WO2021163865A1 - Method for preparing water repellent textile substrates and products thereof - Google Patents
Method for preparing water repellent textile substrates and products thereof Download PDFInfo
- Publication number
- WO2021163865A1 WO2021163865A1 PCT/CN2020/075646 CN2020075646W WO2021163865A1 WO 2021163865 A1 WO2021163865 A1 WO 2021163865A1 CN 2020075646 W CN2020075646 W CN 2020075646W WO 2021163865 A1 WO2021163865 A1 WO 2021163865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose powder
- textile substrate
- binder
- contacting
- surface finishing
- Prior art date
Links
- 239000004753 textile Substances 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 84
- 239000000758 substrate Substances 0.000 title claims abstract description 76
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 239000005871 repellent Substances 0.000 title abstract description 11
- 230000002940 repellent Effects 0.000 title abstract description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 129
- 239000011230 binding agent Substances 0.000 claims description 63
- 230000002209 hydrophobic effect Effects 0.000 claims description 45
- 150000004820 halides Chemical class 0.000 claims description 30
- 150000003973 alkyl amines Chemical class 0.000 claims description 23
- 239000006185 dispersion Substances 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 22
- 108010029541 Laccase Proteins 0.000 claims description 21
- 229920000742 Cotton Polymers 0.000 claims description 18
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 16
- 229920002201 Oxidized cellulose Polymers 0.000 claims description 13
- 229940107304 oxidized cellulose Drugs 0.000 claims description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 12
- 229920000728 polyester Polymers 0.000 claims description 11
- 229920002635 polyurethane Polymers 0.000 claims description 10
- 239000004814 polyurethane Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000007800 oxidant agent Substances 0.000 claims description 5
- QYTDEUPAUMOIOP-UHFFFAOYSA-N TEMPO Chemical group CC1(C)CCCC(C)(C)N1[O] QYTDEUPAUMOIOP-UHFFFAOYSA-N 0.000 claims description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims 2
- 239000000243 solution Substances 0.000 description 37
- 238000010335 hydrothermal treatment Methods 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 229920002678 cellulose Polymers 0.000 description 17
- 235000010980 cellulose Nutrition 0.000 description 17
- 239000001913 cellulose Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000004744 fabric Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 12
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- -1 chloromethyl acyl amide Chemical class 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 6
- 238000013036 cure process Methods 0.000 description 5
- 238000005886 esterification reaction Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical group 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000551546 Minerva Species 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229920006926 PFC Polymers 0.000 description 3
- 102100038567 Properdin Human genes 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- 150000007530 organic bases Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- YFSUTJLHUFNCNZ-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-M 0.000 description 2
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical compound CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- WTBAHSZERDXKKZ-UHFFFAOYSA-N octadecanoyl chloride Chemical group CCCCCCCCCCCCCCCCCC(Cl)=O WTBAHSZERDXKKZ-UHFFFAOYSA-N 0.000 description 2
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 240000008564 Boehmeria nivea Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 241000511976 Hoya Species 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920002821 Modacrylic Polymers 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241001416177 Vicugna pacos Species 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 125000005360 alkyl sulfoxide group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 210000000077 angora Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 210000000050 mohair Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000009896 oxidative bleaching Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010784 textile waste Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/01—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
- D06M15/03—Polysaccharides or derivatives thereof
- D06M15/05—Cellulose or derivatives thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/01—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
- D06M15/03—Polysaccharides or derivatives thereof
- D06M15/05—Cellulose or derivatives thereof
- D06M15/07—Cellulose esters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/08—Processes in which the treating agent is applied in powder or granular form
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/16—Sizing or water-repelling agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/50—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
- D21H21/52—Additives of definite length or shape
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/32—Polyesters
Definitions
- the present disclosure relates to a method of preparing a water repellent textile substrates and products thereof.
- the method can use post-consumer textile waste or virgin cellulose material as starting materials and does not call for the use of perfluorocarbons.
- PFC perfluorocarbons
- PFOS perfluorooctane sulfonate
- PFOA perfluorooctanoic acid
- PFC-free water repellent textile surface finishes are typically based on the use of polymeric materials such as silicone.
- CN 105566502, CN 107254809, CN 104594028, CN 108456966, and CN 108251903 describe modification of cellulose with silica-containing materials, such as silane, silicone and silica oxide.
- US 2750306 teaches direct cellulose modification using chloromethyl acyl amide based quaternary ammonium compounds.
- US 20150368441 teaches lignin deposition on cellulose to provide hydrophobic properties for use in the papermaking industry. The foregoing methods are applied to various substrates, but are not applied to cellulose powder.
- CN 107199020 and WO 2014011112 teach octadecylamine modification of cellulose particles, but both use a physical approach and as such do not use chemical reactions. None of the aforementioned methods provide an aqueous-based method for imparting water repellency to textiles that is suitable for fabric applications, e.g., by dipping or by pad dry cure process.
- the objective of the present disclosure to provide a method of preparing a PFC-free water repellent surface finish for fabric applications using, but not limited to, recycled cellulose powder.
- the recycled cellulose powders can be obtained from recycled blended textile via the hydrothermal treatment, such as the process described in PCT Patent Application No. PCT/CN2019/107499.
- the first step comprises performing surface modification of the obtained recycled cellulose powder thereby transforming the hydrophilic surface to a hydrophobic surface by chemical reaction. Surface modification can be performed by esterification of cellulose or laccase/TEMPO-mediated grafting on cellulose.
- the second step comprises adding binders and water in order to prepare a water-based formulation suitable for fabric and/or textile substrate application.
- the final surface finish solution can be applied to fabrics or textile substrates by dip coating or by pad-dry-cure process.
- a method of preparing a water repellant textile substrate comprising: contacting a textile substrate with a surface finishing solution comprising a binder and a hydrophobic cellulose powder thereby forming a surface finishing solution treated textile substrate, wherein the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
- each R is independently selected from the group consisting of hydrogen and -CO 2 R 1 ;
- R 1 is C 10 -C 40 alkyl, with the proviso that at least one R is -CO 2 R 1 ; or
- the textile substrate is cotton, polyester, or a combination thereof.
- the surface finishing solution comprises water, the binder, and the hydrophobic cellulose powder.
- a third embodiment of the first aspect provided herein is the method of the first aspect, further comprising: contacting a cellulose powder and an alkyloyl halide thereby forming the hydrophobic cellulose powder comprising the repeating unit of Formula 1; or contacting a cellulose powder with an oxidizing agent in an aqueous dispersion thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties and contacting the partially oxidized cellulose powder with a primary alkyl amine in an aqueous dispersion thereby forming the hydrophobic cellulose powder comprising the repeating unit of Formula 2.
- a fourth embodiment of the first aspect provided herein is the method of the third embodiment of the first aspect, wherein the cellulose powder has a particle size below 100 ⁇ m.
- a fifth embodiment of the first aspect provided herein is the method of the third embodiment of the first aspect, wherein in the step of contacting the cellulose powder with the alkyloyl halide, the cellulose powder is present at a concertation of 10 to 100 mg/mL.
- the alkyloyl halide is CH 3 (CH 2 ) n CH 2 COCl, wherein n is a whole number selected from 10 to 40 and the alkyloyl halide is present at a concentration of 50 to 500 mg/mL.
- a seventh embodiment of the first aspect provided herein is the method of the sixth embodiment of the first aspect, wherein the step of contacting the cellulose powder with the alkyloyl halide is conducted at 60 to 120°C.
- the oxidizing agent comprises laccase and (2, 2, 6, 6-tetramethylpiperidin-1-yl) oxyl (TEMPO) .
- a ninth embodiment of the first aspect provided herein is the method of the eighth embodiment of the first aspect, wherein in the step of contacting the cellulose powder with laccase and TEMPO, the cellulose powder is present at a concentration of 1 to 50 mg/mL in the aqueous dispersion; and the laccase and TEMPO are each independently present at a concentration of 0.5 mg/mL to 30 mg/mL in the aqueous dispersion.
- the primary alkyl amine is of NH 2 CH 2 (CH 2 ) n CH 3 , wherein n is whole number selected from 10 to 40; and in the step of contacting the partially oxidized cellulose powder with a primary alkyl amine, the primary alkyl amine is present at a concentration of 10 to 100 mg/mL in the aqueous dispersion.
- the method of the ninth embodiment of the first aspect wherein the step of contacting the cellulose powder with the laccase and TEMPO is conducted at 25 to 60°C.
- the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane.
- the hydrophobic cellulose powder is present at a concentration of 1 to 10 g/L in the surface finishing solution.
- a fourteenth embodiment of the first aspect provided herein is the method of the first aspect, wherein binder is present at a concentration of 50-250 g/L in the surface finishing solution and the binder solid content is 20 to 50 wt %.
