+

WO2022181534A1 - Adhesive composition - Google Patents

Adhesive composition Download PDF

Info

Publication number
WO2022181534A1
WO2022181534A1 PCT/JP2022/006917 JP2022006917W WO2022181534A1 WO 2022181534 A1 WO2022181534 A1 WO 2022181534A1 JP 2022006917 W JP2022006917 W JP 2022006917W WO 2022181534 A1 WO2022181534 A1 WO 2022181534A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
cured product
weight
swelling
adhesive composition
Prior art date
Application number
PCT/JP2022/006917
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 平岡
晋次 北
健太郎 宮村
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2023502383A priority Critical patent/JPWO2022181534A1/ja
Publication of WO2022181534A1 publication Critical patent/WO2022181534A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an adhesive composition, a heat-sealable member using the same, and a packaging material for electrical storage devices, which can be used in various industrial product fields such as the electrical field, the automotive field, and the industrial field. Belongs to the technical field.
  • Electricity storage devices such as lithium-ion batteries use ethylene carbonate as the electrolyte.
  • Ethylene carbonate has a melting point of 34 to 37°C and is solid at room temperature.
  • various organic solvents are blended to lower the melting point.
  • organic solvents have been investigated in order to adapt to a wider range of environmental temperatures. While various organic solvents have been studied in this way, organic solvents having a solubility parameter close to that of polyolefin have been blended as organic solvents for electrolytic solutions.
  • General packaging materials used for electricity storage devices of the type called laminate type or pouch type have a three-layer structure centered on aluminum foil, and an adhesive is used between each layer.
  • a polyolefin film such as a polypropylene film is used for the innermost layer in contact with the electrolytic solution, and an acid-modified polyolefin mixed with a cross-linking agent is used for bonding with the aluminum foil, if necessary.
  • Solvents with high polarity such as ethylene carbonate, do not easily permeate the innermost polyolefin film, which has low polarity. permeation and lowers the strength of the adhesive using acid-modified polyolefin, which may lead to a shorter life of the storage device or an accident.
  • Patent Document 1 as a means for obtaining an adhesive composition having a long pot life and good electrolytic solution resistance, the content of acetone extract contained in the acid-modified polyolefin used as the main agent is 0.01 to 0.01. It is proposed to use 2% by mass and an acid value of 2 to 50 mgKOH/g.
  • Adhesives using these acid-modified polyolefins have good adhesion performance to polyolefins such as polypropylene, which are considered to be difficult to adhere to, and to metals, so they are very useful in applications other than packaging materials for electrical storage devices. Useful. Moreover, even if the solvent is not used in the electrolytic solution, durability against general-purpose solvents such as toluene, xylene, or gasoline having a solubility parameter close to that of polyolefin may be required.
  • a laminate film obtained by bonding a metal foil and a polyolefin film has a low polarity, a high affinity for polyolefin, and a solubility parameter of 7 to 10 ( cal/cm 3 )
  • a solvent of about 1/2 When immersed in a solvent of about 1/2 , the peel strength between the metal foil and the polyolefin film is greatly reduced, and the reliability of an electric storage device using an electrolyte containing such a low-polar solvent is reduced. was the cause.
  • the problem to be solved by the present invention is to provide an adhesive composition having durability against low-polar solvents.
  • An adhesive composition wherein, when immersed in 1/2 of the solvent at 80°C for 5 hours, the amount of substances eluted from the cured product into the solvent is 10% by weight or less of the cured product.
  • the swelling rate difference D calculated by the following formula 3 from the swelling rate 1 and the swelling rate 2 calculated by the following formulas 1 and 2 is 40% or less.
  • the cross-linking agent is a polyfunctional isocyanate compound
  • the ratio of the number of moles of isocyanate groups in the polyfunctional isocyanate compound to the number of moles of carboxy groups in the acid-modified polyolefin is 0.3 to 15 (provided that the acid anhydride structure (-CO-O-CO-) is included in the carboxy group as 2 moles of carboxy groups per mole),
  • the adhesive composition according to any one of [1] to [5], wherein the weight ratio of the polyfunctional isocyanate compound to the total weight of the acid-modified polyolefin and the polyfunctional isocyanate compound is 5 to 60% by weight. .
  • [7] The adhesive composition according to any one of [1] to [6], wherein the amount of acetone-extractable components in the acid-modified polyolefin is more than 2% by weight.
  • a packaging material for an electricity storage device comprising the heat-sealable member according to [8].
  • an adhesive composition having durability against low-polar solvents can be obtained.
  • the adhesive composition of the present invention is particularly suitable for packaging materials for electrical storage devices.
  • FIG. 1 is a schematic perspective view showing an example of the heat-fusible member of the present invention
  • FIG. FIG. 4 is a schematic perspective view showing another example of the heat-fusible member of the present invention
  • 1 is an IR spectrum of the polyolefin (Tafmer XM7090) used as a raw material in Synthesis Example 1.
  • FIG. 4 is an IR spectrum of the acid-modified polyolefin of Synthesis Example 1.
  • FIG. 4 is an IR spectrum of the acid-modified polyolefin of Purification Example 1.
  • FIG. 4 is an IR spectrum of the polyolefin (Tafmer XM7070) used as a raw material in Synthesis Example 5.
  • FIG. 4 is an IR spectrum of the acid-modified polyolefin of Synthesis Example 5.
  • FIG. 4 is an IR spectrum of the polyolefin (Tafmer XM7080) used as a raw material in Comparative Synthesis Example 2.
  • FIG. 4 is an IR spectrum of the acid-modified polyolefin of Comparative Synthesis Example 2.
  • FIG. 1 is an IR spectrum of a cured product of the adhesive composition of Example 1 and a substance eluted from the cured product into a solvent.
  • 2 is an IR spectrum of a cured product of the adhesive composition of Example 2 and a substance eluted from the cured product into a solvent.
  • FIG. 10 is an IR spectrum of a cured product of the adhesive composition of Example 12 and a substance eluted from the cured product into a solvent.
  • FIG. 4 is an IR spectrum of a cured product of the adhesive composition of Comparative Example 3 and a substance eluted from the cured product into a solvent.
  • FIG. 10 is an IR spectrum of a cured product of the adhesive composition of Comparative Example 5 and a substance eluted from the cured product into a solvent.
  • Acid-Modified Polyolefin is produced by acid-modifying a radical-graftable polyolefin with an unsaturated carboxylic acid anhydride.
  • a radically graftable polyolefin is a polyolefin containing monomeric units having radically abstracted hydrogen.
  • Polyolefins capable of radical graft reaction are usually non-acid-modified polyolefins (i.e., polyolefins that do not contain carboxyl groups or acid anhydride structures), but may be partially acid-modified, such as terminal portions, depending on the case. .
  • this radical graft-reactive polyolefin may be referred to as "polyolefin before acid modification”.
  • polyolefins capable of radical graft reaction include olefins (preferably having 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms), styrene, cycloolefins (preferably having 3 to 10 carbon atoms, more preferably 5 to 8), and those obtained by homopolymerizing or copolymerizing polymerizable monomers selected from the group consisting of combinations thereof.
  • polyolefins obtained from polymerizable monomers that generate relatively stable tertiary carbon radicals are preferred.
  • copolymers of propylene and 1-butene have good solubility in solvents such as toluene and cyclohexane.
  • it since it has high adhesion performance, it is suitable for use as a solution type adhesive.
  • the copolymerization ratio of 1-butene is preferably 5 to 40 mol%, more preferably 10 to 30 mol%. is. If the copolymerization ratio of 1-butene is less than 5 mol%, the solubility in the solvent is insufficient, and even if the polyolefin solution is heated and dissolved in the solvent, the fluidity of the polyolefin solution is lost in a short period of time, and the adhesive cannot be coated. can become impossible. When the copolymerization ratio of 1-butene exceeds 40 mol %, the hot adhesive properties are degraded.
  • the melting point of the radical graft-reactive polyolefin is preferably 44°C or higher, more preferably 54°C or higher, particularly preferably 64°C or higher, and may be 74°C or higher. Sufficient peel strength can be obtained within such a range.
  • the melting point of the radical graft-reactive polyolefin is preferably 125° C. or lower, more preferably 120° C. or lower, particularly preferably 105° C. or lower, and may be 95° C. or lower. Sufficient storage stability at low temperatures can be obtained within such a range.
  • An unsaturated carboxylic acid anhydride is a carboxylic acid anhydride having at least one carbon-carbon double bond.
  • the number of carbon atoms in the unsaturated carboxylic acid anhydride is usually 4 or more, and may be, for example, 5 or more or 6 or more.
  • the upper limit of the number of carbon atoms in the unsaturated carboxylic anhydride is not particularly limited, the number of carbon atoms in the unsaturated carboxylic anhydride may be, for example, 10 or less or 8 or less.
  • Unsaturated carboxylic anhydrides are acid anhydrides of unsaturated dicarboxylic compounds such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, nadic anhydride and endic anhydride. and acid anhydrides of unsaturated tricarboxylic acid compounds such as aconitic anhydride.
  • the unsaturated carboxylic acid anhydride is preferably an unsaturated dicarboxylic acid anhydride, specifically maleic acid anhydride and itaconic acid anhydride, from the viewpoints of ease of modification and excellent adhesiveness.
  • These unsaturated carboxylic acid anhydrides may be used alone or in combination of two or more.
  • Part of the acid-modified polyolefin (for example, more than 0 mol% to 30 mol% or 5 mol% to 20 mol%) of the acid anhydride structure derived from the unsaturated carboxylic acid anhydride is hydrolyzed to carboxylic acid.
  • a portion (for example, more than 0 mol % to 30 mol % or 5 mol % to 20 mol %) of the unsaturated carboxylic acid anhydride used in the radical graft reaction may be an unsaturated carboxylic acid.
  • the unsaturated carboxylic acid may be an unsaturated dicarboxylic acid formed by hydrolysis of the above unsaturated dicarboxylic acid anhydride, but unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid can also be preferably used.
  • the amount of unsaturated carboxylic anhydride grafted to the acid-modified polyolefin can be confirmed by the amount of the acid anhydride structure (-CO-O-CO-) present in the acid-modified polyolefin.
  • the amount of acid anhydride structure is evaluated by the acid number.
  • the acid value of the acid-modified polyolefin is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, still more preferably 15 mgKOH/g or more. High adhesive strength can be obtained when the acid value of the acid-modified polyolefin is 5 mgKOH/g or more.
  • the acid value of the acid-modified polyolefin is preferably 60 mgKOH/g or less, more preferably 50 mgKOH/g or less, still more preferably 40 mgKOH/g or less.
  • the stability of the adhesive solution is improved when the acid value of the acid-modified polyolefin is 50 mgKOH/g or less.
  • the acid value of the acid-modified polyolefin can be confirmed by using a calibration curve prepared from infrared absorption spectra of standard samples as shown in the examples herein.
  • the acid anhydride structure of the unsaturated carboxylic acid anhydride grafted onto the acid-modified polyolefin may be entirely hydrolyzed to form a carboxylic acid or a carboxylic acid derivative.
  • the acid-modified polyolefin may further be graft-modified with a (meth)acrylic acid alkyl ester, and the (meth)acrylic acid alkyl ester is an ester of an alkyl alcohol having 8 to 18 carbon atoms and (meth)acrylic acid.
  • a compound hereinafter referred to as "(meth)acrylic acid long-chain alkyl ester" is preferred.
  • the order in which the unsaturated carboxylic acid anhydride and the (meth)acrylic acid alkyl ester are grafted onto the polyolefin before acid modification is not particularly limited, and the graft modification may be performed simultaneously or separately.
  • the melting point of the acid-modified polyolefin is preferably 40°C or higher, more preferably 50°C or higher, particularly preferably 60°C or higher, and may be 70°C or higher. Sufficient peel strength can be obtained within such a range.
  • the melting point of the acid-modified polyolefin is preferably 110° C. or lower, more preferably 100° C. or lower, particularly preferably 93° C. or lower, and may be 80° C. or lower. Sufficient storage stability at low temperatures can be obtained within such a range.
  • the inside of the radical graft reaction system for acid modification uniform.
  • the acid-modified sites are uniformly distributed. As a result, the range of melting point depression after acid modification is increased.
  • the range of melting point depression due to acid modification is preferably 4.5°C or higher, more preferably 5°C or higher, and particularly preferably 6°C or higher.
  • the melting point depression width is 4.5° C. or more, hot peel strength and electrolyte resistance can be improved.
  • the melting point depression range is usually 15° C. or less, and may be, for example, 10° C. or less or 9° C. or less.
  • the range of melting point depression is rarely larger than 15° C., in such cases, the reduction in molecular weight due to graft modification is too large, and the cohesive strength of the cured adhesive composition tends to decrease.
  • the range of melting point depression represents the difference between the melting point of polyolefin before acid modification and the melting point of acid-modified polyolefin.
  • the melting point can be measured at a heating rate of 10°C/min using a differential scanning calorimeter (DSC) in accordance with JIS K7121.
  • the melt flow rate of the acid-modified polyolefin is preferably 50 g/10 min or more, more preferably 100 g/10 min or more.
  • the melt flow rate of the acid-modified polyolefin is preferably 1000 g/10 min or less, more preferably 800 g/10 min or less.
  • the melt flow rate can be measured at a test temperature of 190°C and a test load of 2.17 kg according to JIS K7210.
  • the weight average molecular weight of the acid-modified polyolefin may be, for example, within the range of 15,000 to 200,000.
  • the weight-average molecular weight of the acid-modified polyolefin is preferably 15,000 or more, more preferably 30,000 or more, in terms of improving the peel strength and electrolyte resistance.
  • the weight-average molecular weight of the acid-modified polyolefin is preferably 200,000 or less, more preferably 150,000 or less, in terms of improving the solubility in organic solvents.
  • the weight average molecular weight is a value obtained by converting the molecular weight measured by gel permeation chromatography into polystyrene.
  • the content of the acid-modified polyolefin in the adhesive composition is 50 to 95% by weight with respect to 100% by weight of the solid content of the adhesive composition in terms of excellent hot peel strength and electrolyte resistance. is preferred, more preferably 60 to 90% by weight.
  • the acid-modified polyolefin can be produced by mixing a radical graftable polyolefin and an unsaturated carboxylic acid anhydride with a radical initiator, especially an organic peroxide, and heating the mixture. More specifically, methods for producing acid-modified polyolefins are classified into two methods. One is a method of mixing and reacting other reactive components in a heat-melted polyolefin capable of undergoing a radical graft reaction (heat melting method). The other is a method (solution method) that uses a solvent to mix, dissolve, and react reaction components containing a polyolefin capable of undergoing a radical graft reaction in the solvent. The hot-melt method facilitates continuous production and can reduce manufacturing costs.
  • the polyolefin in the solution method, can be acid-modified more uniformly.
  • an acid-modified polyolefin produced by either a hot melt method or a solution method can be used, but among them, a method capable of further improving the acid value and the dispersibility of the acid-modified portion is preferable.
  • Such an acid-modified polyolefin having high dispersibility of acid-modified moieties has improved durability against low-polarity solvents as described above.
  • the organic peroxide preferably has high compatibility with the molten polyolefin capable of undergoing a radical graft reaction in the heat melting method.
  • the inside of the radical graft reaction system can be made nearly uniform even in the heat melting method, and the range of melting point depression after acid modification can be increased.
  • it is preferable that the maximum number of carbon atoms per radical of the radical molecule generated from the organic peroxide is large.
  • the term "maximum number of carbon atoms per radical in a radical molecule generated from an organic peroxide” refers to a carbon chain composed of carbon and hydrogen contained in a radical molecule generated by decomposition of an organic peroxide. number divided by the number of radicals possessed by the radical molecule. For example, when a radical molecule containing a cyclohexane ring shown in the figure below is generated, the number of carbon atoms in the carbon chain is 6, the number of radicals in the radical molecule is 2, and the maximum number of carbon atoms per radical in this radical molecule is 3. is calculated as
  • the carbon chain used to calculate the maximum number of carbon atoms per radical of a radical molecule generated from an organic peroxide may be any part of the radical molecule, but the same carbon may be used two or more times. It must not be a carbon chain formed.
  • the following three types of carbon chains (A) to (C) can be used for calculation. .
  • Carbon chain (A) has 9 carbon atoms
  • carbon chain (B) has 7 carbon atoms
  • carbon chain (C) has 5 carbon atoms
  • carbon chain (A) has the largest carbon number. Since the number of radicals in this radical molecule is 1, the maximum number of carbon atoms per radical in this radical molecule is calculated to be 9.
  • radical molecules with carbon chains can be generated from organic peroxides.
  • the maximum carbon number of the radical molecule having the largest maximum carbon number per radical is adopted.
  • t-butylperoxy-2-ethylhexyl monocarbonate shown in the figure below produces two radical molecules, one of which has a carbon chain surrounded by a dotted line and has a maximum of seven carbon atoms.
  • the maximum number of carbon atoms in the t-butyl group possessed by the other radical molecule is 3.
  • Each radical molecule has one radical. Therefore, the maximum number of carbon atoms per radical of radical molecules generated from t-butylperoxy-2-ethylhexyl monocarbonate is seven.
  • the maximum number of carbon atoms per radical of the radical molecule generated from the organic peroxide is generally 3 or more, preferably 5 or more, and may be, for example, 6 or more or 7 or more. Although the upper limit of the maximum number of carbon atoms per radical of the radical molecule generated from the organic peroxide is not particularly limited, the maximum number of carbon atoms may be, for example, 30 or less or 20 or less.
  • the carbon chain of the organic peroxide may contain a cyclic group such as a benzene ring or a cyclohexane ring, but is preferably a linear or branched alkyl group.
  • the total number of carbon atoms contained in the radical molecule generated from the organic peroxide is generally 3 or more, preferably 5 or more, and may be, for example, 6 or more or 7 or more.
  • the upper limit of the number of carbon atoms in the alkyl group is not particularly limited, the number of carbon atoms in the alkyl group may be, for example, 30 or less or 20 or less.
  • the organic peroxide is preferably one that can be uniformly dissolved in a solvent in the solution method.
  • the one-hour half-life temperature of the organic peroxide is preferably 100°C or higher, more preferably 110°C or higher.
  • the one-hour half-life temperature of the organic peroxide is not particularly limited, but may be, for example, 300° C. or lower or 200° C. or lower.
  • organic peroxides include peroxyketals, dialkyl peroxides, and peroxyesters.
  • peroxyketals include 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t-butylperoxy)butane, 2,2-bis(4,4-di-( t-butylperoxy)cyclohexyl)propane, 1,1-di(t-hexylperoxy)cyclohexane, and n-butyl-4,4-di(t-butylperoxy)valerate, 1,1-di(t -hexylperoxy)-3,3,5-trimethylcyclohexane and the like.
  • dialkyl peroxide examples include t-butyl cumyl peroxide, di-t-butyl peroxide, and di-t-hexyl peroxide.
  • peroxy esters include t-butyl peroxyneodecanoate, t-butyl peroxylaurate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-hexylper Oxyisopropyl monocarbonate, t-butylperoxyisopropylmonocarbonate, t-butylperoxy-2-ethylhexylmonocarbonate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxyacetate , t-hexyl peroxybenzoate, t-butyl peroxy-3-methylbenzoate, and t-butyl-peroxybenzoate.
  • Organic peroxides usually decompose after a radical graft reaction, but some radical molecules generated from organic peroxides do not decompose and are formed from the main chain of acid-modified polyolefin and unsaturated carboxylic acid anhydride. It may be added to the graft part.
  • acid-modified polyolefins may contain hydrocarbon moieties derived from organic peroxides.
  • a hydrocarbon moiety derived from an organic peroxide may be attached to the acid-modified polyolefin via a linking group such as -O-, -CO-, -COO-, -OCO-, -OCOO-.
  • unsaturated carboxylic acid anhydride used for acid modification may be removed by known methods such as thermal distillation and reprecipitation purification, if necessary.
  • the acid-modified polyolefin may contain a component that can be extracted in acetone (hereinafter referred to as "acetone-soluble part").
  • acetone-soluble part a component that can be extracted in acetone
  • the acid-modified polyolefin may contain more than 2 wt% acetone solubles, and in another embodiment of the present invention may contain 3 wt% acetone solubles. .
  • cross-linking agent has two or more functional groups capable of bonding with the acid anhydride structure grafted onto the acid-modified polyolefin.
  • Specific cross-linking agents include polyfunctional isocyanate compounds.
  • polyfunctional epoxy compounds, polyfunctional carbodiimide compounds, polyfunctional oxazoline compounds, polyfunctional aziridine compounds, etc. which can react with acid anhydride groups in acid-modified polyolefins to form crosslinks.
  • These monofunctional compounds can also be used in combination for the purpose of adjusting the viscosity of the solution and adjusting the elastic modulus and elongation of the cured product.
  • the polyfunctional isocyanate compound is not particularly limited as long as it has two or more isocyanate groups in one molecule, and various aromatic, aliphatic, and alicyclic isocyanate compounds, and further these A modified isocyanate compound can be used.
  • Polyfunctional isocyanate compounds include, for example, pentamethylene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, diphenylmethane hydrogenated diisocyanate, xylylene diisocyanate, xylylene hydrogenated diisocyanate, isophorone diisocyanate, norbornane diisocyanate, and biuret forms thereof, isocyanurate, adduct, allophanate and the like. Since biuret, isocyanurate, adduct, etc.
  • polyfunctional isocyanate compounds may be used alone or in combination of two or more.
  • the amount of the cross-linking agent in the adhesive composition is the ratio of the number of moles of functional groups in the cross-linking agent to the number of moles of carboxyl groups in the acid-modified polyolefin (the number of moles of functional groups in the cross-linking agent/the number of moles of the acid-modified polyolefin). number of moles of carboxy groups).
  • the functional group in the cross-linking agent is a functional group capable of forming a bond with the acid-modified polyolefin.
  • the number of moles of carboxy groups in the acid-modified polyolefin is the number of moles of carboxy groups when each acid anhydride structure (-CO-O-CO-) present in the acid-modified polyolefin is regarded as two carboxy groups. .
  • the ratio of the number of moles of functional groups in the cross-linking agent to the number of moles of carboxyl groups in the acid-modified polyolefin is preferably 0.3 or more, more preferably 0. .5 or more.
  • the ratio of the number of moles of functional groups in the cross-linking agent to the number of moles of carboxyl groups in the acid-modified polyolefin is preferably 15 or less, more It is preferably 10 or less.
  • the functional group in the cross-linking agent is an isocyanate group (--NCO).
  • the ratio of the number of moles of isocyanate groups to the number of moles of carboxy groups in the adhesive composition is preferably 0.3 or more, more preferably 0.5 or more.
  • the ratio of the number of moles of isocyanate groups to the number of moles of carboxy groups in the adhesive composition is preferably 15 or less, more preferably 10 or less.
  • the number of moles of carboxy groups can be obtained from the acid value, and can be confirmed by using a calibration curve prepared from the infrared absorption spectrum of a standard sample as shown in the examples of the present specification.
  • the blending amount of the cross-linking agent in the adhesive composition can also be determined by the weight ratio of the cross-linking agent to the total weight of the acid-modified polyolefin and the cross-linking agent (hereinafter also referred to as the cross-linking agent content).
  • the cross-linking agent content is preferably 5% by weight or more, more preferably 10% by weight or more, and particularly preferably 20% by weight or more.
  • the cross-linking agent content is preferably 60% by weight or less, more preferably 40% by weight or less.
  • the adhesive composition may contain a solvent that dissolves the acid-modified polyolefin.
  • the solvent include aromatic organic solvents such as toluene and xylene, aliphatic organic solvents such as n-hexane, alicyclic organic solvents such as cyclohexane, methylcyclohexane and ethylcyclohexane, and ketones such as acetone and methyl ethyl ketone.
  • alcohol-based organic solvents such as methanol and ethanol
  • ester-based organic solvents such as ethyl acetate and butyl acetate
  • propylene glycol ether-based organic solvents such as propylene glycol methyl ether, propylene glycol ethyl ether and propylene glycol-t-butyl ether.
  • a solvent etc. are mentioned.
  • an organic solvent that can be easily volatilized and removed by heating the adhesive composition or the like is preferable, and in particular, a mixed solvent of an alicyclic organic solvent and an ester or ketone organic solvent can be used. preferable.
  • Only one type of solvent may be used, or two or more types may be used in combination.
  • the amount of solvent in the adhesive composition is not particularly limited, and may be determined as appropriate according to the type of acid-modified polyolefin.
  • the amount of acid-modified polyolefin is preferably 5 to 25% by weight, more preferably 10 to 20% by weight, when the total of acid-modified polyolefin and solvent is 100% by weight.
  • the solvent is present in the adhesive composition at such a content, the adhesive composition can be easily applied to the adherend, resulting in excellent workability.
  • the adhesive composition may further contain additional components depending on the purpose.
  • additional components include curing catalysts, styrene thermoplastic elastomers, tackifiers, antioxidants, hindered amine light stabilizers, ultraviolet absorbers, antistatic agents, flame retardants, colorants, and dispersants. , adhesion imparting agents, antifoaming agents, leveling agents, plasticizers, lubricants, crystal nucleating agents and fillers.
  • an additional component is an arbitrary component, and may not be used, and may use only 1 type, or may use 2 or more types together.
  • a curing catalyst can be added for the purpose of promoting the cross-linking reaction between the acid-modified polyolefin and the cross-linking agent to obtain excellent adhesion performance.
  • Preferred curing catalysts include tertiary amines, metal carboxylates, complex salts and organic metals.
  • tertiary amines include tetraalkylethylenediamines such as tetramethylethylenediamine; N,N'-dialkylbenzylamines such as dimethylbenzylamine; triethylenediamine, pentamethyldiethylenetriamine, N-ethylmorphyline, and N-methylmol.
  • Phyllin 1-methyl-4-dimethylamineethylpiperazine, 1,8-diazabicyclo[5.4.0]undecene-7 and the like.
  • Metal carboxylates, complex salts and metal octanoates such as metal acetates, metal hexanoates, metal 2-ethylhexanoates, metal neodecanoates, metal laurates, metal stearates, metal Examples thereof include metal carboxylates such as oleates and metal complex salts such as metal acetylacetonates.
  • the organic metal is not particularly limited as long as it is a metal compound having a bond with carbon, and examples thereof include organic metal oxides.
  • the metal is preferably one or more metals selected from the group consisting of metals of groups 7, 12 and 14 of the periodic table. These may be used individually by 1 type, or may use 2 or more types together.
  • the carboxylate of any of tin, zinc and manganese, and acetylacetonate and organometallics are more preferred.
  • zinc neodecanoate dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin diacetate, dibutyltin maleate, dibutyltin oxide, dioctyltin oxide, zinc bis(neodecanoate), zinc bis(2-ethylhexanoate) , zinc distearate, zinc (II) acetylacetonate, manganese bis(2-ethylhexanoate), and the like.
  • dibutyltin dilaurate, dioctyltin dilaurate, and dioctyltin oxide are more preferable from the viewpoint of the balance of adhesiveness, electrolyte resistance, and heat resistance of the adhesive layer.
  • An organic tin compound and a tertiary amine can be used together as a curing catalyst.
  • the content of the curing catalyst is preferably 0.001 to 5 parts by weight per 100 parts by weight of the total amount of the acid-modified polyolefin and the cross-linking agent.
  • a styrene-based thermoplastic elastomer can be blended for the purpose of improving adhesive strength.
  • styrene-based thermoplastic elastomers include styrene-butadiene copolymers, epoxy-modified styrene-butadiene copolymers, styrene-butadiene-styrene block copolymers, and styrene-ethylene/propylene-styrene block copolymers (hereinafter referred to as , referred to as "SEPS”), styrene-ethylene/butylene-styrene block copolymer (hereinafter referred to as "SEBS”), styrene-isoprene/butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, etc.
  • Styrene-based resins, etc. may be those having no acidic groups and acid anhydride groups, those having acidic groups and/or acid anhydride groups, and those
  • tackifiers can be used, including polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymer petroleum resins and hydrogenated petroleum resins. be done.
  • the content of the tackifier is preferably 1 to 20% by weight, preferably 1 to 10% by weight, based on 100% by weight of the adhesive composition, in terms of excellent hot water resistance. more preferred.
  • Adhesive Composition When the adhesive composition of the present invention is immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80° C. for 5 hours, The amount of eluted matter eluted from the cured product, the swelling rate of the cured product, and the like can fall within the ranges described below.
  • the reasons for the low durability against solvents that have a high affinity for polyolefin (especially electrolyte solvents) are that the degree of acid denaturation is low, and polyolefin that cannot be chemically bonded to the cured product is eluted. The problem is that the cured product swells significantly.
  • the amount of extractables or reducing the swelling ratio By reducing the amount of extractables or reducing the swelling ratio, durability against solvents that have a high affinity for polyolefin (especially electrolyte solvents) can be greatly improved.
  • the amount of eluted matter and the swelling ratio of the cured product are confirmed by the procedure described in Examples below.
  • the cured product is obtained by removing low boiling point components such as solvent by drying.
  • Solvents with a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 are not particularly limited, but examples include dimethyl carbonate (9.9), diethyl carbonate (8.8), ethyl propionate ( 8.4), propyl propionate (8.5), solvents used in lithium ion secondary battery electrolytes, and toluene (8.9), cyclohexane (8.2), methylcyclohexane (7.8 ), xylene (8.8), gasoline (7.0), n-hexane (7.3) and other solvents.
  • the numerical value in parenthesis is the solubility parameter of the solvent, and the unit is (cal/cm 3 ) 1/2 .
  • a method of calculating the solubility parameter from the atomic groups constituting the molecule has also been proposed, and one calculated using the Fedors method or the Hildebrand method may be used.
  • solvents with a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 may be replaced by a particular solvent having a solubility parameter within the same range, such as the solvents specifically listed above.
  • the solvent may be replaced by a particular solvent having a solubility parameter within a similar range.
  • the amount of eluted substances is 10% by weight or less, preferably 9% by weight or less, more preferably 8% by weight or less, and particularly preferably 7% by weight or less, of the cured product.
  • the lower limit of the amount of extractables is not particularly limited, the amount of extractables may be, for example, 1% by weight or more.
  • the amount (% by weight) of eluted substances eluted from the cured product into the solvent is also referred to as "elution rate", and is determined according to the method described in Examples below.
  • the main component of the eluted material is polyolefin, which in many cases accounts for 70% by weight or more of the eluted material, and in some cases 90% by weight or more.
  • the polyolefin contained in the eluate usually has a low degree of acid modification and is easily eluted because it is not fixed in the cured product by a cross-linking agent.
  • the acid-modified polyolefin contained in the effluent often has a low degree of acid modification, but the degree of acid modification is higher than that of other adhesive compositions.
  • a polyolefin with a low degree of acid modification contained in such an eluate is not soluble in acetone and is different from the acetone-extractable component described in Patent Document 1.
  • the absorption peak (peak 4) present near 1690 cm -1 (1680 to 1700 cm -1 ) derived from the isocyanuric ring, and the urea bond generated from the isocyanate and A broad absorption peak (peak 5) existing around 1550 cm ⁇ 1 (1500 to 1600 cm ⁇ 1 ) derived from an amide bond can be confirmed.
  • the polyolefin has a structural unit containing a methyl group such as a propylene unit, an absorption peak (peak 6) existing around 1377 cm ⁇ 1 (1367 to 1378 cm ⁇ 1 ) derived from the methyl group can also be confirmed.
  • peaks 1 to 5 are smaller than peak 6 and may not be confirmed, but peaks 1 to 5 can be relatively large in the adhesive composition of the present invention.
  • the absorbance of each peak is described below, and the maximum absorbance within the range described above is taken as the absorbance of the peak.
  • the absorbance ratio between peak 1 and peak 6 is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more.
  • the upper limit of the absorbance ratio between peaks 1 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
  • the absorbance ratio between peak 2 and peak 6 is preferably 0.1 or more, more preferably 0.15 or more, and still more preferably 0.2 or more.
  • the upper limit of the absorbance ratio between peaks 2 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
  • the absorbance ratio between peak 4 and peak 6 is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more.
  • the upper limit of the absorbance ratio between peaks 4 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
  • the absorbance ratio between peaks 5 and 6 is preferably 0.05 or more, more preferably 0.1 or more, and still more preferably 0.2 or more. Although the upper limit of the absorbance ratio between peaks 5 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
  • the swelling rate of the adhesive composition of the present invention is evaluated by "swelling rate 1" calculated by Equation 1 described below.
  • swelling rate 1 calculated by Equation 1 described below.
  • the fact that the swelling rate difference D calculated according to Equation 3 is within a predetermined range can also be useful for improving the electrolytic solution resistance of the adhesive composition of the present invention.
  • the “weight of the cured product before swelling” is the weight of the cured product
  • the “weight of the cured product after swelling” is the weight of the cured product having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 . It is the weight of the swollen cured product obtained by immersing it in a solvent at 80° C.
  • the “dry weight of the cured product after swelling” is the weight of the cured product obtained by drying the swollen cured product.
  • the swollen hardened material is a gel.
  • the swelling rate of the cured product is 1 is preferably 300% or less, more preferably 250% or less, and particularly preferably 150% or less.
  • the swelling rate of the cured product is The difference D is preferably 40% or less, more preferably 30% or less, and particularly preferably 20% or less.
  • the swelling rate difference D When the cured product obtained by the curing reaction of the adhesive composition of the present invention was immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80°C for 5 hours, the swelling rate difference D Although the lower limit is not particularly limited, the swelling rate difference D of the cured product may be, for example, 5% or more.
  • the viscosity of the adhesive composition at 25°C is preferably 10 to 5,000 mPa ⁇ s. 10 mPa ⁇ s or more is preferable from the viewpoint of excellent coatability. Moreover, it is preferably 5,000 mPa ⁇ s or less, more preferably 1,000 mPa ⁇ s or less, from the viewpoint of excellent leveling properties.
  • the adhesive composition is suitable for adhesion between polyolefin resin molded articles and other members (metal members, resin members, etc.), and can be applied not only to polyolefin resin molded articles such as polyolefin resin films but also to polyolefin resin films. , adhesion to a metal foil made of aluminum or the like, adhesion to a metal layer in a composite film comprising a polyolefin resin film and a resin layer and a metal layer.
  • the adhesive layer obtained from the adhesive composition has high room temperature peel strength and hot peel strength, excellent adhesiveness, and high electrolyte resistance, so it can be used as a packaging material for storage devices such as lithium ion secondary batteries. It can be preferably used.
  • the cured product of the adhesive composition is in a state where the acid-modified polyolefin reacts with the cross-linking agent to form cross-links. If a part of the cross-linking agent forms cross-links, it is a cured product, and the degree of cure of the cured product is not particularly limited. Curing can also be confirmed by confirming rubber-like plateaus in dynamic viscoelasticity measurements.
  • the curing temperature of the adhesive composition containing an acid-modified polyolefin, a cross-linking agent, and optionally a curing catalyst may be appropriately determined according to the type of cross-linking agent and the like. When the cross-linking agent is a polyfunctional isocyanate compound, cross-linking can be formed even at room temperature.
  • the adhesive composition may contain a solvent, but unless otherwise specified, the cured product is obtained by removing the solvent by drying.
  • the adhesive composition can be produced by a known method.
  • it is a method of mixing a solution obtained by dissolving an acid-modified polyolefin in a solvent and other components excluding the cross-linking agent, and then mixing the resulting mixture with the cross-linking agent.
  • the temperature during mixing is usually 40°C or less, preferably 10°C to 30°C.
  • the adhesive composition can be used to manufacture a heat-sealable member.
  • the heat-fusible member comprises an adhesive layer formed by curing the adhesive composition of the present invention, a metal layer bonded to one side of the adhesive layer, and a heat-bonded layer bonded to the other side of the adhesive layer. and a fusible resin layer.
  • FIGS. 1 and 2 A schematic diagram of the heat-fusible member is shown in FIGS. 1 and 2. That is, the heat-fusible member 1 of FIG. 1 includes a heat-fusible resin layer 11, an adhesive layer 12, and a metal layer 13 in this order.
  • the heat-fusible member 1 of FIG. 2 includes a heat-fusible resin layer 11, an adhesive layer 12, a metal layer 13, and another layer 14 in this order.
  • the shape of the heat-fusible member may be appropriately set according to the application, and is not particularly limited, but may be film-like, sheet-like, or plate-like.
  • the above heat-fusible resin layer is a layer containing a resin that can be melted by heat to fuse the material forming the layer on one side with the material forming the layer on the other side.
  • This heat-fusible resin layer is preferably a layer containing a resin that melts at a temperature of 50.degree. C. to 200.degree.
  • resins having such properties include polyolefin resins, polyamide resins and polyester resins. Among these, polyolefin resins are preferable because they can be heat-sealed with sufficient strength.
  • polypropylene is preferable as the polyolefin resin. In particular, non-stretched polypropylene is more preferable because it causes little dimensional change (shrinkage) when a heat-fusible member is used and integrated with another member.
  • the above heat-fusible resin layer may optionally contain lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, colorants, dispersants, adhesion-imparting agents, and the like. It may be a layer containing an additive of
  • the thickness of the heat-fusible resin layer is not particularly limited depending on the material of the resin, etc.
  • a layer containing unstretched polypropylene it is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m. is.
  • the thickness of the layer containing unstretched polypropylene is 10 to 200 ⁇ m, it is possible to obtain a heat-sealed composite product such as a highly durable sealed container that is not easily damaged.
  • the above adhesive layer is a layer formed by curing the adhesive composition.
  • the thickness of the adhesive layer is not particularly limited, it is preferably 1 to 20 ⁇ m, particularly preferably 2 to 10 ⁇ m.
  • the adhesive layer has a thickness of 1 to 20 ⁇ m, processing such as bending when the heat-fusible member is in the form of a sheet, for example, is easy.
  • the above metal layer is a layer containing a metal or an alloy.
  • Metals or alloys include aluminum, iron, titanium, magnesium, copper, nickel, chromium and other metals, and alloys thereof. Among these, aluminum is preferable because of its excellent workability.
  • the thickness of the metal layer is not particularly limited depending on the material and the like. When the metal layer is made of aluminum, for example, it is preferably 20 to 100 ⁇ m, particularly preferably 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the material constituting the other layer preferably contains a resin. That is, the other layer is preferably a resin layer.
  • This resin is not particularly limited, and may be a polyamide resin, a polyester resin, or the like.
  • the transparency of the resin layer is not particularly limited, but when the resin layer is transparent or translucent, an excellent appearance can be obtained when the heat-sealable composite product is used as a hermetic container or the like.
  • the other layer may have a multi-layer structure and may include, for example, an adhesive layer for bonding the resin layer and the metal layer.
  • the adhesive layer in the other layer may be the same as or different from the adhesive layer provided between the heat-fusible resin layer and the metal layer.
  • the thickness of the other layer is not particularly limited, but is preferably 30-60 ⁇ m, particularly preferably 30-50 ⁇ m.
  • the heat-fusible member using the adhesive composition of the present invention has high hot peel strength and excellent adhesiveness, and is also excellent in resistance to solvents such as electrolytic solutions. can be prevented from deteriorating.
  • the adhesion performance can be maintained even if there is a temperature change in the battery storage or usage environment.
  • Adhesive performance can be maintained in a temperature range higher than room temperature, such as inside, and in a temperature range lower than outside temperature in cold districts.
  • a method for manufacturing the heat-fusible member shown in FIG. 1 is as follows. (1) The adhesive composition is applied to the surface of a metal foil or the like for forming the metal layer 13, then the organic solvent in the composition is removed to form the adhesive layer 12, and then the adhesive layer 12 is formed. A method of contacting a resin film for forming a heat-fusible resin layer 11 (hereinafter referred to as a "heat-fusible resin film") to the surface on which is formed, and crimping while heating. (2) The adhesive composition is applied to the surface of the heat-fusible resin film, then the organic solvent in the composition is removed to form the adhesive layer 12, and then the adhesive layer 12 is formed. A method in which a metal foil or the like for forming the metal layer 13 is brought into contact with the flat surface and crimped while being heated.
  • the manufacturing method of the heat-fusible member shown in FIG. 2 is as follows. (3) The surface of the metal layer 13 in a composite film having a resin layer constituting another layer 14 and a metal layer 13 formed on one side of the resin layer by lamination, vapor deposition, or the like. After that, the organic solvent in the composition is removed to form an adhesive layer 12, and then the surface on which the adhesive layer 12 is formed is brought into contact with the heat-fusible resin film and heated. How to crimp while (4) The adhesive composition is applied to the surface of the heat-fusible resin film, then the organic solvent in the composition is removed to form the adhesive layer 12, and then the adhesive layer 12 is formed.
  • the surface on which the metal layer 13 is formed in the composite film having the resin layer constituting the other layer 14 and the metal layer 13 formed on one side of the resin layer by lamination or vapor deposition is brought into contact with the other surface.
  • a method of crimping while heating is brought into contact with the other surface.
  • (5) A method of extruding a film for forming another layer 14 on the surface of the metal layer 13 in the laminate obtained by the above method (1) or (2).
  • the adhesive composition is often applied to the surface of a metal layer forming material such as a metal foil, or a metal layer in a composite film comprising a metal layer and another layer (resin layer), but is not particularly limited.
  • a metal foil it is preferable to use an aluminum foil having a thickness of 20 to 100 ⁇ m.
  • the metal layer contains aluminum and the other layer (resin layer) contains a polyamide resin, a polyester resin, or the like.
  • polyamide resin and polyester resin are used as other layer 14 forming films. etc. is preferably used.
  • a polyolefin resin film, a polyamide resin film, a polyester resin film, or the like can be used as the heat-fusible resin film.
  • These resin films can be films obtained by a film-forming method such as an extrusion method, a cast molding method, a T-die method, and an inflation method.
  • the thickness of the heat-fusible resin film is usually 10-200 ⁇ m.
  • a polyolefin resin film is preferable in that it can be easily heat-sealed to complete a heat-sealable member and heat-sealed when manufacturing a heat-sealable composite product, and is less likely to be damaged.
  • a non-stretched polypropylene film is particularly preferable in that a heat-sealable composite product such as a hermetic container having excellent durability can be obtained.
  • the thickness is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the adhesive composition can be applied by a conventionally known method, for example, using a bar coater, a gravure coater, or the like.
  • the thickness of the coating film and its drying temperature are not particularly limited.
  • the drying temperature of the coating film is not particularly limited, and is preferably 30° C. to 150° C. from the viewpoint of workability.
  • the dried coating film generally has tackiness and adhesiveness, so that two members can be adhered without heating.
  • a method such as pressure bonding can be applied while heating to an appropriate temperature in consideration of the melting point and melt viscosity of the acid-modified polyolefin.
  • the heating conditions and crimping conditions are, for example, a temperature of 60 to 100° C., a pressure of 0.3 MPa, and a crimping time of 2 seconds.
  • the conditions for promoting the cross-linking reaction between the acid-modified polyolefin and the cross-linking agent to complete the heat-fusible member are not particularly limited. It is preferable to set according to the material of the fusible resin film, the melting temperature and the composition of the adhesive layer. Aging conditions include heating at 25 to 50° C., for example, 40° C. for about 3 to 7 days.
  • the heat-fusible member can be used in various industrial product fields such as electric field, automobile field, industrial field and other fields.
  • Examples of applications in the electrical field include secondary batteries such as lithium-ion batteries and lithium-ion polymer batteries, packaging materials for power storage devices such as capacitors, mobile devices, TV housings, white goods housings, etc. Decorative sheet pasting decoration, adhesion of metal members and resins, sealing of electronic parts, and the like.
  • Examples of applications in the automotive field include adhesion of exterior materials made of metal members and resins, genuine leather, fabric, instrument panel foam sheets and decorative sheets and bases in interior and exterior materials such as pillars, moldings, door trims, spoilers and roofs. There is adhesion of materials, etc.
  • Examples of applications in the industrial field include adhesion between industrial packaging materials and multi-layer films such as barrier films.
  • Examples of applications in other fields include adhesives for logistics materials, housing materials, daily miscellaneous goods, and sporting goods.
  • packaging materials for electrical storage devices are preferable as heat-fusible members because they have high hot peel strength, excellent adhesiveness, and high electrolyte resistance.
  • This film-like sample was placed in a moisture-proof bag together with a desiccant, sealed, and allowed to stand at room temperature for 1 day or more to promote crystallization.
  • the acid value tends to be estimated slightly higher, and the measurement result of the acid value stabilizes when left for one day or more. In order to do so, the standing time at room temperature was taken.
  • a calibration curve of the absorbance ratio at about 1786 cm -1 to the absorption at about 1164 cm -1 was prepared from the transmission IR spectra of the four samples.
  • the acid-modified polyolefin was vacuum-dried at 150° C.
  • the amount of acid anhydride is the amount of the acid anhydride structure (--CO--O--CO--), and the amount of acid anhydride was converted to the amount of carboxy groups, assuming that 1 mol of the acid anhydride structure is 2 mol of carboxy groups.
  • ⁇ Melting point measurement method and measurement example> The melting points of copolymers of propylene and 1-butene (Tafmer XM7070, Taffmer XM7080 and Taffmer XM7090 manufactured by Mitsui Chemicals, Inc.) used for synthesizing acid-modified polyolefins were measured by DSC. DSC measurement is the melting point of the polymer in the process of increasing the temperature from 0°C to 160°C at 10°C/min, then decreasing the temperature to 0°C at 10°C/min, and again increasing the temperature from 0°C to 160°C at 10°C/min. was taken as the melting point.
  • Tafmer XM7070 had a melting point of 78.5°C
  • Tafmer XM7080 had a melting point of 87.4°C
  • Tafmer XM7090 had a melting point of 100.9°C. The same measurements were carried out for the acid-modified polyolefins described below.
  • ⁇ Melt flow rate measurement method> Using a melt indexer G-02 manufactured by Toyo Seiki Seisakusho Co., Ltd., the measurement was performed in an automatic measurement mode at a furnace temperature of 190° C. and a load of 2.17 kg.
  • the acid-modified polyolefin used in the adhesive composition was prepared as shown in Synthesis Examples 1-6, Purification Example 1, Comparative Synthesis Examples 1-4, and Comparative Purification Examples 1-2 shown below.
  • a twin-screw extruder TEX25 ⁇ III manufactured by Japan Steel Works, Ltd.
  • the obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 1.
  • the acid value was 33.1 mgKOH/g.
  • the melt flow rate was 169 g/10 min (190°C/2.17 kg).
  • the melting point measured by DSC was 95.2°C, which was 5.7°C lower than before acid modification.
  • 10 g of the acid-modified polyolefin of Synthesis Example 1 was placed in a vial, 90 g of toluene was added, the vial was sealed, dissolved in a hot water bath at 70° C., and then the polymer solution was added little by little into a beaker containing 2 liters of acetone while stirring.
  • the precipitated polymer was separated by filtration, put into 500 ml of acetone, washed, and separated by filtering, which was repeated three times. This washing liquid and the filtrate after reprecipitation of the polymer were all combined, and the acetone-soluble portion obtained by removing the solvent with an evaporator and concentrating was weighed. Met. When this was analyzed by LC-MS, many kinds of compounds were detected which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride.
  • the polymer obtained by reprecipitation was used as the acid-modified polyolefin of Purification Example 1.
  • the acid value was 21.3 mgKOH/g.
  • the melt flow rate was 132 g/10 min (190°C/2.17 kg). Further, the acid-modified polyolefin of Purification Example 1 was subjected to reprecipitation again, and the content of acetone-soluble portion was measured to be 0.22% by weight.
  • ⁇ Synthesis Example 2 1000 g of a copolymer of propylene and 1-butene (Tafmer XM7090 manufactured by Mitsui Chemicals, Inc.), 50 g of maleic anhydride, t-butyl peroxy-2-ethylhexyl monocarbonate (Perbutyl E manufactured by NOF Corporation) as a peroxide ), and kneaded with a twin-screw extruder (TEX25 ⁇ III manufactured by Japan Steel Works, Ltd.) set at an input speed of 0.98 kg/h, a screw rotation speed of 200 rpm, and a maximum temperature of 190 ° C., A copolymer of propylene and 1-butene was acid-modified.
  • the obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 2.
  • the acid value was 24.4 mgKOH/g.
  • the melt flow rate was 109 g/10 min (190°C/2.17 kg).
  • the melting point measured by DSC was 93.0°C, which was 7.9°C lower than before acid modification.
  • the acid-modified polyolefin of Synthesis Example 2 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 2.2% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
  • ⁇ Synthesis Example 3 1000 g of a copolymer of propylene and 1-butene (Tafmer XM7080 manufactured by Mitsui Chemicals, Inc.), 100 g of maleic anhydride, 30 g of lauryl methacrylate, and t-butylperoxy-2-ethylhexyl monocarbonate (NOF Corporation) as a peroxide.
  • the melting point measured by DSC was 80.3°C, which was 6.8°C lower than before acid modification.
  • the acid-modified polyolefin of Synthesis Example 3 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 2.9% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
  • the obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 4.
  • the acid value was 41.1 mgKOH/g.
  • the melt flow rate was 91 g/10 min (190°C/2.17 kg).
  • the melting point measured by DSC was 71.5°C, which was 6.9°C lower than before acid modification.
  • the acid-modified polyolefin of Synthesis Example 4 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 9.8% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
  • This polymer solution was added to a stainless container containing 10 liters of acetone with stirring to precipitate the polymer. After removing the solvent by decantation, the polymer was washed by pouring acetone twice enough to soak it, and the acid-modified polyolefin obtained by filtration was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 5. .
  • the acid value was 28.3 mgKOH/g.
  • the melt flow rate was 414 g/10 min (190°C/2.17 kg).
  • the melting point measured by DSC was 70.8°C, which was 7.7°C lower than before acid modification.
  • the acid-modified polyolefin of Synthesis Example 5 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 0.14% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
  • a twin-screw extruder manufactured by Japan Steel Works, Ltd.
  • the copolymer of propylene and 1-butene was acid-modified by kneading with TEX25 ⁇ III).
  • the resulting acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Comparative Synthesis Example 1.
  • the acid value was 35.4 mgKOH/g.
  • Melt flow rate was 115 g/10 min (190° C./2.17 kg).
  • the melting point measured by DSC was 96.4°C, which was 4.5°C lower than before acid modification.
  • the acid-modified polyolefin of Comparative Synthesis Example 1 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 4.4% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
  • the polymer obtained by reprecipitation was used as the acid-modified polyolefin of Comparative Purification Example 1.
  • the acid value was 23.1 mgKOH/g.
  • the melt flow rate was 98 g/10 min (190°C/2.17 kg).
  • the acid-modified polyolefin of Comparative Purification Example 1 was subjected to reprecipitation again, and the content of acetone-soluble portion was measured to be 0.11% by weight.
  • a twin-screw extruder Nippon Steel Co., Ltd.
  • the copolymer of propylene and 1-butene was acid-modified by kneading with TEX25 ⁇ III) manufactured by the company.
  • the obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Comparative Synthesis Example 2.
  • the acid value was 29.8 mgKOH/g.
  • the melt flow rate was 242 g/10 min (190°C/2.17 kg).
  • the melting point measured by DSC was 84.6°C, which was 2.5°C lower than before acid modification.
  • the acid-modified polyolefin of Comparative Synthesis Example 2 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 3.2% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
  • the polymer obtained by reprecipitation was used as the acid-modified polyolefin of Comparative Purification Example 2.
  • the acid value was 18.1 mgKOH/g. Melt flow rate was 206 g/10 min (190° C./2.17 kg). Further, when the acid-modified polyolefin of Comparative Purification Example 2 was reprecipitated again and the content of acetone-soluble portion was measured, it was 0.13% by weight.
  • TEX25 ⁇ III manufactured by Japan Steel Works, Ltd.
  • the obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Comparative Synthesis Example 3.
  • the acid value was 34.3 mgKOH/g.
  • the melt flow rate was 236 g/10 min (190°C/2.17 kg).
  • the melting point measured by DSC was 74.1°C, which was 4.3°C lower than before acid modification.
  • the acid-modified polyolefin of Comparative Synthesis Example 3 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 4.3% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
  • polyfunctional isocyanate (TPA-100 manufactured by Asahi Kasei Corporation) mainly composed of isocyanurate of hexamethylene diisocyanate
  • 75 g of polyfunctional isocyanate mainly composed of isocyanurate of hydrogenated xylylene diisocyanate 3.1 g of wt% ethyl acetate solution (manufactured by Mitsui Chemicals, Inc., Takenate D-127N)
  • 3.0 g of methyl ethyl ketone, and 0.1 g of dioctyltin dilaurate as a catalyst were stirred and mixed, and the entire amount of the solution was added and stirred to form an adhesive solution. did.
  • This aluminum foil was dried for 1 minute in an oven heated to 80°C, and a CPP (cast polypropylene) film with a thickness of 80 ⁇ m that had been subjected to corona discharge treatment was superimposed on the surface in contact with the adhesive, followed by a roll laminator with a roll temperature of 80°C. It was sandwiched between and pasted together. This was cured in an oven at 40° C. for 1 week to advance the curing reaction, and then cut into strips with a width of 15 mm to obtain test pieces for evaluation of peel strength.
  • CPP cast polypropylene
  • a test piece for peel strength evaluation was placed in a pressure-resistant container whose liquid-contacting part was made of fluororesin, and propyl propionate or toluene was added until the test piece was completely immersed, and the container was tightly sealed.
  • the container was placed in an oven set at 85° C. and left for 24 hours. Take out the test piece for peel strength evaluation, immerse it in room temperature water for 2 hours, wipe off the water on the surface, and pull it at room temperature using a tensile tester (Autograph AGS-X manufactured by Shimadzu Corporation).
  • a T-peel test was performed at a speed of 100 mm/min until the gripper moved 100 mm, and the peel strength over a distance of 40 mm to 100 mm was averaged to obtain the peel strength.
  • test piece After 5 hours of immersion, the test piece was taken out from the vial, and the test piece was immersed in 5 g of the same kind of solvent as used for immersion, and washed twice. All the test pieces were sandwiched with paper (Kimwipe), and after absorbing the solvent on the surface, the weight was measured. The weight of the measured test piece was defined as "the weight of the cured product after swelling”. The swollen and weighed test piece was entirely transferred to a glass beaker, placed in a vacuum dryer and dried overnight at 50° C. and ⁇ 100 kpa or less, and then the weight of the test piece was measured. The weight of the measured test piece was defined as the "dry weight of the cured product after swelling".
  • this eluate was in the form of a transparent film and did not dissolve in acetone. None of the acetone-soluble parts obtained in the Synthesis Examples were in the form of a film, but in the form of a brittle solid or a wax, clearly different from the eluate.
  • Examples 2 to 12 and Comparative Examples 1 to 8> The formulations of other examples and comparative examples are summarized in Table 2, and a test piece for evaluating peel strength and a test piece for evaluating swelling and solubility are prepared in the same manner as in Example 1, It was evaluated in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention addresses the problem of providing an adhesive composition having durability against a low-polarity solvent. An adhesive composition according to the present invention contains an acid-modified polyolefin that is acid-modified with an unsaturated carboxylic acid anhydride, and a crosslinking agent. The adhesive composition is characterized in that, when a cured product of the adhesive composition is immersed in a solvent having a solubility parameter of 7-10 (cal/cm3) 1/2 at 80°C for 5 hours, the amount of eluate eluted from the cured product into the solvent is equal to or less than 10 weight% of the cured product.

