+

WO2023053593A1 - 水分散物及び膜形成方法 - Google Patents

水分散物及び膜形成方法 Download PDF

Info

Publication number
WO2023053593A1
WO2023053593A1 PCT/JP2022/024151 JP2022024151W WO2023053593A1 WO 2023053593 A1 WO2023053593 A1 WO 2023053593A1 JP 2022024151 W JP2022024151 W JP 2022024151W WO 2023053593 A1 WO2023053593 A1 WO 2023053593A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
moles
group
compound
resin
Prior art date
Application number
PCT/JP2022/024151
Other languages
English (en)
French (fr)
Inventor
慎一郎 関根
昭太 鈴木
直佳 ▲濱▼田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023551073A priority Critical patent/JPWO2023053593A1/ja
Priority to CN202280063908.XA priority patent/CN117980363A/zh
Priority to EP22875472.7A priority patent/EP4410852A4/en
Publication of WO2023053593A1 publication Critical patent/WO2023053593A1/ja
Priority to US18/604,498 priority patent/US20240279497A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3212Polyhydroxy compounds containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00

Definitions

  • the present disclosure relates to an aqueous dispersion and a film forming method.
  • aqueous dispersion of microcapsules in which microcapsules containing a core and a shell are dispersed in an aqueous medium (medium containing water), has been known.
  • aqueous medium medium containing water
  • Japanese Patent No. 6584677 discloses water, a structural unit (1), a structural unit (2), and a chain polymer containing a hydrophilic group, and particles containing a polymerizable group. things are described.
  • JP-A-2013-202928 describes an emulsion of hydrophilic linear urethane (meth)acrylate encapsulating a photopolymerization initiator and a polymerizable compound.
  • 2021/059933 contains a bond U that is at least one selected from the group consisting of a urethane bond and a urea bond and a polymer P containing a hydrophilic group, and a polymerizable monomer, and An aqueous dispersion containing water and particles comprising structure A, which is at least one selected from the group consisting of polysiloxane bonds and fluorohydrocarbon groups, is described.
  • aqueous dispersion In a film formed by applying an aqueous dispersion onto a substrate and curing it, it may be required to suppress the elution (that is, migration) of components contained in the aqueous dispersion from the film.
  • an aqueous dispersion and a film forming method are provided in which migration is suppressed.
  • the present disclosure includes the following aspects. ⁇ 1> water, and particles containing a resin and a photoradical generator and having a polymerizable group, the polymerizable group containing an ethylenic double bond, and the moles of the ethylenic double bond in the particle
  • the ratio of the number of moles of the photoradical generator to the number is 4 mol% or more, and the ratio of the number of moles of the photoradical generator present as a solid to the total number of moles of the photoradical generator is 5 mol%.
  • Aqueous dispersions which are: ⁇ 2> The aqueous dispersion according to ⁇ 1>, wherein the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds is 5 mol % to 40 mol %.
  • ⁇ 4> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 3>, wherein the particles further have an amino group A having a hydrogen atom at the ⁇ -position carbon atom.
  • ⁇ 7> The aqueous dispersion according to ⁇ 6>, wherein the ratio of the number of moles of the compound having an amino group A present as a solid to the total number of moles of the compound having an amino group A in the particles is 5 mol% or less. thing. ⁇ 8> The water according to ⁇ 6> or ⁇ 7>, wherein the HSP distance between the photoradical generator and the compound having an amino group A having a hydrogen atom at the ⁇ -position carbon atom is 6 MPa 1/2 or less. dispersion. ⁇ 9> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 8>, wherein the resin has a glass transition temperature of 90° C. or less.
  • ⁇ 10> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 9>, wherein the photoradical generator contains a hydrogen abstraction type initiator having a number average molecular weight of 1000 or more.
  • ⁇ 11> The aqueous dispersion according to any one of ⁇ 1> to ⁇ 10>, wherein the particles contain a polymerizable monomer, and the polymerizable group contains a polymerizable group of the polymerizable monomer.
  • ⁇ 12> The aqueous dispersion according to ⁇ 11>, which is an inkjet ink.
  • Membrane formation method A step of applying the aqueous dispersion according to any one of ⁇ 1> to ⁇ 12> on a substrate, and a step of curing the aque
  • an aqueous dispersion and a film forming method are provided in which migration is suppressed.
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the amount of each component in the composition is the total amount of the multiple substances present in the composition unless otherwise specified. means.
  • the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described step by step, Alternatively, the values shown in the examples may be substituted.
  • the term “step” includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
  • "*" in the chemical formula represents the bonding position.
  • the concept of "image” includes not only pattern images (eg, characters, symbols, or graphics) but also solid images.
  • "light” is a concept that includes active energy rays such as ⁇ -rays, ⁇ -rays, electron beams, ultraviolet rays, and visible rays.
  • ultraviolet rays may be referred to as "UV (Ultra Violet) light”.
  • light emitted from an LED (Light Emitting Diode) light source may be referred to as "LED light”.
  • (meth) acrylic acid is a concept that includes both acrylic acid and methacrylic acid
  • (meth) acrylate is a concept that includes both acrylate and methacrylate
  • (meth) ) acryloyl group is a concept that includes both acryloyl group and methacryloyl group.
  • the aqueous dispersion of the present disclosure contains water, particles containing a resin and a photoradical generator and having a polymerizable group (hereinafter also referred to as “specific particles”), and the polymerizable group is an ethylenic diphenyl
  • the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds in the particles is 4 mol% or more, and the total number of moles of the photoradical generator as a solid
  • the molar ratio of the photo-radical generator present is 5 mol % or less.
  • the aqueous dispersion of the present disclosure suppresses migration.
  • the reason why the above effect is exhibited is presumed as follows. Formation of a film using an aqueous dispersion can be performed, for example, by applying an aqueous dispersion containing specific particles on a substrate and irradiating the specific particles applied on the substrate with light. . By this operation, the polymerization reaction proceeds with the polymerizable groups possessed by the specific particles provided on the substrate, and a film (that is, a cured film) is formed.
  • the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds is 4 mol % or more, so the polymerization reaction is promoted and the crosslink density is improved. As a result, migration is considered to be suppressed.
  • the ratio of the number of moles of the photoradical generator present as a solid to the total number of moles of the photoradical generator is 5 mol% or less. The mobility of the formed radicals and polymerizable groups is improved, and the crosslink density is improved. As a result, migration is considered to be suppressed.
  • Japanese Patent No. 6584677 and International Publication No. 2021/059933 disclose embodiments in which the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds is less than 4 mol%.
  • Japanese Patent Application Laid-Open No. 2013-202928 discloses an embodiment in which the ratio of the number of moles of the photoradical generator present as a solid to the total number of moles of the photoradical generator is more than 5 mol%.
  • the aqueous dispersion of the present disclosure contains specific particles.
  • the specific particles contain a resin and a photoradical generator, and have polymerizable groups.
  • Polymerizable group examples of embodiments in which the specific particles have a polymerizable group include the following embodiments.
  • Aspect 1 The resin contained in the specific particles has a polymerizable group
  • Aspect 2 The specific particles further contain a polymerizable monomer in addition to the resin and the photoradical generator
  • Aspect 3 The resin contained in the specific particles has a polymerizable group and the specific particles further contain a polymerizable monomer
  • the specific particles contain a polymerizable monomer, and the polymerizable groups possessed by the specific particles contain a polymerizable group of the polymerizable monomer. That is, the mode in which the specific particles have a polymerizable group is preferably mode 2 or mode 3 above.
  • the polymerizable monomer Since the polymerizable monomer has high mobility in polymerization, it is thought that if the specific particles contain the polymerizable monomer, the crosslink density will improve and the abrasion resistance of the formed film will improve.
  • amino group A The specific particles preferably further have an amino group A having a hydrogen atom at the ⁇ -position carbon atom (hereinafter also simply referred to as "amino group A").
  • Embodiment 1 The resin contained in the specific particles has an amino group A
  • Embodiment 2 The specific particles further contain a compound having an amino group A in addition to the resin and the photoradical generator
  • Embodiment 3 The resin contained in the specific particles An aspect further comprising a compound having an amino group A and the specific particles having an amino group A
  • the specific particles preferably further contain a compound having an amino group A, from the viewpoint of further suppressing migration and further improving the scratch resistance of the formed film. That is, the aspect in which the specific particles have an amino group A is preferably aspect 2 or aspect 3 above.
  • the ratio of the number of moles of the amino group A to the total number of moles of the photoradical generator is preferably 5 mol% to 100 mol%, It is more preferably 10 mol % to 80 mol %.
  • the above ratio is 5 mol% or more, inhibition of polymerization by oxygen is suppressed, and polymerization of particles having a polymerizable group proceeds efficiently, so that migration is suppressed and the resulting film has excellent scratch resistance.
  • the above ratio is 100 mol % or less, the number of unreacted amino groups in the reaction between the photoradical generator and the amino groups is small, and migration can be suppressed.
  • the hydrolysis of other components in the ink is suppressed by the amine, the storage stability is excellent.
  • the number of moles of amino groups is measured by the following method.
  • Components other than the specific particles and water are removed from the aqueous dispersion to be measured to prepare an aqueous dispersion containing the specific particles.
  • 50 g of the prepared aqueous dispersion is subjected to centrifugation under the conditions of 80000 rpm (abbreviation of revolutions per minute) for 40 minutes.
  • the supernatant liquid produced by centrifugation is removed, and the precipitate (specific particles) is recovered.
  • About 0.5 g of the collected specific particles are weighed into the container 1, and the weighed value W1 (g) is recorded.
  • 60 mL of acetic acid is added to dilute the weighed specific particles to obtain a sample 1 for measuring the degree of neutralization.
  • F1 (mL) corresponds to the number of moles of acid groups neutralized with a strong base
  • (F2-F1) (mL) corresponds to the number of moles of amino groups that are weak bases.
  • the polymerizable group possessed by the specific particles preferably contains an ethylenic double bond from the viewpoint of further improving the scratch resistance of the formed film.
  • the total solid content of the specific particles is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass with respect to the total solids content of the aqueous dispersion. It is more preferably 80% by mass or more, particularly preferably 80% by mass or more, and most preferably 85% by mass or more. This further improves the scratch resistance of the formed film.
  • the total solid content of the specific particles is preferably 1% by mass to 50% by mass, more preferably 3% by mass to 40% by mass, relative to the total amount of the aqueous dispersion. It is preferably 5% by mass to 30% by mass, and more preferably 5% by mass to 30% by mass.
  • the scratch resistance of the formed film is further improved.
  • the total solid content of the specific particles is 50% by mass or less with respect to the total amount of the aqueous dispersion, the dispersion stability of the specific particles is further improved.
  • the total solid content of the specific particles means the total amount of the specific particles excluding the solvent (that is, water and organic solvent). If the specified particles do not contain solvent, the total solids content of the specified particles corresponds to the total amount of the specified particles.
  • the volume average dispersed particle size of the specific particles in the aqueous dispersion is not particularly limited, but from the viewpoint of dispersion stability, it is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.01 ⁇ m to 5 ⁇ m. It is more preferably 0.05 ⁇ m to 1 ⁇ m, particularly preferably 0.05 ⁇ m to 0.5 ⁇ m, most preferably 0.05 ⁇ m to 0.3 ⁇ m.
  • volume average dispersed particle size refers to a value measured by a light scattering method. Measurement of the volume average dispersed particle size of specific particles by the light scattering method is performed using, for example, LA-960 (Horiba, Ltd.).
  • the specific particles contained in the aqueous dispersion contain at least one resin.
  • resins examples include urethane polymer, urethane urea polymer, urea polymer, acrylic polymer, polyester, polyolefin, polystyrene, polycarbonate, and polyamide.
  • the urethane polymer means a polymer that contains a urethane bond and does not contain a urea bond
  • the urea polymer means a polymer that contains a urea bond and does not contain a urethane bond
  • a urethane urea polymer means a polymer containing urethane and urea linkages.
  • the acrylic polymer is at least one selected from the group consisting of acrylic acid, derivatives of acrylic acid (e.g., acrylic acid esters, etc.), methacrylic acid, and derivatives of methacrylic acid (e.g., methacrylic acid esters, etc.). It means a polymer (homopolymer or copolymer) of raw material monomers containing.
  • the resin preferably contains a bond U that is at least one of a urethane bond and a urea bond.
  • the resin is preferably a urethane polymer, a urethane urea polymer, or a urea polymer.
  • bonds U for example, hydrogen bonds
  • curing between the specific particles proceeds more easily, so that the scratch resistance of the formed film is further improved.
  • Bond U preferably includes a urethane bond.
  • the resin preferably contains urethane bonds and no urea bonds, or contains urethane bonds and urea bonds.
  • the polymerizable group possessed by the specific particles may be a polymerizable group of a resin having a polymerizable group. That is, the resin contained in the specific particles may have a polymerizable group. As will be described later, when the specific particles contain a polymerizable monomer, the resin may not have a polymerizable group. Therefore, the resin does not necessarily have a polymerizable group. However, from the viewpoint of improving the scratch resistance of the film to be formed, the resin preferably has a polymerizable group.
  • the resin may contain only one type of polymerizable group, or may contain two or more types.
  • the inclusion of polymerizable groups in the resin can be confirmed, for example, by Fourier transform infrared spectrometry (FT-IR) analysis.
  • FT-IR Fourier transform infrared spectrometry
  • the polymerizable group that can be contained in the resin is preferably a photopolymerizable group, more preferably a photoradical polymerizable group.
  • the radically photopolymerizable group is preferably a (meth)acryloyl group, an allyl group, a styryl group, or a vinyl group, and from the viewpoint of radical polymerization reactivity and hardness of the formed film, it is a (meth)acryloyl group. is more preferable.
  • the polymerizable group that can be contained in the resin preferably contains an ethylenic double bond.
  • the resin may be a chain polymer or a crosslinked polymer.
  • a chain polymer means a polymer that does not have a crosslinked structure
  • a crosslinked polymer means a polymer that has a crosslinked structure.
  • the chain polymer may have a cyclic structure or a branched structure.
  • Japanese Patent No. 6584677 see Japanese Patent No. 6584677, for example.
  • a preferred embodiment of the specific particles when the resin is a crosslinked polymer is a microcapsule comprising a shell made of polymer P, which is a crosslinked polymer, and a core containing a polymerizable monomer. See, for example, Japanese Patent No. 6510681 for specific particles containing a crosslinked polymer.
  • the resin is preferably a chain polymer that does not have a crosslinked structure.
  • the resin preferably contains a structural unit derived from an isocyanate compound and a structural unit derived from a compound containing an active hydrogen group.
  • the resin of the above preferred embodiment includes a bond U formed by reaction between an isocyanate group of an isocyanate compound and an active hydrogen group of a compound containing an active hydrogen group.
  • the active hydrogen group is preferably a hydroxy group, a primary amino group, or a secondary amino group.
  • the reaction of isocyanate groups with hydroxy groups forms urethane groups.
  • a urea group is formed by the reaction between an isocyanate group and a primary amino group or a secondary amino group.
  • the isocyanate compound and the active hydrogen group-containing compound which are raw materials for the resin having the preferred structure, are hereinafter sometimes referred to as raw material compounds. Only one kind of isocyanate compound may be used as a raw material compound, or two or more kinds thereof may be used. Only one kind of compound containing an active hydrogen group may be used as a raw material compound, or two or more kinds thereof may be used.
  • At least one of the isocyanate compounds used as starting compounds is preferably a bifunctional or higher isocyanate compound.
  • a compound containing two or more active hydrogen groups is preferable as at least one compound containing an active hydrogen group as a raw material compound.
  • At least one of the isocyanate compound and the active hydrogen group-containing compound among the raw material compounds preferably contains an anionic group. This makes it easy to produce a resin containing an anionic group.
  • at least some of the anionic groups in the finally obtained resin may be groups obtained by neutralizing the anionic groups in the raw material compound.
  • a more preferred embodiment is one in which at least one compound containing an active hydrogen group among the raw material compounds is a compound containing an active hydrogen group and an anionic group.
  • At least one of the isocyanate compound and the compound containing an active hydrogen group among the raw material compounds preferably contains a polymerizable group. This makes it easy to produce a resin containing a polymerizable group.
  • a more preferred embodiment is one in which at least one compound containing an active hydrogen group among the raw material compounds is a compound containing an active hydrogen group and a polymerizable group.
  • the resin when the resin is a chain polymer, the resin can be produced, for example, by reacting a difunctional isocyanate compound with a compound containing two active hydrogen groups.
  • the resin when the resin is a crosslinked polymer, the resin can be produced, for example, by reacting a trifunctional or higher isocyanate compound with a compound containing two or more active hydrogen groups.
  • the resin when the resin is a crosslinked polymer, the resin can also be produced, for example, by reacting a difunctional isocyanate compound with a compound containing three or more active hydrogen groups.
  • the isocyanate compound is preferably a bifunctional or higher functional isocyanate compound, more preferably a bifunctional to hexafunctional isocyanate compound.
  • the resin When a bifunctional isocyanate compound is used as a raw material compound, the resin preferably contains the following structural unit (P1), which is a structural unit derived from the bifunctional isocyanate compound.
  • L 1 represents a divalent organic group having 1 to 20 carbon atoms, and * represents a bonding position.
  • L 1 include residues obtained by removing two isocyanate groups (NCO groups) from the bifunctional isocyanate compounds according to the following specific examples.
  • bifunctional isocyanate compounds are as follows. However, the bifunctional isocyanate compound is not limited to the specific examples below.
  • bifunctional isocyanate compound bifunctional isocyanate compounds derived from the above specific examples can also be used.
  • examples thereof include Duranate (registered trademark) D101, D201, A101 (manufactured by Asahi Kasei Corporation).
  • the tri- or more functional isocyanate compound includes at least one selected from the group consisting of di-functional isocyanate compounds and a compound containing three or more active hydrogen groups (e.g., tri- or more functional polyol compound, tri- or more functional and at least one selected from the group consisting of a polyamine compound and a trifunctional or higher polythiol compound).
  • a compound containing three or more active hydrogen groups e.g., tri- or more functional polyol compound, tri- or more functional and at least one selected from the group consisting of a polyamine compound and a trifunctional or higher polythiol compound.
  • the number of moles (number of molecules) of the bifunctional isocyanate compound to be reacted with the compound containing three or more active hydrogen groups is the number of moles of active hydrogen groups in the compound containing three or more active hydrogen groups (equivalent of active hydrogen groups number), preferably 0.6 times or more, more preferably 0.6 to 5 times, even more preferably 0.6 to 3 times, and even more preferably 0.8 to 2 times.
  • bifunctional isocyanate compounds for forming trifunctional or higher isocyanate compounds include the bifunctional isocyanate compounds according to the specific examples described above.
  • Compounds containing three or more active hydrogen groups for forming tri- or more functional isocyanate compounds include compounds described in paragraphs 0057 to 0058 of WO 2016/052053.
  • tri- or higher functional isocyanate compounds examples include adduct type tri- or higher functional isocyanate compounds, isocyanurate type tri- or higher functional isocyanate compounds, and biuret type tri- or higher functional isocyanate compounds.
  • Commercially available adduct-type trifunctional or higher isocyanate compounds include Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, D- 140N, D-160N (Mitsui Chemicals Co., Ltd.), Desmodur (registered trademark) L75, UL57SP (Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HL, HX, L (Nippon Urethane Polymer Co., Ltd.
  • isocyanurate-type isocyanate compounds having a functionality of 3 or more include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, and D-177N (manufactured by Mitsui Chemicals, Inc.), Sumidule N3300, Desmodur (registered trademark) N3600, N3900, Z4470BA (all of Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HX, HK (all of Nippon Urethane Polymer Co., Ltd.), Duranate (registered trademark) ) TPA-100, TKA-100, TSA-100, TSS-100, TLA-100, TSE-100 (above, Asahi Kasei Corporation) and the like.
  • biuret-type tri- or higher functional isocyanate compounds include Takenate (registered trademark) D-165N, NP1100 (both of which are Mitsui Chemicals, Inc.), and Desmodur (registered trademark) N3200 (Sumika Bayer Urethane Co., Ltd.). ), Duranate (registered trademark) 24A-100 (Asahi Kasei Corp.), and the like.
  • At least one of the isocyanate compounds as the raw material compound may be an isocyanate compound containing an anionic group.
  • anionic groups see paragraphs 0112-0118 and paragraphs 0252-0254 of WO 2016/052053.
  • At least one of the isocyanate compounds as the raw material compound may be an isocyanate compound containing a polymerizable group.
  • isocyanate compounds containing polymerizable groups reference can be made to paragraphs 0084-0089, 0203, and 0205 of WO2016/052053.
  • the compound containing active hydrogen groups is preferably a compound containing two or more active hydrogen groups.
  • the compound containing two or more active hydrogen groups is more preferably a polyol compound (i.e., a compound having two or more hydroxy groups) or a polyamine compound (i.e., a compound having two or more amino groups).
  • the polymer P When a compound containing an active hydrogen group and an anionic group is used as a raw material compound, the polymer P preferably contains at least one of the following structural units (P0).
  • L 0 represents a divalent organic group, * represents the binding position, Y 1 and Y 2 each independently represent an oxygen atom, a sulfur atom, or a —NR 1 — group; R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, * represents a binding position.
  • the divalent organic group represented by L0 may be a group consisting of carbon atoms and hydrogen atoms, contains carbon atoms and hydrogen atoms, and contains a heteroatom (e.g., a group containing an oxygen atom, a nitrogen atom, a sulfur atom, etc.).
  • a heteroatom e.g., a group containing an oxygen atom, a nitrogen atom, a sulfur atom, etc.
  • Specific examples of L 0 include residues obtained by removing two active hydrogen groups from the specific examples of compounds containing two or more active hydrogen groups described below.
  • R 1 is preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, more preferably a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • Y 1 and Y 2 are each independently preferably an oxygen atom or a —NR 1 — group, more preferably an oxygen atom.
  • diol compounds as compounds containing active hydrogen groups are shown below, but compounds containing active hydrogen groups are not limited to the following specific examples.
  • nC 7 H 15 , nC 9 H 19 , nC 11 H 23 , and nC 17 H 35 are a normal heptyl group, a normal nonyl group, a normal undecyl group, and a normal heptadecyl group, respectively. represents a group.
  • Compound (16) PPG is polypropylene glycol and n is the number of repeats.
  • Compound (16-2) PEG is polyethylene glycol and n is the repeat number.
  • Compound (17) PEs is a polyester diol, n is a repeating number, and Ra and two Rb are each independently a divalent hydrocarbon group having 2 to 25 carbon atoms.
  • n Ra's in compound (17) PEs may be the same or different.
  • (n+1) Rb's in compound (17)PEs may be the same or different.
  • Compound (18) PCD is a polycarbonate diol, n is a repeating number, (n+1) Rc each independently has 2 to 12 carbon atoms (preferably 3 to 8, more preferably 3 to 6 ) is an alkylene group.
  • (n+1) Rc's in compound (18)PC may be the same or different.
  • Compound (19) PCL is a polycaprolactone diol, n and m are repeating numbers, and Rd is an alkylene group having 2 to 25 carbon atoms.
  • the compounds containing active hydrogen groups are preferably compounds (11) to (19) from the viewpoint of lowering the glass transition temperature of the resin.
  • the compound containing an active hydrogen group also includes a compound containing an active hydrogen group and a polymerizable group.
  • a compound containing an active hydrogen group and a polymerizable group is suitable as a compound for introducing the polymerizable group into the resin.
  • diol compounds as compounds containing an active hydrogen group and a polymerizable group are shown below, but the compounds containing an active hydrogen group and a polymerizable group are not limited to the following specific examples.
  • Compounds containing active hydrogen groups also include compounds containing active hydrogen groups and anionic groups.
  • a compound containing an active hydrogen group and an anionic group is suitable as a compound for introducing an anionic group into a resin.
  • the resin When a compound containing an active hydrogen group and an anionic group is used as a raw material compound, the resin preferably contains the following structural unit (P2).
