+

WO2022185431A1 - Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device - Google Patents

Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device Download PDF

Info

Publication number
WO2022185431A1
WO2022185431A1 PCT/JP2021/008094 JP2021008094W WO2022185431A1 WO 2022185431 A1 WO2022185431 A1 WO 2022185431A1 JP 2021008094 W JP2021008094 W JP 2021008094W WO 2022185431 A1 WO2022185431 A1 WO 2022185431A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
wire
correction value
workpiece
electric discharge
Prior art date
Application number
PCT/JP2021/008094
Other languages
French (fr)
Japanese (ja)
Inventor
大介 関本
信行 太田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/008094 priority Critical patent/WO2022185431A1/en
Priority to JP2021540581A priority patent/JP6972443B1/en
Priority to CN202180071849.6A priority patent/CN116348232B/en
Publication of WO2022185431A1 publication Critical patent/WO2022185431A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive

Definitions

  • the present disclosure relates to a wire electric discharge machine, a geometry compensator, a wire electric discharge machining method, a learning device, and an inference device that compensate for the dimension and shape of a workpiece after machining.
  • the appropriate machining conditions differ depending on the thickness of the workpiece to be machined. Therefore, it is desired that the wire electric discharge machine selects appropriate machining conditions according to the plate thickness and performs wire electric discharge machining.
  • the wire electric discharge machining apparatus described in Patent Document 1 selects the electrical condition strength from the relationship between the plate thickness and the machining energy, and switches to the electrical condition corresponding to the electrical condition strength, thereby preventing disconnection of the wire electrode. .
  • Patent Document 1 when the workpiece is a thin plate, the volume removed in the direction of progress of processing is small and the processing speed is high, so the discharge is less likely to spread to the side surface in the direction of progress.
  • the removal volume in the traveling direction is large and the machining speed is slow, so the discharge tends to fly to the side surface in the traveling direction.
  • the present disclosure has been made in view of the above, and provides a wire electric discharge machine that can improve the accuracy of machining dimensions and machining shape even for a workpiece whose plate thickness changes during machining. with the aim of obtaining
  • the wire electric discharge machine of the present disclosure provides a workpiece having a plurality of plate thickness regions with different plate thicknesses on a machining path.
  • the wire electric discharge machine of the present disclosure provides machining voltage during machining, machining energy during machining, machining speed during machining, and the distance between the nozzle that supplies the machining fluid to the wire electrode and the workpiece Based on the distance and the plate thickness, the difference in processing dimensions between the plate thickness regions is small, and the straightness accuracy in the length direction of the wire electrode of the workpiece is high within each plate thickness region.
  • a shape and size compensator is provided for calculating a voltage correction value that is a correction value for the machining voltage, a rest time correction value that is a correction value for the rest time of the voltage pulse, and a wire tension command that is a tension command for the wire electrode.
  • the machining mechanism is controlled using voltage corrections, dwell time corrections, and wire tension commands.
  • the wire electric discharge machine according to the present disclosure has the effect of being able to improve the precision of machining dimensions and the precision of machining shape even for workpieces whose plate thickness changes during machining.
  • FIG. 1 is a perspective view showing a configuration example of a wire electric discharge machine according to an embodiment
  • FIG. FIG. 4 is a perspective view showing another configuration example of the wire electric discharge machine according to the embodiment
  • FIG. 2 is a diagram for explaining the structure of a workpiece machined by the wire electric discharge machine according to the embodiment
  • FIG. 5 is a diagram for explaining the shape of a workpiece that has been machined without correcting the deflection of the wire electrode with respect to the plate thickness
  • 1 is a block diagram showing a functional configuration example of a wire electric discharge machine according to an embodiment;
  • FIG. 4 is a diagram for explaining calculation processing of a voltage correction value by the geometry compensator according to the embodiment;
  • FIG. 4 is a diagram for explaining voltage correction value information used by the geometry compensator according to the embodiment;
  • FIG. 4 is a diagram for explaining a calculation process of a pause time correction value by the shape and dimension compensator according to the embodiment;
  • FIG. 4 is a diagram for explaining the relationship between the wire tension and the deflection amount of the wire electrode;
  • 1 is a flow chart showing a processing procedure of wire electric discharge machining by a wire electric discharge machine according to an embodiment;
  • 1 is a block diagram showing a configuration example of a learning device according to an embodiment;
  • FIG. 4 is a flow chart showing a processing procedure of learning processing by the learning device according to the embodiment.
  • 1 is a block diagram showing a configuration example of an inference device according to an embodiment;
  • FIG. 4 is a flowchart showing a processing procedure of inference processing by the inference device according to the embodiment;
  • FIG. 2 is a diagram showing a hardware configuration example that implements the NC control device according to the embodiment;
  • a wire electric discharge machine, a geometry compensator, a wire electric discharge machining method, a learning device, and an inference device will be described below in detail with reference to the drawings.
  • FIG. 1 is a perspective view showing a configuration example of a wire electric discharge machine according to an embodiment.
  • the wire electric discharge machine 100 includes a machining mechanism 30, a wire tension controller 31, a machining power source 32, and an NC (Numerical Control) controller 33, which is a numerical controller.
  • NC Numerical Control
  • the processing mechanism 30 includes a wire electrode bobbin 1, a wire electrode 2, a tension load device 3, an upper feeder 4, a lower feeder 5, an upper guide 6, a lower guide 12, a surface plate 8, A lower roller 13 is provided.
  • the processing mechanism 30 also includes a wire electrode collection box 10, a wire travel speed control motor 9, an X-axis drive motor 11X, and a Y-axis drive motor 11Y.
  • the wire tension control device 31 is connected to a machining power source 32 and an NC control device 33
  • the machining power source 32 is connected to the NC control device 33
  • the machining mechanism 30 is also connected to a wire tension controller 31 , a machining power source 32 and an NC controller 33 .
  • the two axes in the plane parallel to the upper surface of the plate-shaped surface plate 8 and perpendicular to each other are defined as the X-axis and the Y-axis.
  • the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis.
  • the XY plane is the horizontal plane
  • the Z-axis direction is the vertical direction.
  • the plus Z direction may be referred to as the upward direction
  • the minus Z direction may be referred to as the downward direction.
  • the wire electrode bobbin 1 is wound with the wire electrode 2 and supplies the wire electrode 2 to the tension load device 3 .
  • a wire electrode 2 is pulled out from a wire electrode bobbin 1 and sent to a tension load device 3 .
  • the tension load device 3 conveys the wire electrode 2 and applies a tension load to the wire electrode 2 .
  • the tension load device 3 feeds the wire electrode 2 to the lower roller 13 via the upper feeder 4 , upper guide 6 , lower feeder 5 and lower guide 12 .
  • the wire electrode 2 passed through the lower roller 13 is sent to the wire electrode collection box 10 through the wire travel speed control motor 9 .
  • An upper guide 6 is arranged below the upper feeder 4
  • a lower feeder 5 is arranged below the upper guide 6
  • a lower guide 12 is arranged below the lower feeder 5 .
  • the upper power feeder 4 and the lower power feeder 5 are connected to a machining power source 32 to apply a voltage between the wire electrode 2 and the workpiece 7 .
  • the upper guide 6 and lower guide 12 support the position and inclination of the wire electrode 2 during machining of the workpiece 7, which is a workpiece.
  • An upper nozzle 81 which will be described later, is arranged below the upper guide 6
  • a lower nozzle 82 which will be described later, is arranged above the lower feeder 5 .
  • the upper nozzle 81 supplies machining fluid downward to the wire electrode 2
  • the lower nozzle 82 supplies machining fluid upward to the wire electrode 2 .
  • the workpiece 7 is processed between the upper nozzle 81 and the lower nozzle 82 .
  • the wire electric discharge machine 100 of the present embodiment performs wire electric discharge machining on the workpiece 7 having a step. That is, the workpiece 7 has various plate thicknesses for each plate thickness region. In other words, the workpiece 7 has a plurality of thickness regions with different thicknesses on the machining path. For example, the workpiece 7 has a first thickness region of thickness regions to be processed, and a second thickness region adjacent to the first thickness region. is the second plate thickness, and the first plate thickness region and the second plate thickness region are continuously wire electric discharge machined. A workpiece 7 is placed on the surface plate 8 . The surface plate 8 is provided with a hole through which the wire electrode 2 is passed.
  • the lower roller 13 conveys the wire electrode 2 after machining the workpiece 7 on the surface plate 8 .
  • the wire traveling speed control motor 9 is a collecting roller and generates driving force for conveying the wire electrode 2 .
  • the wire electrode collection box 10 is a box for collecting the wire electrodes 2 sent from the wire travel speed control motor 9 .
  • the X-axis drive motor 11X drives the surface plate 8 in the X-axis direction
  • the Y-axis drive motor 11Y drives the surface plate 8 in the Y-axis direction.
  • the wire tension control device 31 is connected to the tension load device 3 and controls the wire tension that is the tension of the wire electrode 2 by controlling the tension load device 3 .
  • the machining power supply 32 is connected to the upper power feeder 4 and the lower power feeder 5 , and controls the upper power feeder 4 and the lower power feeder 5 to generate electric discharge between the workpiece 7 and the wire electrode 2 .
  • the machining power supply 32 has a machining voltage detector 45 and a machining energy detector 46, which will be described later.
  • the machining power supply 32 sends the machining voltage detected by the machining voltage detector 45 and the machining energy detected by the machining energy detector 46 to the NC controller 33 .
  • the machining power supply 32 uses a voltage correction value (hereinafter referred to as a voltage correction value) and a voltage pulse pause time correction value (hereinafter referred to as a pause time correction value) sent from the NC control device 33. It controls the upper feeder 4 and the lower feeder 5 .
  • the NC controller 33 controls the machining mechanism 30, the machining power supply 32, and the wire tension controller 31.
  • the NC control device 33 is connected to, for example, the X-axis drive motor 11X and the Y-axis drive motor 11Y.
  • the NC control device 33 controls the position of the surface plate 8 in the X-axis direction and the Y-axis direction by sending axial movement commands to the X-axis drive motor 11X and the Y-axis drive motor 11Y. Thereby, the NC control device 33 controls the distance between the workpiece 7 placed on the surface plate 8 and the wire electrode 2, and the voltage between the workpiece 7 and the wire electrode 2 is controlled. to control.
  • the NC control device 33 is also connected to the wire travel speed control motor 9 and controls the wire travel speed control motor 9 .
  • a connection line between the NC control device 33 and the wire travel speed control motor 9 is omitted.
  • the NC control device 33 calculates a wire tension command based on the machining voltage detected by the machining voltage detector 45 and the machining energy detected by the machining energy detector 46.
  • a wire tension command is a command for controlling the tension of the wire electrode 2 .
  • the NC control device 33 sends the calculated wire tension command to the wire tension control device 31 .
  • the NC control device 33 also calculates a voltage correction value and a rest time correction value based on the machining voltage detected by the machining voltage detector 45 and the machining energy detected by the machining energy detector 46.
  • the NC control device 33 sends the calculated voltage correction value and idle time correction value to the machining power source 32 .
  • the wire electric discharge machining apparatus 100 moves the surface plate 8 in the X-axis direction and the Y-axis direction by the X-axis drive motor 11X and the Y-axis drive motor 11Y, and moves the workpiece 7 placed on the surface plate 8 and the wire electrode. 2 to a specific distance at which wire discharge is possible. Thereby, the wire electric discharge machine 100 performs wire electric discharge machining on the workpiece 7 with the wire electrode 2 .
  • a case will be described below in which the workpiece 7 is moved in the X-axis direction and wire electric discharge machining is performed on the workpiece 7 .
  • FIG. 2 is a perspective view showing another configuration example of the wire electric discharge machine according to the embodiment.
  • a wire electric discharge machine 101 shown in FIG. 2 includes a machining mechanism 34 instead of the machining mechanism 30 compared to the wire electric discharge machine 100 shown in FIG. Unlike the machining mechanism 30, the machining mechanism 34 does not have the X-axis drive motor 11X and the Y-axis drive motor 11Y.
  • the wire electric discharge machine 101 sends an axis movement command to the upper guide 6 and the lower guide 12 . Thereby, in the wire electric discharge machine 100, the upper guide 6 and the lower guide 12 move in the X-axis direction and the Y-axis direction.
  • the wire electric discharge machine 100 shown in FIG. 1 is of a type that moves the surface plate 8 according to the axis movement command from the NC control device 33, and the wire electric discharge machine 101 shown in FIG. In this system, the upper guide 6 and the lower guide 12 are moved by an axial movement command from 33 . In the following description, the wire electric discharge machine 100 shown in FIG. 1 will be described.
  • the machining dimension is the dimension of the workpiece 7 after machining
  • the machining shape is the shape of the workpiece 7 after machining.
  • the machining dimension is the dimension of the workpiece 7 in the Y-axis direction, that is, the dimension when viewed from the Z-axis direction
  • the machining shape is the dimension when the workpiece 7 is viewed from the X-axis direction.
  • the shape of the workpiece 7 is determined by the machining dimensions for each height.
  • FIG. 3 is a diagram for explaining the structure of the workpiece machined by the wire electric discharge machine according to the embodiment.
  • FIG. 3 shows a region of the workpiece 7 in the vicinity of a portion to be machined by the wire electrode 2. As shown in FIG. The workpiece 7 is machined in the X-axis direction so that grooves parallel to the X-axis direction are formed in the workpiece 7 .
  • the workpiece 7 is repeatedly processed multiple times in the X-axis direction.
  • the workpiece 7 is rough-machined in the first machining, semi-finishing in the second machining, and finishing in the third machining.
  • the workpiece 7 has, for example, a first thickness region 21 having a first thickness, a second thickness region 22 having a second thickness, and a third thickness. It is composed of a third plate thickness region 23 and a fourth plate thickness region 24 having a fourth plate thickness.
  • the first plate thickness is, for example, 200 mm
  • the second plate thickness is, for example, 150 mm
  • the third plate thickness is, for example, 100 mm
  • the fourth plate thickness is, for example, 50 mm.
  • any one of the first thickness region 21, the second thickness region 22, the third thickness region 23, and the fourth thickness region 24 may be referred to as a thickness region.
  • the plate thickness to be processed changes in order of the first plate thickness, the second plate thickness, the third plate thickness, and the fourth plate thickness.
  • the workpiece 7 is machined by the wire electrode 2 between the upper nozzle 81 and the lower nozzle 82 .
  • the distance between the upper nozzle 81 and the lower nozzle 82 is, for example, 310 mm.
  • FIG. 4 is a diagram for explaining the shape of the workpiece when the workpiece is machined without correcting the machining speed with respect to the plate thickness.
  • FIG. 4 shows the processed shape, which is the shape after processing of the first thickness region 21 and the fourth thickness region 24 when the workpiece 7 is viewed from above.
  • the removed volume of the workpiece 7 in the direction of progress of machining is small in the fourth thickness region 24, which is the region where the thickness is thin. Since the machining speed is fast, it is difficult for electric discharge to fly to the side in the direction of machining progress. On the other hand, in the thick first plate thickness region 21, the removal volume of the workpiece 7 in the machining progress direction is large and the machining speed is slow, so the discharge tends to fly to the side face in the machining progress direction.
  • the amount of the workpiece 7 cut by machining is small in the fourth thickness region 24 having a small thickness, and the amount of the workpiece 7 cut by machining is reduced in the first thickness region 21 having a large thickness.
  • the width of the machined groove is narrow in the region where the plate thickness is thin, and the width of the machined groove is wide in the region where the plate thickness is thick.
  • the width of the machining groove that is, the machining dimension, includes the vibration caused by running of the wire electrode 2, the amount of separation from the upper nozzle 81 to the workpiece 7, the amount of separation from the lower nozzle 82 to the workpiece 7, the machining voltage, and the input voltage. It changes depending on the discharge energy, etc.
  • the amount of bending of the wire electrode 2 differs depending on the height of the workpiece 7, so the progress speed of machining differs depending on the height of the workpiece 7. That is, the progress speed of machining differs depending on the amount of separation from the upper nozzle 81 to the workpiece 7 and the separation amount from the lower nozzle 82 to the workpiece 7 .
  • the nozzle separation amount is the separation distance between the upper nozzle 81 and the workpiece 7 and the separation distance between the lower nozzle 82 and the workpiece 7 . Since the workpiece 7 has various plate thickness regions, the nozzle separation amount differs for each plate thickness region. Therefore, if the workpiece 7 is machined without correcting the machining conditions such as the machining speed, the machined shape will vary.
  • the wire electric discharge machine 100 of the present embodiment adjusts the machining conditions such as the machining voltage so that the machining dimensional and machining shape differences in each region in the first machining can be corrected in the second and subsequent machining. adjust. That is, if the machining dimensional difference or machining shape difference that occurs in the first machining is large, the machining dimensions and machining shape may not be corrected completely. , machining is performed in accordance with changes in plate thickness so that the machining groove width is kept constant to some extent. In other words, the wire electric discharge machining apparatus 100 is designed so that the difference in the machined groove width between the plate thickness regions and the variation in the machined shape within the plate thickness region, which are caused by the plate thickness change, approach a constant value at the time of the first machining. processed into
  • the NC control device 33 of the embodiment calculates a wire tension command, a voltage correction value, and a pause time correction value based on the machining voltage, electrical discharge machining energy per unit time, and nozzle separation amount.
  • the NC control device 33 controls the wire tension command and the voltage so as to reduce the processing dimensional difference and the processing shape difference between the different thickness regions for the workpiece 7 having various thicknesses for each thickness region.
  • a correction value and a pause time correction value are calculated.
  • the workpiece 7 has various plate thickness regions, and the amount of machining differs at each position from the bottom surface to the top surface of the workpiece 7 . Therefore, the dimension of the workpiece 7 after machining differs for each height from the bottom surface of the workpiece 7 .
  • the average value of post-machining dimensions for each height from the bottom surface of the workpiece 7 in one plate thickness region is referred to as a machining dimension.
  • the processed dimension may be the median value of post-processed dimensions for each height from the bottom surface of the workpiece 7 in one plate thickness region.
  • the NC control device 33 calculates a wire tension command, a voltage correction value, and an idle time correction value so that the machining dimensions in each thickness region of the workpiece 7 do not vary among the thickness regions.
  • the machining shape of the workpiece 7 is indicated by the straightness accuracy of the workpiece 7 in the Z-axis direction.
  • the straightness accuracy corresponds to the variation in dimensional accuracy of the machined dimensions of the workpiece 7 corresponding to the deflection amount of the wire electrode 2 during wire electric discharge machining. Since the bending of the wire electrode 2 is bending in a direction perpendicular to the Z-axis direction, it includes a bending component in the X-axis direction and a bending component in the Y-axis direction. Since the bending component in the Y-axis direction affects the machining dimension of the workpiece 7 in the Y-axis direction, the bending component in the Y-axis direction will be described below.
  • FIG. 5 is a diagram for explaining the shape of the workpiece when the workpiece is machined without correcting the bending of the wire electrode with respect to the plate thickness.
  • the horizontal axis of FIG. 5 is the machining dimension of the workpiece 7 in the Y-axis direction, and the vertical axis is the height of the workpiece 7 .
  • the machining dimension of the workpiece 7 in the Y-axis direction differs for each height of the workpiece 7 .
  • a dimension curve 65 is the processing dimension in the first plate thickness region 21, and a dimension curve 66 is the processing dimension in the second plate thickness region 22.
  • a dimension curve 67 is the machining dimension in the third thickness region 23 and a dimension curve 68 is the machining dimension in the fourth thickness region 24 .
  • the height of the workpiece 7 is from 0 to 200 mm.
  • the machining dimension is small in the central region in the Z-axis direction of the workpiece 7 where the amount of bending of the wire electrode 2 is large.
  • the machining dimension is small in the end region of the workpiece 7 in the Z-axis direction where the amount of bending of the wire electrode 2 is small.
  • the wire electrode 2 bends so that the workpiece 7 is processed at upper and lower end regions of the wire electrode 2 (hereinafter referred to as wire end processing regions). ) and a portion machined in the central region of the wire electrode 2 (hereinafter referred to as a wire central machining portion).
  • the bending of the wire electrode 2 is greater at the wire center machining location than at the wire end machining location, so the area to be machined becomes wider.
  • the machined portion at the center of the wire has a larger amount of machining than the portion machined at the wire end portion, so that the post-machining dimension becomes smaller.
  • the post-machining dimensions of the workpiece 7 vary for each height from the bottom surface of the workpiece 7 due to the bending of the wire electrode 2 . Variations in machining dimensions within one plate thickness region correspond to variations in machining shape.
  • the NC control device 33 stores dimensional curve information, which is information on the dimensional curves 65 to 68, and adjusts the machining voltage, rest time, and wire tension based on the dimensional curve information when machining the workpiece 7. Control.
  • the NC control device 33 provides a wire tension command, a wire tension command, a A voltage correction value and a rest time correction value are calculated. Specifically, the NC control device 33 provides a wire tension command, a voltage correction value, and a pause value that reduce the amount of bending of the wire electrode 2 in the Y-axis direction, which is the direction perpendicular to the X-axis direction, which is the processing progress direction. Calculate the time correction value. In other words, the NC control device 33 calculates the wire tension command, the voltage correction value, and the pause time correction value that increase the straightness accuracy in each plate thickness region of the workpiece 7 .
  • the straightness accuracy of is improved. As a result, errors in the machined shape are reduced, and the NC control device 33 can improve the accuracy of the machined shape.
  • the wire electric discharge machine 100 uses the following four parameters that determine the machining shape during machining.
  • A Machining voltage
  • B EDM energy per unit time
  • C Nozzle distance
  • D Wire tension
  • the above four parameters have the following effects on the machining of the workpiece 7, respectively.
  • ⁇ The machining voltage affects the machining groove width (machining dimensions and straightness accuracy).
  • ⁇ Electrical discharge machining energy per unit time affects straightness accuracy and machining speed.
  • ⁇ The amount of nozzle separation affects the electric discharge machining energy.
  • ⁇ The wire tension affects the straightness accuracy due to the deflection of the wire electrode 2 .
  • a low machining voltage corresponds to a short distance between the wire electrode 2 and the workpiece 7 .
  • the wire electric discharge machine 100 adjusts the distance between the wire electrode 2 and the workpiece 7 by adjusting the feed speed of the wire electrode 2 in the direction in which machining progresses. For example, when lowering the machining voltage, the wire electric discharge machine 100 shortens the distance between the wire electrode 2 and the workpiece 7 by increasing the feed speed of the wire electrode 2 in the machining progress direction. In this case, the size of the workpiece 7 to be machined becomes large because the volume removed from the side face in the direction of progress of machining is small.
  • the wire electric discharge machine 100 increases the distance between the wire electrode 2 and the workpiece 7 by decreasing the feed speed of the wire electrode 2 in the direction of progress of machining.
  • the size of the workpiece 7 to be machined becomes small because the volume removed from the side face in the direction of progress of the machining increases.
  • the feed speed of the wire electrode 2 in the machining advancing direction corresponds to the machining speed.
  • the force that separates the wire electrode 2 from the work piece 7 due to the explosive force generated by the electric discharge causes the wire electrode 2 to move due to the electrostatic attraction caused by the current flowing through the wire electrode 2. Since the force is larger than the force to bring the workpiece closer to the workpiece 7, the machined surface has a shape in a swelling direction.
  • the electrostatic attraction becomes superior to the explosive force generated by electric discharge, so that the machined surface shape becomes concave.
  • the wire electric discharge machining apparatus 100 calculates the electric discharge machining energy based on the energy per electric discharge pulse and the number of pulses. In the wire electric discharge machining apparatus 100, when the electric discharge machining energy is lowered, the bending amount of the wire electrode 2 is reduced, so the straightness accuracy can be improved. In addition, the wire electric discharge machine 100 can increase the machining speed by increasing the electric discharge machining energy, because the amount of machining can be increased.
  • the wire electric discharge machining apparatus 100 detects the nozzle separation amount by a nozzle separation amount detector 49, which will be described later, or receives it from the user through a setting input IF (Interface, interface) 20, which will be described later.
  • a nozzle separation amount detector 49 which will be described later
  • IF Interface, interface
  • the nozzle separation increases, the amount of machining fluid supplied to the gap between the wire electrode 2 and the workpiece 7 decreases, so the electric discharge machining energy that can be applied to the wire electrode 2 disconnection limit decreases. Also, the higher the wire tension, the less the bending of the wire electrode 2, so the straightness accuracy is improved.
  • the wire electric discharge machine 100 controls machining so that the machining dimensions for each plate thickness region to be machined and the machining shape within each plate thickness region approach a constant value. For this reason, the manufacturer of the wire electric discharge machine 100 acquires in advance the results of each machining dimension and each machining shape when machining is executed with various combinations of the parameters (A) to (D). .
  • the manufacturer of the wire electric discharge machining apparatus 100 formulates the relationship between the above parameters (A) to (D), the machining dimensions and the machining shape, thereby producing the geometry compensator 35, which will be described later.
  • a geometry compensator 35 is arranged in the NC controller 33 and calculates a wire tension command, a voltage correction value and a rest time correction value.
  • the manufacturer of the wire electric discharge machining apparatus 100 uses the formulated function to minimize the machining dimensional difference between the plate thickness regions, and the straightness accuracy difference, which is the machining shape, to the minimum within each plate thickness region.
  • a control model is constructed and set in the geometry compensator 35 .
  • This control model corresponds to control by the geometry compensator 35 .
  • the shape and dimension compensator 35 is based on the machining dimension and straightness accuracy of the workpiece 7 when wire electric discharge machining is performed with a plurality of combinations of machining voltage, electric discharge machining energy, nozzle separation amount, and wire tension.
  • a voltage correction value, a pause time correction value, and a wire tension command are calculated using the control model set in the above.
  • Voltage correction value information 77, energy correction value information, and first to third correspondence relationship information, which will be described later, are set in the shape and dimension compensator 35 based on the machining result of the prior machining processing by the wire electric discharge machining apparatus 100. be.
  • the diameter of the wire electrode 2, the material of the workpiece 7, and other parameters that affect the machining shape. may be combined in various ways.
  • the manufacturer of the wire electric discharge machine 100 constructs a control model for each diameter of the wire electrode 2 and each material of the workpiece 7 and sets it in the geometry compensator 35 .
  • the geometry compensator 35 uses a control model corresponding to at least one of the diameter of the wire electrode 2 and the material of the workpiece 7 specified by the user.
  • the geometry compensator 35 calculates a wire tension command, a voltage correction value, and an idle time correction value based on the machining voltage, machining energy, machining speed, nozzle separation amount, etc. during machining.
  • FIG. 6 is a block diagram showing a functional configuration example of the wire electric discharge machine according to the embodiment.
  • the machining power supply 32 has a machining voltage detector 45 , a machining energy detector 46 , a feedback controller 43 , and calculators 41 and 42 .
  • the NC control device 33 has a plate thickness estimator 48 , a nozzle separation amount detector 49 , a setting input IF 20 and a geometry compensator 35 .
  • the calculator 41 is connected to the calculator 42 , and the calculator 42 is connected to the feedback controller 43 .
  • a feedback controller 43 is also connected to the processing mechanism 30 . Specifically, feedback controller 43 is connected to upper feeder 4 and lower feeder 5 .
  • the machining mechanism 30 is also connected to a machining voltage detector 45 , a machining energy detector 46 , a wire tension controller 31 , a nozzle separation amount detector 49 and a plate thickness estimator 48 .
  • Machining voltage detector 45 is connected to plate thickness estimator 48 and geometry compensator 35 .
  • Machining energy detector 46 is connected to plate thickness estimator 48 and geometry compensator 35 .
  • the geometry compensator 35 is connected to the plate thickness estimator 48 , nozzle separation amount detector 49 , setting input IF 20 , calculator 41 and wire tension controller 31 .
  • the wire tension control device 31 controls the tension load device 3 of the processing mechanism 30.
  • the NC control device 33 also controls the X-axis drive motor 11X, the Y-axis drive motor 11Y, and the like of the processing mechanism 30 .
  • the machining voltage detector 45 is connected to the wire electrode 2 via the upper feeder 4 or the lower feeder 5 and to the workpiece 7 .
  • the machining voltage detector 45 detects the machining voltage between the wire electrode 2 and the workpiece 7 during machining.
  • the machining voltage detected by the machining voltage detector 45 corresponds to the distance between the wire electrode 2 and the workpiece 7 .
  • the machining voltage detector 45 sends the detected machining voltage to the calculator 42 , plate thickness estimator 48 , and geometry compensator 35 .
  • the machining energy detector 46 is connected to the wire electrode 2 via the upper feeder 4 or the lower feeder 5 and to the workpiece 7 .
  • the machining energy detector 46 detects discharge pulses generated between the wire electrode 2 and the workpiece 7 during machining.
  • the machining energy detector 46 calculates the electric discharge machining energy based on the energy per one discharge pulse and the number of pulses. Machining energy detector 46 sends electrical discharge machining energy to calculator 42 , plate thickness estimator 48 , and geometry compensator 35 .
  • a computing unit 41 receives a command voltage and a pause time from the NC control device 33 .
  • the command voltage is a command value of voltage used for wire electric discharge machining.
  • Arithmetic unit 41 receives the voltage correction value and the quiescent time correction value sent from geometry compensator 35 .
  • the voltage correction value is a correction value for correcting the command voltage received by the calculator 41 from the NC control device 33 .
  • the pause time correction value is a correction value for correcting the pause time received by the calculator 41 from the NC control device 33 .
  • the voltage correction value and the rest time correction value are correction values for improving the accuracy of the machining dimension and the accuracy of the machining shape for the workpiece 7 having a plurality of plate thickness regions with different plate thicknesses on the machining path. is.
  • the calculator 41 subtracts the voltage correction value and the pause time correction value from the received command voltage and pause time, and sends the result to the calculator 42 .
  • the calculator 41 may be arranged in the NC control device 33 .
  • the calculator 42 subtracts the current machining voltage sent from the machining voltage detector 45 from the command voltage sent from the calculator 41 and sends the result to the feedback controller 43 . Further, the calculator 42 subtracts the current electric discharge machining energy sent from the machining energy detector 46 from the pause time sent from the calculator 41 and sends the result to the feedback controller 43 .