Description

接着剤組成物adhesive composition
 本発明は、接着剤組成物及びそれを用いた熱融着性部材並びに蓄電デバイス用包装材料に関し、電気分野、自動車分野及び産業分野等の様々な工業用製品分野において使用することができ、これら技術分野に属する。 The present invention relates to an adhesive composition, a heat-sealable member using the same, and a packaging material for electrical storage devices, which can be used in various industrial product fields such as the electrical field, the automotive field, and the industrial field. Belongs to the technical field.
 リチウムイオン電池等の蓄電デバイスでは、電解液にエチレンカーボネートを使用するが、エチレンカーボネートは融点が34~37℃であり常温では固体であるため、通常は単独で使用されることはなく、使用環境下における電解液の凍結を防止し、広い温度範囲で安定した動作を実現する目的で、種々の有機溶剤を配合して融点を下げている。近年、自動車用電池等において、より広い環境温度に適応するため有機溶剤の検討が行われている。このように、種々の有機溶剤が検討される中で、電解液用有機溶剤としてポリオレフィンに近い溶解度パラメータを有する有機溶剤の配合も行われるようになってきている。 Electricity storage devices such as lithium-ion batteries use ethylene carbonate as the electrolyte. Ethylene carbonate has a melting point of 34 to 37°C and is solid at room temperature. In order to prevent the electrolyte below from freezing and to achieve stable operation over a wide temperature range, various organic solvents are blended to lower the melting point. In recent years, in automobile batteries and the like, organic solvents have been investigated in order to adapt to a wider range of environmental temperatures. While various organic solvents have been studied in this way, organic solvents having a solubility parameter close to that of polyolefin have been blended as organic solvents for electrolytic solutions.
 ラミネート型やパウチ型と呼ばれるタイプの蓄電デバイスに使用される一般的な包装材料は、アルミニウム箔を中心にした3層構造であり、各層間に接着剤が使用される。このうち、電解液と接する最内層はポリプロピレンフィルム等のポリオレフィンフィルムが用いられ、アルミニウム箔との接着には必要に応じて架橋剤を配合した酸変性ポリオレフィンが用いられる。 General packaging materials used for electricity storage devices of the type called laminate type or pouch type have a three-layer structure centered on aluminum foil, and an adhesive is used between each layer. Among them, a polyolefin film such as a polypropylene film is used for the innermost layer in contact with the electrolytic solution, and an acid-modified polyolefin mixed with a cross-linking agent is used for bonding with the aluminum foil, if necessary.
 エチレンカーボネートのように極性が高い溶剤は、極性が低い最内層のポリオレフィンフィルムに浸透しにくく、問題となることはなかったが、電解液に配合する有機溶剤の種類によっては、最内層のポリオレフィンフィルムを透過し、酸変性ポリオレフィンを用いた接着剤の強度を低下させるため、蓄電デバイスの寿命低下や、事故につながる恐れがあった。 Solvents with high polarity, such as ethylene carbonate, do not easily permeate the innermost polyolefin film, which has low polarity. permeation and lowers the strength of the adhesive using acid-modified polyolefin, which may lead to a shorter life of the storage device or an accident.
 これに対し、特許文献1においては、ポットライフが長く、耐電解液性が良い接着剤組成物を得る手段として、主剤に用いる酸変性ポリオレフィンに含まれるアセトン抽出物の含有量を0.01~2質量%、酸価を2~50mgKOH/gとすることを提案している。 On the other hand, in Patent Document 1, as a means for obtaining an adhesive composition having a long pot life and good electrolytic solution resistance, the content of acetone extract contained in the acid-modified polyolefin used as the main agent is 0.01 to 0.01. It is proposed to use 2% by mass and an acid value of 2 to 50 mgKOH/g.
国際公開2018/221037号パンフレットInternational publication 2018/221037 pamphlet
 本発明者らが検討した結果では、前記のポリオレフィンフィルムに近い溶解度パラメータを有する比較的極性が低い有機溶剤に溶解可能な物質が溶出することが、これらの有機溶剤に対する耐久性低下の原因の一つであって、アセトン抽出物の含有量を少なくしても、これらの低極性溶剤に対する耐久性を向上できないことが判った。特許文献1で提案された接着剤組成物は、極性の高い電解液には有効であるが、近年電解液への利用が進められている低極性溶剤には効果がないのである。 According to the results of studies by the present inventors, the elution of substances soluble in relatively low-polar organic solvents having a solubility parameter close to that of the polyolefin film is one of the causes of the deterioration of durability against these organic solvents. It was found that even if the content of the acetone extract was reduced, the resistance to these low-polarity solvents could not be improved. The adhesive composition proposed in Patent Document 1 is effective for highly polar electrolytes, but is not effective for low-polarity solvents, which have been increasingly used for electrolytes in recent years.
 これらの酸変性ポリオレフィンを用いた接着剤は、難接着材料とされるポリプロピレン等のポリオレフィンに対しても、金属に対しても良好な接着性能を有するため、蓄電デバイス用包装材料以外においても非常に有用である。また、電解液で用いられる溶剤でなくても、トルエンやキシレン、あるいはガソリン等ポリオレフィンに近い溶解度パラメータを有する汎用溶剤に対する耐久性が求められる場合もある。 Adhesives using these acid-modified polyolefins have good adhesion performance to polyolefins such as polypropylene, which are considered to be difficult to adhere to, and to metals, so they are very useful in applications other than packaging materials for electrical storage devices. Useful. Moreover, even if the solvent is not used in the electrolytic solution, durability against general-purpose solvents such as toluene, xylene, or gasoline having a solubility parameter close to that of polyolefin may be required.
 酸変性ポリオレフィンと架橋剤を主成分とする接着剤組成物において、金属箔とポリオレフィンフィルムを接着させたラミネートフィルムを、低極性でありポリオレフィンに親和性が高く、溶解度パラメータで言えば7~10(cal/cm1/2程度の溶剤に浸漬すると、金属箔とポリオレフィンフィルムの剥離強度が大幅に低下し、そのような低極性溶剤を含む電解液を用いた蓄電デバイスにおいて信頼性を低下させる原因になっていた。前出の特許文献1に記載されているようにアセトン抽出物が少ない酸変性ポリオレフィンを使用すると、これらの低極性溶剤を含む電解液に対しても耐電解液性はわずかに向上するが、実用的には不十分であった。本発明者らが検討した結果、これらのアセトン抽出物は数個の酸無水物と酸変性時に使用する過酸化物等のラジカル開始剤の断片が結合した低分子量化合物であって、極性が高いため、エチレンカーボネート等の極性が高い溶剤には溶解しやすいが、低極性溶剤には溶解しにくいことが判った。これらの低分子量化合物を再沈殿法によって除去した酸変性ポリオレフィンを用いた接着剤組成物の硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に浸漬すると、これらの低極性溶剤に対する耐久性向上効果は不十分であることが多く、アセトン抽出物を除去することは、必ずしも低極性溶剤に対する耐久性を向上させる手段として有効であるとは言えなかった。 In an adhesive composition mainly composed of an acid-modified polyolefin and a cross-linking agent, a laminate film obtained by bonding a metal foil and a polyolefin film has a low polarity, a high affinity for polyolefin, and a solubility parameter of 7 to 10 ( cal/cm 3 ) When immersed in a solvent of about 1/2 , the peel strength between the metal foil and the polyolefin film is greatly reduced, and the reliability of an electric storage device using an electrolyte containing such a low-polar solvent is reduced. was the cause. As described in the above-mentioned Patent Document 1, when an acid-modified polyolefin with a small acetone extract is used, the electrolyte solution resistance is slightly improved even for electrolyte solutions containing these low-polar solvents. was inadequate. As a result of studies by the present inventors, these acetone extracts are low-molecular-weight compounds in which several acid anhydrides and fragments of radical initiators such as peroxides used for acid modification are bound, and have high polarity. Therefore, it was found that it is easy to dissolve in highly polar solvents such as ethylene carbonate, but difficult to dissolve in low polar solvents. When a cured product of an adhesive composition using an acid-modified polyolefin from which these low molecular weight compounds have been removed by a reprecipitation method is immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 , these low The effect of improving the durability against polar solvents is often insufficient, and removing the acetone extract is not always effective as a means of improving the durability against low-polar solvents.
 本発明が解決しようとする課題は、低極性溶剤に対する耐久性を有する接着剤組成物を提供することにある。 The problem to be solved by the present invention is to provide an adhesive composition having durability against low-polar solvents.
 本発明者らは前記課題を解決するため鋭意検討した結果、以下の発明を完成するに至った。本明細書は、これらの知見に基づき以下の手段を提供する。 The present inventors have completed the following invention as a result of diligent studies to solve the above problems. This specification provides the following means based on these findings.
[1]
不飽和カルボン酸無水物で酸変性した酸変性ポリオレフィンと、架橋剤と、を含有する接着剤組成物であって、前記接着剤組成物の硬化物を、溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させたとき、前記硬化物から前記溶剤に溶出する溶出物の量が前記硬化物の10重量%以下である、接着剤組成物。
[2]
 前記硬化物を、前記溶剤に80℃で5時間浸漬させたとき、下式1及び2で計算される膨潤率1及び膨潤率2から下式3で計算される膨潤率差Dが40%以下である、[1]に記載の接着剤組成物。
 
 式1:膨潤率1(%)=膨潤後の硬化物の重量/膨潤前の硬化物の重量×100
 式2:膨潤率2(%)=膨潤後の硬化物の重量/膨潤後の硬化物の乾燥重量×100
 式3:膨潤率差D(%)=膨潤率2-膨潤率1
 
(「膨潤前の硬化物の重量」は前記硬化物の重量であり、「膨潤後の硬化物の重量」は、前記硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させて得られる膨潤した硬化物の重量であり、「膨潤後の硬化物の乾燥重量」は、膨潤した前記硬化物を乾燥させて得られる硬化物の重量である。)
[3]
 前記硬化物を、前記溶剤に80℃で5時間浸漬させたとき、下式で計算される膨潤率1の値が500%以下である、[1]または[2]に記載の接着剤組成物。
 
 膨潤率1(%)=膨潤後の硬化物の重量/膨潤前の硬化物の重量×100
 
(「膨潤前の硬化物の重量」は前記硬化物の重量であり、「膨潤後の硬化物の重量」は、前記硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させて得られる膨潤した硬化物の重量である。)
[4]
 前記酸変性ポリオレフィンの融点が酸変性前のポリオレフィンの融点に対して4.5~15℃低いことを特徴とする、[1]~[3]のいずれか1項に記載の接着剤組成物。
[5]
 前記酸変性ポリオレフィンの酸価が5~50mgKOH/gである、[1]~[4]のいずれか1項に記載の接着剤組成物。
[6]
 前記架橋剤が多官能イソシアネート化合物であり、
 前記多官能イソシアネート化合物中のイソシアネート基のモル数と前記酸変性ポリオレフィン中のカルボキシ基のモル数の比率が0.3~15であり(但し、酸無水物構造(-CO-O-CO-)は1モル当たり2モルのカルボキシ基として、カルボキシ基に含まれる)、
 前記酸変性ポリオレフィンと前記多官能イソシアネート化合物の総重量における前記多官能イソシアネート化合物の重量比率が5~60重量%である、[1]~[5]のいずれか1項に記載の接着剤組成物。
[7]
 前記酸変性ポリオレフィンにおけるアセトンに抽出可能な成分の量が2重量%超である、[1]~[6]のいずれか1項に記載の接着剤組成物。
[8]
 [1]~[7]のいずれか1項に記載の接着剤組成物が硬化してなる接着剤層と、当該接着剤層の一面側に接合された金属層と、当該接着剤層の他面側に接合された熱融着性樹脂層とを備えることを特徴とする、熱融着性部材。
[9]
 [8]に記載の熱融着性部材を含む蓄電デバイス用包装材料。
[1]
An adhesive composition containing an acid-modified polyolefin acid-modified with an unsaturated carboxylic acid anhydride and a cross-linking agent, wherein the cured product of the adhesive composition has a solubility parameter of 7 to 10 (cal/cm 3 ) An adhesive composition wherein, when immersed in 1/2 of the solvent at 80°C for 5 hours, the amount of substances eluted from the cured product into the solvent is 10% by weight or less of the cured product.
[2]
When the cured product is immersed in the solvent at 80° C. for 5 hours, the swelling rate difference D calculated by the following formula 3 from the swelling rate 1 and the swelling rate 2 calculated by the following formulas 1 and 2 is 40% or less. The adhesive composition according to [1].

Formula 1: Swelling rate 1 (%) = weight of cured product after swelling / weight of cured product before swelling × 100
Formula 2: Swelling rate 2 (%) = weight of cured product after swelling / dry weight of cured product after swelling × 100
Formula 3: Swelling rate difference D (%) = swelling rate 2 - swelling rate 1

(“The weight of the cured product before swelling” is the weight of the cured product, and the “weight of the cured product after swelling” is the weight of the cured product having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 . It is the weight of the swollen cured product obtained by immersing it in a solvent at 80° C. for 5 hours, and the “dry weight of the cured product after swelling” is the weight of the cured product obtained by drying the swollen cured product. .)
[3]
The adhesive composition according to [1] or [2], wherein when the cured product is immersed in the solvent at 80° C. for 5 hours, the swelling ratio 1 calculated by the following formula is 500% or less. .

Swelling rate 1 (%) = weight of cured product after swelling / weight of cured product before swelling × 100