- the method of the first aspect wherein the surface finishing solution treated textile substrate is cured at a temperature of 120 to 160°C.
- the method comprises: contacting cellulose powder with an alkyloyl halide having the formula CH 3 (CH 2 ) n CH 2 COCl, wherein n is a whole number selected from 10 to 40, at a temperature of 60 to 120°C thereby forming hydrophobic cellulose powder comprising the repeating unit of Formula 1, wherein the cellulose powder is present at a concertation of 10 to 100 mg/mL; and the alkyloyl halide is present at a concentration of 50 to 500 mg/mL; and contacting a textile substrate with a surface finishing solution comprising the hydrophobic cellulose powder and a binder, wherein the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane; the binder is present at a concentration of 50-250 g/L in the surface finishing solution; and the binder solid content
- the method comprises: contacting cellulose powder with laccase and TEMPO in an aqueous dispersion at 25 to 60°C, wherein the cellulose powder is present at a concentration of 1 to 50 mg/mL in the aqueous dispersion; and the laccase and TEMPO are each independently present at a concentration of 0.5 mg/mL to 30 mg/mL in the aqueous dispersion; thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties; contacting the partially oxidized cellulose powder with a primary alkyl amine having the formula CH 3 (CH 2 ) n CH 2 NH 2 , wherein n is a whole number selected from 10 to 40, in an aqueous dispersion at temperature of 60 to 120°C, wherein the primary alkyl amine is present at a concentration of 10 to 100 mg/mL in the
- a water repellant textile substrate prepared according to the method of the first aspect.
- a surface finished water repellant textile substrate prepared according to the method of claim sixteenth embodiment of the first aspect.
- a surface finished water repellant textile substrate prepared according to the method of seventh embodiment of the first aspect.
- Figure 1 depicts a Fourier-transform infrared spectroscopy (FTIR) spectrum of cellulose powder after hydrothermal treatment.
- FTIR Fourier-transform infrared spectroscopy
- Figure 2A depicts a FTIR spectrum of modified cellulose powder by esterification. Additional peaks at 1468 cm -1 , 2852 cm -1 , and 2918 cm -1 for C-H bonds are observed.
- Figure 2B depicts a FTIR spectrum of modified cellulose powder by laccase/TEMPO mediated grafting. Additional peaks at 1471 cm -1 , 2847 cm -1 , and 2917 cm -1 for C-H bonds are observed.
- Figure 3 depicts a flow diagram for the preparation of cellulose based water repellent surface finish according to certain embodiments of the methods described herein.
- Figure 4 depicts the contact angle measurement of cotton fabric (a) Before surface finish application (b) after application of surface finish in Example 3 (c) after application of surface prepared in Example 4 (d) after application of surface prepared in Example 4.
- a method of applying a water repellant surface finish comprising a binder and hydrophobic cellulose powder to a textile substrate does not call for the use of perfluorocarbons, e.g., either as a solvent, reagent, or furnished in the finished water repellant textile product.
- the method of applying a water repellant surface finish comprises: contacting a cellulose powder and an alkyloyl halide; or contacting a cellulose powder with an oxidizing agent in an aqueous dispersion thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties and contacting the partially oxidized cellulose powder with a primary alkyl amine in an aqueous dispersion; thereby forming a hydrophobic cellulose powder; contacting a textile substrate with a surface finishing solution comprising a binder and the hydrophobic cellulose powder thereby forming a surface finishing solution treated textile; and optionally curing the surface finishing solution treated textile thereby forming a water repellant water repellant textile substrate.
- the method of applying a water repellant surface finish comprises: contacting a textile substrate with a surface finishing solution comprising a binder and a hydrophobic cellulose powder thereby forming a surface finishing solution treated textile substrate, wherein the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
- each R is independently selected from the group consisting of hydrogen and CO 2 R 1 ; and R 1 is C 10 -C 40 alkyl, with the proviso that at least one R is -CO 2 R 1 ; or
- the method comprises contacting a textile substrate with a surface finishing solution comprising a binder and a hydrophobic cellulose powder comprising a repeating unit of Formula 1:
- each instance of R is independently selected from the group consisting of hydrogen and -CO 2 R 1 , with the proviso that at least one R is -CO 2 R 1 , wherein R 1 is C 10 -C 40 alkyl.
- R 1 can be C 10 -C 40 branched alkyl, C 10 -C 40 linear alkyl, or C 10 -C 40 cycloalkyl.
- R 1 is - (CH 2 ) n CH 3 , wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20.
- R 1 is - (CH 2 ) 17 CH 3 .
- 1, 2, 3, 4, 5, or 6 instances of R in the repeating unit of Formula 1 is -CO 2 R 1 .
- the number of instances of R in the repeating unit of Formula 1 that is -CO 2 R 1 can be controlled by appropriate selection of reagent stoichiometry and reaction conditions and is well within the skill of a person of ordinary skill in the art.
- the hydrophobic cellulose powder is prepared according to any of the methods described herein.
- the method comprises contacting a textile substrate with a surface finishing solution comprising a binder and hydrophobic cellulose powder comprising a repeating unit of Formula 2:
- R 2 can be C 10 -C 40 branched alkyl, C 10 -C 40 linear alkyl, or C 10 -C 40 cycloalkyl.
- R 2 is - (CH 2 ) n CH 3 , wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20.
- R 2 is - (CH 2 ) 18 CH 3 .
- the hydrophobic cellulose powder is prepared according to any of the methods described herein.
- the surface finishing solution comprises water, the binder, and the hydrophobic cellulose powder.
- the binder is a commercial water based binder commonly used for pad-dry-cure process.
- Binders can be acrylic-based, butadiene-based, or polyurethane-based.
- Exemplary binders include, but are not limited to Dow Primal TM ECO-1291, Dow Rhoplex R-3349, Achitex Minerva Mineprint Binder ACM, 4983-40R, and Achitexminerva Binder WST.
- Exemplary polyurethane-based binders include, but are not limited to, Tanatex FBI and Bondthane TM UD-303.
- the binder is an acrylic-based binder.
- Curing can be conducted at any temperature between room temperature and 180°C. In certain embodiments, curing is conducted at a temperature of 50 to 160°C; 100 to 160°C; or 120 to 160°C.
- the textile substrate may be synthetic, semi-synthetic, or natural. Natural organic fibers, including biodegradable materials, cellulosic and/or protein fibers.
- the textile substrate may be woven or non-woven.
- the textile substrate may also be in the form of a fabric, a fiber, a filament, a film, garment, chopped or flocculated fiber.
- Natural organic textile substrates may be of any plant or animal origin, and include, for example, those fibrous materials derived from natural products containing celluloses, such as any one or a combination of wood, bamboo, cotton, banana, hemp ramie, linen, coconut palm, soya, milk, hoya, bagasse, kanaf, retting, mudrar, silk, wool, cashmere, alpaca, angora wool, mohair, shearling, shahtoosh, and the like.
- celluloses such as any one or a combination of wood, bamboo, cotton, banana, hemp ramie, linen, coconut palm, soya, milk, hoya, bagasse, kanaf, retting, mudrar, silk, wool, cashmere, alpaca, angora wool, mohair, shearling, shahtoosh, and the like.
- Semi-synthetic textile substrates may include, for example, any one or a combination of viscose, cuprammonium, rayon, polynosic, lyocell, cellulose acetate, and the like.
- Synthetic organic textile substrates acrylic, Kevlar, modacrylic, nomex, spandex, nylon, polyester, acrylic, rayon, acetate and the like
- the textile substrate may be cotton, polyester, a blended textile comprising cotton and polyester.
- the textile substrate is a polyethylene terephthalate (PET) /cotton blend.
- the hydrophobic cellulose powder can be prepared from virgin cellulose powder or a recycled cellulose powder.
- the cellulose powder can have a particle size below 100 ⁇ m. In certain embodiments, the cellulose powder has a particle size of 1 to 100 ⁇ m; 10 to 100 ⁇ m; or 50 to 100 ⁇ m.
- the cellulose powder used in connection with the methods described herein can be prepared according to any method known in the art.
- the cellulose powder is prepared using a hydrolysis method.
- the hydrolysis method may be acid hydrolysis, alkaline oxidative decomposition, hydrothermal treatment, steam explosion, or the like, or a combination of two kinds of such methods.
- the cellulose powder may be prepared, for example, by an organic acid catalyzed hydrothermal treatment of a post-consumer textile comprising a natural, semi-synthetic, and/or synthetic cellulosic material or a natural cellulosic material.
- the cellulose powder is prepared by subjecting the post-consumer textile to an organic acid catalyzed hydrothermal treatment, the method comprising the step of bringing into contact the post-consumer textile, an aqueous solution, and an organic acid and heating the resulting mixture.
