+

WO2023042369A1 - Mass spectroscopy device, ionization device, and ionization method - Google Patents

Mass spectroscopy device, ionization device, and ionization method Download PDF

Info

Publication number
WO2023042369A1
WO2023042369A1 PCT/JP2021/034266 JP2021034266W WO2023042369A1 WO 2023042369 A1 WO2023042369 A1 WO 2023042369A1 JP 2021034266 W JP2021034266 W JP 2021034266W WO 2023042369 A1 WO2023042369 A1 WO 2023042369A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge electrode
unit
current
voltage
ionization
Prior art date
Application number
PCT/JP2021/034266
Other languages
French (fr)
Japanese (ja)
Inventor
航 福井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2021/034266 priority Critical patent/WO2023042369A1/en
Publication of WO2023042369A1 publication Critical patent/WO2023042369A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission

Definitions

  • the present invention relates to a technique for ionizing a liquid sample in an ion analyzer such as a mass spectrometer.
  • LC-MS liquid chromatograph-mass spectrometer
  • ESI electrospray ionization
  • APCI atmospheric pressure chemical ionization
  • An ESI instrument is used when the analyte is a highly polar compound, and an APCI instrument is used when it is a less polar compound.
  • a dual ionization device having both the functions of an ESI device and an APCI device is used (for example, Patent Document 1).
  • a liquid sample in which sample components are dissolved in an ionizable solvent is sprayed from the tip of the probe into the ionization chamber, and the liquid sample is sprayed from the probe.
  • a voltage of a predetermined magnitude (APCI voltage) is applied to a discharge electrode placed at a position to generate a corona discharge.
  • the solvent in the liquid sample sprayed into the ionization chamber is ionized by the corona discharge, and then the sample components are ionized by exchange of H+ (protons) between solvent ions and sample components.
  • a needle-like needle electrode corona needle
  • corona discharge is generated between the corona needle and a sampling cone provided on the partition wall between the ionization chamber and the analysis chamber.
  • the solvent and sample components sprayed from the probe are sprayed onto the discharge electrode, and the solvent and sample components adhere to the electrode surface.
  • the state of corona discharge becomes unstable, resulting in variations in ionization efficiency. Therefore, it is necessary to periodically remove the discharge electrode from the ionization device and clean it.
  • sample components should be ionized by the ESI method. Sometimes it is necessary.
  • the problem to be solved by the present invention is to provide a technology that allows the user to easily check the attachment/detachment state of the discharge electrode in an ionization device that ionizes sample components by atmospheric pressure chemical ionization.
  • An ionization device and a mass spectrometer which have been made to solve the above problems, a probe for spraying a liquid sample; a discharge electrode arranged at a position where the liquid sample is sprayed from the probe; a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted; a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode; a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied; a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold; and an output unit that outputs a result of determination by the determination unit.
  • Another aspect of the present invention which has been made to solve the above problems, is an ionization method of ionizing a liquid sample by generating corona discharge in a discharge electrode provided at a position where the liquid sample is sprayed from a probe. in a step of applying a voltage to the discharge electrode to generate a corona discharge and measuring a current value flowing through a current-carrying portion to the discharge electrode; determining that the discharge electrode is attached when the current value exceeds a predetermined threshold; and outputting the result of the determination.
  • a current value that is lower than the current value that flows through the discharge electrode when corona discharge is generated in the discharge electrode and that cannot be reached when corona discharge is not generated is preset as the threshold value.
  • the current value flowing through the current-carrying portion to the discharge electrode is measured when a predetermined voltage for generating corona discharge is applied. At this time, if the discharge electrode is attached, a current exceeding the threshold value flows through the current-carrying portion, and if the discharge electrode is not attached, no current flows through the current-carrying portion.
  • the attachment/detachment state of the discharge electrode is determined based on the result of comparing the current value measured at this time with the threshold value, and the result is output. Therefore, the user can easily check the attachment/detachment state of the discharge electrode. can do.
  • FIG. 1 schematically shows the appearance of a housing of an embodiment of a mass spectrometer according to the present invention, including an ionization apparatus according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram of the essential parts of the mass spectrometry system of the present embodiment.
  • 4 is a flowchart of an ionization method according to an embodiment of the present invention, which is performed by the mass spectrometry system of the present embodiment; 4 is a flow chart of another embodiment of the ionization method according to the present invention, which is performed by the mass spectrometry system of this embodiment.
  • 4 is a flow chart of still another embodiment of the ionization method according to the present invention, which is performed by the mass spectrometry system of this embodiment.
  • FIG. 1 is a diagram schematically showing the appearance of the housing of a mass spectrometer 1 including the ionization device of this embodiment (components inside the housing are not shown).
  • FIG. 2 is a configuration diagram of essential parts of a mass spectrometry system 100 having a mass spectrometer 1, a power supply unit 2 for supplying electric power to each part of the mass spectrometer 1, and a control/processing unit 4 for controlling these operations. .
  • the housing of the mass spectrometer 1 includes a first housing 31 constituting the ionization chamber 11, a first intermediate vacuum chamber 12, a second intermediate vacuum chamber 13, and a second housing constituting a vacuum chamber housing the analysis chamber 14. It is composed of a body 32 and a third housing 33 mainly including the power supply unit 2 and the like.
  • the first housing 31 is provided with an opening for attaching and detaching the corona needle 112 disposed in the ionization chamber 11 and a front door 311 for opening and closing the opening at a position facing the ionization chamber 11 on the front surface. It is The open/close state of the front door 311 is detected by a sensor (not shown), and the detection result of the sensor is sent to the control/processing section 4 .
  • a Hall sensor or a microswitch for example, can be used as the sensor.
  • the mass spectrometer 1 includes an ionization chamber 11 , a first intermediate vacuum chamber 12 , a second intermediate vacuum chamber 13 and an analysis chamber 14 .
  • the ionization chamber 11 is at approximately atmospheric pressure.
  • the first intermediate vacuum chamber 12, the second intermediate vacuum chamber 13, and the analysis chamber 14 are provided in the second housing 32, and a multi-stage differential evacuation system in which the degree of vacuum increases stepwise in this order. It has a configuration of
  • the ionization device of the mass spectrometer of this embodiment includes a probe (ESI probe) 111 for electrospray ionization (ESI) of a liquid sample and an ionization chamber 11 for atmospheric pressure chemical ionization (APCI) of the liquid sample. It is a dual ionizer with a corona needle 112 .
  • the ESI probe 111 is detachably attached to the top of the first housing 31 .
  • the corona needle 112 is detachably attached to a needle attachment portion 115 provided on the side surface of the first housing 31 .
  • the needle mounting portion 115 is provided with a current-carrying portion 116 for the corona needle 112 .
  • the ions generated in the ionization chamber 11 are drawn into the first intermediate vacuum chamber 12 through the desolvation pipe 113 due to the pressure difference in the first intermediate vacuum chamber 12 located in the subsequent stage.
  • the solvent removal pipe 113 is heated by a heating block 114 forming a part of the partition wall, and the solvent removal is further accelerated while passing through the solvent removal pipe 113 .
  • the heating block 114 is heated by energizing a heater (not shown) or the like.
  • An ion guide 121 composed of a plurality of rod-shaped electrodes is arranged in the first intermediate vacuum chamber 12 .
  • the ions introduced through the desolvation pipe 113 are converged by the ion guide 121 near the ion optical axis (central axis of the flight direction of the ions) C, and enter the second intermediate vacuum chamber 13 through the top opening of the skimmer 122. .
  • the analysis chamber 14 includes a front-stage quadrupole mass filter (Q1) 141, a collision cell 142 in which a multipole ion guide (q2) 143 is installed, a rear-stage quadrupole mass filter (Q3) 144, and an ion detector. 145 is installed.
  • the power supply unit 2 includes an ESI probe 111, a corona needle 112, an ion guide 121, an ion guide 131, a front-stage quadrupole mass filter 141, a multipole ion guide 143, and a rear-stage quadrupole ion guide 143.
  • a predetermined voltage is applied to each of the heavy pole mass filters 144 and the like.
  • the power supply unit 2 measures the current value flowing through the corona needle 112 .
  • the control/processing unit 4 includes a storage unit 41 and functional blocks including an attachment/detachment confirmation reception unit 42, a voltage application unit 43, a current measurement unit 44, a determination unit 45, an output unit 46, a measurement condition setting unit 47, and a measurement A control unit 48 is provided.
  • the entity of the control/processing unit 4 is a personal computer, and each functional block described above is realized by executing a mass spectrometry program pre-installed in the computer with a processor.
  • An input unit 5 and a display unit 6 are connected to the control/processing unit 4 .
  • the user opens the front door 311 and attaches the corona needle 112 .
  • the corona needle 112 is already installed.
  • the sensor provided on the front door 311 detects that the front door 311 is closed, and transmits the detection signal to the control/processing section 4. (Step 2).
  • the voltage applying unit 43 applies the APCI voltage from the power supply unit 2 to the energizing unit 116 of the corona needle 112 (step 3).
  • the current measuring unit 44 measures the value of the current flowing through the conducting unit 116 (step 4).
  • the application of the APCI voltage causes corona discharge in the corona needle 112, thereby ionizing the air in the ionization chamber 11 and causing current to flow.
  • the corona needle 112 is not attached, applying the APCI voltage will (substantially) not flow any current.
  • the APCI voltage is applied in advance with and without the corona needle 112 attached, respectively, and the current flowing through the current-carrying portion 116 is measured.
  • a current value that can be reached at the time of application and that cannot be reached when the corona needle 112 is not attached is set as a threshold value.
  • the present inventor actually applied the APCI voltage (-5 kV) to the current-carrying portion 116 with and without the corona needle 112 attached, and measured the value of the current flowing through the current-carrying portion 116.
  • the current value with the corona needle 112 attached was 207.68 ⁇ A
  • the current value without the corona needle 112 attached was 0.39 ⁇ A.
  • the above threshold differs depending on the arrangement of the parts constituting the ionization device (especially the arrangement of the corona needle 112) and the magnitude of the APCI voltage, it is typically a value of 10 ⁇ A or more and 1 A or less.
  • the APCI voltage applied to the corona needle 112 for confirming attachment/detachment of the corona needle 112 is preferably a negative voltage.
  • applying a negative voltage to the corona needle 112 causes a larger current to flow than applying a positive voltage. Therefore, since the difference between the current value when the corona needle 112 is attached and the current value when the corona needle 112 is not attached becomes large, the attachment/detachment state of the corona needle 112 can be determined more accurately.
  • the determining section 45 checks whether the measured current value exceeds a predetermined threshold value. When the current value obtained by the current measuring unit 44 exceeds the threshold (YES in step 5), it is determined that the corona needle 112 is correctly attached (step 6). On the other hand, if the current value is equal to or less than the threshold value (NO in step 5), it is determined that the corona needle 112 is not attached (including the case where it is not attached correctly) (step 7).
  • the output unit 46 outputs the determination result (step 8).