(“The weight of the cured product before swelling” is the weight of the cured product, and the “weight of the cured product after swelling” is the weight of the cured product having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 . It is the weight of the swollen cured product obtained by immersing it in a solvent at 80°C for 5 hours.)
[4]
The adhesive composition according to any one of [1] to [3], wherein the melting point of the acid-modified polyolefin is 4.5 to 15°C lower than the melting point of the polyolefin before acid modification.
[5]
The adhesive composition according to any one of [1] to [4], wherein the acid-modified polyolefin has an acid value of 5 to 50 mgKOH/g.
[6]
The cross-linking agent is a polyfunctional isocyanate compound,
The ratio of the number of moles of isocyanate groups in the polyfunctional isocyanate compound to the number of moles of carboxy groups in the acid-modified polyolefin is 0.3 to 15 (provided that the acid anhydride structure (-CO-O-CO-) is included in the carboxy group as 2 moles of carboxy groups per mole),
The adhesive composition according to any one of [1] to [5], wherein the weight ratio of the polyfunctional isocyanate compound to the total weight of the acid-modified polyolefin and the polyfunctional isocyanate compound is 5 to 60% by weight. .
[7]
The adhesive composition according to any one of [1] to [6], wherein the amount of acetone-extractable components in the acid-modified polyolefin is more than 2% by weight.
[8]
An adhesive layer formed by curing the adhesive composition according to any one of [1] to [7], a metal layer bonded to one side of the adhesive layer, and the adhesive layer A heat-fusible member characterized by comprising a heat-fusible resin layer joined to a face side.
[9]
A packaging material for an electricity storage device, comprising the heat-sealable member according to [8].
 本発明によれば、低極性溶剤に対する耐久性を有する接着剤組成物が得られる。本発明の接着剤組成物は蓄電デバイス用包装材料に特に好適である。 According to the present invention, an adhesive composition having durability against low-polar solvents can be obtained. The adhesive composition of the present invention is particularly suitable for packaging materials for electrical storage devices.
本発明の熱融着性部材の一例を示す概略斜視図である。1 is a schematic perspective view showing an example of the heat-fusible member of the present invention; FIG. 本発明の熱融着性部材の他の例を示す概略斜視図である。FIG. 4 is a schematic perspective view showing another example of the heat-fusible member of the present invention; 合成例1で原料として使用したポリオレフィン(タフマーXM7090)のIRスペクトルである。1 is an IR spectrum of the polyolefin (Tafmer XM7090) used as a raw material in Synthesis Example 1. FIG. 合成例1の酸変性ポリオレフィンのIRスペクトルである。4 is an IR spectrum of the acid-modified polyolefin of Synthesis Example 1. FIG. 精製例1の酸変性ポリオレフィンのIRスペクトルである。4 is an IR spectrum of the acid-modified polyolefin of Purification Example 1. FIG. 合成例5で原料として使用したポリオレフィン(タフマーXM7070)のIRスペクトルである。4 is an IR spectrum of the polyolefin (Tafmer XM7070) used as a raw material in Synthesis Example 5. FIG. 合成例5の酸変性ポリオレフィンのIRスペクトルである。4 is an IR spectrum of the acid-modified polyolefin of Synthesis Example 5. FIG. 比較合成例2で原料として使用したポリオレフィン(タフマーXM7080)のIRスペクトルである。4 is an IR spectrum of the polyolefin (Tafmer XM7080) used as a raw material in Comparative Synthesis Example 2. FIG. 比較合成例2の酸変性ポリオレフィンのIRスペクトルである。4 is an IR spectrum of the acid-modified polyolefin of Comparative Synthesis Example 2. FIG. 実施例1の接着剤組成物の硬化物及び硬化物から溶剤に溶出した溶出物のIRスペクトルである。1 is an IR spectrum of a cured product of the adhesive composition of Example 1 and a substance eluted from the cured product into a solvent. 実施例2の接着剤組成物の硬化物及び硬化物から溶剤に溶出した溶出物のIRスペクトルである。2 is an IR spectrum of a cured product of the adhesive composition of Example 2 and a substance eluted from the cured product into a solvent. 実施例12の接着剤組成物の硬化物及び硬化物から溶剤に溶出した溶出物のIRスペクトルである。FIG. 10 is an IR spectrum of a cured product of the adhesive composition of Example 12 and a substance eluted from the cured product into a solvent. FIG. 比較例3の接着剤組成物の硬化物及び硬化物から溶剤に溶出した溶出物のIRスペクトルである。4 is an IR spectrum of a cured product of the adhesive composition of Comparative Example 3 and a substance eluted from the cured product into a solvent. 比較例5の接着剤組成物の硬化物及び硬化物から溶剤に溶出した溶出物のIRスペクトルである。FIG. 10 is an IR spectrum of a cured product of the adhesive composition of Comparative Example 5 and a substance eluted from the cured product into a solvent. FIG.
 以下、本発明の接着剤組成物を構成成分ごとに説明する。
1.酸変性ポリオレフィン
 酸変性ポリオレフィンはラジカルグラフト反応可能なポリオレフィンを不飽和カルボン酸無水物で酸変性することで製造される。ラジカルグラフト反応可能なポリオレフィンとは、ラジカルにより引き抜かれる水素を有する単量体単位を含むポリオレフィンである。通常はラジカルグラフト反応可能なポリオレフィンは、酸変性されていないポリオレフィン(即ち、カルボキシ基や酸無水物構造を含まないポリオレフィン)であるが、場合により末端部分等一部において酸変性されていてもよい。本明細書ではこのラジカルグラフト反応可能なポリオレフィンを「酸変性前のポリオレフィン」と記載する場合もある。
The constituent components of the adhesive composition of the present invention are described below.
1. Acid-Modified Polyolefin Acid-modified polyolefin is produced by acid-modifying a radical-graftable polyolefin with an unsaturated carboxylic acid anhydride. A radically graftable polyolefin is a polyolefin containing monomeric units having radically abstracted hydrogen. Polyolefins capable of radical graft reaction are usually non-acid-modified polyolefins (i.e., polyolefins that do not contain carboxyl groups or acid anhydride structures), but may be partially acid-modified, such as terminal portions, depending on the case. . In this specification, this radical graft-reactive polyolefin may be referred to as "polyolefin before acid modification".
 ラジカルグラフト反応可能なポリオレフィンの具体例としては、オレフィン(好ましくは炭素数2~6、より好ましくは炭素数2~4)、スチレン、シクロオレフィン(好ましくは炭素数3~10、より好ましくは炭素数5~8)、及びこれらの組み合わせから成る群より選択される重合性モノマーを単独重合又は共重合したものが挙げられる。特に、比較的安定な3級炭素ラジカルを生成する重合性モノマーから得られるポリオレフィンが好ましく、その中でもプロピレンと1-ブテンの共重合体はトルエンやシクロヘキサン等の溶剤への溶解性が良好であり、かつ接着性能も高いため、溶液タイプの接着剤として使用する場合において好適である。 Specific examples of polyolefins capable of radical graft reaction include olefins (preferably having 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms), styrene, cycloolefins (preferably having 3 to 10 carbon atoms, more preferably 5 to 8), and those obtained by homopolymerizing or copolymerizing polymerizable monomers selected from the group consisting of combinations thereof. In particular, polyolefins obtained from polymerizable monomers that generate relatively stable tertiary carbon radicals are preferred. Among them, copolymers of propylene and 1-butene have good solubility in solvents such as toluene and cyclohexane. In addition, since it has high adhesion performance, it is suitable for use as a solution type adhesive.
 プロピレンと1-ブテンとの共重合体において、1-ブテンの共重合比率[1-ブテン/(プロピレン+1-ブテン)]は好ましくは5~40モル%であり、より好ましくは10~30モル%である。1-ブテンの共重合比率が5モル%未満の場合には溶剤への溶解性が十分でなく、溶剤に加熱溶解しても短時間でポリオレフィン溶液の流動性が失われ、接着剤が塗工できなくなり得る。1-ブテンの共重合比率が40モル%を超えると、熱間接着特性が低下する。 In the copolymer of propylene and 1-butene, the copolymerization ratio of 1-butene [1-butene/(propylene + 1-butene)] is preferably 5 to 40 mol%, more preferably 10 to 30 mol%. is. If the copolymerization ratio of 1-butene is less than 5 mol%, the solubility in the solvent is insufficient, and even if the polyolefin solution is heated and dissolved in the solvent, the fluidity of the polyolefin solution is lost in a short period of time, and the adhesive cannot be coated. can become impossible. When the copolymerization ratio of 1-butene exceeds 40 mol %, the hot adhesive properties are degraded.
 ラジカルグラフト反応可能なポリオレフィンの融点は、好ましくは44℃以上、より好ましくは54℃以上、特に好ましくは64℃以上であり、74℃以上であってもよい。このような範囲で十分な剥離強度を得ることができる。ラジカルグラフト反応可能なポリオレフィンの融点は、好ましくは125℃以下、より好ましくは120℃以下、特に好ましくは105℃以下であり、95℃以下であってもよい。このような範囲で低温での十分な保存安定性を得ることができる。 The melting point of the radical graft-reactive polyolefin is preferably 44°C or higher, more preferably 54°C or higher, particularly preferably 64°C or higher, and may be 74°C or higher. Sufficient peel strength can be obtained within such a range. The melting point of the radical graft-reactive polyolefin is preferably 125° C. or lower, more preferably 120° C. or lower, particularly preferably 105° C. or lower, and may be 95° C. or lower. Sufficient storage stability at low temperatures can be obtained within such a range.
 不飽和カルボン酸無水物は少なくとも1つの炭素炭素二重結合を有するカルボン酸無水物である。不飽和カルボン酸無水物の炭素数は、通常は4以上であり、例えば5以上や6以上であってよい。不飽和カルボン酸無水物の炭素数の上限は特に限定されないが、不飽和カルボン酸無水物の炭素数は、例えば10以下や8以下であってよい。 An unsaturated carboxylic acid anhydride is a carboxylic acid anhydride having at least one carbon-carbon double bond. The number of carbon atoms in the unsaturated carboxylic acid anhydride is usually 4 or more, and may be, for example, 5 or more or 6 or more. Although the upper limit of the number of carbon atoms in the unsaturated carboxylic anhydride is not particularly limited, the number of carbon atoms in the unsaturated carboxylic anhydride may be, for example, 10 or less or 8 or less.
 不飽和カルボン酸無水物は、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、テトラヒドロフタル酸無水物、ナジック酸無水物及びエンディック酸無水物等の不飽和ジカルボン酸化合物の酸無水物;及びアコニット酸無水物等の不飽和トリカルボン酸化合物の酸無水物等が挙げられる。 Unsaturated carboxylic anhydrides are acid anhydrides of unsaturated dicarboxylic compounds such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, nadic anhydride and endic anhydride. and acid anhydrides of unsaturated tricarboxylic acid compounds such as aconitic anhydride.
 不飽和カルボン酸無水物としては、変性が容易であり接着性に優れる点で、不飽和ジカルボン酸無水物が好ましく、具体的にはマレイン酸無水物及びイタコン酸無水物が好ましい。 The unsaturated carboxylic acid anhydride is preferably an unsaturated dicarboxylic acid anhydride, specifically maleic acid anhydride and itaconic acid anhydride, from the viewpoints of ease of modification and excellent adhesiveness.
 これらの不飽和カルボン酸無水物は、1種のみを使用しても、2種以上を併用してもよい。 These unsaturated carboxylic acid anhydrides may be used alone or in combination of two or more.
 酸変性ポリオレフィンにおいて一部(例えば、0モル%超~30モル%や5モル%~20モル%)の不飽和カルボン酸無水物に由来する酸無水物構造は加水分解されてカルボン酸となっていてもよい。また、ラジカルグラフト反応に使用する一部(例えば、0モル%超~30モル%や5モル%~20モル%)の不飽和カルボン酸無水物は不飽和カルボン酸であってもよい。不飽和カルボン酸は、上記の不飽和ジカルボン酸無水物が加水分解して形成される不飽和ジカルボン酸であってもよいが、アクリル酸やメタクリル酸等の不飽和モノカルボン酸も好ましく使用できる。 Part of the acid-modified polyolefin (for example, more than 0 mol% to 30 mol% or 5 mol% to 20 mol%) of the acid anhydride structure derived from the unsaturated carboxylic acid anhydride is hydrolyzed to carboxylic acid. may Also, a portion (for example, more than 0 mol % to 30 mol % or 5 mol % to 20 mol %) of the unsaturated carboxylic acid anhydride used in the radical graft reaction may be an unsaturated carboxylic acid. The unsaturated carboxylic acid may be an unsaturated dicarboxylic acid formed by hydrolysis of the above unsaturated dicarboxylic acid anhydride, but unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid can also be preferably used.
 酸変性ポリオレフィンにおける不飽和カルボン酸無水物のグラフト量は、酸変性ポリオレフィン中に存在する酸無水物構造(-CO-O-CO-)の量で確認できる。酸無水物構造の量は酸価で評価される。酸変性ポリオレフィンの酸価は、好ましくは5mgKOH/g以上であり、より好ましくは10mgKOH/g以上であり、さらに好ましくは15mgKOH/g以上である。酸変性ポリオレフィンの酸価が、5mgKOH/g以上において高い接着強度が得られる。酸変性ポリオレフィンの酸価は、好ましくは60mgKOH/g以下であり、より好ましくは50mgKOH/g以下であり、さらに好ましくは40mgKOH/g以下である。酸変性ポリオレフィンの酸価が、50mgKOH/g以下において接着剤溶液の安定性が改善される。酸変性ポリオレフィンの酸価は、本明細書の実施例において示されるように標準サンプルの赤外吸収スペクトルから作成した検量線を使用することで確認できる。 The amount of unsaturated carboxylic anhydride grafted to the acid-modified polyolefin can be confirmed by the amount of the acid anhydride structure (-CO-O-CO-) present in the acid-modified polyolefin. The amount of acid anhydride structure is evaluated by the acid number. The acid value of the acid-modified polyolefin is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, still more preferably 15 mgKOH/g or more. High adhesive strength can be obtained when the acid value of the acid-modified polyolefin is 5 mgKOH/g or more. The acid value of the acid-modified polyolefin is preferably 60 mgKOH/g or less, more preferably 50 mgKOH/g or less, still more preferably 40 mgKOH/g or less. The stability of the adhesive solution is improved when the acid value of the acid-modified polyolefin is 50 mgKOH/g or less. The acid value of the acid-modified polyolefin can be confirmed by using a calibration curve prepared from infrared absorption spectra of standard samples as shown in the examples herein.
 なお、酸変性ポリオレフィンにグラフトされた不飽和カルボン酸無水物の酸無水物構造は、全てが加水分解されてカルボン酸あるいはカルボン酸誘導体となっていてもよい。 Note that the acid anhydride structure of the unsaturated carboxylic acid anhydride grafted onto the acid-modified polyolefin may be entirely hydrolyzed to form a carboxylic acid or a carboxylic acid derivative.
 酸変性ポリオレフィンは、さらに、(メタ)アクリル酸アルキルエステルでグラフト変性されていてもよく、(メタ)アクリル酸アルキルエステルとしては、炭素数8~18のアルキルアルコールと(メタ)アクリル酸とのエステル化合物(以下、「(メタ)アクリル酸長鎖アルキルエステル」という。)が好ましい。不飽和カルボン酸無水物と(メタ)アクリル酸アルキルエステルを酸変性前のポリオレフィンにグラフトする順序は特に限定されず、同時にグラフト変性しても、別々にグラフト変性してもよい。 The acid-modified polyolefin may further be graft-modified with a (meth)acrylic acid alkyl ester, and the (meth)acrylic acid alkyl ester is an ester of an alkyl alcohol having 8 to 18 carbon atoms and (meth)acrylic acid. A compound (hereinafter referred to as "(meth)acrylic acid long-chain alkyl ester") is preferred. The order in which the unsaturated carboxylic acid anhydride and the (meth)acrylic acid alkyl ester are grafted onto the polyolefin before acid modification is not particularly limited, and the graft modification may be performed simultaneously or separately.
 酸変性ポリオレフィンの融点は、好ましくは40℃以上、より好ましくは50℃以上、特に好ましくは60℃以上であり、70℃以上であってもよい。このような範囲で十分な剥離強度を得ることができる。酸変性ポリオレフィンの融点は、好ましくは110℃以下、より好ましくは100℃以下、特に好ましくは93℃以下であり、80℃以下であってもよい。このような範囲で低温での十分な保存安定性を得ることができる。 The melting point of the acid-modified polyolefin is preferably 40°C or higher, more preferably 50°C or higher, particularly preferably 60°C or higher, and may be 70°C or higher. Sufficient peel strength can be obtained within such a range. The melting point of the acid-modified polyolefin is preferably 110° C. or lower, more preferably 100° C. or lower, particularly preferably 93° C. or lower, and may be 80° C. or lower. Sufficient storage stability at low temperatures can be obtained within such a range.
 結晶性を有するラジカルグラフト反応可能なポリオレフィンが酸変性されると、ポリオレフィンの融点が酸変性前と比べて低下する。その理由は、酸変性部位周辺の結晶性が阻害されるためと考えられる。本発明者らが検討した結果、同じラジカルグラフト反応可能なポリオレフィンを原料に用いて、異なる条件で酸変性をして得られた酸変性ポリオレフィンを分析すると、同程度の酸価を有する酸変性ポリオレフィンでも融点が異なる場合があることが分かった。これらに、それぞれ同量の架橋剤を配合した接着剤組成物の接着特性を評価したところ、酸変性による融点降下幅が大きいものほど、熱間剥離強度が高く、耐電解液性にも優れることが判明した。さらに、これらの接着剤組成物の硬化物の動的粘弾性を測定し、ガラス転移温度以上のゴム状平坦部の貯蔵弾性率を比較すると、使用する酸変性ポリオレフィンの酸変性による融点降下幅が大きいほど、貯蔵弾性率が高い、即ち、架橋密度が高いことが分かった。架橋密度が高ければ、電解液に対する膨潤性も抑制されるため、その結果、耐電解液性が優れるものと考えられる。このような効果が得られる理由は定かではないが、酸価が同じであれば、融点降下幅が大きいほど、ポリオレフィンの結晶化が阻害されることを示しているから、融点降下幅が大きい場合には酸変性部位が比較的均一に分布していると考えられる。逆に融点降下幅が小さい場合は、酸変性部位が偏っていると考えられる。酸変性部位が偏ったものは架橋剤で架橋した場合の架橋点の分布も偏りができ、架橋密度の向上にあまり寄与しないと考えられる。従って、同じ酸価の酸変性ポリオレフィンに対し、同量の架橋剤を用いた場合には、酸変性部位がより均一であるほど、熱間剥離強度や耐電解液性が向上すると考えられる。酸変性部位を均一にして融点降下幅を大きくするには酸変性のためのラジカルグラフト反応系内を均一にすることが好ましい。ラジカルグラフト反応系内を均一にすることで、酸変性部位が均一に分布することとなる。この結果、酸変性後の融点降下幅が大きくなる。 When a radical graft-reactive polyolefin having crystallinity is acid-modified, the melting point of the polyolefin is lowered compared to before the acid-modification. The reason for this is thought to be that the crystallinity around the acid-denatured site is inhibited. As a result of investigation by the present inventors, when the same radical graftable polyolefin was used as a raw material and acid-modified under different conditions, acid-modified polyolefins obtained by acid modification were analyzed. However, it was found that the melting point may be different. When the adhesive properties of the adhesive composition containing the same amount of cross-linking agent were evaluated, it was found that the larger the melting point drop due to acid modification, the higher the hot peel strength and the better the electrolyte resistance. There was found. Furthermore, when the dynamic viscoelasticity of cured products of these adhesive compositions was measured, and the storage elastic moduli of the rubber-like flat portions above the glass transition temperature were compared, it was found that the range of melting point depression due to acid modification of the acid-modified polyolefin used was It was found that the larger the value, the higher the storage modulus, that is, the higher the crosslink density. If the crosslink density is high, the swelling property against the electrolytic solution is also suppressed, and as a result, it is considered that the electrolytic solution resistance is excellent. The reason why such an effect can be obtained is not clear. It is considered that the acid-denatured sites are relatively uniformly distributed in the Conversely, when the range of melting point depression is small, it is considered that the acid-denatured sites are biased. If the acid-modified sites are biased, the distribution of cross-linking points is also biased when cross-linked with a cross-linking agent, and it is thought that this does not contribute much to the improvement of the cross-linking density. Therefore, when the same amount of cross-linking agent is used for acid-modified polyolefin having the same acid value, it is considered that the more uniform the acid-modified sites are, the more the hot peel strength and the electrolyte resistance are improved. In order to make the acid-modified sites uniform and increase the width of the melting point depression, it is preferable to make the inside of the radical graft reaction system for acid modification uniform. By making the inside of the radical graft reaction system uniform, the acid-modified sites are uniformly distributed. As a result, the range of melting point depression after acid modification is increased.
 本実施形態において、酸変性による融点降下幅は好ましくは4.5℃以上であり、より好ましくは5℃以上、特に好ましくは6℃以上である。融点降下幅が4.5℃以上であることにより、熱間剥離強度や耐電解液性を向上させることができる。一方、融点降下幅は通常15℃以下であり、例えば10℃以下や9℃以下であってよい。融点降下幅が15℃より大きくなることはあまりないが、そのような場合はグラフト変性に伴う分子量低下が大きすぎるので、硬化後の接着剤組成物の凝集力が低下しやすい。なお、融点降下幅は酸変性前のポリオレフィンの融点と酸変性ポリオレフィンの融点の差を表す。融点は、JIS K7121に準拠して、示差走査熱量計(DSC)を用いて、昇温速度10℃/分で測定できる。 In the present embodiment, the range of melting point depression due to acid modification is preferably 4.5°C or higher, more preferably 5°C or higher, and particularly preferably 6°C or higher. When the melting point depression width is 4.5° C. or more, hot peel strength and electrolyte resistance can be improved. On the other hand, the melting point depression range is usually 15° C. or less, and may be, for example, 10° C. or less or 9° C. or less. Although the range of melting point depression is rarely larger than 15° C., in such cases, the reduction in molecular weight due to graft modification is too large, and the cohesive strength of the cured adhesive composition tends to decrease. The range of melting point depression represents the difference between the melting point of polyolefin before acid modification and the melting point of acid-modified polyolefin. The melting point can be measured at a heating rate of 10°C/min using a differential scanning calorimeter (DSC) in accordance with JIS K7121.
 酸変性ポリオレフィンのメルトフローレートは、好ましくは50g/10min以上、より好ましくは100g/10min以上である。酸変性ポリオレフィンのメルトフローレートは、好ましくは1000g/10min以下、より好ましくは800g/10min以下である。メルトフローレートを50g/10min以上とすることで、接着剤に配合した時の溶液粘度が低減され、塗工速度を向上できる。一方で、メルトフローレートを1000g/10min以下とすることで、熱間剥離強度をさらに改善できる。メルトフローレートは、JIS K7210に準拠して、試験温度190℃、試験荷重2.17kgで測定できる。 The melt flow rate of the acid-modified polyolefin is preferably 50 g/10 min or more, more preferably 100 g/10 min or more. The melt flow rate of the acid-modified polyolefin is preferably 1000 g/10 min or less, more preferably 800 g/10 min or less. By setting the melt flow rate to 50 g/10 min or more, the viscosity of the solution when blended in the adhesive is reduced, and the coating speed can be improved. On the other hand, by setting the melt flow rate to 1000 g/10 min or less, the hot peel strength can be further improved. The melt flow rate can be measured at a test temperature of 190°C and a test load of 2.17 kg according to JIS K7210.
 酸変性ポリオレフィンの重量平均分子量は、例えば15,000~200,000の範囲内であってよい。剥離強度及び耐電解液性を向上できる点で、酸変性ポリオレフィンの重量平均分子量は15,000以上が好ましく、30,000以上がより好ましい。また、有機溶剤への溶解性を向上できる点で、酸変性ポリオレフィンの重量平均分子量は200,000以下が好ましく、150,000以下がより好ましい。重量平均分子量はゲルパーミエーションクロマトグラフィーにより測定した分子量をポリスチレン換算した値である。 The weight average molecular weight of the acid-modified polyolefin may be, for example, within the range of 15,000 to 200,000. The weight-average molecular weight of the acid-modified polyolefin is preferably 15,000 or more, more preferably 30,000 or more, in terms of improving the peel strength and electrolyte resistance. Moreover, the weight-average molecular weight of the acid-modified polyolefin is preferably 200,000 or less, more preferably 150,000 or less, in terms of improving the solubility in organic solvents. The weight average molecular weight is a value obtained by converting the molecular weight measured by gel permeation chromatography into polystyrene.
 接着剤組成物における酸変性ポリオレフィンの含有量は、熱間剥離強度及び耐電解液性に優れる点で、接着剤組成物の固形分の100重量%に対して、50~95重量%であることが好ましく、より好ましくは60~90重量%である。 The content of the acid-modified polyolefin in the adhesive composition is 50 to 95% by weight with respect to 100% by weight of the solid content of the adhesive composition in terms of excellent hot peel strength and electrolyte resistance. is preferred, more preferably 60 to 90% by weight.
 酸変性ポリオレフィンは、ラジカルグラフト反応可能なポリオレフィン及び不飽和カルボン酸無水物をラジカル開始剤、特には有機過酸化物、とともに混合し、加熱することで製造できる。より詳細には、酸変性ポリオレフィンの製造方法は、2種の方法に分類される。1つは、熱溶融したラジカルグラフト反応可能なポリオレフィン中にその他の反応成分を混合し、反応させる方法(熱溶融法)である。他方は、溶剤を使用して、溶剤中にラジカルグラフト反応可能なポリオレフィンを含む反応成分を混合、溶解し、反応させる方法(溶液法)である。熱溶融法では、連続的に生産しやすく製造コストを抑制できる。溶液法では、ポリオレフィンをより均一に酸変性できる。本実施形態では、熱溶融法、溶液法の何れの製法で製造された酸変性ポリオレフィンであっても使用できるが、それらの中でも酸価及び酸変性部の分散性をより向上可能な方法が好ましい。このような酸変性部の分散性が高い酸変性ポリオレフィンは上で説明したように低極性溶剤に対する耐久性が向上する。 The acid-modified polyolefin can be produced by mixing a radical graftable polyolefin and an unsaturated carboxylic acid anhydride with a radical initiator, especially an organic peroxide, and heating the mixture. More specifically, methods for producing acid-modified polyolefins are classified into two methods. One is a method of mixing and reacting other reactive components in a heat-melted polyolefin capable of undergoing a radical graft reaction (heat melting method). The other is a method (solution method) that uses a solvent to mix, dissolve, and react reaction components containing a polyolefin capable of undergoing a radical graft reaction in the solvent. The hot-melt method facilitates continuous production and can reduce manufacturing costs. In the solution method, the polyolefin can be acid-modified more uniformly. In the present embodiment, an acid-modified polyolefin produced by either a hot melt method or a solution method can be used, but among them, a method capable of further improving the acid value and the dispersibility of the acid-modified portion is preferable. . Such an acid-modified polyolefin having high dispersibility of acid-modified moieties has improved durability against low-polarity solvents as described above.
 有機過酸化物は、熱溶融法では溶融したラジカルグラフト反応可能なポリオレフィンとの相溶性が高いものが好ましい。このような有機過酸化物を用いることで、熱溶融法においてもラジカルグラフト反応系内を均一に近づけることができ、酸変性後の融点降下幅を大きくできる。熱溶融したラジカルグラフト反応可能なポリオレフィンへの溶解性を高めるために、有機過酸化物から生成するラジカル分子のラジカル1個当たりの最大炭素数が大きいことが好ましい。ここで、「有機過酸化物から生成するラジカル分子のラジカル1個当たりの最大炭素数」とは、有機過酸化物が分解して生成するラジカル分子に含まれる炭素と水素から成る炭素鎖の炭素数を、そのラジカル分子が有するラジカル数で割った値の中で最大となる値である(以降では、これを単に「最大炭素数」と略す場合もある)。例えば、下図のシクロヘキサン環を含むラジカル分子が生成する場合、炭素鎖の炭素数は6であり、ラジカル分子中のラジカル数は2であり、このラジカル分子のラジカル1個当たりの最大炭素数は3と計算される。 The organic peroxide preferably has high compatibility with the molten polyolefin capable of undergoing a radical graft reaction in the heat melting method. By using such an organic peroxide, the inside of the radical graft reaction system can be made nearly uniform even in the heat melting method, and the range of melting point depression after acid modification can be increased. In order to increase the solubility in the heat-melted polyolefin capable of radical graft reaction, it is preferable that the maximum number of carbon atoms per radical of the radical molecule generated from the organic peroxide is large. Here, the term "maximum number of carbon atoms per radical in a radical molecule generated from an organic peroxide" refers to a carbon chain composed of carbon and hydrogen contained in a radical molecule generated by decomposition of an organic peroxide. number divided by the number of radicals possessed by the radical molecule. For example, when a radical molecule containing a cyclohexane ring shown in the figure below is generated, the number of carbon atoms in the carbon chain is 6, the number of radicals in the radical molecule is 2, and the maximum number of carbon atoms per radical in this radical molecule is 3. is calculated as
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 有機過酸化物から生成するラジカル分子のラジカル1個当たりの最大炭素数の計算に用いられる炭素鎖は、ラジカル分子中のどの部分を用いてもよいが、同一の炭素を2回以上経由して形成される炭素鎖であってはならない。例えば、下図の環式基を含むラジカル分子の場合、このような炭素鎖として、以下に示される3種の炭素鎖(A)~(C)(それぞれ点線で囲まれる部分)を計算に使用できる。炭素鎖(A)の炭素数は9、炭素鎖(B)の炭素数は7、炭素鎖(C)の炭素数は5であり、炭素鎖(A)が最も大きな炭素数を有する。このラジカル分子のラジカル数は1であるから、このラジカル分子のラジカル1個当たりの最大炭素数は9と計算される。 The carbon chain used to calculate the maximum number of carbon atoms per radical of a radical molecule generated from an organic peroxide may be any part of the radical molecule, but the same carbon may be used two or more times. It must not be a carbon chain formed. For example, in the case of a radical molecule containing a cyclic group in the figure below, as such carbon chains, the following three types of carbon chains (A) to (C) (parts surrounded by dotted lines) can be used for calculation. . Carbon chain (A) has 9 carbon atoms, carbon chain (B) has 7 carbon atoms, and carbon chain (C) has 5 carbon atoms, and carbon chain (A) has the largest carbon number. Since the number of radicals in this radical molecule is 1, the maximum number of carbon atoms per radical in this radical molecule is calculated to be 9.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 有機過酸化物からは炭素鎖を有するラジカル分子は複数生成し得る。炭素鎖を有するラジカル分子が複数生成する場合、ラジカル1個当たりの最大炭素数が最も大きいラジカル分子の最大炭素数を採用する。例えば下図のt-ブチルパーオキシ-2-エチルヘキシルモノカーボネートからは2つのラジカル分子が生成するが、一方のラジカル分子は点線で囲まれる炭素鎖を有し、最大炭素数は7である。他方のラジカル分子が有するt-ブチル基の最大炭素数は3である。それぞれのラジカル分子のラジカル数は1である。従って、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネートから生成するラジカル分子のラジカル1個当たりの最大炭素数は7となる。 Multiple radical molecules with carbon chains can be generated from organic peroxides. When a plurality of radical molecules having carbon chains are generated, the maximum carbon number of the radical molecule having the largest maximum carbon number per radical is adopted. For example, t-butylperoxy-2-ethylhexyl monocarbonate shown in the figure below produces two radical molecules, one of which has a carbon chain surrounded by a dotted line and has a maximum of seven carbon atoms. The maximum number of carbon atoms in the t-butyl group possessed by the other radical molecule is 3. Each radical molecule has one radical. Therefore, the maximum number of carbon atoms per radical of radical molecules generated from t-butylperoxy-2-ethylhexyl monocarbonate is seven.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 有機過酸化物から生成するラジカル分子のラジカル1個当たりの最大炭素数は、一般的には3以上、好ましくは5以上であり、例えば6以上や7以上であってよい。有機過酸化物から生成するラジカル分子のラジカル1個当たりの最大炭素数の上限は特には限定されないが、最大炭素数は例えば30以下や20以下であってよい。 The maximum number of carbon atoms per radical of the radical molecule generated from the organic peroxide is generally 3 or more, preferably 5 or more, and may be, for example, 6 or more or 7 or more. Although the upper limit of the maximum number of carbon atoms per radical of the radical molecule generated from the organic peroxide is not particularly limited, the maximum number of carbon atoms may be, for example, 30 or less or 20 or less.
 有機過酸化物の炭素鎖はベンゼン環やシクロヘキサン環等の環式基を含んでもよいが、好ましくは直鎖または分岐鎖のアルキル基である。有機過酸化物から生成するラジカル分子に含まれる炭素の総数は、一般的には3以上、好ましくは5以上であり、例えば6以上や7以上であってよい。アルキル基の炭素数の上限は特には限定されないが、アルキル基の炭素数は例えば30以下や20以下であってよい。 The carbon chain of the organic peroxide may contain a cyclic group such as a benzene ring or a cyclohexane ring, but is preferably a linear or branched alkyl group. The total number of carbon atoms contained in the radical molecule generated from the organic peroxide is generally 3 or more, preferably 5 or more, and may be, for example, 6 or more or 7 or more. Although the upper limit of the number of carbon atoms in the alkyl group is not particularly limited, the number of carbon atoms in the alkyl group may be, for example, 30 or less or 20 or less.