- Hydrothermal treatment involves the chemistry of hot water under pressure to carry out chemical reactions. These reactions are usually conducted at temperatures ranging from 100 to 350°C and pressures in the range from 0.1 to 15 MPa. In certain embodiments, the hydrothermal treatment is conducted at 120-150°C, 125-145°C, 130-140°C, or 132-138°C. In certain embodiments, the hydrothermal treatment is conducted at 0.1 to 0.5, 0.2 to 0.5, 0.2 to 0.4, or 0.25 to 0.35 MPa.
- the reaction medium may be water alone or in combination with inorganic and/or organic acids.
- the organic acid can be methanesulfonic acid, oxalic acid, tartaric acid, citric acid, malic acid, formic acid, acetic acid, or a combination thereof.
- the hydrothermal treatment aqueous solution contains the organic acid catalyst in an amount of 0.1%to 30%or 0.5%to 10%wt/wt. The addition of a larger amount of acid can accelerate the rate of the hydrothermal treatment reaction can shorten the time required for completion and/or assist with decomposition of thicker and/or denser post-consumer textiles.
- the post-consumer textile may comprise cotton or polyester and cotton, such as PET and cotton.
- the post-consumer textile may contain any proportion of polyester content, for example from 1-99%wt/wt.
- the post-consumer textile can optionally be divided, e.g., by cutting, tearing, and/or shredding, into smaller pieces prior to the preparation of the cellulose powder. This optional step can improve the yield of cellulose powder and reduce treatment time by increasing the surface area of the treated post-consumer textile.
- the ratio of solids (i.e., the post-consumer textile) to liquid is 1:30-200 or 1: 50-150 by weight. Lower ratios of solid to liquid tend to accelerate the rate of the hydrothermal treatment reaction.
- hydrothermal treatment comprises heating the mixture at a temperature between 110-180 °C. In certain embodiments, hydrothermal treatment comprises heating the mixture at a temperature between 120-150 °C. The temperature of the hydrothermal treatment can be increased at a rate of 4-6 °C/minute from room temperature to the desired temperature (e.g., 110-180 °C or 120-150 °C) .
- the hydrothermal treatment is conducted at a pressure of 0.1 to 10 MPa or 0.1 to 1 MPa.
- hydrothermal treatment is conducted under autogenic pressure, i.e., pressure generated as a result of heating in a closed system.
- the pressure can be applied externally, e.g., by mechanical means.
- the hydrothermal treatment is conducted in a closed high-pressure reactor, and the temperature is raised to 110-180 °C at a heating rate of 4-6 °C/min and then maintained under stirring.
- the autogenous pressure in the closed higher-pressure reactor can be in the range of 0.10-1 MPa.
- the hydrothermal treatment can be completed in 0.5-3 h.
- subcritical conditions can be achieved in which the cotton fiber can undergo an acid catalyzed hydrolytic degradation reaction thereby producing cellulose powder, while not affecting the polyester fiber.
- the cellulose powder can be obtained after hydrothermal treatment of a textile comprising a cellulosic substrate, such as cotton (e.g., see methods described in PCT Patent Application No. PCT/CN2019/107499, hereby incorporated by reference) .
- a cellulosic substrate such as cotton
- acid such as hydrochloric acid, citric acid, maleic acid or methanesulfonic acid
- the wet cellulose powder is obtained by filtration without purification.
- the cellulose powder can be optionally grinded to a smaller particle size.
- the recycled cellulose powder obtained from hydrothermal treatment can first be grinded by a centrifugal mill, followed by sieving to obtain cellulose powder.
- the dye in the recycled cellulose if any, can be removed first.
- Oxidative bleaching can be done using hydrogen peroxide, ozone, sodium hypochlorite, sodium chlorite or other bleaching agents to remove the color from the cellulose powder, and the free dye could be further removed by adsorption on activated carbon.
- the goal is to replace as many -OH groups on cellulose powder with long carbon chains as possible, which will modify surface property of the cellulose powder from hydrophilic to hydrophobic.
- Hydrophobic cellulose powder after the surface modification reactions will be purified in order to remove unreacted chemicals, before dispersing in a water formulation. Surface modification is achieved via one of the follow routes.
- the alkyloyl halide can be an alkyloyl chloride or alkyloyl bromide.
- the alkyloyl halide can be a linear alkyloyl halide, branched alkyloyl halide, or cyclic alkyloyl halide.
- the alkyloyl halide can be a C 10 -C 40 alkyl halide.
- the alkyloyl halide is CH 3 (CH 2 ) nCOCl, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20.
- the alkyloyl halide is stearoyl chloride.
- the reaction of the cellulose powder and the alkyloyl halide is typically conducted in an organic solvent.
- the organic solvent is a polar aprotic or a polar protic solvent.
- Exemplary solvents for the reaction of the cellulose powder and the alkyloyl halide include, but are not limited to, alkyl halides, ethers, esters, ketones, amides, amines, formamides, alkanes, aromatics, alkyl nitriles, alcohols, alkyl sulfoxides, and combinations thereof.
- the solvent is pyridine, dichloromethane, 1, 2-dichloroethane, chloroform, tetrahydrofuran, diethyl ether, acetone, 1, 4-dioxane, acetonitrile, ethyl acetate, propylene carbonate, ethanol, isopropanol, and combinations thereof.
- the reaction of the alkyloyl halide and the cellulose powder further comprises a base.
- the base can be an inorganic or organic base.
- Exemplary inorganic bases include, but are not limited to alkali metal or alkaline earth metal hydroxide, oxide, carbonate, bicarbonate, and combinations thereof.
- Exemplary organic base include, but are not limited to, trimethylamine, trimethylamine, diisopropylethylamine, tri-n-propylamine, tri-n-butylamine, N-methylpiperidine, or pyridine.
- the base is not however limited to the above examples. It is feasible to use any organic or inorganic base commonly used for organic synthesis in the esterification reaction.
- Typical procedures involve pre-washing of cellulose powder with organic solvents, heating cellulose powder in pyridine, addition of the alkyloyl halide and purification in organic solvents such as ethanol and dichloromethane.
- Alkyloyl halides with linear alkyl chains having ten or more carbons are preferred to ensure high hydrophobicity.
- the alkyloyl halide (50-500 mg/mL) can be added with cellulose powder (10-100 mg/mL) under stirring and nitrogen purge at 60°C –120°C for 30 min –180 mins.
- Recycled cellulose powder can first be partially oxidized by laccase/TEMPO thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties (comprising aldehyde groups at C6 alcohol of one more of the D-glucose of the cellulose polyer) ) , which can then react with the amino groups of primary alkyl amines, e.g. a primary fatty acid alkyl amines, such as octadecylamine, to form a Schiff base.
- primary alkyl amines e.g. a primary fatty acid alkyl amines, such as octadecylamine
- the primary alkyl amine can be a linear alkyl amine, branched alkyl amine, or cyclic alkyl amine.
- the primary alkyl amine can be a primary C 10 -C 40 alkyl amine.
- the primary alkyl amine is CH3 (CH2) nNH2, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20.
- the primary alkyl amine is octadecylamine.
- Solutions of laccase and TEMPO are first prepared having a concentration of 0.5 mg/mL –30 mg/mL of TEMPO and 0.5 mg/mL –30 mg/mL of laccase.
- the mass ratio of the laccase to TEMPO can be in the range of 1: 1 to 2: 1.
- cellulose (1-50 mg/mL) and primary alkyl amine (10 mg/mL –100 mg/mL) are added and the mixture is allowed to react at 25°C –60°C for 6 –72 hr.
- the concentration of the cellulose powder in the surface finishing solution can range from 1-10 g/L.
- the concentration of the binder of the binder in the surface finishing solution can be 50-250 g/L with a solid content of 20-40 wt%.
- the surface finishing solution is prepared by mixing a mixture comprising the cellulose powder and binder in high speed homogenizer at 5000-20000 RPM for 1 -30 mins.
- Application of the prepared dispersion onto textile substrates can be accomplished by either by employing dip coating or by the pad-dry-cure process.
- Dip coating fabric in the surface finishing solution can be performed for 1-10 minutes.
- Padding can be conducted by adjusting pressing pressure and roller speed. The roller speed can be between 1-5 m/min and the roller nip pressure can be between 1-5 bar.
- Heating and curing the water repellant textile substrate can be performed at a temperature of 100-160°C for 1-10 minutes.
- Water-repellent properties of the prepared water repellant textile substrate are characterized according to AATCC 22: Water Repellency Spray Test. Color change is measured by Gray scale test according to AATCC EP1-2012.
- Also provided herein is a water repellant textile substrate prepared according to any of the methods described herein.