  • a feedback controller 43 controls the machining mechanism 30 using the results calculated by the calculator 42 . Specifically, the feedback controller 43 corrects the position of the surface plate 8 in the X-axis direction and the Y-axis direction by sending an axis movement command to the X-axis drive motor 11X and the Y-axis drive motor 11Y. Thereby, the feedback controller 43 controls the machining voltage, electric discharge machining energy, etc. for the machining mechanism 30 .
  • the X-axis drive motor 11X and the Y-axis drive motor 11Y of the machining mechanism 30 are each connected to an encoder, which detects the machining speed and sends it to the plate thickness estimator 48.
  • the plate thickness estimator 48 is based on the machining speed sent from the machining mechanism 30, the machining voltage sent from the machining voltage detector 45, and the electric discharge machining energy sent from the machining energy detector 46. , the plate thickness of the workpiece 7 is estimated.
  • the plate thickness estimator 48 estimates the plate thickness of a portion of the workpiece 7 that is being machined during machining in which the plate thickness changes.
  • the plate thickness estimator 48 sends the estimated plate thickness to the geometry compensator 35 as a plate thickness estimated value.
  • the nozzle separation amount detector 49 detects the nozzle separation amount from the machining mechanism 30 during machining and sends it to the geometry compensator 35 .
  • the setting input IF 20 accepts the reference plate thickness input by the user and sends it to the geometry compensator 35 .
  • the reference plate thickness is a plate thickness used as a reference for processing dimensions.
  • the wire electric discharge machine 100 processes a plate thickness region other than the reference plate thickness so that the workpiece 7 has the machining dimensions of the reference plate thickness.
  • the geometry compensator 35 stores information on dimension curves 65 to 68 as dimension curve information, and 200 mm is specified as the reference plate thickness
  • the geometry compensator 35 stores the dimension curve 65 of 200 mm. Controls the machining so that is nearly parallel to the vertical axis. That is, the geometry compensator 35 calculates a voltage correction value, a pause time correction value, and a wire tension command that make the 200 mm dimension curve 65 parallel to the vertical axis.
  • the geometry compensator 35 calculates a voltage correction value, a pause time correction value, and a wire tension command so that the machining dimension of 50 mm to 150 mm approaches the dimension curve 65 that is parallel to the vertical axis.
  • the geometry compensator 35 controls the machining so as to approach the machining dimension (dimension curve) of a specific plate thickness.
  • the geometry compensator 35 controls the machining so as to approach the machining dimension of the thinnest plate, for example.
  • the setting input IF 20 may receive the nozzle separation amount from the user and send it to the geometry compensator 35 .
  • the NC control device 33 may not have the nozzle separation amount detector 49 .
  • the shape and dimension compensator 35 sets a voltage correction value, a pause time correction value, and a wire tension command based on the machining voltage, machining energy, machining speed, plate thickness estimate, nozzle separation amount, and reference plate thickness during machining. calculate.
  • the geometry compensator 35 sends the voltage correction value and the pause time correction value to the calculator 41 and sends the wire tension command to the wire tension control device 31 .
  • the wire tension controller 31 controls the machining mechanism 30 according to the wire tension command. Specifically, the wire tension control device 31 controls the tension load device 3 according to the wire tension command.
  • the shape and dimension compensator 35 is based on the machining voltage during machining, the machining energy during machining, the machining speed during machining, the estimated plate thickness during machining, the nozzle separation amount during machining, and the reference plate thickness. Since the voltage correction value, the pause time correction value, and the wire tension command are calculated in this way, it is possible to improve the accuracy of machining dimensions and the accuracy of the machining shape in rough machining, which is the first machining.
  • a geometry compensator 35 calculates a voltage correction value of the machining voltage based on the plate thickness estimated value.
  • FIG. 7 is a diagram for explaining calculation processing of a voltage correction value by the geometry compensator according to the embodiment.
  • FIG. 7 shows the configuration of the voltage correction value calculator 85 included in the geometry compensator 35. As shown in FIG.
  • the voltage correction value calculation unit 85 includes calculators 75 and 76 .
  • the computing unit 75 calculates the plate thickness corresponding voltage correction value based on the plate thickness estimated value and sends it to the computing unit 76 .
  • the plate thickness corresponding voltage correction value is a correction value of the machining voltage corresponding to the plate thickness estimated value.
  • the arithmetic unit 75 calculates the plate thickness corresponding voltage correction value using the voltage correction value information indicating the correspondence relationship between the plate thickness estimated value and the plate thickness corresponding voltage correction value.
  • FIG. 8 is a diagram for explaining voltage correction value information used by the geometry compensator according to the embodiment.
  • the horizontal axis is the plate thickness estimated value
  • the vertical axis is the plate thickness corresponding voltage correction value.
  • the plate thickness corresponding voltage correction value is 0 at a low plate thickness, and from a specific plate thickness, the plate thickness corresponding voltage correction value increases in proportion to the plate thickness. Above the thickness, the plate thickness corresponding voltage correction value is not changed.
  • the plate thickness corresponding voltage correction value may be increased even if the plate thickness is equal to or greater than a specific plate thickness.
  • the arithmetic unit 75 calculates the plate thickness corresponding voltage correction value based on the voltage correction value information 77 and the plate thickness estimated value.
  • the voltage correction value information 77 may be a mathematical expression indicating the correspondence relationship between the plate thickness estimated value and the plate thickness corresponding voltage correction value, or may be a data table.
  • the calculator 76 calculates the voltage correction value by adding the plate thickness corresponding voltage correction value to the measured machining voltage, which is the measured machining voltage.
  • the calculator 76 sends the voltage correction value to the calculator 41 .
  • the voltage correction value calculator 85 corrects the machining voltage for the plate thickness estimated value.
  • the machining speed slows down in thicker plate thickness regions, and the bending of the wire electrode 2 widens the gap between the wire electrode 2 and the side surface of the workpiece 7, lowering the straightness accuracy.
  • the voltage correction value calculation unit 85 calculates a voltage correction value for correcting the machining voltage to be higher in the thick plate thickness region, thereby correcting the machining speed so as to increase.
  • the voltage correction value calculator 85 suppresses the processing dimensional difference between the thin plate thickness region and the thick plate thickness region.
  • the geometry compensator 35 calculates a rest time correction value for correcting the electric discharge machining energy based on the plate thickness estimate.
  • FIG. 9 is a diagram for explaining calculation processing of the downtime correction value by the geometry compensator according to the embodiment.
  • FIG. 9 shows the configuration of the pause time correction value calculator 86 provided in the geometry compensator 35. As shown in FIG.
  • the pause time correction value calculator 86 has calculators 63 , 64 and 80 .
  • the calculator 63 calculates the target electric discharge machining energy based on the plate thickness estimated value and sends it to the calculator 64 .
  • the target electric discharge machining energy is a target value of the electric discharge machining energy according to the plate thickness estimated value.
  • the calculator 63 calculates the target electrical discharge machining energy using the energy correction value information indicating the correspondence relationship between the plate thickness estimated value and the target electrical discharge machining energy.
  • the calculator 64 calculates electric discharge machining energy by subtracting the target electric discharge machining energy from the current electric discharge machining energy, and sends it to the calculator 80 .
  • the computing unit 80 calculates a rest time correction value based on the electric discharge machining energy received from the computing unit 64 .
  • a computing unit 80 calculates a pause time correction value by a combination of proportional control and integral control. In this way, the calculator 80 sets the target electrical discharge machining energy based on the calculated plate thickness estimated value, and calculates the pause time correction value such that the target electrical discharge machining energy matches the current electrical discharge machining energy. to control the pause time.
  • the geometry compensator 35 calculates a wire tension command or a voltage correction value for correcting the machining voltage based on the nozzle separation amount.
  • FIG. 10 is a diagram for explaining the relationship between the amount of separation of the nozzle and the amount of deflection of the wire electrode.
  • the position of the lower nozzle 82 is set to a height of 0, and the position of the upper nozzle 81 is set to a height of T5.
  • a workpiece 7D is a workpiece that is machined by the wire electrode 2 in a region from height 0 to height T1.
  • a workpiece 7C is a workpiece to be processed by the wire electrode 2 in a region from height T2 (>T1) to height T3 (>T2).
  • the workpiece 7B is a workpiece that is machined by the wire electrode 2 in a region from height T4 (>T3) to height T5 (>T4).
  • the nozzle separation amount of the workpiece 7D is a distance R3 from the upper nozzle 81 and 0 from the lower nozzle 82.
  • the workpiece 7C is separated from the nozzle by a distance R2a from the upper nozzle 81 and by a distance R2b from the lower nozzle .
  • the nozzle separation amount of the workpiece 7B is 0 from the upper nozzle 81 and the distance R1 from the lower nozzle 82 . Both R2a and R2b are smaller values than R1 and R3.
  • the wire electrode 2 bends in the Y-axis direction, which is the direction perpendicular to the machining progress direction.
  • the amount of bending is greatest at the central portion between the upper nozzle 81 and the lower nozzle 82, and the closer to the upper nozzle 81 or the lower nozzle 82, the smaller the bending amount.
  • the absolute value of the difference between the distance from the lower nozzle 82 and the distance from the upper nozzle 81 is R1.
  • the absolute value of the difference from 81 to the distance is R3.
  • the absolute value of the difference between the distance from the lower nozzle 82 and the distance from the upper nozzle 81 is
  • the workpiece 7C to be machined at the central portion of the wire electrode 2 has a high straightness accuracy because the wire electrode 2 has approximately the same deflection amount on both the upper and lower surfaces of the workpiece 7C.
  • the workpieces 7B and 7D machined by the ends of the wire electrode 2 have lower straightness accuracy because the wire electrode 2 bends differently between the upper and lower surfaces of the workpieces 7B and 7C.
  • the shape and dimension compensator 35 can acquire the nozzle separation amount via the nozzle separation amount detector 49 or the setting input IF 20, the shape and dimension compensator 35 can perform processing control according to the nozzle separation amount, thereby making the workpiece 7 Straightness accuracy can be improved.
  • the shape and dimension compensator 35 calculates the wire tension for improving the straightness accuracy of the workpiece 7 based on the first correspondence information indicating the correspondence between the nozzle separation amount and the wire tension.
  • the geometry compensator 35 can reduce the deflection amount of the wire electrode 2 by, for example, increasing the wire tension, thereby improving the straightness accuracy.
  • the shape and dimension compensator 35 calculates a voltage correction value for improving the straightness accuracy of the workpiece 7 based on the second correspondence information indicating the correspondence between the nozzle distance and the voltage correction value. do.
  • the shape and dimension compensator 35 can increase the machining speed by lowering the machining voltage by the voltage correction value, so it is possible to reduce the amount of machining at locations where the nozzle separation amount is large, and control the straightness accuracy and machining dimensional accuracy. can do.
  • a geometry compensator 35 calculates a wire tension command based on the plate thickness estimated value.
  • the processing speed becomes slow, so the amount of processing increases.
  • the bending of the wire electrode 2 increases the machining amount.
  • the wire electric discharge machine 100 can reduce the bending of the wire electrode 2 by increasing the wire tension, it is possible to reduce the machining amount in the region where the amount of bending of the wire electrode 2 is large, and improve the straightness accuracy. can be made
  • FIG. 11 is a diagram for explaining the relationship between the wire tension and the deflection amount of the wire electrode.
  • the wire electrode 2B shows a wire electrode with a large amount of deflection
  • the wire electrode 2A shows a wire electrode with an increased wire tension to reduce the amount of deflection.
  • the wire electric discharge machine 100 can suppress the bending of the wire electrode 2 by increasing the tension of the wire electrode 2 , thereby improving the straightness accuracy of the workpiece 7 .
  • the wire electric discharge machine 100 increases the wire tension only to such an extent that the probability of the wire electrode 2 breaking is smaller than a specific value.
  • the geometry compensator 35 calculates the wire tension for improving the straightness accuracy of the workpiece 7 based on the third correspondence information indicating the correspondence between the plate thickness estimated value and the wire tension.
  • FIG. 12 is a flowchart showing a processing procedure of wire electric discharge machining by the wire electric discharge machine according to the embodiment.
  • the NC controller 33 collects data (step S20). Specifically, the plate thickness estimator 48 receives the machining voltage, electrical discharge machining energy, and machining speed. Further, the nozzle separation amount detector 49 detects the nozzle separation amount, and the setting input IF 20 receives the reference plate thickness.
  • the plate thickness estimator 48 estimates the plate thickness of the workpiece 7 based on the machining voltage, electric discharge machining energy, and machining speed (step S30). The plate thickness estimator 48 sends the estimated plate thickness to the geometry compensator 35 as a plate thickness estimated value.
  • the shape and dimension compensator 35 calculates a wire tension command, a voltage correction value, and an idle time correction value based on the plate thickness estimated value, the nozzle separation amount, and the reference plate thickness (step S40).
  • the wire electric discharge machine 100 controls machining voltage, machining energy, and wire tension using the wire tension command, voltage correction value, and rest time correction value (step S50).
  • the feedback controller 43 feedback-controls the machining mechanism 30 with the voltage value and the rest time corresponding to the voltage correction value and the rest time correction value, and the wire tension controller 31 adjusts the wire tension of the wire electrode 2. Control.
  • the shape and dimension compensator 35 may estimate and store the machined groove width at the time of the first machining.
  • the geometry compensator 35 estimates the machined groove width based on the first machining conditions used in the first machining and the dimension curve information.
  • the wire electric discharge machining apparatus 100 may store an estimated plate thickness value at the time of the first machining.
  • the shape and dimension compensator 35 associates the estimated machining groove width and plate thickness estimated values with coordinate information indicating the machining position of the workpiece 7, and stores them as machining result information.
  • the shape and dimension compensator 35 uses, for example, the correspondence relationship between the machining groove width and the coordinate information included in the machining result information to determine the second machining conditions, which are the machining conditions used in the second and subsequent machining, and the offset Adjust at least one of the amounts.
  • the offset amount is the amount of shift of the machining position (the position of the wire electrode 2 in the Y-axis direction) used in the second and subsequent machining operations toward the workpiece 7 side.
  • Processing control can be executed based on the processing result information for the second and subsequent processing as well.
  • the geometry compensator 35 calculates the voltage correction value, the pause time correction value, and the wire tension command, for example, using the correspondence relationship between the plate thickness estimated value and the coordinate information included in the machining result information.
  • the wire electric discharge machining apparatus 100 uses the geometry compensator 35 to calculate the voltage correction value, the pause time correction value, and the wire tension command. From the machining of , the machining dimension and straightness accuracy can be improved regardless of the plate thickness region of the workpiece 7 .
  • the wire electric discharge machine 100 controls the axis movement command for maintaining the machining voltage at a specific value and the time to start applying the machining voltage next time, so that the wire electric discharge machine 100 can continuously perform machining without changing the machining conditions.
  • the control can control the machining shape and machining dimensions of the workpiece 7 .
  • wire tension, etc. may be calculated. That is, the functions modeling the machining dimensions and straightness accuracy may be derived experimentally or may be derived by a learning device.
  • the learning device calculates the voltage correction value, the pause time correction value, and the wire tension command so that the machining dimensions of the plurality of plate thickness regions approach the machining dimensions of the specific plate thickness region. .
  • the manufacturer of the wire electric discharge machining apparatus 100 creates a function modeling machining dimensions and straightness accuracy based on dimension information, which is information on machining dimensions contained in past machining results. Set in the compensator 35 .
  • the learning device calculates the machining dimensions based on information obtained in the machining process (hereinafter referred to as process information) such as plate thickness estimated value, machining voltage, electric discharge machining energy, machining speed, and nozzle separation amount.
  • process information information obtained in the machining process
  • Information such as a voltage correction value, a pause time correction value, wire tension, etc. (hereinafter referred to as precision improvement information) that can improve the precision of .
  • the learning device generates a learned model that derives accuracy improvement information that can improve the accuracy of machining dimensions and straightness accuracy from the process information.
  • the learning device generates a learned model, which is a function that models the correspondence relationship between the process information and the accuracy improvement information that can improve the machining dimension accuracy and the straightness accuracy.
  • the inference device uses the learned model to derive accuracy improvement information capable of improving machining dimensional accuracy and straightness accuracy from the process information.
  • ⁇ Learning phase> 13 is a block diagram of a configuration example of a learning device according to an embodiment;
  • the learning device 50 includes a data acquisition section 51 and a model generation section 52 .
  • the data acquisition unit 51 acquires processing results (behavior) and processing parameters (state) as learning data.
  • the machining results are the machining dimensions and machining shape (straightness accuracy).
  • the machining parameters are a combination of parameters that affect the machining shape, such as plate thickness, wire diameter of the wire electrode 2, material of the workpiece 7, machining voltage, electric discharge machining energy, nozzle separation amount, and wire tension.
  • the model generation unit 52 learns the voltage correction value, the pause time correction value, and the wire tension command based on the learning data including the action that is the machining result and the state that is the machining parameter. That is, the model generator 52 generates the learned model 71 for inferring the voltage correction value, the pause time correction value, and the wire tension command from the machining parameters of the wire electric discharge machine 100 .
  • the model generation unit 52 can use known learning algorithms such as supervised learning, unsupervised learning, and reinforcement learning. As an example, a case where reinforcement learning is applied to the model generation unit 52 will be described.
  • reinforcement learning an agent (action subject) in an environment observes the current state (environmental parameters) and decides what action to take. The environment dynamically changes according to the actions of the agent, and the agent is rewarded according to the change in the environment. The agent repeats this and learns the course of action that yields the most rewards through a series of actions.
  • Q-learning As representative methods of reinforcement learning, Q-learning, TD-learning, and the like are known.
  • Q-learning a general update formula for the action-value function Q(s, a) is represented by formula (1) below.
  • s t represents the state of the environment at time t
  • a t represents the action at time t.
  • Action a t changes the state to s t+1 .
  • r t+1 represents the reward obtained by changing the state
  • represents the discount rate
  • represents the learning coefficient.
  • is in the range of 0 ⁇ 1
  • is in the range of 0 ⁇ 1.
  • the action that is the result of processing becomes the action at
  • the state that is the processing parameter becomes the state st
  • the model generator 52 learns the best action at in the state st at time t .
  • the update formula represented by formula (1) increases the action value Q if the action value Q of action a with the highest Q value at time t+1 is greater than the action value Q of action a executed at time t. On the contrary, the action value Q is decreased. In other words, the action value function Q(s, a) is updated so that the action value Q of action a at time t approaches the best action value at time t+1. As a result, the best behavioral value in a certain environment will be propagated to the behavioral value in the previous environment.
  • the model generation unit 52 includes the reward calculation unit 53 and the function update unit 54.
  • the reward calculation unit 53 calculates rewards based on the processing results and processing parameters.
  • the remuneration calculator 53 calculates a remuneration r based on the machining accuracy, that is, the machining dimension accuracy and the machining shape accuracy. For example, if the machining accuracy is improved, the reward r is increased (for example, a reward of "1" is given.) On the other hand, if the machining accuracy is deteriorated, the reward r is reduced (for example, a reward of "-1" is given .).
  • the function updating unit 54 updates the functions for determining the voltage correction value, the pause time correction value, and the wire tension command according to the reward calculated by the reward calculation unit 53 and outputs them to the learned model storage unit 70 .
  • the action value function Q(s t , a t ) represented by Equation (1) is used as a function for calculating the voltage correction value, rest time correction value, and wire tension command.
  • the function updating unit 54 repeatedly executes the learning as described above.
  • the learned model storage unit 70 stores the action-value function Q(s t , a t ) updated by the function updating unit 54 , that is, the learned model 71 .
  • FIG. 14 is a flowchart of a procedure of learning processing by the learning device according to the embodiment;
  • the data acquisition unit 51 acquires the processing result and processing parameters as learning data (step S110).
  • the model generation unit 52 calculates a reward based on the processing result and processing parameters (step S120). Specifically, the remuneration calculation unit 53 of the model generation unit 52 acquires the processing result and the processing parameters, and determines whether to increase the remuneration (step S130) or decrease the remuneration based on the predetermined processing accuracy. (step S140). Reward criteria are whether the precision of machined dimensions and the precision of machined shapes have improved or deteriorated. The model generator 52 determines to increase the reward when the accuracy of the machining dimension and the accuracy of the machining shape improve, and determines to decrease the reward when the accuracy of the machining dimension and the accuracy of the machining shape deteriorate.
  • the model generation unit 52 may determine that the reward should be increased or decreased if either one of the precision of the machining dimension and the precision of the machining shape improves and the other deteriorates. Further, the model generation unit 52 does not have to increase or decrease the reward when one of the precision of the machining dimension and the precision of the machining shape improves and the other deteriorates.
  • the remuneration calculation unit 53 determines to increase the remuneration, it increases the remuneration in step S130.
  • the remuneration calculator 53 determines to reduce the remuneration, it reduces the remuneration in step S140.
  • the function updating unit 54 updates the action value function Q(s t , a t ) represented by Equation (1) stored in the learned model storage unit 70 based on the reward calculated by the reward calculation unit 53. (Step S150).
  • the learning device 50 repeatedly executes steps S110 to S150 described above, and stores the generated action-value function Q(s t , a t ) as a learned model 71 in the learned model storage unit 70 .
  • the learning device 50 stores the learned model 71 in the learned model storage unit 70 provided outside the learning device 50. It may be provided inside.
  • ⁇ Utilization phase> 15 is a block diagram of a configuration example of an inference apparatus according to an embodiment;
  • the inference device 60 includes a data acquisition unit 61 and an inference unit 62 .
  • the data acquisition unit 61 acquires processing parameters.
  • the inference unit 62 infers the processed information 79 using the learned model 71 stored in the learned model storage unit 70 .
  • the machining information 79 is a voltage correction value, a pause time correction value, and a wire tension command. That is, the inference unit 62 inputs the machining parameters acquired by the data acquisition unit 61 to the learned model 71 to infer the voltage correction value, the pause time correction value, and the wire tension command suitable for the machining parameters. can be done.
  • inference device 60 uses learned model 71 learned by model generation unit 52 of learning device 50. However, using learned model 71 acquired from another learning device, good too. Also in this case, the reasoning device 60 outputs the voltage correction value, the pause time correction value, and the wire tension command based on the learned model 71 acquired from another learning device.
  • the data acquisition unit 61 acquires inference data that is data for inferring the voltage correction value, the pause time correction value, and the wire tension command (step S210). Specifically, the data acquisition unit 61 acquires processing parameters.
  • the inference unit 62 inputs machining parameters to the learned model 71 stored in the learned model storage unit 70 (step S220), and obtains a voltage correction value, a pause time correction value, and a wire tension command.
  • the inference unit 62 outputs the obtained data, that is, the voltage correction value, the pause time correction value, and the wire tension command to the wire electric discharge machine 100 (step S230).
  • the wire electric discharge machine 100 corrects the machining voltage and the rest time using the voltage correction value and the rest time correction value output from the inference unit 62 (step S240), and adjusts the wire tension using the wire tension command output from the inference unit 62. Control the tension of the electrode 2; As a result, the wire electric discharge machine 100 can improve the precision of the machined dimensions and the machined shape of the workpiece 7 .
  • reinforcement learning is applied to the learning algorithm used by the inference unit 62 , but it is not limited to this.
  • the learning algorithm supervised learning, unsupervised learning, or semi-supervised learning can be applied in addition to reinforcement learning.
  • neural networks that learns to extract the feature amount itself can also be used, and other known methods such as neural networks, genetic programming, function Machine learning may be performed according to logic programming, support vector machines, and the like.
  • the learning device 50 and the reasoning device 60 may be connected to the wire electric discharge machine 100 via a network, for example, and may be separate devices from the wire electric discharge machine 100 . At least one of the learning device 50 and the reasoning device 60 may be built in the wire electric discharge machine 100 . Furthermore, learning device 50 and reasoning device 60 may reside on a cloud server.
  • the model generation unit 52 may learn the voltage correction value, the pause time correction value, and the wire tension command using learning data acquired from a plurality of wire electric discharge machines.
  • the model generation unit 52 may acquire learning data from a plurality of wire electric discharge machines used in the same area, or may acquire learning data from a plurality of wire electric discharge machines operating independently in different areas.
  • the voltage correction value, the rest time correction value, and the wire tension command may be learned using the learning data. Also, it is possible to add or remove the wire electric discharge machine for collecting the learning data from the target on the way.
  • the learning device 50 that has learned the voltage correction value, the pause time correction value, and the wire tension command for a certain wire electric discharge machine is applied to a different wire electric discharge machine, and for the other wire electric discharge machine,
  • the voltage correction value, pause time correction value, and wire tension command may be re-learned and updated.
  • FIG. 17 is a diagram of a hardware configuration example that implements the NC control device according to the embodiment.
  • the NC controller 33 can be implemented by a processor 91 , memory 92 , output device 93 and input device 94 .
  • processor 91 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP (Digital Signal Processor)) or system LSI (Large Scale Integration).
  • memory 92 is RAM (Random Access Memory) and ROM (Read Only Memory).
  • the NC control device 33 is implemented by the processor 91 reading and executing a computer-executable control program for executing the operation of the NC control device 33 stored in the memory 92 . It can also be said that the control program for executing the operation of the NC control device 33 causes the computer to execute the procedure or method of the NC control device 33 .
  • the control program for executing the operation of the NC control device 33 includes a program for machining the workpiece 7, a program for executing the operation of the geometry compensator 35, and the like.
  • the control program executed by the NC controller 33 has a module configuration including a plate thickness estimator 48, a geometry compensator 35, and a nozzle separation amount detector 49, which are loaded onto the main memory. and these are generated on the main memory.
  • the input device 94 accepts the reference plate thickness and the like and sends them to the processor 91 .
  • the memory 92 stores voltage correction value information 77, energy correction value information, first to third correspondence information, dimension curve information, and the like. Also, the memory 92 is used as a temporary memory when the processor 91 executes various processes.
  • the output device 93 outputs the voltage correction value and the pause time correction value generated by the processor 91 to the machining power supply 32 .
  • the output device 93 also outputs the wire tension command generated by the processor 91 to the wire tension control device 31 .
  • the control program may be stored in a computer-readable storage medium in an installable or executable format and provided as a computer program product. Also, the control program may be provided to the NC control device 33 via a network such as the Internet. It should be noted that the functions of the NC control device 33 may be partly realized by dedicated hardware such as a dedicated circuit, and partly realized by software or firmware.
  • the feedback controller 43, the wire tension control device 31, the learning device 50, and the inference device 60 have the same hardware configuration as the wire electric discharge machine 100, so description thereof will be omitted.
  • the shape and dimension compensator 35 reduces the difference in machining dimension between the plate thickness regions based on the machining voltage, machining energy, machining speed, nozzle separation amount, and plate thickness estimated value. Also, the voltage correction value, the pause time correction value, and the wire tension command are calculated so that the straightness accuracy of the workpiece is high within the plate thickness region. Then, the machining mechanism 30 uses the voltage correction value, the rest time correction value, and the wire tension command to perform wire electric discharge machining on the workpiece 7 whose plate thickness changes during machining. As a result, the wire electric discharge machine 100 can improve the precision of machining dimensions and the precision of the machined shape even for the workpiece 7 whose plate thickness changes during machining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A wire electrical discharge machining device (100) provided with: a machining mechanism (30) that uses pulsed voltage from a wire electrode to perform wire electrical discharge machining on a workpiece having a plurality of thickness regions mutually different in terms of the thickness on the machining path; a thickness estimator (48) that estimates a thickness of the workpiece during wire electrical discharge machining; and a shape dimension compensator (35) that uses a machining voltage during machining, machining energy during machining, a machining speed during machining, the distance between a workpiece and a nozzle for supplying machining fluid to the wire electrode, and the thickness to calculate a voltage correction value, which is a correction value for machining voltage, an off-time correction value, which is a correction value for the off-time of a pulsed voltage, and a wire tension command, which is a command for the wire electrode, such that the machining dimensional difference between the thickness regions is reduced and the straightness in the workpiece in the wire electrode length direction is enhanced in each thickness region, wherein the machining mechanism (30) is controlled using the voltage correction value, off-time correction value, and wire tension command.