 有機過酸化物は、溶液法では溶剤中に均一に溶解可能なものが好ましい。 The organic peroxide is preferably one that can be uniformly dissolved in a solvent in the solution method.
 熱溶融法、溶液法の何れの製法においても、有機過酸化物の1時間半減期温度は、好ましくは100℃以上、より好ましくは110℃以上である。このような範囲の1時間半減期温度の有機過酸化物を使用することで、ポリオレフィンの酸変性度が均一となる。加えて、酸変性ポリオレフィンの酸価を高めることができる。有機過酸化物の1時間半減期温度は、特に限定されないが、例えば300℃以下や200℃以下であってよい。 In either the heat melting method or the solution method, the one-hour half-life temperature of the organic peroxide is preferably 100°C or higher, more preferably 110°C or higher. By using an organic peroxide having a 1-hour half-life temperature within such a range, the degree of acid modification of the polyolefin becomes uniform. Additionally, the acid value of the acid-modified polyolefin can be increased. The one-hour half-life temperature of the organic peroxide is not particularly limited, but may be, for example, 300° C. or lower or 200° C. or lower.
 有機過酸化物の具体例としては、パーオキシケタール、ジアルキルパーオキサイド、パーオキシエステル等が挙げられる。 Specific examples of organic peroxides include peroxyketals, dialkyl peroxides, and peroxyesters.
 パーオキシケタールの具体例としては、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-(t-ブチルパーオキシ)シクロヘキシル)プロパン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、及びn-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等が挙げられる。 Specific examples of peroxyketals include 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t-butylperoxy)butane, 2,2-bis(4,4-di-( t-butylperoxy)cyclohexyl)propane, 1,1-di(t-hexylperoxy)cyclohexane, and n-butyl-4,4-di(t-butylperoxy)valerate, 1,1-di(t -hexylperoxy)-3,3,5-trimethylcyclohexane and the like.
 ジアルキルパーオキサイドの具体例としては、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、及びジ-t-ヘキシルパーオキサイド等が挙げられる。 Specific examples of dialkyl peroxide include t-butyl cumyl peroxide, di-t-butyl peroxide, and di-t-hexyl peroxide.
 パーオキシエステルの具体例としては、例えば、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-3-メチルベンゾエート、及びt-ブチル-パーオキシベンゾエート等が挙げられる。 Specific examples of peroxy esters include t-butyl peroxyneodecanoate, t-butyl peroxylaurate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-hexylper Oxyisopropyl monocarbonate, t-butylperoxyisopropylmonocarbonate, t-butylperoxy-2-ethylhexylmonocarbonate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxyacetate , t-hexyl peroxybenzoate, t-butyl peroxy-3-methylbenzoate, and t-butyl-peroxybenzoate.
 有機過酸化物は、通常ラジカルグラフト反応後には分解するが、有機過酸化物から生じる一部のラジカル分子は分解せずに、酸変性ポリオレフィンの主鎖や不飽和カルボン酸無水物より形成されるグラフト部に付加する場合がある。このため、酸変性ポリオレフィンは、有機過酸化物に由来する炭化水素部分を含んでいてもよい。有機過酸化物に由来する炭化水素部分は、-O-、-CO-、-COO-、-OCO-、-OCOO-等の連結基を介して酸変性ポリオレフィンに結合してもよい。 Organic peroxides usually decompose after a radical graft reaction, but some radical molecules generated from organic peroxides do not decompose and are formed from the main chain of acid-modified polyolefin and unsaturated carboxylic acid anhydride. It may be added to the graft part. Thus, acid-modified polyolefins may contain hydrocarbon moieties derived from organic peroxides. A hydrocarbon moiety derived from an organic peroxide may be attached to the acid-modified polyolefin via a linking group such as -O-, -CO-, -COO-, -OCO-, -OCOO-.
 酸変性に用いた不飽和カルボン酸無水物の一部が未反応である場合は、必要に応じて、加熱留去及び再沈殿精製等の公知の方法により除去してもよい。 If part of the unsaturated carboxylic acid anhydride used for acid modification is unreacted, it may be removed by known methods such as thermal distillation and reprecipitation purification, if necessary.
 酸変性ポリオレフィンはアセトンに抽出可能な成分(以降、「アセトン可溶部」と記載する)を含有してもよい。本発明の一実施形態においては、酸変性ポリオレフィンはアセトン可溶部を2重量%超含有してよく、本発明の他の実施形態においては、アセトン可溶部を3重量%含有してもよい。 The acid-modified polyolefin may contain a component that can be extracted in acetone (hereinafter referred to as "acetone-soluble part"). In one embodiment of the present invention, the acid-modified polyolefin may contain more than 2 wt% acetone solubles, and in another embodiment of the present invention may contain 3 wt% acetone solubles. .
2.架橋剤
 架橋剤は酸変性ポリオレフィンにグラフトされた酸無水物構造と結合可能な官能基を2個以上有する。具体的な架橋剤としては多官能イソシアネート化合物が挙げられる。また、酸変性ポリオレフィン中の酸無水物基と反応して架橋を形成できる、多官能エポキシ化合物、多官能カルボジイミド化合物、多官能オキサゾリン化合物、多官能アジリジン化合物等も使用できる。なお、溶液の粘度調整、硬化物の弾性率や伸びを調整する等の目的で、これらの単官能化合物を併用することもできる。
2. Cross-linking agent The cross-linking agent has two or more functional groups capable of bonding with the acid anhydride structure grafted onto the acid-modified polyolefin. Specific cross-linking agents include polyfunctional isocyanate compounds. Also usable are polyfunctional epoxy compounds, polyfunctional carbodiimide compounds, polyfunctional oxazoline compounds, polyfunctional aziridine compounds, etc., which can react with acid anhydride groups in acid-modified polyolefins to form crosslinks. These monofunctional compounds can also be used in combination for the purpose of adjusting the viscosity of the solution and adjusting the elastic modulus and elongation of the cured product.
 多官能イソシアネート化合物は、1分子中に2個以上のイソシアネート基を有するものであれば、特に限定されず、芳香族系、脂肪族系、脂環族系の各種イソシアネート化合物、さらには、これらのイソシアネート化合物の変性物を用いることができる。多官能イソシアネート化合物としては、例えば、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルメタン水素添加物のジイソシアネート、キシリレンジイソシアネート、キシリレン水素添加物のジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、及びこれらのビウレット体、イソシアヌレート体、アダクト体、アロファネート体等が挙げられる。ビウレット体、イソシアヌレート体、アダクト体等は分子量が大きくなるため、接着剤組成物を薄くコーティングしてから乾燥炉で乾燥する場合等において、架橋剤が揮散しにくく好ましい。これらの多官能イソシアネート化合物は、1種のみ用いてもよいし、2種以上を併用してもよい。 The polyfunctional isocyanate compound is not particularly limited as long as it has two or more isocyanate groups in one molecule, and various aromatic, aliphatic, and alicyclic isocyanate compounds, and further these A modified isocyanate compound can be used. Polyfunctional isocyanate compounds include, for example, pentamethylene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, diphenylmethane hydrogenated diisocyanate, xylylene diisocyanate, xylylene hydrogenated diisocyanate, isophorone diisocyanate, norbornane diisocyanate, and biuret forms thereof, isocyanurate, adduct, allophanate and the like. Since biuret, isocyanurate, adduct, etc. have a large molecular weight, they are preferable because the cross-linking agent is less likely to volatilize when the adhesive composition is thinly coated and then dried in a drying oven. These polyfunctional isocyanate compounds may be used alone or in combination of two or more.
 接着剤組成物中の架橋剤の配合量は、架橋剤中の官能基のモル数と酸変性ポリオレフィン中のカルボキシ基のモル数の比率(架橋剤中の官能基モル数/酸変性ポリオレフィン中のカルボキシ基モル数)より決定できる。架橋剤中の官能基は、酸変性ポリオレフィンと結合形成可能な官能基である。酸変性ポリオレフィン中のカルボキシ基のモル数は、酸変性ポリオレフィン中に存在する酸無水物構造(-CO-O-CO-)をそれぞれ2つのカルボキシ基とみなした場合のカルボキシ基のモル数である。接着剤組成物の熱間剥離強度を改善するために、架橋剤中の官能基のモル数と酸変性ポリオレフィン中のカルボキシ基のモル数の比率は、好ましくは0.3以上、より好ましくは0.5以上である。アルミニウム等金属との接着強度、特には熱間剥離強度の改善のために、架橋剤中の官能基のモル数と酸変性ポリオレフィン中のカルボキシ基のモル数の比率は、好ましくは15以下、より好ましくは10以下である。架橋剤が多官能イソシアネート化合物である場合、架橋剤中の官能基はイソシアネート基(-NCO)である。接着剤組成物中においてイソシアネート基のモル数とカルボキシ基のモル数の比率は、好ましくは0.3以上、より好ましくは0.5以上である。接着剤組成物中においてイソシアネート基のモル数とカルボキシ基のモル数の比率は、好ましくは15以下、より好ましくは10以下である。なお、カルボキシ基のモル数は酸価から求めることができ、本明細書の実施例において示されるように標準サンプルの赤外吸収スペクトルから作成した検量線を使用することで確認できる。 The amount of the cross-linking agent in the adhesive composition is the ratio of the number of moles of functional groups in the cross-linking agent to the number of moles of carboxyl groups in the acid-modified polyolefin (the number of moles of functional groups in the cross-linking agent/the number of moles of the acid-modified polyolefin). number of moles of carboxy groups). The functional group in the cross-linking agent is a functional group capable of forming a bond with the acid-modified polyolefin. The number of moles of carboxy groups in the acid-modified polyolefin is the number of moles of carboxy groups when each acid anhydride structure (-CO-O-CO-) present in the acid-modified polyolefin is regarded as two carboxy groups. . In order to improve the hot peel strength of the adhesive composition, the ratio of the number of moles of functional groups in the cross-linking agent to the number of moles of carboxyl groups in the acid-modified polyolefin is preferably 0.3 or more, more preferably 0. .5 or more. In order to improve adhesive strength with metals such as aluminum, particularly hot peel strength, the ratio of the number of moles of functional groups in the cross-linking agent to the number of moles of carboxyl groups in the acid-modified polyolefin is preferably 15 or less, more It is preferably 10 or less. When the cross-linking agent is a polyfunctional isocyanate compound, the functional group in the cross-linking agent is an isocyanate group (--NCO). The ratio of the number of moles of isocyanate groups to the number of moles of carboxy groups in the adhesive composition is preferably 0.3 or more, more preferably 0.5 or more. The ratio of the number of moles of isocyanate groups to the number of moles of carboxy groups in the adhesive composition is preferably 15 or less, more preferably 10 or less. The number of moles of carboxy groups can be obtained from the acid value, and can be confirmed by using a calibration curve prepared from the infrared absorption spectrum of a standard sample as shown in the examples of the present specification.
 接着剤組成物中の架橋剤の配合量は、酸変性ポリオレフィンと架橋剤の総重量における架橋剤の重量比率(以後、架橋剤含有率とも言う)によっても決定できる。ここで、架橋剤含有率は、架橋剤含有率(重量%)=架橋剤/(酸変性ポリオレフィン+架橋剤)×100で計算される。架橋剤含有率は、好ましくは5重量%以上、より好ましくは10重量%以上、特に好ましくは20重量%以上である。架橋剤含有率は、好ましくは60重量%以下、より好ましくは40重量%以下である。 The blending amount of the cross-linking agent in the adhesive composition can also be determined by the weight ratio of the cross-linking agent to the total weight of the acid-modified polyolefin and the cross-linking agent (hereinafter also referred to as the cross-linking agent content). Here, the cross-linking agent content is calculated by: cross-linking agent content (% by weight)=cross-linking agent/(acid-modified polyolefin+cross-linking agent)×100. The cross-linking agent content is preferably 5% by weight or more, more preferably 10% by weight or more, and particularly preferably 20% by weight or more. The cross-linking agent content is preferably 60% by weight or less, more preferably 40% by weight or less.
3.溶剤
 接着剤組成物は酸変性ポリオレフィンを溶解する溶剤を含有してもよい。溶剤の具体例としてはトルエン、キシレン等の芳香族系有機溶剤、n-ヘキサン等の脂肪族系有機溶剤、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環族系有機溶剤、アセトン、メチルエチルケトン等のケトン系有機溶剤、メタノール、エタノール等のアルコール系有機溶剤、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、及びプロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコール-t-ブチルエーテル等のプロピレングリコールエーテル系有機溶剤等が挙げられる。
3. Solvent The adhesive composition may contain a solvent that dissolves the acid-modified polyolefin. Specific examples of the solvent include aromatic organic solvents such as toluene and xylene, aliphatic organic solvents such as n-hexane, alicyclic organic solvents such as cyclohexane, methylcyclohexane and ethylcyclohexane, and ketones such as acetone and methyl ethyl ketone. alcohol-based organic solvents such as methanol and ethanol; ester-based organic solvents such as ethyl acetate and butyl acetate; and propylene glycol ether-based organic solvents such as propylene glycol methyl ether, propylene glycol ethyl ether and propylene glycol-t-butyl ether. A solvent etc. are mentioned.
 溶剤としては、接着剤組成物の加熱等により揮発させ、除去することが容易な有機溶剤が好ましく、特に脂環族系有機溶剤と、エステル系又はケトン系有機溶剤との混合溶剤を用いることが好ましい。 As the solvent, an organic solvent that can be easily volatilized and removed by heating the adhesive composition or the like is preferable, and in particular, a mixed solvent of an alicyclic organic solvent and an ester or ketone organic solvent can be used. preferable.
 溶剤は、1種のみを使用しても、2種以上を併用しても良い。 Only one type of solvent may be used, or two or more types may be used in combination.
 接着剤組成物における溶剤の量は特には限定されず、酸変性ポリオレフィンの種類に応じて適宜決定してよい。酸変性ポリオレフィンと溶剤の合計を100重量%とした場合、酸変性ポリオレフィンの量は、好ましくは5~25重量%、より好ましくは10~20重量%である。溶剤がこのような含有量で接着剤組成物中に存在すれば、接着剤組成物を被着体に塗布し易く、作業性に優れる。 The amount of solvent in the adhesive composition is not particularly limited, and may be determined as appropriate according to the type of acid-modified polyolefin. The amount of acid-modified polyolefin is preferably 5 to 25% by weight, more preferably 10 to 20% by weight, when the total of acid-modified polyolefin and solvent is 100% by weight. When the solvent is present in the adhesive composition at such a content, the adhesive composition can be easily applied to the adherend, resulting in excellent workability.
4.追加の成分
 接着剤組成物は、目的に応じてさらに追加の成分を含んでもよい。追加の成分としては、具体的には、硬化触媒、スチレン系熱可塑性エラストマー、粘着付与剤、酸化防止剤、ヒンダードアミン系光安定剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、分散剤、密着性付与剤、消泡剤、レベリング剤、可塑剤、滑剤、結晶核剤及び充填剤等が挙げられる。
4. Additional Components The adhesive composition may further contain additional components depending on the purpose. Specific examples of additional components include curing catalysts, styrene thermoplastic elastomers, tackifiers, antioxidants, hindered amine light stabilizers, ultraviolet absorbers, antistatic agents, flame retardants, colorants, and dispersants. , adhesion imparting agents, antifoaming agents, leveling agents, plasticizers, lubricants, crystal nucleating agents and fillers.
 以下、これらの成分について説明する。なお、追加の成分は、任意の成分であり、使用しなくてもよく、1種のみを使用しても、2種以上を併用してもよい。 These ingredients are described below. In addition, an additional component is an arbitrary component, and may not be used, and may use only 1 type, or may use 2 or more types together.
 硬化触媒は、酸変性ポリオレフィンと架橋剤との架橋反応を促進し、優れた接着性能を得る目的で配合することができる。硬化触媒としては、第3級アミン、並びに金属のカルボン酸塩、錯塩及び有機金属等が好ましい。 A curing catalyst can be added for the purpose of promoting the cross-linking reaction between the acid-modified polyolefin and the cross-linking agent to obtain excellent adhesion performance. Preferred curing catalysts include tertiary amines, metal carboxylates, complex salts and organic metals.
 第3級アミンの具体例としては、テトラメチルエチレンジアミン等のテトラアルキルエチレンジアミン;ジメチルベンジルアミン等のN,N’-ジアルキルベンジルアミン;トリエチレンジアミン、ペンタメチルジエチレントリアミン、N-エチルモルフィリン、N-メチルモルフィリン、1-メチル-4-ジメチルアミンエチルピペラジン及び1,8-ジアザビシクロ[5.4.0]ウンデセン-7等が挙げられる。 Specific examples of tertiary amines include tetraalkylethylenediamines such as tetramethylethylenediamine; N,N'-dialkylbenzylamines such as dimethylbenzylamine; triethylenediamine, pentamethyldiethylenetriamine, N-ethylmorphyline, and N-methylmol. Phyllin, 1-methyl-4-dimethylamineethylpiperazine, 1,8-diazabicyclo[5.4.0]undecene-7 and the like.
 金属のカルボン酸塩、錯塩及びとしては、金属酢酸塩、金属ヘキサン酸塩、金属2-エチルヘキサン酸塩等の金属オクタン酸塩、金属ネオデカン酸塩、金属ラウリン酸塩、金属ステアリン酸塩、金属オレイン酸塩等の金属カルボン酸塩、金属アセチルアセトナート等の金属錯塩が挙げられる。有機金属としては、炭素と結合を有する金属化合物であれば特に限定されるものではないが、例えば有機金属酸化物が挙げられる。前記金属としては、周期表の第7族、第12族、及び、第14族の金属よりなる群から選ばれる1種以上の金属であることが好ましい。これらは1種単独で用いても、2種以上を併用してもよい。これらのうち、本発明の接着剤組成物により形成される接着剤層が電解液に接した場合の接着性の観点から、スズ、亜鉛及びマンガンのうちのいずれかのカルボン酸塩、アセチルアセトナート及び有機金属がより好ましい。具体的には、ネオデカン酸亜鉛、ジラウリン酸ジブチルスズ、ジラウリン酸ジオクチルスズ、二酢酸ジオクチルスズ、マレイン酸ジブチルスズ、ジブチルスズオキシド、ジオクチルスズオキシド、ビス(ネオデカン酸)亜鉛、ビス(2-エチルヘキサン酸)亜鉛、ジステアリン酸亜鉛、亜鉛(II)アセチルアセトナート、ビス(2-エチルヘキサン酸)マンガン等が挙げられる。これらのうち、前記接着剤層の接着性、耐電解液性及び耐熱性のバランスの観点から、ジラウリン酸ジブチルスズ、ジラウリン酸ジオクチルスズ、ジオクチルスズオキシドがより好ましい。 Metal carboxylates, complex salts and metal octanoates such as metal acetates, metal hexanoates, metal 2-ethylhexanoates, metal neodecanoates, metal laurates, metal stearates, metal Examples thereof include metal carboxylates such as oleates and metal complex salts such as metal acetylacetonates. The organic metal is not particularly limited as long as it is a metal compound having a bond with carbon, and examples thereof include organic metal oxides. The metal is preferably one or more metals selected from the group consisting of metals of groups 7, 12 and 14 of the periodic table. These may be used individually by 1 type, or may use 2 or more types together. Among these, from the viewpoint of adhesion when the adhesive layer formed by the adhesive composition of the present invention is in contact with the electrolytic solution, the carboxylate of any of tin, zinc and manganese, and acetylacetonate and organometallics are more preferred. Specifically, zinc neodecanoate, dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin diacetate, dibutyltin maleate, dibutyltin oxide, dioctyltin oxide, zinc bis(neodecanoate), zinc bis(2-ethylhexanoate) , zinc distearate, zinc (II) acetylacetonate, manganese bis(2-ethylhexanoate), and the like. Among these, dibutyltin dilaurate, dioctyltin dilaurate, and dioctyltin oxide are more preferable from the viewpoint of the balance of adhesiveness, electrolyte resistance, and heat resistance of the adhesive layer.
 硬化触媒として、有機スズ化合物と第3級アミンとを併用することもできる。 An organic tin compound and a tertiary amine can be used together as a curing catalyst.
 硬化触媒の含有割合は、酸変性ポリオレフィンと架橋剤の合計量100重量部に対して0.001~5重量部が好ましい。硬化触媒の割合を0.001重量部以上にすることで触媒効果が充分に得られやすく、硬化触媒の割合を5重量部以下とすることで接着剤組成物の保存安定性を確保できる。 The content of the curing catalyst is preferably 0.001 to 5 parts by weight per 100 parts by weight of the total amount of the acid-modified polyolefin and the cross-linking agent. By setting the ratio of the curing catalyst to 0.001 parts by weight or more, a sufficient catalytic effect can be easily obtained, and by setting the ratio of the curing catalyst to 5 parts by weight or less, the storage stability of the adhesive composition can be ensured.
 スチレン系熱可塑性エラストマーは、接着力を向上する目的で配合することができる。 A styrene-based thermoplastic elastomer can be blended for the purpose of improving adhesive strength.
 スチレン系熱可塑性エラストマーの具体例としては、スチレン-ブタジエン共重合体、エポキシ変性スチレン-ブタジエン共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-エチレン/プロピレン-スチレンブロック共重合体(以下、「SEPS」という)、スチレン-エチレン/ブチレン-スチレンブロック共重合体(以下、「SEBS」という)、スチレン-イソプレン/ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体等のスチレン系樹脂等が挙げられ、酸性基及び酸無水物基を有しないものであっても酸性基及び/又は酸無水物基を有するものであっても良く、アミノ基を有するものであってもよい。 Specific examples of styrene-based thermoplastic elastomers include styrene-butadiene copolymers, epoxy-modified styrene-butadiene copolymers, styrene-butadiene-styrene block copolymers, and styrene-ethylene/propylene-styrene block copolymers (hereinafter referred to as , referred to as "SEPS"), styrene-ethylene/butylene-styrene block copolymer (hereinafter referred to as "SEBS"), styrene-isoprene/butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, etc. Styrene-based resins, etc., may be those having no acidic groups and acid anhydride groups, those having acidic groups and/or acid anhydride groups, and those having amino groups. good.
 粘着付与剤としては、公知のものを使用することができ、ポリテルペン系樹脂、ロジン系樹脂、脂肪族系石油樹脂、脂環族系石油樹脂、共重合系石油樹脂及び水添石油樹脂等が挙げられる。 Known tackifiers can be used, including polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymer petroleum resins and hydrogenated petroleum resins. be done.
 粘着付与剤の含有量としては、耐温水性に優れるという点で、接着剤組成物の100重量%に対して、1~20重量%であることが好ましく、1~10重量%であることがより好ましい。 The content of the tackifier is preferably 1 to 20% by weight, preferably 1 to 10% by weight, based on 100% by weight of the adhesive composition, in terms of excellent hot water resistance. more preferred.
5.接着剤組成物
 本発明の接着剤組成物は、硬化反応させて得られる硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬したときに、硬化物から溶出する溶出物の量、硬化物の膨潤率等が以下に記載する範囲内となり得る。ポリオレフィンに親和性の高い溶剤(特には電解液溶剤)に対する耐久性が低くなる要因は、酸変性度が低く、硬化物に化学結合によって結合できなかったポリオレフィンが溶出することと、これらの溶剤によって硬化物が著しく膨潤することにある。溶出物の量を低減させること又は膨潤率を低減させることによって、ポリオレフィンに親和性の高い溶剤(特には電解液溶剤)に対する耐久性を大きく向上させることができる。なお、溶出物の量や硬化物の膨潤率は後述する実施例に記載の手順で確認される。ここで、硬化物には溶媒等の低沸点成分を乾燥除去したものを用いる。
5. Adhesive Composition When the adhesive composition of the present invention is immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80° C. for 5 hours, The amount of eluted matter eluted from the cured product, the swelling rate of the cured product, and the like can fall within the ranges described below. The reasons for the low durability against solvents that have a high affinity for polyolefin (especially electrolyte solvents) are that the degree of acid denaturation is low, and polyolefin that cannot be chemically bonded to the cured product is eluted. The problem is that the cured product swells significantly. By reducing the amount of extractables or reducing the swelling ratio, durability against solvents that have a high affinity for polyolefin (especially electrolyte solvents) can be greatly improved. The amount of eluted matter and the swelling ratio of the cured product are confirmed by the procedure described in Examples below. Here, the cured product is obtained by removing low boiling point components such as solvent by drying.
 溶解度パラメータが7~10(cal/cm1/2の溶剤としては特に限定されるものではないが、例えば、ジメチルカーボネート(9.9)、ジエチルカーボネート(8.8)、プロピオン酸エチル(8.4)、プロピオン酸プロピル(8.5)等のリチウムイオン二次電池の電解液に使用される溶剤、及びトルエン(8.9)、シクロヘキサン(8.2)、メチルシクロヘキサン(7.8)、キシレン(8.8)、ガソリン(7.0)、n-ヘキサン(7.3)等のその他の溶剤等が挙げられる。ここで、括弧内の数値は溶剤の溶解度パラメータであり、単位は(cal/cm1/2である。 Solvents with a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 are not particularly limited, but examples include dimethyl carbonate (9.9), diethyl carbonate (8.8), ethyl propionate ( 8.4), propyl propionate (8.5), solvents used in lithium ion secondary battery electrolytes, and toluene (8.9), cyclohexane (8.2), methylcyclohexane (7.8 ), xylene (8.8), gasoline (7.0), n-hexane (7.3) and other solvents. Here, the numerical value in parenthesis is the solubility parameter of the solvent, and the unit is (cal/cm 3 ) 1/2 .
 溶解度パラメータ(δ)は、次式によって計算される。
 溶解度パラメータδ={(△H-RT)/V}1/2
  δ:溶解度パラメータ((cal/cm1/2
  △H:モル蒸発熱(cal/mol)
  R:気体定数(1.9871cal/mol・K)
  T:絶対温度(K)
  V:モル体積(ml/mol)
The solubility parameter (δ) is calculated by the following formula.
Solubility parameter δ = {(ΔH−RT)/V} 1/2
δ: solubility parameter ((cal/cm 3 ) 1/2 )
ΔH: molar heat of vaporization (cal/mol)
R: gas constant (1.9871 cal/mol K)
T: absolute temperature (K)
V: molar volume (ml/mol)
 また、分子を構成する原子団から溶解度パラメータを計算する方法も提案されており、Fedors法またはHildebrand法を用いて算出したものを用いてもよい。 A method of calculating the solubility parameter from the atomic groups constituting the molecule has also been proposed, and one calculated using the Fedors method or the Hildebrand method may be used.
 以降において、記載「溶解度パラメータが7~10(cal/cm1/2の溶剤」を用いて本発明を特定するが、記載「溶解度パラメータが7~10(cal/cm1/2の溶剤」は、上で具体的に列記した溶剤のような、同様の範囲内の溶解度パラメータを有する特定の溶剤に置き換えてもよい。 Hereinafter, the invention will be specified using the statement “solvents with a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 ”, but the statement “solvents with a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 "solvent" may be replaced by a particular solvent having a solubility parameter within the same range, such as the solvents specifically listed above.
 以降において、記載「本発明の接着剤組成物を硬化反応させて得られる硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させたとき、硬化物から溶剤に溶出する溶出物」を単に「溶出物」と略して記載する場合がある。この場合においても溶剤は同様の範囲内の溶解度パラメータを有する特定の溶剤に置き換えてもよい。 Hereinafter, the description “When the cured product obtained by curing reaction of the adhesive composition of the present invention is immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80°C for 5 hours, In some cases, the eluted matter eluted from the cured product into the solvent is abbreviated as ``eluted matter''. Again, the solvent may be replaced by a particular solvent having a solubility parameter within a similar range.
 本発明の接着剤組成物を硬化反応させて得られる硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させたとき、硬化物から溶剤に溶出する溶出物の量は硬化物の10重量%以下であり、好ましくは9重量%以下、より好ましくは8重量%以下、特に好ましくは7重量%以下である。溶出物の量の下限は特には限定されないが、溶出物の量は例えば1重量%以上であってよい。硬化物から溶剤に溶出する溶出物の量(重量%)は「溶出率」とも記載され、後述する実施例に記載の方法に従って決定される。 When the cured product obtained by the curing reaction of the adhesive composition of the present invention was immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80°C for 5 hours, the cured product dissolved in the solvent. The amount of eluted substances is 10% by weight or less, preferably 9% by weight or less, more preferably 8% by weight or less, and particularly preferably 7% by weight or less, of the cured product. Although the lower limit of the amount of extractables is not particularly limited, the amount of extractables may be, for example, 1% by weight or more. The amount (% by weight) of eluted substances eluted from the cured product into the solvent is also referred to as "elution rate", and is determined according to the method described in Examples below.
 溶出物の主な成分はポリオレフィンであり、多くの場合には溶出物の70重量%以上を占め、90重量%以上となることもある。溶出物に含まれるポリオレフィンは通常には酸変性度が低く、架橋剤で硬化物中に固定されていないために溶出しやすい。本発明の接着剤組成物の場合においても、溶出物に含まれる酸変性ポリオレフィンは酸変性度が低くなることが多いが、他の接着剤組成物のものと比較すると酸変性度が高い。このような溶出物に含まれる酸変性度が低いポリオレフィンはアセトンには溶解せず、特許文献1に記載のアセトン抽出成分とは異なるものである。 The main component of the eluted material is polyolefin, which in many cases accounts for 70% by weight or more of the eluted material, and in some cases 90% by weight or more. The polyolefin contained in the eluate usually has a low degree of acid modification and is easily eluted because it is not fixed in the cured product by a cross-linking agent. In the case of the adhesive composition of the present invention, the acid-modified polyolefin contained in the effluent often has a low degree of acid modification, but the degree of acid modification is higher than that of other adhesive compositions. A polyolefin with a low degree of acid modification contained in such an eluate is not soluble in acetone and is different from the acetone-extractable component described in Patent Document 1.
 酸変性ポリオレフィンのATR法によるIRスペクトルを測定すると、酸無水物環に由来する1720cm-1付近(1710~1730cm-1)に存在する吸収ピーク(ピーク1)並びに1780cm-1付近(1770~1790cm-1)に存在する吸収ピーク(ピーク2)、酸無水物環が開環して生成するカルボキシ基に由来する1860cm-1付近(1850~1870cm-1)に存在する吸収ピーク(ピーク3)を確認でき、架橋剤に多官能イソシアネート化合物を使用する場合には、イソシアヌル環に由来する1690cm-1付近(1680~1700cm-1)に存在する吸収ピーク(ピーク4)、及びイソシアネートから生成するウレア結合やアミド結合に由来する1550cm-1付近(1500~1600cm-1)に存在するブロードの吸収ピーク(ピーク5)を確認できる。また、ポリオレフィンがプロピレン単位などメチル基を含む構造単位を有する場合には、メチル基に由来する1377cm-1付近(1367~1378cm-1)に存在する吸収ピーク(ピーク6)も確認できる。溶出物のATR法によるIRスペクトルでは、ピーク1~5がピーク6に対して小さくなり、確認されない場合もあるが、本発明の接着剤組成物ではピーク1~5が比較的大きくなり得る。以下ではそれぞれのピークの吸光度について記載するが、上に記載の範囲内で最大となる吸光度をそのピークの吸光度とする。 When the IR spectrum of the acid-modified polyolefin is measured by the ATR method, an absorption peak (peak 1) existing around 1720 cm −1 (1710 to 1730 cm −1 ) derived from the acid anhydride ring and around 1780 cm −1 (1770 to 1790 cm −1 ) 1 ), and the absorption peak (peak 3) present near 1860 cm -1 (1850 to 1870 cm -1 ) derived from the carboxy group formed by the opening of the acid anhydride ring. When using a polyfunctional isocyanate compound as a cross-linking agent, the absorption peak (peak 4) present near 1690 cm -1 (1680 to 1700 cm -1 ) derived from the isocyanuric ring, and the urea bond generated from the isocyanate and A broad absorption peak (peak 5) existing around 1550 cm −1 (1500 to 1600 cm −1 ) derived from an amide bond can be confirmed. Moreover, when the polyolefin has a structural unit containing a methyl group such as a propylene unit, an absorption peak (peak 6) existing around 1377 cm −1 (1367 to 1378 cm −1 ) derived from the methyl group can also be confirmed. In the IR spectrum by the ATR method of the eluate, peaks 1 to 5 are smaller than peak 6 and may not be confirmed, but peaks 1 to 5 can be relatively large in the adhesive composition of the present invention. The absorbance of each peak is described below, and the maximum absorbance within the range described above is taken as the absorbance of the peak.
 溶出物のATR法によるIRスペクトルにおいて、ピーク1とピーク6の吸光度比は、好ましくは0.1以上であり、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。ピーク1とピーク6の吸光度比の上限は特に限定されないが、ピーク1とピーク6の吸光度比は通常1以下である。 In the IR spectrum of the eluate obtained by the ATR method, the absorbance ratio between peak 1 and peak 6 is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more. Although the upper limit of the absorbance ratio between peaks 1 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
 溶出物のATR法によるIRスペクトルにおいて、ピーク2とピーク6の吸光度比は、好ましくは0.1以上であり、より好ましくは0.15以上であり、さらに好ましくは0.2以上である。ピーク2とピーク6の吸光度比の上限は特に限定されないが、ピーク1とピーク6の吸光度比は通常1以下である。 In the IR spectrum of the eluate obtained by the ATR method, the absorbance ratio between peak 2 and peak 6 is preferably 0.1 or more, more preferably 0.15 or more, and still more preferably 0.2 or more. Although the upper limit of the absorbance ratio between peaks 2 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
 溶出物のATR法によるIRスペクトルにおいて、ピーク4とピーク6の吸光度比は、好ましくは0.1以上であり、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。ピーク4とピーク6の吸光度比の上限は特に限定されないが、ピーク1とピーク6の吸光度比は通常1以下である。 In the IR spectrum of the eluate obtained by the ATR method, the absorbance ratio between peak 4 and peak 6 is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more. Although the upper limit of the absorbance ratio between peaks 4 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