- a textile substrate comprising a water repellant finish, wherein the water repellant finish comprises a binder and a hydrophobic cellulose powder, wherein the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
- each R is independently selected from the group consisting of hydrogen and CO 2 R 1 ; and R 1 is C 10 -C 40 alkyl, with the proviso that at least one R is -CO 2 R 1 ; or
- the water repellant finish can be present as a coating on the surface of the textile substrate.
- the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
- each instance of R is independently selected from the group consisting of hydrogen and -CO 2 R 1 , wherein R 1 is C 10 -C 40 alkyl.
- R 1 can be C 10 -C 40 branched alkyl, C 10 -C 40 linear alkyl, or C 10 -C 40 cycloalkyl.
- R 1 is - (CH 2 ) n CH 3 , wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20.
- R 1 is - (CH 2 ) 17 CH 3 .
- the hydrophobic cellulose powder is prepared according to any of the methods described herein.
- the hydrophobic cellulose powder comprises a repeating unit of Formula 2:
- R 2 can be C 10 -C 40 branched alkyl, C 10 -C 40 linear alkyl, or C 10 -C 40 cycloalkyl.
- R 2 is - (CH 2 ) n CH 3 , wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20.
- R 2 is - (CH 2 ) 18 CH 3 .
- the hydrophobic cellulose powder is prepared according to any of the methods described herein.
- the binder can be any binder known in the art.
- the binder is a commercial water based binder commonly used for pad-dry-cure process.
- Binders can be acrylic-based, butadiene-based, or polyurethane-based.
- Exemplary binders include, but are not limited to Dow Primal TM ECO-1291, Dow Rhoplex R-3349, Achitex Minerva Mineprint Binder ACM, 4983-40R, and Achitexminerva Binder WST.
- Exemplary polyurethane-based binders include, but are not limited to, Tanatex FBI and Bondthane TM UD-303.
- the binder is an acrylic-based binder.
- the textile substrate may be synthetic, semi-synthetic, or natural. Natural organic fibers, including biodegradable materials, cellulosic and/or protein fibers.
- the textile substrate may be woven or non-woven.
- the textile substrate may also be in the form of a fabric, a fiber, a filament, a film, garment, chopped or flocculated fiber.
- the textile substrate may be cotton, polyester, a blended textile comprising cotton and polyester.
- the textile substrate is a polyethylene terephthalate (PET) /cotton blend.
- Recycled cellulose powder was obtained from the hydrothermal process. Grinding using a centrifuge mill and sieving was performed to collect cellulose below 100 ⁇ m using a sieve shaker. 1-5 g of cellulose powder was washed with 25-50 mL methanol and followed centrifuge for 10-20 mins at 6000 RPM, followed by 25-50 mL of pyridine. Washed cellulose was suspended in 25-50 mL of fresh pyridine. The suspension was transferred to a round bottom flask and is heated to 80-120°C under nitrogen purge. 5-10g of stearoyl chloride was added in by a needle syringe. Reaction was continued for 0.5-2 hr. Addition of 200 mL of ethanol was added to quench the reaction. Purification by ethanol was repeated twice by centrifugation. Collected pellets were dissolved into 30-60 mL of dichloromethane and precipitate in 200-400 mL ethanol and repeated twice. Dry the product under room temperature.
- Recycled cellulose powder was obtained from the hydrothermal process. Sieving was performed to collect cellulose below 100 ⁇ m. Laccase solution was prepared in deionized water at 5-10 mg/mL and was stirred for 15-30 minutes. Insoluble was filtered and addition of TEMPO, octadecylamine and cellulose powder. Reaction is allowed to continue for 24-72 hrs at 40°C. Hydrophobic cellulose powder was collected and purified with water and ethanol, each 3 times respectively by centrifugation. Drying was performed at room temperature.
- a water suspension containing 2.5-5 g/L of hydrophobic cellulose powder was added to water.
- 100g/L of Prime 4983-40R binder ethylene acrylic acid copolymer
- the formulation was dispersed at by a high speed homogenizer for 5 minutes.
- 100%cotton fabric was dip coated in the thus prepared surface finishing solution.
- the fabric was cured in an oven at 150°C for 5 minutes. Water contact angle measurement, water spray test and grayscale color change test were performed.
- a water suspension containing 5 g/L of hydrophobic cellulose powder was added to water.
- 100g/L of BINDER WST (acrylonitrile butadiene copolymer) from Achitex Minerva SpA was added.
- the formulation was dispersed by a high speed homogenizer for 5 minutes.
- 100%cotton fabric was dip coated by in the thus prepared surface finishing solution.
- the fabric was cured in an oven at 150°C for 5 minutes. Water contact angle measurement, water spray test and grayscale color change test were performed.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Provided are methods for producing water repellent textile substrates and products thereof. The methods can be conducted without the use of perfluorocarbons.
Description
The present disclosure relates to a method of preparing a water repellent textile substrates and products thereof. The method can use post-consumer textile waste or virgin cellulose material as starting materials and does not call for the use of perfluorocarbons.
The majority of existing water repellent finishes rely on the water repellent properties of perfluorocarbons (PFC) , such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) , which possess extremely low surface energy due to their long chain perfluoroalkyl groups. However, the use of PFC has gradually been banned in many countries due to its associated health and environmental concerns. The concerns of using PFCs in textile applications is even more prominent compared to their use in other applications, as PFCs in textiles will gradually leak into the environment during the laundering process.
To avoid the use of PFCs, some PFC-free water repellent textile surface finishes have been developed, which are typically based on the use of polymeric materials such as silicone.
A number of methods for hydrophobic modification of cellulose have been developed, although the majority of these methods are not for textile applications. CN 105566502, CN 107254809, CN 104594028, CN 108456966, and CN 108251903 describe modification of cellulose with silica-containing materials, such as silane, silicone and silica oxide. US 2750306 teaches direct cellulose modification using chloromethyl acyl amide based quaternary ammonium compounds. US 20150368441 teaches lignin deposition on cellulose to provide hydrophobic properties for use in the papermaking industry. The foregoing methods are applied to various substrates, but are not applied to cellulose powder. CN 107199020 and WO 2014011112 teach octadecylamine modification of cellulose particles, but both use a physical approach and as such do not use chemical reactions. None of the aforementioned methods provide an aqueous-based method for imparting water repellency to textiles that is suitable for fabric applications, e.g., by dipping or by pad dry cure process.
There is thus a need for improved PFC-free water-based methods for imparting water repellency to textile substrates.
SUMMARY
It is the objective of the present disclosure to provide a method of preparing a PFC-free water repellent surface finish for fabric applications using, but not limited to, recycled cellulose powder. When used, the recycled cellulose powders can be obtained from recycled blended textile via the hydrothermal treatment, such as the process described in PCT Patent Application No. PCT/CN2019/107499. The first step comprises performing surface modification of the obtained recycled cellulose powder thereby transforming the hydrophilic surface to a hydrophobic surface by chemical reaction. Surface modification can be performed by esterification of cellulose or laccase/TEMPO-mediated grafting on cellulose. The second step comprises adding binders and water in order to prepare a water-based formulation suitable for fabric and/or textile substrate application. The final surface finish solution can be applied to fabrics or textile substrates by dip coating or by pad-dry-cure process.
In a first aspect, provided herein is a method of preparing a water repellant textile substrate, the method comprising: contacting a textile substrate with a surface finishing solution comprising a binder and a hydrophobic cellulose powder thereby forming a surface finishing solution treated textile substrate, wherein the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
wherein each R is independently selected from the group consisting of hydrogen and -CO
2R
1; and
R
1 is C
10-C
40 alkyl, with the proviso that at least one R is -CO
2R
1; or
a repeating unit of Formula 2:
wherein each R’ is independently selected from the group consisting of -CH
2OH and -C (H) =NR
2; and R
2 is C
10-C
40 alkyl, with the proviso that at least one R’ is -C (H) =NR
2; and
optionally curing the surface finishing solution treated textile substrate thereby forming the water repellant textile substrate.
In a first embodiment of the first aspect, provided herein is the method of the first aspect, wherein the textile substrate is cotton, polyester, or a combination thereof.
In a second embodiment of the first aspect, provided herein is the method of the first aspect, wherein the surface finishing solution comprises water, the binder, and the hydrophobic cellulose powder.
In a third embodiment of the first aspect, provided herein is the method of the first aspect, further comprising: contacting a cellulose powder and an alkyloyl halide thereby forming the hydrophobic cellulose powder comprising the repeating unit of Formula 1; or contacting a cellulose powder with an oxidizing agent in an aqueous dispersion thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties and contacting the partially oxidized cellulose powder with a primary alkyl amine in an aqueous dispersion thereby forming the hydrophobic cellulose powder comprising the repeating unit of Formula 2.
In a fourth embodiment of the first aspect, provided herein is the method of the third embodiment of the first aspect, wherein the cellulose powder has a particle size below 100 μm.