  • L 21 represents a trivalent organic group having 1 to 20 carbon atoms
  • L 22 represents a single bond or a divalent organic group having 1 to 20 carbon atoms
  • a 1 represents a carboxy group, a salt of a carboxy group, a sulfo group, or a salt of a sulfo group
  • * represents a binding position.
  • the number of carbon atoms in the trivalent organic group having 1 to 20 carbon atoms represented by L 21 is preferably 2 to 20, more preferably 3 to 20, even more preferably 4 to 20.
  • the trivalent organic group represented by L 21 is a trivalent hydrocarbon group, or at least one carbon atom in the trivalent hydrocarbon group is a heteroatom (preferably an oxygen atom, a sulfur atom, or nitrogen atom) are preferred.
  • the number of carbon atoms in the divalent organic group having 1 to 20 carbon atoms represented by L 22 is preferably 1 to 10, more preferably 1 to 6.
  • the divalent organic group represented by L 22 includes a divalent hydrocarbon group (preferably an alkylene group), or at least one carbon atom in the divalent hydrocarbon group (preferably an alkylene group), A group substituted by an oxygen atom or a sulfur atom (preferably an oxygen atom) is preferred.
  • L22 may be a single bond.
  • a carboxy group and a sulfo group in the following specific examples may be neutralized (that is, a carboxy group salt and a sulfo group salt may be used).
  • the resin contained in the specific particles may have an amino group A having a hydrogen atom at the ⁇ -position carbon atom.
  • the resin has an amino group A, inhibition of polymerization by oxygen is suppressed, and polymerization of particles having a polymerizable group proceeds efficiently, so that migration is suppressed and the scratch resistance of the formed film is excellent. Conceivable.
  • the resin preferably has a weight-average molecular weight (Mw) of 5,000 or more, more preferably 7,000 or more, and 8,000 or more, from the viewpoint of the dispersion stability of the aqueous dispersion (that is, the dispersion stability of the specific particles). is more preferable.
  • Mw weight-average molecular weight
  • the upper limit of Mw is not particularly limited, it may be 150,000, 100,000, 70,000, or 50,000, for example.
  • number average molecular weight and weight average molecular weight are measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HLC-8220GPC manufactured by Tosoh Corporation
  • three columns of TSKgel, Super Multipore HZ-H manufactured by Tosoh Corporation, 4.6 mm ID ⁇ 15 cm
  • THF tetrahydrofuran
  • the conditions are a sample concentration of 0.45% by mass, a flow rate of 0.35 mL/min, a sample injection amount of 10 ⁇ L, a measurement temperature of 40° C., and detection using a differential refractive index (RI) detector.
  • RI differential refractive index
  • the resin preferably has a glass transition temperature of 90°C or lower, more preferably 70°C or lower.
  • the lower limit of the glass transition temperature is not particularly limited, and is -50°C, for example.
  • the glass transition temperature of the resin is 90°C or less
  • the mobility of the resin is improved, thereby improving the reaction rate of the polymerization reaction.
  • the specific particles contain a polymerizable monomer
  • the resin has a glass transition temperature of 90° C. or less, the mobility of the polymerizable monomer is improved, and the reaction rate of the polymerization reaction is improved. As a result, migration is suppressed.
  • the glass transition temperature (Tg) of a resin means a value measured using differential scanning calorimetry (DSC). A specific measurement of the glass transition temperature is performed according to the method described in JIS K 7121 (1987) or JIS K 6240 (2011).
  • the glass transition temperature in this disclosure is the extrapolated glass transition onset temperature (Tig).
  • a glass transition temperature is measured by the following method. When determining the glass transition temperature, after holding the apparatus at a temperature about 50° C. lower than the expected glass transition temperature of the resin until it stabilizes, heating rate: 20° C./min. Heat up to 30° C. higher temperature and create a differential thermal analysis (DTA) curve or DSC curve.
  • DTA differential thermal analysis
  • the extrapolated glass transition onset temperature (Tig) was drawn at the point where the gradient of the straight line extending the baseline of the low temperature side in the DTA curve or DSC curve to the high temperature side and the curve of the stepped change part of the glass transition became maximum. Obtained as the temperature at the point of intersection with the tangent line.
  • the glass transition temperature (Tg) of the resin means the weighted average value of the glass transition temperatures of the individual resins.
  • the content of the resin is preferably 20% to 95% by mass, more preferably 30% to 90% by mass, and 40% to 85% by mass, relative to the total solid content of the specific particles. % is more preferred.
  • the specific particles contained in the aqueous dispersion contain at least one photoradical generator.
  • a photoradical generator is a compound that generates radicals when exposed to light.
  • photoradical generators include intramolecular cleavage photopolymerization initiators that cause intramolecular cleavage (sometimes simply referred to as “cleavage type photopolymerization initiators”), and intramolecular hydrogen that extracts intramolecular hydrogen.
  • cleavage type photopolymerization initiators an abstraction type photopolymerization initiator (sometimes simply referred to as a “hydrogen abstraction type photopolymerization initiator”) may be mentioned.
  • intramolecularly cleaved photopolymerization initiators examples include alkylphenone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime ester photopolymerization initiators.
  • the intramolecular cleavage type photopolymerization initiator is preferably an acylphosphine oxide photopolymerization initiator.
  • Acylphosphine oxide compounds include monoacylphosphine oxide compounds and bisacylphosphine oxide compounds, with bisacylphosphine oxide compounds being preferred.
  • monoacylphosphine oxide compounds include isobutyryldiphenylphosphine oxide, 2-ethylhexanoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, (2,4,6-trimethylbenzoyl)ethoxyphenyl Phosphine oxide, o-toluyldiphenylphosphine oxide, pt-butylbenzoyldiphenylphosphine oxide, 3-pyridylcarbonyldiphenylphosphine oxide, acryloyldiphenylphosphine oxide, benzoyldiphenylphosphine oxide, pivaloylphenylphosphinate vinyl ester, adipoylbis Diphenylphosphine oxide, pivaloyldiphenylphosphine oxide, p-toluyldiphenylphosphine oxide, 4-(t-butyl)benzo
  • bisacylphosphine oxide compounds include bis(2,6-dichlorobenzoyl)phenylphosphine oxide, bis(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, bis(2,6-dichlorobenzoyl) )-4-ethoxyphenylphosphine oxide, bis(2,6-dichlorobenzoyl)-4-propylphenylphosphine oxide, bis(2,6-dichlorobenzoyl)-2-naphthylphosphine oxide, bis(2,6-dichlorobenzoyl) )-1-naphthylphosphine oxide, bis(2,6-dichlorobenzoyl)-4-chlorophenylphosphine oxide, bis(2,6-dichlorobenzoyl)-2,4-dimethoxyphenylphosphine oxide, bis(2,6-dichloro benzoyl
  • acylphosphine oxide compounds include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide (product name "Omnirad 819", manufactured by IGM Resins B.V.), 2,4,6-trimethylbenzoyldiphenylphosphine oxide (product name "Omnirad TPO H", manufactured by IGM Resins B.V.) or (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide (product name "Omnirad TPO-L", IGM Resins B.V.) company) is preferred.
  • intramolecular abstraction-type photopolymerization initiators examples include thioxanthone compounds.
  • Thioxanthone compounds include thioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 2-dodecylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1- Methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3-(2-methoxyethoxycarbonyl)thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 1-cyano-3-chlorothioxanthone, 1-ethoxycarbonyl -3-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-aminothiox
  • the thioxanthone compound may be a commercially available product.
  • Commercially available products include SPEEDCURE series manufactured by Lambson (eg, SPEEDCURE 7010, SPEEDCURE CPTX, SPEEDCURE ITX, etc.).
  • the intramolecular hydrogen abstraction type photopolymerization initiator preferably has a number average molecular weight of 1000 or more.
  • the upper limit of the number average molecular weight is not particularly limited, and is 3,000, for example. When the number average molecular weight is 1,000 or more, it is difficult to exude from the formed film, and migration is suppressed.
  • the photoradical generator preferably contains both an intramolecular cleavage photopolymerization initiator and an intramolecular hydrogen abstraction photopolymerization initiator.
  • the mass ratio of the intramolecular cleavage photopolymerization initiator and the intramolecular hydrogen abstraction photopolymerization initiator is It is preferably from 50:50 to 95:5, more preferably from 70:30 to 90:10.
  • the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds in the particles is 4 mol% or more.
  • the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds is 4 mol% or more, the amount of radicals generated is large and the crosslink density is improved, thereby suppressing migration and forming Excellent abrasion resistance of the film.
  • the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds is 5 mol% to 40 mol%. preferably 7 mol % to 30 mol %.
  • the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds is 40 mol% or less, the degree of polymerization is high and the crosslink density is improved, thereby suppressing migration and forming a film. Excellent scratch resistance.
  • the ratio of the number of moles of the photoradical generator present as a solid to the total number of moles of the photoradical generator in the particles is 5 mol% or less.
  • the fact that the ratio of the number of moles of the photoradical generator existing as a solid to the total number of moles of the photoradical generator is 5 mol% or less means that the proportion of the photoradical generator in the solid state in the particles is small. means.
  • the lower limit of the ratio is not particularly limited, and the ratio is preferably 0 mol %. That is, it is preferable that the photo-radical generator exists as a liquid inside the particles.
  • the photo-radical generator exists as a solid in the particles means that the photo-radical generator does not dissolve in the liquid contained in the particles. Therefore, in order to reduce the proportion of the photo-radical generator present as a solid in the particles, it is preferable to select a liquid that easily dissolves the radical generator as the liquid contained in the particles. Moreover, it is preferable to select a photo-radical generator that is liquid at 25° C. as the photo-radical generator.
  • the ratio of the number of moles of the photoradical generator existing as a solid to the total number of moles of the photoradical generator can be calculated by the following method.
  • the amount of the photo-radical generator and the amount of the liquid contained in the specific particles are measured, and the mass ratio of the photo-radical generator and the liquid is calculated. Under the condition of 25° C., the photoradical generator and the liquid are mixed in the calculated mass ratio and stirred. The amount of photoradical generator that does not dissolve in the liquid is measured. The ratio of the number of moles of the photoradical generator that is not dissolved in the liquid to the total number of moles of the photoradical generator mixed with the liquid is calculated.
  • the content of the photoradical generator is preferably 4% by mass to 30% by mass, more preferably 5% by mass to 25% by mass, and 6% by mass with respect to the total solid content of the specific particles. ⁇ 20% by mass is more preferred.
  • the HSP distance between the resin and the photoradical generator is preferably 5.5 MPa 1/2 or less, more preferably 4.5 MPa 1/2 or less.
  • the lower limit of the HSP distance is not particularly limited, and is, for example, 0.1 MPa 1/2 .
  • the HSP distance is a value obtained by the following formula (X1).
  • HSP distance ⁇ ( ⁇ HSP (R k ⁇ P i ) ⁇ m k ⁇ m i ) ...
  • k and i each independently represent an integer of 1 or more
  • m k represents the mass fraction of the k-th photo-radical generator with respect to the total amount of the photo-radical generator contained in the aqueous dispersion (i.e., a value greater than 0 and less than 1)
  • m i represents the mass fraction of the i-th resin with respect to the total amount of resin contained in the aqueous dispersion (that is, a value greater than 0 and less than 1)
  • ⁇ HSP(R k ⁇ P i ) represents the HSP distance between the k-th photo-radical generator and the i-th resin.
  • the HSP distance is a value that correlates with the compatibility of two substances to be compared (hereinafter referred to as substance 1 and substance 2). The smaller the HSP distance, the higher the compatibility between Substance 1 and Substance 2.
  • the HSP distances are ⁇ D (dispersion terms) (hereinafter referred to as ⁇ D 1 and ⁇ D 2), ⁇ P (polarization terms) (hereinafter referred to as ⁇ P 1 and ⁇ P 2 ), and ⁇ H (hydrogen It is calculated by applying the coupling term) (hereinafter referred to as ⁇ H 1 and ⁇ H 2 ) to the following formula (A).
  • ⁇ D dispersion term
  • ⁇ P polarization term
  • ⁇ H hydrogen bond term
  • ⁇ HSP(R k ⁇ P i ) is such that ⁇ D 1 is the dispersion term of the k-th photo-radical generator, ⁇ P 1 is the polarization term of the k-th photo-radical generator, and ⁇ P 1 is the k-th photo-radical generator.
  • the dispersion term of the i-th resin is ⁇ D 2
  • the polarization term of the i-th resin is ⁇ P 2
  • the hydrogen-bonding term of the i-th resin is ⁇ H 2
  • the following formula ( A) is calculated by fitting.
  • the dispersion term (hereinafter referred to as “ ⁇ D (resin i)”), the polarization term (hereinafter referred to as “ ⁇ P (resin i)”), and the hydrogen bond term (hereinafter referred to as “ ⁇ H (resin i )”) is determined based on the method of K.W.SUH and J.M.CORBETT described in Journal of Applied Polymer Science, 12, p.2359 (1968).
  • ⁇ D (resin i), ⁇ P (resin i), and ⁇ H (resin i) are determined by the following method.
  • 500 mg of sample (ie resin i) is completely dissolved in 10 mL of tetrahydrofuran (THF) and deionized water is added dropwise to the resulting solution until the solution becomes cloudy.
  • Vw be the volume fraction [deionized water/(deionized water+THF)] when the solution becomes cloudy.
  • 500 mg of sample (ie resin i) is completely dissolved in 10 mL of tetrahydrofuran (THF) and hexane is added dropwise to the resulting solution until the solution becomes cloudy.
  • Vh The volume fraction [hexane/(hexane+THF)] when the solution becomes cloudy is defined as Vh.
  • ⁇ D (resin i), ⁇ P (resin i), and ⁇ H (resin i) are determined by the following formulas (D1), (P1), and (H1), respectively.
  • ⁇ D (resin i) [Vw 1/2 ⁇ ⁇ D (W/T) + Vh 1/2 ⁇ ⁇ D (H/T)]/[Vw 1/2 +Vh 1/2 ]...
  • D1 ⁇ P (resin i) [Vw 1/2 ⁇ ⁇ P (W/T) + Vh 1/2 ⁇ ⁇ P (H/T)]/[Vw 1/2 +Vh 1/2 ]
  • Expression (P1) ⁇ H (resin i) [Vw 1/2 ⁇ ⁇ H (W/T) + Vh 1/2 ⁇ ⁇ H (H/T)]/[Vw 1/2 +Vh 1/2 ]
  • the dispersion term, polarization term, and hydrogen bond term in the radical generator are calculated in the same manner as the method for calculating the dispersion term, polarization term, and hydrogen bond term in the resin.
  • the specific particles contained in the aqueous dispersion may contain components other than the resin and the photoradical generator.
  • the specific particles preferably contain at least one polymerizable monomer.
  • polymerizable monomer means a monomer having a polymerizable group and not having an amino group A, and is distinguished from a compound having an amino group A.
  • the polymerizable monomer contributes to improving the abrasion resistance of the formed film by linking the specific particles together when the aqueous dispersion applied to the base material is cured.
  • the polymerizable monomer that can be contained in the specific particles is preferably a photopolymerizable monomer, more preferably a photoradical polymerizable monomer.
  • a photopolymerizable monomer is a compound that has the property of being polymerized by irradiation with light.
  • the molecular weight of the polymerizable monomer is preferably 100 to 4000, more preferably 100 to 2000, still more preferably 100 to 1000, still more preferably 100 to 900, still more preferably 100 to 800. , particularly preferably 150-750.
  • the molecular weight of the polymerizable monomer can be calculated based on the type and number of elements that make up the polymerizable monomer.
  • Preferred embodiments of the polymerizable group possessed by the polymerizable monomer are the same as the preferred embodiments of the polymerizable group that the resin may contain.
  • the photopolymerizable monomer is preferably a compound containing an ethylenic double bond.
  • photopolymerizable monomers examples include acrylate compounds, methacrylate compounds, styrene compounds, vinyl naphthalene compounds, N-vinyl heterocyclic compounds, unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, and unsaturated urethanes.
  • Acrylate compounds include 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, tridecyl acrylate, 2-phenoxyethyl acrylate (PEA), bis(4-acryloxypoly ethoxyphenyl)propane, oligoester acrylate, epoxy acrylate, isobornyl acrylate (IBOA), dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, cyclic trimethylolpropane formal acrylate, 2-(2) -ethoxyethoxy)ethyl acrylate, 2-(2-vinyloxyethoxy)ethyl acrylate, octyl acrylate, decyl acrylate, isodecyl acrylate, lau
  • Methacrylate compounds include methyl methacrylate, n-butyl methacrylate, allyl methacrylate, glycidyl methacrylate, benzyl methacrylate, dimethylaminomethyl methacrylate, methoxypolyethylene glycol methacrylate, methoxytriethylene glycol methacrylate, hydroxyethyl methacrylate, phenoxyethyl methacrylate, cyclohexyl methacrylate, and the like. monofunctional methacrylate compounds;
  • Bifunctional methacrylate compounds such as polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, 2,2-bis(4-methacryloxypolyethoxyphenyl)propane, and tetraethylene glycol dimethacrylate.
  • Styrene compounds include styrene, p-methylstyrene, p-methoxystyrene, ⁇ -methylstyrene, p-methyl- ⁇ -methylstyrene, ⁇ -methylstyrene, p-methoxy- ⁇ -methylstyrene and the like.
  • vinylnaphthalene compounds include 1-vinylnaphthalene, methyl-1-vinylnaphthalene, ⁇ -methyl-1-vinylnaphthalene, 4-methyl-1-vinylnaphthalene, 4-methoxy-1-vinylnaphthalene and the like.
  • N-vinyl heterocyclic compounds include N-vinylcarbazole, N-vinylpyrrolidone, N-vinylethylacetamide, N-vinylpyrrole, N-vinylphenothiazine, N-vinylacetanilide, N-vinylethylacetamide, N-vinylsuccinic acid imide, N-vinylphthalimide, N-vinylcaprolactam, N-vinylimidazole and the like.
  • polymerizable monomers include N-vinylamides such as allyl glycidyl ether, diallyl phthalate, triallyl trimellitate, and N-vinylformamide.
  • the polymerizable monomer that can be contained in the specific particles preferably contains a polymerizable monomer having a cyclic structure.
  • Monofunctional polymerizable monomers having a cyclic structure include 2-phenoxyethyl acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and dicyclopentanyl.
  • bifunctional polymerizable monomers having a cyclic structure include tricyclodecanedimethanol di(meth)acrylate, bisphenol A ethylene oxide (EO) adduct di(meth)acrylate, bisphenol A propylene oxide (PO) adduct di( meth)acrylates, ethoxylated bisphenol A di(meth)acrylates, alkoxylated dimethyloltricyclodecane di(meth)acrylates, alkoxylated cyclohexanone dimethanol di(meth)acrylates, and cyclohexanone dimethanol di(meth)acrylates. .
  • Photocurable polymerizable monomers used in photopolymerizable compositions described in each publication such as Table 2004-514014 are known, and these can also be applied as polymerizable monomers that can be contained in specific particles. can.
  • photopolymerizable monomer examples include AH-600 (bifunctional), AT-600 (bifunctional), UA-306H (hexafunctional), UA-306T (hexafunctional), UA-306I (hexafunctional ), UA-510H (10 functional), UF-8001G (bifunctional), DAUA-167 (bifunctional), light acrylate NPA (bifunctional), light acrylate 3EG-A (bifunctional) (above, Kyoeisha Chemical Co., Ltd.
  • NPGPODA neopentyl glycol propylene oxide adduct diacrylate
  • SR531, SR285, SR256 above, Sartomer
  • A-DHP dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd.
  • Aronix registered trademark
  • M-156 Toagosei Co., Ltd.
  • V-CAP BASF
  • Viscoat #192 Osaka Organic Chemical Industry Co., Ltd.
  • the content of the polymerizable monomer is preferably 5% by mass to 75% by mass, more preferably 10% by mass to 65% by mass, more preferably 15% by mass to 55% by mass, relative to the total solid content of the specific particles, 20% by weight to 50% by weight is particularly preferred.
  • the specific particles preferably contain at least one compound having an amino group A having a hydrogen atom at the ⁇ -position carbon atom.
  • a compound having an amino group A has a molecular weight of 1000 or less, and is distinguished from the resin having the amino group A described above.
  • the specific particles contain a compound having an amino group A, inhibition of polymerization by oxygen is suppressed, and polymerization of the particles having a polymerizable group proceeds efficiently, thereby suppressing migration and forming a film. Excellent scratch resistance.
  • the ratio of the number of moles of the compound having an amino group present as a solid to the total number of moles of the compound having an amino group A in the particles is preferably 5 mol% or less.
  • the lower limit of the ratio is not particularly limited, and the ratio is preferably 0 mol %. That is, it is preferable that the compound having the amino group A exists entirely as a liquid within the particles.
  • the compound having the amino group A exists as a solid in the particle means that the compound having the amino group A does not dissolve in the liquid contained in the particle. Therefore, in order to reduce the proportion of the compound having an amino group A present as a solid in the particles, it is preferable to select a liquid that easily dissolves the compound having an amino group A as the liquid contained in the particles. Moreover, it is preferable to select a compound that is liquid at 25° C. as the compound having the amino group A.
  • the ratio of the number of moles of the compound having an amino group present as a solid to the total number of moles of the compound having an amino group A is the ratio of the number of moles of the photoradical generator present as a solid to the total number of moles of the photoradical generator. can be calculated in the same manner as the ratio of the number of moles of
  • the number of amino groups A is preferably 1-6, more preferably 1-3, and even more preferably 1 or 2.
  • the compound having an amino group A preferably further has a polymerizable group, more preferably a (meth)acryloyl group.
  • a commercial product may be sufficient as the compound which has the amino group A.
  • Examples of commercially available products include; LA-52, LA-63P, LA-72 (manufactured by ADEKA); CN371 (manufactured by Sartomer); and Exacure A198, Omnirad 907, Omnirad 369, Omnirad 379, Omnipol ASA, Omnipol 910 (manufactured by IGM Resins B.V.) is mentioned.
  • the content of the compound having an amino group A is preferably 0.1% by mass to 12% by mass, more preferably 0.5% by mass to 10% by mass, relative to the total solid content of the specific particles.
  • the HSP distance between the photoradical generator and the compound having an amino group A is preferably 6 MPa 1/2 or less, more preferably 5 MPa 1/2 or less.
  • the lower limit of the HSP distance is not particularly limited, and is, for example, 0.1 MPa 1/2 .
  • the HSP distance is 6 MPa 1/2 or less, the reactivity between the photo-radical generator and the compound having the amino group A is improved, so migration is further suppressed.
  • the HSP distance between the photo-radical generator and the compound having the amino group A is calculated by the same method as the method for calculating the HSP distance between the resin and the photo-radical generator.
  • the specific particles may contain other components than the above components.
  • Other components include, for example, organic solvents.
  • the specific particles preferably contain a component that is liquid at 25°C (hereinafter also referred to as "liquid component").
  • the liquid component may be a photoradical generator or a polymerizable monomer.
  • the content of the liquid component is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total solid content of the specific particles, from the viewpoint of promoting the polymerization reaction in the particles. It is more preferably 30% by mass or more. From the viewpoint of suppressing the elution of the liquid component out of the particles and improving the storage stability, the content of the liquid component is preferably 75% by mass or less with respect to the total solid content of the specific particles, and 65% by mass. % or less, more preferably 55% by mass or less.
  • the ClogP value of the liquid component is preferably 1.5 or more, more preferably 2.0 or more. , is more preferably 3.0 or more.
  • ClogP values are calculated using the fragment method.
  • ChemDraw Professional 16 is used as calculation software using the fragment method.
  • Aqueous dispersions of the present disclosure contain water.
  • Water is a dispersion medium for specific particles (dispersoids).
  • the water content is not particularly limited, it is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably It is 50% by mass or more.
  • the water content is 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less, relative to the total amount of the aqueous dispersion.
  • the aqueous dispersion of the present disclosure may contain components other than specific particles and water.
  • Other components include, for example, a coloring material and a water-soluble organic solvent.
  • the aqueous dispersion of the present disclosure may contain, as other components, additives generally added to ink such as surfactants, polymerization inhibitors, and ultraviolet absorbers. Other components may or may not be contained in the specific particles.
  • aqueous dispersion of the present disclosure may contain a water-soluble polymerizable monomer, a water-soluble photo-radical generator, a water-soluble resin, etc. outside the specific particles, if necessary.
  • the aqueous dispersion of the present disclosure contains a coloring material
  • the aqueous dispersion of the present disclosure preferably contains the coloring material outside the specific particles (that is, the specific particles do not contain the coloring material).
  • the coloring material is not particularly limited, and can be arbitrarily selected from known coloring materials such as pigments, water-soluble dyes, and disperse dyes. Among these, it is more preferable to contain a pigment from the viewpoint of excellent weather resistance and excellent color reproducibility.
  • the pigment is not particularly limited and can be appropriately selected depending on the purpose.
  • examples thereof include known organic pigments and inorganic pigments.
  • Treated pigments for example, pigments dispersed in water, liquid compounds, insoluble resins, etc. using a dispersion medium, and pigments surface-treated with resins, pigment derivatives, etc.
  • examples of organic pigments and inorganic pigments include yellow pigments, red pigments, magenta pigments, blue pigments, cyan pigments, green pigments, orange pigments, purple pigments, brown pigments, black pigments, and white pigments.
  • a pigment dispersant When a pigment is used as the colorant, a pigment dispersant may be used as necessary. Further, when a pigment is used as the colorant, a self-dispersing pigment having a hydrophilic group on the surface of the pigment particles may be used as the pigment. Regarding the colorant and the pigment dispersant, paragraphs 0180 to 0200 of JP-A-2014-040529 and paragraphs 0122 to 0129 of WO 2016/052053 can be referred to as appropriate.
  • the content of the colorant is preferably 0.1% by mass to 20% by mass, and 0.5% by mass to 10% by mass, based on the total amount of the aqueous dispersion. is more preferred, and 0.5% by mass to 5% by mass is particularly preferred.
  • the aqueous dispersion of the present disclosure can be suitably used as an inkjet ink.