 溶出物のATR法によるIRスペクトルにおいて、ピーク5とピーク6の吸光度比は、好ましくは0.05以上であり、より好ましくは0.1以上であり、さらに好ましくは0.2以上である。ピーク5とピーク6の吸光度比の上限は特に限定されないが、ピーク1とピーク6の吸光度比は通常1以下である。 In the IR spectrum of the eluate obtained by the ATR method, the absorbance ratio between peaks 5 and 6 is preferably 0.05 or more, more preferably 0.1 or more, and still more preferably 0.2 or more. Although the upper limit of the absorbance ratio between peaks 5 and 6 is not particularly limited, the absorbance ratio between peaks 1 and 6 is usually 1 or less.
 本発明の接着剤組成物の膨潤率は以下に記載される式1により計算される「膨潤率1」で評価される。また、式3の通り計算される膨潤率差Dが所定の範囲内にあることも、本発明の接着剤組成物の耐電解液性を向上させるためには有用となり得る。
 式1:膨潤率1(%)=膨潤後の硬化物の重量/膨潤前の硬化物の重量×100
 式2:膨潤率2(%)=膨潤後の硬化物の重量/膨潤後の硬化物の乾燥重量×100
 式3:膨潤率差D(%)=膨潤率2-膨潤率1
 ここで、「膨潤前の硬化物の重量」は硬化物の重量であり、「膨潤後の硬化物の重量」は、硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させて得られる膨潤した硬化物の重量であり、「膨潤後の硬化物の乾燥重量」は、膨潤した硬化物を乾燥させて得られる硬化物の重量である。膨潤した硬化物はゲルとなっている。これらは、詳細には下に示す実施例に記載の膨潤性の評価方法により確認される。
The swelling rate of the adhesive composition of the present invention is evaluated by "swelling rate 1" calculated by Equation 1 described below. In addition, the fact that the swelling rate difference D calculated according to Equation 3 is within a predetermined range can also be useful for improving the electrolytic solution resistance of the adhesive composition of the present invention.
Formula 1: Swelling rate 1 (%) = weight of cured product after swelling / weight of cured product before swelling × 100
Formula 2: Swelling rate 2 (%) = weight of cured product after swelling / dry weight of cured product after swelling × 100
Formula 3: Swelling rate difference D (%) = swelling rate 2 - swelling rate 1
Here, the “weight of the cured product before swelling” is the weight of the cured product, and the “weight of the cured product after swelling” is the weight of the cured product having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 . It is the weight of the swollen cured product obtained by immersing it in a solvent at 80° C. for 5 hours, and the “dry weight of the cured product after swelling” is the weight of the cured product obtained by drying the swollen cured product. The swollen hardened material is a gel. These are confirmed in detail by the swellability evaluation method described in the examples below.
 本発明の接着剤組成物を硬化反応させて得られる硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させたとき、硬化物の膨潤率1は好ましくは300%以下、より好ましくは250%以下、特に好ましくは150%以下である。 When a cured product obtained by curing reaction of the adhesive composition of the present invention is immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80° C. for 5 hours, the swelling rate of the cured product is 1 is preferably 300% or less, more preferably 250% or less, and particularly preferably 150% or less.
 本発明の接着剤組成物を硬化反応させて得られる硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させたとき、硬化物の膨潤率差Dは、好ましくは40%以下、より好ましくは30%以下、特に好ましくは20%以下である。 When a cured product obtained by curing reaction of the adhesive composition of the present invention is immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80° C. for 5 hours, the swelling rate of the cured product is The difference D is preferably 40% or less, more preferably 30% or less, and particularly preferably 20% or less.
 本発明の接着剤組成物を硬化反応させて得られる硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させたとき、膨潤率差Dの下限は特に限定されないが、硬化物の膨潤率差Dは例えば5%以上であってよい。 When the cured product obtained by the curing reaction of the adhesive composition of the present invention was immersed in a solvent having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 at 80°C for 5 hours, the swelling rate difference D Although the lower limit is not particularly limited, the swelling rate difference D of the cured product may be, for example, 5% or more.
 接着剤組成物の25℃における粘度としては、10~5,000mPa・sが好ましい。塗工性に優れる点で、10mPa・s以上が好ましい。また、レベリング性に優れる点で、5,000mPa・s以下が好ましく、1,000mPa・s以下がより好ましい。 The viscosity of the adhesive composition at 25°C is preferably 10 to 5,000 mPa·s. 10 mPa·s or more is preferable from the viewpoint of excellent coatability. Moreover, it is preferably 5,000 mPa·s or less, more preferably 1,000 mPa·s or less, from the viewpoint of excellent leveling properties.
 接着剤組成物は、ポリオレフィン樹脂成形体と他の部材(金属製部材及び樹脂製部材等)との接着に好適であり、ポリオレフィン樹脂フィルム等のポリオレフィン樹脂成形体同士だけでなく、ポリオレフィン樹脂フィルムと、アルミニウム等からなる金属箔との接着、ポリオレフィン樹脂フィルムと、樹脂層及び金属層を備える複合フィルムにおける金属層との接着等に用いることもできる。接着剤組成物から得られる接着剤層は、常温剥離強度及び熱間剥離強度が高く接着性に優れる上、高い耐電解液性を有するため、リチウムイオン二次電池等の蓄電デバイス用包装材料として好ましく用いることができる。 The adhesive composition is suitable for adhesion between polyolefin resin molded articles and other members (metal members, resin members, etc.), and can be applied not only to polyolefin resin molded articles such as polyolefin resin films but also to polyolefin resin films. , adhesion to a metal foil made of aluminum or the like, adhesion to a metal layer in a composite film comprising a polyolefin resin film and a resin layer and a metal layer. The adhesive layer obtained from the adhesive composition has high room temperature peel strength and hot peel strength, excellent adhesiveness, and high electrolyte resistance, so it can be used as a packaging material for storage devices such as lithium ion secondary batteries. It can be preferably used.
 接着剤組成物の硬化物は、酸変性ポリオレフィンと架橋剤が反応して架橋を形成している状態にあるものである。一部の架橋剤が架橋を形成していれば硬化物であり、硬化物の硬化度は特に限定されない。動的粘弾性測定においてゴム状平坦部を確認することでも硬化を確認できる。
 酸変性ポリオレフィン、架橋剤及び必要に応じて硬化触媒を含む接着剤組成物は、架橋剤の種類等に応じて硬化温度を適宜決定してよい。架橋剤が多官能イソシアネート化合物である場合には室温であっても架橋を形成できる。なお、上に記載の通り接着剤組成物は溶剤を含んでもよいが、特に記載がない限り硬化物は溶剤を乾燥除去したものである。
The cured product of the adhesive composition is in a state where the acid-modified polyolefin reacts with the cross-linking agent to form cross-links. If a part of the cross-linking agent forms cross-links, it is a cured product, and the degree of cure of the cured product is not particularly limited. Curing can also be confirmed by confirming rubber-like plateaus in dynamic viscoelasticity measurements.
The curing temperature of the adhesive composition containing an acid-modified polyolefin, a cross-linking agent, and optionally a curing catalyst may be appropriately determined according to the type of cross-linking agent and the like. When the cross-linking agent is a polyfunctional isocyanate compound, cross-linking can be formed even at room temperature. As described above, the adhesive composition may contain a solvent, but unless otherwise specified, the cured product is obtained by removing the solvent by drying.
6.接着剤組成物の製造方法
 接着剤組成物は、公知の方法で製造できる。
6. Method for Producing Adhesive Composition The adhesive composition can be produced by a known method.
 具体的には、酸変性ポリオレフィンを溶剤に溶解させてなる溶液と、架橋剤を除く他の成分とを混合した後、得られた混合物と、架橋剤とを混合する方法である。混合時の温度は、通常、40℃以下、好ましくは10℃~30℃である。 Specifically, it is a method of mixing a solution obtained by dissolving an acid-modified polyolefin in a solvent and other components excluding the cross-linking agent, and then mixing the resulting mixture with the cross-linking agent. The temperature during mixing is usually 40°C or less, preferably 10°C to 30°C.
7.熱融着性部材
 接着剤組成物を使用して熱融着性部材を製造できる。熱融着性部材は、本発明の接着剤組成物が硬化してなる接着剤層と、接着剤層の一面側に接合された金属層と、接着剤層の他面側に接合された熱融着性樹脂層とを備える。
7. Heat-Sealable Member The adhesive composition can be used to manufacture a heat-sealable member. The heat-fusible member comprises an adhesive layer formed by curing the adhesive composition of the present invention, a metal layer bonded to one side of the adhesive layer, and a heat-bonded layer bonded to the other side of the adhesive layer. and a fusible resin layer.
 熱融着性部材の概略図は、図1及び図2に示される。即ち、図1の熱融着性部材1は、熱融着性樹脂層11と、接着剤層12と、金属層13とを、順次備える。また、図2の熱融着性部材1は、熱融着性樹脂層11と、接着剤層12と、金属層13と、他の層14とを、順次備える。 A schematic diagram of the heat-fusible member is shown in FIGS. 1 and 2. That is, the heat-fusible member 1 of FIG. 1 includes a heat-fusible resin layer 11, an adhesive layer 12, and a metal layer 13 in this order. The heat-fusible member 1 of FIG. 2 includes a heat-fusible resin layer 11, an adhesive layer 12, a metal layer 13, and another layer 14 in this order.
 熱融着性部材の形状は、用途等に応じて適宜設定すればよく、特に限定されないが、フィルム状、シート状、及び板状等が挙げられる。 The shape of the heat-fusible member may be appropriately set according to the application, and is not particularly limited, but may be film-like, sheet-like, or plate-like.
 上記の熱融着性樹脂層は、熱によって溶融し、一面側の層を構成する材料と、他面側の層を構成する材料とを融着し得る樹脂を含む層である。そして、この熱融着性樹脂層は、好ましくは50℃~200℃の温度で溶融する樹脂を含む層である。このような性質を有する樹脂としては、ポリオレフィン樹脂、ポリアミド樹脂及びポリエステル樹脂等が挙げられる。これらの中では、十分な強度で熱融着させることができることから、ポリオレフィン樹脂が好ましい。更に、ポリオレフィン樹脂としては、ポリプロピレンが好ましい。特に、熱融着性部材を用いて、他の部材と一体化させる場合に、寸法変化(収縮)が少ないことから、無延伸ポリプロピレンがより好ましい。 The above heat-fusible resin layer is a layer containing a resin that can be melted by heat to fuse the material forming the layer on one side with the material forming the layer on the other side. This heat-fusible resin layer is preferably a layer containing a resin that melts at a temperature of 50.degree. C. to 200.degree. Examples of resins having such properties include polyolefin resins, polyamide resins and polyester resins. Among these, polyolefin resins are preferable because they can be heat-sealed with sufficient strength. Furthermore, polypropylene is preferable as the polyolefin resin. In particular, non-stretched polypropylene is more preferable because it causes little dimensional change (shrinkage) when a heat-fusible member is used and integrated with another member.
 上記の熱融着性樹脂層は、必要に応じて、滑剤、充填剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、分散剤及び密着性付与剤等の添加剤を含む層であってもよい。 The above heat-fusible resin layer may optionally contain lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, colorants, dispersants, adhesion-imparting agents, and the like. It may be a layer containing an additive of
 上記の熱融着性樹脂層の厚さは、樹脂の材質等にもより、特に限定されないが、例えば、無延伸ポリプロピレンを含む層である場合、好ましくは10~200μm、より好ましくは20~100μmである。無延伸ポリプロピレンを含む層の厚さが10~200μmであれば、容易に破損することがなく、耐久性の高い密封容器等の熱融着複合製品を得ることができる。 The thickness of the heat-fusible resin layer is not particularly limited depending on the material of the resin, etc. For example, in the case of a layer containing unstretched polypropylene, it is preferably 10 to 200 μm, more preferably 20 to 100 μm. is. When the thickness of the layer containing unstretched polypropylene is 10 to 200 μm, it is possible to obtain a heat-sealed composite product such as a highly durable sealed container that is not easily damaged.
 上記の接着剤層は、接着剤組成物が硬化して形成された層である。接着剤層の厚さは、特に限定されないが、好ましくは1~20μm、特に好ましくは2~10μmである。接着剤層の厚さが1~20μmであれば、熱融着性部材が、例えば、シート状である場合の折り曲げ等の加工が容易である。 The above adhesive layer is a layer formed by curing the adhesive composition. Although the thickness of the adhesive layer is not particularly limited, it is preferably 1 to 20 μm, particularly preferably 2 to 10 μm. When the adhesive layer has a thickness of 1 to 20 μm, processing such as bending when the heat-fusible member is in the form of a sheet, for example, is easy.
 上記の金属層は、金属又は合金を含む層である。金属又は合金は、アルミニウム、鉄、チタン、マグネシウム、銅、ニッケル、クロム及びその他金属等、並びにそれらの合金等が挙げられる。これらの中でも、加工性に優れるため、アルミニウムが好ましい。金属層の厚さは、その材質等にもより、特に限定されない。金属層が、例えば、アルミニウムからなる場合、好ましくは20~100μm、特に好ましくは20~80μm、更に好ましくは30~60μmである。 The above metal layer is a layer containing a metal or an alloy. Metals or alloys include aluminum, iron, titanium, magnesium, copper, nickel, chromium and other metals, and alloys thereof. Among these, aluminum is preferable because of its excellent workability. The thickness of the metal layer is not particularly limited depending on the material and the like. When the metal layer is made of aluminum, for example, it is preferably 20 to 100 μm, particularly preferably 20 to 80 μm, more preferably 30 to 60 μm.
 熱融着性部材が、金属層を備える場合には、図2に示すように、金属層13の表面に、他の層14を備えることができる。他の層を構成する材料は、金属層を保護するという観点から、樹脂を含むことが好ましい。即ち、他の層は、樹脂層であることが好ましい。この樹脂は、特に限定されず、ポリアミド樹脂及びポリエステル樹脂等とすることができる。樹脂層の透明性は、特に限定されないが、この樹脂層が透明又は半透明であるとき、熱融着複合製品として密封容器等とした場合に、優れた外観を得ることができる。他の層は多層構造であってもよく、例えば、樹脂層と金属層を接着するための接着剤層を含んでもよい。他の層における接着剤層は、熱融着性樹脂層と金属層の間に設けられる接着剤層と同一であっても異なっていてもよい。他の層の厚さは、特に限定されず、好ましくは30~60μm、特に好ましくは30~50μmである。 When the heat-fusible member has a metal layer, another layer 14 can be provided on the surface of the metal layer 13, as shown in FIG. From the viewpoint of protecting the metal layer, the material constituting the other layer preferably contains a resin. That is, the other layer is preferably a resin layer. This resin is not particularly limited, and may be a polyamide resin, a polyester resin, or the like. The transparency of the resin layer is not particularly limited, but when the resin layer is transparent or translucent, an excellent appearance can be obtained when the heat-sealable composite product is used as a hermetic container or the like. The other layer may have a multi-layer structure and may include, for example, an adhesive layer for bonding the resin layer and the metal layer. The adhesive layer in the other layer may be the same as or different from the adhesive layer provided between the heat-fusible resin layer and the metal layer. The thickness of the other layer is not particularly limited, but is preferably 30-60 μm, particularly preferably 30-50 μm.
 本発明の接着剤組成物を用いた熱融着性部材は、熱間剥離強度が高く接着性に優れる上、電解液等の溶剤に対する耐性にも優れるため、その構造を維持しつつ、内容物の変質を防止することができる。 The heat-fusible member using the adhesive composition of the present invention has high hot peel strength and excellent adhesiveness, and is also excellent in resistance to solvents such as electrolytic solutions. can be prevented from deteriorating.
 リチウムイオン電池包装材料に用いた場合には、電池保管若しくは使用環境における温度変化があっても接着性能を維持でき、特に、充電若しくは放電に伴う電池構成材料の化学的な温度上昇、夏期又は自動車内等の常温より高い温度範囲、及び寒冷地の外気温よりも低い温度範囲において接着性能を保つことができる。 When used in lithium-ion battery packaging materials, the adhesion performance can be maintained even if there is a temperature change in the battery storage or usage environment. Adhesive performance can be maintained in a temperature range higher than room temperature, such as inside, and in a temperature range lower than outside temperature in cold districts.
8.熱融着性部材の製造方法
 図1に示される熱融着性部材の製造方法は、以下の通りである。
(1)接着剤組成物を、金属層13形成用の金属箔等の表面に塗布し、その後、組成物中の有機溶剤を除去して接着剤層12を形成し、次いで、接着剤層12が形成された面に、熱融着性樹脂層11形成用樹脂フィルム(以下、「熱融着性樹脂フィルム」という。)を接触させて、加熱しながら、圧着する方法。
(2)接着剤組成物を、熱融着性樹脂フィルムの表面に塗布し、その後、組成物中の有機溶剤を除去して接着剤層12を形成し、次いで、接着剤層12が形成された面に、金属層13形成用の金属箔等を接触させて、加熱しながら圧着する方法。
8. Method for Manufacturing Heat-Fusible Member A method for manufacturing the heat-fusible member shown in FIG. 1 is as follows.
(1) The adhesive composition is applied to the surface of a metal foil or the like for forming the metal layer 13, then the organic solvent in the composition is removed to form the adhesive layer 12, and then the adhesive layer 12 is formed. A method of contacting a resin film for forming a heat-fusible resin layer 11 (hereinafter referred to as a "heat-fusible resin film") to the surface on which is formed, and crimping while heating.
(2) The adhesive composition is applied to the surface of the heat-fusible resin film, then the organic solvent in the composition is removed to form the adhesive layer 12, and then the adhesive layer 12 is formed. A method in which a metal foil or the like for forming the metal layer 13 is brought into contact with the flat surface and crimped while being heated.
 また、図2に示される熱融着性部材の製造方法は、以下の通りである。
(3)接着剤組成物を、他の層14を構成する樹脂層と、この樹脂層の一面側に貼り合わせや蒸着等により形成された金属層13とを有する複合フィルムにおける金属層13の表面に塗布し、その後、組成物中の有機溶剤を除去して接着剤層12を形成し、次いで、接着剤層12が形成された面と、熱融着性樹脂フィルムを接触させて、加熱しながら圧着する方法。
(4)接着剤組成物を、熱融着性樹脂フィルムの表面に塗布し、その後、組成物中の有機溶剤を除去して接着剤層12を形成し、次いで、接着剤層12が形成された面に、他の層14を構成する樹脂層と、この樹脂層の一面側に貼り合わせや蒸着等により形成された金属層13とを有する複合フィルムにおける金属層13が形成された面を接触させて、加熱しながら圧着する方法。
(5)上記(1)又は(2)の方法により得られた積層体における金属層13の表面に、他の層14形成用フィルムを押出成形する方法。
Moreover, the manufacturing method of the heat-fusible member shown in FIG. 2 is as follows.
(3) The surface of the metal layer 13 in a composite film having a resin layer constituting another layer 14 and a metal layer 13 formed on one side of the resin layer by lamination, vapor deposition, or the like. After that, the organic solvent in the composition is removed to form an adhesive layer 12, and then the surface on which the adhesive layer 12 is formed is brought into contact with the heat-fusible resin film and heated. How to crimp while
(4) The adhesive composition is applied to the surface of the heat-fusible resin film, then the organic solvent in the composition is removed to form the adhesive layer 12, and then the adhesive layer 12 is formed. The surface on which the metal layer 13 is formed in the composite film having the resin layer constituting the other layer 14 and the metal layer 13 formed on one side of the resin layer by lamination or vapor deposition is brought into contact with the other surface. A method of crimping while heating.
(5) A method of extruding a film for forming another layer 14 on the surface of the metal layer 13 in the laminate obtained by the above method (1) or (2).
 接着剤組成物は、金属箔等の金属層形成用材料、又は、金属層及び他の層(樹脂層)を備える複合フィルムにおける金属層の表面に塗布されることが多いが、特に限定されない。金属箔を用いる場合には、厚さが20~100μmであるアルミニウム箔を用いることが好ましい。これにより、破損が抑制された熱融着性部材を容易に形成することができる。また、複合フィルムを用いる場合には、金属層がアルミニウムを含み、他の層(樹脂層)がポリアミド樹脂及びポリエステル樹脂等を含むことが好ましい。更に、複合フィルムを用いずに、図2に示す熱融着性部材を製造する場合、即ち、上記(5)の方法を採用する場合、他の層14形成用フィルムとして、ポリアミド樹脂及びポリエステル樹脂等を含むフィルムを用いることが好ましい。 The adhesive composition is often applied to the surface of a metal layer forming material such as a metal foil, or a metal layer in a composite film comprising a metal layer and another layer (resin layer), but is not particularly limited. When using a metal foil, it is preferable to use an aluminum foil having a thickness of 20 to 100 μm. As a result, it is possible to easily form a heat-fusible member in which breakage is suppressed. Moreover, when using a composite film, it is preferable that the metal layer contains aluminum and the other layer (resin layer) contains a polyamide resin, a polyester resin, or the like. Furthermore, when manufacturing the heat-fusible member shown in FIG. 2 without using a composite film, that is, when adopting the method (5) above, polyamide resin and polyester resin are used as other layer 14 forming films. etc. is preferably used.
 熱融着性樹脂フィルムとしては、ポリオレフィン樹脂フィルム、ポリアミド樹脂フィルム及びポリエステル樹脂フィルム等を用いることができる。これらの樹脂フィルムは、押出法、キャスト成形法、Tダイ法及びインフレーション法等の製膜化法により得られたフィルムとすることができる。熱融着性樹脂フィルムの厚さは、通常、10~200μmである。本発明においては、熱融着性部材を完成させる熱融着、及び熱融着複合製品を製造する際の熱融着を容易に行うことができる点で、ポリオレフィン樹脂フィルムが好ましく、破損しにくく、耐久性に優れた密封用容器等の熱融着複合製品を得ることができる点で、無延伸ポリプロピレンフィルムが特に好ましい。この無延伸ポリプロピレンフィルムを用いる場合、好ましい厚さは10~200μmであり、より好ましくは20~100μmである。 A polyolefin resin film, a polyamide resin film, a polyester resin film, or the like can be used as the heat-fusible resin film. These resin films can be films obtained by a film-forming method such as an extrusion method, a cast molding method, a T-die method, and an inflation method. The thickness of the heat-fusible resin film is usually 10-200 μm. In the present invention, a polyolefin resin film is preferable in that it can be easily heat-sealed to complete a heat-sealable member and heat-sealed when manufacturing a heat-sealable composite product, and is less likely to be damaged. A non-stretched polypropylene film is particularly preferable in that a heat-sealable composite product such as a hermetic container having excellent durability can be obtained. When using this unstretched polypropylene film, the thickness is preferably 10 to 200 μm, more preferably 20 to 100 μm.
 接着剤組成物は、従来、公知の方法により塗布することができ、例えば、バーコーター及びグラビアコーター等を用いて塗布することができる。塗膜の厚さ及びその乾燥温度は、特に限定されない。塗膜の乾燥温度は、特に限定されず、作業性の観点から、好ましくは30℃~150℃である。 The adhesive composition can be applied by a conventionally known method, for example, using a bar coater, a gravure coater, or the like. The thickness of the coating film and its drying temperature are not particularly limited. The drying temperature of the coating film is not particularly limited, and is preferably 30° C. to 150° C. from the viewpoint of workability.
 上記のように、乾燥した塗膜は、一般に、粘着性及び接着性を有するので、加熱しなくても2つの部材を接着することができるが、熱融着性部材を製造する場合には、酸変性ポリオレフィンの融点並びに溶融粘度等を考慮して適切な温度に加熱しながら、圧着等する方法を適用できる。加熱条件及び圧着条件としては、例えば、温度60~100℃、圧力0.3MPa、圧着時間2秒である。 As described above, the dried coating film generally has tackiness and adhesiveness, so that two members can be adhered without heating. A method such as pressure bonding can be applied while heating to an appropriate temperature in consideration of the melting point and melt viscosity of the acid-modified polyolefin. The heating conditions and crimping conditions are, for example, a temperature of 60 to 100° C., a pressure of 0.3 MPa, and a crimping time of 2 seconds.
 また、酸変性ポリオレフィンと架橋剤との架橋反応を促進し、熱融着性部材を完成させるための条件(以下、「エージング条件」という。)は、特に限定されず、金属箔の材質及び熱融着性樹脂フィルムの材質、溶融温度等、接着剤層の組成等により設定することが好ましい。エージング条件としては25~50℃、例えば40℃、3~7日程度加熱することが挙げられる。 In addition, the conditions for promoting the cross-linking reaction between the acid-modified polyolefin and the cross-linking agent to complete the heat-fusible member (hereinafter referred to as "aging conditions") are not particularly limited. It is preferable to set according to the material of the fusible resin film, the melting temperature and the composition of the adhesive layer. Aging conditions include heating at 25 to 50° C., for example, 40° C. for about 3 to 7 days.
9.用途
 熱融着性部材は、電気分野、自動車分野、産業分野及びその他分野の様々な工業用製品分野において使用することができる。
9. Uses The heat-fusible member can be used in various industrial product fields such as electric field, automobile field, industrial field and other fields.
 電気分野の用途例としては、リチウムイオン電池及びリチウムイオンポリマー電池等二次電池、並びにキャパシタ等の蓄電デバイスの包装材料、モバイル機器、テレビ筐体及び白物家電筐体等における、加飾シート貼付けによる加飾、金属部材と樹脂の接着及び電子部品の封止等がある。 Examples of applications in the electrical field include secondary batteries such as lithium-ion batteries and lithium-ion polymer batteries, packaging materials for power storage devices such as capacitors, mobile devices, TV housings, white goods housings, etc. Decorative sheet pasting decoration, adhesion of metal members and resins, sealing of electronic parts, and the like.
 自動車分野の用途例としては、ピラー、モール、ドアトリム、スポイラー及びルーフ等の内外装部材等における、金属部材/樹脂からなる外装材の接着、本皮革、ファブリック、インパネ発泡シート及び加飾シートと基材の接着等がある。 Examples of applications in the automotive field include adhesion of exterior materials made of metal members and resins, genuine leather, fabric, instrument panel foam sheets and decorative sheets and bases in interior and exterior materials such as pillars, moldings, door trims, spoilers and roofs. There is adhesion of materials, etc.
 産業分野の用途例としては、工業用包装材料及びバリアーフィルム等の多層フィルムのフィルム間の接着等がある。 Examples of applications in the industrial field include adhesion between industrial packaging materials and multi-layer films such as barrier films.
 その他分野の用途例としては、物流資材、住建材、日用雑貨及びスポーツ用品の接着等が挙げられる。 Examples of applications in other fields include adhesives for logistics materials, housing materials, daily miscellaneous goods, and sporting goods.
 これらの中でも、熱融着性部材の用途としては、熱間剥離強度が高く接着性に優れる上、高い耐電解液性を有するため、蓄電デバイス用包装材料が好ましい。 Among these, packaging materials for electrical storage devices are preferable as heat-fusible members because they have high hot peel strength, excellent adhesiveness, and high electrolyte resistance.
 本実施例において原料として用いる酸変性ポリオレフィンの分析データの測定方法を以下に説明する。 A method for measuring the analysis data of the acid-modified polyolefin used as a raw material in this example will be described below.
<酸変性ポリオレフィンの酸価分析方法>
(1)酸変性していないポリマーペレット35gとドデシルコハク酸無水物(無添加、1g、2g、4g)をそれぞれ秤量しておき、170℃に加熱したラボプラストミル((株)東洋精機製作所製)に入れて、加熱攪拌し、ドデシルコハク酸無水物含有量が異なる4種のサンプルを作製した。
(2)これを少量切り出して、厚さ1mmのフッ素樹脂製シート2枚で挟み、110℃のホットプレスで加圧してフィルム状に成型した。このフィルム状サンプルを乾燥剤と共に防湿袋に入れて密封し、室温で1日以上放置して結晶化を進めた。本発明者らの検討によると、この結晶化を進めずに赤外吸収スペクトルを測定すると、わずかに酸価が高く見積もられる傾向があり、1日以上放置することで酸価の測定結果が安定するために室温での放置時間をとった。
(3)4種のサンプルの透過IRスペクトルから、約1164cm-1の吸収に対する約1786cm-1の吸光度比の検量線を作成した。
(4)酸変性ポリオレフィンを150℃で2時間真空乾燥すると、吸湿等で開環して形成された二塩基酸部分が、IRスペクトル上では判別できない程度まで脱水閉環が進んだ。これを、乾燥状態のまま室温まで冷却し、酸無水物環が100%閉環したものとし、同様に赤外吸収スペクトルを測定した。
(5)(4)で測定したスペクトルから1164cm-1の吸収に対する1786cm-1の吸収の吸光度比を求め、(3)で作成した検量線と対比させて酸無水物量を決定し、これをカルボキシ基量に換算して酸価を決定した。ここで、酸無水物量は酸無水物構造(-CO-O-CO-)の量であり、酸無水物構造1モルをカルボキシ基2モルとして、酸無水物量をカルボキシ基量に換算した。
<Method for analyzing acid value of acid-modified polyolefin>
(1) 35 g of acid-unmodified polymer pellets and dodecyl succinic anhydride (no additives, 1 g, 2 g, 4 g) were weighed and heated to 170 ° C. Laboplastomill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) ), heated and stirred to prepare four samples with different dodecylsuccinic anhydride contents.
(2) A small amount of this was cut out, sandwiched between two fluororesin sheets having a thickness of 1 mm, and pressed with a hot press at 110° C. to form a film. This film-like sample was placed in a moisture-proof bag together with a desiccant, sealed, and allowed to stand at room temperature for 1 day or more to promote crystallization. According to the study of the present inventors, when the infrared absorption spectrum is measured without proceeding with this crystallization, the acid value tends to be estimated slightly higher, and the measurement result of the acid value stabilizes when left for one day or more. In order to do so, the standing time at room temperature was taken.
(3) A calibration curve of the absorbance ratio at about 1786 cm -1 to the absorption at about 1164 cm -1 was prepared from the transmission IR spectra of the four samples.
(4) When the acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours, dehydration ring-closure progressed to the extent that the dibasic acid moiety formed by ring-opening due to moisture absorption or the like could not be identified on the IR spectrum. This was cooled to room temperature in a dry state, and the acid anhydride ring was assumed to be 100% ring-closed, and the infrared absorption spectrum was similarly measured.
(5) From the spectrum measured in (4), the absorbance ratio of the absorption at 1786 cm −1 to the absorption at 1164 cm −1 is determined, and the amount of acid anhydride is determined by comparing with the calibration curve prepared in (3). The acid value was determined in terms of base weight. Here, the amount of acid anhydride is the amount of the acid anhydride structure (--CO--O--CO--), and the amount of acid anhydride was converted to the amount of carboxy groups, assuming that 1 mol of the acid anhydride structure is 2 mol of carboxy groups.
<融点測定方法と測定例>
 酸変性ポリオレフィンの合成に使用するプロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7070、タフマーXM7080及び、タフマーXM7090)の融点をDSCにより測定した。DSC測定は10℃/分で0℃から160℃まで昇温した後、10℃/分で0℃まで降温し、再度10℃/分で0℃から160℃まで昇温する過程におけるポリマーの融点を示す吸熱ピークの頂点を融点とした。タフマーXM7070の融点は78.5℃、タフマーXM7080の融点は87.4℃、タフマーXM7090の融点は100.9℃であった。以下に記載する酸変性ポリオレフィンについても同様の測定を行った。
<Melting point measurement method and measurement example>
The melting points of copolymers of propylene and 1-butene (Tafmer XM7070, Taffmer XM7080 and Taffmer XM7090 manufactured by Mitsui Chemicals, Inc.) used for synthesizing acid-modified polyolefins were measured by DSC. DSC measurement is the melting point of the polymer in the process of increasing the temperature from 0°C to 160°C at 10°C/min, then decreasing the temperature to 0°C at 10°C/min, and again increasing the temperature from 0°C to 160°C at 10°C/min. was taken as the melting point. Tafmer XM7070 had a melting point of 78.5°C, Tafmer XM7080 had a melting point of 87.4°C, and Tafmer XM7090 had a melting point of 100.9°C. The same measurements were carried out for the acid-modified polyolefins described below.
<メルトフローレート測定方法>
 (株)東洋精機製作所製メルトインデクサG-02型を用い、炉内温度190℃、荷重2.17kgにて、自動測定モードで測定を行った。
<Melt flow rate measurement method>
Using a melt indexer G-02 manufactured by Toyo Seiki Seisakusho Co., Ltd., the measurement was performed in an automatic measurement mode at a furnace temperature of 190° C. and a load of 2.17 kg.
 接着剤組成物に使用する酸変性ポリオレフィンを以下に示す合成例1~6、精製例1、比較合成例1~4、及び比較精製例1~2に示す通りそれぞれ調製した。 The acid-modified polyolefin used in the adhesive composition was prepared as shown in Synthesis Examples 1-6, Purification Example 1, Comparative Synthesis Examples 1-4, and Comparative Purification Examples 1-2 shown below.
<合成例1>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7090)1000g、無水マレイン酸50g、過酸化物としてt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(日油(株)製パーブチルE)31.4gを混合し、この原料混合物を投入速度1kg/h、スクリュー回転数400rpm、最高温度190℃に設定した二軸押し出し機((株)日本製鋼所製TEX25αIII)で混錬して、プロピレンと1-ブテンの共重合体を酸変性した。得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、合成例1の酸変性ポリオレフィンを得た。酸価は33.1mgKOH/gであった。メルトフローレートは169g/10min(190℃/2.17kg)であった。DSCで測定した融点は95.2℃であり、酸変性前から5.7℃低下した。
