WO2021166165A1 - Composition de caoutchouc - Google Patents
Composition de caoutchouc Download PDFInfo
- Publication number
- WO2021166165A1 WO2021166165A1 PCT/JP2020/006811 JP2020006811W WO2021166165A1 WO 2021166165 A1 WO2021166165 A1 WO 2021166165A1 JP 2020006811 W JP2020006811 W JP 2020006811W WO 2021166165 A1 WO2021166165 A1 WO 2021166165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber composition
- phr
- composition according
- epoxy
- preferred
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 124
- 239000000203 mixture Substances 0.000 title claims abstract description 110
- 239000005060 rubber Substances 0.000 title claims abstract description 98
- 239000004593 Epoxy Substances 0.000 claims abstract description 38
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 30
- 239000000806 elastomer Substances 0.000 claims abstract description 26
- 239000011256 inorganic filler Substances 0.000 claims abstract description 25
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 24
- 239000012763 reinforcing filler Substances 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 19
- 150000002978 peroxides Chemical class 0.000 claims abstract description 17
- 238000004132 cross linking Methods 0.000 claims abstract description 14
- 229920003244 diene elastomer Polymers 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- 239000003822 epoxy resin Substances 0.000 claims description 16
- 229920000647 polyepoxide Polymers 0.000 claims description 16
- 229920001577 copolymer Polymers 0.000 claims description 14
- 239000006229 carbon black Substances 0.000 claims description 13
- 239000004848 polyfunctional curative Substances 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 7
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 5
- 229920002857 polybutadiene Polymers 0.000 claims description 3
- 244000043261 Hevea brasiliensis Species 0.000 claims description 2
- 229920003052 natural elastomer Polymers 0.000 claims description 2
- 229920001194 natural rubber Polymers 0.000 claims description 2
- 150000001451 organic peroxides Chemical class 0.000 claims description 2
- 229920003051 synthetic elastomer Polymers 0.000 claims description 2
- 125000003700 epoxy group Chemical group 0.000 claims 1
- -1 vinyl aromatic compounds Chemical class 0.000 description 23
- 239000013032 Hydrocarbon resin Substances 0.000 description 16
- 229920006270 hydrocarbon resin Polymers 0.000 description 16
- 229920006026 co-polymeric resin Polymers 0.000 description 15
- 239000003921 oil Substances 0.000 description 13
- 235000019198 oils Nutrition 0.000 description 13
- 238000004073 vulcanization Methods 0.000 description 13
- 239000007822 coupling agent Substances 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 239000004014 plasticizer Substances 0.000 description 12
- 235000019241 carbon black Nutrition 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 150000001993 dienes Chemical class 0.000 description 10
- 239000000945 filler Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 229920003048 styrene butadiene rubber Polymers 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000005077 polysulfide Substances 0.000 description 9
- 229920001021 polysulfide Polymers 0.000 description 9
- 150000008117 polysulfides Polymers 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 8
- 229920001519 homopolymer Polymers 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 7
- 230000002787 reinforcement Effects 0.000 description 7
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 6
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000284 extract Substances 0.000 description 5
- 150000003505 terpenes Chemical class 0.000 description 5
- 235000007586 terpenes Nutrition 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- 239000008158 vegetable oil Substances 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- 239000002174 Styrene-butadiene Substances 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002600 sunflower oil Substances 0.000 description 4
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 235000019486 Sunflower oil Nutrition 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 3
- 125000002897 diene group Chemical group 0.000 description 3
- 150000002019 disulfides Chemical class 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 229920000962 poly(amidoamine) Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 2
- XMGQYMWWDOXHJM-SNVBAGLBSA-N (-)-α-limonene Chemical compound CC(=C)[C@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-SNVBAGLBSA-N 0.000 description 2
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 2
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 2
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical class ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 2
- CTHJQRHPNQEPAB-UHFFFAOYSA-N 2-methoxyethenylbenzene Chemical class COC=CC1=CC=CC=C1 CTHJQRHPNQEPAB-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002118 epoxides Chemical group 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012764 mineral filler Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000012936 vulcanization activator Substances 0.000 description 2
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- JXCAHDJDIAQCJO-UHFFFAOYSA-N (1-tert-butylperoxy-2-ethylhexyl) hydrogen carbonate Chemical compound CCCCC(CC)C(OC(O)=O)OOC(C)(C)C JXCAHDJDIAQCJO-UHFFFAOYSA-N 0.000 description 1
- ORMDVQRBTFCOGC-UHFFFAOYSA-N (2-hydroperoxy-4-methylpentan-2-yl)benzene Chemical compound CC(C)CC(C)(OO)C1=CC=CC=C1 ORMDVQRBTFCOGC-UHFFFAOYSA-N 0.000 description 1
- HGXJDMCMYLEZMJ-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOOC(=O)C(C)(C)C HGXJDMCMYLEZMJ-UHFFFAOYSA-N 0.000 description 1
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 1
- APPOKADJQUIAHP-GGWOSOGESA-N (2e,4e)-hexa-2,4-diene Chemical compound C\C=C\C=C\C APPOKADJQUIAHP-GGWOSOGESA-N 0.000 description 1
- AGKBXKFWMQLFGZ-UHFFFAOYSA-N (4-methylbenzoyl) 4-methylbenzenecarboperoxoate Chemical compound C1=CC(C)=CC=C1C(=O)OOC(=O)C1=CC=C(C)C=C1 AGKBXKFWMQLFGZ-UHFFFAOYSA-N 0.000 description 1
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 1
- RBORURQQJIQWBS-QVRNUERCSA-N (4ar,6r,7r,7as)-6-(6-amino-8-bromopurin-9-yl)-2-hydroxy-2-sulfanylidene-4a,6,7,7a-tetrahydro-4h-furo[3,2-d][1,3,2]dioxaphosphinin-7-ol Chemical compound C([C@H]1O2)OP(O)(=S)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1Br RBORURQQJIQWBS-QVRNUERCSA-N 0.000 description 1
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- RQHGZNBWBKINOY-PLNGDYQASA-N (z)-4-tert-butylperoxy-4-oxobut-2-enoic acid Chemical compound CC(C)(C)OOC(=O)\C=C/C(O)=O RQHGZNBWBKINOY-PLNGDYQASA-N 0.000 description 1
- IMYCVFRTNVMHAD-UHFFFAOYSA-N 1,1-bis(2-methylbutan-2-ylperoxy)cyclohexane Chemical compound CCC(C)(C)OOC1(OOC(C)(C)CC)CCCCC1 IMYCVFRTNVMHAD-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- CCNDOQHYOIISTA-UHFFFAOYSA-N 1,2-bis(2-tert-butylperoxypropan-2-yl)benzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1C(C)(C)OOC(C)(C)C CCNDOQHYOIISTA-UHFFFAOYSA-N 0.000 description 1