  • water, particles containing a resin and a photoradical generator and having a polymerizable group are contained, the polymerizable group contains an ethylenic double bond, and the particles contain ethylenic divalent
  • the ratio of the number of moles of the photoradical generator to the number of moles of the heavy bond is 4 mol% or more, and the ratio of the number of moles of the photoradical generator present as a solid to the total number of moles of the photoradical generator. is 5 mol % or less.
  • the aqueous dispersion of the present disclosure preferably contains a water-soluble organic solvent outside the specific particles from the viewpoint of improving ejection properties.
  • water-soluble refers to the property that the amount dissolved in 100 g of distilled water at 25°C exceeds 1 g.
  • the content of the water-soluble organic solvent is preferably 0.1% by mass to 30% by mass with respect to the total amount of the aqueous dispersion. 0 mass % to 20 mass % is more preferable.
  • water-soluble organic solvent examples include as follows.
  • - Alcohol e.g., methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol, etc.
  • Polyhydric alcohols e.g., ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, 2-methyl propanediol, etc.
  • Polyhydric alcohol ethers e.g., ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether
  • Aqueous dispersions of the present disclosure can be applied to various uses.
  • the aqueous dispersion of the present disclosure can be used, for example, as an ink such as an inkjet ink, or a composition for forming a coating film.
  • the aqueous dispersion of the present disclosure is suitable for use as an inkjet ink.
  • Method for producing aqueous dispersion of the present disclosure is not particularly limited.
  • a method for producing an aqueous dispersion includes, for example, mixing an oil phase component containing an organic solvent, a resin, and a photo-radical generator and an aqueous phase component containing water and emulsifying them to obtain an aqueous dispersion of specific particles. a step of obtaining
  • the specific particles are formed by mixing the oil phase component and the aqueous phase component described above and emulsifying the obtained mixture.
  • the formed specific particles function as dispersoids in the produced aqueous dispersion.
  • Water in the aqueous phase component functions as a dispersion medium in the produced aqueous dispersion.
  • Organic solvents contained in the oil phase component include, for example, ethyl acetate and methyl ethyl ketone. It is preferable that at least part of the organic solvent is removed during the formation process of the specific particles and after the formation of the specific particles.
  • the oil phase component can contain, for example, a polymerizable monomer and a compound having an amino group A, in addition to the above components.
  • the aqueous phase component is not particularly limited except that it contains water.
  • the aqueous phase component may contain a neutralizing agent for neutralizing at least a portion of the hydrophilic groups of the resin.
  • Neutralizing agents include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide, etc.) and organic amines (eg, triethylamine, etc.).
  • the aqueous phase component may contain components other than water and a neutralizing agent.
  • the total amount of the oil phase component and the aqueous phase component excluding the organic solvent and water corresponds to the total solid content of the specific particles in the produced aqueous dispersion.
  • the above-mentioned “Specific Particles” can be referred to.
  • the "content” and “total solid content of the specific particles” in the above-mentioned “specific particles” section are respectively the “amount used” and "the amount from the oil phase component and the water phase component to the organic solvent and "total amount excluding water”.
  • the method of mixing the oil phase component and the water phase component is not particularly limited, but for example, mixing by stirring can be mentioned.
  • the method of emulsification is not particularly limited, but examples thereof include emulsification using an emulsifying device such as a homogenizer (eg, a disperser, etc.).
  • the rotation speed of the disperser in emulsification is, for example, 5000 rpm to 20000 rpm, preferably 10000 rpm to 15000 rpm.
  • the rotation time in emulsification is, for example, 1 to 120 minutes, preferably 3 to 60 minutes, more preferably 3 to 30 minutes, still more preferably 5 to 15 minutes.
  • Emulsification in the step of obtaining an aqueous dispersion of specific particles may be performed under heating.
  • the specific particles can be formed more efficiently.
  • at least part of the organic solvent in the oil phase component can be easily removed from the mixture.
  • the heating temperature for emulsification under heating is preferably 35°C to 70°C, more preferably 40°C to 60°C.
  • the step of obtaining an aqueous dispersion of specific particles includes an emulsifying step of emulsifying the mixture (for example, at a temperature of less than 35°C), and heating the emulsion obtained by the emulsifying step (for example, at a temperature of 35°C or higher). and a heating step.
  • the step of obtaining an aqueous dispersion of specific particles includes an emulsifying step and a heating step, the specific particles can be formed more efficiently, particularly in the heating step.
  • the step of obtaining an aqueous dispersion of specific particles includes an emulsifying step and a heating step
  • at least part of the organic solvent in the oil phase component can be easily removed from the mixture, particularly in the heating step.
  • the heating temperature in the heating step is preferably 35°C to 70°C, more preferably 40°C to 60°C.
  • the heating time in the heating step is preferably 6 hours to 50 hours, more preferably 12 hours to 40 hours, and even more preferably 15 hours to 35 hours.
  • the method for producing an aqueous dispersion may, if necessary, have other steps than the step of obtaining an aqueous dispersion of specific particles.
  • Other steps include a step of adding other components (colorant, etc.) after the step of obtaining an aqueous dispersion of specific particles.
  • Film-forming method X comprises a step of applying the aqueous dispersion of the present disclosure onto a substrate (hereinafter also referred to as “applying step”); A step of curing the aqueous dispersion applied on the substrate (hereinafter also referred to as a “curing step”); including.
  • the film formation method X may include other steps as necessary. According to the film forming method X, a film having excellent abrasion resistance and excellent adhesion to the substrate is formed.
  • the base material used in the film forming method X is not particularly limited, and may be either a non-permeable base material or a permeable base material, but is preferably a non-permeable base material.
  • a non-permeable base material refers to a substrate having a water absorption rate (unit: mass %, measurement time: 24 hours) of less than 10 according to ASTM D570 of the ASTM test method.
  • the water absorption rate of the impermeable substrate is preferably 5 or less.
  • impermeable substrates include: Paper laminated with plastic (e.g., polyethylene, polypropylene, polystyrene, etc.), metal plate (e.g., metal plate of aluminum, zinc, copper, etc.), plastic film (e.g., polyvinyl chloride (PVC: Polyvinyl Chloride) resin, Cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate (PET), polyethylene (PE), polystyrene (PS), polypropylene (PP) ), polycarbonate (PC), polyvinyl acetal, films such as acrylic resin), paper laminated or vapor-deposited with the above-mentioned metal, plastic film laminated or vapor-deposited with the above-mentioned metal, and leather. .
  • plastic e.g., polyethylene, polypropylene, polystyrene, etc.
  • metal plate e
  • leather examples include natural leather (also referred to as “genuine leather”), synthetic leather (eg, PVC (polyvinyl chloride) leather, PU (polyurethane) leather), and the like.
  • synthetic leather eg, PVC (polyvinyl chloride) leather, PU (polyurethane) leather
  • paragraphs 0163 to 0165 of JP-A-2009-058750 can be referred to.
  • the formed film has excellent abrasion resistance properties and adhesion are required.
  • the formed film may be required to have excellent scratch resistance. According to the film forming method of the present disclosure, such demands can be satisfied.
  • the substrate may be surface-treated from the viewpoint of improving the surface energy.
  • surface treatment include, but are not limited to, corona treatment, plasma treatment, flame treatment, heat treatment, abrasion treatment, light irradiation treatment (UV treatment), and flame treatment.
  • the application step is the step of applying the aqueous dispersion of the present disclosure onto a substrate.
  • the method of applying the aqueous dispersion is not particularly limited, and examples thereof include known methods such as a coating method, an inkjet recording method, and an immersion method.
  • Application of the aqueous dispersion by an inkjet recording method can be performed by ejecting the aqueous dispersion from an inkjet head in a known inkjet recording apparatus.
  • a piezoelectric inkjet head is preferable.
  • the resolution of the inkjet head is preferably 300 dpi or higher, more preferably 600 dpi or higher, and still more preferably 800 dpi or higher.
  • dpi dot per inch
  • dpi represents the number of dots per 2.54 cm (1 inch).
  • the droplet ejection volume (appropriate ejection volume per dot) of the aqueous dispersion ejected from the inkjet head is preferably 1 pL (picoliter) to 100 pL, more preferably 3 pL to 80 pL, and more preferably 3 pL to 50 pL. It is even more preferable to have
  • the aqueous dispersion may be applied to the heated substrate.
  • the temperature of the surface of the substrate on which the aqueous dispersion lands is preferably 30°C or higher, more preferably 30°C to 100°C, and even more preferably 30°C to 70°C.
  • the heating means for heating the substrate is not particularly limited, and examples thereof include heat drums, hot air, infrared lamps, infrared LEDs, infrared heaters, heat ovens, hot plates, infrared lasers, infrared dryers, and the like. mentioned.
  • the curing step in the film forming method X is a step of curing the aqueous dispersion provided on the substrate.
  • a polymerization reaction proceeds with the particles having a polymerizable group in the aqueous dispersion provided on the base material.
  • a film having excellent scratch resistance can be obtained.
  • the curing step is preferably a step of irradiating the aqueous dispersion applied on the substrate with active energy rays.
  • active energy rays examples include ultraviolet rays (UV light), visible rays, and electron beams. Among them, the active energy ray is preferably UV light.
  • the irradiation of the active energy ray to the aqueous dispersion provided on the substrate may be performed while the substrate and the aqueous dispersion provided on the substrate are heated.
  • the irradiation energy (that is, exposure dose) of the active energy ray is preferably 20 mJ/cm 2 to 5 J/cm 2 , more preferably 100 mJ/cm 2 to 1,500 mJ/cm 2 .
  • the irradiation time of the active energy ray is preferably 0.01 seconds to 120 seconds, more preferably 0.1 seconds to 90 seconds.
  • the irradiation conditions and basic irradiation method of active energy rays the irradiation conditions and irradiation method disclosed in JP-A-60-132767 can be applied.
  • Light sources for active energy ray irradiation include mercury lamps, metal halide lamps, high-pressure mercury lamps, medium-pressure mercury lamps, low-pressure mercury lamps, ultraviolet fluorescent lamps, gas lasers, solid-state lasers, LEDs (light-emitting diodes), and LDs (laser diodes). etc.
  • the light source for active energy ray irradiation is a metal halide lamp, a high-pressure mercury lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, or an ultraviolet LED (hereinafter also referred to as UV-LED), which is a light source for ultraviolet irradiation. is preferred.
  • the peak wavelength of ultraviolet rays is, for example, preferably 200 nm to 405 nm, more preferably 220 nm to 400 nm, even more preferably 340 nm to 400 nm.
  • the peak wavelength of the light from the LED light source is preferably 200 nm to 600 nm, more preferably 300 nm to 450 nm, even more preferably 320 nm to 420 nm, and 340 nm to 400 nm. is more preferred.
  • UV-LEDs include, for example, UV-LEDs manufactured by Nichia Corporation whose main emission spectrum has a wavelength between 365 nm and 420 nm. Also included are UV-LEDs capable of emitting actinic radiation centered between 300 nm and 370 nm, as described in US Pat. No. 6,084,250. Also, by combining several UV-LEDs, it is possible to irradiate ultraviolet rays of different wavelength ranges.
  • LED light particularly preferred is LED light having a peak wavelength in the wavelength range of 340 nm to 405 nm.
  • LED light with a peak wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm is more preferred, and LED light with a peak wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm is particularly preferred.
  • the maximum illuminance of the LED on the substrate is preferably 10 mW/cm 2 to 2,000 mW/cm 2 , more preferably 20 mW/cm 2 to 1,000 mW/cm 2 , and 50 mW/cm 2 to 800 mW/cm 2 . More preferred.
  • the aqueous dispersion of the present disclosure is preferably an inkjet ink.
  • a preferred embodiment of the present disclosure includes an image recording method including a step of applying an inkjet ink onto a substrate and a step of curing the inkjet ink applied onto the substrate. Details of each step in the image recording method are the same as those in the film forming method.
  • Neostan U-600 manufactured by Nitto Kasei Co., Ltd., inorganic bismuth catalyst; hereinafter also referred to as “U-600”
  • IPA isopropanol
  • ethyl acetate 87.7 g
  • polymer PU1 A 30% by mass solution of polymer PU1 (solvent: mixed solvent of IPA, ethyl acetate, and methyl ethyl ketone) was obtained by adjusting the concentration using ethyl acetate.
  • Polymer PU1 had a weight average molecular weight (Mw) of 11000 and an acid value of 0.7 mmol/g.
  • Polymer PU1 has an acryloyl group as a photopolymerizable group.
  • Polymer PU2 Dimethylolpropionic acid (DMPA) (9.6 g), dicyclohexylmethane-4,4-diisocyanate (HMDI) (55.0 g), tricyclodecanedimethanol (14.7 g), bisphenol A epoxy diacrylate were placed in a three-necked flask. (25.9 g) and ethyl acetate (66.1 g) were charged and heated to 70°C. U-600 (0.1 g) was added thereto and stirred at 70° C. for 7 hours. Thereafter, a 30% by mass solution of polymer PU2 was obtained in the same manner as for polymer PU1.
  • the polymer PU2 had a weight average molecular weight (Mw) of 11000 and an acid value of 0.7 mmol/g.
  • Polymer PU2 has an acryloyl group as a photopolymerizable group.
  • Polymer PU3 Dimethylolpropionic acid (DMPA) (8.0 g), dicyclohexylmethane-4,4-diisocyanate (HMDI) (45.0 g), tricyclodecanedimethanol (16.5 g), bisphenol A epoxy diacrylate were placed in a three-necked flask. (6.8g), T5652 (11.4g) and methyl ethyl ketone (48.8g) were charged and heated to 70°C. U-600 (0.1 g) was added thereto and stirred at 70° C. for 7 hours. Thereafter, a 30% by mass solution of polymer PU3 was obtained in the same manner as for polymer PU1. Polymer PU3 had a weight average molecular weight (Mw) of 11000 and an acid value of 0.7 mmol/g. Polymer PU3 has an acryloyl group as a photopolymerizable group.
  • Mw weight average molecular weight
  • Polymer PU4 Dimethylolpropionic acid (DMPA) (8.5 g), hexamethylene diisocyanate (HDI) (39.4 g), tricyclodecanedimethanol (22.1 g), bisphenol A epoxy diacrylate (23.0 g) were placed in a three-necked flask. , and methyl ethyl ketone (60.0 g) were charged and heated to 70°C. U-600 (0.1 g) was added thereto and stirred at 70° C. for 7 hours. Thereafter, a 30% by mass solution of polymer PU4 was obtained in the same manner as for polymer PU1. The polymer PU4 had a weight average molecular weight (Mw) of 11000 and an acid value of 0.7 mmol/g. Polymer PU4 has an acryloyl group as a photopolymerizable group.
  • Mw weight average molecular weight
  • Polymer PU5 Dimethylolpropionic acid (DMPA) (10.7 g), isophorone diisocyanate (IPDI) (37.3 g), polyethylene glycol 2000 (Fujifilm Wako Pure Chemical) (40.4 g), bisphenol A epoxy diacrylate ( 29.0 g), and methyl ethyl ketone (76.3 g) were charged and heated to 70°C. U-600 (0.1 g) was added thereto and stirred at 70° C. for 7 hours. Thereafter, a 30% by mass solution of polymer PU5 was obtained in the same manner as for polymer PU1. Polymer PU5 had a weight average molecular weight (Mw) of 11000 and an acid value of 0.7 mmol/g. Polymer PU5 has an acryloyl group as a photopolymerizable group.
  • Mw weight average molecular weight
  • Polymer AC1 had a weight average molecular weight (Mw) of 11000 and an acid value of 0.7 mmol/g.
  • Example 1 Preparation of oil phase components- Ethyl acetate (56.0 g), 30% mass solution of polymer PU1 (93.5 g), phenoxyethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) (12.9 g), bis(2,4,6-trimethylbenzoyl)phenylphosphine Oxide (product name “Omnirad 819”, manufactured by IGM Resins B.V.) (2.4 g) and isopropylthioxanthone (0.4 g) were mixed and stirred for 30 minutes to obtain an oil phase component.
  • aqueous phase components Distilled water (162.4 g) and sodium hydroxide as a neutralizing agent were mixed and stirred for 15 minutes to obtain an aqueous phase component. The amount of sodium hydroxide was adjusted so that the anion valence of the particles was 0.33 mmol/g.
  • the oil phase component and the water phase component were mixed.
  • the resulting mixture was emulsified at room temperature using a homogenizer at 7000 rpm for 30 minutes to obtain an emulsion.
  • Distilled water (57.6 g) was added to the resulting emulsion, and the resulting liquid was heated to 50°C and stirred at 50°C for 4 hours.
  • Ethyl acetate was distilled off from the above liquid.
  • the liquid from which ethyl acetate was distilled off was diluted with distilled water so that the solid content was 25% by mass, and a water dispersion 1 was obtained.
  • aqueous dispersion 1 was placed in a container, sealed, and allowed to stand at room temperature for two weeks. Using the aqueous dispersion 1 after two weeks had passed since its preparation, each component was mixed according to the following composition to prepare an ink. The obtained ink is also one aspect of the aqueous dispersion. ⁇ Aqueous dispersion 1 ...
  • Pigment dispersion liquid product name “Pro-jet Cyan APD1000”, manufactured by FUJIFILM Imaging Colorants), pigment concentration 14% by mass
  • Fluorinated surfactant product name “Capstone FS-31”, manufactured by DuPont, solid content 25% by mass
  • Solid content 25% by mass ... 0.3% by mass
  • Propylene glycol ... 15% by mass ⁇ Water ... Remaining amount for 100% by mass of the entire ink
  • Example 2 Comparative Example 1, Comparative Example 2
  • water A dispersion was prepared and an ink was prepared in the same manner as in Example 1.
  • the compound having amino group A was included in the oil phase component.
  • the details of the photoradical generator, the compound having an amino group A, and the polymerizable monomer are as follows.
  • Photoradical generator (intramolecular cleavage type photopolymerization initiator) - 819 ... bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (product name "Omnirad 819", molecular weight 418.5 ⁇ TPO-L ... (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide (product name "Omnirad TPO-L", manufactured by IGM Resins B.V.), molecular weight 316.3
  • Photoradical generator (intramolecular hydrogen abstraction type photopolymerization initiator) - ⁇ ITX ... isopropyl thioxanthone (product name “Speedcure ITX”, manufactured by Lambson), molecular weight 254.4 ⁇ 7010 ... 1,3-di( ⁇ -[1-chloro-9-oxo-9H-thioxanthen-4-yl)oxy]acetylpoly[oxy(1-methylethylene)] ⁇ oxy)-2,2 -Bis( ⁇ -[1-methylethylene)] ⁇ oxymethyl)propane (product name “Speedcure 7010”, manufactured by Lambson), molecular weight 1200
  • -Polymerizable Monomer- PEA phenoxyethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), molecular weight 192.2 TCDDMDA: tricyclodecane dimethanol diacrylate (product name SR833NS, manufactured by Sartomer), molecular weight 304.4 ⁇ GPTA ... glycerin propoxy triacrylate (product name “OTA480”, manufactured by Daicel Allnex), molecular weight 480.0
  • the HSP distance between the resin and the photo-radical generator, and photo-radical generation was calculated.
  • Tables 1 and 2 show ⁇ D, ⁇ P, and ⁇ H of the resin, the photoradical generator, and the compound having an amino group A, calculated by the method described above. When two photoradical generators are used, the mass ratio is shown in parentheses.
  • ⁇ Film formation method> An ink cartridge attached to an inkjet recording apparatus (product name “DMP-2850”, manufactured by Fuji Film Co., Ltd.) was filled with ink, and the ink was discharged onto a PVC film under the conditions of 900 dpi and a droplet ejection volume of 10 pL. After ejection, a 395 nm LED lamp (product name “PEL UV CURE UNIT”, manufactured by PRINTED ELECTRONICS) was used to expose the ink 10 times at about 250 mW/cm 2 to obtain an ink film.
  • DMP-2850 inkjet recording apparatus
  • PEL UV CURE UNIT manufactured by PRINTED ELECTRONICS
  • ink film A after applying ink onto the substrate and ink film B after applying ink on the substrate and further exposing were prepared.
  • Each ink film was impregnated with a solution of tetrahydrofuran/methanol (mass ratio 1:1).
  • HPLC the total amount (extracted amount) of ink components contained in the solution after impregnation was measured.
  • the extraction amount extracted from the ink film A was defined as the extraction amount A
  • the extraction amount extracted from the ink film B was defined as the extraction amount B
  • the extraction rate was calculated based on the following formula.
  • Migration was evaluated based on the extraction rate. Evaluation criteria are as follows.
  • Extraction rate (% by mass) (extraction amount B/extraction amount A) x 100
  • ⁇ Scratch resistance> In the film forming method described above, an ink film of 3 cm ⁇ 10 cm was formed on the substrate at a printing rate of 100%. The substrate on which the ink film was formed was left for 24 hours in an environment of 25° C. and 50% relative humidity. After 24 hours, the surface of the ink film was rubbed 100 times with a cotton cloth (Kanakin No. 3) under a load of 200 g using a Gakushin friction tester. After that, the surface of the ink film was visually observed, and the abrasion resistance was evaluated based on the surface state of the ink film. Evaluation criteria are as follows. A: There were no scratches on the ink film. B: Slight scratches were found on the ink film.
  • C Scratches were found on the ink film, and the substrate was visible at a rate of less than 5% of the total area of the ink film.
  • D The ink film had scratches, and the substrate was visible at a rate of 5% or more and less than 50% of the total area of the ink film.
  • E Almost no ink film remained, and the substrate was visible at a rate of 50% or more of the total area of the ink film.
  • ⁇ Storage stability> After preparation, the ink stored at room temperature for no more than 1 day was placed in a container, sealed, and allowed to stand at 60° C. for 2 weeks. The ink after 2 weeks from preparation (ink after 4 weeks from preparation of the aqueous dispersion) was coated once on the substrate at a printing rate of 100% using the above film forming method. Dispensed. After that, the inkjet recording apparatus was stopped for 30 minutes under conditions of 25° C. and 50% relative humidity, and the inkjet head was exposed to the atmosphere. After 30 minutes, the nozzle check pattern was selected and ink was ejected once. The recorded nozzle check pattern was visually observed, and storage stability was evaluated based on the number of ejection failure nozzles. Evaluation criteria are as follows.
  • Table 3 shows the evaluation results.
  • the photoradical generator the type of intramolecular cleavage photopolymerization initiator and intramolecular hydrogen abstraction photopolymerization initiator, the ratio (unit: mass%) in the photoradical generator, and the content of the specific particles relative to the total amount ( Unit: % by mass).
  • the “solid ratio” in the column of the photoradical generator means the ratio of the number of moles of the photoradical generator present as a solid to the total number of moles of the photoradical generator (unit: mol %).
  • Table 3 shows the type of compound having amino group A and the content (unit: % by mass) relative to the total amount of the specific particles.
  • the “solid ratio” in the column of the compound having the amino group A means the ratio of the number of moles of the compound present as a solid to the total number of moles of the compound having the amino group A (unit: mol%).
  • Table 3 shows the type of compound having amino group A and the content (unit: % by mass) relative to the total amount of the specific particles.
  • Table 3 shows the type of polymerizable monomer and the content (unit: % by mass) relative to the total amount of specific particles.
  • ⁇ HSP(RP) means the HSP distance between the resin and the photoradical generator.
  • ⁇ HSP(RN) means the HSP distance between the photoradical generator and the compound having the amino group A.
  • amino group/photoradical generator means the ratio of the number of moles of amino group A to the total number of moles of the photoradical generator (unit: mol%).
  • photo-radical generator in particles means the number of millimoles (unit: mmol/g) of the photo-radical generator in 1 g of particles.
  • Examples 1 to 22 particles containing water, a resin and a photoradical generator and having a polymerizable group are contained, and the polymerizable group is an ethylenic double bond.
  • the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds in the particles is 4 mol% or more, and the photoradical generator exists as a solid with respect to the total number of moles of the photoradical generator It was found that migration was suppressed because the molar ratio of the photo-radical generator was 5 mol % or less.
  • Comparative Example 2 the ratio of the number of moles of the photo-radical generator present as a solid to the total number of moles of the photo-radical generator in the particles was more than 5 mol %, so migration was confirmed and dischargeability was improved. And the result was inferior to the storage stability.
  • Example 4 the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds in the particles was 5 mol% or more. rice field.
  • Example 6 the ratio of the number of moles of the photoradical generator to the number of moles of ethylenic double bonds in the particles was 40 mol% or less. rice field.
  • Example 13 the HSP distance between the resin and the photo-radical generator was 5.5 MPa 1/2 or less.
  • Example 8 the particles further had an amino group A having a hydrogen atom at the ⁇ -position carbon atom, so that migration was suppressed and the abrasion resistance was excellent as compared with Example 4. rice field.
  • Example 10 the ratio of the number of moles of the amino group A having a hydrogen atom at the ⁇ -position carbon atom to the total number of moles of the photoradical generator was 5 mol% or more. was found to be suppressed.
  • Example 11 the ratio of the number of moles of the amino group A having a hydrogen atom at the ⁇ -position carbon atom to the total number of moles of the photoradical generator was 100 mol% or less. was suppressed, and the jettability and storage stability were excellent.
  • Example 9 the ratio of the number of moles of the compound present as a solid to the total number of moles of the compound having an amino group A having a hydrogen atom at the ⁇ -position carbon atom in the particles was 5 mol% or less. Compared with Example 17, it was found to be excellent in ejection and storage stability.
  • Example 18 the HSP distance between the photoradical generator and the compound having an amino group A having a hydrogen atom at the ⁇ -position carbon atom is 6 MPa 1/2 or less. was found to be suppressed.
  • Example 15 since the glass transition temperature of the resin is 90°C or less, migration was found to be suppressed compared to Example 16.
  • Example 6 the photoradical generator contained a hydrogen abstraction type initiator with a number average molecular weight of 1000 or more, so it was found that migration was suppressed compared to Example 5.
  • Example 8 since the particles contained a polymerizable monomer, it was found to be superior to Example 21 in abrasion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