Description

ワイヤ放電加工装置、形状寸法補償器、ワイヤ放電加工方法、学習装置、および推論装置Wire electric discharge machine, geometry compensator, wire electric discharge machining method, learning device, and reasoning device
 本開示は、被加工物の加工後の寸法および形状を補償するワイヤ放電加工装置、形状寸法補償器、ワイヤ放電加工方法、学習装置、および推論装置に関する。 The present disclosure relates to a wire electric discharge machine, a geometry compensator, a wire electric discharge machining method, a learning device, and an inference device that compensate for the dimension and shape of a workpiece after machining.
 ワイヤ放電加工装置は、加工対象である被加工物の板厚によって適切な加工条件が異なる。このため、ワイヤ放電加工装置は、板厚に応じた適切な加工条件を選択してワイヤ放電加工を実行することが望まれる。 For wire electric discharge machines, the appropriate machining conditions differ depending on the thickness of the workpiece to be machined. Therefore, it is desired that the wire electric discharge machine selects appropriate machining conditions according to the plate thickness and performs wire electric discharge machining.
 特許文献1に記載のワイヤ放電加工装置は、板厚と加工エネルギーとの関係から電気条件強度を選択し、電気条件強度に対応した電気条件に切り替えることで、ワイヤ電極の断線を防止している。 The wire electric discharge machining apparatus described in Patent Document 1 selects the electrical condition strength from the relationship between the plate thickness and the machining energy, and switches to the electrical condition corresponding to the electrical condition strength, thereby preventing disconnection of the wire electrode. .
特開平9-290328号公報JP-A-9-290328
 しかしながら、上記特許文献1の技術では、被加工物が薄板である場合、加工進行方向の除去体積が少なく加工速度が速いので、進行方向の側面に放電が飛びにくい。一方、被加工物が厚板である場合、進行方向の除去体積が多く加工速度が遅いので、進行方向の側面に放電が飛びやすい。 However, in the technique of Patent Document 1, when the workpiece is a thin plate, the volume removed in the direction of progress of processing is small and the processing speed is high, so the discharge is less likely to spread to the side surface in the direction of progress. On the other hand, when the workpiece is a thick plate, the removal volume in the traveling direction is large and the machining speed is slow, so the discharge tends to fly to the side surface in the traveling direction.
 このため、上記特許文献1の技術では、大きな放電加工エネルギーが投入された場合、加工中に被加工物の板厚が変化する加工において、薄い板厚では加工溝幅が細くなり、厚い板厚では加工溝幅が太くなる。この結果、加工中に板厚が変化する被加工物に対しては、加工寸法が板厚ごとに異なることとなり、加工寸法の精度が悪くなる。また、ワイヤ放電加工中は、ワイヤ電極が撓む。このため、被加工物の同じ板厚の領域内であっても、ワイヤ電極の何れの位置で被加工物が加工されたかによって加工溝幅が異なるので、被加工物の加工高さ毎に加工寸法がばらついて加工形状の精度が悪くなる。 For this reason, in the technique of Patent Document 1, when a large electrical discharge machining energy is input, in machining in which the plate thickness of the workpiece changes during machining, the machining groove width becomes narrower with a thinner plate, and a larger plate thickness , the groove width becomes thicker. As a result, for a workpiece whose plate thickness changes during processing, the processing dimensions differ for each plate thickness, and the precision of the processing dimension deteriorates. Also, the wire electrode bends during wire electric discharge machining. Therefore, even within a region of the same plate thickness of the workpiece, the width of the groove to be machined differs depending on the position of the wire electrode where the workpiece is machined. Due to the variation in dimensions, the accuracy of the processed shape deteriorates.
 本開示は、上記に鑑みてなされたものであって、加工中に板厚が変化する被加工物に対しても加工寸法の精度および加工形状の精度を向上させることができるワイヤ放電加工装置を得ることを目的とする。 The present disclosure has been made in view of the above, and provides a wire electric discharge machine that can improve the accuracy of machining dimensions and machining shape even for a workpiece whose plate thickness changes during machining. with the aim of obtaining
 上述した課題を解決し、目的を達成するために、本開示のワイヤ放電加工装置は、加工経路上に板厚がそれぞれ異なる複数の板厚領域を有する被加工物に対し、ワイヤ電極からの電圧パルスを用いてワイヤ放電加工を行う加工機構と、ワイヤ放電加工中に被加工物の板厚を推定する板厚推定器とを備える。また、本開示のワイヤ放電加工装置は、加工中の加工電圧、加工中の加工エネルギー、加工中の加工速度、加工液をワイヤ電極に供給するノズルと被加工物との間の距離である離間距離、および板厚に基づいて、板厚領域間での加工寸法の差が小さくなり且つ被加工物のワイヤ電極の長さ方向での真直精度がそれぞれの板厚領域内で高くなるように、加工電圧の補正値である電圧補正値、電圧パルスの休止時間の補正値である休止時間補正値、およびワイヤ電極への張力指令であるワイヤ張力指令を算出する形状寸法補償器を備える。加工機構は、電圧補正値、休止時間補正値、およびワイヤ張力指令を用いて制御される。 In order to solve the above-described problems and achieve the object, the wire electric discharge machine of the present disclosure provides a workpiece having a plurality of plate thickness regions with different plate thicknesses on a machining path. A machining mechanism that performs wire electric discharge machining using pulses, and a thickness estimator that estimates the thickness of a workpiece during wire electric discharge machining. In addition, the wire electric discharge machine of the present disclosure provides machining voltage during machining, machining energy during machining, machining speed during machining, and the distance between the nozzle that supplies the machining fluid to the wire electrode and the workpiece Based on the distance and the plate thickness, the difference in processing dimensions between the plate thickness regions is small, and the straightness accuracy in the length direction of the wire electrode of the workpiece is high within each plate thickness region. A shape and size compensator is provided for calculating a voltage correction value that is a correction value for the machining voltage, a rest time correction value that is a correction value for the rest time of the voltage pulse, and a wire tension command that is a tension command for the wire electrode. The machining mechanism is controlled using voltage corrections, dwell time corrections, and wire tension commands.
 本開示にかかるワイヤ放電加工装置は、加工中に板厚が変化する被加工物に対しても加工寸法の精度および加工形状の精度を向上させることができるという効果を奏する。 The wire electric discharge machine according to the present disclosure has the effect of being able to improve the precision of machining dimensions and the precision of machining shape even for workpieces whose plate thickness changes during machining.
実施の形態にかかるワイヤ放電加工装置の構成例を示す斜視図1 is a perspective view showing a configuration example of a wire electric discharge machine according to an embodiment; FIG. 実施の形態にかかるワイヤ放電加工装置の他の構成例を示す斜視図FIG. 4 is a perspective view showing another configuration example of the wire electric discharge machine according to the embodiment; 実施の形態にかかるワイヤ放電加工装置が加工する被加工物の構造を説明するための図FIG. 2 is a diagram for explaining the structure of a workpiece machined by the wire electric discharge machine according to the embodiment; 板厚に対して加工速度が補正されないまま加工された場合の被加工物の形状を説明するための図A diagram for explaining the shape of the workpiece when the workpiece is machined without correcting the machining speed with respect to the plate thickness. 板厚に対してワイヤ電極の撓みが補正されないまま加工された場合の被加工物の形状を説明するための図FIG. 5 is a diagram for explaining the shape of a workpiece that has been machined without correcting the deflection of the wire electrode with respect to the plate thickness; 実施の形態にかかるワイヤ放電加工装置の機能構成例を示すブロック図1 is a block diagram showing a functional configuration example of a wire electric discharge machine according to an embodiment; FIG. 実施の形態にかかる形状寸法補償器による電圧補正値の算出処理を説明するための図FIG. 4 is a diagram for explaining calculation processing of a voltage correction value by the geometry compensator according to the embodiment; 実施の形態にかかる形状寸法補償器が用いる電圧補正値情報を説明するための図FIG. 4 is a diagram for explaining voltage correction value information used by the geometry compensator according to the embodiment; 実施の形態にかかる形状寸法補償器による休止時間補正値の算出処理を説明するための図FIG. 4 is a diagram for explaining a calculation process of a pause time correction value by the shape and dimension compensator according to the embodiment; ノズル離れ量とワイヤ電極の撓み量との関係を説明するための図A diagram for explaining the relationship between the amount of separation of the nozzle and the amount of bending of the wire electrode. ワイヤ張力とワイヤ電極の撓み量との関係を説明するための図FIG. 4 is a diagram for explaining the relationship between the wire tension and the deflection amount of the wire electrode; 実施の形態にかかるワイヤ放電加工装置によるワイヤ放電加工の処理手順を示すフローチャート1 is a flow chart showing a processing procedure of wire electric discharge machining by a wire electric discharge machine according to an embodiment; 実施の形態にかかる学習装置の構成例を示すブロック図1 is a block diagram showing a configuration example of a learning device according to an embodiment; FIG. 実施の形態にかかる学習装置による学習処理の処理手順を示すフローチャート4 is a flow chart showing a processing procedure of learning processing by the learning device according to the embodiment; 実施の形態にかかる推論装置の構成例を示すブロック図1 is a block diagram showing a configuration example of an inference device according to an embodiment; FIG. 実施の形態にかかる推論装置による推論処理の処理手順を示すフローチャート4 is a flowchart showing a processing procedure of inference processing by the inference device according to the embodiment; 実施の形態にかかるNC制御装置を実現するハードウェア構成例を示す図FIG. 2 is a diagram showing a hardware configuration example that implements the NC control device according to the embodiment;
 以下に、本開示の実施の形態にかかるワイヤ放電加工装置、形状寸法補償器、ワイヤ放電加工方法、学習装置、および推論装置を図面に基づいて詳細に説明する。 A wire electric discharge machine, a geometry compensator, a wire electric discharge machining method, a learning device, and an inference device according to embodiments of the present disclosure will be described below in detail with reference to the drawings.
実施の形態.
 図1は、実施の形態にかかるワイヤ放電加工装置の構成例を示す斜視図である。ワイヤ放電加工装置100は、加工機構30と、ワイヤ張力制御装置31と、加工電源32と、数値制御装置であるNC(Numerical Control)制御装置33とを備えている。
Embodiment.
FIG. 1 is a perspective view showing a configuration example of a wire electric discharge machine according to an embodiment. The wire electric discharge machine 100 includes a machining mechanism 30, a wire tension controller 31, a machining power source 32, and an NC (Numerical Control) controller 33, which is a numerical controller.
 加工機構30は、ワイヤ電極ボビン1と、ワイヤ電極2と、テンション負荷装置3と、上側給電子4と、下側給電子5と、上部ガイド6と、下部ガイド12と、定盤8と、下部ローラ13とを備えている。また、加工機構30は、ワイヤ電極回収箱10と、ワイヤ走行速度制御モータ9と、X軸駆動モータ11Xと、Y軸駆動モータ11Yとを備えている。 The processing mechanism 30 includes a wire electrode bobbin 1, a wire electrode 2, a tension load device 3, an upper feeder 4, a lower feeder 5, an upper guide 6, a lower guide 12, a surface plate 8, A lower roller 13 is provided. The processing mechanism 30 also includes a wire electrode collection box 10, a wire travel speed control motor 9, an X-axis drive motor 11X, and a Y-axis drive motor 11Y.
 また、ワイヤ張力制御装置31は、加工電源32およびNC制御装置33に接続されており、加工電源32は、NC制御装置33に接続されている。また、加工機構30は、ワイヤ張力制御装置31、加工電源32、およびNC制御装置33に接続されている。以下では、板状の定盤8上面と平行な面内の2つの軸であって互いに直交する2つの軸をX軸およびY軸とする。また、X軸およびY軸に直交する軸をZ軸とする。例えば、XY平面が水平面であり、Z軸方向が鉛直方向である。なお、以下の説明では、プラスZ方向を上方向といい、マイナスZ方向を下方向という場合がある。 Also, the wire tension control device 31 is connected to a machining power source 32 and an NC control device 33 , and the machining power source 32 is connected to the NC control device 33 . The machining mechanism 30 is also connected to a wire tension controller 31 , a machining power source 32 and an NC controller 33 . In the following description, the two axes in the plane parallel to the upper surface of the plate-shaped surface plate 8 and perpendicular to each other are defined as the X-axis and the Y-axis. Also, the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis. For example, the XY plane is the horizontal plane, and the Z-axis direction is the vertical direction. In the following description, the plus Z direction may be referred to as the upward direction, and the minus Z direction may be referred to as the downward direction.
 ワイヤ電極ボビン1は、ワイヤ電極2が巻かれており、テンション負荷装置3にワイヤ電極2を供給する。ワイヤ電極2は、ワイヤ電極ボビン1から引き出されて、テンション負荷装置3に送られる。テンション負荷装置3は、ワイヤ電極2を搬送するとともにワイヤ電極2にテンション負荷をかける。テンション負荷装置3は、ワイヤ電極2を、上側給電子4、上部ガイド6、下側給電子5、および下部ガイド12を介して下部ローラ13に送る。下部ローラ13を通ったワイヤ電極2は、ワイヤ走行速度制御モータ9を通って、ワイヤ電極回収箱10に送られる。 The wire electrode bobbin 1 is wound with the wire electrode 2 and supplies the wire electrode 2 to the tension load device 3 . A wire electrode 2 is pulled out from a wire electrode bobbin 1 and sent to a tension load device 3 . The tension load device 3 conveys the wire electrode 2 and applies a tension load to the wire electrode 2 . The tension load device 3 feeds the wire electrode 2 to the lower roller 13 via the upper feeder 4 , upper guide 6 , lower feeder 5 and lower guide 12 . The wire electrode 2 passed through the lower roller 13 is sent to the wire electrode collection box 10 through the wire travel speed control motor 9 .
 上側給電子4の下側に上部ガイド6が配置され、上部ガイド6の下側に下側給電子5が配置され、下側給電子5の下側に下部ガイド12が配置されている。上側給電子4および下側給電子5は、加工電源32に接続されており、ワイヤ電極2と被加工物7との間に電圧を印加する。 An upper guide 6 is arranged below the upper feeder 4 , a lower feeder 5 is arranged below the upper guide 6 , and a lower guide 12 is arranged below the lower feeder 5 . The upper power feeder 4 and the lower power feeder 5 are connected to a machining power source 32 to apply a voltage between the wire electrode 2 and the workpiece 7 .
 上部ガイド6および下部ガイド12は、工作物である被加工物7の加工中にワイヤ電極2の位置および傾きを支持する。上部ガイド6の下側には後述する上側ノズル81が配置されており、下側給電子5の上側には後述する下側ノズル82が配置されている。上側ノズル81は、ワイヤ電極2に対して下側に加工液を供給し、下側ノズル82は、ワイヤ電極2に対して上側に加工液を供給する。被加工物7は、上側ノズル81と下側ノズル82との間で加工される。 The upper guide 6 and lower guide 12 support the position and inclination of the wire electrode 2 during machining of the workpiece 7, which is a workpiece. An upper nozzle 81 , which will be described later, is arranged below the upper guide 6 , and a lower nozzle 82 , which will be described later, is arranged above the lower feeder 5 . The upper nozzle 81 supplies machining fluid downward to the wire electrode 2 , and the lower nozzle 82 supplies machining fluid upward to the wire electrode 2 . The workpiece 7 is processed between the upper nozzle 81 and the lower nozzle 82 .
 本実施の形態のワイヤ放電加工装置100は、段差を有した被加工物7をワイヤ放電加工する。すなわち、被加工物7は、板厚領域毎に種々の板厚を有している。換言すると、被加工物7は、加工経路上に板厚がそれぞれ異なる複数の板厚領域を有している。例えば、被加工物7は、被加工領域である板厚領域のうちの第1の板厚領域が第1の板厚であり、この第1の板厚領域に隣接する第2の板厚領域が第2の板厚であり、第1の板厚領域と第2の板厚領域とが連続してワイヤ放電加工される。定盤8には、被加工物7が載置される。定盤8には、ワイヤ電極2を通すための穴が設けられている。 The wire electric discharge machine 100 of the present embodiment performs wire electric discharge machining on the workpiece 7 having a step. That is, the workpiece 7 has various plate thicknesses for each plate thickness region. In other words, the workpiece 7 has a plurality of thickness regions with different thicknesses on the machining path. For example, the workpiece 7 has a first thickness region of thickness regions to be processed, and a second thickness region adjacent to the first thickness region. is the second plate thickness, and the first plate thickness region and the second plate thickness region are continuously wire electric discharge machined. A workpiece 7 is placed on the surface plate 8 . The surface plate 8 is provided with a hole through which the wire electrode 2 is passed.
 下部ローラ13は、定盤8上で被加工物7を加工した後のワイヤ電極2を搬送する。ワイヤ走行速度制御モータ9は、回収ローラであり、ワイヤ電極2を搬送する駆動力を発生させる。ワイヤ電極回収箱10は、ワイヤ走行速度制御モータ9から送られてくるワイヤ電極2を回収する箱である。X軸駆動モータ11Xは、定盤8をX軸方向に駆動し、Y軸駆動モータ11Yは、定盤8をY軸方向に駆動する。 The lower roller 13 conveys the wire electrode 2 after machining the workpiece 7 on the surface plate 8 . The wire traveling speed control motor 9 is a collecting roller and generates driving force for conveying the wire electrode 2 . The wire electrode collection box 10 is a box for collecting the wire electrodes 2 sent from the wire travel speed control motor 9 . The X-axis drive motor 11X drives the surface plate 8 in the X-axis direction, and the Y-axis drive motor 11Y drives the surface plate 8 in the Y-axis direction.
 ワイヤ張力制御装置31は、テンション負荷装置3に接続されており、テンション負荷装置3を制御することでワイヤ電極2の張力であるワイヤ張力を制御する。加工電源32は、上側給電子4および下側給電子5に接続されており、上側給電子4および下側給電子5を制御することで、被加工物7とワイヤ電極2との間に放電を発生させる。 The wire tension control device 31 is connected to the tension load device 3 and controls the wire tension that is the tension of the wire electrode 2 by controlling the tension load device 3 . The machining power supply 32 is connected to the upper power feeder 4 and the lower power feeder 5 , and controls the upper power feeder 4 and the lower power feeder 5 to generate electric discharge between the workpiece 7 and the wire electrode 2 . generate
 加工電源32は、後述する加工電圧検出器45および加工エネルギー検出器46を有している。加工電源32は、加工電圧検出器45が検出した加工電圧と、加工エネルギー検出器46が検出した加工エネルギーを、NC制御装置33に送る。また、加工電源32は、NC制御装置33から送られてくる、電圧の補正値(以下、電圧補正値という)および電圧パルスの休止時間の補正値(以下、休止時間補正値という)を用いて上側給電子4および下側給電子5を制御する。 The machining power supply 32 has a machining voltage detector 45 and a machining energy detector 46, which will be described later. The machining power supply 32 sends the machining voltage detected by the machining voltage detector 45 and the machining energy detected by the machining energy detector 46 to the NC controller 33 . The machining power supply 32 uses a voltage correction value (hereinafter referred to as a voltage correction value) and a voltage pulse pause time correction value (hereinafter referred to as a pause time correction value) sent from the NC control device 33. It controls the upper feeder 4 and the lower feeder 5 .
 NC制御装置33は、加工機構30、加工電源32、およびワイヤ張力制御装置31を制御する。NC制御装置33は、例えばX軸駆動モータ11XおよびY軸駆動モータ11Yに接続されている。NC制御装置33は、X軸駆動モータ11XおよびY軸駆動モータ11Yに軸移動指令を送ることによって、定盤8のX軸方向の位置およびY軸方向の位置を制御する。これにより、NC制御装置33は、定盤8に載置された被加工物7とワイヤ電極2との間の距離を制御し、被加工物7とワイヤ電極2との間の極間の電圧を制御する。 The NC controller 33 controls the machining mechanism 30, the machining power supply 32, and the wire tension controller 31. The NC control device 33 is connected to, for example, the X-axis drive motor 11X and the Y-axis drive motor 11Y. The NC control device 33 controls the position of the surface plate 8 in the X-axis direction and the Y-axis direction by sending axial movement commands to the X-axis drive motor 11X and the Y-axis drive motor 11Y. Thereby, the NC control device 33 controls the distance between the workpiece 7 placed on the surface plate 8 and the wire electrode 2, and the voltage between the workpiece 7 and the wire electrode 2 is controlled. to control.
 また、NC制御装置33は、ワイヤ走行速度制御モータ9に接続されており、ワイヤ走行速度制御モータ9を制御する。なお、図1では、NC制御装置33とワイヤ走行速度制御モータ9との接続線は図示を省略している。 The NC control device 33 is also connected to the wire travel speed control motor 9 and controls the wire travel speed control motor 9 . In FIG. 1, a connection line between the NC control device 33 and the wire travel speed control motor 9 is omitted.
 NC制御装置33は、加工電圧検出器45が検出した加工電圧と、加工エネルギー検出器46が検出した加工エネルギーとに基づいて、ワイヤ張力指令を算出する。ワイヤ張力指令は、ワイヤ電極2の張力を制御するための指令である。NC制御装置33は、算出したワイヤ張力指令をワイヤ張力制御装置31に送る。 The NC control device 33 calculates a wire tension command based on the machining voltage detected by the machining voltage detector 45 and the machining energy detected by the machining energy detector 46. A wire tension command is a command for controlling the tension of the wire electrode 2 . The NC control device 33 sends the calculated wire tension command to the wire tension control device 31 .
 また、NC制御装置33は、加工電圧検出器45が検出した加工電圧と、加工エネルギー検出器46が検出した加工エネルギーとに基づいて、電圧補正値および休止時間補正値を算出する。NC制御装置33は、算出した電圧補正値および休止時間補正値を、加工電源32に送る。 The NC control device 33 also calculates a voltage correction value and a rest time correction value based on the machining voltage detected by the machining voltage detector 45 and the machining energy detected by the machining energy detector 46. The NC control device 33 sends the calculated voltage correction value and idle time correction value to the machining power source 32 .
 ワイヤ放電加工装置100は、X軸駆動モータ11XおよびY軸駆動モータ11Yによって定盤8をX軸方向およびY軸方向に移動させ、定盤8に載置された被加工物7と、ワイヤ電極2との間の距離をワイヤ放電が可能な特定の距離に制御する。これにより、ワイヤ放電加工装置100は、被加工物7をワイヤ電極2によってワイヤ放電加工する。以下では、被加工物7をX軸方向に移動させて被加工物7をワイヤ放電加工する場合について説明する。 The wire electric discharge machining apparatus 100 moves the surface plate 8 in the X-axis direction and the Y-axis direction by the X-axis drive motor 11X and the Y-axis drive motor 11Y, and moves the workpiece 7 placed on the surface plate 8 and the wire electrode. 2 to a specific distance at which wire discharge is possible. Thereby, the wire electric discharge machine 100 performs wire electric discharge machining on the workpiece 7 with the wire electrode 2 . A case will be described below in which the workpiece 7 is moved in the X-axis direction and wire electric discharge machining is performed on the workpiece 7 .
 なお、ワイヤ放電加工装置100は、定盤8の代わりにワイヤ電極2を移動させてもよい。図2は、実施の形態にかかるワイヤ放電加工装置の他の構成例を示す斜視図である。 Note that the wire electric discharge machine 100 may move the wire electrode 2 instead of the surface plate 8 . FIG. 2 is a perspective view showing another configuration example of the wire electric discharge machine according to the embodiment.
 図2に示すワイヤ放電加工装置101は、図1に示すワイヤ放電加工装置100と比較して、加工機構30の代わりに加工機構34を備えている。加工機構34は、加工機構30と比較して、X軸駆動モータ11XおよびY軸駆動モータ11Yを備えていない。ワイヤ放電加工装置101は、軸移動指令を上部ガイド6および下部ガイド12に送る。これにより、ワイヤ放電加工装置100では、上部ガイド6および下部ガイド12がX軸方向およびY軸方向に移動する。 A wire electric discharge machine 101 shown in FIG. 2 includes a machining mechanism 34 instead of the machining mechanism 30 compared to the wire electric discharge machine 100 shown in FIG. Unlike the machining mechanism 30, the machining mechanism 34 does not have the X-axis drive motor 11X and the Y-axis drive motor 11Y. The wire electric discharge machine 101 sends an axis movement command to the upper guide 6 and the lower guide 12 . Thereby, in the wire electric discharge machine 100, the upper guide 6 and the lower guide 12 move in the X-axis direction and the Y-axis direction.
 このように、図1に示したワイヤ放電加工装置100は、NC制御装置33からの軸移動指令で定盤8を動かす方式であり、図2に示したワイヤ放電加工装置101は、NC制御装置33からの軸移動指令で上部ガイド6および下部ガイド12を動かす方式である。以下の説明では、図1に示すワイヤ放電加工装置100について説明する。 As described above, the wire electric discharge machine 100 shown in FIG. 1 is of a type that moves the surface plate 8 according to the axis movement command from the NC control device 33, and the wire electric discharge machine 101 shown in FIG. In this system, the upper guide 6 and the lower guide 12 are moved by an axial movement command from 33 . In the following description, the wire electric discharge machine 100 shown in FIG. 1 will be described.
 ここで、板厚領域毎に種々の板厚を有した被加工物7の加工において加工寸法および加工形状がばらつく理由について説明する。加工寸法は、加工後の被加工物7の寸法であり、加工形状は、加工後の被加工物7の形状である。本実施の形態では、加工寸法は、被加工物7のY軸方向の寸法、すなわちZ軸方向から見た場合の寸法であり、加工形状は、被加工物7をX軸方向から見た場合の形状である。被加工物7は、Z軸方向の高さを有しているので、高さ毎に加工寸法が異なる。この高さ毎の加工寸法によって被加工物7の形状が決まる。 Here, the reason why the processed dimensions and processed shapes vary when processing the workpiece 7 having various thicknesses for each thickness region will be described. The machining dimension is the dimension of the workpiece 7 after machining, and the machining shape is the shape of the workpiece 7 after machining. In this embodiment, the machining dimension is the dimension of the workpiece 7 in the Y-axis direction, that is, the dimension when viewed from the Z-axis direction, and the machining shape is the dimension when the workpiece 7 is viewed from the X-axis direction. is the shape of Since the workpiece 7 has a height in the Z-axis direction, machining dimensions differ for each height. The shape of the workpiece 7 is determined by the machining dimensions for each height.
 図3は、実施の形態にかかるワイヤ放電加工装置が加工する被加工物の構造を説明するための図である。図3では、被加工物7のうちワイヤ電極2によって加工される箇所の近傍領域を図示している。被加工物7は、X軸方向に向かって加工されることで、X軸方向に平行な溝が被加工物7に形成される。 FIG. 3 is a diagram for explaining the structure of the workpiece machined by the wire electric discharge machine according to the embodiment. FIG. 3 shows a region of the workpiece 7 in the vicinity of a portion to be machined by the wire electrode 2. As shown in FIG. The workpiece 7 is machined in the X-axis direction so that grooves parallel to the X-axis direction are formed in the workpiece 7 .
 被加工物7は、X軸方向に向かって複数回に渡って加工が繰り返される。例えば、被加工物7は、第1回目の加工によって粗加工が行われ、第2回目の加工によって中仕上げ加工が行われ、第3回目の加工によって仕上げ加工が行われる。 The workpiece 7 is repeatedly processed multiple times in the X-axis direction. For example, the workpiece 7 is rough-machined in the first machining, semi-finishing in the second machining, and finishing in the third machining.
 被加工物7は、例えば、第1の板厚を有した第1の板厚領域21と、第2の板厚を有した第2の板厚領域22と、第3の板厚を有した第3の板厚領域23と、第4の板厚を有した第4の板厚領域24とで構成されている。第1の板厚は、例えば200mmであり、第2の板厚は、例えば150mmであり、第3の板厚は、例えば100mmであり、第4の板厚は、例えば50mmである。以下、第1の板厚領域21、第2の板厚領域22、第3の板厚領域23、および第4の板厚領域24の何れかを板厚領域という場合がある。 The workpiece 7 has, for example, a first thickness region 21 having a first thickness, a second thickness region 22 having a second thickness, and a third thickness. It is composed of a third plate thickness region 23 and a fourth plate thickness region 24 having a fourth plate thickness. The first plate thickness is, for example, 200 mm, the second plate thickness is, for example, 150 mm, the third plate thickness is, for example, 100 mm, and the fourth plate thickness is, for example, 50 mm. Hereinafter, any one of the first thickness region 21, the second thickness region 22, the third thickness region 23, and the fourth thickness region 24 may be referred to as a thickness region.
 ワイヤ放電加工装置100が、被加工物7を、第1の板厚領域21、第2の板厚領域22、第3の板厚領域23、第4の板厚領域24の順番で加工する場合、加工する板厚が、第1の板厚、第2の板厚、第3の板厚、第4の板厚の順番で変化する。被加工物7は、上側ノズル81と下側ノズル82との間のワイヤ電極2によって加工される。上側ノズル81と下側ノズル82との間の距離は、例えば、310mmである。 When the wire electric discharge machine 100 processes the workpiece 7 in the order of the first thickness region 21, the second thickness region 22, the third thickness region 23, and the fourth thickness region 24. , the plate thickness to be processed changes in order of the first plate thickness, the second plate thickness, the third plate thickness, and the fourth plate thickness. The workpiece 7 is machined by the wire electrode 2 between the upper nozzle 81 and the lower nozzle 82 . The distance between the upper nozzle 81 and the lower nozzle 82 is, for example, 310 mm.
 図4は、板厚に対して加工速度が補正されないまま加工された場合の被加工物の形状を説明するための図である。図4では、被加工物7を上面から見た場合の第1の板厚領域21および第4の板厚領域24の加工後の形状である加工形状を示している。 FIG. 4 is a diagram for explaining the shape of the workpiece when the workpiece is machined without correcting the machining speed with respect to the plate thickness. FIG. 4 shows the processed shape, which is the shape after processing of the first thickness region 21 and the fourth thickness region 24 when the workpiece 7 is viewed from above.
 板厚が変化する加工において、板厚を考慮せずに加工が行われると、板厚が薄い領域である第4の板厚領域24では、加工進行方向の被加工物7の除去体積が小さく加工速度が速いので、加工進行方向の側面に放電が飛びにくい。一方、板厚が厚い第1の板厚領域21では、加工進行方向の被加工物7の除去体積が大きく加工速度が遅いので、加工進行方向の側面に放電が飛びやすい。 In the machining in which the thickness changes, if the machining is performed without considering the thickness, the removed volume of the workpiece 7 in the direction of progress of machining is small in the fourth thickness region 24, which is the region where the thickness is thin. Since the machining speed is fast, it is difficult for electric discharge to fly to the side in the direction of machining progress. On the other hand, in the thick first plate thickness region 21, the removal volume of the workpiece 7 in the machining progress direction is large and the machining speed is slow, so the discharge tends to fly to the side face in the machining progress direction.
 したがって、板厚が薄い第4の板厚領域24では加工で削られる被加工物7の量が少なくなり、板厚が厚い第1の板厚領域21では加工で削られる被加工物7の量が多くなる。この結果、板厚が薄い領域では加工溝幅が細く、板厚が厚い領域では加工溝幅が太くなり、加工寸法が板厚領域毎に異なるといった問題が生じる。この加工溝幅、すなわち加工寸法は、ワイヤ電極2の走行による振動、上側ノズル81から被加工物7までの離れ量、下側ノズル82から被加工物7までの離れ量、加工電圧、投入される放電エネルギーなどによって変化する。 Therefore, the amount of the workpiece 7 cut by machining is small in the fourth thickness region 24 having a small thickness, and the amount of the workpiece 7 cut by machining is reduced in the first thickness region 21 having a large thickness. will increase. As a result, the width of the machined groove is narrow in the region where the plate thickness is thin, and the width of the machined groove is wide in the region where the plate thickness is thick. The width of the machining groove, that is, the machining dimension, includes the vibration caused by running of the wire electrode 2, the amount of separation from the upper nozzle 81 to the workpiece 7, the amount of separation from the lower nozzle 82 to the workpiece 7, the machining voltage, and the input voltage. It changes depending on the discharge energy, etc.