  • the output of the determination result by the output unit 46 can be performed in various forms such as screen display on the display unit 6, audio output, or lighting of a lamp provided at a predetermined position.
  • the user can also check the attachment/detachment state of the corona needle 112 at a desired timing.
  • the attachment/detachment confirmation reception unit 42 displays a button for instructing confirmation of the attachment/detachment state of the corona needle 112 on the screen of the display unit 6 .
  • the voltage application unit 43 applies the APCI voltage to the corona needle 112 (step 12) in the same manner as described above.
  • the current measuring unit 44 measures the value of the current flowing through the conducting unit 116 (step 13).
  • the determination unit 45 checks whether the current value obtained by the measurement exceeds a predetermined threshold value (step 14). When the current value obtained by the current measuring unit 44 exceeds the threshold (YES in step 14), it is determined that the corona needle 112 is correctly attached (step 15). On the other hand, if the current value is equal to or less than the threshold value (NO in step 14), it is determined that the corona needle 112 is not attached (including the case where it is not attached correctly) (step 16). When the judgment unit 45 makes the above judgment, the output unit 46 outputs the result of the judgment (step 17).
  • a process for checking the attaching/detaching state of the corona needle 112 can be added to the batch file used when measuring the sample.
  • the measurement condition setting unit 47 sets the ionization conditions (the ionization method such as the ESI method or the APCI method, the value of the voltage applied during ionization, etc.). ), mass spectrometry conditions (measurement type such as MS scan measurement, SIM measurement, MS/MS scan measurement, MRM measurement, mass-to-charge ratio value (or range) used for these measurements, etc.)
  • the screen is displayed on the display unit 6.
  • the measurement condition setting unit 47 checks whether the set ionization conditions include the APCI method (step 22). If it is not set to perform ionization by the APCI method (NO in step 22), create a method file describing the measurement conditions set by the user, and create a batch file for executing the method file. and save it in the storage unit 41 (step 25).
  • step 22 if it is set to perform ionization by the APCI method (YES in step 22), the user is asked to specify whether or not to confirm the attachment/detachment state of the corona needle 112 when performing measurement. If the user decides that it is not necessary to confirm the attachment/detachment state of the corona needle 112 (NO in step 23), a method file describing the measurement conditions set by the user is created, and the method file is executed. A batch file for this purpose is created and stored in the storage unit 41 (step 25).
  • a method file describing the measurement conditions set by the user is created, and furthermore, before execution of the method file
  • a batch file is created in which a process for checking the attachment/detachment state of the corona needle 112 is added, and stored in the storage unit 41 (step 24).
  • the measurement control unit 48 executes the batch file stored in the storage unit 41. If the batch file does not describe the process of confirming the attachment/detachment state of the corona needle 112 (NO in step 27), the sample is measured as it is (step 36).
  • the voltage application unit 43 applies the APCI voltage to the corona needle 112 (step 28), the current measuring unit 44 measures the value of the current flowing through the conducting unit 116 (step 29). Then, the determination unit 45 checks whether the current value obtained by the measurement exceeds a predetermined threshold value (step 30). When the current value obtained by the current measuring unit 44 exceeds the threshold value (step 30 YES), it is determined that the corona needle 112 is correctly attached (step 31), and the determination result is output. (step 32) and measurements are performed (step 36).
  • step 33 if the current value is equal to or less than the threshold value (NO in step 30), it is determined that the corona needle 112 is not attached (including the case where it is not attached correctly) (step 33), and the determination result is output. (step 34).
  • the determination unit 45 determines that the corona needle 112 is not attached, the execution of the batch file by the measurement control unit 48 is also stopped (step 35), and the user is asked to confirm the attachment state of the corona needle 112. A prompting screen is displayed on the display unit 6 .
  • components contained in the liquid sample sprayed from the ESI probe 111 are sprayed onto the corona needle 112, and the sample components adhere to the surface of the corona needle 112. If the surface of the corona needle 112 is contaminated, the state of corona discharge will not be stable, resulting in variations in ionization efficiency. Therefore, it is necessary to periodically remove the discharge electrode from the ionization device and clean it. Further, when the ESI method is designated as an official method for ionizing sample components, it may be necessary to remove the corona needle 112 .
  • the corona needle 112 After removing the corona needle 112 in this manner, the corona needle 112 must be attached when the sample components are to be ionized again by the APCI method. However, for example, when a user other than the person who removed the corona needle 112 performs the measurement, there is a possibility that the user may perform the measurement without noticing that the corona needle 112 has been removed. Then, since corona discharge does not occur, the sample components are not ionized, and the sample and time are lost.
  • measurement is performed at the timing when the front door 311 is closed, at any timing when the user wants to check the attachment/detachment state of the corona needle 112, and at ionization by the APCI method.
  • the attachment/detachment state of the corona needle 112 can be confirmed at the timing.
  • the power supply unit 2 used for applying the ESI voltage to the ESI probe 111 and applying the APCI voltage to the corona needle 112 is used to Since it is only necessary to measure the value of the current flowing through the current-carrying portion 116, it is possible to easily and inexpensively confirm the attachment/detachment state of the corona needle 112 without adding new hardware.
  • the first housing 31 having the front door 311 is used, and when the sensor detects that the front door 311 is closed, the voltage application unit 43 applies the APCI voltage to the energization unit 116.
  • the configuration is such that voltage is applied, other configurations can also be adopted.
  • using a first housing 31 that is detachable from the second housing 32 and has an opening at a position facing the ionization chamber 11 at a connection portion with the second housing 32, opening and closing the opening It is possible to employ a configuration provided with a sensor for detecting. In that case, the first housing 31 is removed from the second housing 32, and the corona needle 112 is attached and detached through an opening provided in the first housing 31. FIG. After that, the user attaches the first housing 31 to the second housing 32, and when the sensor detects that the opening of the first housing 31 is closed by the sensor, the voltage application unit 43 switches to the energizing unit. 116 to apply the APCI voltage.
  • the mass spectrometer 1 having a dual ionization device is used, but a mass spectrometer having an APCI device that performs only ionization by the APCI method can also be configured in the same manner as above.
  • mass spectrometer 1 of the above embodiment has a triple quadrupole configuration, mass spectrometers having other types of mass separation units can also have the same configuration as described above.
  • ion analyzers such as ion mobility spectrometers can adopt the same configuration as described above.
  • the corona needle 112 is operated at the timing when the front door 311 is closed, the timing at which the user wants to check the attachment/detachment state of the corona needle 112, and the timing at which the ionization measurement by the APCI method is performed.
  • the configuration is such that it is possible to check the attachment/detachment state of each, it may be configured such that only one of these can be performed.
  • a mass spectrometer comprises a probe for spraying a liquid sample; a discharge electrode arranged at a position where the liquid sample is sprayed from the probe; a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted; a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode; a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied; a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold; and an output unit that outputs a result of determination by the determination unit.
  • An ionization device comprises a probe for spraying a liquid sample; a discharge electrode arranged at a position where the liquid sample is sprayed from the probe; a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted; a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode; a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied; a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold; and an output unit that outputs a result of determination by the determination unit.
  • Yet another aspect of the present invention is an ionization method for ionizing a liquid sample by generating corona discharge in a discharge electrode provided at a position where the liquid sample is sprayed from a probe, a step of applying a voltage to the discharge electrode to generate a corona discharge and measuring a current value flowing through a current-carrying portion to the discharge electrode; determining that the discharge electrode is attached when the current value exceeds a predetermined threshold; and outputting the result of the determination.
  • the ionization apparatus of item 7, and the ionization method of item 8 when the corona discharge is generated in the discharge electrode, the value of the current flowing through the discharge electrode is lower than the value of the current flowing through the discharge electrode. A current value that cannot be reached when there is no electricity is set in advance as the threshold value.
  • the ionization apparatus of item 7, and the ionization method of item 8 when a predetermined voltage for generating corona discharge is applied, the current value flowing through the electrode attachment portion is measured. do. At this time, if the discharge electrode is attached, current exceeding the threshold value flows, and if the discharge electrode is not attached, no current flows.
  • the attachment/detachment state of the discharge electrode is determined based on the result of comparing the current value measured at this time with the threshold value, Since the result is output, the user can easily check the attachment/detachment state of the discharge electrode.
  • the threshold is 10 ⁇ A or more and 1 A or less.
  • a first housing constituting an ionization chamber to which the discharge electrode is attached, the first housing having an opening at a position facing the ionization chamber; a first control unit that operates the voltage application unit, the current measurement unit, and the determination unit in response to the closure of the opening; Prepare.
  • the first housing further includes a door that closes the opening.
  • the user himself/herself gives an instruction when the opening is closed. It is possible to easily check the attachment/detachment state of the discharge electrode without having to
  • the first housing can have an opening and a door for closing the opening, as described in the fourth item, for example.
  • the first housing has an opening at a connection portion with the second housing, and the opening is opened by attaching the first housing to the second housing. It can also be closed.
  • an attachment/detachment confirmation reception unit that accepts a predetermined input operation for confirming attachment/detachment of the discharge electrode; a second control unit that operates the voltage application unit, the current measurement unit, and the determination unit when the attachment/detachment confirmation reception unit receives the predetermined input operation; Prepare.
  • the user can check the attachment/detachment state of the discharge electrode at any time.
  • Mass spectrometry system 1... Mass spectrometer 11... Ionization chamber 111... ESI probe 112... Corona needle 113... Desolvation tube 114... Heating block 115... Needle attachment part 116... Current-carrying part 12... First intermediate vacuum chamber 121... Ions Guide 122 Skimmer 13 Second intermediate vacuum chamber 131 Ion guide 14 Analysis chamber 141 Front quadrupole mass filter 142 Collision cell 143 Multipole ion guide 144 Rear quadrupole mass filter 145 Ion detector 2... Power supply unit 31... First housing 311... Front door 32... Second housing 33... Third housing 4... Control/processing unit 41... Storage unit 42... Attachment/detachment confirmation reception unit 43... Voltage application unit 44... Current Measurement section 45... Determination section 46... Output section 47... Measurement condition setting section 48... Measurement control section 5... Input section 6... Display section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