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- HQOVXPHOJANJBR-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)butane Chemical compound CC(C)(C)OOC(C)(CC)OOC(C)(C)C HQOVXPHOJANJBR-UHFFFAOYSA-N 0.000 description 1
- MUOYRBYBTJDAOT-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-yl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)CC(C)(C)OOC(=O)C(C)(C)C MUOYRBYBTJDAOT-UHFFFAOYSA-N 0.000 description 1
- CRJIYMRJTJWVLU-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-yl 3-(5,5-dimethylhexyl)dioxirane-3-carboxylate Chemical compound CC(C)(C)CCCCC1(C(=O)OC(C)(C)CC(C)(C)C)OO1 CRJIYMRJTJWVLU-UHFFFAOYSA-N 0.000 description 1
- DPGYCJUCJYUHTM-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-yloxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)CC(C)(C)C DPGYCJUCJYUHTM-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- HMWCQCYUKQZPRA-UHFFFAOYSA-N 2,4-dimethyl-3-methylidenepent-1-ene Chemical compound CC(C)C(=C)C(C)=C HMWCQCYUKQZPRA-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- IGZBSJAMZHNHKE-UHFFFAOYSA-N 2-[[4-[bis[4-(oxiran-2-ylmethoxy)phenyl]methyl]phenoxy]methyl]oxirane Chemical compound C1OC1COC(C=C1)=CC=C1C(C=1C=CC(OCC2OC2)=CC=1)C(C=C1)=CC=C1OCC1CO1 IGZBSJAMZHNHKE-UHFFFAOYSA-N 0.000 description 1
- KRDXTHSSNCTAGY-UHFFFAOYSA-N 2-cyclohexylpyrrolidine Chemical compound C1CCNC1C1CCCCC1 KRDXTHSSNCTAGY-UHFFFAOYSA-N 0.000 description 1
- PDELBHCVXBSVPJ-UHFFFAOYSA-N 2-ethenyl-1,3,5-trimethylbenzene Chemical group CC1=CC(C)=C(C=C)C(C)=C1 PDELBHCVXBSVPJ-UHFFFAOYSA-N 0.000 description 1
- ZACVGCNKGYYQHA-UHFFFAOYSA-N 2-ethylhexoxycarbonyloxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOC(=O)OCC(CC)CCCC ZACVGCNKGYYQHA-UHFFFAOYSA-N 0.000 description 1
- MIRQGKQPLPBZQM-UHFFFAOYSA-N 2-hydroperoxy-2,4,4-trimethylpentane Chemical compound CC(C)(C)CC(C)(C)OO MIRQGKQPLPBZQM-UHFFFAOYSA-N 0.000 description 1
- XRXANEMIFVRKLN-UHFFFAOYSA-N 2-hydroperoxy-2-methylbutane Chemical compound CCC(C)(C)OO XRXANEMIFVRKLN-UHFFFAOYSA-N 0.000 description 1
- JJRDRFZYKKFYMO-UHFFFAOYSA-N 2-methyl-2-(2-methylbutan-2-ylperoxy)butane Chemical compound CCC(C)(C)OOC(C)(C)CC JJRDRFZYKKFYMO-UHFFFAOYSA-N 0.000 description 1
- PJXJBPMWCKMWLS-UHFFFAOYSA-N 2-methyl-3-methylidenepent-1-ene Chemical compound CCC(=C)C(C)=C PJXJBPMWCKMWLS-UHFFFAOYSA-N 0.000 description 1
- RAWISQFSQWIXCW-UHFFFAOYSA-N 2-methylbutan-2-yl 2,2-dimethyloctaneperoxoate Chemical compound CCCCCCC(C)(C)C(=O)OOC(C)(C)CC RAWISQFSQWIXCW-UHFFFAOYSA-N 0.000 description 1
- AQKYLAIZOGOPAW-UHFFFAOYSA-N 2-methylbutan-2-yl 2,2-dimethylpropaneperoxoate Chemical compound CCC(C)(C)OOC(=O)C(C)(C)C AQKYLAIZOGOPAW-UHFFFAOYSA-N 0.000 description 1
- IFXDUNDBQDXPQZ-UHFFFAOYSA-N 2-methylbutan-2-yl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CC IFXDUNDBQDXPQZ-UHFFFAOYSA-N 0.000 description 1
- RFSCGDQQLKVJEJ-UHFFFAOYSA-N 2-methylbutan-2-yl benzenecarboperoxoate Chemical compound CCC(C)(C)OOC(=O)C1=CC=CC=C1 RFSCGDQQLKVJEJ-UHFFFAOYSA-N 0.000 description 1
- FSGAMPVWQZPGJF-UHFFFAOYSA-N 2-methylbutan-2-yl ethaneperoxoate Chemical compound CCC(C)(C)OOC(C)=O FSGAMPVWQZPGJF-UHFFFAOYSA-N 0.000 description 1
- RPBWMJBZQXCSFW-UHFFFAOYSA-N 2-methylpropanoyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(=O)C(C)C RPBWMJBZQXCSFW-UHFFFAOYSA-N 0.000 description 1
- WFAUFYAGXAXBEG-UHFFFAOYSA-N 2-phenylpropan-2-yl 4,4-dimethylpentaneperoxoate Chemical compound CC(C)(C)CCC(=O)OOC(C)(C)C1=CC=CC=C1 WFAUFYAGXAXBEG-UHFFFAOYSA-N 0.000 description 1
- OAOZZYBUAWEDRA-UHFFFAOYSA-N 3,4-dimethylidenehexane Chemical compound CCC(=C)C(=C)CC OAOZZYBUAWEDRA-UHFFFAOYSA-N 0.000 description 1
- XYFRHHAYSXIKGH-UHFFFAOYSA-N 3-(5-methoxy-2-methoxycarbonyl-1h-indol-3-yl)prop-2-enoic acid Chemical compound C1=C(OC)C=C2C(C=CC(O)=O)=C(C(=O)OC)NC2=C1 XYFRHHAYSXIKGH-UHFFFAOYSA-N 0.000 description 1
- AVXWWBFBRTXBRM-UHFFFAOYSA-N 3-bromopyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC=C1Br AVXWWBFBRTXBRM-UHFFFAOYSA-N 0.000 description 1
- CARSMBZECAABMO-UHFFFAOYSA-N 3-chloro-2,6-dimethylbenzoic acid Chemical compound CC1=CC=C(Cl)C(C)=C1C(O)=O CARSMBZECAABMO-UHFFFAOYSA-N 0.000 description 1
- RLRILSHEPYHXOG-UHFFFAOYSA-N 3-methoxybutoxycarbonyloxy 3-methoxybutyl carbonate Chemical compound COC(C)CCOC(=O)OOC(=O)OCCC(C)OC RLRILSHEPYHXOG-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 241000533950 Leucojum Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- SCPNGMKCUAZZOO-UHFFFAOYSA-N [3-[(3-dimethylsilyl-3-ethoxypropyl)tetrasulfanyl]-1-ethoxypropyl]-dimethylsilane Chemical compound CCOC([SiH](C)C)CCSSSSCCC([SiH](C)C)OCC SCPNGMKCUAZZOO-UHFFFAOYSA-N 0.000 description 1
- JUIBLDFFVYKUAC-UHFFFAOYSA-N [5-(2-ethylhexanoylperoxy)-2,5-dimethylhexan-2-yl] 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C(CC)CCCC JUIBLDFFVYKUAC-UHFFFAOYSA-N 0.000 description 1
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 235000019395 ammonium persulphate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Substances FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- NSGQRLUGQNBHLD-UHFFFAOYSA-N butan-2-yl butan-2-yloxycarbonyloxy carbonate Chemical compound CCC(C)OC(=O)OOC(=O)OC(C)CC NSGQRLUGQNBHLD-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- VARWGDYJBNFXQU-UHFFFAOYSA-N carboxyoxy hexadecyl carbonate Chemical compound CCCCCCCCCCCCCCCCOC(=O)OOC(O)=O VARWGDYJBNFXQU-UHFFFAOYSA-N 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- YQHLDYVWEZKEOX-UHFFFAOYSA-N cumene hydroperoxide Chemical compound OOC(C)(C)C1=CC=CC=C1 YQHLDYVWEZKEOX-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- XJOBOFWTZOKMOH-UHFFFAOYSA-N decanoyl decaneperoxoate Chemical compound CCCCCCCCCC(=O)OOC(=O)CCCCCCCCC XJOBOFWTZOKMOH-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- 239000004845 glycidylamine epoxy resin Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical class S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- WYKYCHHWIJXDAO-UHFFFAOYSA-N tert-butyl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)C WYKYCHHWIJXDAO-UHFFFAOYSA-N 0.000 description 1
- PFBLRDXPNUJYJM-UHFFFAOYSA-N tert-butyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(C)(C)C PFBLRDXPNUJYJM-UHFFFAOYSA-N 0.000 description 1
- VNJISVYSDHJQFR-UHFFFAOYSA-N tert-butyl 4,4-dimethylpentaneperoxoate Chemical compound CC(C)(C)CCC(=O)OOC(C)(C)C VNJISVYSDHJQFR-UHFFFAOYSA-N 0.000 description 1
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- CSKKAINPUYTTRW-UHFFFAOYSA-N tetradecoxycarbonyloxy tetradecyl carbonate Chemical compound CCCCCCCCCCCCCCOC(=O)OOC(=O)OCCCCCCCCCCCCCC CSKKAINPUYTTRW-UHFFFAOYSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- FBBATURSCRIBHN-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyldisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSCCC[Si](OCC)(OCC)OCC FBBATURSCRIBHN-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
Definitions
- the field of the invention is that of rubber compositions intended in particular for laminates, in more particular for articles, for example, tires, shoes, conveyors or caterpillar tracks, in still more particular for tires, in especial for treads of tires, in more especial for treads of tires capable of rolling over ground surface covered with snow.