In a fifth embodiment of the first aspect, provided herein is the method of the third embodiment of the first aspect, wherein in the step of contacting the cellulose powder with the alkyloyl halide, the cellulose powder is present at a concertation of 10 to 100 mg/mL.
In a sixth embodiment of the first aspect, provided herein is the method of the fifth embodiment of the first aspect, wherein the alkyloyl halide is CH
3 (CH
2)
nCH
2COCl, wherein n is a whole number selected from 10 to 40 and the alkyloyl halide is present at a concentration of 50 to 500 mg/mL.
In a seventh embodiment of the first aspect, provided herein is the method of the sixth embodiment of the first aspect, wherein the step of contacting the cellulose powder with the alkyloyl halide is conducted at 60 to 120℃.
In an eighth embodiment of the first aspect, provided herein is the method of the third embodiment of the first aspect, wherein the oxidizing agent comprises laccase and (2, 2, 6, 6-tetramethylpiperidin-1-yl) oxyl (TEMPO) .
In a ninth embodiment of the first aspect, provided herein is the method of the eighth embodiment of the first aspect, wherein in the step of contacting the cellulose powder with laccase and TEMPO, the cellulose powder is present at a concentration of 1 to 50 mg/mL in the aqueous dispersion; and the laccase and TEMPO are each independently present at a concentration of 0.5 mg/mL to 30 mg/mL in the aqueous dispersion.
In a tenth embodiment of the first aspect, provided herein is the method of the third embodiment of the first aspect, wherein the primary alkyl amine is of NH
2CH
2 (CH
2)
nCH
3, wherein n is whole number selected from 10 to 40; and in the step of contacting the partially oxidized cellulose powder with a primary alkyl amine, the primary alkyl amine is present at a concentration of 10 to 100 mg/mL in the aqueous dispersion.
In an eleventh embodiment of the first aspect, provided herein is the method of the ninth embodiment of the first aspect, wherein the step of contacting the cellulose powder with the laccase and TEMPO is conducted at 25 to 60℃.
In an twelfth embodiment of the first aspect, provided herein is the method of the ninth embodiment of the first aspect, where the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane.
In a thirteenth embodiment of the first aspect, provided herein is the method of the first aspect, wherein the hydrophobic cellulose powder is present at a concentration of 1 to 10 g/L in the surface finishing solution.
In a fourteenth embodiment of the first aspect, provided herein is the method of the first aspect, wherein binder is present at a concentration of 50-250 g/L in the surface finishing solution and the binder solid content is 20 to 50 wt %.
In a fifteenth embodiment of the first aspect, provided herein is the method of the first aspect, wherein the surface finishing solution treated textile substrate is cured at a temperature of 120 to 160℃.
In a sixteenth embodiment of the first aspect, provided herein is the method of the third embodiment of the first aspect, wherein the method comprises: contacting cellulose powder with an alkyloyl halide having the formula CH
3 (CH
2)
nCH
2COCl, wherein n is a whole number selected from 10 to 40, at a temperature of 60 to 120℃ thereby forming hydrophobic cellulose powder comprising the repeating unit of Formula 1, wherein the cellulose powder is present at a concertation of 10 to 100 mg/mL; and the alkyloyl halide is present at a concentration of 50 to 500 mg/mL; and contacting a textile substrate with a surface finishing solution comprising the hydrophobic cellulose powder and a binder, wherein the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane; the binder is present at a concentration of 50-250 g/L in the surface finishing solution; and the binder solid content is 20 to 50 wt %thereby forming a surface finishing solution treated textile substrate; and curing the surface finishing solution treated textile substrate at a temperature of 120 to 160℃ thereby forming the water repellant textile substrate.
In a seventeenth embodiment of the first aspect, provided herein is the method of the third embodiment of the first aspect, wherein the method comprises: contacting cellulose powder with laccase and TEMPO in an aqueous dispersion at 25 to 60℃, wherein the cellulose powder is present at a concentration of 1 to 50 mg/mL in the aqueous dispersion; and the laccase and TEMPO are each independently present at a concentration of 0.5 mg/mL to 30 mg/mL in the aqueous dispersion; thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties; contacting the partially oxidized cellulose powder with a primary alkyl amine having the formula CH
3 (CH
2)
nCH
2NH
2, wherein n is a whole number selected from 10 to 40, in an aqueous dispersion at temperature of 60 to 120℃, wherein the primary alkyl amine is present at a concentration of 10 to 100 mg/mL in the aqueous dispersion; thereby forming a hydrophobic cellulose powder comprising the repeating unit of Formula 2; contacting a textile substrate with a surface finishing solution comprising the hydrophobic cellulose powder and a binder, wherein the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane; the binder is present at a concentration of 50-250 g/L in the surface finishing solution; and the binder solid content is 20 to 50 wt %thereby forming a surface finishing solution treated textile substrate; and curing the surface finishing solution treated textile substrate at a temperature of 120 to 160℃ thereby forming the water repellant textile substrate.
In a second aspect, provided herein is a water repellant textile substrate prepared according to the method of the first aspect.
In a third aspect, provided herein is a surface finished water repellant textile substrate prepared according to the method of claim sixteenth embodiment of the first aspect.
In a fourth aspect, provided herein is a surface finished water repellant textile substrate prepared according to the method of seventh embodiment of the first aspect.
Figure 1 depicts a Fourier-transform infrared spectroscopy (FTIR) spectrum of cellulose powder after hydrothermal treatment.
Figure 2A depicts a FTIR spectrum of modified cellulose powder by esterification. Additional peaks at 1468 cm
-1, 2852 cm
-1, and 2918 cm
-1 for C-H bonds are observed.
Figure 2B depicts a FTIR spectrum of modified cellulose powder by laccase/TEMPO mediated grafting. Additional peaks at 1471 cm
-1, 2847 cm
-1, and 2917 cm
-1 for C-H bonds are observed.
Figure 3 depicts a flow diagram for the preparation of cellulose based water repellent surface finish according to certain embodiments of the methods described herein.
Figure 4 depicts the contact angle measurement of cotton fabric (a) Before surface finish application (b) after application of surface finish in Example 3 (c) after application of surface prepared in Example 4 (d) after application of surface prepared in Example 4.
Provided herein is a method of applying a water repellant surface finish comprising a binder and hydrophobic cellulose powder to a textile substrate. In certain embodiments, the method does not call for the use of perfluorocarbons, e.g., either as a solvent, reagent, or furnished in the finished water repellant textile product.
In certain embodiments, the method of applying a water repellant surface finish comprises: contacting a cellulose powder and an alkyloyl halide; or contacting a cellulose powder with an oxidizing agent in an aqueous dispersion thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties and contacting the partially oxidized cellulose powder with a primary alkyl amine in an aqueous dispersion; thereby forming a hydrophobic cellulose powder; contacting a textile substrate with a surface finishing solution comprising a binder and the hydrophobic cellulose powder thereby forming a surface finishing solution treated textile; and optionally curing the surface finishing solution treated textile thereby forming a water repellant water repellant textile substrate.
In certain embodiments, the method of applying a water repellant surface finish comprises: contacting a textile substrate with a surface finishing solution comprising a binder and a hydrophobic cellulose powder thereby forming a surface finishing solution treated textile substrate, wherein the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
wherein each R is independently selected from the group consisting of hydrogen and CO
2R
1; and R
1 is C
10-C
40 alkyl, with the proviso that at least one R is -CO
2R
1; or
a repeating unit of Formula 2:
wherein each R’ is independently selected from the group consisting of -CH
2OH and -C(H) =NR
2; and R
2 is C
10-C
40 alkyl; and optionally curing the surface finishing solution treated textile substrate thereby forming a water repellant textile substrate.
In certain embodiments, the method comprises contacting a textile substrate with a surface finishing solution comprising a binder and a hydrophobic cellulose powder comprising a repeating unit of Formula 1:
wherein each instance of R is independently selected from the group consisting of hydrogen and -CO
2R
1, with the proviso that at least one R is -CO
2R
1, wherein R
1 is C
10-C
40 alkyl. R
1 can be C
10-C
40 branched alkyl, C
10-C
40 linear alkyl, or C
10-C
40 cycloalkyl. In certain embodiments, R
1 is - (CH
2)
nCH
3, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20. In certain embodiments, R
1 is - (CH
2)
17CH
3. In certain embodiments, 1, 2, 3, 4, 5, or 6 instances of R in the repeating unit of Formula 1 is -CO
2R
1. The number of instances of R in the repeating unit of Formula 1 that is -CO
2R
1 can be controlled by appropriate selection of reagent stoichiometry and reaction conditions and is well within the skill of a person of ordinary skill in the art. In certain embodiments, the hydrophobic cellulose powder is prepared according to any of the methods described herein.