Provided is a mass spectroscopy device 1 comprising: a probe 111 which sprays a liquid sample; an electrical discharge electrode 112 which is disposed at a position where the liquid sample is sprayed from the probe 111; an electrical discharge electrode attachment part 115 to which is provided a conductive part 116 that is conductive with the electrical discharge electrode, and to which the electrical discharge electrode is detachably attached; a voltage application unit 2, 43 which applies, to the conductive part 116, a voltage for causing the electrical discharge electrode 112 to generate a corona discharge; a current measurement unit 2, 44 which measures a current value flowing through the conductive part while the voltage is being applied; a determination unit 45 which determines that the electrical discharge electrode 112 is attached if the current value exceeds a predetermined threshold; and an output unit 46 which outputs a result of the determination by the determination unit 45.

Description

質量分析装置、イオン化装置、及びイオン化方法Mass spectrometer, ionization device, and ionization method

 本発明は、質量分析装置等のイオン分析装置において液体試料をイオン化する技術に関する。 The present invention relates to a technique for ionizing a liquid sample in an ion analyzer such as a mass spectrometer.

 液体試料に含まれる成分の定性や定量を行うために、試料成分を分離する液体クロマトグラフ部(LC)と、分離後の成分をイオン化して質量分析する質量分析部(MS)とを備えた液体クロマトグラフ質量分析装置(LC-MS)が用いられている。質量分析部のイオン源としては、例えばエレクトロスプレーイオン化(Electrospray Ionization: ESI)装置や大気圧化学イオン化(Atmospheric Pressure Chemical Ionization: APCI)装置が用いられる。分析対象成分が高極性の化合物である場合にはESI装置が用いられ、低極性の化合物である場合にはAPCI装置が用いられる。また、試料中に高極性の成分と低極性の成分が混在している場合には、ESI装置とAPCI装置の両方の機能を備えた、デュアルイオン化装置が用いられる(例えば特許文献1)。 Equipped with a liquid chromatograph (LC) that separates sample components and a mass spectrometer (MS) that ionizes and mass analyzes the separated components in order to qualitatively and quantify the components contained in liquid samples. A liquid chromatograph-mass spectrometer (LC-MS) is used. As an ion source for the mass spectrometer, for example, an electrospray ionization (ESI) device or an atmospheric pressure chemical ionization (APCI) device is used. An ESI instrument is used when the analyte is a highly polar compound, and an APCI instrument is used when it is a less polar compound. Further, when a sample contains both high-polarity components and low-polarity components, a dual ionization device having both the functions of an ESI device and an APCI device is used (for example, Patent Document 1).

 APCI装置やデュアルイオン化装置で大気圧化学イオン化を行う際には、イオン化しやすい溶媒に試料成分を溶解させた液体試料をプローブの先端からイオン化室に噴霧するとともに、該プローブから液体試料が噴霧される位置に配置された放電電極に所定の大きさの電圧(APCI電圧)を印加してコロナ放電を生じさせる。イオン化室に噴霧された液体試料中の溶媒は該コロナ放電によりイオン化され、続いて、溶媒イオンと試料成分の間でH+(プロトン)が授受されることにより試料成分がイオン化される。多くの場合、放電電極には針状のニードル電極(コロナニードル)が用いられ、イオン化室と分析室の間の隔壁に設けられたサンプリングコーンと該コロナニードルの間にコロナ放電が生じる。 When performing atmospheric pressure chemical ionization with an APCI device or a dual ionization device, a liquid sample in which sample components are dissolved in an ionizable solvent is sprayed from the tip of the probe into the ionization chamber, and the liquid sample is sprayed from the probe. A voltage of a predetermined magnitude (APCI voltage) is applied to a discharge electrode placed at a position to generate a corona discharge. The solvent in the liquid sample sprayed into the ionization chamber is ionized by the corona discharge, and then the sample components are ionized by exchange of H+ (protons) between solvent ions and sample components. In many cases, a needle-like needle electrode (corona needle) is used as the discharge electrode, and corona discharge is generated between the corona needle and a sampling cone provided on the partition wall between the ionization chamber and the analysis chamber.

国際公開第2015/118681号WO2015/118681

 APCI装置やデュアルイオン化装置では、プローブから噴霧される溶媒や試料成分が放電電極に吹き付けられ、電極表面に溶媒や試料成分が付着する。放電電極の表面にこれらの物質が付着するとコロナ放電の状態が安定せずイオン化効率にばらつきが生じてしまう。そのため、定期的に放電電極をイオン化装置から取り外して洗浄する必要がある。また、食品中に含まれる農薬の検査などを行う際の公定法として、ESI法により試料成分のイオン化を行うことが指定されており、デュアルイオン化装置をESI装置として用いる際にも放電電極を取り外す必要がある場合もある。  In the APCI device and the dual ionization device, the solvent and sample components sprayed from the probe are sprayed onto the discharge electrode, and the solvent and sample components adhere to the electrode surface. When these substances adhere to the surface of the discharge electrode, the state of corona discharge becomes unstable, resulting in variations in ionization efficiency. Therefore, it is necessary to periodically remove the discharge electrode from the ionization device and clean it. In addition, as an official method for testing pesticides contained in food, it is specified that sample components should be ionized by the ESI method. Sometimes it is necessary.

 イオン化装置から放電電極を取り外した後、再びAPCI法により試料成分をイオン化する場合には、イオン化装置に放電電極を取り付ける必要がある。このとき、イオン化装置から放電電極が取り外された状態になっていることに使用者が気付かず、その状態のままで測定を行ってしまうとコロナ放電が生じないため試料成分がイオン化されず、試料や時間をロスしてしまうという問題があった。  After removing the discharge electrode from the ionization device, it is necessary to attach the discharge electrode to the ionization device when ionizing the sample components again by the APCI method. At this time, if the user does not notice that the discharge electrode has been removed from the ionization device and continues the measurement in that state, corona discharge will not occur and the sample components will not be ionized, resulting in And there was a problem of losing time.

 本発明が解決しようとする課題は、大気圧化学イオン化法により試料成分をイオン化するイオン化装置において、放電電極の着脱状態を使用者が簡便に確認することができる技術を提供することである。 The problem to be solved by the present invention is to provide a technology that allows the user to easily check the attachment/detachment state of the discharge electrode in an ionization device that ionizes sample components by atmospheric pressure chemical ionization.

 上記課題を解決するために成された本発明に係るイオン化装置及び質量分析装置は、
 液体試料を噴霧するプローブと、
 前記プローブから液体試料が噴霧される位置に配置される放電電極と、
 前記放電電極への通電部が設けられ該放電電極が着脱可能に取り付けられる放電電極取付部と、
 前記通電部に前記放電電極にコロナ放電を生じさせるための電圧を印加する電圧印加部と、
 前記電圧が印加されている間に前記通電部を流れる電流値を測定する電流測定部と、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定する判定部と、
 前記判定部による判定の結果を出力する出力部と
 を備える。
An ionization device and a mass spectrometer according to the present invention, which have been made to solve the above problems,
a probe for spraying a liquid sample;
a discharge electrode arranged at a position where the liquid sample is sprayed from the probe;
a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted;
a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode;
a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied;
a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold;
and an output unit that outputs a result of determination by the determination unit.

 また、上記課題を解決するために成された本発明の別の態様は、プローブから液体試料が噴霧される位置に設けられる放電電極にコロナ放電を生じさせることにより該液体試料をイオン化するイオン化方法において、
 前記放電電極にコロナ放電を生じさせるための電圧を印加しつつ該放電電極への通電部を流れる電流値を測定するステップと、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定するステップと、
 前記判定の結果を出力するステップと
 を含む。
Another aspect of the present invention, which has been made to solve the above problems, is an ionization method of ionizing a liquid sample by generating corona discharge in a discharge electrode provided at a position where the liquid sample is sprayed from a probe. in
a step of applying a voltage to the discharge electrode to generate a corona discharge and measuring a current value flowing through a current-carrying portion to the discharge electrode;
determining that the discharge electrode is attached when the current value exceeds a predetermined threshold;
and outputting the result of the determination.

 本発明では、放電電極にコロナ放電が生じたときに該放電電極を流れる電流値よりも低く、コロナ放電が生じていないときには達し得ない電流値を、前記閾値として予め設定しておく。本発明では、コロナ放電を生じさせるための所定の電圧を印加したときに放電電極への通電部を流れる電流値を計測する。このとき放電電極が取り付けられていれば通電部に上記閾値を超える電流が流れ、放電電極が取り付けられていなければ通電部に電流は流れない。本発明では、このときに測定される電流値を閾値と比較した結果に基づいて放電電極の着脱状態が判定され、その結果が出力されるため、使用者は簡便に放電電極の着脱状態を確認することができる。 In the present invention, a current value that is lower than the current value that flows through the discharge electrode when corona discharge is generated in the discharge electrode and that cannot be reached when corona discharge is not generated is preset as the threshold value. In the present invention, the current value flowing through the current-carrying portion to the discharge electrode is measured when a predetermined voltage for generating corona discharge is applied. At this time, if the discharge electrode is attached, a current exceeding the threshold value flows through the current-carrying portion, and if the discharge electrode is not attached, no current flows through the current-carrying portion. In the present invention, the attachment/detachment state of the discharge electrode is determined based on the result of comparing the current value measured at this time with the threshold value, and the result is output. Therefore, the user can easily check the attachment/detachment state of the discharge electrode. can do.

