional perspective views showing an example of a cross section of the operation unit 2 disclosed in the present application. FIG. 9 is a cross section of the internal structure of the operation unit 2 cut along a vertical plane passing through the line segment CD shown in FIG. 7, and a part of the structure is shown in simplified form. FIG. 10 is a cross section of the internal structure of the operation unit 2 taken along a vertical plane passing through the EF line segment shown in FIG. 7, and a part of the structure is shown in simplified form. In the following description of the second embodiment of the structure of the operation unit 2, for convenience of explanation, the direction of the line segment CD is defined as the X direction, and the direction of the line segment EF is defined as the Y direction.

 操作ユニット2は、軸部材20、傾倒体21、保持部材22等の部材を備え、更に、支持部材26、第1負荷ユニット25a(負荷部)、第1検出ユニット23a(検出部)、第2負荷ユニット25b(負荷部)、第2検出ユニット23b(検出部)等の部材及び機構を備えている。また、図7乃至図10では、軸部材20の上端に操作部12を取り付けた状態を示している。 The operation unit 2 includes members such as a shaft member 20, a tilting body 21, and a holding member 22, and further includes a support member 26, a first load unit 25a (load section), a first detection unit 23a (detection section), a second It includes members and mechanisms such as a load unit 25b (loading section) and a second detection unit 23b (detection section). 7 to 10 show a state in which the operating portion 12 is attached to the upper end of the shaft member 20. FIG.

 軸部材20は、長尺の棒状をなし、上端には操作部12が取付可能である。軸部材20の下部は、傾倒体21に連結されている。 The shaft member 20 has an elongated rod shape, and the operating part 12 can be attached to its upper end. A lower portion of the shaft member 20 is connected to a tilting body 21 .

 傾倒体21は、略球形状の部材であり、X方向に平行な方向へ突出する第1支軸214が2箇所に形成されている。突出した2箇所の第1支軸214を結ぶ直線は傾倒体21の球の中心を通っており、第1支軸214は、傾倒体21を回動自在に支持する回動軸となる。 The tilting body 21 is a substantially spherical member, and has two first support shafts 214 protruding in a direction parallel to the X direction. A straight line connecting the two protruding first support shafts 214 passes through the center of the ball of the tilting body 21, and the first support shaft 214 serves as a rotation shaft that supports the tilting body 21 so as to be rotatable.

 保持部材22は、傾倒体21を覆うように形成された外形が略球形状の部材であり、内殻部221及び外殻部222を備えている。 The holding member 22 is a member with a substantially spherical outer shape formed so as to cover the tilting body 21 , and includes an inner shell portion 221 and an outer shell portion 222 .

 内殻部221は、傾倒体21を覆う内側の部材であり、内面が、傾倒体21の外面に沿った略凹球面状に形成されており、外形が略球形状に形成されている。内殻部221は、縦方向に分離可能な2つの半体を結合して組み立てられている。内殻部221は、傾倒体21の第1支軸214を回動可能に支持する軸受となる第1軸受部2210が、第1支軸214に対応する位置に、X方向に貫通する2箇所の貫通孔として開設されている。更に、内殻部221は、Y方向に平行な方向へ突出する第2支軸2211が2箇所に形成されている。突出した2箇所の第2支軸2211を結ぶ直線は、保持部材22の球の中心を通っており、第2支軸2211は、傾倒体21及び内殻部221を回動自在に支持する回動軸となる。 The inner shell part 221 is an inner member that covers the tilting body 21, and the inner surface is formed in a substantially concave spherical shape along the outer surface of the tilting body 21, and the outer shape is formed in a substantially spherical shape. The inner shell 221 is assembled by joining two longitudinally separable halves. The inner shell portion 221 has two first bearing portions 2210 which serve as bearings for rotatably supporting the first support shaft 214 of the tilting body 21 and penetrate in the X direction at positions corresponding to the first support shaft 214. It is opened as a through hole of Further, the inner shell portion 221 is formed with two second support shafts 2211 protruding in a direction parallel to the Y direction. A straight line connecting the two protruding second support shafts 2211 passes through the center of the sphere of the holding member 22, and the second support shaft 2211 rotatably supports the tilting body 21 and the inner shell portion 221. It becomes the driving shaft.

 外殻部222は、内殻部221を覆う外側の部材であり、内面が、内殻部221の外面に沿った略凹球面状に形成されており、外形が略球形状に形成されている。外殻部222は、縦方向に分離可能な2つの半体を結合して組み立てられている。外殻部222は、内殻部221の第2支軸2211を回動自在に支持する軸受となる第2軸受部2220が、第2支軸2211に対応する位置に、Y方向に貫通する2箇所の貫通孔として開設されている。更に、外殻部222は、X方向に平行な方向へ突出する第3支軸2221が2箇所に形成されている。第3支軸2221は、傾倒体21、内殻部221及び外殻部222を回動自在に支持する回動軸となる。 The outer shell portion 222 is an outer member that covers the inner shell portion 221. The inner surface of the outer shell portion 222 is formed in a substantially concave spherical shape along the outer surface of the inner shell portion 221, and the outer shape is formed in a substantially spherical shape. . The shell 222 is assembled by joining two longitudinally separable halves. In the outer shell portion 222, a second bearing portion 2220 serving as a bearing that rotatably supports the second support shaft 2211 of the inner shell portion 221 penetrates in the Y direction at a position corresponding to the second support shaft 2211. It is opened as a through hole of the place. Further, the outer shell portion 222 is formed with two third support shafts 2221 protruding in a direction parallel to the X direction. The third support shaft 2221 serves as a rotation shaft that rotatably supports the tilting body 21, the inner shell portion 221 and the outer shell portion 222. As shown in FIG.

 支持部材26は、半円弧状に形成された板状のフレームであり、内面が、保持部材22の外殻部222の外面に沿った形状に形成されている。支持部材26は、外殻部222の第3支軸2221を回動自在に支持する軸受となる第3軸受部260が、貫通孔として両端に開設されている。第3軸受部260が第3支軸2221の軸受となっていることにより、支持部材26自体も、第3支軸2221に揺動自在に軸支される。支持部材26の中央近傍には、支持部材26の長手方向が長辺となる略角丸長方形状の案内孔261が開設されており、案内孔261には、軸部材20が挿通されている。軸部材20の傾倒方向がX方向の場合、軸部材20は、案内孔261に沿って傾倒し、傾倒方向がY方向の場合、軸部材20は支持部材26と共に傾倒する。傾倒方向が、X方向及びY方向以外の場合、X方向及びY方向を合わせた動作となる。 The support member 26 is a plate-shaped frame formed in a semi-arc shape, and the inner surface is formed in a shape along the outer surface of the outer shell portion 222 of the holding member 22 . The support member 26 has a third bearing portion 260 as a through hole formed at each end of the support member 26 as a bearing for rotatably supporting the third support shaft 2221 of the outer shell portion 222 . Since the third bearing portion 260 serves as a bearing for the third support shaft 2221, the support member 26 itself is also pivotally supported by the third support shaft 2221 so as to be swingable. In the vicinity of the center of the support member 26, a guide hole 261 having a substantially rounded rectangular shape with long sides extending in the longitudinal direction of the support member 26 is opened, and the shaft member 20 is inserted through the guide hole 261. When the tilting direction of the shaft member 20 is the X direction, the shaft member 20 tilts along the guide hole 261 , and when the tilting direction is the Y direction, the shaft member 20 tilts together with the support member 26 . When the tilting direction is other than the X direction and the Y direction, the operation is performed in the X direction and the Y direction.

 第1負荷ユニット25aは、傾倒体21に対し、X方向の傾倒に対する負荷をかけるためのモータ等の動力源であり、第1検出ユニット23aを介して内殻部221の第2支軸2211に連結されている。第1検出ユニット23aは、減速ギア及び角度センサを備えており、第1負荷ユニット25aからの動力を傾倒体21に伝達し、また傾倒体21のX方向の傾倒角度を検出する。 The first load unit 25a is a power source such as a motor for applying a load to the tilting body 21 for tilting in the X direction. Concatenated. The first detection unit 23a has a reduction gear and an angle sensor, transmits power from the first load unit 25a to the tilting body 21, and detects the tilting angle of the tilting body 21 in the X direction.