 また、同じ板厚領域内であっても、被加工物7の高さによってワイヤ電極2の撓み量が異なるので被加工物7の高さによって加工の進行速度が異なる。すなわち、上側ノズル81から被加工物7までの離れ量、および下側ノズル82から被加工物7までの離れ量であるノズル離れ量に応じて加工の進行速度が異なる。ノズル離れ量は、上側ノズル81と被加工物7との間の離間距離、および下側ノズル82と被加工物7との間の離間距離である。被加工物7は、種々の板厚領域を有しているので、板厚領域毎にノズル離れ量が異なる。このため、被加工物7は、加工速度などの加工条件が補正されずに加工されると、加工形状がばらついてしまう。 Further, even within the same plate thickness region, the amount of bending of the wire electrode 2 differs depending on the height of the workpiece 7, so the progress speed of machining differs depending on the height of the workpiece 7. That is, the progress speed of machining differs depending on the amount of separation from the upper nozzle 81 to the workpiece 7 and the separation amount from the lower nozzle 82 to the workpiece 7 . The nozzle separation amount is the separation distance between the upper nozzle 81 and the workpiece 7 and the separation distance between the lower nozzle 82 and the workpiece 7 . Since the workpiece 7 has various plate thickness regions, the nozzle separation amount differs for each plate thickness region. Therefore, if the workpiece 7 is machined without correcting the machining conditions such as the machining speed, the machined shape will vary.
 本実施の形態のワイヤ放電加工装置100は、第1回目の加工での各領域での加工寸法差および加工形状差を、第2回目以降の加工で修正できるように加工電圧などの加工条件を調整する。すなわち、第1回目の加工で発生した加工寸法差または加工形状差が大きいと、加工寸法および加工形状を修正しきれないことがあるので、ワイヤ放電加工装置100は、第1回目の加工時点で、加工溝幅をある程度一定となるように板厚変化に応じた加工を実行する。換言すると、ワイヤ放電加工装置100は、板厚変化によって発生する板厚領域間の加工溝幅の差および板厚領域内での加工形状のばらつきが第1回目の加工時点で一定値に近づくように加工する。 The wire electric discharge machine 100 of the present embodiment adjusts the machining conditions such as the machining voltage so that the machining dimensional and machining shape differences in each region in the first machining can be corrected in the second and subsequent machining. adjust. That is, if the machining dimensional difference or machining shape difference that occurs in the first machining is large, the machining dimensions and machining shape may not be corrected completely. , machining is performed in accordance with changes in plate thickness so that the machining groove width is kept constant to some extent. In other words, the wire electric discharge machining apparatus 100 is designed so that the difference in the machined groove width between the plate thickness regions and the variation in the machined shape within the plate thickness region, which are caused by the plate thickness change, approach a constant value at the time of the first machining. processed into
 実施の形態のNC制御装置33は、加工電圧、単位時間当たりの放電加工エネルギー、およびノズル離れ量に基づいて、ワイヤ張力指令、電圧補正値および休止時間補正値を算出する。NC制御装置33は、板厚領域毎に種々の板厚を有した被加工物7に対し、異なる板厚領域間での加工寸法差および加工形状差が小さくなるような、ワイヤ張力指令、電圧補正値および休止時間補正値を算出する。 The NC control device 33 of the embodiment calculates a wire tension command, a voltage correction value, and a pause time correction value based on the machining voltage, electrical discharge machining energy per unit time, and nozzle separation amount. The NC control device 33 controls the wire tension command and the voltage so as to reduce the processing dimensional difference and the processing shape difference between the different thickness regions for the workpiece 7 having various thicknesses for each thickness region. A correction value and a pause time correction value are calculated.
 被加工物7は、種々の板厚領域を有しており、被加工物7の底面から上面までの各位置で加工される量が異なる。このため、被加工物7は、被加工物7の底面からの高さ毎に加工後の寸法が異なる。本実施の形態では、1つの板厚領域における被加工物7の底面からの高さ毎の加工後の寸法の平均値を加工寸法という。なお、加工寸法は、1つの板厚領域における被加工物7の底面からの高さ毎の加工後の寸法の中央値であってもよい。NC制御装置33は、被加工物7の各板厚領域で加工寸法が、板厚領域間でばらつかないような、ワイヤ張力指令、電圧補正値および休止時間補正値を算出する。 The workpiece 7 has various plate thickness regions, and the amount of machining differs at each position from the bottom surface to the top surface of the workpiece 7 . Therefore, the dimension of the workpiece 7 after machining differs for each height from the bottom surface of the workpiece 7 . In the present embodiment, the average value of post-machining dimensions for each height from the bottom surface of the workpiece 7 in one plate thickness region is referred to as a machining dimension. The processed dimension may be the median value of post-processed dimensions for each height from the bottom surface of the workpiece 7 in one plate thickness region. The NC control device 33 calculates a wire tension command, a voltage correction value, and an idle time correction value so that the machining dimensions in each thickness region of the workpiece 7 do not vary among the thickness regions.
 本実施の形態では、被加工物7の加工形状は、被加工物7のZ軸方向の真直精度で示される。真直精度は、ワイヤ放電加工中のワイヤ電極2の撓み量に対応する被加工物7の加工寸法の寸法精度のばらつきに対応している。ワイヤ電極2の撓みは、Z軸方向に垂直な方向への撓みであるので、X軸方向への撓み成分と、Y軸方向への撓み成分とが含まれている。Y軸方向への撓み成分は、被加工物7のY軸方向の加工寸法に影響を与えるので、以下ではY軸方向への撓み成分について説明する。 In the present embodiment, the machining shape of the workpiece 7 is indicated by the straightness accuracy of the workpiece 7 in the Z-axis direction. The straightness accuracy corresponds to the variation in dimensional accuracy of the machined dimensions of the workpiece 7 corresponding to the deflection amount of the wire electrode 2 during wire electric discharge machining. Since the bending of the wire electrode 2 is bending in a direction perpendicular to the Z-axis direction, it includes a bending component in the X-axis direction and a bending component in the Y-axis direction. Since the bending component in the Y-axis direction affects the machining dimension of the workpiece 7 in the Y-axis direction, the bending component in the Y-axis direction will be described below.
 図5は、板厚に対してワイヤ電極の撓みが補正されないまま加工された場合の被加工物の形状を説明するための図である。図5の横軸が被加工物7のY軸方向の加工寸法であり、縦軸が被加工物7の高さである。図5に示すように、被加工物7のY軸方向の加工寸法は、被加工物7の高さ毎に異なっている。 FIG. 5 is a diagram for explaining the shape of the workpiece when the workpiece is machined without correcting the bending of the wire electrode with respect to the plate thickness. The horizontal axis of FIG. 5 is the machining dimension of the workpiece 7 in the Y-axis direction, and the vertical axis is the height of the workpiece 7 . As shown in FIG. 5 , the machining dimension of the workpiece 7 in the Y-axis direction differs for each height of the workpiece 7 .
 寸法曲線65が、第1の板厚領域21における加工寸法であり、寸法曲線66が、第2の板厚領域22における加工寸法である。寸法曲線67が、第3の板厚領域23における加工寸法であり、寸法曲線68が、第4の板厚領域24における加工寸法である。例えば、第1の板厚領域21では、被加工物7の高さが0から200mmまでである。そして、第1の板厚領域21では、ワイヤ電極2の撓み量が大きくなる箇所である被加工物7のZ軸方向の中央領域で加工寸法が小さくなっている。そして、ワイヤ電極2の撓み量が小さくなる箇所である被加工物7のZ軸方向の端部領域で加工寸法が小さくなっている。 A dimension curve 65 is the processing dimension in the first plate thickness region 21, and a dimension curve 66 is the processing dimension in the second plate thickness region 22. A dimension curve 67 is the machining dimension in the third thickness region 23 and a dimension curve 68 is the machining dimension in the fourth thickness region 24 . For example, in the first thickness region 21, the height of the workpiece 7 is from 0 to 200 mm. In the first plate thickness region 21, the machining dimension is small in the central region in the Z-axis direction of the workpiece 7 where the amount of bending of the wire electrode 2 is large. In addition, the machining dimension is small in the end region of the workpiece 7 in the Z-axis direction where the amount of bending of the wire electrode 2 is small.
 すなわち、1つの板厚領域内であっても、ワイヤ電極2が撓むことによって、被加工物7は、ワイヤ電極2の上下端部領域で加工される箇所(以下、ワイヤ端部加工箇所という)と、ワイヤ電極2の中央領域で加工される箇所(以下、ワイヤ中央加工箇所という)とで加工される量が異なる。 That is, even within one plate thickness region, the wire electrode 2 bends so that the workpiece 7 is processed at upper and lower end regions of the wire electrode 2 (hereinafter referred to as wire end processing regions). ) and a portion machined in the central region of the wire electrode 2 (hereinafter referred to as a wire central machining portion).
 これにより、ワイヤ中央加工箇所の方が、ワイヤ端部加工箇所よりもワイヤ電極2の撓みが大きくなるので、加工される領域が広くなる。この結果、ワイヤ中央加工箇所の方が、ワイヤ端部加工箇所よりも加工される量が大きくなるので加工後寸法が小さくなる。このように、被加工物7は、1つの板厚領域内であっても、ワイヤ電極2の撓みが原因で、被加工物7の底面からの高さ毎に加工後寸法にばらつきを生じる。この1つの板厚領域内における加工寸法のばらつきが、加工形状のばらつきに対応している。 As a result, the bending of the wire electrode 2 is greater at the wire center machining location than at the wire end machining location, so the area to be machined becomes wider. As a result, the machined portion at the center of the wire has a larger amount of machining than the portion machined at the wire end portion, so that the post-machining dimension becomes smaller. As described above, even within one plate thickness region, the post-machining dimensions of the workpiece 7 vary for each height from the bottom surface of the workpiece 7 due to the bending of the wire electrode 2 . Variations in machining dimensions within one plate thickness region correspond to variations in machining shape.
 NC制御装置33は、寸法曲線65~68の情報である寸法曲線情報を記憶しておき、被加工物7を加工する際に寸法曲線情報に基づいて、加工電圧、休止時間、およびワイヤ張力を制御する。 The NC control device 33 stores dimensional curve information, which is information on the dimensional curves 65 to 68, and adjusts the machining voltage, rest time, and wire tension based on the dimensional curve information when machining the workpiece 7. Control.
 理想的には、被加工物7の1つの板厚領域内でのXY平面に平行な面内(本実施の形態ではY軸方向)での加工寸法が、被加工物7の各高さで同じであることである。したがって、NC制御装置33は、被加工物7の1つの板厚領域内でのY軸方向での加工寸法のばらつきが抑えられるように、すなわち加工形状のばらつきを抑えるような、ワイヤ張力指令、電圧補正値および休止時間補正値を算出する。具体的には、NC制御装置33は、ワイヤ電極2の加工進行方向であるX軸方向に垂直な方向であるY軸方向への撓み量が小さくなるようなワイヤ張力指令、電圧補正値および休止時間補正値を算出する。換言すると、NC制御装置33は、被加工物7の各板厚領域での真直精度が高くなるような、ワイヤ張力指令、電圧補正値および休止時間補正値を算出する。 Ideally, the machining dimension in a plane parallel to the XY plane (the Y-axis direction in this embodiment) within one plate thickness region of the workpiece 7 is to be the same. Therefore, the NC control device 33 provides a wire tension command, a wire tension command, a A voltage correction value and a rest time correction value are calculated. Specifically, the NC control device 33 provides a wire tension command, a voltage correction value, and a pause value that reduce the amount of bending of the wire electrode 2 in the Y-axis direction, which is the direction perpendicular to the X-axis direction, which is the processing progress direction. Calculate the time correction value. In other words, the NC control device 33 calculates the wire tension command, the voltage correction value, and the pause time correction value that increase the straightness accuracy in each plate thickness region of the workpiece 7 .
 ワイヤ電極2のY軸方向への撓み量が小さいほど、ワイヤ電極2の真直精度が高くなり、ワイヤ端部加工箇所と、ワイヤ中央加工箇所との加工寸法の誤差が小さくなり、被加工物7の真直精度が高くなる。この結果、加工形状の誤差が小さくなり、NC制御装置33は、加工形状の精度を向上させることができる。 The smaller the bending amount of the wire electrode 2 in the Y-axis direction, the higher the straightness accuracy of the wire electrode 2 , the smaller the error in the machining dimension between the wire end machined part and the wire center machined part, and the workpiece 7 . The straightness accuracy of is improved. As a result, errors in the machined shape are reduced, and the NC control device 33 can improve the accuracy of the machined shape.
 加工寸法の精度が高くなるほど、寸法曲線65~68の重なりが多くなる。また、加工寸法の精度が高くなるほど、寸法曲線65~68の曲がり量が少なくなり、寸法曲線65~68は、図5の縦軸に平行な直線に近づく。 The higher the precision of the machining dimensions, the more the dimension curves 65-68 overlap. Also, the higher the precision of the machining dimensions, the less the dimensional curves 65 to 68 curve, and the dimensional curves 65 to 68 approach straight lines parallel to the vertical axis in FIG.
 ワイヤ放電加工装置100は、加工時に加工形状を決めることとなる以下の4つのパラメータを用いる。
 (A)加工電圧
 (B)単位時間当りの放電加工エネルギー
 (C)ノズル離れ量
 (D)ワイヤ張力
The wire electric discharge machine 100 uses the following four parameters that determine the machining shape during machining.
(A) Machining voltage (B) EDM energy per unit time (C) Nozzle distance (D) Wire tension
 上記4つのパラメータは、それぞれ被加工物7への加工に対して、以下の影響を与える。
 ・加工電圧は、加工溝幅(加工寸法、真直精度)に影響を与える。
 ・単位時間当りの放電加工エネルギーは、真直精度および加工速度に影響を与える。
 ・ノズル離れ量は、放電加工エネルギーに影響を与える。
 ・ワイヤ張力は、ワイヤ電極2の撓みによって真直精度に影響を与える。
The above four parameters have the following effects on the machining of the workpiece 7, respectively.
・The machining voltage affects the machining groove width (machining dimensions and straightness accuracy).
・Electrical discharge machining energy per unit time affects straightness accuracy and machining speed.
・The amount of nozzle separation affects the electric discharge machining energy.
・The wire tension affects the straightness accuracy due to the deflection of the wire electrode 2 .
 加工電圧が低いことは、ワイヤ電極2と被加工物7との間の距離が短いことに対応している。ワイヤ放電加工装置100は、加工電圧を調整する際には、ワイヤ電極2の加工進行方向への送り速度を調整することで、ワイヤ電極2と被加工物7との間の距離を調整する。例えば、ワイヤ放電加工装置100は、加工電圧を下げる場合には、ワイヤ電極2の加工進行方向への送り速度を上げることで、ワイヤ電極2と被加工物7との間の距離を縮める。この場合、加工進行方向の側面の除去体積が少なくなるので被加工物7の加工寸法は大きくなる。一方、ワイヤ放電加工装置100は、加工電圧を上げる場合には、ワイヤ電極2の加工進行方向への送り速度を下げることで、ワイヤ電極2と被加工物7との間の距離を広げる。この場合、加工進行方向の側面の除去体積が多くなるので被加工物7の加工寸法は小さくなる。ワイヤ電極2の加工進行方向への送り速度が、加工速度に対応している。 A low machining voltage corresponds to a short distance between the wire electrode 2 and the workpiece 7 . When adjusting the machining voltage, the wire electric discharge machine 100 adjusts the distance between the wire electrode 2 and the workpiece 7 by adjusting the feed speed of the wire electrode 2 in the direction in which machining progresses. For example, when lowering the machining voltage, the wire electric discharge machine 100 shortens the distance between the wire electrode 2 and the workpiece 7 by increasing the feed speed of the wire electrode 2 in the machining progress direction. In this case, the size of the workpiece 7 to be machined becomes large because the volume removed from the side face in the direction of progress of machining is small. On the other hand, when increasing the machining voltage, the wire electric discharge machine 100 increases the distance between the wire electrode 2 and the workpiece 7 by decreasing the feed speed of the wire electrode 2 in the direction of progress of machining. In this case, the size of the workpiece 7 to be machined becomes small because the volume removed from the side face in the direction of progress of the machining increases. The feed speed of the wire electrode 2 in the machining advancing direction corresponds to the machining speed.
 加工進行方向への送り速度を上げると、放電に伴って生じる爆発力によってワイヤ電極2を被加工物7から離そうとする力が、ワイヤ電極2に流れる電流による静電引力によってワイヤ電極2を被加工物7に近づけようとする力よりも大きくなるため、加工面は膨らむ方向の形状となる。一方で、加工進行方向への送り速度を下げると、静電引力が放電に伴って生じる爆発力よりも優位となるため、凹み方向の加工面形状となる。 When the feed speed in the direction of machining progress is increased, the force that separates the wire electrode 2 from the work piece 7 due to the explosive force generated by the electric discharge causes the wire electrode 2 to move due to the electrostatic attraction caused by the current flowing through the wire electrode 2. Since the force is larger than the force to bring the workpiece closer to the workpiece 7, the machined surface has a shape in a swelling direction. On the other hand, when the feed speed in the machining progress direction is lowered, the electrostatic attraction becomes superior to the explosive force generated by electric discharge, so that the machined surface shape becomes concave.
 ワイヤ放電加工装置100は、放電パルスの1パルス当たりのエネルギーとパルス数とに基づいて、放電加工エネルギーを算出する。ワイヤ放電加工装置100は、放電加工エネルギーを低くすると、ワイヤ電極2の撓み量が小さくなるので真直精度を高くすることができる。また、ワイヤ放電加工装置100は、放電加工エネルギーを高くすると、加工量を増やすことができるので加工速度を上げることができる。 The wire electric discharge machining apparatus 100 calculates the electric discharge machining energy based on the energy per electric discharge pulse and the number of pulses. In the wire electric discharge machining apparatus 100, when the electric discharge machining energy is lowered, the bending amount of the wire electrode 2 is reduced, so the straightness accuracy can be improved. In addition, the wire electric discharge machine 100 can increase the machining speed by increasing the electric discharge machining energy, because the amount of machining can be increased.
 ワイヤ放電加工装置100は、ノズル離れ量を、後述するノズル離れ量検出器49によって検出するか、または後述する設定入力IF(InterFace、インタフェース)20がユーザから受け付ける。 The wire electric discharge machining apparatus 100 detects the nozzle separation amount by a nozzle separation amount detector 49, which will be described later, or receives it from the user through a setting input IF (Interface, interface) 20, which will be described later.
 ノズル離れ量が大きいほど、ワイヤ電極2と被加工物7との間の極間への加工液の供給量が減少するので、ワイヤ電極2の断線限界まで投入可能な放電加工エネルギーが減少する。また、ワイヤ張力が高いほどワイヤ電極2の撓みが減るので真直精度は向上する。 As the nozzle separation increases, the amount of machining fluid supplied to the gap between the wire electrode 2 and the workpiece 7 decreases, so the electric discharge machining energy that can be applied to the wire electrode 2 disconnection limit decreases. Also, the higher the wire tension, the less the bending of the wire electrode 2, so the straightness accuracy is improved.
 ワイヤ放電加工装置100は、加工する板厚領域毎の加工寸法および各板厚領域内での加工形状が一定値に近づくように加工を制御する。このため、ワイヤ放電加工装置100の作製者は、事前に上記(A)~(D)のパラメータの種々の組み合わせで加工を実行した場合の各加工寸法および各加工形状の結果を取得しておく。ワイヤ放電加工装置100の作製者は、上記(A)~(D)の各パラメータと、加工寸法および加工形状との関係を定式化することで、後述する形状寸法補償器35を作製する。形状寸法補償器35は、NC制御装置33に配置されており、ワイヤ張力指令、電圧補正値および休止時間補正値を算出する。 The wire electric discharge machine 100 controls machining so that the machining dimensions for each plate thickness region to be machined and the machining shape within each plate thickness region approach a constant value. For this reason, the manufacturer of the wire electric discharge machine 100 acquires in advance the results of each machining dimension and each machining shape when machining is executed with various combinations of the parameters (A) to (D). . The manufacturer of the wire electric discharge machining apparatus 100 formulates the relationship between the above parameters (A) to (D), the machining dimensions and the machining shape, thereby producing the geometry compensator 35, which will be described later. A geometry compensator 35 is arranged in the NC controller 33 and calculates a wire tension command, a voltage correction value and a rest time correction value.
 すなわち、ワイヤ放電加工装置100の作製者は、定式化された関数を用いて加工寸法差が板厚領域間で最小に近づき、加工形状である真直精度差が各板厚領域内で最小に近づく制御モデルを構築し、形状寸法補償器35に設定する。この制御モデルが、形状寸法補償器35による制御に対応している。これにより、形状寸法補償器35は、加工電圧、放電加工エネルギー、ノズル離れ量、およびワイヤ張力の複数の組み合わせでワイヤ放電加工が実行された場合の被加工物7の加工寸法および真直精度に基づいて設定された制御モデルを用いて、電圧補正値、休止時間補正値、およびワイヤ張力指令を算出する。 That is, the manufacturer of the wire electric discharge machining apparatus 100 uses the formulated function to minimize the machining dimensional difference between the plate thickness regions, and the straightness accuracy difference, which is the machining shape, to the minimum within each plate thickness region. A control model is constructed and set in the geometry compensator 35 . This control model corresponds to control by the geometry compensator 35 . As a result, the shape and dimension compensator 35 is based on the machining dimension and straightness accuracy of the workpiece 7 when wire electric discharge machining is performed with a plurality of combinations of machining voltage, electric discharge machining energy, nozzle separation amount, and wire tension. A voltage correction value, a pause time correction value, and a wire tension command are calculated using the control model set in the above.
 形状寸法補償器35には、ワイヤ放電加工装置100による事前の加工処理による加工結果に基づいて、後述する電圧補正値情報77、エネルギー補正値情報、第1から第3の対応関係情報が設定される。なお、ワイヤ放電加工装置100による事前の加工処理では、上記(A)~(D)の各パラメータ以外にも、ワイヤ電極2の径、被加工物7の材質などの加工形状に影響を与えるパラメータを種々組合せてもよい。この場合、ワイヤ放電加工装置100の作製者は、ワイヤ電極2の径毎、および被加工物7の材質毎に制御モデルを構築して形状寸法補償器35に設定する。 Voltage correction value information 77, energy correction value information, and first to third correspondence relationship information, which will be described later, are set in the shape and dimension compensator 35 based on the machining result of the prior machining processing by the wire electric discharge machining apparatus 100. be. In addition to the above parameters (A) to (D), in the pre-processing by the wire electric discharge machine 100, the diameter of the wire electrode 2, the material of the workpiece 7, and other parameters that affect the machining shape. may be combined in various ways. In this case, the manufacturer of the wire electric discharge machine 100 constructs a control model for each diameter of the wire electrode 2 and each material of the workpiece 7 and sets it in the geometry compensator 35 .
 形状寸法補償器35は、ユーザによって指定されたワイヤ電極2の径および被加工物7の材質の少なくとも一方に対応する制御モデルを用いる。形状寸法補償器35は、加工中の加工電圧、加工エネルギー、加工速度、ノズル離れ量などに基づいて、ワイヤ張力指令、電圧補正値および休止時間補正値を算出する。 The geometry compensator 35 uses a control model corresponding to at least one of the diameter of the wire electrode 2 and the material of the workpiece 7 specified by the user. The geometry compensator 35 calculates a wire tension command, a voltage correction value, and an idle time correction value based on the machining voltage, machining energy, machining speed, nozzle separation amount, etc. during machining.
 図6は、実施の形態にかかるワイヤ放電加工装置の機能構成例を示すブロック図である。加工電源32は、加工電圧検出器45と、加工エネルギー検出器46と、フィードバック制御器43と、演算器41,42とを有している。NC制御装置33は、板厚推定器48と、ノズル離れ量検出器49と、設定入力IF20と、形状寸法補償器35とを有している。 FIG. 6 is a block diagram showing a functional configuration example of the wire electric discharge machine according to the embodiment. The machining power supply 32 has a machining voltage detector 45 , a machining energy detector 46 , a feedback controller 43 , and calculators 41 and 42 . The NC control device 33 has a plate thickness estimator 48 , a nozzle separation amount detector 49 , a setting input IF 20 and a geometry compensator 35 .
 加工電源32では、演算器41が演算器42に接続されており、演算器42がフィードバック制御器43に接続されている。また、フィードバック制御器43が加工機構30に接続されている。具体的には、フィードバック制御器43は、上側給電子4および下側給電子5に接続されている。 In the machining power supply 32 , the calculator 41 is connected to the calculator 42 , and the calculator 42 is connected to the feedback controller 43 . A feedback controller 43 is also connected to the processing mechanism 30 . Specifically, feedback controller 43 is connected to upper feeder 4 and lower feeder 5 .
 また、加工機構30は、加工電圧検出器45、加工エネルギー検出器46、ワイヤ張力制御装置31、ノズル離れ量検出器49、および板厚推定器48に接続されている。加工電圧検出器45は、板厚推定器48および形状寸法補償器35に接続されている。加工エネルギー検出器46は、板厚推定器48および形状寸法補償器35に接続されている。形状寸法補償器35は、板厚推定器48、ノズル離れ量検出器49、設定入力IF20、演算器41、およびワイヤ張力制御装置31に接続されている。 The machining mechanism 30 is also connected to a machining voltage detector 45 , a machining energy detector 46 , a wire tension controller 31 , a nozzle separation amount detector 49 and a plate thickness estimator 48 . Machining voltage detector 45 is connected to plate thickness estimator 48 and geometry compensator 35 . Machining energy detector 46 is connected to plate thickness estimator 48 and geometry compensator 35 . The geometry compensator 35 is connected to the plate thickness estimator 48 , nozzle separation amount detector 49 , setting input IF 20 , calculator 41 and wire tension controller 31 .
 ワイヤ張力制御装置31は、加工機構30のテンション負荷装置3を制御する。また、NC制御装置33は、加工機構30のX軸駆動モータ11X、Y軸駆動モータ11Yなどを制御する。 The wire tension control device 31 controls the tension load device 3 of the processing mechanism 30. The NC control device 33 also controls the X-axis drive motor 11X, the Y-axis drive motor 11Y, and the like of the processing mechanism 30 .
 加工電圧検出器45は、上側給電子4または下側給電子5を介してワイヤ電極2に接続されるとともに、被加工物7に接続されている。加工電圧検出器45は、加工中にワイヤ電極2と被加工物7との間である極間の加工電圧を検出する。加工電圧検出器45が検出する加工電圧は、ワイヤ電極2と被加工物7との間の距離に対応している。加工電圧検出器45は、検出した加工電圧を演算器42、板厚推定器48、および形状寸法補償器35に送る。 The machining voltage detector 45 is connected to the wire electrode 2 via the upper feeder 4 or the lower feeder 5 and to the workpiece 7 . The machining voltage detector 45 detects the machining voltage between the wire electrode 2 and the workpiece 7 during machining. The machining voltage detected by the machining voltage detector 45 corresponds to the distance between the wire electrode 2 and the workpiece 7 . The machining voltage detector 45 sends the detected machining voltage to the calculator 42 , plate thickness estimator 48 , and geometry compensator 35 .
 加工エネルギー検出器46は、上側給電子4または下側給電子5を介してワイヤ電極2に接続されるともに、被加工物7に接続されている。加工エネルギー検出器46は、加工中にワイヤ電極2と被加工物7との間で発生した放電パルスを検出する。加工エネルギー検出器46は、放電パルスの1パルス当たりのエネルギーとパルス数とに基づいて、放電加工エネルギーを算出する。加工エネルギー検出器46は、放電加工エネルギーを演算器42、板厚推定器48、および形状寸法補償器35に送る。 The machining energy detector 46 is connected to the wire electrode 2 via the upper feeder 4 or the lower feeder 5 and to the workpiece 7 . The machining energy detector 46 detects discharge pulses generated between the wire electrode 2 and the workpiece 7 during machining. The machining energy detector 46 calculates the electric discharge machining energy based on the energy per one discharge pulse and the number of pulses. Machining energy detector 46 sends electrical discharge machining energy to calculator 42 , plate thickness estimator 48 , and geometry compensator 35 .
 演算器41は、NC制御装置33から指令電圧および休止時間を受け付ける。指令電圧は、ワイヤ放電加工に用いられる電圧の指令値である。演算器41は、形状寸法補償器35から送られてくる電圧補正値および休止時間補正値を受け付ける。電圧補正値は、演算器41がNC制御装置33から受け付けた指令電圧を補正するための補正値である。休止時間補正値は、演算器41がNC制御装置33から受け付けた休止時間を補正するための補正値である。電圧補正値および休止時間補正値は、加工経路上に板厚がそれぞれ異なる複数の板厚領域を有した被加工物7に対して加工寸法の精度および加工形状の精度を向上させるための補正値である。 A computing unit 41 receives a command voltage and a pause time from the NC control device 33 . The command voltage is a command value of voltage used for wire electric discharge machining. Arithmetic unit 41 receives the voltage correction value and the quiescent time correction value sent from geometry compensator 35 . The voltage correction value is a correction value for correcting the command voltage received by the calculator 41 from the NC control device 33 . The pause time correction value is a correction value for correcting the pause time received by the calculator 41 from the NC control device 33 . The voltage correction value and the rest time correction value are correction values for improving the accuracy of the machining dimension and the accuracy of the machining shape for the workpiece 7 having a plurality of plate thickness regions with different plate thicknesses on the machining path. is.
 演算器41は、受け付けた指令電圧および休止時間から電圧補正値および休止時間補正値を減算して演算器42に送る。なお、演算器41は、NC制御装置33に配置されていてもよい。 The calculator 41 subtracts the voltage correction value and the pause time correction value from the received command voltage and pause time, and sends the result to the calculator 42 . Note that the calculator 41 may be arranged in the NC control device 33 .
 演算器42は、演算器41から送られてくる指令電圧から、加工電圧検出器45から送られてくる現在の加工電圧を減算してフィードバック制御器43に送る。また、演算器42は、演算器41から送られてくる休止時間から、加工エネルギー検出器46から送られてくる現在の放電加工エネルギーを減算してフィードバック制御器43に送る。 The calculator 42 subtracts the current machining voltage sent from the machining voltage detector 45 from the command voltage sent from the calculator 41 and sends the result to the feedback controller 43 . Further, the calculator 42 subtracts the current electric discharge machining energy sent from the machining energy detector 46 from the pause time sent from the calculator 41 and sends the result to the feedback controller 43 .
 フィードバック制御器43は、演算器42で演算された結果を用いて加工機構30を制御する。具体的には、フィードバック制御器43は、X軸駆動モータ11XおよびY軸駆動モータ11Yに軸移動指令を送ることによって、定盤8のX軸方向の位置およびY軸方向の位置を補正する。これにより、フィードバック制御器43は、加工機構30に対し、加工電圧、放電加工エネルギーなどを制御する。 A feedback controller 43 controls the machining mechanism 30 using the results calculated by the calculator 42 . Specifically, the feedback controller 43 corrects the position of the surface plate 8 in the X-axis direction and the Y-axis direction by sending an axis movement command to the X-axis drive motor 11X and the Y-axis drive motor 11Y. Thereby, the feedback controller 43 controls the machining voltage, electric discharge machining energy, etc. for the machining mechanism 30 .