- the snow tires classified in a category of use “snow”, identified by an inscription the alpine symbol (“3-peak-mountain with snowflake”), marked on their sidewalls, mean tires whose tread patterns, tread compounds and/or structures are primarily designed to achieve, in snow conditions, a performance better than that of normal tires intended for normal on-road use with regard to their abilities to initiate, maintain or stop vehicle motion.
- Snowy ground has a feature of having a low friction coefficient and a constant objective of manufacturers of rubber articles is improvement of a grip performance of rubber articles on snow-covered (snowy) ground without deteriorating the durability performance of rubber articles.
- a specific rubber composition intended in particular for a laminate in more particular for a rubber article, for example, a tire tread, a shoe sole, a conveyor belt and a caterpillar track tread, which allows an improved grip performance on snowy ground with the unexpectedly improved durability performance.
- elastomer matrix is understood to mean, in a given composition, all of the elastomers present in said rubber composition.
- each Tg DSC glass transition temperature
- DSC Densilic Acid
- any interval of values denoted by the expression “between a and b” represents the range of values of more than “a” and of less than “b” (i.e. the limits a and b excluded) whereas any interval of values denoted by the expression “from a to b” means the range of values going from “a” to “b” (i.e. including the strict limits a and b).
- composition comprising the mixture(s), the product of the reaction of the various constituents used or both, some of the constituents being able or intended to react together, at least partly, during the various manufacturing phases of the composition, in particular during the vulcanization (curing).
- a first aspect of the invention is a rubber composition based on at least an elastomer matrix, a reinforcing filler predominately comprising a reinforcing inorganic filler, an epoxy, and a crosslinking system based on a peroxide.
- the specific rubber composition allows an improved grip performance on snowy ground with the unexpectedly improved durability performance.
- the rubber composition according to the invention is based on an elastomer matrix.
- Elastomer (or loosely “rubber”, the two terms being regarded as synonyms) of the “diene” type is to be understood in a known manner as an (meaning one or more) elastomer derived at least partly (i.e. a homopolymer or a copolymer) from diene monomers (monomers bearing two carbon-carbon double bonds, conjugated or not).
- diene elastomers can be classified into two categories: “essentially unsaturated” or “essentially saturated”.
- essentially unsaturated is understood to mean a diene elastomer resulting at least in part from conjugated diene monomers having a content of units of diene origin (conjugated dienes) which is greater than 15% (mol %); thus it is that diene elastomers such as butyl rubbers or diene/ ⁇ -olefin copolymers of the EPDM type do not fall under the preceding definition and may especially be described as “essentially saturated” diene elastomers (low or very low content of units of diene origin, always less than 15%).
- the expression “highly unsaturated” diene elastomer is understood to mean in particular a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
- diene elastomer a person skilled in the art of rubber article (for example, tires) will understand that the invention is preferably employed with essentially unsaturated diene elastomers.
- diene elastomer capable of being used in the compositions in accordance with the invention is understood in particular to mean: (a) - any homopolymer obtained by polymerization of a conjugated diene monomer, preferably having from 4 to 12 carbon atoms; (b) - any copolymer obtained by copolymerization of one or more conjugated dienes with one another or with one or more vinyl aromatic compounds preferably having from 8 to 20 carbon atoms.
- conjugated dienes 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di(C 1 -C 5 alkyl)-1,3-butadienes, such as, for example, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1 ,3-butadiene or 2-methyl-3-isopropyl-1 ,3-butadiene, an aryl-1,3-butadiene, 1,3-pentadiene or 2,4-hexadiene.
- 1,3-butadiene 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di(C 1 -C 5 alkyl)-1,3-butadienes, such as, for example, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1 ,
- vinylaromatic compounds styrene, ortho-, meta- or para-methylstyrene, the “vinyltoluene” commercial mixture, para-(tert-butyl) styrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene or vinylnaphthalene.
- a second aspect of the invention is the rubber composition according to the first aspect, wherein the elastomer matrix comprises at least one diene elastomer selected from the group consisting of polybutadienes, natural rubber, synthetic polyisoprenes, butadiene copolymers, isoprene copolymers and combinations thereof.
- the copolymers are selected from the group consisting of butadiene copolymers, isoprene copolymers and combinations thereof, preferably selected from the group consisting of butadiene copolymers and combinations thereof, more preferably selected from the group consisting of styrene-butadiene copolymers (SBR), butadiene-isoprene copolymers (BIR), styrene-isoprene copolymers (SIR), styrene-butadiene-isoprene copolymers (SBIR) and combinations thereof, still more preferably selected from the group consisting of styrene-butadiene copolymers (SBR) and combinations thereof.
- SBR styrene-butadiene copolymers
- BIR butadiene-isoprene copolymers
- SIR styrene-isoprene copolymers
- SBIR styrene
- the diene elastomer may have any microstructure which depends on the polymerization conditions used, in particular on the presence or absence of a modifying agent(s), a randomizing agent(s) or both and on the amount(s) of modifying agent(s), randomizing agent(s) or both employed.
- This elastomer may, for example, be a block, statistical, sequential or micro sequential elastomer and may be prepared in dispersion or in solution.
- This elastomer may be coupled, star-branched or both; or else functionalized with a coupling agent(s), a star-branching agent(s) or both; or a functionalizing agent(s).
- the elastomer matrix comprises more than 50 phr and up to 100 phr, preferably at least 55 phr, more preferably at least 60 phr, still more preferably at least 65 phr, particularly at least 70 phr, more particularly at least 75 phr, of a first diene elastomer which is a styrene butadiene copolymer(s), preferably a solution styrene butadiene copolymer(s), and the elastomer matrix comprises no second diene elastomer or comprises less than 50 phr, preferably at most 45 phr, more preferably at most 40 phr, still more preferably at most 35 phr, particularly at most 30 phr, more particularly at most 25 phr, of a second diene elastomer which is different from the first diene elastomer.
- a first diene elastomer which is
- the first diene elastomer exhibits a glass transition temperature (Tg DSC ) of less than -40°C (for example, between -40°C and -110°C), preferably less than -45°C (for example, between -45°C and -105°C), more preferably less than -50°C (for example, between -50°C and -100°C), still more preferably less than -55°C (for example, between -55°C and -95°C), particularly at most -60°C (for example, -60°C to -90°C).
- Tg DSC glass transition temperature
- the second diene elastomer is a polybutadiene(s) (BR) more preferably having a content (molar %) of 1,2-units of between 4% and 80% or those having a content (molar %) of cis-1,4-units of greater than 80%, more preferably greater than 90% (molar %), still more preferably greater than or equal to 96% (molar %).
- BR polybutadiene
- the styrene-butadiene copolymer exhibits a styrene unit of less than 30% by weight (for example, between 3 and 30% by weight) per 100% by weight of the styrene-butadiene copolymer, preferably less than 27% by weight (for example, between 5 and 27% by weight), more preferably less than 23% by weight (for example, between 7 and 23% by weight), still more preferably less than 20% by weight (for example, between 10 and 20% by weight), particularly at most 18% by weight (for example, from 12 to 18%).
- the styrene unit can be determined by 1H NMR method in accordance with ISO 21561.
- the rubber composition according to the invention is based on a reinforcing filler.
- Use may be made of any type of reinforcing filler known for its capabilities of reinforcing a rubber composition which can be used for the manufacture of the article, for example a reinforcing organic filler, such as a carbon black, or a reinforcing inorganic filler, such as silica, with which a coupling agent is combined in a known way.