 合成例1の酸変性ポリオレフィン10gをバイアル瓶にとり、トルエン90gを加えて密栓し、70℃の湯煎にかけて溶解後、アセトン2リットルを入れたビーカー内に撹拌しながらポリマー溶液を少しずつ加えた。析出したポリマーをろ別し、500mlのアセトンに入れて洗浄しろ別する工程を3回繰り返して洗浄した。この洗浄液と、ポリマーを再沈殿した後のろ液を全て合わせて、エバポレーターで溶剤を除去して濃縮して得られたアセトン可溶部を秤量したところ、酸変性ポリオレフィン中の4.2重量%であった。これをLC-MSで分析したところ、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
 再沈殿して得られたポリマーを精製例1の酸変性ポリオレフィンとした。酸価は21.3mgKOH/gであった。メルトフローレートは132g/10min(190℃/2.17kg)であった。また、精製例1の酸変性ポリオレフィンについて再度再沈殿操作を実施して、アセトン可溶部の含有量を測定したところ、0.22重量%であった。
<Synthesis Example 1>
1000 g of a copolymer of propylene and 1-butene (Tafmer XM7090 manufactured by Mitsui Chemicals, Inc.), 50 g of maleic anhydride, t-butyl peroxy-2-ethylhexyl monocarbonate (Perbutyl E manufactured by NOF Corporation) as a peroxide ) was mixed with 31.4 g, and this raw material mixture was kneaded with a twin-screw extruder (TEX25αIII manufactured by Japan Steel Works, Ltd.) set at an input speed of 1 kg/h, a screw rotation speed of 400 rpm, and a maximum temperature of 190 ° C., A copolymer of propylene and 1-butene was acid-modified. The obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 1. The acid value was 33.1 mgKOH/g. The melt flow rate was 169 g/10 min (190°C/2.17 kg). The melting point measured by DSC was 95.2°C, which was 5.7°C lower than before acid modification.
10 g of the acid-modified polyolefin of Synthesis Example 1 was placed in a vial, 90 g of toluene was added, the vial was sealed, dissolved in a hot water bath at 70° C., and then the polymer solution was added little by little into a beaker containing 2 liters of acetone while stirring. The precipitated polymer was separated by filtration, put into 500 ml of acetone, washed, and separated by filtering, which was repeated three times. This washing liquid and the filtrate after reprecipitation of the polymer were all combined, and the acetone-soluble portion obtained by removing the solvent with an evaporator and concentrating was weighed. Met. When this was analyzed by LC-MS, many kinds of compounds were detected which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride.
The polymer obtained by reprecipitation was used as the acid-modified polyolefin of Purification Example 1. The acid value was 21.3 mgKOH/g. The melt flow rate was 132 g/10 min (190°C/2.17 kg). Further, the acid-modified polyolefin of Purification Example 1 was subjected to reprecipitation again, and the content of acetone-soluble portion was measured to be 0.22% by weight.
<合成例2>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7090)1000g、無水マレイン酸50g、過酸化物としてt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(日油(株)製パーブチルE)63gを混合し、この原料混合物を投入速度0.98kg/h、スクリュー回転数200rpm、最高温度190℃に設定した二軸押し出し機((株)日本製鋼所製TEX25αIII)で混錬して、プロピレンと1-ブテンの共重合体を酸変性した。得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、合成例2の酸変性ポリオレフィンを得た。酸価は24.4mgKOH/gであった。メルトフローレートは109g/10min(190℃/2.17kg)であった。DSCで測定した融点は93.0℃であり、酸変性前から7.9℃低下した。
 合成例2の酸変性ポリオレフィンを合成例1と同様に再沈殿精製し、アセトン可溶部を秤量したところ、酸変性ポリオレフィン中の2.2重量%であった。これをLC-MSで分析したところ、合成例1と同様に、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
<Synthesis Example 2>
1000 g of a copolymer of propylene and 1-butene (Tafmer XM7090 manufactured by Mitsui Chemicals, Inc.), 50 g of maleic anhydride, t-butyl peroxy-2-ethylhexyl monocarbonate (Perbutyl E manufactured by NOF Corporation) as a peroxide ), and kneaded with a twin-screw extruder (TEX25αIII manufactured by Japan Steel Works, Ltd.) set at an input speed of 0.98 kg/h, a screw rotation speed of 200 rpm, and a maximum temperature of 190 ° C., A copolymer of propylene and 1-butene was acid-modified. The obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 2. The acid value was 24.4 mgKOH/g. The melt flow rate was 109 g/10 min (190°C/2.17 kg). The melting point measured by DSC was 93.0°C, which was 7.9°C lower than before acid modification.
The acid-modified polyolefin of Synthesis Example 2 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 2.2% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
<合成例3>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7080)1000g、無水マレイン酸100g、ラウリルメタクリレート30g、過酸化物としてt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(日油(株)製パーブチルE)126gを混合し、この原料混合物を投入速度1kg/h、スクリュー回転数400rpm、最高温度190℃に設定した二軸押し出し機((株)日本製鋼所製TEX25αIII)で混錬して、プロピレンと1-ブテンの共重合体を酸変性した。得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、合成例3の酸変性ポリオレフィンを得た。酸価は33.4mgKOH/gであった。メルトフローレートは263g/10min(190℃/2.17kg)であった。DSCで測定した融点は80.3℃であり、酸変性前から6.8℃低下した。合成例3の酸変性ポリオレフィンを合成例1と同様に再沈殿精製し、アセトン可溶部を秤量したところ、酸変性ポリオレフィン中の2.9重量%であった。これをLC-MSで分析したところ、合成例1と同様に、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
<Synthesis Example 3>
1000 g of a copolymer of propylene and 1-butene (Tafmer XM7080 manufactured by Mitsui Chemicals, Inc.), 100 g of maleic anhydride, 30 g of lauryl methacrylate, and t-butylperoxy-2-ethylhexyl monocarbonate (NOF Corporation) as a peroxide. ) manufactured by Perbutyl E) 126 g was mixed, and this raw material mixture was kneaded with a twin-screw extruder (TEX25αIII manufactured by Japan Steel Works, Ltd.) set at an input speed of 1 kg / h, a screw rotation speed of 400 rpm, and a maximum temperature of 190 ° C. A copolymer of propylene and 1-butene was acid-modified. The obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 3. The acid value was 33.4 mgKOH/g. The melt flow rate was 263 g/10 min (190°C/2.17 kg). The melting point measured by DSC was 80.3°C, which was 6.8°C lower than before acid modification. The acid-modified polyolefin of Synthesis Example 3 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 2.9% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
 <合成例4>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7070)1000g、無水マレイン酸100g、過酸化物としてt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(日油(株)製パーブチルE)63gを混合し、この原料混合物を投入速度1kg/h、スクリュー回転数200rpm、最高温度150℃に設定した二軸押し出し機((株)日本製鋼所製TEX25αIII)で混錬して、プロピレンと1-ブテンの共重合体を酸変性した。得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、合成例4の酸変性ポリオレフィンを得た。酸価は41.1mgKOH/gであった。メルトフローレートは91g/10min(190℃/2.17kg)であった。DSCで測定した融点は71.5℃であり、酸変性前から6.9℃低下した。合成例4の酸変性ポリオレフィンを合成例1と同様に再沈殿精製し、アセトン可溶部を秤量したところ、酸変性ポリオレフィン中の9.8重量%であった。これをLC-MSで分析したところ、合成例1と同様に、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
<Synthesis Example 4>
1000 g of a copolymer of propylene and 1-butene (Tafmer XM7070 manufactured by Mitsui Chemicals, Inc.), 100 g of maleic anhydride, t-butyl peroxy-2-ethylhexyl monocarbonate (Perbutyl E manufactured by NOF Corporation) as a peroxide ), and kneaded with a twin-screw extruder (TEX25αIII manufactured by Japan Steel Works, Ltd.) set at an input speed of 1 kg/h, a screw rotation speed of 200 rpm, and a maximum temperature of 150 ° C., and propylene and A copolymer of 1-butene was acid-modified. The obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 4. The acid value was 41.1 mgKOH/g. The melt flow rate was 91 g/10 min (190°C/2.17 kg). The melting point measured by DSC was 71.5°C, which was 6.9°C lower than before acid modification. The acid-modified polyolefin of Synthesis Example 4 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 9.8% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
<合成例5>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7070)100g、無水マレイン酸20g、ジアルキルパーオキサイドに分類され、1時間半減期温度が144.1℃、最大炭素数が3である過酸化物(日油(株)製パーブチルD)6g、キシレン200gを容量1リットルのオートクレーブに仕込み、140℃に昇温後、3時間反応させた。加熱停止後80℃まで下がったところで、トルエン400gを加えて溶解した。このポリマー溶液を10リットルのアセトンを入れたステンレス容器に攪拌しながら加えて、ポリマーを析出させた。デカンテーションにより溶剤を除去後、ポリマーが浸る程度のアセトンを2回注いで洗浄し、ろ別して得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、合成例5の酸変性ポリオレフィンを得た。酸価は28.3mgKOH/gであった。メルトフローレートは414g/10min(190℃/2.17kg)であった。DSCで測定した融点は70.8℃であり酸変性前から7.7℃低下した。合成例5の酸変性ポリオレフィンを合成例1と同様に再沈殿精製し、アセトン可溶部を秤量したところ、酸変性ポリオレフィン中の0.14重量%であった。これをLC-MSで分析したところ、合成例1と同様に、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
<Synthesis Example 5>
A copolymer of propylene and 1-butene (Tafmer XM7070 manufactured by Mitsui Chemicals, Inc.) 100 g, maleic anhydride 20 g, dialkyl peroxide, 1-hour half-life temperature of 144.1 ° C., maximum carbon number of 3. 6 g of a peroxide (PERBUTYL D manufactured by NOF Corporation) and 200 g of xylene were placed in a 1-liter autoclave, heated to 140° C., and reacted for 3 hours. After stopping the heating, when the temperature decreased to 80° C., 400 g of toluene was added and dissolved. This polymer solution was added to a stainless container containing 10 liters of acetone with stirring to precipitate the polymer. After removing the solvent by decantation, the polymer was washed by pouring acetone twice enough to soak it, and the acid-modified polyolefin obtained by filtration was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Synthesis Example 5. . The acid value was 28.3 mgKOH/g. The melt flow rate was 414 g/10 min (190°C/2.17 kg). The melting point measured by DSC was 70.8°C, which was 7.7°C lower than before acid modification. The acid-modified polyolefin of Synthesis Example 5 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 0.14% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
<比較合成例1>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7090)1000g、無水マレイン酸100g、過酸化物として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(日油(株)製パーヘキサ25B)74gを混合し、この原料混合物を投入速度0.98kg/h、スクリュー回転数200rpm、最高温度160℃に設定した二軸押し出し機((株)日本製鋼所製TEX25αIII)で混錬して、プロピレンと1-ブテンの共重合体を酸変性した。得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、比較合成例1の酸変性ポリオレフィンを得た。酸価は35.4mgKOH/gであった。メルトフローレートは115g/10min(190℃/2.17kg)であった。DSCで測定した融点は96.4℃であり、酸変性前から4.5℃低下した。比較合成例1の酸変性ポリオレフィンを合成例1と同様に再沈殿精製し、アセトン可溶部を秤量したところ、酸変性ポリオレフィン中の4.4重量%であった。これをLC-MSで分析したところ、合成例1と同様に、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
 再沈殿して得られたポリマーを比較精製例1の酸変性ポリオレフィンとした。酸価は23.1mgKOH/gであった。メルトフローレートは98g/10min(190℃/2.17kg)であった。また、比較精製例1の酸変性ポリオレフィンについて再度再沈殿操作を実施して、アセトン可溶部の含有量を測定したところ、0.11重量%であった。
<Comparative Synthesis Example 1>
1000 g of a copolymer of propylene and 1-butene (Tafmer XM7090 manufactured by Mitsui Chemicals, Inc.), 100 g of maleic anhydride, and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane as a peroxide ( 74 g of NOF Corporation Perhexa 25B) was mixed, and this raw material mixture was set at an input speed of 0.98 kg / h, a screw rotation speed of 200 rpm, and a maximum temperature of 160 ° C. A twin-screw extruder (manufactured by Japan Steel Works, Ltd.) The copolymer of propylene and 1-butene was acid-modified by kneading with TEX25αIII). The resulting acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Comparative Synthesis Example 1. The acid value was 35.4 mgKOH/g. Melt flow rate was 115 g/10 min (190° C./2.17 kg). The melting point measured by DSC was 96.4°C, which was 4.5°C lower than before acid modification. The acid-modified polyolefin of Comparative Synthesis Example 1 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 4.4% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
The polymer obtained by reprecipitation was used as the acid-modified polyolefin of Comparative Purification Example 1. The acid value was 23.1 mgKOH/g. The melt flow rate was 98 g/10 min (190°C/2.17 kg). Further, the acid-modified polyolefin of Comparative Purification Example 1 was subjected to reprecipitation again, and the content of acetone-soluble portion was measured to be 0.11% by weight.
<比較合成例2>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7080)1000g、無水マレイン酸50g、ラウリルメタクリレート30g、過酸化物として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(日油(株)製パーヘキサ25B)85gを混合し、この原料混合物を投入速度1kg/h、スクリュー回転数400rpm、最高温度190℃に設定した二軸押し出し機((株)日本製鋼所製TEX25αIII)で混錬して、プロピレンと1-ブテンの共重合体を酸変性した。得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、比較合成例2の酸変性ポリオレフィンを得た。酸価は29.8mgKOH/gであった。メルトフローレートは242g/10min(190℃/2.17kg)であった。DSCで測定した融点は84.6℃であり、酸変性前から2.5℃低下した。比較合成例2の酸変性ポリオレフィンを合成例1と同様に再沈殿精製し、アセトン可溶部を秤量したところ、酸変性ポリオレフィン中の3.2重量%であった。これをLC-MSで分析したところ、合成例1と同様に、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
 再沈殿して得られたポリマーを比較精製例2の酸変性ポリオレフィンとした。酸価は18.1mgKOH/gであった。メルトフローレートは206g/10min(190℃/2.17kg)であった。また、比較精製例2の酸変性ポリオレフィンについて再度再沈殿操作を実施して、アセトン可溶部の含有量を測定したところ、0.13重量%であった。
<Comparative Synthesis Example 2>
1000 g of a copolymer of propylene and 1-butene (Tafmer XM7080 manufactured by Mitsui Chemicals, Inc.), 50 g of maleic anhydride, 30 g of lauryl methacrylate, and 2,5-dimethyl-2,5-di(t-butylperoxide) as a peroxide. Oxy)hexane (Perhexa 25B manufactured by NOF Corporation) 85 g was mixed, and this raw material mixture was set at an input speed of 1 kg / h, a screw rotation speed of 400 rpm, and a maximum temperature of 190 ° C. A twin-screw extruder (Nippon Steel Co., Ltd. The copolymer of propylene and 1-butene was acid-modified by kneading with TEX25αIII) manufactured by the company. The obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Comparative Synthesis Example 2. The acid value was 29.8 mgKOH/g. The melt flow rate was 242 g/10 min (190°C/2.17 kg). The melting point measured by DSC was 84.6°C, which was 2.5°C lower than before acid modification. The acid-modified polyolefin of Comparative Synthesis Example 2 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 3.2% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
The polymer obtained by reprecipitation was used as the acid-modified polyolefin of Comparative Purification Example 2. The acid value was 18.1 mgKOH/g. Melt flow rate was 206 g/10 min (190° C./2.17 kg). Further, when the acid-modified polyolefin of Comparative Purification Example 2 was reprecipitated again and the content of acetone-soluble portion was measured, it was 0.13% by weight.
 なお、合成例1、比較合成例1、比較合成例2の全てにおいて、精製操作後に酸価が低下した。これは精製によって取り除かれる成分が、マレイン酸残基を多く含む高酸価成分であることを示唆しており、このような物質はアセトンのような高極性溶剤には溶けやすいが、トルエンやプロピオン酸プロピルのような低極性溶剤にはほとんど溶けない。 In addition, in all of Synthesis Example 1, Comparative Synthesis Example 1, and Comparative Synthesis Example 2, the acid value decreased after the purification operation. This suggests that the components removed by refining are high acid value components containing many maleic acid residues. It is practically insoluble in low-polarity solvents such as propyl acid.
<比較合成例3>
 プロピレンと1-ブテンの共重合体(三井化学(株)製タフマーXM7070)1000g、無水マレイン酸100g、過酸化物として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(日油(株)製パーヘキサ25B)74gを混合し、この原料混合物を投入速度1kg/h、スクリュー回転数200rpm、最高温度190℃に設定した二軸押し出し機((株)日本製鋼所製TEX25αIII)で混錬して、プロピレンと1-ブテンの共重合体を酸変性した。得られた酸変性ポリオレフィンを150℃で2時間真空乾燥し、比較合成例3の酸変性ポリオレフィンを得た。酸価は34.3mgKOH/gであった。メルトフローレートは236g/10min(190℃/2.17kg)であった。DSCで測定した融点は74.1℃であり、酸変性前から4.3℃低下した。比較合成例3の酸変性ポリオレフィンを合成例1と同様に再沈殿精製し、アセトン可溶部を秤量したところ、酸変性ポリオレフィン中の4.3重量%であった。これをLC-MSで分析したところ、合成例1と同様に、変性に使用した過酸化物の一部と無水マレイン酸数個が反応して生成したと考えられる多種類の化合物が検出された。
<Comparative Synthesis Example 3>
1000 g of a copolymer of propylene and 1-butene (Tafmer XM7070 manufactured by Mitsui Chemicals, Inc.), 100 g of maleic anhydride, and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane as a peroxide ( 74 g of NOF Corporation Perhexa 25B) was mixed, and this raw material mixture was fed into a twin-screw extruder (TEX25αIII manufactured by Japan Steel Works, Ltd.) set at an input speed of 1 kg/h, a screw rotation speed of 200 rpm, and a maximum temperature of 190 ° C. to acid-modify the copolymer of propylene and 1-butene. The obtained acid-modified polyolefin was vacuum-dried at 150° C. for 2 hours to obtain an acid-modified polyolefin of Comparative Synthesis Example 3. The acid value was 34.3 mgKOH/g. The melt flow rate was 236 g/10 min (190°C/2.17 kg). The melting point measured by DSC was 74.1°C, which was 4.3°C lower than before acid modification. The acid-modified polyolefin of Comparative Synthesis Example 3 was purified by reprecipitation in the same manner as in Synthesis Example 1, and the acetone-soluble portion was weighed and found to be 4.3% by weight in the acid-modified polyolefin. When this was analyzed by LC-MS, as in Synthesis Example 1, many kinds of compounds were detected, which were thought to be produced by the reaction of some of the peroxides used for modification with several maleic anhydride. .
 合成例1~5、精製例1、比較合成例1~3、及び比較精製例1~2の酸変性ポリオレフィンの分析結果を以下の表1にまとめる。 The analysis results of the acid-modified polyolefins of Synthesis Examples 1-5, Purification Example 1, Comparative Synthesis Examples 1-3, and Comparative Purification Examples 1-2 are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 合成例1、精製例1、合成例5、及び比較合成例2で得られた酸変性ポリオレフィン並びにこれらの原料として使用したポリオレフィン(タフマーXM7070、タフマーXM7080並びにタフマーXM7090)のIRスペクトルを図3~9に示す。 The IR spectra of the acid-modified polyolefins obtained in Synthesis Example 1, Purification Example 1, Synthesis Example 5, and Comparative Synthesis Example 2, and the polyolefins (Tafmer XM7070, Taffmer XM7080, and Taffmer XM7090) used as raw materials thereof are shown in FIGS. shown in
 上にて説明した合成例1~5、精製例1、比較合成例1~3、及び比較精製例1~2の酸変性ポリオレフィンを用いて接着剤組成物を調製し、評価した。 Using the acid-modified polyolefins of Synthesis Examples 1-5, Purification Example 1, Comparative Synthesis Examples 1-3, and Comparative Purification Examples 1-2 described above, adhesive compositions were prepared and evaluated.
<実施例1>
(接着剤溶液の作製)
 合成例1で得た酸変性ポリオレフィン15gとメチルシクロヘキサン:メチルエチルケトン=80:20(重量比)の混合溶剤85gとを冷却管と撹拌モーターを装備した四つ口フラスコに量り取り、乾燥窒素気流下で、オイルバスに浸して70℃に加熱しながら攪拌し、酸変性ポリオレフィンを完全に溶解させ、室温まで冷却した。ここに、ヘキサメチレンジイソシアネートのイソシアヌレート体を主成分とする多官能イソシアネート(旭化成株式会社製TPA-100)3.0g、水添キシリレンジイソシアネートのイソシアヌレート体を主成分とする多官能イソシアネートの75重量%酢酸エチル溶液(三井化学株式会社製、タケネートD-127N)3.1g、メチルエチルケトン3.0g、触媒としてジオクチルスズジラウレート0.1gを撹拌混合した溶液を全量加えて攪拌し、接着剤溶液とした。
<Example 1>
(Preparation of adhesive solution)
15 g of the acid-modified polyolefin obtained in Synthesis Example 1 and 85 g of a mixed solvent of methylcyclohexane:methyl ethyl ketone = 80:20 (weight ratio) were weighed into a four-necked flask equipped with a cooling tube and a stirring motor, and stirred under a stream of dry nitrogen. , immersed in an oil bath and stirred while heating to 70°C to completely dissolve the acid-modified polyolefin and cooled to room temperature. Here, 3.0 g of polyfunctional isocyanate (TPA-100 manufactured by Asahi Kasei Corporation) mainly composed of isocyanurate of hexamethylene diisocyanate, 75 g of polyfunctional isocyanate mainly composed of isocyanurate of hydrogenated xylylene diisocyanate 3.1 g of wt% ethyl acetate solution (manufactured by Mitsui Chemicals, Inc., Takenate D-127N), 3.0 g of methyl ethyl ketone, and 0.1 g of dioctyltin dilaurate as a catalyst were stirred and mixed, and the entire amount of the solution was added and stirred to form an adhesive solution. did.
(剥離強度評価用テストピースの作製)
 接着剤溶液をバーコーターを用いて接着剤塗布面に化成処理を施した厚さ40μmのアルミニウム箔に塗布した。このとき、乾燥後の平均的な接着剤の厚さが2~4μmになるようにあらかじめバーコーターのギャップ調整を行った。また、以降で実施する剥離強度の測定の際に、引張試験機のつかみ具に挟む部分には、接着剤を塗布しないようにした。このアルミニウム箔を80℃に加熱したオーブン内で1分間乾燥させ、接着剤に接する面にコロナ放電処理を行った厚さ80μmのCPP(キャストポリプロピレン)フィルムを重ね合わせ、ロール温度80℃のロールラミネーターで挟んで貼り合わせた。これを40℃のオーブン内で1週間養生して硬化反応を進めてから、15mm幅の短冊状に切り出して、剥離強度評価用テストピースとした。
(Preparation of test piece for peel strength evaluation)
Using a bar coater, the adhesive solution was applied to a 40 μm-thick aluminum foil whose surface to be coated with the adhesive was chemically treated. At this time, the gap of the bar coater was previously adjusted so that the average thickness of the adhesive after drying was 2 to 4 μm. In addition, when measuring the peel strength to be carried out later, no adhesive was applied to the portion to be sandwiched between the grips of the tensile tester. This aluminum foil was dried for 1 minute in an oven heated to 80°C, and a CPP (cast polypropylene) film with a thickness of 80 µm that had been subjected to corona discharge treatment was superimposed on the surface in contact with the adhesive, followed by a roll laminator with a roll temperature of 80°C. It was sandwiched between and pasted together. This was cured in an oven at 40° C. for 1 week to advance the curing reaction, and then cut into strips with a width of 15 mm to obtain test pieces for evaluation of peel strength.
(剥離強度の測定)
 恒温槽付き引張試験機(島津製作所(株)製オートグラフAGS-X)を用いて、引っ張り速度100mm/分でつかみ具が100mm移動するまでT剥離試験を行い、移動距離40mmから100mmの剥離強度を平均して剥離強度とした。剥離試験の温度は23℃、80℃、120℃の3点で行った。
(Measurement of peel strength)
Using a tensile tester with a constant temperature bath (Autograph AGS-X manufactured by Shimadzu Corporation), a T peel test was performed at a tensile speed of 100 mm / min until the grip moved 100 mm, and the peel strength from the movement distance of 40 mm to 100 mm. was averaged and taken as the peel strength. The peel test was performed at three temperatures of 23°C, 80°C and 120°C.
(溶剤浸漬後の剥離強度の測定)
 接液部がフッ素樹脂製の耐圧容器に剥離強度評価用テストピースを入れ、テストピースが完全に浸るまで、プロピオン酸プロピルまたはトルエンを入れて密栓した。この容器を85℃に設定したオーブンに入れ、24時間放置した。剥離強度評価用テストピースを取り出して、室温の水に2時間浸漬後、表面の水を拭きとって、室温で引張試験機(島津製作所(株)製オートグラフAGS-X)を用いて、引っ張り速度100mm/分でつかみ具が100mm移動するまでT剥離試験を行い、移動距離40mmから100mmの剥離強度を平均して剥離強度とした。
(Measurement of peel strength after immersion in solvent)
A test piece for peel strength evaluation was placed in a pressure-resistant container whose liquid-contacting part was made of fluororesin, and propyl propionate or toluene was added until the test piece was completely immersed, and the container was tightly sealed. The container was placed in an oven set at 85° C. and left for 24 hours. Take out the test piece for peel strength evaluation, immerse it in room temperature water for 2 hours, wipe off the water on the surface, and pull it at room temperature using a tensile tester (Autograph AGS-X manufactured by Shimadzu Corporation). A T-peel test was performed at a speed of 100 mm/min until the gripper moved 100 mm, and the peel strength over a distance of 40 mm to 100 mm was averaged to obtain the peel strength.
(膨潤性、溶解性評価用テストピースの作製)
 接着剤溶液を乾燥後の厚さが約0.5mmになるようにフッ素樹脂製の型に流し込み、一晩放置して溶剤を揮発除去後、40℃のオーブン内で1週間養生して硬化反応を進め、これを膨潤性、溶解性評価用テストピースとした。
(Preparation of test piece for swelling and solubility evaluation)
Pour the adhesive solution into a fluororesin mold so that the thickness after drying is about 0.5 mm, leave it overnight to remove the solvent by volatilization, and cure in an oven at 40°C for 1 week for a curing reaction. This was used as a test piece for evaluation of swelling and solubility.
(膨潤性の評価)
 膨潤性、溶解性評価用テストピースを約5mm×約5mmに刻み、真空乾燥機に入れて50℃、-100kpa以下で一晩乾燥させた後にガラス製バイアル瓶に約1g分のテストピースを量り取った。量り取ったテストピースの重量を「膨潤前の硬化物の重量」とした。ここに10gの低極性溶剤(プロピオン酸プロピルまたはトルエン)を加えてバイアル瓶のふたを閉め、80℃の温水に、溶剤の液面より水面が高くなるまで、バイアル瓶を浸し、5時間保持した。
 5時間浸漬後、バイアル瓶内のテストピースを取り出して、浸漬に使ったものと同じ種類の溶剤5gにテストピースを浸して洗浄する操作を2回繰り返した。全てのテストピースを紙(キムワイプ)で挟み、表面の溶剤を吸い取った後、重量を測定した。量り取ったテストピースの重量を「膨潤後の硬化物の重量」とした。
 膨潤後の重さを秤量したテストピースをガラス製ビーカーに全量移し、真空乾燥機に入れて50℃、-100kpa以下で一晩乾燥後、テストピースの重量を測定した。量り取ったテストピースの重量を「膨潤後の硬化物の乾燥重量」とした。
(Evaluation of swelling property)
Cut the test piece for swelling and solubility evaluation into pieces of about 5 mm x about 5 mm, place it in a vacuum dryer and dry it overnight at 50 ° C. and -100 kpa or less, and then weigh about 1 g of the test piece in a glass vial. I took The weight of the weighed test piece was defined as "the weight of the cured product before swelling". 10 g of a low-polarity solvent (propyl propionate or toluene) was added thereto, the lid of the vial was closed, and the vial was immersed in warm water at 80°C until the water surface was higher than the liquid surface of the solvent, and held for 5 hours. .
After 5 hours of immersion, the test piece was taken out from the vial, and the test piece was immersed in 5 g of the same kind of solvent as used for immersion, and washed twice. All the test pieces were sandwiched with paper (Kimwipe), and after absorbing the solvent on the surface, the weight was measured. The weight of the measured test piece was defined as "the weight of the cured product after swelling".
The swollen and weighed test piece was entirely transferred to a glass beaker, placed in a vacuum dryer and dried overnight at 50° C. and −100 kpa or less, and then the weight of the test piece was measured. The weight of the measured test piece was defined as the "dry weight of the cured product after swelling".
 「膨潤前の硬化物の重量」、「膨潤後の硬化物の重量」及び「膨潤後の硬化物の乾燥重量」を用いて、下の式1~2の通りに膨潤率1及び膨潤率2を計算し、下の式3の通りに膨潤率差Dを求めた。
 式1:膨潤率1(%)=膨潤後の硬化物の重量/膨潤前の硬化物の重量×100
 式2:膨潤率2(%)=膨潤後の硬化物の重量/膨潤後の硬化物の乾燥重量×100
 式3:膨潤率差D(%)=膨潤率2-膨潤率1
Using the "weight of the cured product before swelling", the "weight of the cured product after swelling" and the "dry weight of the cured product after swelling", a swelling rate of 1 and a swelling rate of 2 are calculated according to the following formulas 1 and 2. was calculated, and the swelling rate difference D was obtained as in Equation 3 below.
Formula 1: Swelling rate 1 (%) = weight of cured product after swelling / weight of cured product before swelling × 100
Formula 2: Swelling rate 2 (%) = weight of cured product after swelling / dry weight of cured product after swelling × 100
Formula 3: Swelling rate difference D (%) = swelling rate 2 - swelling rate 1
(溶解性の評価)
 膨潤試験に用いた液が入ったバイアル瓶に、この洗浄液2回分を加え、バイアル瓶を蓋をつけない状態で熱板上に放置して溶剤を揮発させた後、バイアル瓶ごと50℃、-100kpa以下の真空乾燥機で一晩乾燥させた。乾燥後のバイアル瓶の重量からあらかじめ秤量しておいたバイアル瓶の重量を差し引いて、「溶出物の重量」を求めた。「膨潤前の硬化物の重量」に対する「溶出物の重量」の割合を「溶出率」(重量%)として計算した。乾燥後バイアル瓶から取り出した溶出物は透明なフィルム状の物質で、そのIRスペクトルを測定したところ、溶剤がプロピオン酸プロピルの場合でもトルエンの場合でも、酸変性量が少ないポリオレフィンであった。また、この溶出物は透明なフィルム状であり、アセトンには溶けなかった。合成例にて得られたアセトン可溶部は何れもフィルム状にはならず、もろい固形またはワックス状であり、溶出物とは明らかに異なっていた。
(Evaluation of solubility)
Add this washing solution twice to the vial containing the liquid used in the swelling test, leave the vial uncovered on a hot plate to evaporate the solvent, and then heat the vial together at 50 ° C. - It was dried overnight in a vacuum dryer of 100 kpa or less. The weight of the pre-weighed vial was subtracted from the weight of the vial after drying to obtain the "weight of the extract". The ratio of the "weight of the eluted material" to the "weight of the cured product before swelling" was calculated as the "elution rate" (% by weight). The eluate removed from the vial after drying was a transparent film-like substance, and its IR spectrum was measured. In addition, this eluate was in the form of a transparent film and did not dissolve in acetone. None of the acetone-soluble parts obtained in the Synthesis Examples were in the form of a film, but in the form of a brittle solid or a wax, clearly different from the eluate.
<実施例2~12及び比較例1~8>
 その他の実施例、比較例の配合組成は表2にまとめたものを使用し、実施例1と同様の方法で剥離強度評価用テストピース及び膨潤性、溶解性評価用テストピースをそれぞれ作製し、実施例1と同様に評価した。
<Examples 2 to 12 and Comparative Examples 1 to 8>
The formulations of other examples and comparative examples are summarized in Table 2, and a test piece for evaluating peel strength and a test piece for evaluating swelling and solubility are prepared in the same manner as in Example 1, It was evaluated in the same manner as in Example 1.
 実施例1~12及び比較例1~8の剥離強度の測定結果及び膨潤試験結果も組成とともに表2にまとめた。 The peel strength measurement results and swelling test results of Examples 1 to 12 and Comparative Examples 1 to 8 are also summarized in Table 2 together with the compositions.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~12の接着剤組成物のように、膨潤率が低く、膨潤率差Dが低く、かつ溶出率も低い場合は、低極性溶剤に浸漬しても高い剥離強度を維持するが、比較例3~5の接着剤組成物のように低極性溶剤に対する膨潤率が高いものは浸漬後の剥離強度が低く、また、比較例1、2、6~8の接着剤組成物のように膨潤率が比較的低くても溶出率が高く、膨潤率差Dが大きいと剥離強度が低下した。 Like the adhesive compositions of Examples 1 to 12, when the swelling rate is low, the swelling rate difference D is low, and the elution rate is also low, high peel strength is maintained even when immersed in a low-polar solvent. Those having a high swelling rate in a low-polar solvent, such as the adhesive compositions of Comparative Examples 3 to 5, have low peel strength after immersion, and like the adhesive compositions of Comparative Examples 1, 2, and 6 to 8, Even when the swelling rate was relatively low, the elution rate was high, and when the swelling rate difference D was large, the peel strength decreased.
 実施例1、2、及び12、並びに比較例3及び5の接着剤組成物の硬化物、及び溶解性の評価にて得られたそれらから溶出した溶出物のIRスペクトルを図10~14に示す。 The IR spectra of the cured adhesive compositions of Examples 1, 2, and 12 and Comparative Examples 3 and 5, and the eluates obtained from the evaluation of solubility, are shown in FIGS. 10 to 14. .
 2021年2月24日に出願された日本国特許出願2021-027208号の開示は、その全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application No. 2021-027208 filed on February 24, 2021 is incorporated herein by reference in its entirety.