 加工機構30のX軸駆動モータ11XおよびY軸駆動モータ11Yは、それぞれエンコーダに接続されており、エンコーダが加工速度を検出し板厚推定器48に送る。 The X-axis drive motor 11X and the Y-axis drive motor 11Y of the machining mechanism 30 are each connected to an encoder, which detects the machining speed and sends it to the plate thickness estimator 48.
 板厚推定器48は、加工機構30から送られてくる加工速度と、加工電圧検出器45から送られてくる加工電圧と、加工エネルギー検出器46から送られてくる放電加工エネルギーとに基づいて、被加工物7の板厚を推定する。板厚推定器48は、板厚が変化する加工において、被加工物7のうち加工されている箇所の板厚を推定する。板厚推定器48は、推定した板厚を、板厚推定値として形状寸法補償器35に送る。 The plate thickness estimator 48 is based on the machining speed sent from the machining mechanism 30, the machining voltage sent from the machining voltage detector 45, and the electric discharge machining energy sent from the machining energy detector 46. , the plate thickness of the workpiece 7 is estimated. The plate thickness estimator 48 estimates the plate thickness of a portion of the workpiece 7 that is being machined during machining in which the plate thickness changes. The plate thickness estimator 48 sends the estimated plate thickness to the geometry compensator 35 as a plate thickness estimated value.
 ノズル離れ量検出器49は、加工中の加工機構30からノズル離れ量を検出して形状寸法補償器35に送る。設定入力IF20は、ユーザによって入力される基準板厚を受け付けて形状寸法補償器35に送る。基準板厚は、加工寸法の基準とする板厚である。ワイヤ放電加工装置100は、被加工物7が基準板厚における加工寸法となるように、基準板厚以外の板厚領域を加工する。 The nozzle separation amount detector 49 detects the nozzle separation amount from the machining mechanism 30 during machining and sends it to the geometry compensator 35 . The setting input IF 20 accepts the reference plate thickness input by the user and sends it to the geometry compensator 35 . The reference plate thickness is a plate thickness used as a reference for processing dimensions. The wire electric discharge machine 100 processes a plate thickness region other than the reference plate thickness so that the workpiece 7 has the machining dimensions of the reference plate thickness.
 例えば、形状寸法補償器35が、寸法曲線情報として寸法曲線65~68の情報を記憶している場合、基準板厚として200mmが指定されると、形状寸法補償器35は、200mmの寸法曲線65が縦軸に平行に近づくように加工を制御する。すなわち、形状寸法補償器35は、200mmの寸法曲線65が縦軸に平行に近づくような電圧補正値、休止時間補正値、およびワイヤ張力指令を算出する。 For example, if the geometry compensator 35 stores information on dimension curves 65 to 68 as dimension curve information, and 200 mm is specified as the reference plate thickness, the geometry compensator 35 stores the dimension curve 65 of 200 mm. Controls the machining so that is nearly parallel to the vertical axis. That is, the geometry compensator 35 calculates a voltage correction value, a pause time correction value, and a wire tension command that make the 200 mm dimension curve 65 parallel to the vertical axis.
 さらに、形状寸法補償器35は、50mm~150mmの加工寸法が、縦軸に平行に近づけられた寸法曲線65に近付くような電圧補正値、休止時間補正値、およびワイヤ張力指令を算出する。 Further, the geometry compensator 35 calculates a voltage correction value, a pause time correction value, and a wire tension command so that the machining dimension of 50 mm to 150 mm approaches the dimension curve 65 that is parallel to the vertical axis.
 なお、基準板厚が指定されない場合、形状寸法補償器35は、特定の板厚の加工寸法(寸法曲線)に近づくように加工を制御する。形状寸法補償器35は、例えば、最も薄い板厚の加工寸法に近づくように加工を制御する。 When the reference plate thickness is not specified, the geometry compensator 35 controls the machining so as to approach the machining dimension (dimension curve) of a specific plate thickness. The geometry compensator 35 controls the machining so as to approach the machining dimension of the thinnest plate, for example.
 なお、設定入力IF20が、ユーザからノズル離れ量を受け付けて形状寸法補償器35に送ってもよい。この場合、NC制御装置33は、ノズル離れ量検出器49を有していなくてもよい。 The setting input IF 20 may receive the nozzle separation amount from the user and send it to the geometry compensator 35 . In this case, the NC control device 33 may not have the nozzle separation amount detector 49 .
 形状寸法補償器35は、加工中の加工電圧、加工エネルギー、加工速度、板厚推定値、ノズル離れ量、および基準板厚に基づいて、電圧補正値、休止時間補正値、およびワイヤ張力指令を算出する。 The shape and dimension compensator 35 sets a voltage correction value, a pause time correction value, and a wire tension command based on the machining voltage, machining energy, machining speed, plate thickness estimate, nozzle separation amount, and reference plate thickness during machining. calculate.
 形状寸法補償器35は、電圧補正値および休止時間補正値を演算器41に送り、ワイヤ張力指令をワイヤ張力制御装置31に送る。ワイヤ張力制御装置31は、ワイヤ張力指令に従って加工機構30を制御する。具体的には、ワイヤ張力制御装置31は、ワイヤ張力指令に従ってテンション負荷装置3を制御する。 The geometry compensator 35 sends the voltage correction value and the pause time correction value to the calculator 41 and sends the wire tension command to the wire tension control device 31 . The wire tension controller 31 controls the machining mechanism 30 according to the wire tension command. Specifically, the wire tension control device 31 controls the tension load device 3 according to the wire tension command.
 このように、形状寸法補償器35は、加工中の加工電圧、加工中の加工エネルギー、加工中の加工速度、加工中の板厚推定値、加工中のノズル離れ量、および基準板厚に基づいて、電圧補正値、休止時間補正値、およびワイヤ張力指令を算出するので、第1回目の加工である粗加工での加工寸法の精度および加工形状の精度を向上させることができる。 In this way, the shape and dimension compensator 35 is based on the machining voltage during machining, the machining energy during machining, the machining speed during machining, the estimated plate thickness during machining, the nozzle separation amount during machining, and the reference plate thickness. Since the voltage correction value, the pause time correction value, and the wire tension command are calculated in this way, it is possible to improve the accuracy of machining dimensions and the accuracy of the machining shape in rough machining, which is the first machining.
 ここで、上述した(A)~(D)のパラメータの詳細について説明する。まず、板厚推定値に応じた加工電圧の補正について説明する。形状寸法補償器35は、板厚推定値に基づいて加工電圧の電圧補正値を算出する。 Here, the details of the parameters (A) to (D) described above will be described. First, the correction of the machining voltage according to the plate thickness estimated value will be described. A geometry compensator 35 calculates a voltage correction value of the machining voltage based on the plate thickness estimated value.
 図7は、実施の形態にかかる形状寸法補償器による電圧補正値の算出処理を説明するための図である。図7では形状寸法補償器35が備える電圧補正値算出部85の構成を示している。 FIG. 7 is a diagram for explaining calculation processing of a voltage correction value by the geometry compensator according to the embodiment. FIG. 7 shows the configuration of the voltage correction value calculator 85 included in the geometry compensator 35. As shown in FIG.
 電圧補正値算出部85は、演算器75,76を備えている。演算器75は、板厚推定値に基づいて、板厚対応電圧補正値を算出して演算器76に送る。板厚対応電圧補正値は、板厚推定値に応じた加工電圧の補正値である。演算器75は、板厚推定値と、板厚対応電圧補正値との対応関係を示す電圧補正値情報を用いて、板厚対応電圧補正値を算出する。 The voltage correction value calculation unit 85 includes calculators 75 and 76 . The computing unit 75 calculates the plate thickness corresponding voltage correction value based on the plate thickness estimated value and sends it to the computing unit 76 . The plate thickness corresponding voltage correction value is a correction value of the machining voltage corresponding to the plate thickness estimated value. The arithmetic unit 75 calculates the plate thickness corresponding voltage correction value using the voltage correction value information indicating the correspondence relationship between the plate thickness estimated value and the plate thickness corresponding voltage correction value.
 図8は、実施の形態にかかる形状寸法補償器が用いる電圧補正値情報を説明するための図である。図8に示す電圧補正値情報77のグラフは、横軸が板厚推定値であり、縦軸が板厚対応電圧補正値である。電圧補正値情報77では、低板厚では板厚対応電圧補正値が0であり、特定の板厚からは板厚の厚さに比例して板厚対応電圧補正値が上昇し、特定の板厚以上では板厚対応電圧補正値を変化させていない。なお、ワイヤ電極2が断線する可能性が低い場合には、特定の板厚以上でも板厚対応電圧補正値が上昇させられてもよい。 FIG. 8 is a diagram for explaining voltage correction value information used by the geometry compensator according to the embodiment. In the graph of the voltage correction value information 77 shown in FIG. 8, the horizontal axis is the plate thickness estimated value, and the vertical axis is the plate thickness corresponding voltage correction value. In the voltage correction value information 77, the plate thickness corresponding voltage correction value is 0 at a low plate thickness, and from a specific plate thickness, the plate thickness corresponding voltage correction value increases in proportion to the plate thickness. Above the thickness, the plate thickness corresponding voltage correction value is not changed. In addition, when the wire electrode 2 is unlikely to be disconnected, the plate thickness corresponding voltage correction value may be increased even if the plate thickness is equal to or greater than a specific plate thickness.
 演算器75は、電圧補正値情報77と、板厚推定値とに基づいて、板厚対応電圧補正値を算出する。なお、電圧補正値情報77は、板厚推定値と、板厚対応電圧補正値との対応関係を示す数式であってもよいし、データテーブルであってもよい。 The arithmetic unit 75 calculates the plate thickness corresponding voltage correction value based on the voltage correction value information 77 and the plate thickness estimated value. The voltage correction value information 77 may be a mathematical expression indicating the correspondence relationship between the plate thickness estimated value and the plate thickness corresponding voltage correction value, or may be a data table.
 演算器76は、測定された加工電圧である測定加工電圧に板厚対応電圧補正値を加算することで電圧補正値を算出する。演算器76は、電圧補正値を演算器41に送る。このように、電圧補正値算出部85は、板厚推定値に対して加工電圧の補正を行う。板厚が厚い板厚領域は加工速度が遅くなり、ワイヤ電極2の撓みによって被加工物7の側面との間のギャップが広がって真直精度が低くなる。このため、電圧補正値算出部85は、板厚が厚い板厚領域では、加工電圧を高く補正するための電圧補正値を算出することで、加工速度が上がるように補正する。これにより、電圧補正値算出部85は、板厚が薄い板厚領域と厚い板厚領域との加工寸法差を抑制する。 The calculator 76 calculates the voltage correction value by adding the plate thickness corresponding voltage correction value to the measured machining voltage, which is the measured machining voltage. The calculator 76 sends the voltage correction value to the calculator 41 . In this manner, the voltage correction value calculator 85 corrects the machining voltage for the plate thickness estimated value. The machining speed slows down in thicker plate thickness regions, and the bending of the wire electrode 2 widens the gap between the wire electrode 2 and the side surface of the workpiece 7, lowering the straightness accuracy. For this reason, the voltage correction value calculation unit 85 calculates a voltage correction value for correcting the machining voltage to be higher in the thick plate thickness region, thereby correcting the machining speed so as to increase. As a result, the voltage correction value calculator 85 suppresses the processing dimensional difference between the thin plate thickness region and the thick plate thickness region.
 つぎに、板厚推定値に応じた放電加工エネルギーの補正について説明する。形状寸法補償器35は、板厚推定値に基づいて放電加工エネルギーを補正するための休止時間補正値を算出する。 Next, the correction of the electric discharge machining energy according to the plate thickness estimated value will be explained. The geometry compensator 35 calculates a rest time correction value for correcting the electric discharge machining energy based on the plate thickness estimate.
 図9は、実施の形態にかかる形状寸法補償器による休止時間補正値の算出処理を説明するための図である。図9では形状寸法補償器35が備える休止時間補正値算出部86の構成を示している。 FIG. 9 is a diagram for explaining calculation processing of the downtime correction value by the geometry compensator according to the embodiment. FIG. 9 shows the configuration of the pause time correction value calculator 86 provided in the geometry compensator 35. As shown in FIG.
 休止時間補正値算出部86は、演算器63,64,80を有している。演算器63は、板厚推定値に基づいて、目標放電加工エネルギーを算出して演算器64に送る。目標放電加工エネルギーは、板厚推定値に応じた放電加工エネルギーの目標値である。演算器63は、板厚推定値と、目標放電加工エネルギーとの対応関係を示すエネルギー補正値情報を用いて、目標放電加工エネルギーを算出する。 The pause time correction value calculator 86 has calculators 63 , 64 and 80 . The calculator 63 calculates the target electric discharge machining energy based on the plate thickness estimated value and sends it to the calculator 64 . The target electric discharge machining energy is a target value of the electric discharge machining energy according to the plate thickness estimated value. The calculator 63 calculates the target electrical discharge machining energy using the energy correction value information indicating the correspondence relationship between the plate thickness estimated value and the target electrical discharge machining energy.
 演算器64は、現在の放電加工エネルギーから目標放電加工エネルギーを減算した放電加工エネルギーを算出し、演算器80に送る。演算器80は、演算器64から受け付けた放電加工エネルギーに基づいて、休止時間補正値を算出する。演算器80は、比例制御と積分制御との組み合わせによって休止時間補正値を算出する。このように、演算器80は、算出された板厚推定値に基づいて目標放電加工エネルギーを設定し、目標放電加工エネルギーと、現在の放電加工エネルギーとが一致するような休止時間補正値を算出することで、休止時間を制御する。 The calculator 64 calculates electric discharge machining energy by subtracting the target electric discharge machining energy from the current electric discharge machining energy, and sends it to the calculator 80 . The computing unit 80 calculates a rest time correction value based on the electric discharge machining energy received from the computing unit 64 . A computing unit 80 calculates a pause time correction value by a combination of proportional control and integral control. In this way, the calculator 80 sets the target electrical discharge machining energy based on the calculated plate thickness estimated value, and calculates the pause time correction value such that the target electrical discharge machining energy matches the current electrical discharge machining energy. to control the pause time.
 つぎに、ノズル離れ量に応じたワイヤ張力指令または電圧補正値について説明する。形状寸法補償器35は、ノズル離れ量に基づいてワイヤ張力指令、または加工電圧を補正するための電圧補正値を算出する。 Next, the wire tension command or voltage correction value according to the nozzle separation amount will be explained. The geometry compensator 35 calculates a wire tension command or a voltage correction value for correcting the machining voltage based on the nozzle separation amount.
 ワイヤ電極2は、加工中の放電反力、静電引力などの影響で撓むので、被加工物7の設置高さに応じて、被加工物7の真直精度、すなわち形状精度に差異が生じる。図10は、ノズル離れ量とワイヤ電極の撓み量との関係を説明するための図である。図10では、下側ノズル82の位置を高さ0とし、上側ノズル81の位置を高さT5としている。 Since the wire electrode 2 bends under the influence of electrical discharge reaction force, electrostatic attraction, etc. during machining, the straightness accuracy of the workpiece 7, that is, the shape accuracy, varies depending on the installation height of the workpiece 7. . FIG. 10 is a diagram for explaining the relationship between the amount of separation of the nozzle and the amount of deflection of the wire electrode. In FIG. 10, the position of the lower nozzle 82 is set to a height of 0, and the position of the upper nozzle 81 is set to a height of T5.
 被加工物7Dは、高さ0から高さT1までの領域でワイヤ電極2によって加工される被加工物である。また、被加工物7Cは、高さT2(>T1)から高さT3(>T2)までの領域でワイヤ電極2によって加工される被加工物である。また、被加工物7Bは、高さT4(>T3)から高さT5(>T4)までの領域でワイヤ電極2によって加工される被加工物である。 A workpiece 7D is a workpiece that is machined by the wire electrode 2 in a region from height 0 to height T1. A workpiece 7C is a workpiece to be processed by the wire electrode 2 in a region from height T2 (>T1) to height T3 (>T2). The workpiece 7B is a workpiece that is machined by the wire electrode 2 in a region from height T4 (>T3) to height T5 (>T4).
 被加工物7Dのノズル離れ量は、上側ノズル81からは距離R3であり、下側ノズル82からは0である。被加工物7Cのノズル離れ量は、上側ノズル81からは距離R2aであり、下側ノズル82からは距離R2bである。被加工物7Bのノズル離れ量は、上側ノズル81からは0であり、下側ノズル82からは距離R1である。R2a,R2bは、何れもR1およびR3よりも小さい値である。 The nozzle separation amount of the workpiece 7D is a distance R3 from the upper nozzle 81 and 0 from the lower nozzle 82. The workpiece 7C is separated from the nozzle by a distance R2a from the upper nozzle 81 and by a distance R2b from the lower nozzle . The nozzle separation amount of the workpiece 7B is 0 from the upper nozzle 81 and the distance R1 from the lower nozzle 82 . Both R2a and R2b are smaller values than R1 and R3.
 図10に示すように、加工中には、ワイヤ電極2は、加工進行方向に垂直な方向であるY軸方向に撓む。ワイヤ電極2が撓む場合、上側ノズル81と下側ノズル82との間の中央部で最も撓み量が大きくなり、上側ノズル81または下側ノズル82に近いほど撓み量は小さくなる。 As shown in FIG. 10, during machining, the wire electrode 2 bends in the Y-axis direction, which is the direction perpendicular to the machining progress direction. When the wire electrode 2 bends, the amount of bending is greatest at the central portion between the upper nozzle 81 and the lower nozzle 82, and the closer to the upper nozzle 81 or the lower nozzle 82, the smaller the bending amount.
 このように、被加工物7に近い方のノズルと被加工物7との間の距離が短いほど撓み量は小さくなる。換言すると、被加工物7の下側ノズル82からの距離と上側ノズル81から距離との差の絶対値が小さいほど撓み量が大きくなる。図10に示す被加工物7Bは、下側ノズル82からの距離と上側ノズル81から距離との差の絶対値がR1であり、被加工物7Dは、下側ノズル82からの距離と上側ノズル81から距離との差の絶対値がR3である。また、図10に示す被加工物7Cは、下側ノズル82からの距離と上側ノズル81から距離との差の絶対値は、|R2a-R2b|であり、R1,R3よりも小さい。 Thus, the shorter the distance between the nozzle closer to the workpiece 7 and the workpiece 7, the smaller the deflection amount. In other words, the smaller the absolute value of the difference between the distance of the workpiece 7 from the lower nozzle 82 and the distance from the upper nozzle 81, the larger the deflection amount. In the workpiece 7B shown in FIG. 10, the absolute value of the difference between the distance from the lower nozzle 82 and the distance from the upper nozzle 81 is R1. The absolute value of the difference from 81 to the distance is R3. 10, the absolute value of the difference between the distance from the lower nozzle 82 and the distance from the upper nozzle 81 is |R2a-R2b|, which is smaller than R1 and R3.
 このように、ワイヤ電極2の中央部で加工される被加工物7Cは、被加工物7Cの上面、下面ともにワイヤ電極2の撓み量が同程度のため真直精度は高くなる。一方、ワイヤ電極2の端部で加工される被加工物7B,7Dは、被加工物7B,7Cの上面と下面とでワイヤ電極2の撓み量に差異が生じるため真直精度は低くなる。 In this way, the workpiece 7C to be machined at the central portion of the wire electrode 2 has a high straightness accuracy because the wire electrode 2 has approximately the same deflection amount on both the upper and lower surfaces of the workpiece 7C. On the other hand, the workpieces 7B and 7D machined by the ends of the wire electrode 2 have lower straightness accuracy because the wire electrode 2 bends differently between the upper and lower surfaces of the workpieces 7B and 7C.
 したがって、形状寸法補償器35は、ノズル離れ量検出器49または設定入力IF20を介してノズル離れ量を取得することができれば、ノズル離れ量に応じた加工制御を行うことで、被加工物7の真直精度を向上させることができる。 Therefore, if the shape and dimension compensator 35 can acquire the nozzle separation amount via the nozzle separation amount detector 49 or the setting input IF 20, the shape and dimension compensator 35 can perform processing control according to the nozzle separation amount, thereby making the workpiece 7 Straightness accuracy can be improved.
 形状寸法補償器35は、ノズル離れ量と、ワイヤ張力との対応関係を示す第1の対応関係情報に基づいて、被加工物7の真直精度を向上させるためのワイヤ張力を算出する。形状寸法補償器35は、例えば、ワイヤ張力を高くすることでワイヤ電極2の撓み量を減らすことができ、真直精度を向上させることができる。 The shape and dimension compensator 35 calculates the wire tension for improving the straightness accuracy of the workpiece 7 based on the first correspondence information indicating the correspondence between the nozzle separation amount and the wire tension. The geometry compensator 35 can reduce the deflection amount of the wire electrode 2 by, for example, increasing the wire tension, thereby improving the straightness accuracy.
 また、形状寸法補償器35は、ノズル離れ量と、電圧補正値との対応関係を示す第2の対応関係情報に基づいて、被加工物7の真直精度を向上させるための電圧補正値を算出する。形状寸法補償器35は、電圧補正値によって加工電圧を下げることで加工速度を上げることができるので、ノズル離れ量が大きい箇所での加工量を減らすことができ、真直精度と加工寸法精度を制御することができる。 Further, the shape and dimension compensator 35 calculates a voltage correction value for improving the straightness accuracy of the workpiece 7 based on the second correspondence information indicating the correspondence between the nozzle distance and the voltage correction value. do. The shape and dimension compensator 35 can increase the machining speed by lowering the machining voltage by the voltage correction value, so it is possible to reduce the amount of machining at locations where the nozzle separation amount is large, and control the straightness accuracy and machining dimensional accuracy. can do.
 つぎに、板厚推定値に応じたワイヤ張力指令について説明する。形状寸法補償器35は、板厚推定値に基づいてワイヤ張力指令を算出する。 Next, the wire tension command according to the plate thickness estimated value will be explained. A geometry compensator 35 calculates a wire tension command based on the plate thickness estimated value.
 被加工物7の板厚が厚い場合には、加工速度が遅くなるので、加工量が増える。特にワイヤ電極2の中央部ではワイヤ電極2の撓みによって加工量が増える。この場合、ワイヤ放電加工装置100は、ワイヤ張力を高くすることでワイヤ電極2の撓みを減らせるので、ワイヤ電極2の撓み量が大きい領域での加工量を減らすことができ、真直精度を向上させることができる。 When the plate thickness of the workpiece 7 is thick, the processing speed becomes slow, so the amount of processing increases. In particular, at the central portion of the wire electrode 2, the bending of the wire electrode 2 increases the machining amount. In this case, since the wire electric discharge machine 100 can reduce the bending of the wire electrode 2 by increasing the wire tension, it is possible to reduce the machining amount in the region where the amount of bending of the wire electrode 2 is large, and improve the straightness accuracy. can be made
 図11は、ワイヤ張力とワイヤ電極の撓み量との関係を説明するための図である。図11では、撓み量の大きな場合のワイヤ電極をワイヤ電極2Bとして図示し、ワイヤ張力を高くして撓み量を減らした場合のワイヤ電極をワイヤ電極2Aとして図示している。 FIG. 11 is a diagram for explaining the relationship between the wire tension and the deflection amount of the wire electrode. In FIG. 11, the wire electrode 2B shows a wire electrode with a large amount of deflection, and the wire electrode 2A shows a wire electrode with an increased wire tension to reduce the amount of deflection.
 図11に示すように、ワイヤ放電加工装置100は、ワイヤ電極2の張力を強めることで、ワイヤ電極2の撓みを抑制でき、これに伴い被加工物7の真直精度を向上させることができる。なお、ワイヤ放電加工装置100は、ワイヤ張力を強める際に、ワイヤ電極2が断線する確率が特定値よりも小さくなる程度の強度までしかワイヤ張力を強めない。形状寸法補償器35は、板厚推定値とワイヤ張力との対応関係を示す第3の対応関係情報に基づいて、被加工物7の真直精度を向上させるためのワイヤ張力を算出する。 As shown in FIG. 11 , the wire electric discharge machine 100 can suppress the bending of the wire electrode 2 by increasing the tension of the wire electrode 2 , thereby improving the straightness accuracy of the workpiece 7 . When increasing the wire tension, the wire electric discharge machine 100 increases the wire tension only to such an extent that the probability of the wire electrode 2 breaking is smaller than a specific value. The geometry compensator 35 calculates the wire tension for improving the straightness accuracy of the workpiece 7 based on the third correspondence information indicating the correspondence between the plate thickness estimated value and the wire tension.
 つぎに、ワイヤ放電加工装置100によるワイヤ放電加工の処理手順について説明する。図12は、実施の形態にかかるワイヤ放電加工装置によるワイヤ放電加工の処理手順を示すフローチャートである。 Next, a processing procedure for wire electric discharge machining by the wire electric discharge machining apparatus 100 will be described. FIG. 12 is a flowchart showing a processing procedure of wire electric discharge machining by the wire electric discharge machine according to the embodiment.
 ワイヤ放電加工装置100がワイヤ放電加工を開始すると(ステップS10)、NC制御装置33が、データを収集する(ステップS20)。具体的には、板厚推定器48が、加工電圧と、放電加工エネルギーと、加工速度とを受け付ける。また、ノズル離れ量検出器49が、ノズル離れ量を検出し、設定入力IF20が基準板厚を受け付ける。 When the wire electric discharge machine 100 starts wire electric discharge machining (step S10), the NC controller 33 collects data (step S20). Specifically, the plate thickness estimator 48 receives the machining voltage, electrical discharge machining energy, and machining speed. Further, the nozzle separation amount detector 49 detects the nozzle separation amount, and the setting input IF 20 receives the reference plate thickness.
 板厚推定器48は、加工電圧、放電加工エネルギー、および加工速度に基づいて、被加工物7の板厚を推定する(ステップS30)。板厚推定器48は、推定した板厚を、板厚推定値として形状寸法補償器35に送る。 The plate thickness estimator 48 estimates the plate thickness of the workpiece 7 based on the machining voltage, electric discharge machining energy, and machining speed (step S30). The plate thickness estimator 48 sends the estimated plate thickness to the geometry compensator 35 as a plate thickness estimated value.
 形状寸法補償器35は、板厚推定値、ノズル離れ量、および基準板厚に基づいて、ワイヤ張力指令、電圧補正値、および休止時間補正値を算出する(ステップS40)。ワイヤ放電加工装置100は、ワイヤ張力指令、電圧補正値、および休止時間補正値を用いて、加工電圧、加工エネルギー、およびワイヤ張力を制御する(ステップS50)。具体的には、フィードバック制御器43が、電圧補正値および休止時間補正値に応じた電圧値および休止時間で加工機構30をフィードバック制御し、ワイヤ張力制御装置31が、ワイヤ電極2のワイヤ張力を制御する。 The shape and dimension compensator 35 calculates a wire tension command, a voltage correction value, and an idle time correction value based on the plate thickness estimated value, the nozzle separation amount, and the reference plate thickness (step S40). The wire electric discharge machine 100 controls machining voltage, machining energy, and wire tension using the wire tension command, voltage correction value, and rest time correction value (step S50). Specifically, the feedback controller 43 feedback-controls the machining mechanism 30 with the voltage value and the rest time corresponding to the voltage correction value and the rest time correction value, and the wire tension controller 31 adjusts the wire tension of the wire electrode 2. Control.
 なお、形状寸法補償器35は、第1回目の加工の際に、加工溝幅を推定して記憶しておいてもよい。この場合、形状寸法補償器35は、第1回目の加工の際に用いた加工条件である第1の加工条件および寸法曲線情報に基づいて加工溝幅を推定する。また、ワイヤ放電加工装置100は、第1回目の加工の際に、推定した板厚推定値を記憶しておいてもよい。形状寸法補償器35は、推定した加工溝幅および板厚推定値と、被加工物7の加工位置を示す座標情報とを対応付けし、加工結果情報として記憶しておく。 It should be noted that the shape and dimension compensator 35 may estimate and store the machined groove width at the time of the first machining. In this case, the geometry compensator 35 estimates the machined groove width based on the first machining conditions used in the first machining and the dimension curve information. Moreover, the wire electric discharge machining apparatus 100 may store an estimated plate thickness value at the time of the first machining. The shape and dimension compensator 35 associates the estimated machining groove width and plate thickness estimated values with coordinate information indicating the machining position of the workpiece 7, and stores them as machining result information.
 形状寸法補償器35は、例えば、加工結果情報に含まれる、加工溝幅と座標情報との対応関係を用いて、第2回目以降の加工で用いる加工条件である第2の加工条件、およびオフセット量の少なくとも一方を調整する。オフセット量は、第2回目以降の加工で用いる加工位置(ワイヤ電極2のY軸方向の位置)の被加工物7側への寄せ量である。 The shape and dimension compensator 35 uses, for example, the correspondence relationship between the machining groove width and the coordinate information included in the machining result information to determine the second machining conditions, which are the machining conditions used in the second and subsequent machining, and the offset Adjust at least one of the amounts. The offset amount is the amount of shift of the machining position (the position of the wire electrode 2 in the Y-axis direction) used in the second and subsequent machining operations toward the workpiece 7 side.
 第2回目以降の加工はオフセット量によって加工量が変わり、板厚の推定が困難となるが、形状寸法補償器35は、第1回目の加工で生成した加工結果情報を記憶しておくので、第2回目以降の加工でも加工結果情報に基づいて加工制御を実行することができる。 In the second and subsequent machining, the machining amount changes depending on the offset amount, making it difficult to estimate the plate thickness. Processing control can be executed based on the processing result information for the second and subsequent processing as well.
 形状寸法補償器35は、例えば、加工結果情報に含まれる、板厚推定値と座標情報との対応関係を用いて、電圧補正値、休止時間補正値、およびワイヤ張力指令を算出する。 The geometry compensator 35 calculates the voltage correction value, the pause time correction value, and the wire tension command, for example, using the correspondence relationship between the plate thickness estimated value and the coordinate information included in the machining result information.
 このように、ワイヤ放電加工装置100は、形状寸法補償器35を用いて電圧補正値、休止時間補正値、およびワイヤ張力指令を算出しているので、板厚が変化する加工において、第1回目の加工から被加工物7の板厚領域に関わらず加工寸法および真直精度を向上させることができる。 In this way, the wire electric discharge machining apparatus 100 uses the geometry compensator 35 to calculate the voltage correction value, the pause time correction value, and the wire tension command. From the machining of , the machining dimension and straightness accuracy can be improved regardless of the plate thickness region of the workpiece 7 .