 第2負荷ユニット25bは、傾倒体21に対し、Y方向の傾倒に対する負荷をかけるためのモータ等の動力源であり、第2検出ユニット23bを介して外殻部222の第3支軸2221に連結されている。また、第2検出ユニット23bは、支持部材26の第3軸受部260に緊結されている。第2検出ユニット23bは、減速ギア及び角度センサを備えており、第2負荷ユニット25bからの動力は支持部材26を介して傾倒体21に伝達し、また傾倒体21のY方向の傾倒角度を傾倒体21と共に傾倒する支持部材26の角度を介して検出する。 The second load unit 25b is a power source such as a motor for applying a load for tilting the tilting body 21 in the Y direction. Concatenated. Further, the second detection unit 23b is tightly connected to the third bearing portion 260 of the support member 26. As shown in FIG. The second detection unit 23b has a reduction gear and an angle sensor, transmits the power from the second load unit 25b to the tilting body 21 via the support member 26, and detects the tilting angle of the tilting body 21 in the Y direction. It is detected via the angle of the supporting member 26 that tilts together with the tilting body 21 .

 軸部材20及び傾倒体21が傾倒した場合、第1検出ユニット23a及び第2検出ユニット23bがそれぞれX方向及びY方向の傾倒角度を検出し、傾倒方向及び傾倒角度に変換可能な信号として出力される。 When the shaft member 20 and the tilting body 21 tilt, the first detection unit 23a and the second detection unit 23b detect tilt angles in the X direction and the Y direction, respectively, and output signals convertible to the tilt direction and the tilt angle. be.

 以上のように、本願開示の操作ユニット2は、様々な形態で実施することが可能である。 As described above, the operation unit 2 disclosed in the present application can be implemented in various forms.

  <制御構成例>
 次に、本願開示の操作ユニット2の動作に対する制御構成例について説明する。操作ユニット2は、様々な制御構成で実装することが可能である。以降では、操作ユニット2の制御構成の様々な形態について説明する。
<Control configuration example>
Next, a control configuration example for the operation of the operation unit 2 disclosed in the present application will be described. The operating unit 2 can be implemented with various control configurations. Various forms of the control configuration of the operation unit 2 will be described below.

  <操作ユニットの制御構成の第1実施形態>
 先ず、操作ユニット2の制御構成の第1実施形態について説明する。図11は、本願開示の操作システムSにて用いられる本体装置3が備える制御ボード30の機能構成の一例を概念的に示す概略ブロック図である。本体装置3は、LSI(Large Scale Integration )、VLSI(Very Large Scale Integration)等の各種制御用チップ、及びROM(Read Only Memory)、RAM(Random Access Memory)等の各種記録用チップ、並びに各種素子を搭載した制御ボード30を備えている。
<First Embodiment of Control Configuration of Operation Unit>
First, a first embodiment of the control configuration of the operation unit 2 will be described. FIG. 11 is a schematic block diagram conceptually showing an example of the functional configuration of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application. The main unit 3 includes various control chips such as LSI (Large Scale Integration) and VLSI (Very Large Scale Integration), various recording chips such as ROM (Read Only Memory) and RAM (Random Access Memory), and various elements. is provided with a control board 30 on which

 制御ボード30が備える制御用チップは、ボード全体を制御するCPU(Central Processing Unit )等の制御部300として機能する。また、制御ボード30が備える制御用チップ及び記録用チップは、各種集積回路、各種ソフトウェアプログラム、各種素子等を用いた極座標変換部301、出力電圧決定部302、ドライバ303等の構成として機能し、制御部300は、これらの構成を制御する。更に、制御ボード30が備える記録用チップは、各種情報を記憶する記憶部304として用いられる記憶領域を備えており、制御部300は、記憶部304の記憶内容に対する読取/書込を行うことが可能である。記憶部304として用いられる記憶領域には、加重テーブル3040(テーブル)、振動テーブル3041(テーブル)等の各種テーブルが設定される。制御部300は、操作装置1が備える操作ユニット2の検出部23Dから傾倒方向及び傾倒角度として用いられる信号を受け付け、選択部3Sにて選択されたテーブルを参照し、負荷部25Lの動作を制御する。 A control chip included in the control board 30 functions as a control unit 300 such as a CPU (Central Processing Unit) that controls the entire board. In addition, the control chip and recording chip included in the control board 30 function as a configuration of a polar coordinate conversion unit 301, an output voltage determination unit 302, a driver 303, etc. using various integrated circuits, various software programs, various elements, etc. The control unit 300 controls these configurations. Further, the recording chip included in the control board 30 has a storage area used as a storage unit 304 for storing various information, and the control unit 300 can read/write the contents stored in the storage unit 304. It is possible. Various tables such as a weighting table 3040 (table) and a vibration table 3041 (table) are set in the storage area used as the storage unit 304 . The control unit 300 receives signals used as the tilting direction and the tilting angle from the detection unit 23D of the operation unit 2 provided in the operation device 1, refers to the table selected by the selection unit 3S, and controls the operation of the load unit 25L. do.

 検出部23Dは、傾倒体21の傾倒方向及び傾倒角度を検出する回路であり、操作ユニット2の構造の第1実施形態として示した検出ユニット23、第2実施形態として説明した第1検出ユニット23a及び第2検出ユニット23b等の様々な形態で実装することが可能である。また、検出部23Dは、傾倒方向及び傾倒角度に変換可能な値を検出するのであれば、第1検出ユニット23a及び第2検出ユニット23bのようにX方向の傾倒角度及びY方向の傾倒角度を検出する形態として実現することも可能である。 The detection unit 23D is a circuit for detecting the tilting direction and the tilting angle of the tilting body 21, and includes the detection unit 23 shown as the first embodiment of the structure of the operation unit 2 and the first detection unit 23a explained as the second embodiment. and the second detection unit 23b. If the detection unit 23D detects values that can be converted into a tilt direction and a tilt angle, the tilt angle in the X direction and the tilt angle in the Y direction are detected like the first detection unit 23a and the second detection unit 23b. It can also be implemented as a form of detection.

 図12は、極座標系を示す概念図である。図12に示す直方体が、直交座標系で示すX軸、Y軸及びZ軸を示している。図12中の原点から対角線に沿って延びる矢印が傾倒した傾倒体21の傾倒に係る方向を示している。傾倒体21の傾倒に係る方向は、図12に示すように、XY平面上の偏角φ及びZ軸からの偏角θにて示すことができる。偏角φは、傾倒方向に相当し、偏角θは、傾倒角度に対応する。また、X方向の傾倒角度及びY方向の傾倒角度は、偏角φ及び偏角θに変換することが可能である。制御部300が備える極座標変換部301は、検出部23Dが検出した傾倒方向及び傾倒角度、X方向の傾倒角度及びY方向の傾倒角度等の信号を、極座標を示す情報に変換する。 FIG. 12 is a conceptual diagram showing a polar coordinate system. The rectangular parallelepipeds shown in FIG. 12 indicate the X-axis, Y-axis and Z-axis in the orthogonal coordinate system. Arrows extending diagonally from the origin in FIG. 12 indicate the tilting direction of the tilting body 21 . As shown in FIG. 12, the tilting direction of the tilting body 21 can be indicated by the deflection angle φ on the XY plane and the deflection angle θ from the Z-axis. The deflection angle φ corresponds to the tilting direction, and the deflection angle θ corresponds to the tilting angle. Also, the tilt angle in the X direction and the tilt angle in the Y direction can be converted into the deflection angles φ and θ. A polar coordinate conversion unit 301 included in the control unit 300 converts signals such as the tilt direction and the tilt angle detected by the detection unit 23D, the tilt angle in the X direction and the tilt angle in the Y direction, into information indicating polar coordinates.