- a reinforcing organic filler such as a carbon black
- a reinforcing inorganic filler such as silica
- a third aspect of the invention is the rubber composition according to the first aspect or the second aspect, wherein the amount of reinforcing filler is more than 80 phr, preferably more than 90 phr, more preferably more than 100 phr, still more preferably more than 110 phr, particularly more than 115 phr, more particularly more than 120 phr.
- the amount of reinforcing filler is less than 300 phr, preferably less than 280 phr, more preferably less than 260 phr, still more preferably less than 240 phr, particularly less than 220 phr, more particularly less than 200 phr.
- the reinforcing filler in the rubber composition according to the invention predominately comprises a reinforcing inorganic filler, that is, the reinforcing filler comprises more than 50%, preferably more than 60%, more preferably more than 70%, still more preferably more than 80%, particularly more than 90%, by weight of the reinforcing inorganic filler per 100% by weight of the reinforcing filler.
- filler should be understood here to mean any inorganic or mineral filler, whatever its color and its origin (natural or synthetic), also referred to as “white filler”, “clear filler” or even “non-black filler”, in contrast to “carbon black”, capable of reinforcing by itself alone, without means other than an intermediate coupling agent, a rubber composition intended for the manufacture of rubber articles (for example, tires), in other words capable of replacing, in its reinforcing role, a conventional tire-grade carbon black; such a filler is generally characterized, in a known manner, by the presence of hydroxyl (-OH) groups at its surface.
- -OH hydroxyl
- this filler is unimportant, whether it is in the form of powder, microbeads, granules, beads or any other suitable densified form.
- the reinforcing inorganic filler of combinations of various reinforcing inorganic fillers, preferably of highly dispersible siliceous fillers, aluminous fillers or both is described hereafter.
- Mineral fillers of the siliceous type preferably silica (SiO 2 )
- the aluminous type preferably alumina (Al 2 O 3 )
- both are suitable in particular as the reinforcing inorganic fillers.
- a fourth aspect of the invention is the rubber composition according to any one of the first to the third aspects, wherein the amount of reinforcing inorganic filler is more than 50 phr, preferably more than 60 phr, more preferably more than 70 phr, still more preferably more than 80 phr, particularly more than 90 phr, more particularly more than 100 phr, still more particularly more than 110 phr, advantageously at least 115 phr.
- the amount of reinforcing inorganic filler is less than 300 phr, preferably less than 280 phr, more preferably less than 260 phr, still more preferably less than 240 phr, particularly less than 220 phr, more particularly less than 200 phr, still more particularly less than 180 phr, advantageously at most 165 phr.
- a fifth aspect of the invention is the rubber composition according to any one of the first to the fourth aspects, wherein the reinforcing inorganic filler predominately comprises a silica, that is, the reinforcing inorganic filler comprises more than 50%, preferably more than 60%, more preferably more than 70%, still more preferably more than 80%, particularly more than 90%, more particularly more than 100%, by weight of silica per 100% by weight of the reinforcing inorganic filer.
- the reinforcing inorganic filler may comprise a type of silica or a blend of several silicas.
- the silica used may be any reinforcing silica known to a person skilled in the art, in particular any precipitated or pyrogenic silica having a BET surface area and a CTAB specific surface area that are both less than 450 m 2 /g, preferably from 20 to 400 m 2 /g, more preferably from 50 to 350 m 2 /g, still more preferably from 100 to 300 m 2 /g, particularly from 150 to 250 m 2 /g.
- the BET surface area is measured according to a known method, that is, by gas adsorption using the Brunauer-Emmett-Teller method described in “The Journal of the American Chemical Society”, Vol. 60, page 309, February 1938, and more specifically, in accordance with the French standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points); where gas: nitrogen, degassing: 1 hour at 160°C, relative pressure range p/po: 0.05 to 0.17).
- the CTAB specific surface area is determined according to the French standard NF T 45-007 of November 1987 (method B).
- a reinforcing filler of another nature, in particular organic nature, such as a carbon black might be used as filler equivalent to the reinforcing inorganic filler described in the present section, provided that this reinforcing filler is covered with an inorganic layer, such as silica, or else comprises, at its surface, functional sites, in particular hydroxyls, requiring the use of a coupling agent in order to form the connection between the filler and the elastomer.
- an inorganic layer such as silica
- an inorganic layer such as silica
- a sixth aspect of the invention is the rubber composition according to any one of the first to the fifth aspects, wherein the reinforcing filler further comprises a carbon black, and wherein the amount of carbon black is less than 45 phr, preferably less than 40 phr, more preferably less than 35 phr, still more preferably less than 30 phr, particularly less than 25 phr, more particularly less than 20 phr, still more particularly less than 15 phr, especially less than 10 phr, more especially less than 5 phr.
- the amount of carbon black is more than 1 phr, preferably more than 2 phr.
- the diene elastomer In order to couple the reinforcing inorganic filler to the elastomer matrix, for instance, the diene elastomer, use can be made, in a known manner, of a coupling agent (or bonding agent) intended to provide a satisfactory connection, of chemical nature, physical nature or both, between the reinforcing inorganic filler (surface of its particles) and the elastomer matrix, for instance, the diene elastomer.
- This coupling agent is at least bifunctional. Use can be made in particular of at least bifunctional organosilanes or polyorganosiloxanes.
- silane polysulfides referred to as “symmetrical” or “asymmetrical” depending on their particular structure, as described, for example, in applications WO 03/002648, WO 03/002649 and WO 2004/033548.
- silane polysulfides correspond to the following general formula (I): (I) Z - A - Sx - A - Z, in which: - x is an integer from 2 to 8 (preferably from 2 to 5); - A is a divalent hydrocarbon radical (preferably, C 1 -C 18 alkylene groups or C 6 -C 12 arylene groups, more particularly C 1 -C 10 , in particular C 1 -C 4 , alkylenes, especially propylene); - Z corresponds to one of the formulae below: in which: - the R 1 radicals which are unsubstituted or substituted and identical to or different from one another, represent a C 1 -C 18 alkyl, C 5 -C 18 cycloalkyl or C 6 -C 18 aryl group (preferably, C 1 -C 6 alkyl, cyclohexyl or phenyl groups, in particular C 1 -C 4 alkyl groups, more particularly methyl, ethyl or
- the mean value of the “x” indices is a fractional number preferably of between 2 and 5, more preferably of approximately 4.
- silane polysulfides of bis((C 1 -C 4 )alkoxyl(C 1 -C 4 )alkylsilyl(C 1 -C 4 )alkyl)polysulfides (in particular disulfides, trisulfides or tetrasulfides), such as, for example, bis(3-trimethoxysilylpropyl) or bis(3-triethoxysilylpropyl)polysulfides.
- TESPT bis(3-triethoxysilylpropyl)tetrasulfide
- TESPD bis(3-triethoxysilylpropyl)disulfide
- silanes bearing at least one thiol (-SH) function referred to as mercaptosilanes
- at least one blocked thiol function or both such as described, for example, in patents or patent applications US 6 849 754, WO 99/09036, WO 2006/023815, WO 2007/098080, WO 2008/055986 and WO 2010/072685.
- the content of coupling agent is from 0.5 to 15% by weight per 100% by weight of the reinforcing inorganic filler, particularly silica.
- the rubber composition of the tread of the rubber composition according to the invention is based on less than 40 phr (for example, between 0 and 40 phr), preferably less than 30 phr (for example, between 1 and 30 phr), more preferably less than 20 phr (for example, between 2 and 20 phr), of coupling agent.
- the rubber composition according to the invention is based on an epoxy.
- the epoxy comprises at least one compound whose molecule comprises at least one epoxide functional group which is a three-membered ring comprising an oxygen atom and two carbon atoms.
- the epoxy may harden by reacting with at least one co-reactant which is an epoxy hardener.