Claims (9)

  1.  不飽和カルボン酸無水物で酸変性した酸変性ポリオレフィンと、架橋剤と、を含有する接着剤組成物であって、前記接着剤組成物の硬化物を、溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させたとき、前記硬化物から前記溶剤に溶出する溶出物の量が前記硬化物の10重量%以下である、接着剤組成物。 An adhesive composition containing an acid-modified polyolefin acid-modified with an unsaturated carboxylic acid anhydride and a cross-linking agent, wherein the cured product of the adhesive composition has a solubility parameter of 7 to 10 (cal/cm 3 ) An adhesive composition wherein, when immersed in 1/2 of the solvent at 80°C for 5 hours, the amount of substances eluted from the cured product into the solvent is 10% by weight or less of the cured product.
  2.  前記硬化物を、前記溶剤に80℃で5時間浸漬させたとき、下式1及び2で計算される膨潤率1及び膨潤率2から下式3で計算される膨潤率差Dが40%以下である、請求項1に記載の接着剤組成物。
     
     式1:膨潤率1(%)=膨潤後の硬化物の重量/膨潤前の硬化物の重量×100
     式2:膨潤率2(%)=膨潤後の硬化物の重量/膨潤後の硬化物の乾燥重量×100
     式3:膨潤率差D(%)=膨潤率2-膨潤率1
     