 図13は、本願開示の操作システムSにて用いられる本体装置3が備える制御ボード30の加重テーブル3040の一例を概念的に示す説明図である。図13に例示する加重テーブル3040は、傾倒方向に相当する偏角φ及び傾倒角度に相当する偏角θと、負荷部25Lにてかける負荷との関係とを示している。加重テーブル3040には、行方向に偏角φを示し、列方向に偏角θを示したテーブルを構成するセルに、負荷を示す値が対応付けて記憶されている。図13に例示する加重テーブル3040は、偏角φを5°刻みで0~175の36段階に分級しており、偏角θを0~25の26段階に分級している。負荷は、0~255の256段階(8ビット)に分級した加重を示す値として記憶される。加重テーブル3040を参照することにより、制御部300は、偏角φ及び偏角θから負荷として加える加重を決定することができる。図13は、偏角φが0~90°の傾倒方向への傾倒にのみ負荷部25Lによる負荷がかかり、負荷による加重は、偏角θにて示される傾倒角度が大きい程、大きくなる設定の加重テーブル3040を例示している。 FIG. 13 is an explanatory diagram conceptually showing an example of the weight table 3040 of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application. A weighting table 3040 illustrated in FIG. 13 shows the relationship between the deflection angle φ corresponding to the tilting direction, the deflection angle θ corresponding to the tilting angle, and the load applied by the load section 25L. In the weighting table 3040, values indicating loads are stored in association with cells forming a table in which the deflection angle φ is indicated in the row direction and the deflection angle θ is indicated in the column direction. The weighting table 3040 illustrated in FIG. 13 classifies the angle of argument φ into 36 steps from 0 to 175 in increments of 5°, and classifies the angle of argument θ into 26 steps from 0 to 25. The load is stored as a value indicating a weight classified into 256 steps (8 bits) from 0 to 255. By referring to the weight table 3040, the control section 300 can determine the weight to be applied as the load from the argument φ and the argument θ. In FIG. 13, the load from the load portion 25L is applied only to tilting in the tilting direction with the deflection angle φ of 0 to 90°, and the load due to the load increases as the tilting angle indicated by the deflection angle θ increases. A weight table 3040 is illustrated.

 負荷部25Lによる負荷は、単に一定の大きさの加重で押圧する力だけでなく、力の大きさが変化する振動としてかけることも可能である。図14は、本願開示の操作システムSにて用いられる本体装置3が備える制御ボード30の振動テーブル3041の一例を概念的に示す説明図である。図14に例示する振動テーブル3041は、負荷としての振動の有無の判定に用いるテーブルを示している。図14に例示する振動テーブル3041は、36段階に分級した偏角φ及び26段階に分級した偏角θに対応付けて、振動有りを示す「1」又は振動無しを示す「0」が記憶されている。図14は、偏角φが0~90°の傾倒方向への傾倒において、傾倒角度が所定角度より大きくなった場合に、負荷部25Lによる振動としての負荷がかかることを示している。 The load from the load part 25L can be applied not only as a pressing force with a constant weight, but also as a vibration with a varying force. FIG. 14 is an explanatory diagram conceptually showing an example of the vibration table 3041 of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application. A vibration table 3041 illustrated in FIG. 14 is a table used for determining the presence or absence of vibration as a load. The vibration table 3041 illustrated in FIG. 14 stores "1" indicating the presence of vibration or "0" indicating the absence of vibration in association with the deflection angles φ classified into 36 stages and the deflection angles θ classified into 26 stages. ing. FIG. 14 shows that in tilting in the tilting direction with the deflection angle φ of 0 to 90°, when the tilting angle becomes larger than a predetermined angle, a load as vibration is applied by the load portion 25L.

 図15、図16及び図17は、本願開示の操作システムSにて用いられる本体装置3が備える制御ボード30の振動テーブル3041の一例を概念的に示す説明図である。図15乃至図17に例示する振動テーブル3041は、振動として負荷をかける場合に使用する振動テーブル3041の他の実施形態を示している。図15は、振動に係る力を示す振動テーブル3041であり、36段階に分級した偏角φ及び26段階に分級した偏角θに対応付けて、0~255の256段階に分級した値にて振動に係る力が記憶されている。図16は、振動に係る振動振幅を示す振動テーブル3041であり、36段階に分級した偏角φ及び26段階に分級した偏角θに対応付けて、0~255の256段階に分級した値にて振動に係る振動振幅が記憶されている。図17は、振動に係る周波数を示す振動テーブル3041であり、36段階に分級した偏角φ及び26段階に分級した偏角θに対応付けて、0~255の256段階に分級した値にて振動に係る周波数が記憶されている。振動テーブル3041を参照することにより、制御部300は、偏角φ及び偏角θから、力の大きさ、振動振幅及び周波数にて定まる振動を、負荷として決定することができる。 15, 16 and 17 are explanatory diagrams conceptually showing an example of the vibration table 3041 of the control board 30 provided in the main unit 3 used in the operation system S disclosed in the present application. A vibration table 3041 illustrated in FIGS. 15 to 17 shows another embodiment of the vibration table 3041 used when applying a load as vibration. FIG. 15 is a vibration table 3041 showing the force related to vibration, and values classified into 256 steps from 0 to 255 in association with the angle of argument φ classified into 36 steps and the angle of argument θ classified into 26 steps. A force associated with the vibration is stored. FIG. 16 is a vibration table 3041 showing the vibration amplitude related to the vibration, and the values are classified into 256 steps from 0 to 255 in association with the angle of argument φ classified into 36 steps and the angle of argument θ classified into 26 steps. Vibration amplitude associated with the vibration is stored. FIG. 17 is a vibration table 3041 showing frequencies related to vibration, and values classified into 256 steps from 0 to 255 in association with the angle of argument φ classified into 36 steps and the angle of argument θ classified into 26 steps. A frequency related to vibration is stored. By referring to the vibration table 3041, the control unit 300 can determine the vibration determined by the magnitude of the force, the vibration amplitude, and the frequency as the load from the deflection angle φ and the deflection angle θ.

 図11のブロック図に戻り、加重テーブル3040、振動テーブル3041等のテーブルは、記憶部304の記憶領域に設定される。記憶部304には、複数パターンのテーブルが、例えば、ゲームプログラムをローディングすることにより、記憶部304に設定される。記憶部304に記憶された複数パターンのテーブルのうちの使用されるテーブルは、選択部3Sから受け付ける選択信号に基づいて決定される。選択部3Sは、例えば、サムロータリースイッチ等のハードウェアとして実現してもよく、また、ローディングしたコンピュータゲームの進行状況に応じて選択信号を出力するソフトウェアの機能として実現してもよい。制御部300は、出力電圧決定部302を制御し、加重テーブル3040、振動テーブル3041等のテーブルに基づいて負荷部25Lに印加する出力電圧を決定し、出力電圧を示す信号をドライバ303へ出力する。ドライバ303は、入力された出力電圧を示す信号に基づいて、負荷部25Lを駆動する。このようにして、制御部300は、傾倒体21の傾倒方向及び傾倒角度に基づいて、負荷部25Lを制御する。 Returning to the block diagram of FIG. 11 , tables such as the weighting table 3040 and the vibration table 3041 are set in the storage area of the storage unit 304 . A plurality of patterns of tables are set in the storage unit 304 by, for example, loading a game program. A table to be used among the plurality of patterns of tables stored in storage unit 304 is determined based on a selection signal received from selection unit 3S. The selection unit 3S may be implemented as hardware such as a thumb rotary switch, or as a function of software that outputs a selection signal according to the progress of the loaded computer game. The control unit 300 controls the output voltage determining unit 302 to determine the output voltage to be applied to the load unit 25L based on tables such as the weighting table 3040 and the vibration table 3041, and outputs a signal indicating the output voltage to the driver 303. . The driver 303 drives the load section 25L based on the input signal indicating the output voltage. In this manner, the control section 300 controls the load section 25L based on the tilting direction and tilting angle of the tilting body 21 .