- a seventh aspect of the invention is the rubber composition according to any one of the first to the sixth aspects, wherein the amount of epoxy is at least 1 phr, preferably at least 5 phr, more preferably at least 10 phr, still more preferably at least 15 phr, particularly at least 20 phr, more particularly at least 25 phr, still more particularly at least 30 phr.
- the amount of epoxy is at most 50 phr.
- An eighth aspect of the invention is the rubber composition according to any one of the first to the seventh aspects, wherein the epoxy comprises at least one epoxy resin comprising at least two, preferably more than two, more preferably at least three, epoxide functional groups in a molecule.
- the epoxy resin is selected from the group consisting of glycidyl ether epoxy resin(s), glycidyl amine epoxy resin(s), glycidyl ester epoxy resin(s), olefin oxidation (alicyclic) epoxy resin(s) and combinations thereof, preferably selected from the group consisting of glycidyl ether epoxy resin(s) and combinations thereof, more preferably selected from the group consisting of di-functional glycidyl ether epoxy resin(s), multi-functional glycidyl ether epoxy resin(s) and combinations thereof, still more preferably selected from the group consisting multi-functional glycidyl ether epoxy resin(s) and combinations thereof, particularly the multi-functional glycidyl ether epoxy resin(s) selected from the group consisting of oligomer epoxy resin(s), monomer epoxy resin(s) and combinations thereof.
- the epoxy resin has a viscosity of less than 2000 mPa ⁇ s, preferably less than 1500 mPa ⁇ s, more preferably less than 1000 mPa ⁇ s, still more preferably less than 500 mPa ⁇ s, at 150°C.
- the above viscosity at 150°C can measured in accordance with ASTM D4287.
- the epoxy resin has an epoxy equivalent weight of less than 500 g/eq, preferably less than 400 g/eq, more preferably less than 300 g/eq, still more preferably less than 200 g/eq, particularly less than 190 g/eq, more particularly less than 180 g/eq, still more particularly less than 170 g/eq.
- the epoxy equivalent can be determined in accordance with ISO 3001.
- the rubber composition according to the invention is based on a crosslinking system based on a peroxide.
- a ninth aspect of the invention is the rubber composition according to any one of the first to the eighth aspects, wherein the amount of peroxide is less than 10 phr, preferably less than 9 phr, more preferably less than 8 phr, still more preferably less than 7 phr, particularly less than 6 phr, more particularly less than 5 phr, still more particularly less than 4 phr, advantageously less than 3 phr.
- the amount of peroxide in the rubber composition is more than 1 phr.
- a tenth aspect of the invention is the rubber composition according to any one of the first to the ninth aspects, wherein the peroxide is an organic peroxide, preferably selected from the group consisting of dicumyl peroxide, tert-butyl hydroperoxide, tert-amyl hydroperoxide, cumyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, isopropylcumyl hydroperoxide, 2,5-bis (tert-butylperoxy) -2,5-dimethyl-3-hexyne, 3,6,9-triethyl-3,6,9-trimethyl-1,4,7-triperoxonane, di-tert-butyl peroxide, 2,5-bis (tert-butylperoxy) -2,5-dimethylhexane, Di (tert-butylperoxyisopropyl) benzene, tert-butylcumyl peroxide, di-tert-a
- the crosslinking system may be further based on a vulcanization activator.
- the vulcanization activator may be based on zinc (pure zinc, zinc derivatives (for example, zinc fatty acid salt)), fatty acid (in particular, stearic acid) or combinations thereof.
- the crosslinking system is free of any sulfur-based vulcanization accelerator, or the crosslinking system is further based on a sulfur-based vulcanization accelerator of which the amount in phr is lower than that of the peroxide, preferably free of the sulfur-based vulcanization accelerator.
- the sulfur-based vulcanization is a vulcanization accelerator comprising at least one sulfur atom in a molecule.
- An eleventh aspect of the invention is the rubber composition any one of the first to the tenth aspects, wherein the rubber composition is further based on a plasticizing agent.
- the role of the plasticizing agent is to soften the matrix by diluting the elastomer and the reinforcing filler.
- the plasticizing agent comprises a liquid plasticizer, a hydrocarbon resin or combinations thereof.
- the liquid plasticizer is a liquid at ambient temperature (for example, 20°C) under atmospheric pressure.
- the liquid plasticizer has a Tg DSC of preferably less than -20°C, more preferably less than -30°C, still more preferably less than -40°C.
- the liquid plasticizer is selected from the group consisting of liquid diene polymer(s), polyolefinic oil(s), naphthenic oil(s), paraffinic oil(s), Distillate Aromatic Extracts (DAE) oil(s), Medium Extracted Solvates (MES) oil(s), Treated Distillate Aromatic Extracts (TDAE) oil(s), Residual Aromatic Extracts (RAE) oil(s), Treated Residual Aromatic Extracts (TRAE) oil(s), Safety Residual Aromatic Extracts (SRAE) oil(s), mineral oil(s), vegetable oil(s), ether plasticizer(s), ester plasticizer(s), phosphate plasticizer(s), sulfonate plasticizer(s) and combinations thereof, preferably selected from the group consisting of MES oil(s), TDAE oil(s), naphthenic oil(s), vegetable oil(s) and combinations thereof, more preferably selected from the group consisting of
- the amount of liquid plasticizer is more than 0 phr, preferably more than 5 phr, more preferably more than 10 phr, still more preferably more than 15 phr, particularly more than 20 phr.
- the amount of liquid plasticizer is less than 50 phr, preferably less than 45 phr, more preferably less than 40 phr, still more preferably less than 35 phr, particularly less than 30 phr.
- the hydrocarbon resin is solid at ambient temperature (for example, 20°C) under atmospheric pressure.
- the hydrocarbon resin is polymer well known by a person skilled in the art, which is essentially based on carbon and hydrogen, and thus miscible by nature in a rubber composition, for instance, an elastomer matrix, for a specific instance, a diene elastomer composition.
- the hydrocarbon resin can be aliphatic or aromatic or also of the aliphatic/aromatic type, that is to say based on aliphatic, aromatic or both monomers.
- the hydrocarbon resin can be natural or synthetic and may or may not be petroleum-based (if such is the case, also known under the name of petroleum resin).
- the hydrocarbon resin is preferably exclusively hydrocarbon, that is to say, that the hydrocarbon resin comprises only carbon and hydrogen atoms.
- the hydrocarbon resin has a Tg DSC of preferably more than 20°C, more preferably more than 30°C, still more preferably more than 40°C, and also less than 100°C.
- the hydrocarbon resin has a number-average molecular weight (Mn) of between 400 and 2000 g/mol (more preferably between 500 and 1500 g/mol).
- the macrostructure (Mw, Mn and PI) of the hydrocarbon resin is determined by steric exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35°C; concentration 1 g/l; flow rate 1 ml/min; solution filtered through a filter with a porosity of 0.45 ⁇ m before injection; Moore calibration with polystyrene standards; set of 3 “Waters” columns in series (“Styragel” HR4E, HR1 and HR0.5); detection by differential refractometer (“Waters 2410”) and its associated operating software (“Waters Empower”).
- SEC steric exclusion chromatography
- the hydrocarbon resin is selected from the group consisting of cyclopentadiene (abbreviated to CPD) homopolymer or copolymer resins, dicyclopentadiene (abbreviated to DCPD) homopolymer or copolymer resins, terpene homopolymer or copolymer resins, C 5 fraction homopolymer or copolymer resins, C 9 fraction homopolymer or copolymer resins, alpha-methyl styrene homopolymer or copolymer resins and combinations thereof.
- CPD cyclopentadiene
- DCPD dicyclopentadiene
- Use is more preferably made, among the above copolymer resins, of those selected from the group consisting of (D)CPD/vinylaromatic copolymer resins, (D)CPD/terpene copolymer resins, (D)CPD/C 5 fraction copolymer resins, (D)CPD/C 9 fraction copolymer resins, terpene/vinylaromatic copolymer resins, terpene/phenol copolymer resins, C 5 fraction/vinyl-aromatic copolymer resins, C 9 fraction/vinylaromatic copolymer resins and combinations thereof.