本発明に係るイオン化装置の一実施例を含む、本発明に係る質量分析装置の一実施例の筐体の外観を模式的に示す1 schematically shows the appearance of a housing of an embodiment of a mass spectrometer according to the present invention, including an ionization apparatus according to an embodiment of the present invention; 本実施例の質量分析システムの要部構成図。FIG. 2 is a configuration diagram of the essential parts of the mass spectrometry system of the present embodiment. 本実施例の質量分析システムにより実施される、本発明に係るイオン化方法の一実施例のフローチャート。4 is a flowchart of an ionization method according to an embodiment of the present invention, which is performed by the mass spectrometry system of the present embodiment; 本実施例の質量分析システムにより実施される、本発明に係るイオン化方法の別の実施例のフローチャート。4 is a flow chart of another embodiment of the ionization method according to the present invention, which is performed by the mass spectrometry system of this embodiment. 本実施例の質量分析システムにより実施される、本発明に係るイオン化方法のさらに別の実施例のフローチャート。4 is a flow chart of still another embodiment of the ionization method according to the present invention, which is performed by the mass spectrometry system of this embodiment.

 本発明に係るイオン化装置及び質量分析装置、並びにイオン化方法の一実施例について、以下、図面を参照して説明する。 An embodiment of an ionization apparatus, a mass spectrometer, and an ionization method according to the present invention will be described below with reference to the drawings.

 図1は、本実施例のイオン化装置を含む質量分析装置1の筐体の外観を模式的に示す図(筐体内の構成要素は不図示)である。図2は、質量分析装置1及び該質量分析装置1の各部に電力を供給する電源部2、及びこれらの動作を制御する制御・処理部4を有する質量分析システム100の要部構成図である。 FIG. 1 is a diagram schematically showing the appearance of the housing of a mass spectrometer 1 including the ionization device of this embodiment (components inside the housing are not shown). FIG. 2 is a configuration diagram of essential parts of a mass spectrometry system 100 having a mass spectrometer 1, a power supply unit 2 for supplying electric power to each part of the mass spectrometer 1, and a control/processing unit 4 for controlling these operations. .

 質量分析装置1の筐体は、イオン化室11を構成する第1筐体31、第1中間真空室12、第2中間真空室13、及び分析室14を収容する真空チャンバを構成する第2筐体32、及び電源部2等を主要する第3筐体33で構成されている。第1筐体31には、前面の、イオン化室11を臨む位置に、該イオン化室11に配置されるコロナニードル112の着脱などを行うための開口と、該開口を開閉する前扉311が設けられている。前扉311の開閉状態はセンサ(図示略)により検知され、センサによる検知結果は制御・処理部4に送られる。センサには、例えばホールセンサやマイクロスイッチを用いることができる。 The housing of the mass spectrometer 1 includes a first housing 31 constituting the ionization chamber 11, a first intermediate vacuum chamber 12, a second intermediate vacuum chamber 13, and a second housing constituting a vacuum chamber housing the analysis chamber 14. It is composed of a body 32 and a third housing 33 mainly including the power supply unit 2 and the like. The first housing 31 is provided with an opening for attaching and detaching the corona needle 112 disposed in the ionization chamber 11 and a front door 311 for opening and closing the opening at a position facing the ionization chamber 11 on the front surface. It is The open/close state of the front door 311 is detected by a sensor (not shown), and the detection result of the sensor is sent to the control/processing section 4 . A Hall sensor or a microswitch, for example, can be used as the sensor.

 質量分析装置1は、イオン化室11、第1中間真空室12、第2中間真空室13、及び分析室14を備えている。イオン化室11は略大気圧である。上記の通り、第1中間真空室12、第2中間真空室13、及び分析室14は第2筐体32内に設けられており、この順に段階的に真空度が高くなる多段差動排気系の構成を有している。 The mass spectrometer 1 includes an ionization chamber 11 , a first intermediate vacuum chamber 12 , a second intermediate vacuum chamber 13 and an analysis chamber 14 . The ionization chamber 11 is at approximately atmospheric pressure. As described above, the first intermediate vacuum chamber 12, the second intermediate vacuum chamber 13, and the analysis chamber 14 are provided in the second housing 32, and a multi-stage differential evacuation system in which the degree of vacuum increases stepwise in this order. It has a configuration of

 本実施例の質量分析装置のイオン化装置は、イオン化室11に、液体試料をエレクトロスプレーイオン化(ESI)するプローブ(ESIプローブ)111と、液体試料を大気圧化学イオン化(APCI)するために用いられるコロナニードル112を備えた、デュアルイオン化装置である。ESIプローブ111は第1筐体31の上部に着脱可能に取り付けられる。コロナニードル112は、第1筐体31の側面に設けられたニードル取付部115に着脱可能に取り付けられる。また、ニードル取付部115にはコロナニードル112への通電部116が設けられている。 The ionization device of the mass spectrometer of this embodiment includes a probe (ESI probe) 111 for electrospray ionization (ESI) of a liquid sample and an ionization chamber 11 for atmospheric pressure chemical ionization (APCI) of the liquid sample. It is a dual ionizer with a corona needle 112 . The ESI probe 111 is detachably attached to the top of the first housing 31 . The corona needle 112 is detachably attached to a needle attachment portion 115 provided on the side surface of the first housing 31 . In addition, the needle mounting portion 115 is provided with a current-carrying portion 116 for the corona needle 112 .

 イオン化室11で生成されたイオンは、その後段に位置する第1中間真空室12の圧力差により、脱溶媒管113から第1中間真空室12に引き込まれる。脱溶媒管113は、隔壁の一部を構成する加熱ブロック114により加熱されており、この脱溶媒管113を通過する間に、更に脱溶媒が促進される。加熱ブロック114は図示しないヒータへの通電等により加熱される。 The ions generated in the ionization chamber 11 are drawn into the first intermediate vacuum chamber 12 through the desolvation pipe 113 due to the pressure difference in the first intermediate vacuum chamber 12 located in the subsequent stage. The solvent removal pipe 113 is heated by a heating block 114 forming a part of the partition wall, and the solvent removal is further accelerated while passing through the solvent removal pipe 113 . The heating block 114 is heated by energizing a heater (not shown) or the like.

 第1中間真空室12には、複数のロッド状の電極で構成されたイオンガイド121が配置されている。脱溶媒管113を通じて導入されたイオンは、イオンガイド121によってイオン光軸(イオンの飛行方向の中心軸)Cの近傍に収束され、スキマー122の頂部の開口を通じて第2中間真空室13に進入する。 An ion guide 121 composed of a plurality of rod-shaped electrodes is arranged in the first intermediate vacuum chamber 12 . The ions introduced through the desolvation pipe 113 are converged by the ion guide 121 near the ion optical axis (central axis of the flight direction of the ions) C, and enter the second intermediate vacuum chamber 13 through the top opening of the skimmer 122. .

 第2中間真空室13にも、スキマー122を通じて進入するイオンを収束させるイオンガイド131が配置されている。分析室14には、前段四重極マスフィルタ(Q1)141、多重極イオンガイド(q2)143が内部に設置されたコリジョンセル142、後段四重極マスフィルタ(Q3)144、及びイオン検出器145が設置されている。 An ion guide 131 that converges ions entering through the skimmer 122 is also arranged in the second intermediate vacuum chamber 13 . The analysis chamber 14 includes a front-stage quadrupole mass filter (Q1) 141, a collision cell 142 in which a multipole ion guide (q2) 143 is installed, a rear-stage quadrupole mass filter (Q3) 144, and an ion detector. 145 is installed.

 電源部2は、制御・処理部4からの制御信号に基づいて、ESIプローブ111、コロナニードル112、イオンガイド121、イオンガイド131、前段四重極マスフィルタ141、多重極イオンガイド143、後段四重極マスフィルタ144などにそれぞれ所定の電圧を印加する。また、電源部2は、コロナニードル112に流れる電流値を測定する。 Based on the control signal from the control/processing unit 4, the power supply unit 2 includes an ESI probe 111, a corona needle 112, an ion guide 121, an ion guide 131, a front-stage quadrupole mass filter 141, a multipole ion guide 143, and a rear-stage quadrupole ion guide 143. A predetermined voltage is applied to each of the heavy pole mass filters 144 and the like. Also, the power supply unit 2 measures the current value flowing through the corona needle 112 .

 制御・処理部4は、記憶部41を有するとともに、機能ブロックとして、着脱確認受付部42、電圧印加部43、電流測定部44、判定部45、出力部46、測定条件設定部47、及び測定制御部48を備えている。制御・処理部4の実体はパーソナルコンピュータであり、該コンピュータに予めインストールされた質量分析用プログラムをプロセッサで実行することにより上記の各機能ブロックが具現化される。また、制御・処理部4には、入力部5、表示部6が接続されている。 The control/processing unit 4 includes a storage unit 41 and functional blocks including an attachment/detachment confirmation reception unit 42, a voltage application unit 43, a current measurement unit 44, a determination unit 45, an output unit 46, a measurement condition setting unit 47, and a measurement A control unit 48 is provided. The entity of the control/processing unit 4 is a personal computer, and each functional block described above is realized by executing a mass spectrometry program pre-installed in the computer with a processor. An input unit 5 and a display unit 6 are connected to the control/processing unit 4 .

 以下、本実施例の質量分析装置1における特徴的な動作について説明する。 The characteristic operation of the mass spectrometer 1 of this embodiment will be described below.

 質量分析装置1を用いて、APCI法により液体試料をイオン化する質量分を行う際には、使用者が前扉311を開けてコロナニードル112を取り付ける。あるいはコロナニードル112が既に取り付けられていることを確認する。その後、使用者が前扉311を閉じると(ステップ1)、該前扉311に設けられたセンサは前扉311が閉じられたことを検知し、その検知信号を制御・処理部4に送信する(ステップ2)。 When using the mass spectrometer 1 to ionize the liquid sample by the APCI method, the user opens the front door 311 and attaches the corona needle 112 . Alternatively, make sure the corona needle 112 is already installed. After that, when the user closes the front door 311 (step 1), the sensor provided on the front door 311 detects that the front door 311 is closed, and transmits the detection signal to the control/processing section 4. (Step 2).