 負荷部25Lは、ソレノイド、VCM、モータ等の動力源となるユニットであり、操作ユニット2の構造の第1実施形態として説明した負荷ユニット25、第2実施形態として説明した第1負荷ユニット25a及び第2負荷ユニット25b等の様々な形態で実装することが可能である。 The load section 25L is a unit that serves as a power source such as a solenoid, a VCM, and a motor, and includes the load unit 25 described as the first embodiment of the structure of the operation unit 2, the first load unit 25a described as the second embodiment, and the It can be implemented in various forms such as the second load unit 25b.

 上記制御ボード30は、本体装置3が備える各種構成の一部であり、本願開示の操作システムSを実現するための構成である。本体装置3は、上記制御ボード30以外に、ゲーム機本体としての機能を実現するための様々な構成を備えている。 The control board 30 is a part of various configurations provided in the main unit 3, and is a configuration for realizing the operation system S disclosed in the present application. In addition to the control board 30, the main unit 3 has various components for realizing the functions of the main body of the game machine.

  <操作ユニットの制御構成の第2実施形態>
 次に、操作ユニット2の制御構成の第2実施形態について説明する。図18は、本願開示の操作システムSにて用いられる本体装置3が備える制御ボード30の機能構成の一例を概念的に示す概略ブロック図である。第2実施形態は、構造の第1実施形態として説明した操作ユニット2において、負荷ユニット25のプッシャが、押し子2402が分離可能な形態で構成された場合に適用される形態である。
<Second Embodiment of Control Configuration of Operation Unit>
Next, a second embodiment of the control configuration of the operation unit 2 will be described. FIG. 18 is a schematic block diagram conceptually showing an example of the functional configuration of the control board 30 included in the main unit 3 used in the operation system S disclosed in the present application. 2nd Embodiment is a form applied when the pusher of the load unit 25 is comprised in the form which the pusher 2402 can separate in the operation unit 2 demonstrated as 1st Embodiment of a structure.

 制御ボード30は、制御部300、極座標変換部301、出力電圧決定部302、ドライバ303、記憶部304等の構成を備え、記憶部304には、加重テーブル3040、振動テーブル3041等のテーブルが記憶されている。更に、制御ボード30は、押圧部材240が備える押し子2402の位置を検出する位置検出部25PMから受け付けた位置情報に基づいて出力の補正を行う補正部305を備えている。 The control board 30 includes a control unit 300, a polar coordinate conversion unit 301, an output voltage determination unit 302, a driver 303, a storage unit 304, etc. The storage unit 304 stores tables such as a weighting table 3040 and a vibration table 3041. It is Further, the control board 30 includes a correction section 305 that corrects the output based on the position information received from the position detection section 25PM that detects the position of the pusher 2402 provided on the pressing member 240. FIG.

 補正部305は、制御部300の制御により、位置検出部25PMが検出した押し子2402の位置を示す位置情報を受け付ける。補正部305は、位置情報にて示される押し子2402の位置から傾倒体21の傾倒角度を算出し、算出した傾倒体21の傾倒角度と検出部23Dが検出した傾倒体21の傾倒角度との差異を算出する。そして、補正部305は、算出した差異を解消する動作を負荷ユニット25がするように、負荷ユニット25の負荷部25Lに印加する出力電圧を補正する。なお、算出した傾倒体21の傾倒角度と、検出部23Dが検出した傾倒体21の傾倒角度との差異が所定値以下である場合、補正部305は、補正処理を行わず、出力電圧決定部302が決定した出力電圧をドライバ30へ出力する。 Under the control of the control unit 300, the correction unit 305 receives position information indicating the position of the pusher 2402 detected by the position detection unit 25PM. The correction unit 305 calculates the tilt angle of the tilting body 21 from the position of the pusher 2402 indicated by the position information, and compares the calculated tilting angle of the tilting body 21 with the tilting angle of the tilting body 21 detected by the detection unit 23D. Calculate the difference. Then, the correction section 305 corrects the output voltage applied to the load section 25L of the load unit 25 so that the load unit 25 performs an operation to eliminate the calculated difference. Note that if the difference between the calculated tilt angle of the tilting body 21 and the tilt angle of the tilting body 21 detected by the detection unit 23D is equal to or less than a predetermined value, the correction unit 305 does not perform correction processing, and the output voltage determination unit 302 outputs the determined output voltage to the driver 30 .

 その他の構成は、操作ユニット2の構成の第1実施形態と同様であるので、第1実施形態を参照するものとし、その説明を省略する。 The rest of the configuration is the same as the configuration of the operation unit 2 in the first embodiment, so the first embodiment will be referred to and the description thereof will be omitted.

  <傾倒体の負荷についての制御例>
 本願開示の操作システムSは、加重テーブル3040、振動テーブル3041等のテーブルの記録内容を適宜設定することにより、傾倒体21の傾倒方向及び傾倒角度に応じて様々な負荷を実現することが可能である。本願開示の操作システムSにおける負荷の制御形態について幾つかの例を説明する。
<Example of control of the load of the tilting body>
The operation system S disclosed in the present application can realize various loads according to the tilting direction and tilting angle of the tilting body 21 by appropriately setting the contents recorded in the tables such as the weighting table 3040 and the vibration table 3041. be. Several examples of load control modes in the operation system S disclosed in the present application will be described.

   <制御例1>
 図19は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図19は、傾倒体21の傾倒範囲を上方からの視点で円形の実線にて示し、負荷部25Lによる負荷がかけられる範囲を斜線にて示している。実線で示す円の中心が傾倒体21の基準位置を示し、中心に対して上側が前方への傾倒を示し、下側、左側及び右側が、それぞれ後方、左方及び右方への傾倒をそれぞれ示すものとする。図19に例示する制御例1は、傾倒体21を傾倒させる傾倒方向(操作方向)が、基準位置から直線状に延びる前後左右の4方向に対しては、負荷部25Lによる負荷がかからず、4方向から外れた方向へ傾倒する場合に、負荷部25Lによる負荷がかかることを示している。負荷部25Lによる負荷は、傾倒角度が大きくなる方向への傾倒操作を抑止する負荷、傾倒操作に要する力を大きくする負荷、振動による負荷等、適宜設定することが可能である。また、傾倒角度に応じて負荷の内容を変化させるように設定することも可能である。具体的には、傾倒角度が大きくなるほど、操作に要する力を大きくする設定、振動の周期が変化する設定、力の負荷から振動の負荷に変化する設定等の様々な設定が可能である。例えば、負荷部25Lによる負荷の設定が傾倒操作を抑止する負荷である場合、操作ユニット2に対する操作が前後左右のみに限定される十字キーとしての使用等の形態に展開することが可能である。
<Control example 1>
FIG. 19 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application. FIG. 19 shows the tilting range of the tilting body 21 as viewed from above by a circular solid line, and the range where the load is applied by the load section 25L is shown by oblique lines. The center of the circle indicated by the solid line indicates the reference position of the tilting body 21, the upper side of the center indicates forward tilting, and the lower, left and right sides indicate rearward, leftward and rightward tilting, respectively. shall be shown. In the control example 1 illustrated in FIG. 19, the tilting direction (operation direction) for tilting the tilting body 21 is not applied by the load portion 25L in the four directions of front, back, left, and right extending linearly from the reference position. , 4 indicates that a load is applied by the load portion 25L. The load applied by the load section 25L can be set as appropriate, such as a load that inhibits tilting in a direction that increases the tilting angle, a load that increases the force required for tilting, a vibration load, or the like. Moreover, it is also possible to set so that the contents of the load are changed according to the tilt angle. Specifically, as the tilt angle increases, various settings are possible, such as a setting to increase the force required for operation, a setting to change the period of vibration, and a setting to change from a force load to a vibration load. For example, when the load set by the load section 25L is a load that suppresses the tilting operation, it is possible to use the operation unit 2 as a cross key in which the operation is limited only to the front, rear, left, and right directions.