水と、樹脂及び光ラジカル発生剤を含み、重合性基を有する粒子と、を含有し、重合性基が、エチレン性二重結合を含み、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、4mol%以上であり、かつ、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合は、5mol%以下である、水分散物及び膜形成方法。

Description

水分散物及び膜形成方法
 本開示は、水分散物及び膜形成方法に関する。
 従来より、コアとシェルとを含むマイクロカプセルが、水系媒体(水を含む媒体)中に分散されている、マイクロカプセルの水分散物が知られている。
 例えば、特許第6584677号公報には、水と、構造単位(1)、構造単位(2)、及び親水性基を含む鎖状ポリマーを含み、重合性基を含む粒子と、を含有する水分散物が記載されている。
 特開2013-202928号公報には、光重合開始剤及び重合性化合物が内包された親媒性直鎖型ウレタン(メタ)アクリレートのエマルションが記載されている。
 国際公開第2021/059933号には、ウレタン結合及びウレア結合からなる群から選択される少なくとも1種である結合U並びに親水性基を含むポリマーPと、重合性モノマーと、を含有し、かつ、ポリシロキサン結合及びフッ化炭化水素基からなる群から選択される少なくとも1種である構造Aを含む粒子と、水と、を含有する水分散物が記載されている。
 基材上に水分散物を付与し、硬化させることにより形成される膜において、水分散物に含まれる成分の膜からの溶出(すなわち、マイグレーション)を抑制することが求められる場合がある。
 本開示の一態様によれば、マイグレーションが抑制される水分散物及び膜形成方法が提供される。
 本開示は以下の態様を含む。
<1> 水と、樹脂及び光ラジカル発生剤を含み、重合性基を有する粒子と、を含有し、重合性基は、エチレン性二重結合を含み、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、4mol%以上であり、かつ、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合は、5mol%以下である、水分散物。
<2> エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、5mol%~40mol%である、<1>に記載の水分散物。
<3> 樹脂と光ラジカル発生剤とのHSP距離は、5.5MPa1/2以下である、<1>又は<2>に記載の水分散物。
<4> 粒子は、さらに、α位の炭素原子に水素原子を有するアミノ基Aを有する、<1>~<3>のいずれか1つに記載の水分散物。
<5> 光ラジカル発生剤の全モル数に対する、α位の炭素原子に水素原子を有するアミノ基Aのモル数の割合は、5mol%~100mol%である、<4>に記載の水分散物。
<6> 粒子は、さらに、α位の炭素原子に水素原子を有するアミノ基Aを有する化合物を含む、<4>又は<5>に記載の水分散物。
<7> 粒子中、アミノ基Aを有する化合物の全モル数に対して、固体として存在するアミノ基Aを有する化合物のモル数の割合は5mol%以下である、<6>に記載の水分散物。
<8> 光ラジカル発生剤と、α位の炭素原子に水素原子を有するアミノ基Aを有する化合物とのHSP距離は、6MPa1/2以下である、<6>又は<7>に記載の水分散物。
<9> 樹脂は、ガラス転移温度が90℃以下である、<1>~<8>のいずれか1つに記載の水分散物。
<10> 光ラジカル発生剤は、数平均分子量が1000以上の水素引き抜き型開始剤を含む、<1>~<9>のいずれか1つに記載の水分散物。
<11> 粒子は、重合性モノマーを含み、重合性基は、重合性モノマーの重合性基を含む、<1>~<10>のいずれか1つに記載の水分散物。
<12> インクジェットインクである、<11>に記載の水分散物。
<13> 基材上に、<1>~<12>のいずれか1つに記載の水分散物を付与する工程と、基材上に付与された水分散物を硬化させる工程と、を含む膜形成方法。
 本開示の一態様によれば、マイグレーションが抑制される水分散物及び膜形成方法が提供される。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、化学式中の「*」は、結合位置を表す。
 本開示において、「画像」の概念には、パターン画像(例えば、文字、記号、又は図形)だけでなく、ベタ画像も包含される。
 本開示において、「光」は、γ線、β線、電子線、紫外線、可視光線等の活性エネルギー線を包含する概念である。
 本開示では、紫外線を、「UV(Ultra Violet)光」ということがある。
 本開示では、LED(Light Emitting Diode)光源から生じた光を、「LED光」ということがある。
 本開示において、「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の両方を包含する概念であり、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念であり、「(メタ)アクリロイル基」は、アクリロイル基及びメタクリロイル基の両方を包含する概念である。
〔水分散物〕
 本開示の水分散物は、水と、樹脂及び光ラジカル発生剤を含み、重合性基を有する粒子(以下、「特定粒子」ともいう)と、を含有し、重合性基は、エチレン性二重結合を含み、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、4mol%以上であり、かつ、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合は、5mol%以下である。
 本開示の水分散物によれば、マイグレーションが抑制される。
 上記効果が奏される理由は、以下のように推測される。
 水分散物を用いた膜の形成は、例えば、基材上に特定粒子を含む水分散物を付与し、基材上に付与された特定粒子に対し、光を照射することによって行うことができる。この操作により、基材上に付与された特定粒子が有する重合性基によって重合反応が進行し、膜(即ち、硬化膜)が形成される。
 本開示の水分散物では、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合が4mol%以上であることから、重合反応が促進され、架橋密度が向上する。その結果、マイグレーションが抑制されると考えられる。また、本開示の水分散物では、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合が5mol%以下であることから、光ラジカル発生剤から産出されるラジカル、及び重合性基の運動性が向上し、架橋密度が向上する。その結果、マイグレーションが抑制されると考えられる。
 一方、特許第6584677号公報及び国際公開第2021/059933号には、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合が4mol%未満である態様が開示されている。また、特開2013-202928号公報には、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合が5mol%超である態様が開示されている。特許第6584677号公報、特開2013-202928号公報、及び国際公開第2021/059933号では、粒子のC=C価に対する光ラジカル発生剤の含有量、及び、光ラジカル発生剤の、粒子内で固体として存在する割合には着目されていない。
 以下、水分散物に含有され得る各成分について説明する。
[特定粒子]
 本開示の水分散物は、特定粒子を含有する。上記のとおり、特定粒子は、樹脂及び光ラジカル発生剤を含み、重合性基を有する。
(重合性基)
 特定粒子が重合性基を有する態様としては、例えば、以下の態様が挙げられる。
態様1:特定粒子に含まれる樹脂が重合性基を有する態様
態様2:特定粒子が樹脂及び光ラジカル発生剤以外に重合性モノマーをさらに含む態様
態様3:特定粒子に含まれる樹脂が重合性基を有し、かつ、特定粒子が重合性モノマーをさらに含む態様
 中でも、形成される膜の耐擦過性をより向上させる観点から、特定粒子は、重合性モノマーを含み、特定粒子が有する重合性基は、重合性モノマーの重合性基を含むことが好ましい。すなわち、特定粒子が重合性基を有する態様は、上記態様2又は態様3であることが好ましい。
 重合性モノマーは重合における運動性が高いため、特定粒子に重合性モノマーが含まれていると、架橋密度が向上し、形成される膜の耐擦過性が向上すると考えられる。
 重合性基を有する樹脂、及び、重合性モノマーの詳細は後述する。
(アミノ基A)
 特定粒子は、さらに、α位の炭素原子に水素原子を有するアミノ基A(以下、単に「アミノ基A」ともいう)を有することが好ましい。
 特定粒子がアミノ基Aを有する態様としては、例えば、以下の態様が挙げられる。
態様1:特定粒子に含まれる樹脂がアミノ基Aを有する態様
態様2:特定粒子が樹脂及び光ラジカル発生剤以外にアミノ基Aを有する化合物をさらに含む態様
態様3:特定粒子に含まれる樹脂がアミノ基Aを有し、かつ、特定粒子がアミノ基Aを有する化合物をさらに含む態様
 中でも、マイグレーションをより抑制し、かつ、形成される膜の耐擦過性をより向上させる観点から、特定粒子は、さらに、アミノ基Aを有する化合物を含むことが好ましい。すなわち、特定粒子がアミノ基Aを有する態様は、上記態様2又は態様3であることが好ましい。
 特定粒子がアミノ基Aを有すると、酸素による重合阻害が抑制され、重合性基を有する粒子の重合が効率良く進行するため、マイグレーションが抑制され、かつ、形成される膜の耐擦過性に優れる。
 アミノ基Aを有する樹脂、及び、アミノ基Aを有する化合物の詳細は後述する。
(光ラジカル発生剤の全モル数に対するアミノ基Aのモル数)
 本開示の水分散物において、特定粒子がアミノ基Aを有する場合に、光ラジカル発生剤の全モル数に対する、アミノ基Aのモル数の割合は、5mol%~100mol%であることが好ましく、10mol%~80mol%であることがより好ましい。上記割合が5mol%以上であると、酸素による重合阻害が抑制され、重合性基を有する粒子の重合が効率良く進行するため、マイグレーションが抑制され、かつ、形成される膜の耐擦過性に優れる。一方、上記割合が100mol%以下であると、光ラジカル発生剤とアミノ基との反応における未反応のアミノ基が少なく、マイグレーションを抑制することができる。また、インク中で、アミンによって他の成分が加水分解されることが抑制されることから、保存安定性に優れる。
 アミノ基のモル数は、以下の方法で測定される。
 測定対象である水分散物から、特定粒子及び水以外の成分を取り除き、特定粒子を含む水分散物を準備する。
 準備した水分散物50gに対し、回転数80000rpm(revolutions per minuteの略)、40分の条件で遠心分離を施す。
 遠心分離によって生じた上澄み液を除去し、沈殿物(特定粒子)を回収する。
 容器1に、回収した特定粒子を約0.5g秤量し、秤量値W1(g)を記録する。次いで、酢酸60mLを添加し、秤量した特定粒子を希釈することにより中和度測定用試料1を得る。
 得られた中和度測定用試料1に対し、滴定液として0.1N(=0.1mol/L)過塩素酸酢酸溶液を用いて滴定を行い、当量点までに要した滴定液量をF1(mL)として記録する。さらに、滴定を続け、第二の当量点までに要した滴定液量をF2(mL)として記録する。
 ここで、「F1(mL)」は、強塩基で中和された酸基のモル数、「(F2-F1)(mL)」は、弱塩基であるアミノ基のモル数に相当する。
(C=C価)
 特定粒子が有する重合性基は、形成される膜の耐擦過性をより向上させる観点から、エチレン性二重結合を含むことが好ましい。
 特定粒子1g中のエチレン性二重結合のミリモル数を特定粒子のC=C価とした場合に、特定粒子のC=C価は、形成される膜の耐擦過性をより向上させる観点から、0.30mmol/g以上が好ましく、1.0mmol/g以上がより好ましく、2.0mmol/g以上がさらに好ましい。
 一方、分散安定性の観点から、特定粒子のC=C価は、6.0mmol/g以下が好ましく、5.0mmol/g以下がより好ましく、4.0mmol/g以下がさらに好ましい。
 本開示の水分散物において、特定粒子の全固形分量は、水分散物の全固形分量に対して50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましく、85質量%以上であることが最も好ましい。
 これにより、形成される膜の耐擦過性がより向上する。
 本開示の水分散物において、特定粒子の全固形分量は、水分散物の全量に対して、1質量%~50質量%であることが好ましく、3質量%~40質量%であることがより好ましく、5質量%~30質量%であることが更に好ましい。
 特定粒子の全固形分量が水分散物の全量に対して1質量%以上であると、形成される膜の耐擦過性がより向上する。
 また、特定粒子の全固形分量が水分散物の全量に対して50質量%以下であると、特定粒子の分散安定性がより向上する。
 本開示において、特定粒子の全固形分量とは、特定粒子から溶媒(即ち、水及び有機溶剤)を除いた全量を意味する。特定粒子が溶媒を含まない場合は、特定粒子の全固形分量は、特定粒子の全量と一致する。
 水分散物中における特定粒子の体積平均分散粒子径は特に制限はないが、分散安定性の観点から、0.01μm~10μmであることが好ましく、0.01μm~5μmであることがより好ましく、0.05μm~1μmであることが更に好ましく、0.05μm~0.5μmが特に好ましく、0.05μm~0.3μmが最も好ましい。
 本開示中において、「体積平均分散粒子径」は、光散乱法によって測定された値を指す。光散乱法による特定粒子の体積平均分散粒子径の測定は、例えば、LA-960((株)堀場製作所)を用いて行う。
<樹脂>
 水分散物に含まれる特定粒子は、少なくとも1種の樹脂を含む。
 樹脂としては、例えば、ウレタンポリマー、ウレタンウレアポリマー、ウレアポリマー、アクリルポリマー、ポリエステル、ポリオレフィン、ポリスチレン、ポリカーボネート、及びポリアミドが挙げられる。
 ここで、ウレタンポリマーとは、ウレタン結合を含み、かつ、ウレア結合を含まないポリマーを意味し、ウレアポリマーとは、ウレア結合を含み、かつ、ウレタン結合を含まないポリマーを意味し、ウレタンウレアポリマーとは、ウレタン結合とウレア結合とを含むポリマーを意味する。
 また、アクリルポリマーとは、アクリル酸、アクリル酸の誘導体(例えば、アクリル酸エステル等)、メタクリル酸、及びメタクリル酸の誘導体(例えば、メタクリル酸エステル等)からなる群から選択される少なくとも1種を含む原料モノマーの重合体(単独重合体又は共重合体)を意味する。
 樹脂は、ウレタン結合及びウレア結合の少なくとも一方である結合Uを含むことが好ましい。言い換えれば、樹脂は、ウレタンポリマー、ウレタンウレアポリマー、又はウレアポリマーであることが好ましい。
 樹脂が結合Uを含む場合には、基材に着弾した水分散物中において、結合U同士の相互作用(例えば、水素結合)により、特定粒子同士が相互作用しやすい。このため、特定粒子間での硬化がより進行しやすくなるので、形成される膜の耐擦過性がより向上する。
 結合Uは、ウレタン結合を含むことが好ましい。
 言い換えれば、樹脂は、ウレタン結合を含み、かつ、ウレア結合を含まないか、又は、ウレタン結合及びウレア結合を含むことが好ましい。
(重合性基)
 本開示の水分散物に含まれる特定粒子は、重合性基を有する。特定粒子が有する重合性基は、重合性基を有する樹脂の重合性基であってもよい。すなわち、特定粒子に含まれる樹脂は、重合性基を有していてもよい。後述するように、特定粒子が重合性モノマーを含む場合には、樹脂は、重合性基を有していなくてもよい。したがって、樹脂は、必ずしも、重合性基を有している必要はない。
 ただし、形成される膜の耐擦過性を向上させる観点から、樹脂は、重合性基を有することが好ましい。
 樹脂は、重合性基を1種のみ含有していてもよいし、2種以上含有していてもよい。
 樹脂が重合性基を含むことは、例えば、フーリエ変換赤外線分光測定(FT-IR)分析によって確認することができる。
 樹脂に含まれ得る重合性基は、光重合性基であることが好ましく、光ラジカル重合性基であることがより好ましい。
 光ラジカル重合性基は、(メタ)アクリロイル基、アリル基、スチリル基、又はビニル基であることが好ましく、ラジカル重合反応性及び形成される膜の硬度の観点から、(メタ)アクリロイル基であることがより好ましい。
 中でも、樹脂に含まれ得る重合性基は、エチレン性二重結合を含むことが好ましい。
 1gの樹脂中のエチレン性二重結合のミリモル数を樹脂のC=C価とした場合、樹脂のC=C価は、形成される膜の硬度をより向上させる観点から、0.05mmol以上が好ましく、0.10mmol/g以上であることがより好ましく、0.30mmol/g以上であることがさらに好ましく、0.50mmol/g以上であることが特に好ましい。
 一方、分散安定性の観点から、樹脂のC=C価は、3.00mmol/g以下が好ましく、2.50mmol/g以下がより好ましく、2.00mmol/g以下がさらに好ましく、1.50mmol/g以下が特に好ましい。
 樹脂は、鎖状ポリマーであってもよいし、架橋ポリマーであってもよい。
 本開示において、鎖状ポリマーとは、架橋構造を有しないポリマーを意味し、架橋ポリマーとは、架橋構造を有するポリマーを意味する。
 鎖状ポリマーは、環状構造を有していてもよいし、分岐構造を有していてもよい。
 鎖状ポリマーを含む特定粒子については、例えば、特許第6584677号公報を参照できる。
 樹脂が架橋ポリマーである場合の特定粒子の好ましい態様として、架橋ポリマーであるポリマーPからなるシェルと、重合性モノマーを含むコアと、を含むマイクロカプセルが挙げられる。
 架橋ポリマーを含む特定粒子については、例えば、特許第6510681号公報を参照できる。
 樹脂は、吐出性の観点から、架橋構造を有しない鎖状のポリマーであることが好ましい。
 中でも、樹脂は、イソシアネート化合物に由来する構造単位と、活性水素基を含む化合物に由来する構造単位と、を含むことが好ましい。
 上記好ましい態様の樹脂は、イソシアネート化合物のイソシアネート基と、活性水素基を含む化合物の活性水素基と、の反応によって形成された結合Uを含む。
 活性水素基として、好ましくは、ヒドロキシ基、1級アミノ基、又は2級アミノ基である。
 例えば、イソシアネート基とヒドロキシ基との反応により、ウレタン基が形成される。
 また、イソシアネート基と、1級アミノ基又は2級アミノ基と、の反応により、ウレア基が形成される。
 上記好ましい構造を有する樹脂の原料となるイソシアネート化合物及び活性水素基を含む化合物を、以下、原料化合物と称することがある。
 原料化合物としてのイソシアネート化合物は、1種のみであってもよいし2種以上であってもよい。
 原料化合物としての活性水素基を含む化合物は、1種のみであってもよいし2種以上であってもよい。
 原料化合物としてのイソシアネート化合物のうちの少なくとも1種として、2官能以上のイソシアネート化合物が好ましい。
 原料化合物としての活性水素基を含む化合物の少なくとも1種として、活性水素基を2つ以上含む化合物が好ましい。
 原料化合物のうち、イソシアネート化合物及び活性水素基を含む化合物の少なくとも一方は、アニオン性基を含むことが好ましい。これにより、アニオン性基を含む樹脂を製造し易い。この場合、最終的に得られる樹脂におけるアニオン性基のうちの少なくとも一部の基は、原料化合物におけるアニオン性基が中和された基であってもよい。
 より好ましい態様は、原料化合物のうち、活性水素基を含む化合物の少なくとも1種が、活性水素基及びアニオン性基を含む化合物である態様である。
 樹脂が重合性基を含む場合、原料化合物のうち、イソシアネート化合物及び活性水素基を含む化合物の少なくとも一方は、重合性基を含むことが好ましい。これにより、重合性基を含む樹脂を製造し易い。
 より好ましい態様は、原料化合物のうち、活性水素基を含む化合物の少なくとも1種が、活性水素基及び重合性基を含む化合物である態様である。
 樹脂が鎖状ポリマーである場合には、樹脂は、例えば、2官能のイソシアネート化合物と、2つの活性水素基を含む化合物と、を反応させることによって製造され得る。
 樹脂が架橋ポリマーである場合には、樹脂は、例えば、3官能以上のイソシアネート化合物と、2つ以上の活性水素基を含む化合物と、を反応させることによって製造され得る。
 樹脂が架橋ポリマーである場合には、樹脂は、例えば、2官能のイソシアネート化合物と、3つ以上の活性水素基を含む化合物と、を反応させることによっても製造され得る。
 以下、好ましい原料化合物について説明する。
 イソシアネート化合物として、好ましくは2官能以上のイソシアネート化合物であり、より好ましくは2官能~6官能のイソシアネート化合物である。
 原料化合物として2官能のイソシアネート化合物を用いた場合の樹脂は、2官能のイソシアネート化合物に由来する構造単位である、下記構造単位(P1)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
 構造単位(P1)中、Lは、炭素数1~20の2価の有機基を表し、*は、結合位置を表す。
 Lの具体例としては、以下の具体例にかかる2官能のイソシアネート化合物から、2つのイソシアネート基(NCO基)を除いた残基が挙げられる。
 2官能のイソシアネート化合物の具体例は以下のとおりである。ただし、2官能のイソシアネート化合物は、以下の具体例には限定されない。
Figure JPOXMLDOC01-appb-C000002
 また、2官能のイソシアネート化合物としては、上記具体例から誘導される2官能のイソシアネート化合物も使用することができる。例えば、デュラネート(登録商標)D101、D201、A101(旭化成株式会社製)などが挙げられる。
 また、3官能以上のイソシアネート化合物は、2官能のイソシアネート化合物からなる群から選択される少なくとも1種と、3つ以上の活性水素基を含む化合物(例えば、3官能以上のポリオール化合物、3官能以上のポリアミン化合物、及び3官能以上のポリチオール化合物)からなる群から選択される少なくとも1種と、の反応生成物であることが好ましい。
 3つ以上の活性水素基を含む化合物と反応させる2官能のイソシアネート化合物のモル数(分子数)は、3つ以上の活性水素基を含む化合物における活性水素基のモル数(活性水素基の当量数)に対し、0.6倍以上が好ましく、0.6倍~5倍がより好ましく、0.6倍~3倍がさらに好ましく、0.8倍~2倍がさらに好ましい。
 3官能以上のイソシアネート化合物を形成するための2官能のイソシアネート化合物としては、上述した具体例にかかる2官能のイソシアネート化合物が挙げられる。
 3官能以上のイソシアネート化合物を形成するための、3つ以上の活性水素基を含む化合物としては、国際公開第2016/052053号の段落0057~0058に記載の化合物が挙げられる。
 3官能以上のイソシアネート化合物としては、アダクト型の3官能以上のイソシアネート化合物、イソシアヌレート型の3官能以上のイソシアネート化合物、及びビウレット型の3官能以上のイソシアネート化合物が挙げられる。
 アダクト型の3官能以上のイソシアネート化合物の市販品としては、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、P49-75S、D-110N、D-120N、D-140N、D-160N(以上、三井化学(株))、デスモジュール(登録商標)L75、UL57SP(住化バイエルウレタン(株))、コロネート(登録商標)HL、HX、L(日本ウレタンポリマー(株))、P301-75E(旭化成(株))等が挙げられる。
 イソシアヌレート型の3官能以上のイソシアネート化合物の市販品としては、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N(以上、三井化学(株))、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(以上、住化バイエルウレタン(株))、コロネート(登録商標)HX、HK(以上、日本ウレタンポリマー(株))、デュラネート(登録商標)TPA-100、TKA-100、TSA-100、TSS-100、TLA-100、TSE-100(以上、旭化成(株))等が挙げられる。
 ビウレット型の3官能以上のイソシアネート化合物の市販品としては、タケネート(登録商標)D-165N、NP1100(以上、三井化学(株))、デスモジュール(登録商標)N3200(住化バイエルウレタン(株))、デュラネート(登録商標)24A-100(旭化成(株))等が挙げられる。
 原料化合物としてのイソシアネート化合物のうちの少なくとも1種は、アニオン性基を含むイソシアネート化合物であってもよい。アニオン性基を含むイソシアネート化合物については、国際公開第2016/052053号の段落0112~0118及び段落0252~0254を参照できる。
 原料化合物としてのイソシアネート化合物のうちの少なくとも1種は、重合性基を含むイソシアネート化合物であってもよい。重合性基を含むイソシアネート化合物については、国際公開第2016/052053号の段落0084~0089、0203、及び0205を参照できる。
 活性水素基を含む化合物として、好ましくは、2つ以上の活性水素基を含む化合物である。
 2つ以上の活性水素基を含む化合物として、より好ましくは、ポリオール化合物(即ち、ヒドロキシ基を2つ以上有する化合物)又はポリアミン化合物(即ち、アミノ基を2つ以上有する化合物)である。
 原料化合物として活性水素基及びアニオン性基を含む化合物を用いた場合のポリマーPは、好ましくは、下記構造単位(P0)を少なくとも1種含む。
Figure JPOXMLDOC01-appb-C000003
 構造単位(P0)中、
は、2価の有機基を表し、
*は、結合位置を表し、
及びYは、それぞれ独立に、酸素原子、硫黄原子、又は-NR-基を表し、
は、水素原子又は炭素数1~10の炭化水素基を表し、
*は、結合位置を表す。
 構造単位(P0)中、Lで表される2価の有機基は、炭素原子及び水素原子からなる基であってもよいし、炭素原子及び水素原子を含み、かつ、ヘテロ原子(例えば、酸素原子、窒素原子、硫黄原子等)を含む基であってもよい。
 Lの具体例としては、後述する2つ以上の活性水素基を含む化合物の具体例から、2つの活性水素基を除いた残基が挙げられる。
 Rとしては、水素原子又は炭素数1~6の炭化水素基が好ましく、水素原子又は炭素数1~3の炭化水素基がより好ましい。
 Y及びYは、それぞれ独立に、酸素原子又は-NR-基であることが好ましく、酸素原子であることがより好ましい。
 以下、活性水素基を含む化合物としてのジオール化合物の具体例を示すが、活性水素基を含む化合物は以下の具体例には限定されない。
Figure JPOXMLDOC01-appb-C000004
 化合物(12)~(15)中、nC15、nC19、nC1123、及びnC1735は、それぞれ、ノルマルヘプチル基、ノルマルノニル基、ノルマルウンデシル基、ノルマルヘプタデシル基を表す。
 化合物(16)PPGは、ポリプロピレングリコールであり、nは、繰り返し数である。