- pene combines here, in a known way, the ⁇ -pinene, ⁇ -pinene and limonene monomers; use is preferably made of a limonene monomer, which compound exists, in a known way, in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer) or else dipentene, the racemate of the dextrorotatory and laevorotatory enantiomers.
- the vinylaromatic compound is styrene or a vinylaromatic monomer resulting from a C 9 fraction (or more generally from a C 8 to C 10 fraction).
- the vinylaromatic compound is the minor monomer, expressed as molar fraction, in the copolymer under consideration.
- the amount in phr of hydrocarbon resin is higher than that of the liquid plasticizer, preferably higher than twice of the amount in phr of liquid plasticizer.
- the amount of hydrocarbon resin is more than 10 phr, preferably more than 20 phr, more preferably more than 30 phr, still more preferably more than 40 phr, particularly more than 50 phr.
- the amount of hydrocarbon resin is less than 100 phr, preferably less than 90 phr, more preferably less than 80 phr, still more preferably less than 70 phr, particularly less than 60 phr.
- the amount of plasticizing agent is less than 120 phr, preferably less than 115 phr, more preferably less than 110 phr, still more preferably less than 105 phr, particularly less than 100 phr, more particularly less than 95 phr, still more particularly less than 90 phr, advantageously less than 85 phr.
- a twelfth aspect of the invention is the rubber composition according to the eleventh aspects, wherein the amount of plasticizing agent is more than 50 phr, preferably more than 55 phr, more preferably more than 60 phr, still more preferably more than 65 phr, particularly more than 70 phr, more particularly more than 75 phr.
- a thirteenth aspect of the invention is the rubber composition according to any one of the first to the twelfth aspect, wherein the rubber composition is free of any epoxy hardener, or the rubber composition is further based on an epoxy hardener of which the amount in phr is lower than that of the epoxy, preferably wherein the amount of epoxy hardener is less than 30 phr, more preferably less than 25 phr, still more preferably less than 20 phr, still preferably less than 15 phr, particularly less than 10 phr, more particularly less than 5 phr, still more particularly less than 1 phr.
- the epoxy hardener may comprise at least one compound selected from the group consisting of amine compound(s) (for example, polyamidoamine(s), aliphatic amine(s), alicyclic amine(s), aromatic amine(s), fatty aromatic amine(s), amine(s) having ether bond(s), amine(s) having hydroxyl group(s), polyoxypropylene amine(s), modified amine(s) (for example, epoxy modified amine(s), Mannich modified amine(s), amine(s) modified by Michael addition(s), amine salt compound(s) (for example, boron trifluoride amine complex compound(s))), amide compound(s) (for example, polyamide obtained by reacting polyamine), isocyanate compound(s), aromatic diazonium salt compound(s), guanidino compound(s), thiol compound(s) (for example, polythiol), aromatic sulfonium salt compound(s), phenol compound(s), acid anhydride compound(
- the rubber composition is free of any epoxy hardener.
- the rubber composition according to the invention may be based on all or a portion(s) of the usual additives generally used in the elastomer composition(s) intended in particular for laminates, in more particular for articles (for example, tires, shoes, conveyors or caterpillar tracks), in more particular for tires, in still more particular for snow tires or winter tires, such as, for example, protection agents, such as antiozone waxes, chemical antiozonants, antioxidants, tackifying resins.
- protection agents such as antiozone waxes, chemical antiozonants, antioxidants, tackifying resins.
- the composition can be also based on coupling activators when a coupling agent is used, agents for covering the reinforcing inorganic filler or more generally processing aids capable, in a known way, by virtue of an improvement in the dispersion of the filler in the rubber matrix and of a lowering of the viscosity of the compositions, of improving their property of processing in the raw state; these agents are, for example, hydrolysable silanes, such as alkylalkoxysilanes, polyols, polyethers, or hydroxylated or hydrolysable polyorganosiloxanes.
- hydrolysable silanes such as alkylalkoxysilanes, polyols, polyethers, or hydroxylated or hydrolysable polyorganosiloxanes.
- the rubber composition according to the invention may be manufactured in appropriate mixers using two successive preparation phases well known to a person skilled in the art: a first phase of thermomechanical working or kneading (referred to as “non-productive” phase) at high temperature, up to a maximum temperature of between 110°C and 190°C, preferably between 130°C and 180°C, followed by a second phase of mechanical working (referred to as “productive” phase) at a lower temperature, typically of less than 110°C, for example between 40°C and 100°C, finishing phase during which the peroxide in the crosslinking system are incorporated.
- a first phase of thermomechanical working or kneading referred to as “non-productive” phase
- productive phase a second phase of mechanical working
- a process which can be used for the manufacture of such composition comprises, for example and preferably, the following steps: - incorporating in the elastomer matrix(es), for instance, the diene elastomer(s), in a mixer, the reinforcing filler, the epoxy, during a first stage (referred to as a “non- productive” stage) everything being kneaded thermomechanically (for example in one or more steps) until a maximum temperature of between 110°C and 190°C is reached; - cooling the combined mixture to a temperature of less than 100°C; - subsequently incorporating, during a second stage (referred to as a “productive” stage), the peroxide in the crosslinking system; and - kneading everything up to a maximum temperature of less than 110°C.
- the first (non-productive) phase is carried out in a single thermomechanical stage during which all the necessary constituents are introduced into an appropriate mixer, such as a standard internal mixer, followed, in a second step, for example after kneading for 1 to 2 minutes, by the other additives, optional additional filler-covering agents or processing aids, with the exception of the peroxide in the crosslinking system.
- the total kneading time, in this non-productive phase is preferably between 1 and 15 min.
- the peroxide in the crosslinking system are then incorporated at low temperature (for example, between 40°C and 100°C), generally in an external mixer, such as an open mill; the combined mixture is then mixed (the second (productive) phase) for a few minutes, for example between 2 and 15 min.
- low temperature for example, between 40°C and 100°C
- an external mixer such as an open mill
- the final composition thus obtained is subsequently extruded or calendered, for example in the form of a sheet or of a plaque, in particular for laboratory characterization, or else extruded in the form of a rubber profiled element which can be used directly as a laminate or an article, for example, a tire tread, a shoe sole, a conveyor belt and a caterpillar track tread.
- a fourteenth aspect of the invention is a laminate comprising at least two superposed portions comprising a first portion being made of a first rubber composition (FC) based on an elastomer matrix, a reinforcing filler and at least one of an epoxy or epoxy hardener, and a second portion being made of a second rubber composition (SC) different from the first rubber composition (FC), and the second rubber composition (SC) being a rubber composition according to any one of the first to the thirteenth aspects, preferably wherein the amount in phr of epoxy in the first rubber composition (FC) is lower than that in the second rubber composition (SC).
- FC first rubber composition
- SC second rubber composition
- the laminate according to the fourteenth aspect it is possible to build a first layer of a homogeneous rubber composition, as the first rubber composition (FC), and a second layer of a homogeneous rubber composition, as the second rubber composition (SC), then to superpose the first layer onto the second layer or then to superpose the second layer onto the first layer, or to sandwich the other layer(s) or portion(s) between the first layer and the second layer, to get the laminate.
- FC first rubber composition
- SC second layer of a homogeneous rubber composition
- the first portion is adjacent to the second portion.
- a preferred embodiment of the invention is an article comprising a rubber composition according to any one of the first to the thirteenth aspects, preferably the article comprises a laminate according to the fourteenth aspect.
- the article is intended to contact with the ground, preferably the article comprises a laminate according to the fourteenth aspect, and at least one of the first portion or the second portion, more preferably each of the portions, is intended to contact with the ground during the service life of the article.
- the service life means the duration to use the article (for example, the term from the new state to the final state of the article, in case of that the article is a tire, the final state means a state on reaching the wear indicator bar(s) in the tread of tire).
- the article comprises a laminate according to the fourteenth aspect, and the first portion is arranged nearer to the ground than the second portion.
- the superposed portions which are the first portion and the second portion are radially superposed portions, that is, the first portion is radially exterior to the second portion.