In certain embodiments, the method comprises contacting a textile substrate with a surface finishing solution comprising a binder and hydrophobic cellulose powder comprising a repeating unit of Formula 2:
wherein each instance of R’ is independently selected from the group consisting of –CH
2OH and –C (H) =NR
2, with the proviso that at least one R’ is -C (H) =NR
2, wherein R
2 is C
10-C
40 alkyl. R
2 can be C
10-C
40 branched alkyl, C
10-C
40 linear alkyl, or C
10-C
40 cycloalkyl. In certain embodiments, R
2 is - (CH
2)
nCH
3, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20. In certain embodiments, R
2 is - (CH
2)
18CH
3. In certain embodiments, 1 or 2 instances of R’ in the repeating unit of Formula 2 is –C (H) =NR
2. The number of instances of R’ in the repeating unit of Formula 2 that is –C (H) =NR
2 can be controlled by appropriate selection of reagent stoichiometry and reaction conditions and is well within the skill of a person of ordinary skill in the art. In certain embodiments, the hydrophobic cellulose powder is prepared according to any of the methods described herein.
In certain embodiments, the surface finishing solution comprises water, the binder, and the hydrophobic cellulose powder.
Any binder known in the art can be used in connection with the methods described herein. In certain embodiments, the binder is a commercial water based binder commonly used for pad-dry-cure process. Binders can be acrylic-based, butadiene-based, or polyurethane-based. Exemplary binders, include, but are not limited to Dow Primal TM ECO-1291, Dow Rhoplex R-3349, Achitex Minerva Mineprint Binder ACM,
4983-40R, and Achitexminerva Binder WST. Exemplary polyurethane-based binders include, but are not limited to, Tanatex
FBI and Bondthane
TM UD-303. In certain embodiments, the binder is an acrylic-based binder.
Depending on the properties of the binder used in the surface finishing solution, it may be necessary to cure the surface finishing solution treated textile substrate. Curing can be conducted at any temperature between room temperature and 180℃. In certain embodiments, curing is conducted at a temperature of 50 to 160℃; 100 to 160℃; or 120 to 160℃.
The textile substrate may be synthetic, semi-synthetic, or natural. Natural organic fibers, including biodegradable materials, cellulosic and/or protein fibers. The textile substrate may be woven or non-woven. The textile substrate may also be in the form of a fabric, a fiber, a filament, a film, garment, chopped or flocculated fiber.
Natural organic textile substrates may be of any plant or animal origin, and include, for example, those fibrous materials derived from natural products containing celluloses, such as any one or a combination of wood, bamboo, cotton, banana,
hemp ramie, linen, coconut palm, soya, milk, hoya, bagasse, kanaf, retting, mudrar, silk, wool, cashmere, alpaca, angora wool, mohair, shearling,
shahtoosh, and the like.
Semi-synthetic textile substrates may include, for example, any one or a combination of viscose, cuprammonium, rayon, polynosic, lyocell, cellulose acetate, and the like.
Synthetic organic textile substrates acrylic, Kevlar, modacrylic, nomex, spandex, nylon, polyester, acrylic, rayon, acetate and the like
In certain embodiments, the textile substrate may be cotton, polyester, a blended textile comprising cotton and polyester. In certain embodiments, the textile substrate is a polyethylene terephthalate (PET) /cotton blend.
The hydrophobic cellulose powder can be prepared from virgin cellulose powder or a recycled cellulose powder. The cellulose powder can have a particle size below 100 μm. In certain embodiments, the cellulose powder has a particle size of 1 to 100 μm; 10 to 100 μm; or 50 to 100 μm.
The cellulose powder used in connection with the methods described herein can be prepared according to any method known in the art. In certain embodiments, the cellulose powder is prepared using a hydrolysis method. The hydrolysis method may be acid hydrolysis, alkaline oxidative decomposition, hydrothermal treatment, steam explosion, or the like, or a combination of two kinds of such methods.
The cellulose powder may be prepared, for example, by an organic acid catalyzed hydrothermal treatment of a post-consumer textile comprising a natural, semi-synthetic, and/or synthetic cellulosic material or a natural cellulosic material.
In certain embodiments, the cellulose powder is prepared by subjecting the post-consumer textile to an organic acid catalyzed hydrothermal treatment, the method comprising the step of bringing into contact the post-consumer textile, an aqueous solution, and an organic acid and heating the resulting mixture.
Hydrothermal treatment involves the chemistry of hot water under pressure to carry out chemical reactions. These reactions are usually conducted at temperatures ranging from 100 to 350℃ and pressures in the range from 0.1 to 15 MPa. In certain embodiments, the hydrothermal treatment is conducted at 120-150℃, 125-145℃, 130-140℃, or 132-138℃. In certain embodiments, the hydrothermal treatment is conducted at 0.1 to 0.5, 0.2 to 0.5, 0.2 to 0.4, or 0.25 to 0.35 MPa. The reaction medium may be water alone or in combination with inorganic and/or organic acids.
The organic acid can be methanesulfonic acid, oxalic acid, tartaric acid, citric acid, malic acid, formic acid, acetic acid, or a combination thereof. In certain embodiments, the hydrothermal treatment aqueous solution contains the organic acid catalyst in an amount of 0.1%to 30%or 0.5%to 10%wt/wt. The addition of a larger amount of acid can accelerate the rate of the hydrothermal treatment reaction can shorten the time required for completion and/or assist with decomposition of thicker and/or denser post-consumer textiles.
The post-consumer textile may comprise cotton or polyester and cotton, such as PET and cotton. In instances in which the post-consumer textile contains polyester, it may contain any proportion of polyester content, for example from 1-99%wt/wt.
The post-consumer textile can optionally be divided, e.g., by cutting, tearing, and/or shredding, into smaller pieces prior to the preparation of the cellulose powder. This optional step can improve the yield of cellulose powder and reduce treatment time by increasing the surface area of the treated post-consumer textile.
In certain embodiments, the ratio of solids (i.e., the post-consumer textile) to liquid is 1:30-200 or 1: 50-150 by weight. Lower ratios of solid to liquid tend to accelerate the rate of the hydrothermal treatment reaction.
In certain embodiments, hydrothermal treatment comprises heating the mixture at a temperature between 110-180 ℃. In certain embodiments, hydrothermal treatment comprises heating the mixture at a temperature between 120-150 ℃. The temperature of the hydrothermal treatment can be increased at a rate of 4-6 ℃/minute from room temperature to the desired temperature (e.g., 110-180 ℃ or 120-150 ℃) .
In certain embodiments, the hydrothermal treatment is conducted at a pressure of 0.1 to 10 MPa or 0.1 to 1 MPa. In certain embodiments, hydrothermal treatment is conducted under autogenic pressure, i.e., pressure generated as a result of heating in a closed system. Alternatively or additionally, the pressure can be applied externally, e.g., by mechanical means.
In certain embodiments, the hydrothermal treatment is conducted in a closed high-pressure reactor, and the temperature is raised to 110-180 ℃ at a heating rate of 4-6 ℃/min and then maintained under stirring. During the hydrothermal treatment, the autogenous pressure in the closed higher-pressure reactor can be in the range of 0.10-1 MPa. The hydrothermal treatment can be completed in 0.5-3 h.
During hydrothermal treatment, subcritical conditions can be achieved in which the cotton fiber can undergo an acid catalyzed hydrolytic degradation reaction thereby producing cellulose powder, while not affecting the polyester fiber.
Pretreatment of Cellulose Powder
The cellulose powder can be obtained after hydrothermal treatment of a textile comprising a cellulosic substrate, such as cotton (e.g., see methods described in PCT Patent Application No. PCT/CN2019/107499, hereby incorporated by reference) . After hydrothermal treatment with acid, such as hydrochloric acid, citric acid, maleic acid or methanesulfonic acid, the wet cellulose powder is obtained by filtration without purification. (Step 1) The cellulose powder can be optionally grinded to a smaller particle size. (2) Dry the cellulose powder with air blowing at 40 –60 ℃. (3) Place the dried cellulose powder in oven at 80 –170 ℃ for 0.5 –6 h.
The recycled cellulose powder obtained from hydrothermal treatment can first be grinded by a centrifugal mill, followed by sieving to obtain cellulose powder. The dye in the recycled cellulose, if any, can be removed first. Oxidative bleaching can be done using hydrogen peroxide, ozone, sodium hypochlorite, sodium chlorite or other bleaching agents to remove the color from the cellulose powder, and the free dye could be further removed by adsorption on activated carbon.
Surface Modification of Cellulose Powder
In this step, the goal is to replace as many -OH groups on cellulose powder with long carbon chains as possible, which will modify surface property of the cellulose powder from hydrophilic to hydrophobic. Hydrophobic cellulose powder after the surface modification reactions will be purified in order to remove unreacted chemicals, before dispersing in a water formulation. Surface modification is achieved via one of the follow routes.