 また、ワイヤ放電加工装置100は、加工電圧を特定値に保つための軸移動指令と、次に加工電圧を印加し始める時間とを制御することによって、加工条件を変更せずに、連続的な制御によって被加工物7の加工形状および加工寸法を制御することができる。 Further, the wire electric discharge machine 100 controls the axis movement command for maintaining the machining voltage at a specific value and the time to start applying the machining voltage next time, so that the wire electric discharge machine 100 can continuously perform machining without changing the machining conditions. The control can control the machining shape and machining dimensions of the workpiece 7 .
 本実施の形態では、形状寸法補償器35が、電圧補正値、休止時間補正値、ワイヤ張力などを算出する場合について説明したが、機械学習を行う学習装置が、電圧補正値、休止時間補正値、ワイヤ張力などを算出してもよい。すなわち、加工寸法および真直精度をモデル化した関数は、実験的に導出されてもよいし、学習装置が導出してもよい。学習装置が導出する場合、学習装置は、複数の板厚領域の加工寸法が、特定の板厚領域における加工寸法に近づくように、電圧補正値、休止時間補正値、およびワイヤ張力指令を算出する。 In the present embodiment, a case where the shape and dimension compensator 35 calculates the voltage correction value, the rest time correction value, the wire tension, etc. has been described. , wire tension, etc. may be calculated. That is, the functions modeling the machining dimensions and straightness accuracy may be derived experimentally or may be derived by a learning device. When derived by the learning device, the learning device calculates the voltage correction value, the pause time correction value, and the wire tension command so that the machining dimensions of the plurality of plate thickness regions approach the machining dimensions of the specific plate thickness region. .
 実験的に導出される場合、ワイヤ放電加工装置100の作製者は、過去の加工結果に含まれる加工寸法の情報である寸法情報に基づいて、加工寸法および真直精度をモデル化した関数を形状寸法補償器35に設定する。 In the case of experimental derivation, the manufacturer of the wire electric discharge machining apparatus 100 creates a function modeling machining dimensions and straightness accuracy based on dimension information, which is information on machining dimensions contained in past machining results. Set in the compensator 35 .
 学習装置が導出する場合、学習装置は、板厚推定値、加工電圧、放電加工エネルギー、加工速度、ノズル離れ量など加工プロセスで取得される情報(以下、プロセス情報という)に基づいて、加工寸法の精度および加工形状の精度を向上させることができる、電圧補正値、休止時間補正値、ワイヤ張力などの情報(以下、精度向上情報という)を算出する。 When derived by a learning device, the learning device calculates the machining dimensions based on information obtained in the machining process (hereinafter referred to as process information) such as plate thickness estimated value, machining voltage, electric discharge machining energy, machining speed, and nozzle separation amount. Information such as a voltage correction value, a pause time correction value, wire tension, etc. (hereinafter referred to as precision improvement information) that can improve the precision of .
 学習装置は、プロセス情報から加工寸法の精度および真直精度を向上させることができる精度向上情報を導出する学習済モデルを生成する。換言すると、学習装置は、プロセス情報と、加工寸法の精度および真直精度を向上させることができる精度向上情報との対応関係をモデル化した関数である学習済モデルを生成する。推論装置は、学習済モデルを用いて、プロセス情報から加工寸法の精度および真直精度を向上させることができる精度向上情報を導出する。 The learning device generates a learned model that derives accuracy improvement information that can improve the accuracy of machining dimensions and straightness accuracy from the process information. In other words, the learning device generates a learned model, which is a function that models the correspondence relationship between the process information and the accuracy improvement information that can improve the machining dimension accuracy and the straightness accuracy. The inference device uses the learned model to derive accuracy improvement information capable of improving machining dimensional accuracy and straightness accuracy from the process information.
<学習フェーズ>
 図13は、実施の形態にかかる学習装置の構成例を示すブロック図である。学習装置50は、データ取得部51と、モデル生成部52とを備えている。データ取得部51は、加工結果(行動)、および加工パラメータ(状態)を学習用データとして取得する。
<Learning phase>
13 is a block diagram of a configuration example of a learning device according to an embodiment; FIG. The learning device 50 includes a data acquisition section 51 and a model generation section 52 . The data acquisition unit 51 acquires processing results (behavior) and processing parameters (state) as learning data.
 加工結果は、加工寸法および加工形状(真直精度)である。加工パラメータは、板厚、ワイヤ電極2の線径、被加工物7の材質、加工電圧、放電加工エネルギー、ノズル離れ量、ワイヤ張力などの加工形状に影響を与えるパラメータの組合せである。 The machining results are the machining dimensions and machining shape (straightness accuracy). The machining parameters are a combination of parameters that affect the machining shape, such as plate thickness, wire diameter of the wire electrode 2, material of the workpiece 7, machining voltage, electric discharge machining energy, nozzle separation amount, and wire tension.
 モデル生成部52は、加工結果である行動、および加工パラメータである状態を含む学習用データに基づいて、電圧補正値、休止時間補正値、およびワイヤ張力指令を学習する。すなわち、モデル生成部52は、ワイヤ放電加工装置100の加工パラメータから電圧補正値、休止時間補正値、およびワイヤ張力指令を推論する学習済モデル71を生成する。 The model generation unit 52 learns the voltage correction value, the pause time correction value, and the wire tension command based on the learning data including the action that is the machining result and the state that is the machining parameter. That is, the model generator 52 generates the learned model 71 for inferring the voltage correction value, the pause time correction value, and the wire tension command from the machining parameters of the wire electric discharge machine 100 .
 モデル生成部52は、教師あり学習、教師なし学習、強化学習などの公知の学習アルゴリズムを用いることができる。一例として、モデル生成部52に強化学習(Reinforcement Learning)を適用した場合について説明する。強化学習では、ある環境内におけるエージェント(行動主体)が、現在の状態(環境のパラメータ)を観測し、取るべき行動を決定する。エージェントの行動により環境が動的に変化し、エージェントには環境の変化に応じて報酬が与えられる。エージェントはこれを繰り返し、一連の行動を通じて報酬が最も多く得られる行動方針を学習する。強化学習の代表的な手法として、Q学習(Q‐learning)、TD学習(TD-learning)などが知られている。例えば、Q学習の場合、行動価値関数Q(s,a)の一般的な更新式は以下の式(1)で表される。 The model generation unit 52 can use known learning algorithms such as supervised learning, unsupervised learning, and reinforcement learning. As an example, a case where reinforcement learning is applied to the model generation unit 52 will be described. In reinforcement learning, an agent (action subject) in an environment observes the current state (environmental parameters) and decides what action to take. The environment dynamically changes according to the actions of the agent, and the agent is rewarded according to the change in the environment. The agent repeats this and learns the course of action that yields the most rewards through a series of actions. As representative methods of reinforcement learning, Q-learning, TD-learning, and the like are known. For example, in the case of Q-learning, a general update formula for the action-value function Q(s, a) is represented by formula (1) below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、stは時刻tにおける環境の状態を表し、atは時刻tにおける行動を表す。行動atにより、状態はst+1に変わる。rt+1はその状態の変化によってもらえる報酬を表し、γは割引率を表し、αは学習係数を表す。なお、γは0<γ≦1、αは0<α≦1の範囲とする。加工結果である行動が行動atとなり、加工パラメータである状態が状態stとなり、モデル生成部52は、時刻tの状態stにおける最良の行動atを学習する。 In equation (1), s t represents the state of the environment at time t, and a t represents the action at time t. Action a t changes the state to s t+1 . r t+1 represents the reward obtained by changing the state, γ represents the discount rate, and α represents the learning coefficient. γ is in the range of 0<γ≦1, and α is in the range of 0<α≦1. The action that is the result of processing becomes the action at, the state that is the processing parameter becomes the state st , and the model generator 52 learns the best action at in the state st at time t .
 式(1)で表される更新式は、時刻t+1における最もQ値の高い行動aの行動価値Qが、時刻tにおいて実行された行動aの行動価値Qよりも大きければ、行動価値Qを大きくし、逆の場合は、行動価値Qを小さくする。換言すれば、時刻tにおける行動aの行動価値Qを、時刻t+1における最良の行動価値に近づけるように、行動価値関数Q(s,a)を更新する。それにより、或る環境における最良の行動価値が、それ以前の環境における行動価値に順次伝播していくようになる。 The update formula represented by formula (1) increases the action value Q if the action value Q of action a with the highest Q value at time t+1 is greater than the action value Q of action a executed at time t. On the contrary, the action value Q is decreased. In other words, the action value function Q(s, a) is updated so that the action value Q of action a at time t approaches the best action value at time t+1. As a result, the best behavioral value in a certain environment will be propagated to the behavioral value in the previous environment.
 上記のように、強化学習によって学習済モデル71を生成する場合、モデル生成部52は、報酬計算部53と、関数更新部54と、を備えている。 As described above, when the learned model 71 is generated by reinforcement learning, the model generation unit 52 includes the reward calculation unit 53 and the function update unit 54.
 報酬計算部53は、加工結果および加工パラメータに基づいて報酬を計算する。報酬計算部53は、加工精度、すなわち加工寸法の精度および加工形状の精度に基づいて、報酬rを計算する。例えば、加工精度向上の場合には報酬rを増大させ(例えば「1」の報酬を与える。)、他方、加工精度悪化の場合には報酬rを低減する(例えば「-1」の報酬を与える。)。 The reward calculation unit 53 calculates rewards based on the processing results and processing parameters. The remuneration calculator 53 calculates a remuneration r based on the machining accuracy, that is, the machining dimension accuracy and the machining shape accuracy. For example, if the machining accuracy is improved, the reward r is increased (for example, a reward of "1" is given.) On the other hand, if the machining accuracy is deteriorated, the reward r is reduced (for example, a reward of "-1" is given .).
 関数更新部54は、報酬計算部53によって計算される報酬に従って、電圧補正値、休止時間補正値、およびワイヤ張力指令を決定するための関数を更新し、学習済モデル記憶部70に出力する。例えばQ学習の場合、式(1)で表される行動価値関数Q(st,at)を電圧補正値、休止時間補正値、およびワイヤ張力指令を算出するための関数として用いる。 The function updating unit 54 updates the functions for determining the voltage correction value, the pause time correction value, and the wire tension command according to the reward calculated by the reward calculation unit 53 and outputs them to the learned model storage unit 70 . For example, in the case of Q-learning, the action value function Q(s t , a t ) represented by Equation (1) is used as a function for calculating the voltage correction value, rest time correction value, and wire tension command.
 関数更新部54は、以上のような学習を繰り返し実行する。学習済モデル記憶部70は、関数更新部54によって更新された行動価値関数Q(st,at)、すなわち、学習済モデル71を記憶する。 The function updating unit 54 repeatedly executes the learning as described above. The learned model storage unit 70 stores the action-value function Q(s t , a t ) updated by the function updating unit 54 , that is, the learned model 71 .
 次に、図14を用いて、学習装置50による学習処理の処理手順について説明する。図14は、実施の形態にかかる学習装置による学習処理の処理手順を示すフローチャートである。データ取得部51は、加工結果および加工パラメータを学習用データとして取得する(ステップS110)。 Next, a processing procedure of learning processing by the learning device 50 will be described with reference to FIG. 14 is a flowchart of a procedure of learning processing by the learning device according to the embodiment; FIG. The data acquisition unit 51 acquires the processing result and processing parameters as learning data (step S110).
 モデル生成部52は、加工結果および加工パラメータに基づいて、報酬を計算する(ステップS120)。具体的には、モデル生成部52の報酬計算部53が、加工結果および加工パラメータを取得し、予め定められた加工精度に基づいて報酬を増やすか(ステップS130)、または報酬を減らすかを判断する(ステップS140)。報酬基準は、加工寸法の精度および加工形状の精度が向上したか悪化したかである。モデル生成部52は、加工寸法の精度および加工形状の精度が向上した場合に報酬を増やすと判断し、加工寸法の精度および加工形状の精度が悪化した場合に報酬を減らすと判断する。 The model generation unit 52 calculates a reward based on the processing result and processing parameters (step S120). Specifically, the remuneration calculation unit 53 of the model generation unit 52 acquires the processing result and the processing parameters, and determines whether to increase the remuneration (step S130) or decrease the remuneration based on the predetermined processing accuracy. (step S140). Reward criteria are whether the precision of machined dimensions and the precision of machined shapes have improved or deteriorated. The model generator 52 determines to increase the reward when the accuracy of the machining dimension and the accuracy of the machining shape improve, and determines to decrease the reward when the accuracy of the machining dimension and the accuracy of the machining shape deteriorate.
 モデル生成部52は、加工寸法の精度および加工形状の精度の何れか一方が向上し他方が悪化した場合に、報酬を増やすと判断してもよいし、報酬を減らすと判断してもよい。また、モデル生成部52は、加工寸法の精度および加工形状の精度の何れか一方が向上し他方が悪化した場合に、報酬を増減させなくてもよい。 The model generation unit 52 may determine that the reward should be increased or decreased if either one of the precision of the machining dimension and the precision of the machining shape improves and the other deteriorates. Further, the model generation unit 52 does not have to increase or decrease the reward when one of the precision of the machining dimension and the precision of the machining shape improves and the other deteriorates.
 報酬計算部53は、報酬を増やすと判断した場合に、ステップS130において報酬を増やす。一方、報酬計算部53は、報酬を減らすと判断した場合に、ステップS140において報酬を減らす。 When the remuneration calculation unit 53 determines to increase the remuneration, it increases the remuneration in step S130. On the other hand, if the remuneration calculator 53 determines to reduce the remuneration, it reduces the remuneration in step S140.
 関数更新部54は、報酬計算部53によって計算された報酬に基づいて、学習済モデル記憶部70が記憶する式(1)で表される行動価値関数Q(st,at)を更新する(ステップS150)。 The function updating unit 54 updates the action value function Q(s t , a t ) represented by Equation (1) stored in the learned model storage unit 70 based on the reward calculated by the reward calculation unit 53. (Step S150).
 学習装置50は、以上のステップS110~S150までのステップを繰り返し実行し、生成された行動価値関数Q(st,at)を、学習済モデル71として学習済モデル記憶部70に記憶させる。 The learning device 50 repeatedly executes steps S110 to S150 described above, and stores the generated action-value function Q(s t , a t ) as a learned model 71 in the learned model storage unit 70 .
 本実施の形態にかかる学習装置50は、学習済モデル71を学習装置50の外部に設けられた学習済モデル記憶部70に記憶するものとしたが、学習済モデル記憶部70を学習装置50の内部に備えていてもよい。 The learning device 50 according to the present embodiment stores the learned model 71 in the learned model storage unit 70 provided outside the learning device 50. It may be provided inside.
<活用フェーズ>
 図15は、実施の形態にかかる推論装置の構成例を示すブロック図である。推論装置60は、データ取得部61と、推論部62とを備えている。データ取得部61は、加工パラメータを取得する。
<Utilization phase>
15 is a block diagram of a configuration example of an inference apparatus according to an embodiment; FIG. The inference device 60 includes a data acquisition unit 61 and an inference unit 62 . The data acquisition unit 61 acquires processing parameters.
 推論部62は、学習済モデル記憶部70が記憶している学習済モデル71を利用して加工情報79を推論する。加工情報79は、電圧補正値、休止時間補正値、およびワイヤ張力指令である。すなわち、推論部62は、この学習済モデル71にデータ取得部61が取得した加工パラメータを入力することで、加工パラメータに適した電圧補正値、休止時間補正値、およびワイヤ張力指令を推論することができる。 The inference unit 62 infers the processed information 79 using the learned model 71 stored in the learned model storage unit 70 . The machining information 79 is a voltage correction value, a pause time correction value, and a wire tension command. That is, the inference unit 62 inputs the machining parameters acquired by the data acquisition unit 61 to the learned model 71 to infer the voltage correction value, the pause time correction value, and the wire tension command suitable for the machining parameters. can be done.
 なお、本実施の形態では、推論装置60が、学習装置50のモデル生成部52で学習した学習済モデル71を用いる場合について説明したが、他の学習装置から取得した学習済モデル71を用いてもよい。この場合も、推論装置60は、他の学習装置から取得した学習済モデル71に基づいて、電圧補正値、休止時間補正値、およびワイヤ張力指令を出力する。 In the present embodiment, a case has been described in which inference device 60 uses learned model 71 learned by model generation unit 52 of learning device 50. However, using learned model 71 acquired from another learning device, good too. Also in this case, the reasoning device 60 outputs the voltage correction value, the pause time correction value, and the wire tension command based on the learned model 71 acquired from another learning device.
 次に、図16を用いて、推論装置60による推論処理の処理手順について説明する。図16は、実施の形態にかかる推論装置による推論処理の処理手順を示すフローチャートである。データ取得部61は、電圧補正値、休止時間補正値、およびワイヤ張力指令を推論するためのデータである推論用データを取得する(ステップS210)。具体的には、データ取得部61は、加工パラメータを取得する。 Next, the procedure of inference processing by the inference device 60 will be described with reference to FIG. 16 is a flowchart of a procedure of inference processing by the inference apparatus according to the embodiment; FIG. The data acquisition unit 61 acquires inference data that is data for inferring the voltage correction value, the pause time correction value, and the wire tension command (step S210). Specifically, the data acquisition unit 61 acquires processing parameters.
 推論部62は、学習済モデル記憶部70が記憶している学習済モデル71に加工パラメータを入力し(ステップS220)、電圧補正値、休止時間補正値、およびワイヤ張力指令を得る。推論部62は、得られたデータ、すなわち電圧補正値、休止時間補正値、およびワイヤ張力指令をワイヤ放電加工装置100に出力する(ステップS230)。 The inference unit 62 inputs machining parameters to the learned model 71 stored in the learned model storage unit 70 (step S220), and obtains a voltage correction value, a pause time correction value, and a wire tension command. The inference unit 62 outputs the obtained data, that is, the voltage correction value, the pause time correction value, and the wire tension command to the wire electric discharge machine 100 (step S230).
 ワイヤ放電加工装置100は、推論部62から出力された電圧補正値および休止時間補正値を用いて加工電圧および休止時間を補正し(ステップS240)、推論部62から出力されたワイヤ張力指令でワイヤ電極2の張力を制御する。これにより、ワイヤ放電加工装置100は、被加工物7の加工寸法の精度および加工形状の精度を向上させることができる。 The wire electric discharge machine 100 corrects the machining voltage and the rest time using the voltage correction value and the rest time correction value output from the inference unit 62 (step S240), and adjusts the wire tension using the wire tension command output from the inference unit 62. Control the tension of the electrode 2; As a result, the wire electric discharge machine 100 can improve the precision of the machined dimensions and the machined shape of the workpiece 7 .
 なお、本実施の形態では、推論部62が用いる学習アルゴリズムに強化学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、強化学習以外にも、教師あり学習、教師なし学習、又は半教師あり学習等を適用することも可能である。 In addition, in the present embodiment, the case where reinforcement learning is applied to the learning algorithm used by the inference unit 62 has been described, but it is not limited to this. As for the learning algorithm, supervised learning, unsupervised learning, or semi-supervised learning can be applied in addition to reinforcement learning.
 また、モデル生成部52に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えばニューラルネットワーク、遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。 In addition, as the learning algorithm used in the model generation unit 52, deep learning that learns to extract the feature amount itself can also be used, and other known methods such as neural networks, genetic programming, function Machine learning may be performed according to logic programming, support vector machines, and the like.
 なお、学習装置50および推論装置60は、例えば、ネットワークを介してワイヤ放電加工装置100に接続され、このワイヤ放電加工装置100とは別個の装置であってもよい。また、学習装置50および推論装置60の少なくとも一方は、ワイヤ放電加工装置100に内蔵されていてもよい。さらに、学習装置50および推論装置60は、クラウドサーバ上に存在していてもよい。 Note that the learning device 50 and the reasoning device 60 may be connected to the wire electric discharge machine 100 via a network, for example, and may be separate devices from the wire electric discharge machine 100 . At least one of the learning device 50 and the reasoning device 60 may be built in the wire electric discharge machine 100 . Furthermore, learning device 50 and reasoning device 60 may reside on a cloud server.
 また、モデル生成部52は、複数のワイヤ放電加工装置から取得される学習用データを用いて、電圧補正値、休止時間補正値、およびワイヤ張力指令を学習するようにしてもよい。なお、モデル生成部52は、同一のエリアで使用される複数のワイヤ放電加工装置から学習用データを取得してもよいし、異なるエリアで独立して動作する複数のワイヤ放電加工装置から収集される学習用データを利用して電圧補正値、休止時間補正値、およびワイヤ張力指令を学習してもよい。また、学習用データを収集するワイヤ放電加工装置を途中で対象に追加すること、または対象から除去することも可能である。さらに、あるワイヤ放電加工装置に関して電圧補正値、休止時間補正値、およびワイヤ張力指令を学習した学習装置50を、これとは別のワイヤ放電加工装置に適用し、当該別のワイヤ放電加工装置に関して電圧補正値、休止時間補正値、およびワイヤ張力指令を再学習して更新するようにしてもよい。 Also, the model generation unit 52 may learn the voltage correction value, the pause time correction value, and the wire tension command using learning data acquired from a plurality of wire electric discharge machines. Note that the model generation unit 52 may acquire learning data from a plurality of wire electric discharge machines used in the same area, or may acquire learning data from a plurality of wire electric discharge machines operating independently in different areas. The voltage correction value, the rest time correction value, and the wire tension command may be learned using the learning data. Also, it is possible to add or remove the wire electric discharge machine for collecting the learning data from the target on the way. Furthermore, the learning device 50 that has learned the voltage correction value, the pause time correction value, and the wire tension command for a certain wire electric discharge machine is applied to a different wire electric discharge machine, and for the other wire electric discharge machine, The voltage correction value, pause time correction value, and wire tension command may be re-learned and updated.
 ここで、NC制御装置33のハードウェア構成について説明する。図17は、実施の形態にかかるNC制御装置を実現するハードウェア構成例を示す図である。NC制御装置33は、プロセッサ91、メモリ92、出力装置93、および入力装置94により実現することができる。 Here, the hardware configuration of the NC control device 33 will be explained. FIG. 17 is a diagram of a hardware configuration example that implements the NC control device according to the embodiment. The NC controller 33 can be implemented by a processor 91 , memory 92 , output device 93 and input device 94 .
 プロセッサ91の例は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)ともいう)またはシステムLSI(Large Scale Integration)である。メモリ92の例は、RAM(Random Access Memory)、ROM(Read Only Memory)である。 An example of the processor 91 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP (Digital Signal Processor)) or system LSI (Large Scale Integration). Examples of the memory 92 are RAM (Random Access Memory) and ROM (Read Only Memory).
 NC制御装置33は、プロセッサ91が、メモリ92で記憶されているNC制御装置33の動作を実行するための、コンピュータで実行可能な、制御プログラムを読み出して実行することにより実現される。NC制御装置33の動作を実行するための制御プログラムは、NC制御装置33の手順または方法をコンピュータに実行させるものであるともいえる。NC制御装置33の動作を実行するための制御プログラムには、被加工物7を加工するためのプログラム、形状寸法補償器35の動作を実行するためのプログラムなどが含まれている。 The NC control device 33 is implemented by the processor 91 reading and executing a computer-executable control program for executing the operation of the NC control device 33 stored in the memory 92 . It can also be said that the control program for executing the operation of the NC control device 33 causes the computer to execute the procedure or method of the NC control device 33 . The control program for executing the operation of the NC control device 33 includes a program for machining the workpiece 7, a program for executing the operation of the geometry compensator 35, and the like.
 NC制御装置33で実行される制御プログラムは、板厚推定器48と、形状寸法補償器35と、ノズル離れ量検出器49とを含むモジュール構成となっており、これらが主記憶装置上にロードされ、これらが主記憶装置上に生成される。 The control program executed by the NC controller 33 has a module configuration including a plate thickness estimator 48, a geometry compensator 35, and a nozzle separation amount detector 49, which are loaded onto the main memory. and these are generated on the main memory.
 入力装置94は、基準板厚などを受け付けてプロセッサ91に送る。メモリ92は、電圧補正値情報77、エネルギー補正値情報、第1から第3の対応関係情報、寸法曲線情報などを記憶する。また、メモリ92は、プロセッサ91が各種処理を実行する際の一時メモリに使用される。 The input device 94 accepts the reference plate thickness and the like and sends them to the processor 91 . The memory 92 stores voltage correction value information 77, energy correction value information, first to third correspondence information, dimension curve information, and the like. Also, the memory 92 is used as a temporary memory when the processor 91 executes various processes.
 出力装置93は、プロセッサ91が生成した電圧補正値および休止時間補正値を加工電源32に出力する。また、出力装置93は、プロセッサ91が生成したワイヤ張力指令をワイヤ張力制御装置31に出力する。 The output device 93 outputs the voltage correction value and the pause time correction value generated by the processor 91 to the machining power supply 32 . The output device 93 also outputs the wire tension command generated by the processor 91 to the wire tension control device 31 .
 制御プログラムは、インストール可能な形式または実行可能な形式のファイルで、コンピュータが読み取り可能な記憶媒体に記憶されてコンピュータプログラムプロダクトとして提供されてもよい。また、制御プログラムは、インターネットなどのネットワーク経由でNC制御装置33に提供されてもよい。なお、NC制御装置33の機能について、一部を専用回路などの専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 The control program may be stored in a computer-readable storage medium in an installable or executable format and provided as a computer program product. Also, the control program may be provided to the NC control device 33 via a network such as the Internet. It should be noted that the functions of the NC control device 33 may be partly realized by dedicated hardware such as a dedicated circuit, and partly realized by software or firmware.
 なお、フィードバック制御器43、ワイヤ張力制御装置31、学習装置50、および推論装置60は、ワイヤ放電加工装置100と同様のハードウェア構成を有しているので、その説明は省略する。 The feedback controller 43, the wire tension control device 31, the learning device 50, and the inference device 60 have the same hardware configuration as the wire electric discharge machine 100, so description thereof will be omitted.
 このように実施の形態では、形状寸法補償器35が、加工電圧、加工エネルギー、加工速度、ノズル離れ量、および板厚推定値に基づいて、板厚領域間での加工寸法の差が小さくなり且つ被加工物の真直精度が板厚領域内で高くなるように、電圧補正値、休止時間補正値、およびワイヤ張力指令を算出している。そして、加工機構30が、電圧補正値、休止時間補正値、およびワイヤ張力指令を用いて、加工中に板厚が変化する被加工物7をワイヤ放電加工している。これにより、ワイヤ放電加工装置100は、加工中に板厚が変化する被加工物7に対しても加工寸法の精度および加工形状の精度を向上させることができる。 As described above, in the embodiment, the shape and dimension compensator 35 reduces the difference in machining dimension between the plate thickness regions based on the machining voltage, machining energy, machining speed, nozzle separation amount, and plate thickness estimated value. Also, the voltage correction value, the pause time correction value, and the wire tension command are calculated so that the straightness accuracy of the workpiece is high within the plate thickness region. Then, the machining mechanism 30 uses the voltage correction value, the rest time correction value, and the wire tension command to perform wire electric discharge machining on the workpiece 7 whose plate thickness changes during machining. As a result, the wire electric discharge machine 100 can improve the precision of machining dimensions and the precision of the machined shape even for the workpiece 7 whose plate thickness changes during machining.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1 ワイヤ電極ボビン、2,2A,2B ワイヤ電極、3 テンション負荷装置、4 上側給電子、5 下側給電子、6 上部ガイド、7,7B,7C,7D 被加工物、8 定盤、9 ワイヤ走行速度制御モータ、10 ワイヤ電極回収箱、11X X軸駆動モータ、11Y Y軸駆動モータ、12 下部ガイド、13 下部ローラ、20 設定入力IF、21 第1の板厚領域、22 第2の板厚領域、23 第3の板厚領域、24 第4の板厚領域、30,34 加工機構、31 ワイヤ張力制御装置、32 加工電源、33 NC制御装置、35 形状寸法補償器、41,42,63,64,75,76,80 演算器、43 フィードバック制御器、45 加工電圧検出器、46 加工エネルギー検出器、48 板厚推定器、49 ノズル離れ量検出器、50 学習装置、51 データ取得部、52 モデル生成部、53 報酬計算部、54 関数更新部、60 推論装置、61 データ取得部、62 推論部、70 学習済モデル記憶部、71 学習済モデル、77 電圧補正値情報、79 加工情報、81 上側ノズル、82 下側ノズル、85 電圧補正値算出部、86 休止時間補正値算出部、91 プロセッサ、92 メモリ、93 出力装置、94 入力装置、100,101 ワイヤ放電加工装置。 1 wire electrode bobbin, 2, 2A, 2B wire electrode, 3 tension load device, 4 upper feeder, 5 lower feeder, 6 upper guide, 7, 7B, 7C, 7D workpiece, 8 surface plate, 9 wire Travel speed control motor, 10 wire electrode collection box, 11X X-axis drive motor, 11Y Y-axis drive motor, 12 lower guide, 13 lower roller, 20 setting input IF, 21 first plate thickness area, 22 second plate thickness Region, 23 Third plate thickness region, 24 Fourth plate thickness region, 30, 34 Machining mechanism, 31 Wire tension control device, 32 Machining power supply, 33 NC control device, 35 Geometry compensator, 41, 42, 63 , 64, 75, 76, 80 calculator, 43 feedback controller, 45 machining voltage detector, 46 machining energy detector, 48 plate thickness estimator, 49 nozzle separation amount detector, 50 learning device, 51 data acquisition unit, 52 model generation unit, 53 reward calculation unit, 54 function update unit, 60 inference device, 61 data acquisition unit, 62 inference unit, 70 learned model storage unit, 71 learned model, 77 voltage correction value information, 79 processing information, 81 upper nozzle, 82 lower nozzle, 85 voltage correction value calculation unit, 86 rest time correction value calculation unit, 91 processor, 92 memory, 93 output device, 94 input device, 100, 101 wire electric discharge machine.