   <制御例2>
 図20は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図20に例示する制御例2は、傾倒体21を傾倒させる傾倒方向が、基準位置から直線状に延びる前後の2方向に対しては、負荷部25Lによる負荷がかからず、2方向から外れた方向へ傾倒する場合に、負荷部25Lによる負荷がかかることを示している。負荷部25Lによる負荷は、制御例1にて例示したように様々な形態に設定することが可能である。例えば、負荷部25Lによる負荷の設定が振動である場合、所定の操作から外れた場合に操作ユニット2が振動するアクションゲーム等の形態に展開することが可能である。基準位置から直線状に延びる方向以外への傾倒に対する負荷としては、例示した4方向及び2方向に限らず、6方向、8方向等の様々な形態に展開することが可能である。
<Control example 2>
FIG. 20 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. In control example 2 illustrated in FIG. 20, the tilting direction in which the tilting body 21 is tilted does not apply the load from the load portion 25L to the front and rear two directions linearly extending from the reference position, and the tilting direction is deviated from the two directions. It shows that a load is applied by the load portion 25L when tilting in the direction shown in FIG. The load applied by the load section 25L can be set in various forms as exemplified in the first control example. For example, when the load setting by the load section 25L is vibration, it is possible to develop a mode such as an action game in which the operation unit 2 vibrates when a predetermined operation is not performed. The load for tilting in directions other than the directions linearly extending from the reference position is not limited to the illustrated four directions and two directions, but can be developed in various forms such as six directions and eight directions.

   <制御例3>
 図21は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図21に例示する制御例3は、傾倒体21を傾倒させる傾倒方向が、基準位置から前方から右方へかけての範囲、即ち、基準位置を扇の中心とし、中心角を90°とした略扇形形状の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。換言すれば、制御例3は、傾倒体21を傾倒させる傾倒方向が、所定の角度、ここでは、前方から右方へかけての90°の範囲への傾倒に対して負荷部25Lによる負荷がかかることを示している。負荷部25Lによる負荷は、前述のように、傾倒操作の抑止、傾倒操作に係る力の変更、振動等、様々な形態に設定することが可能である。略扇形形状の中心角は、90°以外にも、鋭角、鈍角、180°以上の角度等の様々な角度に設定することが可能である。
<Control example 3>
FIG. 21 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. In control example 3 illustrated in FIG. 21, the tilting direction for tilting the tilting body 21 is in the range from the reference position to the front to the right, that is, the reference position is the center of the fan, and the central angle is 90°. It shows that a load is applied by the load portion 25L to tilting in the substantially fan-shaped direction. In other words, in Control Example 3, the tilting direction in which the tilting body 21 is tilted is a predetermined angle. It shows that it takes As described above, the load applied by the load section 25L can be set in various forms, such as suppression of the tilting operation, change of the force associated with the tilting operation, and vibration. The central angle of the substantially sectoral shape can be set to various angles other than 90°, such as an acute angle, an obtuse angle, and an angle of 180° or more.

   <制御例4>
 図22は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図22に例示する制御例4は、傾倒体21を傾倒させる方向が、中心角を90°とした略扇形形状の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。また、負荷部25Lによる負荷は、傾倒角度に対して、断続的に設定されている。制御例4において、設定された負荷部25Lによる負荷が、傾倒操作に要する力の増大又は振動である場合、操作者は、傾倒操作をすると、傾倒角度が大きくなるに従って断続的な負荷、所謂クリック感を感得することになる。従って、操作者は、新たな操作感覚を感得することができる。
<Control example 4>
FIG. 22 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application. Control Example 4 illustrated in FIG. 22 indicates that the tilting direction of the tilting body 21 is a substantially fan-shaped tilting direction with a central angle of 90°, and a load is applied by the load portion 25L. Further, the load applied by the load section 25L is intermittently set with respect to the tilt angle. In Control Example 4, when the load applied by the load section 25L that has been set is an increase in the force required for the tilting operation or a vibration, when the operator performs the tilting operation, an intermittent load, a so-called click, occurs as the tilting angle increases. You will get the feeling. Therefore, the operator can get a new sense of operation.

   <制御例5>
 図23は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図23に例示する制御例5は、傾倒体21を傾倒させる方向が、中心角を180°とした略扇形形状、即ち略半円形状の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。また、負荷部25Lによる負荷は、傾倒角度が大きくなるに従って漸増する設定を模式的に示している。制御例5に係る負荷部25Lによる負荷の設定は、例えば、操作対象を操作するコンピュータゲームに対し、前方へ移動する場合にのみ負荷が大きくなり、しかも傾倒角度を大きくして操作対象の移動速度を速くするほど、操作が重くなる演出等の設定に用いられる。制御例5は、前方への傾倒にのみ負荷部25Lによる負荷がかかる形態を例示しているが、負荷がかかる方向は、後方、左方、右方、斜方等、適宜設定することが可能であり、中心角についても適宜設定することが可能である。
<Control example 5>
FIG. 23 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. In control example 5 illustrated in FIG. 23 , the tilting direction of the tilting body 21 is a substantially fan shape with a central angle of 180°, that is, a load is applied by the load part 25L to tilting in a substantially semicircular direction. It is shown that. Also, the load applied by the load section 25L schematically shows a setting that gradually increases as the tilt angle increases. In the setting of the load by the load unit 25L according to Control Example 5, for example, in a computer game in which the operation target is operated, the load increases only when the operation target moves forward, and the tilt angle is increased to increase the movement speed of the operation target. It is used for settings such as effects that make the operation heavier as the speed is increased. Control Example 5 exemplifies a form in which the load is applied by the load portion 25L only to the tilting forward, but the direction in which the load is applied can be appropriately set to backward, leftward, rightward, oblique, or the like. , and the central angle can also be set as appropriate.

   <制御例6>
 図24は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図24に例示する制御例6は、傾倒体21を傾倒させる方向が、中心角を90°とした略扇形形状の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。また、負荷部25Lによる負荷は、経時的に矢印に示す方向へ回転移動している状態を模式的に示している。以上のように制御例6は、経時的に負荷部25Lによる負荷が変化する形態である。制御例6に係る制御は、コンピュータゲームの進行に応じて加重テーブル3040、振動テーブル3041等の各種テーブルを書き換えることにより、実現することが可能である。
<Control example 6>
FIG. 24 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 6 illustrated in FIG. 24 indicates that the tilting direction of the tilting body 21 is a substantially fan-shaped tilting direction with a central angle of 90°, and a load is applied by the load portion 25L. Also, the load applied by the load section 25L schematically shows a state in which it rotates in the direction indicated by the arrow over time. As described above, Control Example 6 is a mode in which the load of the load section 25L changes over time. The control according to Control Example 6 can be realized by rewriting various tables such as the weighting table 3040 and the vibration table 3041 according to the progress of the computer game.

   <制御例7>
 図25は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図25に例示する制御例7は、左右に、それぞれ中心角を略150°とした略扇形形状の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。しかも、左右方向への傾倒は、所定の角度までは、負荷部25Lによる負荷がかからず、所定の角度を越える傾倒操作に対して、負荷部25Lによる負荷がかかることを示している。制御例7において、操作者は、前後への傾倒操作に対しては、負荷が軽く操作が容易で、左右への傾倒操作に対しては、途中から負荷が重くなる操作感覚を感得することになる。
<Control example 7>
FIG. 25 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application. Control Example 7 illustrated in FIG. 25 indicates that a load is applied by the load portion 25L to tilting in the direction of a substantially fan shape with a central angle of about 150° to the left and right. Moreover, the tilting in the left-right direction indicates that no load is applied by the load section 25L up to a predetermined angle, and the load is applied by the load section 25L for the tilting operation exceeding the predetermined angle. In the control example 7, the operator feels that the tilting operation to the front and back is light and the operation is easy, and that the load to the tilting operation to the left and right becomes heavy from the middle. Become.

   <制御例8>
 図26は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図26に例示する制御例8は、前後に、それぞれ中心角を略150°とした略扇形形状の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。しかも、前後方向への傾倒は、所定の角度までは、負荷部25Lによる負荷がかからず、所定の角度を越える傾倒操作に対して、負荷部25Lによる負荷がかかることを示している。制御例8において、操作者は、左右への傾倒操作に対しては、負荷が軽く操作が容易で、前後への傾倒操作に対しては、途中から負荷が重くなる操作感覚を感得することになる。
<Control example 8>
FIG. 26 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application. Control Example 8 illustrated in FIG. 26 indicates that a load is applied by the load portion 25L to tilting forward and backward in a substantially fan-shaped direction with a center angle of approximately 150°. In addition, the tilting in the front-rear direction indicates that no load is applied by the load section 25L up to a predetermined angle, and the load is applied by the load section 25L for the tilting operation exceeding the predetermined angle. In the control example 8, the operator can feel that the tilting operation to the left and right is light and the operation is easy, and that the tilting operation to the front and back becomes heavy from the middle. Become.