 制御・処理部4では、前扉311が閉じられたことを検知した信号を受信すると、電圧印加部43は電源部2からコロナニードル112の通電部116にAPCI電圧を印加する(ステップ3)。また、これと並行して電流測定部44が通電部116に流れる電流値を測定する(ステップ4)。このとき、コロナニードル112が正しく取り付けられていれば、APCI電圧の印加によりコロナニードル112にコロナ放電が生じ、それによってイオン化室11内の空気がイオン化されて電流が流れる。一方、コロナニードル112が取り付けられていないと、APCI電圧を印加しても(実質的に)電流は流れない。 When the control/processing unit 4 receives the signal that the front door 311 is closed, the voltage applying unit 43 applies the APCI voltage from the power supply unit 2 to the energizing unit 116 of the corona needle 112 (step 3). In parallel with this, the current measuring unit 44 measures the value of the current flowing through the conducting unit 116 (step 4). At this time, if the corona needle 112 is properly attached, the application of the APCI voltage causes corona discharge in the corona needle 112, thereby ionizing the air in the ionization chamber 11 and causing current to flow. On the other hand, if the corona needle 112 is not attached, applying the APCI voltage will (substantially) not flow any current.

 そこで、予め、コロナニードル112を取り付けた状態と取り付けていない状態でそれぞれAPCI電圧を印加して通電部116に流れる電流値を測定しておき、コロナニードル112が正しく取り付けられていればAPCI電圧の印加時に達し得る電流値であって、コロナニードル112が取り付けられていない場合には達し得ない電流値を閾値として設定しておく。 Therefore, the APCI voltage is applied in advance with and without the corona needle 112 attached, respectively, and the current flowing through the current-carrying portion 116 is measured. A current value that can be reached at the time of application and that cannot be reached when the corona needle 112 is not attached is set as a threshold value.

 本発明者が実際に、コロナニードル112が取り付けられている状態と取り付けられていない状態でそれぞれ通電部116にAPCI電圧(-5kV)を印加して該通電部116を流れる電流値を測定した結果、コロナニードル112が取り付けられている状態での電流値は207.68μAであり、コロナニードル112が取り付けられていない状態での電流の測定値は0.39μAであった。上記閾値は、イオン化装置を構成する各部の配置(特にコロナニードル112の配置)及びAPCI電圧の大きさによって異なるが、典型的には10μA以上1A以下の値である。なお、コロナニードル112の着脱確認を行うコロナニードル112に印加するAPCI電圧は、負電圧であることが好ましい。一般に、コロナニードル112に正電圧を印加するよりも負電圧を印加するほうが流れる電流が大きい。従って、コロナニードル112が取り付けられているときの電流値とコロナニードル112が取り付けられていないときの電流値の差が大きくなるため、コロナニードル112の着脱状態をより正確に判定することができる。 The present inventor actually applied the APCI voltage (-5 kV) to the current-carrying portion 116 with and without the corona needle 112 attached, and measured the value of the current flowing through the current-carrying portion 116. , the current value with the corona needle 112 attached was 207.68 μA, and the current value without the corona needle 112 attached was 0.39 μA. Although the above threshold differs depending on the arrangement of the parts constituting the ionization device (especially the arrangement of the corona needle 112) and the magnitude of the APCI voltage, it is typically a value of 10 μA or more and 1 A or less. The APCI voltage applied to the corona needle 112 for confirming attachment/detachment of the corona needle 112 is preferably a negative voltage. Generally, applying a negative voltage to the corona needle 112 causes a larger current to flow than applying a positive voltage. Therefore, since the difference between the current value when the corona needle 112 is attached and the current value when the corona needle 112 is not attached becomes large, the attachment/detachment state of the corona needle 112 can be determined more accurately.

 通電部116に流れた電流値が取得されると、判定部45は測定された電流値が予め決められた閾値を超えているかを確認する。そして、電流測定部44により取得された電流値が該閾値を超えている場合には(ステップ5でYES)、コロナニードル112が正しく取り付けられていると判定する(ステップ6)。一方、電流値が該閾値以下である場合には(ステップ5でNO)コロナニードル112が取り付けられていない(正しく取り付けられていない場合を含む)と判定する(ステップ7)。 When the current value flowing through the energizing section 116 is obtained, the determining section 45 checks whether the measured current value exceeds a predetermined threshold value. When the current value obtained by the current measuring unit 44 exceeds the threshold (YES in step 5), it is determined that the corona needle 112 is correctly attached (step 6). On the other hand, if the current value is equal to or less than the threshold value (NO in step 5), it is determined that the corona needle 112 is not attached (including the case where it is not attached correctly) (step 7).

 判定部45により上記の判定がなされると、出力部46は判定結果を出力する(ステップ8)。出力部46による判定結果の出力は、例えば、表示部6への画面表示、音声出力、あるいは予め決められた位置に設けられたランプを点灯させるなど、種々の形態で行うことができる。 When the determination unit 45 makes the above determination, the output unit 46 outputs the determination result (step 8). The output of the determination result by the output unit 46 can be performed in various forms such as screen display on the display unit 6, audio output, or lighting of a lamp provided at a predetermined position.

 コロナニードル112の着脱状態の確認は、使用者が所望のタイミングで行うこともできる。使用者が入力部5を通じた所定の操作を行うと、着脱確認受付部42は表示部6の画面上にコロナニードル112の着脱状態の確認を指示するボタンを表示する。使用者がこのボタンを押す操作を行ってコロナニードル112の着脱状態の確認を指示すると(ステップ11)、上記同様に、電圧印加部43がコロナニードル112にAPCI電圧を印加し(ステップ12)、電流測定部44が通電部116に流れる電流値を測定する(ステップ13)。そして、判定部45は、測定により得られた電流値が予め決められた閾値を超えているかを確認する(ステップ14)。そして、電流測定部44により取得された電流値が該閾値を超えている場合には(ステップ14でYES)、コロナニードル112が正しく取り付けられていると判定する(ステップ15)。一方、電流値が該閾値以下である場合には(ステップ14でNO)、コロナニードル112が取り付けられていない(正しく取り付けられていない場合を含む)と判定する(ステップ16)。判定部45により上記の判定がなされると、出力部46は該判定の結果を出力する(ステップ17)。 The user can also check the attachment/detachment state of the corona needle 112 at a desired timing. When the user performs a predetermined operation through the input unit 5 , the attachment/detachment confirmation reception unit 42 displays a button for instructing confirmation of the attachment/detachment state of the corona needle 112 on the screen of the display unit 6 . When the user presses this button to instruct confirmation of the attachment/detachment state of the corona needle 112 (step 11), the voltage application unit 43 applies the APCI voltage to the corona needle 112 (step 12) in the same manner as described above. The current measuring unit 44 measures the value of the current flowing through the conducting unit 116 (step 13). Then, the determination unit 45 checks whether the current value obtained by the measurement exceeds a predetermined threshold value (step 14). When the current value obtained by the current measuring unit 44 exceeds the threshold (YES in step 14), it is determined that the corona needle 112 is correctly attached (step 15). On the other hand, if the current value is equal to or less than the threshold value (NO in step 14), it is determined that the corona needle 112 is not attached (including the case where it is not attached correctly) (step 16). When the judgment unit 45 makes the above judgment, the output unit 46 outputs the result of the judgment (step 17).

 また、試料を測定する際に用いられるバッチファイルに、コロナニードル112の着脱状態を確認する処理を加えることもできる。 Also, a process for checking the attaching/detaching state of the corona needle 112 can be added to the batch file used when measuring the sample.

 使用者が、入力部5を通じた所定の操作により試料の測定条件の設定を指示すると、測定条件設定部47は、イオン化条件(ESI法又はAPCI法のイオン化法、イオン化時の印加電圧の値等)、質量分析の条件(MSスキャン測定、SIM測定、MS/MSスキャン測定、MRM測定等の測定種別、これらの測定時に用いる質量電荷比の値(又は範囲)等)を含む測定条件を入力する画面を表示部6に表示する。 When the user instructs the setting of the sample measurement conditions by a predetermined operation through the input unit 5, the measurement condition setting unit 47 sets the ionization conditions (the ionization method such as the ESI method or the APCI method, the value of the voltage applied during ionization, etc.). ), mass spectrometry conditions (measurement type such as MS scan measurement, SIM measurement, MS/MS scan measurement, MRM measurement, mass-to-charge ratio value (or range) used for these measurements, etc.) The screen is displayed on the display unit 6.

 使用者が各測定条件の設定を完了すると(ステップ21)、測定条件設定部47は、設定されたイオン化条件にAPCI法が含まれているか否かを確認する(ステップ22)。APCI法によるイオン化を行うことが設定されていない場合は(ステップ22でNO)、使用者により設定された測定条件を記載したメソッドファイルを作成し、該メソッドファイルを実行するためのバッチファイルを作成して記憶部41に保存する(ステップ25)。 When the user completes the setting of each measurement condition (step 21), the measurement condition setting unit 47 checks whether the set ionization conditions include the APCI method (step 22). If it is not set to perform ionization by the APCI method (NO in step 22), create a method file describing the measurement conditions set by the user, and create a batch file for executing the method file. and save it in the storage unit 41 (step 25).

 一方、APCI法によるイオン化を行うことが設定されている場合は(ステップ22でYES)、測定実行時にコロナニードル112の着脱状態の確認を行うか否かを使用者に指定させる。使用者がコロナニードル112の着脱状態の確認が不要であるとした場合には(ステップ23でNO)、使用者により設定された測定条件を記載したメソッドファイルを作成し、該メソッドファイルを実行するためのバッチファイルを作成して記憶部41に保存する(ステップ25)。 On the other hand, if it is set to perform ionization by the APCI method (YES in step 22), the user is asked to specify whether or not to confirm the attachment/detachment state of the corona needle 112 when performing measurement. If the user decides that it is not necessary to confirm the attachment/detachment state of the corona needle 112 (NO in step 23), a method file describing the measurement conditions set by the user is created, and the method file is executed. A batch file for this purpose is created and stored in the storage unit 41 (step 25).