Claims (12)

  1.  加工経路上に板厚がそれぞれ異なる複数の板厚領域を有する被加工物に対し、ワイヤ電極からの電圧パルスを用いてワイヤ放電加工を行う加工機構と、
     ワイヤ放電加工中に前記被加工物の前記板厚を推定する板厚推定器と、
     加工中の加工電圧、加工中の加工エネルギー、加工中の加工速度、加工液を前記ワイヤ電極に供給するノズルと前記被加工物との間の距離である離間距離、および前記板厚に基づいて、前記板厚領域間での加工寸法の差が小さくなり且つ前記被加工物の前記ワイヤ電極の長さ方向での真直精度がそれぞれの前記板厚領域内で高くなるように、加工電圧の補正値である電圧補正値、前記電圧パルスの休止時間の補正値である休止時間補正値、および前記ワイヤ電極への張力指令であるワイヤ張力指令を算出する形状寸法補償器と、
     を備え、
     前記加工機構は、前記電圧補正値、前記休止時間補正値、および前記ワイヤ張力指令を用いて制御される、
     ことを特徴とするワイヤ放電加工装置。
    a machining mechanism that performs wire electric discharge machining on a workpiece having a plurality of thickness regions with different thicknesses on a machining path using voltage pulses from a wire electrode;
    a thickness estimator for estimating the thickness of the workpiece during wire electric discharge machining;
    Based on the machining voltage during machining, the machining energy during machining, the machining speed during machining, the clearance that is the distance between the nozzle that supplies the machining fluid to the wire electrode and the workpiece, and the plate thickness and correcting the machining voltage so that the difference in machining dimension between the plate thickness regions becomes small and the straightness accuracy of the wire electrode of the workpiece in the length direction becomes high within each of the plate thickness regions. a geometry compensator that calculates a voltage correction value that is a value, a rest time correction value that is a correction value for the rest time of the voltage pulse, and a wire tension command that is a tension command to the wire electrode;
    with
    The machining mechanism is controlled using the voltage correction value, the dwell time correction value, and the wire tension command,
    A wire electric discharge machine characterized by:
  2.  前記形状寸法補償器は、前記加工電圧と、放電加工エネルギーと、前記離間距離と、前記ワイヤ電極のワイヤ張力との複数の組み合わせでワイヤ放電加工が実行された場合の前記被加工物の前記加工寸法および前記真直精度に基づいて設定された制御モデルを用いて、前記電圧補正値、前記休止時間補正値、および前記ワイヤ張力指令を算出する、
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
    The geometry compensator performs the machining of the workpiece when wire electric discharge machining is performed with a plurality of combinations of the machining voltage, the electric discharge machining energy, the separation distance, and the wire tension of the wire electrode. calculating the voltage correction value, the pause time correction value, and the wire tension command using a control model set based on the dimensions and the straightness accuracy;
    The wire electric discharge machine according to claim 1, characterized in that:
  3.  前記制御モデルは、前記ワイヤ電極の線径および前記被加工物の材質の少なくとも一方が設定されている、
     ことを特徴とする請求項2に記載のワイヤ放電加工装置。
    At least one of the wire diameter of the wire electrode and the material of the workpiece is set in the control model.
    The wire electric discharge machine according to claim 2, characterized in that:
  4.  前記形状寸法補償器は、
     過去の加工結果に含まれる加工寸法の情報である寸法情報に基づいて、前記複数の板厚領域の加工寸法が、特定の板厚領域における加工寸法に近づくように、前記電圧補正値、前記休止時間補正値、および前記ワイヤ張力指令を算出する、
     ことを特徴とする請求項1から3の何れか1つに記載のワイヤ放電加工装置。
    The geometry compensator is
    Based on the dimension information, which is the information of the machining dimension contained in the past machining result, the voltage correction value and the pause are adjusted so that the machining dimension of the plurality of plate thickness regions approaches the machining dimension of the specific plate thickness region. calculating a time correction value and the wire tension command;
    The wire electric discharge machine according to any one of claims 1 to 3, characterized in that:
  5.  前記形状寸法補償器は、前記被加工物に対する第1回目のワイヤ放電加工の際に用いた第1の加工条件および前記寸法情報に基づいて前記被加工物への加工溝幅を推定し、前記被加工物に対する第1回目のワイヤ放電加工で推定された前記板厚と、前記加工溝幅とに基づいて、第2回目以降のワイヤ放電加工の際に用いる前記ワイヤ電極の前記被加工物への寄せ量であるオフセット量および第2の加工条件を調整する、
     ことを特徴とする請求項4に記載のワイヤ放電加工装置。
    The shape and dimension compensator estimates a machining groove width of the workpiece based on the first machining conditions and the dimensional information used in the first wire electric discharge machining of the workpiece, and Based on the plate thickness estimated in the first wire electric discharge machining of the workpiece and the machined groove width, the wire electrode used in the second and subsequent wire electric discharge machining is applied to the workpiece. Adjust the offset amount and the second processing condition, which is the amount of shift of
    The wire electric discharge machine according to claim 4, characterized in that:
  6.  前記特定の板厚領域は、前記複数の板厚領域のうち最も板厚が薄い板厚領域である、
     ことを特徴とする請求項4に記載のワイヤ放電加工装置。
    The specific thickness region is the thinnest thickness region among the plurality of thickness regions,
    The wire electric discharge machine according to claim 4, characterized in that:
  7.  加工経路上に板厚がそれぞれ異なる複数の板厚領域を有する被加工物に対し、ワイヤ電極からの電圧パルスを用いてワイヤ放電加工を行う際に推定された前記板厚領域それぞれの板厚、前記板厚領域のそれぞれを加工する際の加工電圧、加工エネルギー、加工速度、および加工液を前記ワイヤ電極に供給するノズルと前記被加工物との間の距離である離間距離に基づいて、前記板厚領域間での加工寸法の差が小さくなり且つ前記被加工物の前記ワイヤ電極の長さ方向での真直精度がそれぞれの前記板厚領域内で高くなるように、加工電圧の補正値である電圧補正値、前記電圧パルスの休止時間の補正値である休止時間補正値、および前記ワイヤ電極への張力指令であるワイヤ張力指令を算出する、
     ことを特徴とする形状寸法補償器。
    The plate thickness of each of the plate thickness regions estimated when performing wire electric discharge machining using a voltage pulse from a wire electrode on a workpiece having a plurality of plate thickness regions with different plate thicknesses on the machining path, Based on the machining voltage, machining energy, machining speed, and the distance between the workpiece and the nozzle that supplies machining fluid to the wire electrode when machining each of the plate thickness regions, the The correction value of the machining voltage is such that the difference in machining dimensions between the plate thickness regions becomes small and the straightness accuracy of the wire electrode of the workpiece in the length direction becomes high within each of the plate thickness regions. calculating a voltage correction value, a pause time correction value that is a correction value for the pause time of the voltage pulse, and a wire tension command that is a tension command to the wire electrode;
    A geometry compensator characterized by:
  8.  加工経路上に板厚がそれぞれ異なる複数の板厚領域を有する被加工物に対し、ワイヤ放電加工装置が、ワイヤ電極からの電圧パルスを用いてワイヤ放電加工を行う加工ステップを含み、
     前記加工ステップは、
     前記ワイヤ放電加工装置が、ワイヤ放電加工中に前記被加工物の前記板厚を推定する推定ステップと、
     前記ワイヤ放電加工装置が、加工中の加工電圧、加工中の加工エネルギー、加工中の加工速度、加工液を前記ワイヤ電極に供給するノズルと前記被加工物との間の距離である離間距離、および前記板厚に基づいて、前記板厚領域間での加工寸法の差が小さくなり且つ前記被加工物の前記ワイヤ電極の長さ方向での真直精度がそれぞれの前記板厚領域内で高くなるように、加工電圧の補正値である電圧補正値、前記電圧パルスの休止時間の補正値である休止時間補正値、および前記ワイヤ電極への張力指令であるワイヤ張力指令を算出する算出ステップと、
     を含み、
     前記ワイヤ放電加工装置は、前記電圧補正値、前記休止時間補正値、および前記ワイヤ張力指令を用いて前記ワイヤ放電加工を制御する、
     ことを特徴とするワイヤ放電加工方法。
    A machining step in which a wire electric discharge machine performs wire electric discharge machining on a workpiece having a plurality of thickness regions each having a different thickness on a machining path, using voltage pulses from a wire electrode,
    The processing step includes
    an estimation step in which the wire electric discharge machine estimates the plate thickness of the workpiece during wire electric discharge machining;
    In the wire electric discharge machine, the machining voltage during machining, the machining energy during machining, the machining speed during machining, the distance between the nozzle that supplies machining fluid to the wire electrode and the workpiece, and based on the plate thickness, the difference in machining dimension between the plate thickness regions becomes small, and the straightness accuracy in the length direction of the wire electrode of the workpiece becomes high within each of the plate thickness regions. a calculation step of calculating a voltage correction value that is a correction value of the machining voltage, a rest time correction value that is a correction value of the rest time of the voltage pulse, and a wire tension command that is a tension command to the wire electrode;
    including
    The wire electric discharge machine controls the wire electric discharge machining using the voltage correction value, the pause time correction value, and the wire tension command.
    A wire electric discharge machining method characterized by:
  9.  加工経路上に板厚がそれぞれ異なる複数の板厚領域を有する被加工物に対し、ワイヤ電極からの電圧パルスを用いてワイヤ放電加工を行うワイヤ放電加工装置の加工パラメータと、前記加工パラメータにおける前記ワイヤ放電加工装置の加工結果とを含む学習用データを取得するデータ取得部と、
     前記学習用データを用いて、前記ワイヤ放電加工装置の加工パラメータから、加工電圧の補正値である電圧補正値、前記電圧パルスの休止時間の補正値である休止時間補正値、および前記ワイヤ電極への張力指令であるワイヤ張力指令を推論するための学習済モデルを生成するモデル生成部と、
     を備えることを特徴とする学習装置。
    Machining parameters of a wire electric discharge machine that performs wire electric discharge machining on a workpiece having a plurality of thickness regions with different thicknesses on a machining path using voltage pulses from a wire electrode; a data acquisition unit that acquires learning data including machining results of the wire electric discharge machine;
    Using the learning data, from the machining parameters of the wire electric discharge machine, a voltage correction value that is a correction value of the machining voltage, a rest time correction value that is a correction value of the rest time of the voltage pulse, and the wire electrode A model generation unit that generates a trained model for inferring a wire tension command that is a tension command of
    A learning device comprising:
  10.  前記学習済モデルは、
     加工中の加工電圧、加工中の加工エネルギー、加工中の加工速度、加工液を前記ワイヤ電極に供給するノズルと前記被加工物との間の距離である離間距離、および前記板厚に基づいて、前記板厚領域間での加工寸法の差が小さくなり且つ前記被加工物の前記ワイヤ電極の長さ方向での真直精度がそれぞれの前記板厚領域内で高くなるように、前記電圧補正値、前記休止時間補正値、および前記ワイヤ張力指令を推論する、
     ことを特徴とする請求項9に記載の学習装置。
    The learned model is
    Based on the machining voltage during machining, the machining energy during machining, the machining speed during machining, the clearance that is the distance between the nozzle that supplies the machining fluid to the wire electrode and the workpiece, and the plate thickness , the voltage correction value is such that the difference in machining dimension between the plate thickness regions becomes small and the straightness accuracy of the wire electrode of the workpiece in the length direction becomes high within each of the plate thickness regions. , inferring the dwell time correction value and the wire tension command;
    10. The learning device according to claim 9, characterized by:
  11.  加工経路上に板厚がそれぞれ異なる複数の板厚領域を有する被加工物に対し、ワイヤ電極からの電圧パルスを用いてワイヤ放電加工を行うワイヤ放電加工装置の加工パラメータを取得するデータ取得部と、
     前記加工パラメータから前記ワイヤ放電加工装置の加工結果を推論するための学習済モデルを用いて、前記データ取得部で取得した前記加工パラメータから、加工電圧の補正値である電圧補正値、前記電圧パルスの休止時間の補正値である休止時間補正値、および前記ワイヤ電極への張力指令であるワイヤ張力指令を推論して出力する推論部と、
     を備えることを特徴とする推論装置。
    a data acquisition unit that acquires machining parameters of a wire electric discharge machine that performs wire electric discharge machining on a workpiece having a plurality of thickness regions with different thicknesses on a machining path using voltage pulses from a wire electrode; ,
    Using a learned model for inferring the machining result of the wire electric discharge machine from the machining parameters, the voltage correction value that is the correction value of the machining voltage, the voltage pulse from the machining parameters acquired by the data acquisition unit an inference unit that infers and outputs a rest time correction value that is a correction value for the rest time of and a wire tension command that is a tension command to the wire electrode;
    An inference device characterized by comprising:
  12.  前記学習済モデルは、
     加工中の加工電圧、加工中の加工エネルギー、加工中の加工速度、加工液を前記ワイヤ電極に供給するノズルと前記被加工物との間の距離である離間距離、および前記板厚に基づいて、前記板厚領域間での加工寸法の差が小さくなり且つ前記被加工物の前記ワイヤ電極の長さ方向での真直精度がそれぞれの前記板厚領域内で高くなるように、前記電圧補正値、前記休止時間補正値、および前記ワイヤ張力指令を推論する、
     ことを特徴とする請求項11に記載の推論装置。
    The learned model is
    Based on the machining voltage during machining, the machining energy during machining, the machining speed during machining, the clearance that is the distance between the nozzle that supplies the machining fluid to the wire electrode and the workpiece, and the plate thickness , the voltage correction value is such that the difference in machining dimension between the plate thickness regions becomes small and the straightness accuracy in the length direction of the wire electrode of the workpiece becomes high within each of the plate thickness regions. , inferring the dwell time correction value and the wire tension command;
    12. The reasoning apparatus according to claim 11, characterized by:
PCT/JP2021/008094 2021-03-03 2021-03-03 Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device WO2022185431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/008094 WO2022185431A1 (en) 2021-03-03 2021-03-03 Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device
JP2021540581A JP6972443B1 (en) 2021-03-03 2021-03-03 Wire EDM, Shape Dimension Compensator, Wire EDM Method, Learning Equipment, and Inference Equipment
CN202180071849.6A CN116348232B (en) 2021-03-03 2021-03-03 Wire electric discharge machining apparatus, shape and size compensator, wire electric discharge machining method, learning apparatus, and estimation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008094 WO2022185431A1 (en) 2021-03-03 2021-03-03 Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device