   <制御例9>
 図27は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図27に例示する制御例9は、前後に、それぞれ中心角を略150°とした略扇形形状の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。しかも、前後方向への傾倒は、所定の角度までは、負荷部25Lによる負荷がかからず、所定の角度を越える傾倒操作に対して、負荷部25Lにより振動としての負荷がかかり、更に傾倒させて所定の角度を越えた場合に、負荷部25Lにより振動周波数が異なる振動としての負荷がかかることを示している。制御例9において、操作者は、左右の傾倒操作に対しては負荷が軽く操作が容易で、前後への傾倒操作に対しては、途中から振動が発生し、更に傾倒させる振動周期が変わるという操作感覚を感得することになる。
<Control example 9>
FIG. 27 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 9 illustrated in FIG. 27 indicates that a load is applied by the load portion 25L to tilting forward and backward in substantially fan-shaped directions with a center angle of approximately 150°. Moreover, the tilting in the front-rear direction is not subject to the load from the load section 25L up to a predetermined angle. When the predetermined angle is exceeded, the load portion 25L applies a load as vibration with a different vibration frequency. In Control Example 9, it is said that the operator's load is light and the operation is easy with respect to the left and right tilting operations, and that vibration occurs in the middle of the forward and backward tilting operations, and the vibration period for further tilting changes. You will get a feel for the operation.

   <制御例10>
 図28は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図28に例示する制御例10は、傾倒体21を傾倒させる方向が、中心角を90°とした扇形の方向への傾倒に対して負荷部25Lによる負荷がかかることを示している。また、負荷部25Lによる負荷は、所定の傾倒角度までは、傾倒角度に対して、断続的に設定されており、2方向の斜線で示す所定の傾倒角度以上の傾倒に対しては、負荷が重くなるように設定されている。制御例10において、操作者は、特定の傾倒方向への傾倒操作に対して、所定の傾倒角度まではクリック感を感得し、所定の角度以上の傾倒操作に対しては重い負荷を感得することになる。
<Control example 10>
FIG. 28 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 10 illustrated in FIG. 28 indicates that the tilting direction of the tilting body 21 is a fan-shaped tilting direction with a central angle of 90°, and a load is applied by the load portion 25L. Further, the load applied by the load section 25L is intermittently set with respect to the tilting angle up to a predetermined tilting angle, and the load is applied to the tilting above the predetermined tilting angle indicated by diagonal lines in two directions. It is designed to be heavy. In Control Example 10, the operator feels a click sensation up to a predetermined tilting angle with respect to a tilting operation in a specific tilting direction, and feels a heavy load with respect to a tilting operation at or above the predetermined angle. It will be.

   <制御例11>
 図29は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図29に例示する制御例11は、傾倒体21を傾倒限界近傍まで傾倒させると、傾倒方向にかかわらず、クリック感を感得させる負荷がかかることを示している。
<Control example 11>
FIG. 29 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 11 illustrated in FIG. 29 indicates that when the tilting body 21 is tilted to the vicinity of the tilting limit, a load that gives a click feeling is applied regardless of the tilting direction.

   <制御例12>
 図30は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図30に例示する制御例12は、傾倒操作に対して、短い間隔で断続的に負荷がかかることを示している。操作者は、傾倒操作を行った場合、操作方向にかかわらずガリガリとした操作感を感得することになる。
<Control example 12>
FIG. 30 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 12 illustrated in FIG. 30 indicates that the load is intermittently applied to the tilting operation at short intervals. When the operator performs the tilting operation, the operator feels a rough operation regardless of the operation direction.

   <制御例13>
 図31は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図31に例示する制御例13は、負荷ユニット25が、押圧部材240を引き下げる負荷、即ち、負の負荷をかけることを示している。操作者は、傾倒操作を行った場合、非常に軽い操作感覚を感得することになる。
<Control example 13>
FIG. 31 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application. Control Example 13 illustrated in FIG. 31 indicates that the load unit 25 applies a load that pulls down the pressing member 240, that is, a negative load. When the operator performs the tilting operation, the operator gets a very light operational feeling.

   <制御例14>
 図32は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図32に例示する制御例14は、負荷部25Lにより、全方向の傾倒に対して大きな負荷をかけることを示している。操作者は、傾倒操作を重く感じるという操作感覚を感得することになる。
<Control example 14>
FIG. 32 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 14 illustrated in FIG. 32 indicates that the load section 25L applies a large load against tilting in all directions. The operator will get a sense of operation that the tilting operation feels heavy.

   <制御例15>
 図33は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図33に例示する制御例15は、傾倒体21の傾倒範囲となる仮想的な球冠内で、基準位置を含む閉じた形状から外れる傾倒に対して負荷部25Lによる負荷をかける形態である。具体的には、制御例15は、傾倒体21の傾倒範囲が、基準位置を重心とする正方形の範囲に限定されており、正方形を外れる傾倒に対しては、傾倒を抑止する負荷がかけられる形態である。傾倒範囲となる閉じた形状は、正方形に限らず、円形、正三角形、正六角形、長方形等、様々な形状を設定することが可能である。
<Control example 15>
FIG. 33 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 15 illustrated in FIG. 33 is a form in which a load is applied by the load section 25L to tilting outside the closed shape including the reference position within the virtual crown that is the tilting range of the tilting body 21 . Specifically, in Control Example 15, the tilting range of the tilting body 21 is limited to a square range with the reference position as the center of gravity. form. The closed shape that becomes the tilt range is not limited to a square, and various shapes such as a circle, an equilateral triangle, a regular hexagon, and a rectangle can be set.

   <制御例16>
 図34は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図34に例示する制御例16は、負荷部25Lによる負荷がかかる傾倒方向及び傾倒角度が、点に近い限られた範囲で設定されている形態であり、負荷部25Lによる負荷は、振動に設定されている。制御例16において、操作者は、傾倒体21を特定の位置に傾倒させる操作をした場合に、振動を感得することになる。制御例16は、例えば、パーティーゲーム、パズルゲーム、アクションゲーム等のコンピュータゲーム用の設定とすることで、操作者のコンピュータゲームへの没入感を向上させることが可能である。
<Control example 16>
FIG. 34 is a conceptual diagram showing an example of a load control form in the operation system S disclosed in the present application. Control Example 16 illustrated in FIG. 34 is a mode in which the tilting direction and tilting angle to which the load is applied by the load section 25L are set within a limited range close to a point, and the load by the load section 25L is set to vibration. It is In Control Example 16, the operator feels vibration when performing an operation to tilt the tilting body 21 to a specific position. Control example 16 is set for a computer game such as a party game, a puzzle game, or an action game, so that the operator's sense of immersion in the computer game can be improved.

   <制御例17>
 図35は、本願開示の操作システムSにおける負荷の制御形態の一例を示す概念図である。図35に例示する制御例17は、負荷部25Lによる負荷がかかる傾倒方向及び傾倒角度が、点に近い限られた範囲で4点設定されている形態であり、負荷部25Lによる負荷は、傾倒状態を維持するための保持に設定されている。即ち、操作者は、所定の位置に傾倒操作を行った場合、傾倒操作により傾倒した状態を保持する負荷がかかり、傾倒体21が傾倒状態を維持したまま固定されて傾倒操作ができなくなる状態を感得する。傾倒体21の固定は、操作ユニット2に対する押下操作、所定時間の経過等の所定の解除条件を充足した場合に、解除される。制御例17は、例えば、シューティングゲーム等のコンピュータゲームにおいて、狙いを定めた場合に、操作が固定される等の設定として実現することにより、操作者のコンピュータゲームへの没入感を向上させることが可能である。
<Control example 17>
FIG. 35 is a conceptual diagram showing an example of a load control mode in the operation system S disclosed in the present application. Control Example 17 illustrated in FIG. 35 is a form in which the tilting direction and tilting angle to which the load is applied by the load section 25L are set at four points within a limited range close to a point. It is set to hold to maintain state. That is, when the operator performs a tilting operation to a predetermined position, a load is applied to maintain the tilted state by the tilting operation, and the tilting body 21 is fixed while maintaining the tilted state, and the tilting operation becomes impossible. perceive. The fixation of the tilting body 21 is released when predetermined release conditions such as a pressing operation on the operation unit 2 and passage of a predetermined time are satisfied. Control example 17 can improve the operator's sense of immersion in the computer game, for example, by setting the operation to be fixed when aiming in a computer game such as a shooting game. It is possible.