 化合物(16-2)PEGは、ポリエチレングリコールであり、nは、繰り返し数である。
 化合物(17)PEsは、ポリエステルジオールであり、nは、繰り返し数であり、Ra及び2個のRbは、それぞれ独立に、炭素数2~25の2価の炭化水素基である。化合物(17)PEs中のn個のRaは、同一であっても異なっていてもよい。化合物(17)PEs中の(n+1)個のRbは、同一であっても異なっていてもよい。
 化合物(18)PCDは、ポリカーボネートジオールであり、nは、繰り返し数であり、(n+1)個のRcは、それぞれ独立に、炭素数2~12(好ましくは3~8、より好ましくは3~6)のアルキレン基である。化合物(18)PC中の(n+1)個のRcは、同一であっての異なっていてもよい。
 化合物(19)PCLは、ポリカプロラクトンジオールであり、n及びmは、それぞれ繰り返し数であり、Rdは、炭素数2~25のアルキレン基である。
 中でも、活性水素基を含む化合物は、樹脂のガラス転移温度を低下させる観点から、化合物(11)~(19)であることが好ましい。
 樹脂が重合性基を有する場合に、活性水素基を含む化合物としては、活性水素基及び重合性基を含む化合物も挙げられる。
 活性水素基及び重合性基を含む化合物は、樹脂に重合性基を導入するための化合物として好適である。
 以下、活性水素基及び重合性基を含む化合物としてのジオール化合物の具体例を示すが、活性水素基及び重合性基を含む化合物は以下の具体例には限定されない。
Figure JPOXMLDOC01-appb-C000005
 活性水素基及び重合性基を含む化合物については、国際公開第2016/052053号の段落0075~0089の記載を適宜参照してもよい。
 活性水素基を含む化合物としては、活性水素基及びアニオン性基を含む化合物も挙げられる。
 活性水素基及びアニオン性基を含む化合物は、樹脂にアニオン性基を導入するための化合物として好適である。
 原料化合物として活性水素基及びアニオン性基を含む化合物を用いた場合の樹脂は、好ましくは、下記構造単位(P2)を含む。
Figure JPOXMLDOC01-appb-C000006
 構造単位(P2)中、
21は、炭素数1~20の3価の有機基を表し、
22は、単結合又は炭素数1~20の2価の有機基を表し、
は、カルボキシ基、カルボキシ基の塩、スルホ基、又はスルホ基の塩を表し、
*は、結合位置を表す。
 L21で表される炭素数1~20の3価の有機基における炭素数は、2~20が好ましく、3~20がより好ましく、4~20がさらに好ましい。
 L21で表される3価の有機基としては、3価の炭化水素基、又は、3価の炭化水素基中の少なくとも1つの炭素原子をヘテロ原子(好ましくは、酸素原子、硫黄原子、又は窒素原子)で置き換えた基が好ましい。
 L22で表される炭素数1~20の2価の有機基における炭素数は、1~10が好ましく、1~6がより好ましい。
 L22で表される2価の有機基としては、2価の炭化水素基(好ましくはアルキレン基)、又は、2価の炭化水素基(好ましくはアルキレン基)中の少なくとも1つの炭素原子を、酸素原子又は硫黄原子(好ましくは酸素原子)で置き換えた基が好ましい。
 L22は、単結合であってもよい。
 以下、活性水素基及びアニオン性基を含む化合物の具体例を示すが、活性水素基及びアニオン性基を含む化合物は以下の具体例には限定されない。以下の具体例中のカルボキシ基及びスルホ基は、それぞれ、中和されていてもよい(即ち、カルボキシ基の塩及びスルホ基の塩であってもよい)。
Figure JPOXMLDOC01-appb-C000007
 活性水素基及びアニオン性基を含む化合物については、国際公開第2016/052053号の段落0112~0118及び段落0252~0254の記載を適宜参照できる。
(アミノ基A)
 特定粒子に含まれる樹脂は、α位の炭素原子に水素原子を有するアミノ基Aを有していてもよい。樹脂がアミノ基Aを有すると、酸素による重合阻害が抑制され、重合性基を有する粒子の重合が効率良く進行するため、マイグレーションが抑制され、かつ、形成される膜の耐擦過性に優れると考えられる。
 樹脂は、水分散物の分散安定性(即ち、特定粒子の分散安定性)の観点から、重量平均分子量(Mw)が5000以上であることが好ましく、7000以上であることがより好ましく、8000以上であることがさらに好ましい。
 Mwの上限値は特に限定されないが、例えば、150000、100000、70000、又は50000が挙げられる。
 本開示において、数平均分子量及び重量平均分子量は、ゲル透過クロマトグラフ(GPC)を用いて測定される。例えば、GPCとして、HLC-8220GPC(東ソー社製)を用い、カラムとして、TSKgel、Super Multipore HZ-H(東ソー社製、4.6mmID×15cm)を3本用い、溶離液としてTHF(テトラヒドロフラン)を用いる。条件は、試料濃度を0.45質量%、流速を0.35mL/min、サンプル注入量を10μL、測定温度を40℃とし、示差屈折率(RI)検出器を用いて検出する。検量線は、標準試料として、東ソー社製の製品名「TSK標準ポリスチレン」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」及び「n-プロピルベンゼン」の8サンプルを用いて作製する。
 樹脂は、ガラス転移温度が90℃以下であることが好ましく、70℃以下であることがより好ましい。ガラス転移温度の下限値は特に限定されず、例えば、-50℃である。
 樹脂のガラス転移温度が90℃以下であると、樹脂の運動性が向上することで、重合反応の反応率が向上する。また、特定粒子が重合性モノマーを含む場合に、樹脂のガラス転移温度が90℃以下であると、重合性モノマーの運動性が向上し、重合反応の反応率が向上する。その結果、マイグレーションが抑制される。
 樹脂のガラス転移温度(Tg)は、示差走査熱量測定(DSC)を用いて測定された値を意味する。
 ガラス転移温度の具体的な測定は、JIS K 7121(1987年)又はJIS K 6240(2011年)に記載の方法に順じて行う。
 本開示におけるガラス転移温度は、補外ガラス転移開始温度(Tig)である。
 ガラス転移温度は、以下の方法で測定される。
 ガラス転移温度を求める場合、予想される樹脂のガラス転移温度より約50℃低い温度にて装置が安定するまで保持した後、加熱速度:20℃/分で、ガラス転移が終了した温度よりも約30℃高い温度まで加熱し、示差熱分析(DTA)曲線又はDSC曲線を作成する。
 補外ガラス転移開始温度(Tig)は、DTA曲線又はDSC曲線における低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になる点で引いた接線との交点の温度として求める。
 水分散物が樹脂を2種以上含む場合には、樹脂のガラス転移温度(Tg)は、個々の樹脂のガラス転移温度の加重平均値を意味する。
 樹脂の含有量は、分散安定性の観点から、特定粒子の全固形分量に対して、20質量%~95質量%が好ましく、30質量%~90質量%がより好ましく、40質量%~85質量%がさらに好ましい。
<光ラジカル発生剤>
 水分散物に含まれる特定粒子は、少なくとも1種の光ラジカル発生剤を含む。
 光ラジカル発生剤は、光の照射によってラジカルが発生する化合物である。
 光ラジカル発生剤としては、例えば、分子内開裂を生じる分子内開裂型光重合開始剤(単に、「開裂型光重合開始剤」という場合もある)、及び分子内の水素が引き抜かれる分子内水素引き抜き型光重合開始剤(単に、「水素引き抜き型光重合開始剤」という場合もある。)が挙げられる。
 分子内開裂型光重合開始剤としては、例えば、アルキルフェノン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、及びオキシムエステル系光重合開始剤が挙げられる。中でも、分子内開裂型光重合開始剤は、アシルホスフィンオキシド系光重合開始剤であることが好ましい。
 アシルホスフィンオキシド化合物としては、モノアシルホスフィンオキシド化合物及びビスアシルホスフィンオキシド化合物が挙げられ、ビスアシルホスフィンオキシド化合物が好ましい。
 モノアシルホスフィンオキシド化合物としては、例えば、イソブチリルジフェニルホスフィンオキシド、2-エチルヘキサノイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド、o-トルイルジフェニルホスフィンオキシド、p-t-ブチルベンゾイルジフェニルホスフィンオキシド、3-ピリジルカルボニルジフェニルホスフィンオキシド、アクリロイルジフェニルホスフィンオキシド、ベンゾイルジフェニルホスフィンオキシド、ピバロイルフェニルホスフィン酸ビニルエステル、アジポイルビスジフェニルホスフィンオキシド、ピバロイルジフェニルホスフィンオキシド、p-トルイルジフェニルホスフィンオキシド、4-(t-ブチル)ベンゾイルジフェニルホスフィンオキシド、テレフタロイルビスジフェニルホスフィンオキシド、2-メチルベンゾイルジフェニルホスフィンオキシド、バーサトイルジフェニルホスフィンオキシド、2-メチル-2-エチルヘキサノイルジフェニルホスフィンオキシド、1-メチル-シクロヘキサノイルジフェニルホスフィンオキシド、ピバロイルフェニルホスフィン酸メチルエステル及びピバロイルフェニルホスフィン酸イソプロピルエステルが挙げられる。
 ビスアシルホスフィンオキシド化合物としては、例えば、ビス(2,6-ジクロロベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-エトキシフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-2-ナフチルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-クロロフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-2,4-ジメトキシフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)デシルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-オクチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジクロロ-3,4,5-トリメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジクロロ-3,4,5-トリメトキシベンゾイル)-4-エトキシフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-4-エトキシフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-2-ナフチルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-4-プロピルフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2-メトキシ-1-ナフトイル)-4-エトキシフェニルホスフィンオキシド、ビス(2-クロロ-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキシド及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシドが挙げられる。
 中でも、アシルホスフィンオキシド化合物は、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(製品名「Omnirad 819」、IGM Resins B.V.社製)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(製品名「Omnirad TPO H」、IGM Resins B.V.社製)又は(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド(製品名「Omnirad TPO-L」、IGM Resins B.V.社製)が好ましい。
 分子内引き抜き型光重合開始剤としては、例えば、チオキサントン化合物が挙げられる。
 チオキサントン化合物としては、チオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-ドデシルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン、3-(2-メトキシエトキシカルボニル)チオキサントン、4-ブトキシカルボニルチオキサントン、3-ブトキシカルボニル-7-メチルチオキサントン、1-シアノ-3-クロロチオキサントン、1-エトキシカルボニル-3-クロロチオキサントン、1-エトキシカルボニル-3-エトキシチオキサントン、1-エトキシカルボニル-3-アミノチオキサントン、1-エトキシカルボニル-3-フェニルスルフリルチオキサントン、3,4-ジ[2-(2-メトキシエトキシ)エトキシカルボニル]チオキサントン、1-エトキシカルボニル-3-(1-メチル-1-モルホリノエチル)チオキサントン、2-メチル-6-ジメトキシメチルチオキサントン、2-メチル-6-(1,1-ジメトキシベンジル)チオキサントン、2-モルホリノメチルチオキサントン、2-メチル-6-モルホリノメチルチオキサントン、n-アリルチオキサントン-3,4-ジカルボキシイミド、n-オクチルチオキサントン-3,4-ジカルボキシイミド、N-(1,1,3,3-テトラメチルブチル)チオキサントン-3,4-ジカルボキシイミド、1-フェノキシチオキサントン、6-エトキシカルボニル-2-メトキシチオキサントン、6-エトキシカルボニル-2-メチルチオキサントン、チオキサントン-2-ポリエチレングリコールエステル、及び2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロリドが挙げられる。
 チオキサントン化合物は、市販品であってもよい。市販品としては、Lambson社製のSPEEDCUREシリーズ(例:SPEEDCURE 7010、SPEEDCURE CPTX、SPEEDCURE ITX等)が挙げられる。
 分子内水素引き抜き型光重合開始剤は、数平均分子量が1000以上であることが好ましい。数平均分子量の上限値は特に限定されず、例えば、3000である。数平均分子量が1000以上であると、形成される膜から染み出しにくく、マイグレーションが抑制される。
 マイグレーションを抑制する観点から、光ラジカル発生剤は、分子内開裂型光重合開始剤と分子内水素引き抜き型光重合開始剤の両方を含むことが好ましい。光ラジカル発生剤において、分子内開裂型光重合開始剤と分子内水素引き抜き型光重合開始剤との質量比率(分子内開裂型光重合開始剤:分子内水素引き抜き型光重合開始剤)は、50:50~95:5であることが好ましく、70:30~90:10であることがより好ましい。
 本開示の水分散物において、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、4mol%以上である。エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合が4mol%以上であると、ラジカルの発生量が多く、架橋密度が向上することにより、マイグレーションが抑制され、かつ、形成される膜の耐擦過性に優れる。
 マイグレーションをより抑制し、かつ、形成される膜の耐擦過性をより向上させる観点から、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、5mol%~40mol%であることが好ましく、7mol%~30mol%であることがより好ましい。エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合が40mol%以下であると、重合度が高く、架橋密度が向上することにより、マイグレーションが抑制され、かつ、形成される膜の耐擦過性に優れる。
 本開示の水分散物において、粒子中、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合は、5mol%以下である。光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合が5mol%以下であることは、粒子内で固体状態の光ラジカル発生剤の割合が少ないことを意味する。上記割合の下限値は特に限定されず、上記割合は、0mol%であることが好ましい。すなわち、光ラジカル発生剤は、粒子内で全て液体として存在することが好ましい。
 「粒子中、光ラジカル発生剤が固体として存在する」ということは、光ラジカル発生剤が、粒子に含まれる液体に溶解しない状態を意味する。したがって、光ラジカル発生剤が粒子内で固体として存在する割合を低下させるためには、粒子に含まれる液体として、ラジカル発生剤を溶解させやすい液体を選択することが好ましい。また、光ラジカル発生剤として、25℃で液体の光ラジカル発生剤を選択することが好ましい。
 光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合は、以下の方法で算出することができる。
 特定粒子に含まれる、光ラジカル発生剤の量と、液体の量と、を測定し、光ラジカル発生剤と液体との質量比を算出する。25℃の条件下で、光ラジカル発生剤と液体とを、算出された質量比率で混合し、撹拌する。液体中で溶解しない光ラジカル発生剤の量を測定する。液体と混合させた光ラジカル発生剤の全モル数に対する、液体中で溶解しない光ラジカル発生剤のモル数の割合を算出する。
 光ラジカル発生剤の含有量は、分散安定性の観点から、特定粒子の全固形分量に対して、4質量%~30質量%が好ましく、5質量%~25質量%がより好ましく、6質量%~20質量%がさらに好ましい。
-樹脂と光ラジカル発生剤とのHSP距離-
 本開示の水分散物において、樹脂と光ラジカル発生剤とのHSP距離は、5.5MPa1/2以下であることが好ましく、4.5MPa1/2以下であることがより好ましい。上記HSP距離の下限値は特に限定されず、例えば、0.1MPa1/2である。
 上記HSP距離が5.5MPa1/2以下であると、樹脂と光ラジカル発生剤との相溶性が高く、保存安定性に優れる。
 HSP距離は、具体的には、下記数式(X1)によって求められる値である。
 HSP距離=Σ(ΔHSP(R-P)×m×m) … 数式(X1)
 数式(X1)において、
 k及びiは、それぞれ独立に、1以上の整数を表し、
 mは、水分散物に含有される光ラジカル発生剤の全量に対するk種類目の光ラジカル発生剤の質量分率(即ち、0超1未満の値)を表し、
 mは、水分散物に含有される樹脂の全量に対するi種類目の樹脂の質量分率を(即ち、0超1未満の値)表し、
 ΔHSP(R-P)は、k種類目の光ラジカル発生剤とi種類目の樹脂とのHSP距離を表す。
 HSP距離は、比較したい2種類の物質(以下、物質1及び物質2とする)の相溶性に相関がある値である。HSP距離が小さい程、物質1と物質2との相溶性が高い。
 HSP距離は、物質1及び物質2のそれぞれのδD(分散項)(以下、δD及びδDとする)、δP(分極項)(以下、δP及びδPとする)、及びδH(水素結合項)(以下、δH及びδHとする)を、下記数式(A)に当てはめることによって算出される。
 ここで、δD(分散項)、δP(分極項)、及びδH(水素結合項)は、HSP(即ち、ハンセン溶解度パラメータ)を構成する3つのパラメーターである。
 例えば、ΔHSP(R-P)は、k種類目の光ラジカル発生剤の分散項をδD、k種類目の光ラジカル発生剤の分極項をδP、k種類目の光ラジカル発生剤の水素結合項をδHとし、i種類目の樹脂の分散項をδD、i種類目の樹脂の分極項をδP、i種類目の樹脂の水素結合項をδHとして、下記数式(A)に当てはめることによって算出される。
Figure JPOXMLDOC01-appb-M000008
 i種類目の樹脂における分散項(以下、「δD(樹脂i)」とする)、分極項(以下、「δP(樹脂i)」とする)、及び水素結合項(以下、「δH(樹脂i)」とする)は、Journal of Applied Polymer Science, 12, p.2359(1968)に記載された、K.W.SUH及びJ.M.CORBETTの方法に基づいて決定する。
 詳細には、δD(樹脂i)、δP(樹脂i)、及びδH(樹脂i)は、以下の方法で決定する。
 試料(即ち、樹脂i)500mgを、テトラヒドロフラン(THF)10mLに完全に溶解させ、得られた溶液に脱イオン水を、溶液が濁るまで滴下する。溶液が濁った時点の体積分率〔脱イオン水/(脱イオン水+THF)〕を、Vwとする。
 試料(即ち、樹脂i)500mgを、テトラヒドロフラン(THF)10mLに完全に溶解させ、得られた溶液にヘキサンを、溶液が濁るまで滴下する。溶液が濁った時点の体積分率〔ヘキサン/(ヘキサン+THF)〕を、Vhとする。
 得られたVw及びVhを用い、下記数式(D1)、(P1)、及び(H1)により、δD(樹脂i)、δP(樹脂i)、及びδH(樹脂i)をそれぞれ決定する。
 δD(樹脂i)
=〔Vw1/2×δD(W/T)+Vh1/2×δD(H/T)〕/〔Vw1/2+Vh1/2〕… 数式(D1)
 δP(樹脂i)
=〔Vw1/2×δP(W/T)+Vh1/2×δP(H/T)〕/〔Vw1/2+Vh1/2〕… 数式(P1)
 δH(樹脂i)
=〔Vw1/2×δH(W/T)+Vh1/2×δH(H/T)〕/〔Vw1/2+Vh1/2〕… 数式(H1)
 数式(D1)中、以下のパラメータは、それぞれ、下記数式によって求められた値である。
 δD(W/T)
=δD(THF)×(1-Vw)+δD(water)×Vw
 δD(H/T)
=δD(THF)×(1-Vh)+δD(hexane)×Vh
 δP(W/T)
=δP(THF)×(1-Vw)+δP(water)×Vw
 δP(H/T)
=δP(THF)×(1-Vh)+δP(hexane)×Vh
 δH(W/T)
=δH(THF)×(1-Vw)+δH(water)×Vw
 δH(H/T)
=δH(THF)×(1-Vh)+δH(hexane)×Vh
 上述の数式において、以下のパラメータとしては、以下の数値を用いる。
δD(THF)   =16.8
δD(water) =15.5
δD(hexane)=14.9
δP(THF)   =5.7
δP(water) =16
δP(hexane)=0
δH(THF)   =8
δH(water) =42.3
δH(hexane)=0
 ラジカル発生剤における分散項、分極項、及び水素結合項は、樹脂における分散項、分極項、及び水素結合項の算出方法と同様の方法で、算出される。
 水分散物に含まれる特定粒子は、樹脂及び光ラジカル発生剤以外の成分を含んでいてもよい。
<重合性モノマー>
 特定粒子は、重合性モノマーを少なくとも1種含むことが好ましい。
 本開示において、「重合性モノマー」とは、重合性基を有し、かつ、アミノ基Aを有しないモノマーを意味し、アミノ基Aを有する化合物とは区別される。
 重合性モノマーは、基材上に付与された水分散物が硬化する際、特定粒子同士を連結させ、形成される膜の耐擦過性を向上させることに寄与する。
 特定粒子に含まれる重合性モノマーとしては、国際公開第2016/052053号の段落0097~0105に記載された化合物を用いてもよい。
 特定粒子に含まれ得る重合性モノマーは、光重合性モノマーであることが好ましく、光ラジカル重合性モノマーであることがより好ましい。
 光重合性モノマーは、光の照射によって重合する性質を有する化合物である。
 重合性モノマーの分子量は、好ましくは100~4000であり、さらに好ましくは100~2000であり、さらに好ましくは100~1000であり、さらに好ましくは100~900であり、さらに好ましくは100~800であり、特に好ましくは150~750である。
 重合性モノマーの分子量は、重合性モノマーを構成する元素の種類及び数に基づいて算出することができる。
 重合性モノマーが有する重合性基の好ましい態様は、上記樹脂が含み得る重合性基の好ましい態様と同様である。
 光重合性モノマーは、エチレン性二重結合を含む化合物であることが好ましい。
 光重合性モノマーとしては、アクリレート化合物、メタクリレート化合物、スチレン化合物、ビニルナフタレン化合物、N-ビニル複素環化合物、不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、及び不飽和ウレタンが挙げられる。
 アクリレート化合物としては、2-ヒドロキシエチルアクリレート、ブトキシエチルアクリレート、カルビトールアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、トリデシルアクリレート、2-フェノキシエチルアクリレート(PEA)、ビス(4-アクリロキシポリエトキシフェニル)プロパン、オリゴエステルアクリレート、エポキシアクリレート、イソボルニルアクリレート(IBOA)、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、環状トリメチロールプロパンフォルマルアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、2-(2-ビニロキシエトキシ)エチルアクリレート、オクチルアクリレート、デシルアクリレート、イソデシルアクリレート、ラウリルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、4-t-ブチルシクロヘキシルアクリレート、イソアミルアクリレート、ステアリルアクリレート、イソステアリルアクリレート、2-エチルヘキシルジグリコールアクリレート、2-ヒドロキシブチルアクリレート、2-アクリロイルオキシエチルヒドロフタル酸、エトキシジエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、メトキシプロピレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ビニルエーテルアクリレート、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシフタル酸、2-アクリロキシエチル-2-ヒドロキシエチルフタル酸、ラクトン変性アクリレート、アクリロイルモルホリン、アクリルアミド、置換アクリルアミド(例えば、N-メチロールアクリルアミド、及びジアセトンアクリルアミド)等の単官能のアクリレート化合物;
 ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート(HDDA)、1,9-ノナンジオールジアクリレート(NDDA)、1,10-デカンジオールジアクリレート(DDDA)、3-メチルペンタジオールジアクリレート(3MPDDA)、ネオペンチルグリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、ビスフェノールAエチレンオキシド(EO)付加物ジアクリレート、ビスフェノールAプロピレンオキシド(PO)付加物ジアクリレート、エトキシ化ビスフェノールAジアクリレート、ヒドロキシネオペンチルグリコールジアクリレート、プロポキシ化ネオペンチルグリコールジアクリレート、アルコキシ化ジメチロールトリシクロデカンジアクリレート、ポリテトラメチレングリコールジアクリレート、アルコキシ化シクロヘキサノンジメタノールジアクリレート、アルコキシ化ヘキサンジオールジアクリレート、ジオキサングリコールジアクリレート、シクロヘキサノンジメタノールジアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、テトラエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート(TPGDA)、ネオペンチルグリコールプロピレンオキシド付加物ジアクリレート等の2官能のアクリレート化合物;
 トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、グリセリンプロポキシトリアクリレート、エトキシ化ジペンタエリスリトールヘキサアクリレート、カプロラクタム変性ジペンタエリスリトールヘキサアクリレート、プロポキシ化グリセリントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート等の3官能以上のアクリレート化合物などが挙げられる。
 メタクリレート化合物としては、メチルメタクリレート、n-ブチルメタクリレート、アリルメタクリレート、グリシジルメタクリレート、ベンジルメタクリレート、ジメチルアミノメチルメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシトリエチレングリコールメタクリレート、ヒドロキシエチルメタクリレート、フェノキシエチルメタクリレート、シクロヘキシルメタクリレート等の単官能のメタクリレート化合物;
 ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン、テトラエチレングリコールジメタクリレート等の2官能のメタクリレート化合物などが挙げられる。
 スチレン化合物としては、スチレン、p-メチルスチレン、p-メトキシスチレン、β-メチルスチレン、p-メチル-β-メチルスチレン、α-メチルスチレン、p-メトキシ-β-メチルスチレン等が挙げられる。
 ビニルナフタレン化合物としては、1-ビニルナフタレン、メチル-1-ビニルナフタレン、β-メチル-1-ビニルナフタレン、4-メチル-1-ビニルナフタレン、4-メトキシ-1-ビニルナフタレン等が挙げられる。
 N-ビニル複素環化合物としては、N-ビニルカルバゾール、N-ビニルピロリドン、N-ビニルエチルアセトアミド、N-ビニルピロール、N-ビニルフェノチアジン、N-ビニルアセトアニリド、N-ビニルエチルアセトアミド、N-ビニルコハク酸イミド、N-ビニルフタルイミド、N-ビニルカプロラクタム、N-ビニルイミダゾール等が挙げられる。
 その他の重合性のモノマーとしては、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート、N-ビニルホルムアミド等のN-ビニルアミドが挙げられる。
 中でも、膜と基材との密着性をより向上させる観点から、特定粒子に含まれ得る重合性モノマーは、環状構造を有する重合性モノマーを含むことが好ましい。
 環状構造を有する単官能重合性モノマーとしては、2-フェノキシエチルアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、エトキシ化イソシアヌル酸トリアクリレート、及びε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレートが挙げられる。
 また、環状構造を有する2官能重合性モノマーとしては、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAエチレンオキシド(EO)付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキシド(PO)付加物ジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、アルコキシ化ジメチロールトリシクロデカンジ(メタ)アクリレート、アルコキシ化シクロヘキサノンジメタノールジ(メタ)アクリレート、及びシクロヘキサノンジメタノールジ(メタ)アクリレートが挙げられる。
 上記に挙げた重合性モノマーの他にも、山下晋三編、「架橋剤ハンドブック」、(1981年大成社);加藤清視編、「UV・EB硬化ハンドブック(原料編)」(1985年、高分子刊行会);ラドテック研究会編、「UV・EB硬化技術の応用と市場」、79頁、(1989年、シーエムシー);滝山栄一郎著、「ポリエステル樹脂ハンドブック」、(1988年、日刊工業新聞社)等に記載の市販品、並びに業界で公知のラジカル重合性モノマーを用いることができる。
 また、光重合性モノマーとしては、特開平7-159983号公報、特公平7-31399号公報、特開平8-224982号公報、特開平10-863号公報、特開平9-134011号公報、特表2004-514014号公報等の各公報に記載の光重合性組成物に用いられる光硬化性の重合性モノマーが知られており、これらも特定粒子に含まれ得る重合性モノマーとして適用することができる。
 光重合性モノマーとしては、上市されている市販品を用いてもよい。
 光重合性モノマーの市販品の例としては、AH-600(2官能)、AT-600(2官能)、UA-306H(6官能)、UA-306T(6官能)、UA-306I(6官能)、UA-510H(10官能)、UF-8001G(2官能)、DAUA-167(2官能)、ライトアクリレートNPA(2官能)、ライトアクリレート3EG-A(2官能)(以上、共栄社化学(株))、SR339A(PEA、単官能)、SR506(IBOA、単官能)、CD262(2官能)、SR238(HDDA、2官能)、SR341(3MPDDA、2官能)、SR508(2官能)、SR306H(2官能)、CD560(2官能)、SR833S(2官能)、SR444(3官能)、SR454(3官能)、SR492(3官能)、SR499(3官能)、CD501(3官能)、SR502(
3官能)、SR9020(3官能)、CD9021(3官能)、SR9035(3官能)、SR494(4官能)、SR399E(5官能)(以上、サートマー社)、A-NOD-N(NDDA、2官能)、A-DOD-N(DDDA、2官能)、A-200(2官能)、APG-400(2官能)、A-BPE-10(2官能)、A-BPE-20(2官能)、A-9300(3官能)、A-9300-1CL(3官能)、A-TMPT(3官能)、A-TMM-3L(3官能)、A-TMMT(4官能)、AD-TMP(4官能)(以上、新中村化学工業(株))、UV-7510B(3官能)(日本合成化学(株))、KAYARAD DPCA-30(6官能)、KAYARAD DPEA-12(6官能)(以上、日本化薬(株))等が挙げられる。
 その他、重合性モノマーとしては、NPGPODA(ネオペンチルグリコールプロピレンオキシド付加物ジアクリレート)、SR531、SR285、SR256(以上、サートマー社)、A-DHP(ジペンタエリスリトールヘキサアクリレート、新中村化学工業(株))、アロニックス(登録商標)M-156(東亞合成(株))、V-CAP(BASF社)、ビスコート#192(大阪有機化学工業(株))等の市販品を好適に用いることができる。
 重合性モノマーの含有量は、特定粒子の全固形分量に対して、5質量%~75質量%が好ましく、10質量%~65質量%がより好ましく、15質量%~55質量%がさらに好ましく、20質量%~50質量%が特に好ましい。
<アミノ基Aを有する化合物>
 特定粒子は、α位の炭素原子に水素原子を有するアミノ基Aを有する化合物を少なくとも1種含むことが好ましい。
 アミノ基Aを有する化合物は、分子量が1000以下であり、上記アミノ基Aを有する樹脂とは区別される。
 特定粒子にアミノ基Aを有する化合物が含まれていると、酸素による重合阻害が抑制され、重合性基を有する粒子の重合が効率良く進行するため、マイグレーションが抑制され、かつ、形成される膜の耐擦過性に優れる。
 粒子中、アミノ基Aを有する化合物の全モル数に対して、固体として存在するアミノ基を有する化合物のモル数の割合は5mol%以下であることが好ましい。上記割合の下限値は特に限定されず、上記割合は、0mol%であることが好ましい。すなわち、アミノ基Aを有する化合物は、粒子内で全て液体として存在することが好ましい。
 「粒子中、アミノ基Aを有する化合物が固体として存在する」ということは、アミノ基Aを有する化合物が、粒子に含まれる液体に溶解しない状態を意味する。したがって、アミノ基Aを有する化合物が粒子内で固体として存在する割合を低下させるためには、粒子に含まれる液体として、アミノ基Aを有する化合物を溶解させやすい液体を選択することが好ましい。また、アミノ基Aを有する化合物として、25℃で液体の化合物を選択することが好ましい。
 アミノ基Aを有する化合物の全モル数に対して、固体として存在するアミノ基を有する化合物のモル数の割合は、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合と同様の方法で算出することができる。
 アミノ基Aを有する化合物において、アミノ基Aの数は1~6であることが好ましく、1~3であることがより好ましく、1又は2であることがさらに好ましい。
 マイグレーションをより抑制する観点から、アミノ基Aを有する化合物は、さらに重合性基を有することが好ましく、(メタ)アクリロイル基を有することがより好ましい。
 アミノ基Aを有する化合物は、市販品であってもよい。
 市販品としては、例えば;
LA-52、LA-63P、LA-72(以上、ADEKA社製);
CN371(以上、サートマー社製);及び
Exacure A198、Omnirad 907、Omnirad 369、Omnirad379、Omnipol ASA、Omnipol 910(IGM Resins B.V.社製)
が挙げられる。
 アミノ基Aを有する化合物の含有量は、特定粒子の全固形分量に対して、0.1質量%~12質量%が好ましく、0.5質量%~10質量%がより好ましい。
-光ラジカル発生剤と、アミノ基Aを有する化合物とのHSP距離-
 本開示の水分散物において、光ラジカル発生剤と、アミノ基Aを有する化合物とのHSP距離は、6MPa1/2以下であることが好ましく、5MPa1/2以下であることがより好ましい。上記HSP距離の下限値は特に限定されず、例えば、0.1MPa1/2である。
 上記HSP距離が6MPa1/2以下であると、光ラジカル発生剤と、アミノ基Aを有する化合物との反応性が向上するため、マイグレーションがより抑制される。
 光ラジカル発生剤と、アミノ基Aを有する化合物とのHSP距離は、上記樹脂と光ラジカル発生剤とのHSP距離の算出方法と同様の方法で、算出される。
<その他の成分>
 特定粒子は、上記成分以外の他の成分を含有していてもよい。他の成分としては、例えば、有機溶剤が挙げられる。
 特定粒子は、25℃で液体である成分(以下、「液体成分」ともいう)を含むことが好ましい。液体成分は、光ラジカル発生剤であってもよく、重合性モノマーであってもよい。液体成分の含有量は、粒子内での重合反応を促進させる観点から、特定粒子の全固形分量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。粒子外への液体成分の溶出を抑制し、保存安定性を向上させる観点から、液体成分の含有量は、特定粒子の全固形分量に対して、75質量%以下であることが好ましく、65質量%以下であることがより好ましく、55質量%以下であることがさらに好ましい。
 また、粒子外への液体成分の溶出を抑制し、保存安定性を向上させる観点から、液体成分のClogP値は、1.5以上であることが好ましく、2.0以上であることがより好ましく、3.0以上であることがさらに好ましい。
 本開示において、ClogP値は、フラグメント法を用いて計算される。フラグメント法を使用している計算ソフトとしては、ChemDraw Professioal 16が用いられる。
[水]
 本開示の水分散物は、水を含有する。
 水は、特定粒子(分散質)に対する分散媒である。
 水の含有量は特に限定されないが、水分散物の全量に対し、好ましくは10質量%以上であり、より好ましくは20質量%以上であり、さらに好ましくは30質量%以上であり、特に好ましくは50質量%以上である。
 また、水の含有量は、水分散物の全量に対し、99質量%以下であり、より好ましくは95質量%以下であり、さらに好ましくは90質量%以下である。
[その他の成分]
 本開示の水分散物は、特定粒子及び水以外のその他の成分を含有していてもよい。その他の成分としては、例えば、色材及び水溶性有機溶剤が挙げられる。また、本開示の水分散物は、その他の成分として、一般にインクに添加される添加剤である、界面活性剤、重合禁止剤、紫外線吸収剤等を含有してもよい。その他の成分は、特定粒子に含まれていてもよいし、特定粒子に含まれていなくてもよい。
 また、本開示の水分散物は、必要に応じて、特定粒子の外部に、水溶性重合性モノマー、水溶性光ラジカル発生剤、水溶性樹脂等を含有していてもよい。これらの成分については、例えば、国際公開第2016/052053号の段落0134~0157を参照することができる。
 本開示の水分散物が色材を含有する場合、本開示の水分散物は、特定粒子の外部に色材を含むこと(即ち、特定粒子が色材を含まないこと)が好ましい。
 色材としては、特に制限はなく、顔料、水溶性染料、分散染料等の公知の色材から任意に選択して使用することができる。この中でも、耐候性に優れ、色再現性に富む点から、顔料を含むことがより好ましい。
 顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知の有機顔料及び無機顔料などが挙げられ、また、染料で染色した樹脂粒子、市販の顔料分散体や表面処理された顔料(例えば、顔料を分散媒として水、液状化合物や不溶性の樹脂等に分散させたもの、及び、樹脂や顔料誘導体等で顔料表面を処理したもの等)も挙げられる。
 有機顔料及び無機顔料としては、例えば、黄色顔料、赤色顔料、マゼンタ顔料、青色顔料、シアン顔料、緑色顔料、橙色顔料、紫色顔料、褐色顔料、黒色顔料、白色顔料等が挙げられる。
 色材として顔料を用いる場合には、必要に応じて顔料分散剤を用いてもよい。
 また、色材として顔料を用いる場合には、顔料として、顔料粒子表面に親水性基を有する自己分散顔料を用いてもよい。
 色材及び顔料分散剤については、特開2014-040529号公報の段落0180~0200、国際公開第2016/052053号の段落0122~0129を適宜参照することができる。
 本開示の水分散物が色材を含有する場合、色材の含有量は、水分散物の全量に対し、0.1質量%~20質量%が好ましく、0.5質量%~10質量%がより好ましく、0.5質量%~5質量%が特に好ましい。
 本開示の水分散物は、インクジェットインクとして好適に用いることができる。
 本開示の好ましい態様として、水と、樹脂及び光ラジカル発生剤を含み、重合性基を有する粒子と、を含有し、重合性基は、エチレン性二重結合を含み、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、4mol%以上であり、かつ、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合は、5mol%以下である、インクジェットインクが挙げられる。
 本開示の水分散物をインクジェットインクとして用いる場合に、吐出性を向上させる観点から、本開示の水分散物は、特定粒子の外部に水溶性有機溶剤を含むことが好ましい。
 ここで、「水溶性」とは、25℃の蒸留水100g対する溶解量が1gを超える性質を指す。
 本開示の水分散物が水溶性有機溶剤を含有する場合、水溶性有機溶剤の含有量は、水分散物の全量に対して、0.1質量%~30質量%であることが好ましく、1.0質量%~20質量%であることがより好ましい。
 水溶性有機溶剤の具体例は、以下のとおりである。
・アルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)
・多価アルコール(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール、2-メチルプロパンジオール等)
・多価アルコールエーテル(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)
・アミン(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)
・アミド(例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)
・複素環系化合物(例えば、2-ピロリドン、N-メチル-2-ピロリドン、シクロヘキシルピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン等)
・スルホキシド系化合物(例えば、ジメチルスルホキシド等)
・スルホン類(例えば、スルホラン等)
・その他(尿素、アセトニトリル、アセトン等)
[用途]
 本開示の水分散物は、さまざまな用途に適用できる。
 本開示の水分散物は、例えば、インクジェットインク等のインク、又はコーティング膜形成用組成物として用いることができる。特に、本開示の水分散物は、インクジェットインクとして好適に用いられる。
[水分散物の製造方法]
 本開示の水分散物を製造する方法は特に限定されない。
 水分散物の製造方法は、例えば、有機溶剤、樹脂、及び光ラジカル発生剤を含む油相成分と、水を含む水相成分と、を混合し、乳化させることにより、特定粒子の水分散物を得る工程を有する。
 特定粒子の水分散物を得る工程では、上述した油相成分と水相成分とを混合し、得られた混合物を乳化させることにより、特定粒子が形成される。形成された特定粒子は、製造される水分散物において分散質として機能する。
 水相成分中の水は、製造される水分散物における分散媒として機能する。
 油相成分に含まれる有機溶剤としては、例えば、酢酸エチル及びメチルエチルケトンが挙げられる。
 有機溶剤は、特定粒子の形成過程において、また、特定粒子の形成後において、その少なくとも一部が除去されることが好ましい。
 油相成分は、上記各成分以外にも、例えば、重合性モノマー、及びアミノ基Aを有する化合物を含むことができる。
 水相成分は、水を含むこと以外には特に制限はない。
 水相成分は、樹脂の親水性基の少なくとも一部を中和するための中和剤を含んでいてもよい。
 中和剤としては、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム等)、及び有機アミン(例えば、トリエチルアミン等)が挙げられる。
 水相成分は、水及び中和剤以外の成分を含んでもよい。
 水分散物の製造方法における、油相成分及び水相成分から有機溶剤及び水を除いた全量が、製造される水分散物における、特定粒子の全固形分量に対応する。
 水分散物の製造方法に用いられ得る各成分の使用量の好ましい範囲については、既述の「特定粒子」の項を参照できる。この参照の際、既述の「特定粒子」の項における、「含有量」及び「特定粒子の全固形分量」は、それぞれ、「使用量」及び「油相成分及び水相成分から有機溶剤及び水を除いた全量」と読み替える。
 特定粒子の水分散物を得る工程において、油相成分と水相成分との混合の方法には特に限定はないが、例えば、撹拌による混合が挙げられる。
 特定粒子の水分散物を得る工程において、乳化の方法には特に限定はないが、例えば、ホモジナイザー等の乳化装置(例えば、分散機等)による乳化が挙げられる。
 乳化における分散機の回転数は、例えば、5000rpm~20000rpmであり、好ましくは10000rpm~15000rpmである。
 乳化における回転時間は、例えば、1分間~120分間であり、好ましくは3分間~60分間であり、より好ましくは3分間~30分間であり、更に好ましくは5分間~15分間である。
 特定粒子の水分散物を得る工程における乳化は、加熱下で行ってもよい。
 乳化を加熱下で行うことにより、特定粒子をより効率よく形成できる。
 また、乳化を加熱下で行うことにより、油相成分中の有機溶剤の少なくとも一部を、混合物中から除去し易い。
 乳化を加熱下で行う場合の加熱温度としては、35℃~70℃が好ましく、40℃~60℃がより好ましい。
 また、特定粒子の水分散物を得る工程は、混合物を(例えば35℃未満の温度で)乳化させる乳化工程と、乳化工程によって得られた乳化物を(例えば35℃以上の温度で)加熱する加熱工程と、を含んでいてもよい。
 特定粒子の水分散物を得る工程が乳化工程と加熱工程とを含む態様では、特に加熱工程において、特定粒子をより効率よく形成できる。
 また、特定粒子の水分散物を得る工程が乳化工程と加熱工程とを含む態様では、特に加熱工程において、油相成分中の有機溶剤の少なくとも一部を、混合物中から除去し易い。
 加熱工程における加熱温度としては、35℃~70℃が好ましく、40℃~60℃がより好ましい。
 加熱工程における加熱時間は、6時間~50時間が好ましく、12時間~40時間がより好ましく、15時間~35時間が更に好ましい。
 また、水分散物の製造方法は、必要に応じて、特定粒子の水分散物を得る工程以外のその他の工程を有していてもよい。
 その他の工程としては、特定粒子の水分散物を得る工程後において、その他の成分(色材等)を添加する工程が挙げられる。
〔膜形成方法〕
 上述した本開示の水分散物を用いた膜形成方法の好ましい態様(以下、「膜形成方法X」ともいう)は以下のとおりである。
 膜形成方法Xは、基材上に、本開示の水分散物を付与する工程(以下、「付与工程」ともいう)と、
 基材上に付与された水分散物を硬化させる工程(以下、「硬化工程」ともいう)と、
を含む。
 膜形成方法Xは、必要に応じその他の工程を含んでいてもよい。
 膜形成方法Xによれば、耐摩擦性に優れ、かつ、基材に対する密着性に優れた膜が形成される。
<基材>
 膜形成方法Xに用いられる基材としては特に制限はなく、非浸透性基材であっても浸透性基材であってもよいが、好ましくは非浸透性基材である。
 詳細には、非浸透性基材に対して水系の組成物を用いて膜を形成する場合に、膜の耐摩擦性及び密着性を向上させる要求が大きい。このため、膜形成方法Xに用いられる基材として非浸透性基材を用いた場合には、かかる要求を満足させることができる。
 ここで、非浸透性基材とは、ASTM試験法のASTM D570で吸水率(単位:質
量%、測定時間:24時間)が10未満である基材を指す。
 非浸透性基材の上記吸水率は、好ましくは5以下である。
 非浸透性基材としては、例えば、
プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅等の金属の板)、プラスチックフィルム(例えば、ポリ塩化ビニル(PVC:Polyvinyl Chloride)樹脂、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート(PET:Polyethylene Terephthalate)、ポリエチレン(PE:Polyethylene)、ポリスチレン(PS:Polystyrene)、ポリプロピレン(PP:Polypropylene)、ポリカーボネート(PC:Polycarbonate)、ポリビニルアセタール、アクリル樹脂等のフィルム)、上述した金属がラミネートされ又は蒸着された紙、上述した金属がラミネートされ又は蒸着されたプラスチックフィルム、及び、皮革が挙げられる。
 皮革としては、天然皮革(「本革」ともいう)、合成皮革(例えば、PVC(ポリ塩化ビニル)レザー、PU(ポリウレタン)レザー)、等が挙げられる。皮革については、例えば、特開2009-058750号公報の段落0163~段落0165を参照することができる。
 例えば、非浸透性基材としての皮革(例えば、車両用の座席シート、バッグ、靴、財布、等)又はプラスチックフィルムに対して膜を形成する場合、形成される膜に対し、優れた耐摩擦性及び密着性が要求される。
 また、皮革及びプラスチックフィルム以外の基材に対する膜形成においても、形成される膜に対し、優れた耐擦過性が要求される場合がある。
 本開示の膜形成方法によれば、かかる要求を満足させることができる。
 基材は、表面エネルギーを向上させる観点から、表面処理がなされていてもよい。
 表面処理としては、コロナ処理、プラズマ処理、フレーム処理、熱処理、摩耗処理、光照射処理(UV処理)、火炎処理等が挙げられるが、これらに限定されるものではない。
<付与工程>
 付与工程は、基材上に、本開示の水分散物を付与する工程である。
 水分散物を付与する方法は特に限定されず、例えば、塗布法、インクジェット記録方式、浸漬法等の公知の方法が挙げられる。
 インクジェット記録方式による水分散物の付与は、公知のインクジェット記録装置におけるインクジェットヘッドから水分散物を吐出することによって行うことができる。
 インクジェットヘッドとしては、ピエゾ型のインクジェットヘッドが好ましい。
 インクジェットヘッドの解像度としては、好ましくは300dpi以上、より好ましくは600dpi以上、さらに好ましくは800dpi以上である。
 ここで、dpi(dot per inch)とは、2.54cm(1inch)当たりのドット数を表す。
 インクジェットヘッドから吐出される水分散物の打滴量(1ドットあたりの打適量)は、1pL(ピコリットル)~100pLであることが好ましく、3pL~80pLであることがより好ましく、3pL~50pLであることがさらに好ましい。
 付与工程では、加熱されている基材に対し、水分散物を付与してもよい。
 この場合、付与工程の前に基材を加熱する工程を含むこと、及び、付与工程において、基材を加熱し、かつ、インクを付与することの少なくとも一方を満足することが好ましい。
 この場合、基材の水分散物が着弾する面の温度は、30℃以上が好ましく、30℃~100℃がより好ましく、30℃~70℃がさらに好ましい。
 基材を加熱するための加熱手段としては、特に限定されるものではなく、例えば、ヒートドラム、温風、赤外線ランプ、赤外線LED、赤外線ヒーター、熱オーブン、ホットプレート、赤外線レーザー、赤外線ドライヤー等が挙げられる。
<硬化工程>
 膜形成方法Xにおける硬化工程は、基材上に付与された水分散物を硬化させる工程である。
 この硬化工程により、基材上に付与された水分散物中の重合性基を有する粒子による重合反応が進行する。これにより、耐擦過性に優れた膜が得られる。
 硬化工程は、基材上に付与された水分散物に対し、活性エネルギー線を照射する工程であることが好ましい。
 活性エネルギー線としては、紫外線(UV光)、可視光線、電子線等を挙げられる。中でも、活性エネルギー線は、UV光が好ましい。
 基材上に付与された水分散物に対する活性エネルギー線の照射は、基材及び基材上に付与された水分散物が加熱されている状態で行ってもよい。
 活性エネルギー線の照射エネルギー(即ち、露光量)は、20mJ/cm~5J/cmであることが好ましく、100mJ/cm~1,500mJ/cmであることがより好ましい。
 活性エネルギー線の照射時間は、好ましくは0.01秒間~120秒間、より好ましくは0.1秒間~90秒間である。