- the article comprises a laminate according to the fourteenth aspect, and the second portion is arranged nearer to the ground than the first portion.
- the superposed portions which are the second portion and the first portion are radially superposed portions, that is, the second portion is radially exterior to the first portion.
- the “radially” means “in the radial direction” which is a direction perpendicular to the axis of the rotation of a tire.
- the article is a tire (for example, a tire tread), a shoe (for example, a shoe sole), a conveyor (for example, a conveyor belt) or a caterpillar track (for example, a caterpillar track tread), preferably a tire, a shoe or a caterpillar track, more preferably a tire tread, a shoe sole or a caterpillar track tread, still more preferably a tire tread.
- a tire for example, a tire tread
- a shoe for example, a shoe sole
- a conveyor for example, a conveyor belt
- a caterpillar track for example, a caterpillar track tread
- the article is a tire comprising several tire parts which are a tread intended to at least partially contact with the ground, two sidewalls intended to contact with the outside air, but not to contact with the ground, two beads, a crown prolonged by two sidewalls ended by two beads, a carcass reinforcement formed at least one ply reinforced by radial textile cards, the carcass reinforcement passing into the crown and the sidewalls and the carcass reinforcement anchored in the two beads, preferably further comprising crown reinforcement placed between carcass reinforcement and the tread, more preferably further comprising an inner liner intended to protect the carcass reinforcement from diffusion of air coming from a space inside the tire, and the inner liner placed radially inner than carcass reinforcement.
- a portion made of the rubber composition according to any one of the first to the thirteenth aspects, preferably the laminate according to the fourteenth aspect, is placed in at least one of the above tire parts, between two of the above tire parts, radially outer than one of the above tire parts, radially inner than one of the above tire parts or combinations thereof.
- a fifteenth aspect of the invention is a tire comprising a rubber composition according to any one of the first to the thirteenth aspects, preferably wherein the tire comprises a laminate according to the fourteenth aspect, more preferably wherein the tire comprising a tread comprising a laminate according to the fourteenth aspect.
- the tire is a snow tire.
- the tires are particularly intended to equip passenger motor vehicles, including 4 ⁇ 4 (four-wheel drive) vehicles and SUV (Sport Utility Vehicles) vehicles, and industrial vehicles particularly selected from vans and heavy-duty vehicles (i.e., bus or heavy road transport vehicles (lorries, tractors, trailers)).
- passenger motor vehicles including 4 ⁇ 4 (four-wheel drive) vehicles and SUV (Sport Utility Vehicles) vehicles
- industrial vehicles particularly selected from vans and heavy-duty vehicles (i.e., bus or heavy road transport vehicles (lorries, tractors, trailers)).
- the vulcanization (or curing) is carried out in a known way at a temperature generally of between 110°C and 190°C for a sufficient time which can vary, for example, between 5 and 90 min depending in particular on the curing temperature, the vulcanization system adopted and the vulcanization kinetics of the composition(s) under consideration.
- the invention relates to the rubber composition(s), to the laminate(s), to the article(s), to the tire(s) and the tire tread(s) described above, both in the raw state (i.e., before curing) and in the cured state (i.e., after crosslinking or vulcanization).
- the rubber compositions are based on a diene elastomer (a blend of SBR and BR) reinforced with a blend of a silica (as a reinforcing inorganic filler) and a carbon black and a crosslinking system based on 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (as a peroxide) or a combination of sulfur with 2-mercaptobenzothiazyl disulfide (as a sulfur-based vulcanization accelerator) with or without an epoxy comprising an epoxy resin.
- the formulations of the rubber compositions are given at Table 1 with the content of the various products expressed in phr.
- Each rubber composition was produced as follows: The reinforcing filler, the epoxy (in case of C-1 and C-2), the elastomer matrix and the various other ingredients, with the exception of the peroxide or the combination of sulfur with the vulcanization accelerator in the crosslinking system, were successively introduced into an internal mixer having an initial vessel temperature of approximately 60°C; the mixer was thus approximately 70% full (% by volume). Thermomechanical working (non-productive phase) was then carried out in one stage, which lasts in total approximately 3 to 4 minutes, until a maximum “dropping” temperature of 165°C was reached.
- the rubber compositions thus obtained were subsequently calendered, either in the form of sheets (thickness of 2 to 3 mm) or of fine sheets of rubber, for the measurement of their physical or mechanical properties, or in the form of profiled elements which could be used directly, after cutting, assembling or both to the desired dimensions, for example as tire semi-finished products, in particular as tire treads.
- test samples were cut from a cured plaque with a thickness of about 2.5 mm. Notches (perpendicular to the test direction) were created in the samples prior to testing. The force and the elongation at break were measured using an Instron 5565 Uniaxial Testing System. The cross-head speed was 500 mm/min. Samples were tested at 23°C. The results are expressed in base 100, that is to say that the value 100 is arbitrarily assigned to the tear strength index being equal to force at rupture (MPa) of the reference (C-3), and the values of the rubber compositions are shown in Table 1. The higher the value is, the less susceptible is the material to tearing, which is to say that the higher durability is.
- the C-0 has a formulation same as that of the C-2 except that the C-0 is based on 30 phr of an epoxy hardener (polyamidoamine type epoxy hardener, “AP-032 1500 hardener” from Cemedine, viscosity at 25°C: 55000 mPa ⁇ s, polyamidoamine: 100%, Triethylenetetramine: 1.4%, Tetraethylenepentamine: 6.4%) instead of the epoxy, which means the C-0 is not based on the epoxy.
- an epoxy hardener polyamidoamine type epoxy hardener, “AP-032 1500 hardener” from Cemedine, viscosity at 25°C: 55000 mPa ⁇ s, polyamidoamine: 100%, Triethylenetetramine: 1.4%, Tetraethylenepentamine: 6.4%) instead of the epoxy, which means the C-0 is not based on the epoxy.
- Each of the treads comprises a laminate comprising two radially superposed portions which are a radially external portion and a radially internal portion adjacent to the radially external portion, the laminate being produced by superposition of the sheets of the rubber compositions (C-0 and C-1) respectively.
- the radially internal and the radially external portions are made of C-0.
- the radially internal portion is made of C-1, and the radially external portions is made of C-0.
- These tires as snow tires having treads comprising grooves circumferentially, axially or both extending, were conventionally manufactured and in all respects identical apart from the rubber compositions and the laminates of the tire treads. These tires are radial carcass passenger vehicle tires and the size of them is 205/55R16.
- test tires were fitted to the front and rear axles of motor vehicles, under nominal tire inflation pressure, and were subjected to rolling on a circuit in order to reproduce the tires in the worn state. Then, the below snow braking test was done with the worn tires. Each of the worn tires was still in the service life, and in each of them, each radially internal portion made of C-1 respectively at least partially appeared on each tread surface and could at least partially contact with the ground.