    (「膨潤前の硬化物の重量」は前記硬化物の重量であり、「膨潤後の硬化物の重量」は、前記硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させて得られる膨潤した硬化物の重量であり、「膨潤後の硬化物の乾燥重量」は、膨潤した前記硬化物を乾燥させて得られる硬化物の重量である。)
    When the cured product is immersed in the solvent at 80° C. for 5 hours, the swelling rate difference D calculated by the following formula 3 from the swelling rate 1 and the swelling rate 2 calculated by the following formulas 1 and 2 is 40% or less. The adhesive composition according to claim 1, wherein

    Formula 1: Swelling rate 1 (%) = weight of cured product after swelling / weight of cured product before swelling × 100
    Formula 2: Swelling rate 2 (%) = weight of cured product after swelling / dry weight of cured product after swelling × 100
    Formula 3: Swelling rate difference D (%) = swelling rate 2 - swelling rate 1

    (“The weight of the cured product before swelling” is the weight of the cured product, and the “weight of the cured product after swelling” is the weight of the cured product having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 . It is the weight of the swollen cured product obtained by immersing it in a solvent at 80° C. for 5 hours, and the “dry weight of the cured product after swelling” is the weight of the cured product obtained by drying the swollen cured product. .)
  3.  前記硬化物を、前記溶剤に80℃で5時間浸漬させたとき、下式で計算される膨潤率1の値が500%以下である、請求項1または2に記載の接着剤組成物。
     
     膨潤率1(%)=膨潤後の硬化物の重量/膨潤前の硬化物の重量×100
     
    (「膨潤前の硬化物の重量」は前記硬化物の重量であり、「膨潤後の硬化物の重量」は、前記硬化物を溶解度パラメータが7~10(cal/cm1/2の溶剤に80℃で5時間浸漬させて得られる膨潤した硬化物の重量である。)
    3. The adhesive composition according to claim 1, wherein when the cured product is immersed in the solvent at 80[deg.] C. for 5 hours, the swelling ratio 1 calculated by the following formula is 500% or less.

    Swelling rate 1 (%) = weight of cured product after swelling / weight of cured product before swelling × 100

    (“The weight of the cured product before swelling” is the weight of the cured product, and the “weight of the cured product after swelling” is the weight of the cured product having a solubility parameter of 7 to 10 (cal/cm 3 ) 1/2 . It is the weight of the swollen cured product obtained by immersing it in a solvent at 80°C for 5 hours.)
  4.  前記酸変性ポリオレフィンの融点が酸変性前のポリオレフィンの融点に対して4.5~15℃低いことを特徴とする、請求項1~3のいずれか1項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, wherein the melting point of the acid-modified polyolefin is 4.5 to 15°C lower than the melting point of the polyolefin before acid modification.
  5.  前記酸変性ポリオレフィンの酸価が5~50mgKOH/gである、請求項1~4のいずれか1項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, wherein the acid-modified polyolefin has an acid value of 5 to 50 mgKOH/g.
  6.  前記架橋剤が多官能イソシアネート化合物であり、
     前記多官能イソシアネート化合物中のイソシアネート基のモル数と前記酸変性ポリオレフィン中のカルボキシ基のモル数の比率が0.3~15であり(但し、酸無水物構造(-CO-O-CO-)は1モル当たり2モルのカルボキシ基として、カルボキシ基に含まれる)、
     前記酸変性ポリオレフィンと前記多官能イソシアネート化合物の総重量における前記多官能イソシアネート化合物の重量比率が5~60重量%である、請求項1~5のいずれか1項に記載の接着剤組成物。
    The cross-linking agent is a polyfunctional isocyanate compound,
    The ratio of the number of moles of isocyanate groups in the polyfunctional isocyanate compound to the number of moles of carboxy groups in the acid-modified polyolefin is 0.3 to 15 (provided that the acid anhydride structure (-CO-O-CO-) is included in the carboxy group as 2 moles of carboxy groups per mole),
    The adhesive composition according to any one of claims 1 to 5, wherein the weight ratio of said polyfunctional isocyanate compound to the total weight of said acid-modified polyolefin and said polyfunctional isocyanate compound is 5 to 60 wt%.
  7.  前記酸変性ポリオレフィンにおけるアセトンに抽出可能な成分の量が2重量%超である、請求項1~6のいずれか1項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 6, wherein the amount of acetone-extractable components in the acid-modified polyolefin is more than 2% by weight.
  8.  請求項1~7のいずれか1項に記載の接着剤組成物が硬化してなる接着剤層と、当該接着剤層の一面側に接合された金属層と、当該接着剤層の他面側に接合された熱融着性樹脂層とを備えることを特徴とする、熱融着性部材。 An adhesive layer formed by curing the adhesive composition according to any one of claims 1 to 7, a metal layer bonded to one side of the adhesive layer, and the other side of the adhesive layer A heat-fusible member characterized by comprising a heat-fusible resin layer joined to a heat-fusible member.
  9.  請求項8に記載の熱融着性部材を含む蓄電デバイス用包装材料。
     
    A packaging material for an electric storage device, comprising the heat-fusible member according to claim 8 .
PCT/JP2022/006917 2021-02-24 2022-02-21 Adhesive composition WO2022181534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023502383A JPWO2022181534A1 (en) 2021-02-24 2022-02-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027208 2021-02-24
JP2021-027208 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181534A1 true WO2022181534A1 (en) 2022-09-01

Family

ID=83048081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006917 WO2022181534A1 (en) 2021-02-24 2022-02-21 Adhesive composition

Country Status (2)

Country Link
JP (1) JPWO2022181534A1 (en)
WO (1) WO2022181534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL443654A1 (en) * 2023-02-01 2024-04-22 Boryszew Spółka Akcyjna Composition of adhesive primer for plastics and method of its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221037A1 (en) * 2017-05-29 2018-12-06 東洋紡株式会社 Polyolefin-based adhesive agent composition
WO2020090818A1 (en) * 2018-10-29 2020-05-07 東亞合成株式会社 Adhesive agent composition and thermally fusible member using same
WO2021256416A1 (en) * 2020-06-16 2021-12-23 東亞合成株式会社 Adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221037A1 (en) * 2017-05-29 2018-12-06 東洋紡株式会社 Polyolefin-based adhesive agent composition
WO2020090818A1 (en) * 2018-10-29 2020-05-07 東亞合成株式会社 Adhesive agent composition and thermally fusible member using same
WO2021256416A1 (en) * 2020-06-16 2021-12-23 東亞合成株式会社 Adhesive composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL443654A1 (en) * 2023-02-01 2024-04-22 Boryszew Spółka Akcyjna Composition of adhesive primer for plastics and method of its production
PL246998B1 (en) * 2023-02-01 2025-04-22 Boryszew Spolka Akcyjna Adhesive primer composition for plastics and method of producing the same

Also Published As

Publication number Publication date
JPWO2022181534A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP7632499B2 (en) Polyolefin-based adhesive composition
KR101629304B1 (en) Adhesive composition, laminated structure, package material for electrical storage device, container for electrical storage device and electrical storage device
JP6930588B2 (en) Adhesive composition and heat-sealing member using it
WO2015190411A1 (en) Polyolefin-based adhesive composition
CN112955516B (en) Polyolefin adhesive composition
CN107429133A (en) Adhesive composition, layered product, electrical storage device packing timber, electrical storage device container and electrical storage device
WO2020090818A1 (en) Adhesive agent composition and thermally fusible member using same
WO2021256416A1 (en) Adhesive composition
WO2015033703A1 (en) Polyolefin-type adhesive agent composition
WO2022181534A1 (en) Adhesive composition
CN109563385B (en) Polyolefin adhesive composition
EP3778819B1 (en) Polyolefin-based adhesive composition
JP6435092B2 (en) Modified polyolefin resin
WO2024242028A1 (en) Power storage device packaging material
WO2024242027A1 (en) Adhesive composition
WO2025053178A1 (en) Adhesive composition and thermally adhesive member using same
JP2025025780A (en) Adhesive composition and heat-sealable member using same
EP4332188A1 (en) Multi-layer sheet and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502383

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759570

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载