 以上のように、本願開示の操作システムSは、ジョイスティック型のコントローラ等の操作装置1に適用される。傾倒操作に対する負荷を様々な形態で設定することが可能である。 As described above, the operating system S disclosed in the present application is applied to the operating device 1 such as a joystick controller. It is possible to set the load for the tilting operation in various forms.

 本発明は、以上説明した実施形態に限定されるものではなく、他の様々な形態で実施することが可能である。そのため、上述した実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の技術範囲は、請求の範囲によって説明するものであって、明細書本文には何ら拘束されない。更に、請求の範囲の均等範囲に属する変形及び変更は、全て本発明の範囲内のものである。 The present invention is not limited to the embodiments described above, and can be implemented in various other forms. Therefore, the above-described embodiments are merely examples in all respects, and should not be construed in a restrictive manner. The technical scope of the present invention is described by the claims and is not restricted by the text of the specification. Furthermore, all modifications and changes within the equivalent scope of claims are within the scope of the present invention.

 例えば、前記実施形態では、コンピュータゲームのコントローラに適用する形態について説明したが、本発明はこれに限らず、各種玩具、各種移動体、各種測定装置、各種産業用ロボット等の様々な操作対象の操作に用いることが可能である。例えば、産業用ロボットのコントローラに適用した場合には、重い荷物に対する操作を行う場合には、操作負荷を大きくする等、操作の状況に応じた制御を行うことが可能である。例えば、玩具又は移動体のコントローラに適用した場合には、左右のみに傾倒可能な操作ユニット2と、前後のみに傾倒可能な操作ユニット2とを備える無線操縦用の操縦装置(所謂ラジコン用のプロポ)を模した制御を行うことが可能である。その他、片手持ち用のコントローラ、アーケード型ゲーム機の筐体に取付可能なコントローラ、フライトシミュレータ用の操縦桿型コントローラ、VR(Virtual Reality )用のコントローラ等、本願開示の操作装置1は、様々な用途に展開することが可能である。 For example, in the above-described embodiment, a form applied to a computer game controller has been described, but the present invention is not limited to this, and can be applied to various operation targets such as various toys, various moving bodies, various measuring devices, various industrial robots, and the like. It can be used for manipulation. For example, when applied to a controller of an industrial robot, it is possible to perform control according to the operation situation, such as increasing the operation load when operating a heavy load. For example, when applied to a controller for a toy or a moving body, a control device for radio control (so-called radio-controlled propeller) comprising an operation unit 2 that can be tilted only to the left and right and an operation unit 2 that can be tilted only to the front and back. ) can be performed. In addition, the operation device 1 disclosed in the present application can be used in a variety of ways, such as a one-handed controller, a controller that can be attached to the housing of an arcade game machine, a control stick type controller for flight simulators, a VR (Virtual Reality) controller, and the like. It is possible to develop it for various purposes.

 更に、前記実施形態では、制御ボード30を本体装置3に組み込む形態を示したが、本発明はこれに限らず、制御ボード30を、操作装置1、操作ユニット2等の装置に組み込む等、様々な形態に展開することが可能である。 Furthermore, in the above-described embodiment, the control board 30 is incorporated into the main unit 3, but the present invention is not limited to this. It is possible to expand to various forms.

 更に、前記実施形態では、加重テーブル3040、振動テーブル3041等のテーブルを、偏角φ及び偏角θに対応付けて負荷を決定するための情報を記録する形態を示したが、本発明はこれに限るものではない。例えば、テーブルに、X方向の傾倒角度及びY方向の傾倒角度に対応付けて負荷を決定するための情報を記録する等、様々な形態に展開することが可能である。また、分級の程度についても適宜設定することが可能である。例えば、負荷となる加重の分級の程度は、例示した256段階に限らず、8段階(4ビット)、1024段階(10ビット)等、適宜設定することが可能である。偏角φの区分についても、5°刻みに限らず、1°、10°等、適宜設定することが可能である。偏角θについても同様である。 Furthermore, in the above-described embodiment, a mode is shown in which information for determining the load is recorded by associating tables such as the weighting table 3040 and the vibration table 3041 with the angle of argument φ and the angle of argument θ. is not limited to For example, it is possible to develop various forms such as recording information for determining the load in association with the tilt angle in the X direction and the tilt angle in the Y direction in a table. Also, the degree of classification can be appropriately set. For example, the degree of classification of the weight that is the load is not limited to the exemplified 256 steps, but can be appropriately set to 8 steps (4 bits), 1024 steps (10 bits), or the like. The division of the deflection angle φ is not limited to increments of 5°, but can be appropriately set to 1°, 10°, or the like. The same applies to the argument θ.

 更に、前記実施形態では、加重テーブル3040、振動テーブル3041等のテーブルに基づいて、負荷を決定する形態を示したが、本発明はこれに限るものではない。例えば、本発明は、偏角φ及び偏角θから負荷を算出する関数を予め記憶部304に記憶しておき、関数を用いて負荷を導出する等、様々な形態に展開することが可能である。 Furthermore, in the above-described embodiment, the form of determining the load based on tables such as the weighting table 3040 and the vibration table 3041 has been shown, but the present invention is not limited to this. For example, the present invention can be developed in various forms, such as storing in advance a function for calculating the load from the argument φ and the argument θ in the storage unit 304 and deriving the load using the function. be.

 S     操作システム
 1     操作装置
 2     操作ユニット
 20    軸部材
 21    傾倒体
 22    保持部材
 23    検出ユニット(検出部)
 23a   第1検出ユニット(検出部)
 23b   第2検出ユニット(検出部)
 23D   検出部
 24    支持機構
 25    負荷ユニット(負荷部)
 25a   第1負荷ユニット(負荷部)
 25b   第2負荷ユニット(負荷部)
 25L   負荷部
 25PM  位置検出部
 3     本体装置
 30    制御ボード
 300   制御部
 301   極座標変換部
 302   出力電圧決定部
 303   ドライバ
 304   記憶部
 3040  加重テーブル(テーブル)
 3041  振動テーブル(テーブル)
 305   補正部
 3S    選択部
 
S operation system 1 operation device 2 operation unit 20 shaft member 21 tilting body 22 holding member 23 detection unit (detection section)
23a first detection unit (detection section)
23b second detection unit (detection section)
23D detection section 24 support mechanism 25 load unit (load section)
25a first load unit (load section)
25b second load unit (load section)
25L load unit 25PM position detection unit 3 main device 30 control board 300 control unit 301 polar coordinate conversion unit 302 output voltage determination unit 303 driver 304 storage unit 3040 weighting table (table)
3041 Vibration table (table)
305 correction unit 3S selection unit

Claims (15)