 使用者がコロナニードル112の着脱状態の確認を行うことを指定した場合は(ステップ23でYES)、使用者により設定された測定条件を記載したメソッドファイルを作成し、さらに、メソッドファイルの実行前にコロナニードル112の着脱状態を確認する処理を追加したバッチファイルを作成して記憶部41に保存する(ステップ24)。 If the user specifies to check the attachment/detachment state of the corona needle 112 (YES in step 23), a method file describing the measurement conditions set by the user is created, and furthermore, before execution of the method file A batch file is created in which a process for checking the attachment/detachment state of the corona needle 112 is added, and stored in the storage unit 41 (step 24).

 バッチファイルの作成後、使用者が試料の測定開始を指示すると(ステップ26)、測定制御部48は記憶部41に保存されているバッチファイルを実行する。バッチファイルに、コロナニードル112の着脱状態を確認する処理が記載されていない場合には(ステップ27でNO)、そのまま試料の測定を実行する(ステップ36)。 After creating the batch file, when the user instructs to start measuring the sample (step 26), the measurement control unit 48 executes the batch file stored in the storage unit 41. If the batch file does not describe the process of confirming the attachment/detachment state of the corona needle 112 (NO in step 27), the sample is measured as it is (step 36).

 一方、バッチファイルに、コロナニードル112の着脱状態を確認する処理が含まれている場合は(ステップ27でYES)、上記同様に、電圧印加部43がコロナニードル112にAPCI電圧を印加し(ステップ28)、電流測定部44が通電部116に流れる電流値を測定する(ステップ29)。そして、判定部45は、測定により得られた電流値が予め決められた閾値を超えているかを確認する(ステップ30)。そして、電流測定部44により取得された電流値が該閾値を超えている場合には(ステップ30YES)、コロナニードル112が正しく取り付けられていると判定し(ステップ31)、判定結果を出力して(ステップ32)、測定を実行する(ステップ36)。 On the other hand, if the batch file includes a process for checking the attachment/detachment state of the corona needle 112 (YES in step 27), the voltage application unit 43 applies the APCI voltage to the corona needle 112 (step 28), the current measuring unit 44 measures the value of the current flowing through the conducting unit 116 (step 29). Then, the determination unit 45 checks whether the current value obtained by the measurement exceeds a predetermined threshold value (step 30). When the current value obtained by the current measuring unit 44 exceeds the threshold value (step 30 YES), it is determined that the corona needle 112 is correctly attached (step 31), and the determination result is output. (step 32) and measurements are performed (step 36).

 一方、電流値が該閾値以下である場合には(ステップ30でNO)、コロナニードル112が取り付けられていない(正しく取り付けられていない場合を含む)と判定し(ステップ33)、判定結果を出力する(ステップ34)。判定部45により、コロナニードル112が取り付けられていないと判定された場合には、測定制御部48によるバッチファイルの実行も停止し(ステップ35)、使用者にコロナニードル112の取り付け状態の確認を促す画面を表示部6に表示する。 On the other hand, if the current value is equal to or less than the threshold value (NO in step 30), it is determined that the corona needle 112 is not attached (including the case where it is not attached correctly) (step 33), and the determination result is output. (step 34). When the determination unit 45 determines that the corona needle 112 is not attached, the execution of the batch file by the measurement control unit 48 is also stopped (step 35), and the user is asked to confirm the attachment state of the corona needle 112. A prompting screen is displayed on the display unit 6 .

 デュアルイオン化装置では、ESIプローブ111から噴霧される液体試料に含まれる成分等がコロナニードル112に吹き付けられ、コロナニードル112の表面に試料成分等が付着する。コロナニードル112の表面が汚染されるとコロナ放電の状態が安定せずイオン化効率にばらつきが生じてしまう。そのため、定期的に放電電極をイオン化装置から取り外して洗浄する必要がある。また、公定法としてESI法により試料成分のイオン化を行うことが指定されている場合には、コロナニードル112を取り外す必要がある場合もある。このようにコロナニードル112を取り外した後、再びAPCI法により試料成分をイオン化する場合にはコロナニードル112を取り付けなければならない。しかし、例えば、コロナニードル112を取り外した者とは別の使用者が測定を行う場合などに、コロナニードル112が取り外されていることに気づかず測定を行ってしまう可能性がある。すると、コロナ放電が生じないため試料成分がイオン化されず、試料や時間をロスしてしまうと。 In the dual ionization device, components contained in the liquid sample sprayed from the ESI probe 111 are sprayed onto the corona needle 112, and the sample components adhere to the surface of the corona needle 112. If the surface of the corona needle 112 is contaminated, the state of corona discharge will not be stable, resulting in variations in ionization efficiency. Therefore, it is necessary to periodically remove the discharge electrode from the ionization device and clean it. Further, when the ESI method is designated as an official method for ionizing sample components, it may be necessary to remove the corona needle 112 . After removing the corona needle 112 in this manner, the corona needle 112 must be attached when the sample components are to be ionized again by the APCI method. However, for example, when a user other than the person who removed the corona needle 112 performs the measurement, there is a possibility that the user may perform the measurement without noticing that the corona needle 112 has been removed. Then, since corona discharge does not occur, the sample components are not ionized, and the sample and time are lost.

 これに対し、本実施例の質量分析システム100では、前扉311が閉じられたタイミング、使用者がコロナニードル112の着脱状態を確認したい任意のタイミング、及びAPCI法によるイオン化を行う測定を実行するタイミングで、それぞれコロナニードル112の着脱状態を確認することができる。 On the other hand, in the mass spectrometry system 100 of the present embodiment, measurement is performed at the timing when the front door 311 is closed, at any timing when the user wants to check the attachment/detachment state of the corona needle 112, and at ionization by the APCI method. The attachment/detachment state of the corona needle 112 can be confirmed at the timing.

 なお、コロナニードル112の取り付け状態を確認するために、ニードル取付部115にコロナニードル112の着脱を検知するセンサを配置することも考えられる。しかし、イオン化室11では、帯電液滴の脱溶媒を促進するために加熱ガスが吹き付けられる場合があるため、センサが高温雰囲気に曝される。また、コロナニードル112の表面に付着する可能性がある各種の物質が該センサにも付着する可能性がある。そのため、高温下で安定的に動作し、かつ、化学物質の汚染に対しても十分な耐性を持つ高価なセンサを用いなければならない。さらには、化学物質の付着等により汚染された場合には、コロナニードル112だけでなく、該コロナニードル112の取り付け状態を確認するためのセンサも取り外して洗浄しなければならないなどの手間もかかる。 It is also conceivable to dispose a sensor for detecting attachment/detachment of the corona needle 112 in the needle attachment portion 115 in order to confirm the attachment state of the corona needle 112 . However, in the ionization chamber 11, heated gas may be blown to promote desolvation of the charged droplets, so the sensor is exposed to a high-temperature atmosphere. Also, various substances that may adhere to the surface of the corona needle 112 may also adhere to the sensor. Therefore, it is necessary to use an expensive sensor that operates stably at high temperatures and has sufficient resistance to chemical contamination. Furthermore, when contaminated with chemical substances, etc., not only the corona needle 112 but also the sensor for checking the mounting state of the corona needle 112 must be removed and cleaned.

 これに対し、本実施例の質量分析システム100では、ESIプローブ111に対してESI電圧を印加したり、コロナニードル112に対してAPCI電圧を印加したりするために用いられる電源部2を用いて通電部116に流れる電流値を測定すればよいため、ハードウェアを新たに追加することなく、安価かつ簡便にコロナニードル112の着脱状態を確認することができる。 On the other hand, in the mass spectrometry system 100 of the present embodiment, the power supply unit 2 used for applying the ESI voltage to the ESI probe 111 and applying the APCI voltage to the corona needle 112 is used to Since it is only necessary to measure the value of the current flowing through the current-carrying portion 116, it is possible to easily and inexpensively confirm the attachment/detachment state of the corona needle 112 without adding new hardware.

 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。 The above embodiment is just an example, and can be modified as appropriate in line with the spirit of the present invention.

 上記実施例では、前扉311を有する第1筐体31を用いて、センサにより該前扉311が閉じられたことが検知されたことを受けて電圧印加部43が通電部116にAPCI電圧を印加する構成としたが、他の形態をとることもできる。例えば、第2筐体32に対して着脱可能であり、該第2筐体32との接続部であってイオン化室11を臨む位置に開口を有する第1筐体31を用い、該開口の開閉を検知するセンサを備えた構成を採ることができる。その場合には、第1筐体31を第2筐体32から取り外し、該第1筐体31に設けられた開口からコロナニードル112の着脱などを行う。その後、使用者が第1筐体31を第2筐体32に取り付け、センサにより第1筐体31の開口が閉じられたことがセンサにより検知されたことを受けて電圧印加部43が通電部116にAPCI電圧を印加する。 In the above embodiment, the first housing 31 having the front door 311 is used, and when the sensor detects that the front door 311 is closed, the voltage application unit 43 applies the APCI voltage to the energization unit 116. Although the configuration is such that voltage is applied, other configurations can also be adopted. For example, using a first housing 31 that is detachable from the second housing 32 and has an opening at a position facing the ionization chamber 11 at a connection portion with the second housing 32, opening and closing the opening It is possible to employ a configuration provided with a sensor for detecting. In that case, the first housing 31 is removed from the second housing 32, and the corona needle 112 is attached and detached through an opening provided in the first housing 31. FIG. After that, the user attaches the first housing 31 to the second housing 32, and when the sensor detects that the opening of the first housing 31 is closed by the sensor, the voltage application unit 43 switches to the energizing unit. 116 to apply the APCI voltage.