Publications (1)

Publication Number Publication Date
WO2022185431A1 true WO2022185431A1 (en) 2022-09-09

Family

ID=78605634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008094 WO2022185431A1 (en) 2021-03-03 2021-03-03 Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device

Country Status (3)

Country Link
JP (1) JP6972443B1 (en)
CN (1) CN116348232B (en)
WO (1) WO2022185431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI865252B (en) * 2023-12-14 2024-12-01 國立臺灣師範大學 Equienergy density electrical discharge machining equipment and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233615B1 (en) * 2022-02-21 2023-03-06 三菱電機株式会社 WIRE EDM MACHINE, WIRE EDM METHOD, LEARNING DEVICE, AND REASONING DEVICE
WO2023188370A1 (en) * 2022-03-31 2023-10-05 ファナック株式会社 Wire electric discharge machining device
WO2024003980A1 (en) 2022-06-27 2024-01-04 三菱電機株式会社 Wire electric discharge machine control device and wire electric discharge machine control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464722A (en) * 1987-09-02 1989-03-10 Amada Co Ltd Control device for automatic machining of wire-cut electric discharge machine
JPH058122A (en) * 1991-07-01 1993-01-19 Mitsubishi Electric Corp Wire electric discharge machining apparatus
JPH05261646A (en) * 1992-03-18 1993-10-12 Hitachi Seiko Ltd Deciding method of working conditions in wire-electrodischarge machining
JPH0890342A (en) * 1994-09-20 1996-04-09 Mitsubishi Electric Corp Wire-electric discharge machining device and control method thereof
JPH0911043A (en) * 1995-06-29 1997-01-14 Nec Corp Electric discharge machining method and electric discharge machining device
JPH09290328A (en) * 1996-04-26 1997-11-11 Mitsubishi Electric Corp Wire electric discharge machine and wire electric discharge machining method
WO2009096027A1 (en) * 2008-01-31 2009-08-06 Mitsubishi Electric Corporation Electric discharge device
JP2015196225A (en) * 2014-04-01 2015-11-09 ファナック株式会社 wire electric discharge machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025984B2 (en) * 2006-04-26 2012-09-12 三菱電機株式会社 Wire electric discharge machine and control method thereof
JP5137263B2 (en) * 2009-10-19 2013-02-06 株式会社ソディック Wire cut electric discharge machining apparatus and wire cut electric discharge machining method
JP5266401B2 (en) * 2012-01-20 2013-08-21 ファナック株式会社 Wire electrical discharge machine that performs electrical discharge machining by inclining wire electrodes
WO2015145484A1 (en) * 2014-03-27 2015-10-01 三菱電機株式会社 Control device for wire electric discharge machine and control method for wire electric discharge machine
CN108472755B (en) * 2016-01-25 2020-05-01 三菱电机株式会社 Wire electric discharge machine
CN108698146B (en) * 2016-02-12 2019-12-13 三菱电机株式会社 machining control device, wire electric discharge machining device, and wire electric discharge machining method
DE112017000086B4 (en) * 2017-04-11 2019-07-11 Mitsubishi Electric Corporation Wire eroding device and wire eroding method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464722A (en) * 1987-09-02 1989-03-10 Amada Co Ltd Control device for automatic machining of wire-cut electric discharge machine
JPH058122A (en) * 1991-07-01 1993-01-19 Mitsubishi Electric Corp Wire electric discharge machining apparatus
JPH05261646A (en) * 1992-03-18 1993-10-12 Hitachi Seiko Ltd Deciding method of working conditions in wire-electrodischarge machining
JPH0890342A (en) * 1994-09-20 1996-04-09 Mitsubishi Electric Corp Wire-electric discharge machining device and control method thereof
JPH0911043A (en) * 1995-06-29 1997-01-14 Nec Corp Electric discharge machining method and electric discharge machining device
JPH09290328A (en) * 1996-04-26 1997-11-11 Mitsubishi Electric Corp Wire electric discharge machine and wire electric discharge machining method
WO2009096027A1 (en) * 2008-01-31 2009-08-06 Mitsubishi Electric Corporation Electric discharge device
JP2015196225A (en) * 2014-04-01 2015-11-09 ファナック株式会社 wire electric discharge machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI865252B (en) * 2023-12-14 2024-12-01 國立臺灣師範大學 Equienergy density electrical discharge machining equipment and method

Also Published As

Publication number Publication date
CN116348232A (en) 2023-06-27
JPWO2022185431A1 (en) 2022-09-09
CN116348232B (en) 2024-02-02
JP6972443B1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2022185431A1 (en) Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device
JP6063013B1 (en) Numerical control device with machining condition adjustment function to suppress chatter or tool wear / breakage
US11640557B2 (en) Machine learning device, numerical control system, and machine learning method
US10189103B2 (en) Wire electrical discharge machining apparatus
CN110376964B (en) Machine learning device, control device, and machine learning method
KR102224970B1 (en) Controller and machine learning device
JP7015264B2 (en) Wire electric discharge machine and wire electric discharge machining method
JP2017033138A (en) Machine tool, simulation apparatus, and machine learning device
JP7158604B1 (en) Numerical controller, learning device, reasoning device, and numerical control method
JP6180662B1 (en) Machining control apparatus, wire electric discharge machining apparatus, and wire electric discharge machining method
JP7205012B1 (en) Control device for wire electric discharge machine and control method for wire electric discharge machine
JP6775719B1 (en) Wire EDM and Machine Learning Equipment
JP6739690B1 (en) Controller, electric discharge machine, and machine learning device
JP6880350B1 (en) Learning device, electric discharge machine and learning method
JP6854990B1 (en) Electric discharge machine, learning device, inference device, and electric discharge machining method
JP6266192B1 (en) Wire electric discharge machine and wire electric discharge machining method
WO2022224450A9 (en) Machine learning device, acceleration and deceleration adjustment device, and computer-readable storage medium
TWI704022B (en) Wire electrical discharge machine
JP2011104741A (en) Wire cut electric discharge machining method and wire cut electric discharge machining device
JP7233615B1 (en) WIRE EDM MACHINE, WIRE EDM METHOD, LEARNING DEVICE, AND REASONING DEVICE
WO2022219670A1 (en) Machining condition setting device, machining condition setting method, and electrical discharge machining apparatus
JP7695410B2 (en) Wire electric discharge machine, control device, and control method
CN117087123A (en) Injection control method and system of injection machine and injection machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021540581

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929007

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载