- the rubber composition according to the invention allows an improved grip performance on snowy ground with the unexpectedly improved durability performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Composition de caoutchouc contenant au moins une matrice élastomère, une charge renforçante comprenant principalement une charge inorganique renforçante, un époxy et un système de réticulation à base de peroxyde.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006811 WO2021166165A1 (fr) | 2020-02-20 | 2020-02-20 | Composition de caoutchouc |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006811 WO2021166165A1 (fr) | 2020-02-20 | 2020-02-20 | Composition de caoutchouc |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021166165A1 true WO2021166165A1 (fr) | 2021-08-26 |
Family
ID=69960675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006811 WO2021166165A1 (fr) | 2020-02-20 | 2020-02-20 | Composition de caoutchouc |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021166165A1 (fr) |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996037547A2 (fr) | 1995-05-22 | 1996-11-28 | Cabot Corporation | Composes elastomeres incorporant des noirs de carbone traites au silicium |
WO1999009036A1 (fr) | 1997-08-21 | 1999-02-25 | Osi Specialties, Inc. | Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge |
WO1999028380A1 (fr) | 1997-11-28 | 1999-06-10 | Compagnie Generale Des Etablissements Michelin - Michelin & Cie | Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse |
WO2002030939A1 (fr) | 2000-10-13 | 2002-04-18 | Societe De Technologie Michelin | Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention |
WO2002031041A1 (fr) | 2000-10-13 | 2002-04-18 | Societe De Technologie Michelin | Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel |
WO2002083782A1 (fr) | 2001-04-10 | 2002-10-24 | Societe De Technologie Michelin | Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane |
WO2003002649A1 (fr) | 2001-06-28 | 2003-01-09 | Societe De Technologie Michelin | Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique |
WO2003002648A1 (fr) | 2001-06-28 | 2003-01-09 | Societe De Technologie Michelin | Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique |
WO2004033548A1 (fr) | 2002-10-11 | 2004-04-22 | Societe De Technologie Michelin | Ceinture de pneumatique a base dune charge inorganique et d'un silane-polysulfure |
US6849754B2 (en) | 2001-08-06 | 2005-02-01 | Degussa Ag | Organosilicon compounds |
WO2006023815A2 (fr) | 2004-08-20 | 2006-03-02 | General Electric Company | Compositions cycliques de silanes mercaptofonctionnels bloquees derivees de diol |
WO2006125534A1 (fr) | 2005-05-26 | 2006-11-30 | Societe De Technologie Michelin | Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique |
WO2006125533A1 (fr) | 2005-05-26 | 2006-11-30 | Societe De Technologie Michelin | Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique |
WO2006125532A1 (fr) | 2005-05-26 | 2006-11-30 | Societe De Technologie Michelin | Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane |
WO2007098080A2 (fr) | 2006-02-21 | 2007-08-30 | Momentive Performance Materials Inc. | Composition de matière de charge non agglomérante à base de silane organofonctionnel |
WO2008055986A2 (fr) | 2006-11-10 | 2008-05-15 | Rhodia Operations | Procede de preparation d'alcoxysilanes (poly)sulfures et nouveaux produits intermediaires dans ce procede |
WO2010072685A1 (fr) | 2008-12-22 | 2010-07-01 | Societe De Technologie Michelin | Agent de couplage mercaptosilane bloque |
US20130267640A1 (en) * | 2010-11-26 | 2013-10-10 | Michelin Recherche Et Technique S.A. | Snow tyre tread |
WO2016069007A1 (fr) * | 2014-10-31 | 2016-05-06 | Compagnie Generale Des Etablissements Michelin | Bande de roulement pour pneu formée d'une composition de caoutchouc vulcanisée à l'aide de peroxyde |
WO2017074423A1 (fr) * | 2015-10-30 | 2017-05-04 | Compagnie Generale Des Etablissements Michelin | Bande de roulement comprenant un agent de vulcanisation à base de peroxyde |
JP2018188601A (ja) | 2017-05-11 | 2018-11-29 | 住友ゴム工業株式会社 | スタッドレスタイヤ用ゴム組成物 |
-
2020
- 2020-02-20 WO PCT/JP2020/006811 patent/WO2021166165A1/fr active Application Filing
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996037547A2 (fr) | 1995-05-22 | 1996-11-28 | Cabot Corporation | Composes elastomeres incorporant des noirs de carbone traites au silicium |
WO1999009036A1 (fr) | 1997-08-21 | 1999-02-25 | Osi Specialties, Inc. | Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge |
WO1999028380A1 (fr) | 1997-11-28 | 1999-06-10 | Compagnie Generale Des Etablissements Michelin - Michelin & Cie | Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse |
US6774255B1 (en) | 2000-10-13 | 2004-08-10 | Michelin Recherche Et Technique, S.A. | Polyfunctional organosilane usable as a coupling agent and process for the obtainment thereof |
WO2002030939A1 (fr) | 2000-10-13 | 2002-04-18 | Societe De Technologie Michelin | Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention |
WO2002031041A1 (fr) | 2000-10-13 | 2002-04-18 | Societe De Technologie Michelin | Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel |
US20040051210A1 (en) | 2000-10-13 | 2004-03-18 | Jean-Claude Tardivat | Rubber composition comprising a polyfunctional organosilane as coupling agent |
WO2002083782A1 (fr) | 2001-04-10 | 2002-10-24 | Societe De Technologie Michelin | Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane |
US7217751B2 (en) | 2001-04-10 | 2007-05-15 | Michelin Recherche Et Technique S.A. | Tire and tread comprising a bis-alkoxysilane tetrasulfide as coupling agent |
WO2003002649A1 (fr) | 2001-06-28 | 2003-01-09 | Societe De Technologie Michelin | Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique |
WO2003002648A1 (fr) | 2001-06-28 | 2003-01-09 | Societe De Technologie Michelin | Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique |
US6849754B2 (en) | 2001-08-06 | 2005-02-01 | Degussa Ag | Organosilicon compounds |
WO2004033548A1 (fr) | 2002-10-11 | 2004-04-22 | Societe De Technologie Michelin | Ceinture de pneumatique a base dune charge inorganique et d'un silane-polysulfure |
WO2006023815A2 (fr) | 2004-08-20 | 2006-03-02 | General Electric Company | Compositions cycliques de silanes mercaptofonctionnels bloquees derivees de diol |
WO2006125533A1 (fr) | 2005-05-26 | 2006-11-30 | Societe De Technologie Michelin | Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique |
WO2006125532A1 (fr) | 2005-05-26 | 2006-11-30 | Societe De Technologie Michelin | Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane |
WO2006125534A1 (fr) | 2005-05-26 | 2006-11-30 | Societe De Technologie Michelin | Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique |
WO2007098080A2 (fr) | 2006-02-21 | 2007-08-30 | Momentive Performance Materials Inc. | Composition de matière de charge non agglomérante à base de silane organofonctionnel |
WO2008055986A2 (fr) | 2006-11-10 | 2008-05-15 | Rhodia Operations | Procede de preparation d'alcoxysilanes (poly)sulfures et nouveaux produits intermediaires dans ce procede |
WO2010072685A1 (fr) | 2008-12-22 | 2010-07-01 | Societe De Technologie Michelin | Agent de couplage mercaptosilane bloque |
US20130267640A1 (en) * | 2010-11-26 | 2013-10-10 | Michelin Recherche Et Technique S.A. | Snow tyre tread |
WO2016069007A1 (fr) * | 2014-10-31 | 2016-05-06 | Compagnie Generale Des Etablissements Michelin | Bande de roulement pour pneu formée d'une composition de caoutchouc vulcanisée à l'aide de peroxyde |
WO2017074423A1 (fr) * | 2015-10-30 | 2017-05-04 | Compagnie Generale Des Etablissements Michelin | Bande de roulement comprenant un agent de vulcanisation à base de peroxyde |
JP2018188601A (ja) | 2017-05-11 | 2018-11-29 | 住友ゴム工業株式会社 | スタッドレスタイヤ用ゴム組成物 |
Non-Patent Citations (1)
Title |
---|
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020158695A1 (fr) | Stratifié | |
US11241912B2 (en) | Tire comprising a tread | |
EP3774384B1 (fr) | Pneu comportant une bande de roulement | |
EP3959086B1 (fr) | Composition de caoutchouc | |
EP3774386B1 (fr) | Pneu comprenant une bande de roulement | |
EP3774385B1 (fr) | Pneu comprenant une bande de roulement | |
EP4126563B1 (fr) | Article destiné à venir en contact avec le sol, en particulier un pneu | |
EP3724268A1 (fr) | Composition de caoutchouc | |
WO2021166165A1 (fr) | Composition de caoutchouc | |
WO2021166166A1 (fr) | Composition de caoutchouc | |
EP4284658B1 (fr) | Article, en particulier un pneu | |
WO2021005718A1 (fr) | Stratifié | |
WO2020158694A1 (fr) | Article | |
CN111094427B (zh) | 具有包括橡胶组合物的胎面的轮胎 | |
EP3724259A1 (fr) | Procédé de production d'une composition de caoutchouc | |
WO2020039536A1 (fr) | Composition de caoutchouc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20713989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20713989 Country of ref document: EP Kind code of ref document: A1 |