Esterification of Cellulose Powder
An exemplary esterification reaction of cellulose powder with an alkyloyl halide is shown below:
The alkyloyl halide can be an alkyloyl chloride or alkyloyl bromide. The alkyloyl halide can be a linear alkyloyl halide, branched alkyloyl halide, or cyclic alkyloyl halide. The alkyloyl halide can be a C
10-C
40 alkyl halide. In certain embodiments, the alkyloyl halide is CH
3 (CH
2) nCOCl, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20. In certain embodiments, the alkyloyl halide is stearoyl chloride.
The reaction of the cellulose powder and the alkyloyl halide is typically conducted in an organic solvent. In certain embodiments, the organic solvent is a polar aprotic or a polar protic solvent. Exemplary solvents for the reaction of the cellulose powder and the alkyloyl halide include, but are not limited to, alkyl halides, ethers, esters, ketones, amides, amines, formamides, alkanes, aromatics, alkyl nitriles, alcohols, alkyl sulfoxides, and combinations thereof. In certain embodiments, the solvent is pyridine, dichloromethane, 1, 2-dichloroethane, chloroform, tetrahydrofuran, diethyl ether, acetone, 1, 4-dioxane, acetonitrile, ethyl acetate, propylene carbonate, ethanol, isopropanol, and combinations thereof.
In certain embodiments, the reaction of the alkyloyl halide and the cellulose powder further comprises a base. The base can be an inorganic or organic base. Exemplary inorganic bases include, but are not limited to alkali metal or alkaline earth metal hydroxide, oxide, carbonate, bicarbonate, and combinations thereof. Exemplary organic base include, but are not limited to, trimethylamine, trimethylamine, diisopropylethylamine, tri-n-propylamine, tri-n-butylamine, N-methylpiperidine, or pyridine. The base is not however limited to the above examples. It is feasible to use any organic or inorganic base commonly used for organic synthesis in the esterification reaction.
Typical procedures involve pre-washing of cellulose powder with organic solvents, heating cellulose powder in pyridine, addition of the alkyloyl halide and purification in organic solvents such as ethanol and dichloromethane. Alkyloyl halides with linear alkyl chains having ten or more carbons are preferred to ensure high hydrophobicity. The alkyloyl halide (50-500 mg/mL) can be added with cellulose powder (10-100 mg/mL) under stirring and nitrogen purge at 60℃ –120℃ for 30 min –180 mins.
Laccase/TEMPO Mediated Grafting of Cellulose Powder
The reaction of the laccase/TEMPO mediated grafting of cellulose powder with fatty amine is shown below:
Recycled cellulose powder can first be partially oxidized by laccase/TEMPO thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties (comprising aldehyde groups at C6 alcohol of one more of the D-glucose of the cellulose polyer) ) , which can then react with the amino groups of primary alkyl amines, e.g. a primary fatty acid alkyl amines, such as octadecylamine, to form a Schiff base.
The primary alkyl amine can be a linear alkyl amine, branched alkyl amine, or cyclic alkyl amine. The primary alkyl amine can be a primary C
10-C
40 alkyl amine. In certain embodiments, the primary alkyl amine is CH3 (CH2) nNH2, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20. In certain embodiments, the primary alkyl amine is octadecylamine.
Primary alkyl amines with linear alkyl chains having ten or more carbons are preferred to ensure high hydrophobicity. Solutions of laccase and TEMPO are first prepared having a concentration of 0.5 mg/mL –30 mg/mL of TEMPO and 0.5 mg/mL –30 mg/mL of laccase. The mass ratio of the laccase to TEMPO can be in the range of 1: 1 to 2: 1. After complete dissolution, cellulose (1-50 mg/mL) and primary alkyl amine (10 mg/mL –100 mg/mL) are added and the mixture is allowed to react at 25℃ –60℃ for 6 –72 hr.
Application of Water Repellent Surface Finish
The concentration of the cellulose powder in the surface finishing solution can range from 1-10 g/L. The concentration of the binder of the binder in the surface finishing solution can be 50-250 g/L with a solid content of 20-40 wt%. The surface finishing solution is prepared by mixing a mixture comprising the cellulose powder and binder in high speed homogenizer at 5000-20000 RPM for 1 -30 mins.
Application of the prepared dispersion onto textile substrates (such as cellulosic fabrics) can be accomplished by either by employing dip coating or by the pad-dry-cure process. Dip coating fabric in the surface finishing solution can be performed for 1-10 minutes. Padding can be conducted by adjusting pressing pressure and roller speed. The roller speed can be between 1-5 m/min and the roller nip pressure can be between 1-5 bar. Heating and curing the water repellant textile substrate can be performed at a temperature of 100-160℃ for 1-10 minutes.
Water-repellent properties of the prepared water repellant textile substrate are characterized according to AATCC 22: Water Repellency Spray Test. Color change is measured by Gray scale test according to AATCC EP1-2012.
Also provided herein is a water repellant textile substrate prepared according to any of the methods described herein.
In certain embodiments, provided herein is a textile substrate comprising a water repellant finish, wherein the water repellant finish comprises a binder and a hydrophobic cellulose powder, wherein the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
wherein each R is independently selected from the group consisting of hydrogen and CO
2R
1; and R
1 is C
10-C
40 alkyl, with the proviso that at least one R is -CO
2R
1; or
a repeating unit of Formula 2:
wherein each R’ is independently selected from the group consisting of -CH
2OH and -C (H) =NR
2; and R
2 is C
10-C
40 alkyl, with the proviso that at least one R’ is -C (H) =NR
2; and optionally curing the surface finishing solution treated textile substrate thereby forming a water repellant textile substrate. The water repellant finish can be present as a coating on the surface of the textile substrate.
In certain embodiments, the hydrophobic cellulose powder comprises a repeating unit of Formula 1:
wherein each instance of R is independently selected from the group consisting of hydrogen and -CO
2R
1, wherein R
1 is C
10-C
40 alkyl. R
1 can be C
10-C
40 branched alkyl, C
10-C
40 linear alkyl, or C
10-C
40 cycloalkyl. In certain embodiments, R
1 is - (CH
2)
nCH
3, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20. In certain embodiments, R
1 is - (CH
2)
17CH
3. In certain embodiments, the hydrophobic cellulose powder is prepared according to any of the methods described herein.
In certain embodiments, the hydrophobic cellulose powder comprises a repeating unit of Formula 2:
wherein each instance of R’ is independently selected from the group consisting of –CH
2OH and –C (H) =NR
2, with the proviso that at least one R’ is -C (H) =NR
2, wherein R
2 is C
10-C
40 alkyl. R
2 can be C
10-C
40 branched alkyl, C
10-C
40 linear alkyl, or C
10-C
40 cycloalkyl. In certain embodiments, R
2 is - (CH
2)
nCH
3, wherein n is 10 to 40, 10 to 30, 10 to 20, 15 to 20, or 17 to 20. In certain embodiments, R
2 is - (CH
2)
18CH
3. In certain embodiments, the hydrophobic cellulose powder is prepared according to any of the methods described herein.
The binder can be any binder known in the art. In certain embodiments, the binder is a commercial water based binder commonly used for pad-dry-cure process. Binders can be acrylic-based, butadiene-based, or polyurethane-based. Exemplary binders, include, but are not limited to Dow Primal TM ECO-1291, Dow Rhoplex R-3349, Achitex Minerva Mineprint Binder ACM,
4983-40R, and Achitexminerva Binder WST. Exemplary polyurethane-based binders include, but are not limited to, Tanatex
FBI and Bondthane
TM UD-303. In certain embodiments, the binder is an acrylic-based binder.
The textile substrate may be synthetic, semi-synthetic, or natural. Natural organic fibers, including biodegradable materials, cellulosic and/or protein fibers. The textile substrate may be woven or non-woven. The textile substrate may also be in the form of a fabric, a fiber, a filament, a film, garment, chopped or flocculated fiber.
In certain embodiments, the textile substrate may be cotton, polyester, a blended textile comprising cotton and polyester. In certain embodiments, the textile substrate is a polyethylene terephthalate (PET) /cotton blend.
EXAMPLES
Example 1
Recycled cellulose powder was obtained from the hydrothermal process. Grinding using a centrifuge mill and sieving was performed to collect cellulose below 100 μm using a sieve shaker. 1-5 g of cellulose powder was washed with 25-50 mL methanol and followed centrifuge for 10-20 mins at 6000 RPM, followed by 25-50 mL of pyridine. Washed cellulose was suspended in 25-50 mL of fresh pyridine. The suspension was transferred to a round bottom flask and is heated to 80-120℃ under nitrogen purge. 5-10g of stearoyl chloride was added in by a needle syringe. Reaction was continued for 0.5-2 hr. Addition of 200 mL of ethanol was added to quench the reaction. Purification by ethanol was repeated twice by centrifugation. Collected pellets were dissolved into 30-60 mL of dichloromethane and precipitate in 200-400 mL ethanol and repeated twice. Dry the product under room temperature.