 上記実施例では、デュアルイオン化装置を有する質量分析装置1としたが、APCI法によるイオン化のみを行うAPCI装置を有する質量分析装置においても上記同様に構成することができる。また、上記実施例の質量分析装置1は三連四重極型の構成を有するものとしたが、他の種類の質量分離部を有する質量分析装置においても上記同様に構成することができる。さらに、質量分析装置以外のほか、イオン移動度分析装置等のイオン分析装置においても上記同様の構成を採ることができる。 In the above embodiment, the mass spectrometer 1 having a dual ionization device is used, but a mass spectrometer having an APCI device that performs only ionization by the APCI method can also be configured in the same manner as above. Further, although the mass spectrometer 1 of the above embodiment has a triple quadrupole configuration, mass spectrometers having other types of mass separation units can also have the same configuration as described above. Furthermore, in addition to mass spectrometers, ion analyzers such as ion mobility spectrometers can adopt the same configuration as described above.

 また、上記実施例では、前扉311が閉じられたタイミング、使用者がコロナニードル112の着脱状態を確認したい任意のタイミング、及びAPCI法によるイオン化を行う測定を実行するタイミングのそれぞれにおいてコロナニードル112の着脱状態を確認することが可能な構成としたが、これらのうちのいずれか1つのみを実行可能な構成としてもよい。 Further, in the above-described embodiment, the corona needle 112 is operated at the timing when the front door 311 is closed, the timing at which the user wants to check the attachment/detachment state of the corona needle 112, and the timing at which the ionization measurement by the APCI method is performed. Although the configuration is such that it is possible to check the attachment/detachment state of each, it may be configured such that only one of these can be performed.

[態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be appreciated by those skilled in the art that the multiple exemplary embodiments described above are specific examples of the following aspects.

(第1項)
 本発明の一態様に係る質量分析装置は、
 液体試料を噴霧するプローブと、
 前記プローブから液体試料が噴霧される位置に配置される放電電極と、
 前記放電電極への通電部が設けられ該放電電極が着脱可能に取り付けられる放電電極取付部と、
 前記通電部に前記放電電極にコロナ放電を生じさせるための電圧を印加する電圧印加部と、
 前記電圧が印加されている間に前記通電部を流れる電流値を測定する電流測定部と、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定する判定部と、
 前記判定部による判定の結果を出力する出力部と
 を備える。
(Section 1)
A mass spectrometer according to an aspect of the present invention comprises
a probe for spraying a liquid sample;
a discharge electrode arranged at a position where the liquid sample is sprayed from the probe;
a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted;
a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode;
a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied;
a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold;
and an output unit that outputs a result of determination by the determination unit.

(第7項)
 本発明の別の一態様に係るイオン化装置は、
 液体試料を噴霧するプローブと、
 前記プローブから液体試料が噴霧される位置に配置される放電電極と、
 前記放電電極への通電部が設けられ該放電電極が着脱可能に取り付けられる放電電極取付部と、
 前記通電部に前記放電電極にコロナ放電を生じさせるための電圧を印加する電圧印加部と、
 前記電圧が印加されている間に前記通電部を流れる電流値を測定する電流測定部と、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定する判定部と、
 前記判定部による判定の結果を出力する出力部と
 を備える。
(Section 7)
An ionization device according to another aspect of the present invention comprises
a probe for spraying a liquid sample;
a discharge electrode arranged at a position where the liquid sample is sprayed from the probe;
a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted;
a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode;
a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied;
a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold;
and an output unit that outputs a result of determination by the determination unit.

(第8項)
 本発明のさらに別の一態様は、プローブから液体試料が噴霧される位置に設けられる放電電極にコロナ放電を生じさせることにより該液体試料をイオン化するイオン化方法において、
 前記放電電極にコロナ放電を生じさせるための電圧を印加しつつ該放電電極への通電部を流れる電流値を測定するステップと、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定するステップと、
 前記判定の結果を出力するステップと
 を含む。
(Section 8)
Yet another aspect of the present invention is an ionization method for ionizing a liquid sample by generating corona discharge in a discharge electrode provided at a position where the liquid sample is sprayed from a probe,
a step of applying a voltage to the discharge electrode to generate a corona discharge and measuring a current value flowing through a current-carrying portion to the discharge electrode;
determining that the discharge electrode is attached when the current value exceeds a predetermined threshold;
and outputting the result of the determination.

 第1項の質量分析装置及び第7項のイオン化装置、並びに第8項のイオン化方法では、放電電極にコロナ放電が生じたときに該放電電極を流れる電流値よりも低く、コロナ放電が生じていないときには達し得ない電流値を、前記閾値として予め設定しておく。第1項の質量分析装置及び第7項のイオン化装置、並びに第8項のイオン化方法では、では、コロナ放電を生じさせるための所定の電圧を印加したときに電極取付部を流れる電流値を計測する。このとき放電電極が取り付けられていれば上記閾値を超える電流が流れ、放電電極が取り付けられていなければ電流は流れない。第1項の質量分析装置及び第7項のイオン化装置、並びに第8項のイオン化方法では、このときに測定される電流値を閾値と比較した結果に基づいて放電電極の着脱状態が判定され、その結果が出力されるため、使用者は簡便に放電電極の着脱状態を確認することができる。 In the mass spectrometer of item 1, the ionization apparatus of item 7, and the ionization method of item 8, when the corona discharge is generated in the discharge electrode, the value of the current flowing through the discharge electrode is lower than the value of the current flowing through the discharge electrode. A current value that cannot be reached when there is no electricity is set in advance as the threshold value. In the mass spectrometer of item 1, the ionization apparatus of item 7, and the ionization method of item 8, when a predetermined voltage for generating corona discharge is applied, the current value flowing through the electrode attachment portion is measured. do. At this time, if the discharge electrode is attached, current exceeding the threshold value flows, and if the discharge electrode is not attached, no current flows. In the mass spectrometer of item 1, the ionization apparatus of item 7, and the ionization method of item 8, the attachment/detachment state of the discharge electrode is determined based on the result of comparing the current value measured at this time with the threshold value, Since the result is output, the user can easily check the attachment/detachment state of the discharge electrode.

(第2項)
 第1項に記載のイオン化装置において、
 前記閾値が10μA以上1A以下である。
(Section 2)
In the ionization device according to item 1,
The threshold is 10 μA or more and 1 A or less.

 放電電極が取り付けられていない状態で電圧を印加しても、電極取付部に電流が流れることはなく測定される電流値が10μAに達することはない。また、通常、待機が津化学イオン化を行う際に放電電極に印加される範囲内の電圧を印加したときに電極取付部に1Aを超える電流が流れることはない。従って、第2項のイオン化装置では、電流値が10μA未満であることに基づいて放電電極が取り付けられていないことを正しく判定することができる。また、電流値が1Aを超えていることに基づいて放電電極の取り付け状態に異常が生じている(例えばサンプリングコーンに接触している)ことを判断することができる。 Even if a voltage is applied without the discharge electrode attached, no current flows through the electrode attachment and the measured current value does not reach 10 μA. Also, normally, when a voltage within the range applied to the discharge electrode is applied during standby chemical ionization, a current exceeding 1 A does not flow through the electrode mounting portion. Therefore, in the ionization device of item 2, it is possible to correctly determine that the discharge electrode is not attached based on the fact that the current value is less than 10 μA. Also, based on the fact that the current value exceeds 1 A, it can be determined that there is an abnormality in the mounting state of the discharge electrode (for example, contact with the sampling cone).

(第3項)
 第1項又は第2項に記載の質量分析装置において、さらに、
 前記放電電極が取り付けられるイオン化室を構成する筐体であって、該イオン化室を臨む位置に開口が設けられた第1筐体と、
 前記開口が閉じられたことを受けて前記電圧印加部、前記電流測定部、及び前記判定部を動作させる第1制御部と、
 を備える。
(Section 3)
In the mass spectrometer according to item 1 or 2, further,
a first housing constituting an ionization chamber to which the discharge electrode is attached, the first housing having an opening at a position facing the ionization chamber;
a first control unit that operates the voltage application unit, the current measurement unit, and the determination unit in response to the closure of the opening;
Prepare.

(第4項)
 第3項に記載の質量分析装置において、
 前記第1筐体が、さらに、前記開口を閉じる扉を備える。
(Section 4)
In the mass spectrometer according to item 3,
The first housing further includes a door that closes the opening.

(第5項)
 第3項に記載の質量分析装置において、さらに、
 前記液体試料から生成されるイオンを質量分離して検出する質量分析部を収容した第2筐体
 を備え、
 前記開口が第2筐体との接続部に設けられている。
(Section 5)
In the mass spectrometer according to item 3, further,
a second housing containing a mass spectrometer for mass-separating and detecting ions generated from the liquid sample,
The opening is provided in the connecting portion with the second housing.

 第3項のイオン化装置では、第1筐体に設けられた開口から、使用者が放電電極の取り付け、取り外し等を行ったあとに該開口が閉じられたことを受けて、使用者が自ら指示することなく簡便に放電電極の着脱状態を確認することができる。第1筐体は、例えば第4項に記載のように、開口と、該開口を閉じる扉を備えたものとすることができる。あるいは、第5項に記載のように、第1筐体は、第2筐体との接続部に開口を有し、該第1筐体が該第2筐体に取り付けられることで該開口を閉じるようなものとすることもできる。 In the ionization device of paragraph 3, after the user attaches or detaches the discharge electrode from the opening provided in the first housing, the user himself/herself gives an instruction when the opening is closed. It is possible to easily check the attachment/detachment state of the discharge electrode without having to The first housing can have an opening and a door for closing the opening, as described in the fourth item, for example. Alternatively, as described in item 5, the first housing has an opening at a connection portion with the second housing, and the opening is opened by attaching the first housing to the second housing. It can also be closed.

(第6項)
 第1項から第5項のいずれかに記載の質量分析装置において、さらに、
 放電電極の着脱を確認する所定の入力操作を受け付ける着脱確認受付部と、
 前記着脱確認受付部が前記所定の入力操作を受け付けると、前記電圧印加部、前記電流測定部、及び前記判定部を動作させる第2制御部と、
 を備える。
(Section 6)
In the mass spectrometer according to any one of items 1 to 5, further,
an attachment/detachment confirmation reception unit that accepts a predetermined input operation for confirming attachment/detachment of the discharge electrode;
a second control unit that operates the voltage application unit, the current measurement unit, and the determination unit when the attachment/detachment confirmation reception unit receives the predetermined input operation;
Prepare.