 活性エネルギー線の照射条件及び基本的な照射方法は、特開昭60-132767号公報に開示されている照射条件及び照射方法を適用することができる。
 活性エネルギー線照射用の光源としては、水銀ランプ、メタルハライドランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、紫外線蛍光灯、ガスレーザー、固体レーザー、LED(発光ダイオード)、LD(レーザダイオード)等が挙げられる。
 中でも、活性エネルギー線照射用の光源としては、紫外線照射用の光源である、メタルハライドランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、又は紫外LED(以下、UV-LEDともいう)であることが好ましい。
 紫外線のピーク波長は、例えば、200nm~405nmであることが好ましく、220nm~400nmであることがより好ましく、340nm~400nmであることがさらに好ましい。
 LED光源からの光(LED光)のピーク波長としては、200nm~600nmであることが好ましく、300nm~450nmであることがより好ましく、320nm~420nmであることがさらに好ましく、340nm~400nmであることがさらに好ましい。
 UV-LEDとしては、例えば、日亜化学株式会社製の、主放出スペクトルが365nmと420nmとの間の波長を有するUV-LEDが挙げられる。
 また、米国特許第6,084,250号明細書に記載の、300nmと370nmとの間に中心付けされた活性放射線を放出し得るUV-LEDも挙げられる。
 また、いくつかのUV-LEDを組み合わせることにより、異なる波長域の紫外線を照射することができる。
 特に好ましい活性エネルギー線はLED光であり、特に好ましくは340nm~405nmの波長域にピーク波長を有するLED光である。
 例えば、ピーク波長が、355nm、365nm、385nm、395nm又は405nmにあるLED光がより好ましく、ピーク波長が、355nm、365nm、385nm、395nm又は405nmにあるLED光が特に好ましい。
 LEDの基材上での最高照度は、10mW/cm~2,000mW/cmが好ましく、20mW/cm~1,000mW/cmがより好ましく、50mW/cm~800mW/cmがさらに好ましい。
 また、上記のとおり、本開示の水分散物は、インクジェットインクであることが好ましい。本開示の好ましい態様として、基材上に、インクジェットインクを付与する工程と、基材上に付与されたインクジェットインクを硬化させる工程と、を含む画像記録方法が挙げられる。画像記録方法における各工程の詳細は、膜形成方法における各工程と同様である。
 以下、本開示を実施例により具体的に説明するが、本開示は以下の実施例に限定されるものではない。
<樹脂の合成>
(ポリマーPU1)
 三口フラスコに、ジメチロールプロピオン酸(DMPA)(8.1g)、イソホロンジイソシアネート(IPDI)(30.4g)、デュラノールT5652(旭化成社製、ポリカーボネートジオール)(21.4g)、ビスフェノールAエポキシジアクリレート(28.8g)、及びメチルエチルケトン(57.1g)を仕込み、70℃に加熱した。そこに、ネオスタンU-600(日東化成社製、無機ビスマス触媒;以下、「U-600」ともいう)を0.1g添加し、70℃で7時間撹拌した。
 次に、末端封止材としてのイソプロパノール(IPA)(62.1g)と、酢酸エチル(87.7g)と、を添加し、70℃で3時間撹拌した。3時間の撹拌後、室温(25℃;以下同じ)まで放冷した。酢酸エチルを用いて濃度調整を行うことにより、ポリマーPU1の30質量%溶液(溶媒:IPA、酢酸エチル、及びメチルエチルケトンの混合溶媒)を得た。
 ポリマーPU1の重量平均分子量(Mw)は11000であり、酸価は0.7mmol/gであった。ポリマーPU1は、光重合性基としてアクリロイル基を有している。
(ポリマーPU2)
 三口フラスコに、ジメチロールプロピオン酸(DMPA)(9.6g)、ジシクロヘキシルメタン-4,4-ジイソシアネート(HMDI)(55.0g)、トリシクロデカンジメタノール(14.7g)、ビスフェノールAエポキシジアクリレート(25.9g)、及び酢酸エチル(66.1g)を仕込み、70℃に加熱した。そこに、U-600(0.1g)を添加し、70℃で7時間撹拌した。
 その後、ポリマーPU1と同様の方法で、ポリマーPU2の30質量%溶液を得た。
 ポリマーPU2の重量平均分子量(Mw)は11000であり、酸価は0.7mmol/gであった。ポリマーPU2は、光重合性基としてアクリロイル基を有している。
(ポリマーPU3)
 三口フラスコに、ジメチロールプロピオン酸(DMPA)(8.0g)、ジシクロヘキシルメタン-4,4-ジイソシアネート(HMDI)(45.0g)、トリシクロデカンジメタノール(16.5g)、ビスフェノールAエポキシジアクリレート(6.8g)、T5652(11.4g)およびメチルエチルケトン(48.8g)を仕込み、70℃に加熱した。そこに、U-600(0.1g)を添加し、70℃で7時間撹拌した。
 その後、ポリマーPU1と同様の方法で、ポリマーPU3の30質量%溶液を得た。
 ポリマーPU3の重量平均分子量(Mw)は11000であり、酸価は0.7mmol/gであった。ポリマーPU3は、光重合性基としてアクリロイル基を有している。
(ポリマーPU4)
 三口フラスコに、ジメチロールプロピオン酸(DMPA)(8.5g)、ヘキサメチレンジイソシアネート(HDI)(39.4g)、トリシクロデカンジメタノール(22.1g)、ビスフェノールAエポキシジアクリレート(23.0g)、およびメチルエチルケトン(60.0g)を仕込み、70℃に加熱した。そこに、U-600(0.1g)添加し、70℃で7時間撹拌した。
 その後、ポリマーPU1と同様の方法で、ポリマーPU4の30質量%溶液を得た。
 ポリマーPU4の重量平均分子量(Mw)は11000であり、酸価は0.7mmol/gであった。ポリマーPU4は、光重合性基としてアクリロイル基を有している。
(ポリマーPU5)
 三口フラスコに、ジメチロールプロピオン酸(DMPA)(10.7g)、イソホロンジイソシアネート(IPDI)(37.3g)、ポリエチレングリコール2000(富士フイルム和光純薬)(40.4g)、ビスフェノールAエポキシジアクリレート(29.0g)、及びメチルエチルケトン(76.3g)を仕込み、70℃に加熱した。そこに、U-600(0.1g)を添加し、70℃で7時間撹拌した。
 その後、ポリマーPU1と同様の方法で、ポリマーPU5の30質量%溶液を得た。
 ポリマーPU5の重量平均分子量(Mw)は11000であり、酸価は0.7mmol/gであった。ポリマーPU5は、光重合性基としてアクリロイル基を有している。
(ポリマーAC1)
 酢酸エチル(101.0g)及びイソプロパノール(43.3g)を、冷却管を備えた1000mlの三口フラスコに秤量し、窒素気流下、65℃で加熱攪拌した。これとは別に、酢酸エチル(89.0g)及びイソプロパノール(41.3g)、アクリル酸n-ブチル(5.7g)、メタクリル酸メチル(107.1g)、メタクリル酸(7.2g)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(「V-65」、富士フイルム和光純薬工業社製)(3.7g)を混合して調製した混合溶液を、上記のフラスコに3時間かけて滴下した。滴下を終了し、65℃で1時間加熱した後、V-65(1.24g)を添加し、70℃で更に3時間攪拌した。室温まで放冷した。次いで、酢酸エチルを用いて濃度調整を行うことにより、ポリマーAC1の30質量%溶液(溶媒:IPA及び酢酸エチルの混合溶媒)を得た。
 ポリマーAC1の重量平均分子量(Mw)は11000であり、酸価は0.7mmol/gであった。
[実施例1]
-油相成分の調製-
 酢酸エチル(56.0g)、ポリマーPU1の30%質量溶液(93.5g)、フェノキシエチルアクリレート(東京化成工業社製)(12.9g)、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(製品名「Omnirad 819」、IGM Resins B.V.社製)(2.4g)、及びイソプロピルチオキサントン(0.4g)を混合し、30分間撹拌することにより油相成分を得た。
-水相成分の調製-
 蒸留水(162.4g)と、中和剤としての水酸化ナトリウムと、を混合して15分間撹拌し、水相成分を得た。水酸化ナトリウムの量は、粒子のアニオン価が0.33mmol/gになるよう調整した。
 油相成分と水相成分とを混合した。得られた混合物を、室温でホモジナイザーを用いて7000rpmで30分間乳化させ、乳化物を得た。得られた乳化物に、蒸留水(57.6g)を添加し、得られた液体を50℃に加熱し、50℃で4時間撹拌することにより、
上記液体から酢酸エチルを留去した。
 酢酸エチルが留去された液体を、固形分含有量が25質量%となるように蒸留水で希釈し、水分散物1を得た。
-インクの調製-
 得られた水分散物1を容器に入れ、密封し、室温で2週間静置させた。調製してから2週間経過後の水分散物1を用いて、下記組成にて各成分を混合し、インクを調製した。
 なお、得られたインクも、水分散物の一態様である。
・水分散物1 … 50質量%
・顔料分散液(製品名「Pro-jet Cyan APD1000」、FUJIFILM Imaging Colorants社製)、顔料濃度14質量%) … 15質量%
・フッ素系界面活性剤(製品名「Capstone FS-31」、DuPont社製、固形分25質量%) … 0.3質量%
・プロピレングリコール … 15質量%
・水 … インク全体で100質量%とするための残量
[実施例2~実施例22、比較例1、比較例2]
 樹脂、光ラジカル発生剤、アミノ基Aを有する化合物、及び重合性モノマーの種類及び含有量を表1に記載の種類及び含有量に変更したこと以外は、実施例1と同様の方法で、水分散物を調製し、実施例1と同様の方法で、インクを調製した。
 なお、アミノ基Aを有する化合物は、油相成分に含有させた。
 光ラジカル発生剤、アミノ基Aを有する化合物、及び重合性モノマーの詳細は以下のとおりである。
-光ラジカル発生剤(分子内開裂型光重合開始剤)-
・819 … ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(製品名「Omnirad 819」、分子量418.5
・TPO-L … (2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド(製品名「Omnirad TPO-L」、IGM Resins B.V.社製)、分子量316.3
-光ラジカル発生剤(分子内水素引き抜き型型光重合開始剤)-
・ITX … イソプロピルチオキサントン(製品名「Speedcure ITX」、Lambson社製)、分子量254.4
・7010 … 1,3-ジ({α-[1-クロロ-9-オキソ-9H-チオキサンテン-4-イル)オキシ]アセチルポリ[オキシ(1-メチルエチレン)]}オキシ)-2,2-ビス({α-[1-メチルエチレン)]}オキシメチル)プロパン(製品名「Speedcure 7010」、Lambson社製)、分子量1200
-アミノ基Aを有する化合物-
・CN371 … アミン変性アクリレート(製品名「CN371」、サートマー社製)、分子量459.0
・N-Gly … N,N-ジメチルグリシン(東京化成工業社製)、分子量103.1・ASA … ポリ(エチレングリコール)ビス(p-ジメチルアミノベンゾエート)(製品名「Omnipol ASA」、IGM Resins B.V.社製、分子量510.0
-重合性モノマー-
・PEA … フェノキシエチルアクリレート(東京化成工業社製)、分子量192.2・TCDDMDA … トリシクロデカンジメタノールジアクリレート(製品名SR833NS」、サートマー社製)、分子量304.4
・GPTA … グリセリンプロポキシトリアクリレート(製品名「OTA480」、ダイセル・オルネクス社製)、分子量480.0
(HSP距離)
 試料500mgを、テトラヒドロフラン(THF)10mLに完全に溶解させ、得られた溶液に脱イオン水を、溶液が濁るまで滴下した。溶液が濁った時点の体積分率〔脱イオン水/(脱イオン水+THF)〕を、Vwとした。
 試料500mgを、テトラヒドロフラン(THF)10mLに完全に溶解させ、得られた溶液にヘキサンを、溶液が濁るまで滴下した。溶液が濁った時点の体積分率〔ヘキサン/(ヘキサン+THF)〕を、Vhとした。
 上述した数式を用いて算出した、樹脂、光ラジカル発生剤、及びアミノ基Aを有する化合物のδD、δP、及びδHを用いて、樹脂と光ラジカル発生剤とのHSP距離、及び、光ラジカル発生剤と、アミノ基Aを有する化合物とのHSP距離を算出した。
 なお、Vhを算出する際に、上記方法で濁点が見えないOmnirad819については、試料500mgをヘキサン20mLに添加し、THFを滴下して溶解する直前におけるTHFの添加量に基づいて、体積分率を見積もった。
 また、ヘキサンに完全に溶解するOmnirad TPO-L及びSpeedcure ITXについては、Vhを1とした。
 THF及びヘキサンに溶解せず、水のみに溶解するジメチルグリシンについては、水のδD、δP、及びδHと同じとした。
 表1及び表2に、上述した方法で算出した、樹脂、光ラジカル発生剤、及びアミノ基Aを有する化合物のδD、δP、及びδHを示す。光ラジカル発生剤が2種である場合には、括弧内に質量比を記載した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
<膜形成方法>
 インクジェット記録装置(製品名「DMP-2850」、富士フイルム社製)に付属のインクカートリッジにインクを充填し、900dpi及び打滴量10pLの条件で、PVCフィルム上に、インクを吐出した。
 吐出後に、395nmLEDランプ(製品名「PEL UV CURE UNIT」、PRINTED ELECTRONICS社製)を用いて、約250mW/cmで10回露光し、インク膜を得た。
 調製したインク、及び、得られたインク膜を用いて、マイグレーション、耐擦過性、吐出性、及び保存安定性の評価を行った。
<マイグレーション>
 上記膜形成方法において、基材上にインクを付与した後のインク膜Aと、基材上にインクを付与し、さらに露光した後のインク膜Bと、を準備した。それぞれのインク膜を、テトラヒドロフラン/メタノール(質量比1:1)の溶液に含侵させた。HPLCを用いて、含浸後の溶液に含まれるインクの成分の総量(抽出量)を測定した。
 インク膜Aから抽出された抽出量を抽出量A、インク膜Bから抽出された抽出量を抽出量Bとし、以下の式に基づいて抽出率を算出した。抽出率に基づいて、マイグレーションの評価を行った。評価基準は、以下のとおりである。
 抽出率(質量%)=(抽出量B/抽出量A)×100
 A:抽出率が1質量%以下である。
 B:抽出率が1質量%超3質量%以下である。
 C:抽出率が3質量%超5質量%以下である。
 D:抽出率が5質量%超10質量%以下である。
 E:抽出率が10質量%超である。
<耐擦過性>
 上記膜形成方法において、100%の印字率で基材上に3cm×10cmのインク膜を形成した。インク膜が形成された基材を、25℃、相対湿度50%の環境下で、24時間放置した。24時間経過後、インク膜の表面を、学振式摩擦試験機を用いて、200gの荷重をかけ、綿布(カナキン3号)で100回擦った。その後、インク膜の表面を目視で観察し、インク膜の表面状態に基づいて、耐擦過性の評価を行った。評価基準は、以下のとおりである。
 A:インク膜に擦過痕がなかった。
 B:インク膜にわずかに擦過痕があった。
 C:インク膜に擦過痕があり、インク膜の全面積に対して5%未満の割合で基材が見えていた。
 D:インク膜に擦過痕があり、インク膜の全面積に対して5%以上50%未満の割合で基材が見えていた。
 E:インク膜がほぼ残っておらず、インク膜の全面積に対して50%以上の割合で基材が見えていた。
<吐出性>
 上記膜形成方法を用いて、100%の印字率で基材上にインクを1回吐出した。その後、25℃、相対湿度50%の条件下で、インクジェット記録装置を30分間停止させ、インクジェットヘッドを大気下に曝した。
 30分経過後に、ノズルチェックパターンを選択して、インクを1回吐出した。記録されたノズルチェックパターンを目視で観察し、不吐出ノズルの本数に基づいて、吐出性の評価を行った。評価基準は、以下のとおりである。
 [評価基準]
 A:不吐出ノズルがない。
 B:不吐出ノズルが1本~2本である。
 C:不吐出ノズルが3本~4本である。
 D:不吐出ノズルが5本以上である。
 E:吐出できなかった。
<保存安定性>
 調製後に、室温で1日以内保管したインクを容器に入れ、密封し、60℃で2週間静置させた。調製してから2週間経過後のインク(水分散物を調製してから4週間経過後のインク)を、上記膜形成方法を用いて、100%の印字率で基材上にインクを1回吐出した。その後、25℃、相対湿度50%の条件下で、インクジェット記録装置を30分間停止させ、インクジェットヘッドを大気下に曝した。
 30分経過後に、ノズルチェックパターンを選択して、インクを1回吐出した。記録されたノズルチェックパターンを目視で観察し、不吐出ノズルの本数に基づいて、保存安定性の評価を行った。評価基準は、以下のとおりである。
 [評価基準]
 A:不吐出ノズルがない。
 B:不吐出ノズルが1本~2本である。
 C:不吐出ノズルが3本~4本である。
 D:不吐出ノズルが5本以上である。
 E:吐出できなかった。
 表3に評価結果を示す。
 表3に、樹脂について、種類、C=C価、ガラス転移温度(Tg、単位:℃)、及び、特定粒子の全量に対する含有量(単位:質量%)を記載した。樹脂のC=C価は、樹脂1g中のエチレン性二重結合のミリモル数(単位:mmol/g)を意味する。
 光ラジカル発生剤について、分子内開裂型光重合開始剤と分子内水素引き抜き型光重合開始剤の種類、光ラジカル発生剤に占める比率(単位:質量%)と、特定粒子の全量に対する含有量(単位:質量%)と、を記載した。また、分子内水素引き抜き型光重合開始剤の数平均分子量(Mn)を記載した。光ラジカル発生剤の欄における「固体比率」は、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合(単位:mol%)を意味する。
 表3に、アミノ基Aを有する化合物の種類、及び特定粒子の全量に対する含有量(単位:質量%)を記載した。アミノ基Aを有する化合物の欄における「固体比率」は、アミノ基Aを有する化合物の全モル数に対して、固体として存在する化合物のモル数の割合(単位:mol%)を意味する。
 表3に、アミノ基Aを有する化合物の種類、及び特定粒子の全量に対する含有量(単位:質量%)を記載した。
 表3に、重合性モノマーの種類、及び特定粒子の全量に対する含有量(単位:質量%)を記載した。
 表3において、「△HSP(RP)」は、樹脂と光ラジカル発生剤とのHSP距離を意味する。「△HSP(RN)」は、光ラジカル発生剤と、アミノ基Aを有する化合物とのHSP距離を意味する。
 表3において、「アミノ基/光ラジカル発生剤」は、光ラジカル発生剤の全モル数に対するアミノ基Aのモル数の割合(単位:mol%)を意味する。
 表3において、「粒子中の光ラジカル発生剤」は、粒子1g中の光ラジカル発生剤のミリモル数(単位:mmol/g)を意味する。
 表3において、「粒子のC=C価」は、粒子1g中のエチレン性二重結合のミリモル数(単位:mmol/g)を意味する。
 表3において、「光ラジカル発生剤/C=C」は、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合(単位:mol%)を意味する。
Figure JPOXMLDOC01-appb-T000011
 表3に示すように、実施例1~実施例22では、水と、樹脂及び光ラジカル発生剤を含み、重合性基を有する粒子と、を含有し、重合性基は、エチレン性二重結合を含み、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合は、4mol%以上であり、かつ、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合は、5mol%以下であるため、マイグレーションが抑制されることが分かった。
 一方、比較例1では、光ラジカル発生剤の含有量は、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合が4mol%未満であるため、マイグレーションが確認された。
 比較例2では、粒子中、光ラジカル発生剤の全モル数に対して、固体として存在する光ラジカル発生剤のモル数の割合が5mol%超であるため、マイグレーションが確認され、かつ、吐出性及び保存安定性に劣る結果となった。
 実施例4では、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合が5mol%以上であるため、実施例3と比較して、マイグレーションが抑制されることが分かった。
 実施例6では、粒子中、エチレン性二重結合のモル数に対する光ラジカル発生剤のモル数の割合が40mol%以下であるため、実施例7と比較して、耐擦過性に優れることが分かった。
 実施例13では、樹脂と光ラジカル発生剤とのHSP距離が5.5MPa1/2以下であるため、実施例14と比較して、吐出性及び保存安定性に優れることが分かった。
 実施例8では、粒子が、さらに、α位の炭素原子に水素原子を有するアミノ基Aを有するため、実施例4と比較して、マイグレーションが抑制され、かつ、耐擦過性に優れることが分かった。
 実施例10では、光ラジカル発生剤の全モル数に対する、α位の炭素原子に水素原子を有するアミノ基Aのモル数の割合が5mol%以上であるため、実施例9と比較して、マイグレーションが抑制されることが分かった。
 実施例11では、光ラジカル発生剤の全モル数に対する、α位の炭素原子に水素原子を有するアミノ基Aのモル数の割合が100mol%以下であるため、実施例12と比較して、マイグレーションが抑制され、かつ、吐出性及び保存安定性に優れることが分かった。
 実施例9では、粒子中、α位の炭素原子に水素原子を有するアミノ基Aを有する化合物の全モル数に対して、固体として存在する化合物のモル数の割合が5mol%以下であるため、実施例17と比較して、吐出及び保存安定性に優れることが分かった。
 実施例18では、光ラジカル発生剤と、α位の炭素原子に水素原子を有するアミノ基Aを有する化合物とのHSP距離が6MPa1/2以下であるため、実施例17と比較して、マイグレーションが抑制されることが分かった。
 実施例15では、樹脂のガラス転移温度が90℃以下であるため、実施例16と比較して、マイグレーションが抑制されることが分かった。
 実施例6では、光ラジカル発生剤が、数平均分子量が1000以上の水素引き抜き型開始剤を含むため、実施例5と比較して、マイグレーションが抑制されることが分かった。
 実施例8では、粒子が重合性モノマーを含むため、実施例21と比較して、耐擦過性に
優れることが分かった。
 なお、2021年9月30日に出願された日本国特許出願2021-161314号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1.  水と、
     樹脂及び光ラジカル発生剤を含み、重合性基を有する粒子と、を含有し、
     前記重合性基は、エチレン性二重結合を含み、
     前記粒子中、前記エチレン性二重結合のモル数に対する前記光ラジカル発生剤のモル数の割合は、4mol%以上であり、かつ、
     前記光ラジカル発生剤の全モル数に対して、固体として存在する前記光ラジカル発生剤のモル数の割合は、5mol%以下である、水分散物。
  2.  前記エチレン性二重結合のモル数に対する前記光ラジカル発生剤のモル数の割合は、5mol%~40mol%である、請求項1に記載の水分散物。
  3.  前記樹脂と前記光ラジカル発生剤とのHSP距離は、5.5MPa1/2以下である、請求項1又は請求項2に記載の水分散物。
  4.  前記粒子は、さらに、α位の炭素原子に水素原子を有するアミノ基Aを有する、請求項1~請求項3のいずれか1項に記載の水分散物。
  5.  前記光ラジカル発生剤の全モル数に対する、前記α位の炭素原子に水素原子を有するアミノ基Aのモル数の割合は、5mol%~100mol%である、請求項4に記載の水分散物。
  6.  前記粒子は、さらに、前記α位の炭素原子に水素原子を有するアミノ基Aを有する化合物を含む、請求項4又は請求項5に記載の水分散物。
  7.  前記粒子中、前記アミノ基Aを有する化合物の全モル数に対して、固体として存在する前記アミノ基を有する化合物のモル数の割合は5mol%以下である、請求項6に記載の水分散物。
  8.  前記光ラジカル発生剤と、前記α位の炭素原子に水素原子を有するアミノ基Aを有する化合物とのHSP距離は、6MPa1/2以下である、請求項6又は請求項7に記載の水分散物。
  9.  前記樹脂は、ガラス転移温度が90℃以下である、請求項1~請求項8のいずれか1項に記載の水分散物。
  10.  前記光ラジカル発生剤は、数平均分子量が1000以上の水素引き抜き型開始剤を含む、請求項1~請求項9のいずれか1項に記載の水分散物。
  11.  前記粒子は、重合性モノマーを含み、
     前記重合性基は、前記重合性モノマーの重合性基を含む、請求項1~請求項10のいずれか1項に記載の水分散物。
  12.  インクジェットインクである、請求項1~請求項11のいずれか1項に記載の水分散物。
  13.  基材上に、請求項1~請求項12のいずれか1項に記載の水分散物を付与する工程と、
     前記基材上に付与された水分散物を硬化させる工程と、
    を含む膜形成方法。
PCT/JP2022/024151 2021-09-30 2022-06-16 水分散物及び膜形成方法 WO2023053593A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023551073A JPWO2023053593A1 (ja) 2021-09-30 2022-06-16
CN202280063908.XA CN117980363A (zh) 2021-09-30 2022-06-16 水分散物及膜形成方法
EP22875472.7A EP4410852A4 (en) 2021-09-30 2022-06-16 AQUEOUS DISPERSION AND FILM FORMING METHOD
US18/604,498 US20240279497A1 (en) 2021-09-30 2024-03-14 Aqueous dispersion and film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161314 2021-09-30
JP2021161314 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/604,498 Continuation US20240279497A1 (en) 2021-09-30 2024-03-14 Aqueous dispersion and film forming method