 操作を受け付ける操作ユニットを備え、前記操作ユニットは、基準位置から任意の方向へ任意の角度で傾倒させる操作を受け付ける傾倒体を有し、前記傾倒体の傾倒状態に応じて、操作対象を操作する操作システムであって、
 前記操作ユニットは、前記傾倒体の傾倒操作に対する負荷をかける負荷部を備え、
 前記負荷部による負荷を、傾倒方向に応じて制御する制御部を更に備える
 ことを特徴とする操作システム。
An operation unit that receives an operation is provided, the operation unit has a tilting body that receives an operation of tilting in an arbitrary direction at an arbitrary angle from a reference position, and operates an operation target according to the tilting state of the tilting body. an operating system,
The operation unit includes a load section that applies a load to the tilting operation of the tilting body,
An operation system, further comprising: a control section that controls the load applied by the load section in accordance with a tilting direction.
 請求項1に記載の操作システムであって、
 前記制御部は、
 前記負荷部による負荷を、傾倒角度に応じて制御する
 ことを特徴とする操作システム。
The operating system according to claim 1,
The control unit
An operation system, wherein the load applied by the load section is controlled according to the tilting angle.
 請求項2に記載の操作システムであって、
 傾倒方向及び傾倒角度の検出に用いる検出部と、
 傾倒方向及び傾倒角度に対応付けて、負荷の程度を示すテーブルと
 を更に備え、
 前記制御部は、
 前記テーブルに基づき、前記検出部が検出した傾倒方向及び傾倒角度に対応する負荷の程度に応じて、前記負荷部による負荷を制御する
 ことを特徴とする操作システム。
The operating system according to claim 2,
a detection unit used to detect the tilt direction and the tilt angle;
further comprising a table showing the degree of load in association with the tilting direction and the tilting angle,
The control unit
An operation system, wherein the load applied by the load section is controlled based on the table in accordance with the degree of load corresponding to the tilting direction and the tilting angle detected by the detection section.
 請求項2又は請求項3に記載の操作システムであって、
 前記制御部は、
 所定の傾倒方向への傾倒に対して負荷をかける
 ことを特徴とする操作システム。
The operating system according to claim 2 or claim 3,
The control unit
An operation system characterized by applying a load against tilting in a predetermined tilting direction.
 請求項2又は請求項3に記載の操作システムであって、
 前記制御部は、
 前記基準位置から直線状に延びる2方向又は4方向以外の方向への傾倒に対して負荷をかける
 ことを特徴とする操作システム。
The operating system according to claim 2 or claim 3,
The control unit
An operation system characterized by applying a load against tilting in directions other than two or four directions linearly extending from the reference position.
 請求項2又は請求項3に記載の操作システムであって、
 前記制御部は、
 前記基準位置を扇の中心とした扇形形状の方向への傾倒に対して負荷をかける
 ことを特徴とする操作システム。
The operating system according to claim 2 or claim 3,
The control unit
An operation system characterized by applying a load against tilting in a fan-shaped direction with the reference position as the center of the fan.
 請求項6に記載の操作システムであって、
 前記扇形形状は、半円形状である
 ことを特徴とする操作システム。
The operating system according to claim 6,
The operating system, wherein the sector shape is a semicircular shape.
 請求項2又は請求項3に記載の操作システムであって、
 前記制御部は、
 前記傾倒体の傾倒方向及び傾倒角度が、所定の傾倒方向及び傾倒角度になった場合に、負荷をかける
 ことを特徴とする操作システム。
The operating system according to claim 2 or claim 3,
The control unit
An operation system, wherein a load is applied when the tilting direction and tilting angle of the tilting body reach a predetermined tilting direction and tilting angle.
 請求項2又は請求項3に記載の操作システムであって、
 前記制御部は、
 前記傾倒体の傾倒範囲となる仮想的な球冠内で、前記基準位置を含む閉じた形状から外れる傾倒に対して負荷をかける
 ことを特徴とする操作システム。
The operating system according to claim 2 or claim 3,
The control unit
An operation system, wherein a load is applied to a tilt that deviates from a closed shape including the reference position within a virtual spherical crown that is a tilting range of the tilting body.
 請求項1乃至請求項9のいずれか1項に記載の操作システムであって、
 前記制御部は、
 傾倒角度に応じて大きさが変化する負荷をかける
 ことを特徴とする操作システム。
The operation system according to any one of claims 1 to 9,
The control unit
An operation system characterized by applying a load whose magnitude changes according to the tilting angle.
 請求項1乃至請求項9のいずれか1項に記載の操作システムであって、
 前記制御部は、
 傾倒角度が大きくなる方向への傾倒を抑止する負荷をかける
 ことを特徴とする操作システム。
The operation system according to any one of claims 1 to 9,
The control unit
An operation system characterized by applying a load that prevents tilting in a direction in which the tilting angle increases.
 請求項1乃至請求項9のいずれか1項に記載の操作システムであって、
 前記制御部は、
 振動として伝わる負荷をかける
 ことを特徴とする操作システム。
The operation system according to any one of claims 1 to 9,
The control unit
An operation system characterized by applying a load transmitted as vibration.
 請求項1乃至請求項9のいずれか1項に記載の操作システムであって、
 前記制御部は、
 傾倒操作により傾倒した状態を保持する負荷をかける
 ことを特徴とする操作システム。
The operation system according to any one of claims 1 to 9,
The control unit
An operation system characterized by applying a load to maintain a tilted state by a tilting operation.
 請求項1乃至請求項13のいずれか1項に記載の操作システムであって、
 前記操作ユニットを備える操作装置と、
 前記制御部を備える本体装置と
 を備える
 ことを特徴とする操作システム。
The operating system according to any one of claims 1 to 13,
an operating device comprising the operating unit;
An operation system comprising: a main unit including the control unit;
 請求項1乃至請求項13のいずれか1項に記載の操作システムに組込可能であり、
 前記負荷部を備える
 ことを特徴とする操作ユニット。
 
It can be incorporated into the operating system according to any one of claims 1 to 13,
An operation unit comprising the load section.
PCT/JP2023/001249 2022-03-04 2023-01-18 Operating system and operating unit WO2023166873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022033375A JP2023128783A (en) 2022-03-04 2022-03-04 Operation system and operation unit
JP2022-033375 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023166873A1 true WO2023166873A1 (en) 2023-09-07

Family

ID=87883266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001249 WO2023166873A1 (en) 2022-03-04 2023-01-18 Operating system and operating unit

Country Status (2)

Country Link
JP (1) JP2023128783A (en)
WO (1) WO2023166873A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062944A (en) * 2000-08-18 2002-02-28 Alps Electric Co Ltd On-vehicle input device
JP2009076047A (en) * 2007-08-24 2009-04-09 Denso Corp Input apparatus for vehicle
JP2010176317A (en) * 2009-01-28 2010-08-12 Tokai Rika Co Ltd Input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062944A (en) * 2000-08-18 2002-02-28 Alps Electric Co Ltd On-vehicle input device
JP2009076047A (en) * 2007-08-24 2009-04-09 Denso Corp Input apparatus for vehicle
JP2010176317A (en) * 2009-01-28 2010-08-12 Tokai Rika Co Ltd Input device

Also Published As

Publication number Publication date
TW202335708A (en) 2023-09-16
JP2023128783A (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US6659870B2 (en) Game controller
KR101959588B1 (en) Ergonomic game controller
US20100311504A1 (en) Controller for a Games System
US20050215321A1 (en) Video game controller with integrated trackball control device
US20070060391A1 (en) Game operating device
JP2016119088A (en) Haptic actuators having programmable magnets with pre-programmed magnetic surfaces and patterns for producing varying haptic effects
WO1998016285A1 (en) Operating device for game machines
US20100173711A1 (en) Hall effect joystick
KR102574997B1 (en) game controller
JP6694196B1 (en) Joysticks, input devices, and game consoles
WO2023166873A1 (en) Operating system and operating unit
JP6846600B2 (en) Spherical bearing device and switch
TWI873526B (en) Operating system for game controllers
US11911690B2 (en) Multiaxis manipulation control device
WO2023127342A1 (en) Operated device and device for operating
CN117280297A (en) Operated device and operating device
JP2022049186A (en) Detector and operating device
KR200429744Y1 (en) Joystick
JP2000148380A (en) Controller
JP2024012905A (en) Operating device and operating unit
KR20230144904A (en) Mobile operating device and operating method thereof
JP2022048943A (en) Operation device
JP2003076496A (en) Input device, information processing device using it and game machine
JP2025031732A (en) Operation input device
JP5897893B2 (en) Input device for game machine, game machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23763135

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载