 第6項の質量分析装置では、使用者が任意の時点で放電電極の着脱状態を確認することができる。 With the mass spectrometer in Section 6, the user can check the attachment/detachment state of the discharge electrode at any time.

100…質量分析システム
1…質量分析装置
11…イオン化室
111…ESIプローブ
112…コロナニードル
113…脱溶媒管
114…加熱ブロック
115…ニードル取付部
116…通電部
12…第1中間真空室
121…イオンガイド
122…スキマー
13…第2中間真空室
131…イオンガイド
14…分析室
141…前段四重極マスフィルタ
142…コリジョンセル
143…多重極イオンガイド
144…後段四重極マスフィルタ
145…イオン検出器
2…電源部
31…第1筐体
311…前扉
32…第2筐体
33…第3筐体
4…制御・処理部
41…記憶部
42…着脱確認受付部
43…電圧印加部
44…電流測定部
45…判定部
46…出力部
47…測定条件設定部
48…測定制御部
5…入力部
6…表示部
DESCRIPTION OF SYMBOLS 100... Mass spectrometry system 1... Mass spectrometer 11... Ionization chamber 111... ESI probe 112... Corona needle 113... Desolvation tube 114... Heating block 115... Needle attachment part 116... Current-carrying part 12... First intermediate vacuum chamber 121... Ions Guide 122 Skimmer 13 Second intermediate vacuum chamber 131 Ion guide 14 Analysis chamber 141 Front quadrupole mass filter 142 Collision cell 143 Multipole ion guide 144 Rear quadrupole mass filter 145 Ion detector 2... Power supply unit 31... First housing 311... Front door 32... Second housing 33... Third housing 4... Control/processing unit 41... Storage unit 42... Attachment/detachment confirmation reception unit 43... Voltage application unit 44... Current Measurement section 45... Determination section 46... Output section 47... Measurement condition setting section 48... Measurement control section 5... Input section 6... Display section

Claims (8)

 液体試料を噴霧するプローブと、
 前記プローブから液体試料が噴霧される位置に配置される放電電極と、
 前記放電電極への通電部が設けられ該放電電極が着脱可能に取り付けられる放電電極取付部と、
 前記通電部に前記放電電極にコロナ放電を生じさせるための電圧を印加する電圧印加部と、
 前記電圧が印加されている間に前記通電部を流れる電流値を測定する電流測定部と、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定する判定部と、
 前記判定部による判定の結果を出力する出力部と
 を備える質量分析装置。
a probe for spraying a liquid sample;
a discharge electrode arranged at a position where the liquid sample is sprayed from the probe;
a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted;
a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode;
a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied;
a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold;
A mass spectrometer comprising: an output unit that outputs a result of determination by the determination unit.
 前記閾値が10μA以上1A以下である、請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein the threshold is 10 µA or more and 1 A or less.  前記放電電極が取り付けられるイオン化室を構成する筐体であって、該イオン化室を臨む位置に開口が設けられた第1筐体と、
 前記開口が閉じられたことを受けて前記電圧印加部、前記電流測定部、及び前記判定部を動作させる第1制御部と、
 を備える、請求項1に記載の質量分析装置。
a first housing constituting an ionization chamber to which the discharge electrode is attached, the first housing having an opening at a position facing the ionization chamber;
a first control unit that operates the voltage application unit, the current measurement unit, and the determination unit in response to the closing of the opening;
The mass spectrometer of claim 1, comprising:
 前記第1筐体が、さらに、
 前記開口を閉じる扉を備える、請求項3に記載の質量分析装置。
The first housing further comprises
4. The mass spectrometer according to claim 3, comprising a door closing said opening.
 さらに、
 前記液体試料から生成されるイオンを質量分離して検出する質量分析部を収容した第2筐体
 を備え、
 前記開口が第2筐体との接続部に設けられている、請求項3に記載の質量分析装置。
moreover,
a second housing containing a mass spectrometer for mass-separating and detecting ions generated from the liquid sample,
4. The mass spectrometer according to claim 3, wherein said opening is provided in a connecting portion with said second housing.
 さらに、
 放電電極の着脱を確認する所定の入力操作を受け付ける着脱確認受付部と、
 前記着脱確認受付部が前記所定の入力操作を受け付けると、前記電圧印加部、前記電流測定部、及び前記判定部を動作させる第2制御部と、
 を備える、請求項1に記載の質量分析装置。
moreover,
an attachment/detachment confirmation reception unit that accepts a predetermined input operation for confirming attachment/detachment of the discharge electrode;
a second control unit that operates the voltage application unit, the current measurement unit, and the determination unit when the attachment/detachment confirmation reception unit receives the predetermined input operation;
The mass spectrometer of claim 1, comprising:
 液体試料を噴霧するプローブと、
 前記プローブから液体試料が噴霧される位置に配置される放電電極と、
 前記放電電極への通電部が設けられ該放電電極が着脱可能に取り付けられる放電電極取付部と、
 前記通電部に前記放電電極にコロナ放電を生じさせるための電圧を印加する電圧印加部と、
 前記電圧が印加されている間に前記通電部を流れる電流値を測定する電流測定部と、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定する判定部と、
 前記判定部による判定の結果を出力する出力部と
 を備えるイオン化装置。
a probe for spraying a liquid sample;
a discharge electrode arranged at a position where the liquid sample is sprayed from the probe;
a discharge electrode mounting portion provided with a current-carrying portion for the discharge electrode and to which the discharge electrode is detachably mounted;
a voltage applying unit that applies a voltage to the current-carrying unit to cause corona discharge in the discharge electrode;
a current measuring unit that measures a current value flowing through the current-carrying unit while the voltage is being applied;
a determination unit that determines that the discharge electrode is attached when the current value exceeds a predetermined threshold;
An ionization apparatus comprising: an output unit that outputs a result of determination by the determination unit.
 プローブから液体試料が噴霧される位置に設けられる放電電極にコロナ放電を生じさせることにより該液体試料をイオン化するイオン化方法において、
 前記放電電極にコロナ放電を生じさせるための電圧を印加しつつ該放電電極への通電部を流れる電流値を測定するステップと、
 前記電流値が予め決められた閾値を超えている場合に、放電電極が取り付けられていると判定するステップと、
 前記判定の結果を出力するステップと
 を含むイオン化方法。
In an ionization method for ionizing a liquid sample by generating a corona discharge in a discharge electrode provided at a position where the liquid sample is sprayed from a probe,
a step of applying a voltage to the discharge electrode to generate a corona discharge and measuring a current value flowing through a current-carrying portion to the discharge electrode;
determining that the discharge electrode is attached when the current value exceeds a predetermined threshold;
and outputting the result of the determination.
PCT/JP2021/034266 2021-09-17 2021-09-17 Mass spectroscopy device, ionization device, and ionization method WO2023042369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034266 WO2023042369A1 (en) 2021-09-17 2021-09-17 Mass spectroscopy device, ionization device, and ionization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034266 WO2023042369A1 (en) 2021-09-17 2021-09-17 Mass spectroscopy device, ionization device, and ionization method

Publications (1)

Publication Number Publication Date
WO2023042369A1 true WO2023042369A1 (en) 2023-03-23

Family

ID=85602589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034266 WO2023042369A1 (en) 2021-09-17 2021-09-17 Mass spectroscopy device, ionization device, and ionization method

Country Status (1)

Country Link
WO (1) WO2023042369A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169561A (en) * 2009-01-23 2010-08-05 Shimadzu Corp Liquid chromatograph-mass spectrometer
JP2011174761A (en) * 2010-02-23 2011-09-08 Shimadzu Corp Mass spectrometer
WO2019234919A1 (en) * 2018-06-08 2019-12-12 株式会社島津製作所 Probe electrospray ionization unit and ion analysis device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169561A (en) * 2009-01-23 2010-08-05 Shimadzu Corp Liquid chromatograph-mass spectrometer
JP2011174761A (en) * 2010-02-23 2011-09-08 Shimadzu Corp Mass spectrometer
WO2019234919A1 (en) * 2018-06-08 2019-12-12 株式会社島津製作所 Probe electrospray ionization unit and ion analysis device

Similar Documents

Publication Publication Date Title
US20190371584A1 (en) Bench-top time of flight mass spectrometer
JP2834136B2 (en) Mass spectrometer
EP2710623B1 (en) System for analyzing a sample
US20210249242A1 (en) Method and portable ion mobility spectrometer for the detection of an aerosol
US12123421B2 (en) Bench-top time of flight mass spectrometer
US11621154B2 (en) Bench-top time of flight mass spectrometer
GB2566891A (en) Ion analysis device
JP2003215101A (en) Liquid chromatographic mass spectrometer
JP6481767B2 (en) Liquid sample introduction system and analysis system for ion source
WO2019229455A1 (en) Bench-top time of flight mass spectrometer
WO2023042369A1 (en) Mass spectroscopy device, ionization device, and ionization method
WO2019229465A1 (en) Bench-top time of flight mass spectrometer
JP2000357487A (en) Mass-spectrometric device
CN108400080A (en) A kind of mass ions source device under the conditions of low vacuum
JPH07325020A (en) Sample introducing apparatus for ion analytical instrument
JP2000315474A (en) Mass spectrometer
EP3756211A1 (en) Integrated electrospray ion source
WO2018112834A1 (en) Ion separation detection method based on linear quadrupole ion trap tandem mass spectrometer
CN115410895B (en) An ion source device for triboionization using DAPI
JP7294535B2 (en) ion analyzer
US20210134577A1 (en) Mass spectrometer
JPH07220675A (en) Elementary analysis device
TW202441577A (en) Mass Analyzer and Mass Analysis System
JP2010169561A (en) Liquid chromatograph-mass spectrometer
JPH03266349A (en) Atmospheric pressure ionization mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21957550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载