Publications (1)

Publication Number Publication Date
WO2023053593A1 true WO2023053593A1 (ja) 2023-04-06

Family

ID=85780549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024151 WO2023053593A1 (ja) 2021-09-30 2022-06-16 水分散物及び膜形成方法

Country Status (5)

Country Link
US (1) US20240279497A1 (ja)
EP (1) EP4410852A4 (ja)
JP (1) JPWO2023053593A1 (ja)
CN (1) CN117980363A (ja)
WO (1) WO2023053593A1 (ja)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132767A (ja) 1983-12-21 1985-07-15 Seikosha Co Ltd インクジエツトプリンタ
JPH0731399B2 (ja) 1984-12-21 1995-04-10 三菱化学株式会社 光重合性組成物
JPH07159983A (ja) 1993-12-03 1995-06-23 Fuji Photo Film Co Ltd 感光性印刷版
JPH08224982A (ja) 1995-02-22 1996-09-03 Konica Corp 転写箔及びそれを用いたidカード
JPH09134011A (ja) 1995-09-08 1997-05-20 Konica Corp 感光性組成物、感光性平版印刷版及びそれを用いた画像形成方法
JPH10863A (ja) 1996-06-12 1998-01-06 Konica Corp 熱転写シート及びそれを用いて形成した画像要素
US6084250A (en) 1997-03-03 2000-07-04 U.S. Philips Corporation White light emitting diode
JP2003226730A (ja) * 2001-11-30 2003-08-12 Toyo Ink Mfg Co Ltd ウレタンウレア樹脂および該樹脂を含むラジエーション硬化型樹脂組成物
JP2004514014A (ja) 2000-11-09 2004-05-13 スリーエム イノベイティブ プロパティズ カンパニー 屋外用途に特に適した耐候性でインクジェット可能な放射線硬化性流体組成物
JP2008546875A (ja) * 2005-06-17 2008-12-25 ライヒホールド,インコーポレイテッド 放射線硬化性ポリウレタン分散液
JP2009058750A (ja) 2007-08-31 2009-03-19 Fujifilm Corp 平版印刷版用現像装置
JP2013202928A (ja) 2012-03-28 2013-10-07 Seiko Epson Corp インクジェット記録方法、光硬化型インクジェットインク組成物、インクジェット記録装置
JP2014040529A (ja) 2012-08-22 2014-03-06 Fujifilm Corp インク組成物、画像形成方法、及び印画物
WO2016052053A1 (ja) 2014-09-29 2016-04-07 富士フイルム株式会社 ゲル粒子、インク組成物及びその製造方法、感光性組成物、並びに画像形成方法
WO2016122563A1 (en) * 2015-01-30 2016-08-04 Hewlett-Packard Development Company, L.P. Radiation curable binder dispersion
JP6510681B2 (ja) 2016-02-05 2019-05-08 富士フイルム株式会社 水分散物及びその製造方法、並びに画像形成方法
JP6584677B2 (ja) 2016-08-31 2019-10-02 富士フイルム株式会社 インクジェットインク組成物及び画像形成方法
WO2019188522A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 インクジェットインク組成物及びその製造方法、並びに画像形成方法
WO2021059933A1 (ja) 2019-09-27 2021-04-01 富士フイルム株式会社 粒子、水分散物、インクジェットインク、膜形成方法、及び画像形成方法
JP2021161314A (ja) 2020-04-01 2021-10-11 アイカ工業株式会社 難燃性フェノール樹脂組成物

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132767A (ja) 1983-12-21 1985-07-15 Seikosha Co Ltd インクジエツトプリンタ
JPH0731399B2 (ja) 1984-12-21 1995-04-10 三菱化学株式会社 光重合性組成物
JPH07159983A (ja) 1993-12-03 1995-06-23 Fuji Photo Film Co Ltd 感光性印刷版
JPH08224982A (ja) 1995-02-22 1996-09-03 Konica Corp 転写箔及びそれを用いたidカード
JPH09134011A (ja) 1995-09-08 1997-05-20 Konica Corp 感光性組成物、感光性平版印刷版及びそれを用いた画像形成方法
JPH10863A (ja) 1996-06-12 1998-01-06 Konica Corp 熱転写シート及びそれを用いて形成した画像要素
US6084250A (en) 1997-03-03 2000-07-04 U.S. Philips Corporation White light emitting diode
JP2004514014A (ja) 2000-11-09 2004-05-13 スリーエム イノベイティブ プロパティズ カンパニー 屋外用途に特に適した耐候性でインクジェット可能な放射線硬化性流体組成物
JP2003226730A (ja) * 2001-11-30 2003-08-12 Toyo Ink Mfg Co Ltd ウレタンウレア樹脂および該樹脂を含むラジエーション硬化型樹脂組成物
JP2008546875A (ja) * 2005-06-17 2008-12-25 ライヒホールド,インコーポレイテッド 放射線硬化性ポリウレタン分散液
JP2009058750A (ja) 2007-08-31 2009-03-19 Fujifilm Corp 平版印刷版用現像装置
JP2013202928A (ja) 2012-03-28 2013-10-07 Seiko Epson Corp インクジェット記録方法、光硬化型インクジェットインク組成物、インクジェット記録装置
JP2014040529A (ja) 2012-08-22 2014-03-06 Fujifilm Corp インク組成物、画像形成方法、及び印画物
WO2016052053A1 (ja) 2014-09-29 2016-04-07 富士フイルム株式会社 ゲル粒子、インク組成物及びその製造方法、感光性組成物、並びに画像形成方法
WO2016122563A1 (en) * 2015-01-30 2016-08-04 Hewlett-Packard Development Company, L.P. Radiation curable binder dispersion
JP6510681B2 (ja) 2016-02-05 2019-05-08 富士フイルム株式会社 水分散物及びその製造方法、並びに画像形成方法
JP6584677B2 (ja) 2016-08-31 2019-10-02 富士フイルム株式会社 インクジェットインク組成物及び画像形成方法
WO2019188522A1 (ja) * 2018-03-27 2019-10-03 富士フイルム株式会社 インクジェットインク組成物及びその製造方法、並びに画像形成方法
WO2021059933A1 (ja) 2019-09-27 2021-04-01 富士フイルム株式会社 粒子、水分散物、インクジェットインク、膜形成方法、及び画像形成方法
JP2021161314A (ja) 2020-04-01 2021-10-11 アイカ工業株式会社 難燃性フェノール樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. W. SUHJ. M. CORBETT, JOURNAL OF APPLIED POLYMER SCIENCE, vol. 12, 1968, pages 2359

Also Published As

Publication number Publication date
US20240279497A1 (en) 2024-08-22
EP4410852A1 (en) 2024-08-07
CN117980363A (zh) 2024-05-03
EP4410852A4 (en) 2025-05-21
JPWO2023053593A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6559295B2 (ja) ゲル粒子
JP6584677B2 (ja) インクジェットインク組成物及び画像形成方法
JP6305631B2 (ja) ゲル粒子の水分散物及びその製造方法、並びに画像形成方法
CN108602931B (zh) 水分散物及其制造方法、以及图像形成方法
JP6602384B2 (ja) インクジェット記録用インク組成物及びその製造方法、並びにインクジェット記録方法
JP6559297B2 (ja) ゲル粒子
JP6333991B2 (ja) ゲル粒子、感光性組成物、インク組成物、ゲル粒子の水分散物の製造方法、及び画像形成方法
JPWO2017038243A1 (ja) インクジェット記録用インク組成物及びその製造方法、並びにインクジェット記録方法
JP6636054B2 (ja) マイクロカプセル、水分散物、水分散物の製造方法、及び画像形成方法
US10655032B2 (en) Ink jet recording method
WO2017135085A1 (ja) 水分散物及びその製造方法、並びに画像形成方法
JP6639687B2 (ja) 水分散物及びその製造方法、並びに画像形成方法
JP6900465B2 (ja) インク組成物及びその製造方法、並びに画像形成方法
JP6678737B2 (ja) 水分散物及びその製造方法、並びに画像形成方法
WO2023053593A1 (ja) 水分散物及び膜形成方法
JP6900467B2 (ja) インクジェットインク及びその製造方法、並びに画像形成方法
CN114514268A (zh) 粒子、水分散物、喷墨油墨、膜形成方法、及图像形成方法
JP7505015B2 (ja) インクジェットインク及びインクジェット記録方法
JP7479495B2 (ja) インク及び画像記録方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551073

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280063908.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875472

Country of ref document: EP

Effective date: 20240430

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载