Example 2
Recycled cellulose powder was obtained from the hydrothermal process. Sieving was performed to collect cellulose below 100 μm. Laccase solution was prepared in deionized water at 5-10 mg/mL and was stirred for 15-30 minutes. Insoluble was filtered and addition of TEMPO, octadecylamine and cellulose powder. Reaction is allowed to continue for 24-72 hrs at 40℃. Hydrophobic cellulose powder was collected and purified with water and ethanol, each 3 times respectively by centrifugation. Drying was performed at room temperature.
Example 3
A water suspension containing 2.5-5 g/L of hydrophobic cellulose powder was added to water. 100g/L of
Prime 4983-40R binder (ethylene acrylic acid copolymer) was added. The formulation was dispersed at by a high speed homogenizer for 5 minutes. 100%cotton fabric was dip coated in the thus prepared surface finishing solution. The fabric was cured in an oven at 150℃ for 5 minutes. Water contact angle measurement, water spray test and grayscale color change test were performed.
Example 4
A water suspension containing 5 g/L of hydrophobic cellulose powder was added to water. 100g/L of BINDER WST (acrylonitrile butadiene copolymer) from Achitex Minerva SpA was added. The formulation was dispersed by a high speed homogenizer for 5 minutes. 100%cotton fabric was dip coated by in the thus prepared surface finishing solution. The fabric was cured in an oven at 150℃ for 5 minutes. Water contact angle measurement, water spray test and grayscale color change test were performed.
Example 5
A water suspension containing 5 g/L of hydrophobic cellulose powder was added to water. 100g/L of
Prime 4983-40R from Michaelman was added. The formulation was dispersed by a high-speed homogenizer for 5 minutes. 100%cotton fabric was dip coated in the thus prepared surface finishing solution. The fabric was cured in an oven at 150℃ for 5 minutes. Water contact angle measurement, water spray test and grayscale color change test were performed.
Spray Test | Water Contact Angle | Gray Scale | |
Example 3 | 90 | 137.9 | 4.5 |
Example 4 | 90 | 134.3 | 4.0 |
Example 5 | 90 | 135.1 | 4.0 |
While the foregoing invention has been described with respect to various embodiments and examples, it is understood that other embodiments are within the scope of the present invention as expressed in the following claims and their equivalents. Moreover, the above specific examples are to be construed as merely illustrative, and not limitative of the reminder of the disclosure in any way whatsoever. Without further elaboration, it is believed that one skilled in the art can, based on the description herein, utilize the present invention to its fullest extent.
Claims (21)
- A method of preparing a water repellant textile substrate, the method comprising: contacting a textile substrate with a surface finishing solution comprising a binder and a hydrophobic cellulose powder thereby forming a surface finishing solution treated textile substrate, wherein the hydrophobic cellulose powder comprises a repeating unit of Formula 1:wherein each R is independently selected from the group consisting of hydrogen and -CO 2R 1; andR 1 is C 10-C 40 alkyl, with the proviso that at least one R is -CO 2R 1; ora repeating unit of Formula 2:wherein each R’ is independently selected from the group consisting of -CH 2OH and -C (H) =NR 2; andR 2 is C 10-C 40 alkyl, with the proviso that at least one R’ is -C (H) =NR 2; andoptionally curing the surface finishing solution treated textile substrate thereby forming the water repellant textile substrate.
- The method of claim 1, wherein the textile substrate is cotton, polyester, or a combination thereof.
- The method of claim 1, wherein the surface finishing solution comprises water, the binder, and the hydrophobic cellulose powder.
- The method of claim 1, further comprising: contacting a cellulose powder and an alkyloyl halide thereby forming the hydrophobic cellulose powder comprising the repeating unit of Formula 1; orcontacting a cellulose powder with an oxidizing agent in an aqueous dispersion thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties and contacting the partially oxidized cellulose powder with a primary alkyl amine in an aqueous dispersion thereby forming the hydrophobic cellulose powder comprising the repeating unit of Formula 2.
- The method of claim 4, wherein the cellulose powder has a particle size below 100 μm.
- The method of claim 4, wherein in the step of contacting the cellulose powder with the alkyloyl halide, the cellulose powder is present at a concertation of 10 to 100 mg/mL.
- The method of claim 6, wherein the alkyloyl halide is CH 3 (CH 2) nCH 2COCl, wherein n is a whole number selected from 10 to 40 and the alkyloyl halide is present at a concentration of 50 to 500 mg/mL.
- The method of claim 7, wherein the step of contacting the cellulose powder with the alkyloyl halide is conducted at 60 to 120℃.
- The method of claim 4, wherein the oxidizing agent comprises laccase and (2, 2, 6, 6-tetramethylpiperidin-1-yl) oxyl (TEMPO) .
- The method of claim 9, wherein in the step of contacting the cellulose powder with laccase and TEMPO, the cellulose powder is present at a concentration of 1 to 50 mg/mL in the aqueous dispersion; and the laccase and TEMPO are each independently present at a concentration of 0.5 mg/mL to 30 mg/mL in the aqueous dispersion.
- The method of claim 4, wherein the primary alkyl amine is of NH 2CH 2 (CH 2) nCH 3, wherein n is whole number selected from 10 to 40; and in the step of contacting the partially oxidized cellulose powder with a primary alkyl amine, the primary alkyl amine is present at a concentration of 10 to 100 mg/mL in the aqueous dispersion.
- The method of claim 10, wherein the step of contacting the cellulose powder with the laccase and TEMPO is conducted at 25 to 60℃.
- The method of claim 1, where the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane.
- The method of claim 1, wherein the hydrophobic cellulose powder is present at a concentration of 1 to 10 g/L in the surface finishing solution.
- The method of claim 1, wherein binder is present at a concentration of 50-250 g/L in the surface finishing solution and the binder solid content is 20 to 50 wt %.
- The method of claim 1, wherein the surface finishing solution treated textile substrate is cured at a temperature of 120 to 160℃.
- The method of claim 4, wherein the method comprises: contacting cellulose powder with an alkyloyl halide having the formula CH 3 (CH 2) nCH 2COCl, wherein n is a whole number selected from 10 to 40, at a temperature of 60 to 120℃ thereby forming hydrophobic cellulose powder comprising the repeating unit of Formula 1, wherein the cellulose powder is present at a concertation of 10 to 100 mg/mL; and the alkyloyl halide is present at a concentration of 50 to 500 mg/mL; and contacting a textile substrate with a surface finishing solution comprising the hydrophobic cellulose powder and a binder, wherein the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane; the binder is present at a concentration of 50-250 g/L in the surface finishing solution; and the binder solid content is 20 to 50 wt %thereby forming a surface finishing solution treated textile substrate; and curing the surface finishing solution treated textile substrate at a temperature of 120 to 160℃ thereby forming the water repellant textile substrate.
- The method of claim 4, wherein the method comprises: contacting cellulose powder with laccase and TEMPO in an aqueous dispersion at 25 to 60℃, wherein the cellulose powder is present at a concentration of 1 to 50 mg/mL in the aqueous dispersion; and the laccase and TEMPO are each independently present at a concentration of 0.5 mg/mL to 30 mg/mL in the aqueous dispersion; thereby forming a partially oxidized cellulose powder comprising a plurality of aldehyde moieties; contacting the partially oxidized cellulose powder with a primary alkyl amine having the formula CH 3 (CH 2) nCH 2NH 2, wherein n is a whole number selected from 10 to 40, in an aqueous dispersion at temperature of 60 to 120℃, wherein the primary alkyl amine is present at a concentration of 10 to 100 mg/mL in the aqueous dispersion; thereby forming a hydrophobic cellulose powder comprising the repeating unit of Formula 2; contacting a textile substrate with a surface finishing solution comprising the hydrophobic cellulose powder and a binder, wherein the binder comprises a polymer comprising acrylic, ethylene, butadiene, or a combination thereof; or the binder comprises a polyurethane; the binder is present at a concentration of 50-250 g/L in the surface finishing solution; and the binder solid content is 20 to 50 wt %thereby forming a surface finishing solution treated textile substrate; and curing the surface finishing solution treated textile substrate at a temperature of 120 to 160℃ thereby forming the water repellant textile substrate.
- The water repellant textile substrate prepared according to the method of claim 1.
- The surface finished water repellant textile substrate prepared according to the method of claim 17.
- The surface finished water repellant textile substrate prepared according to the method of claim 18.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/075646 WO2021163865A1 (en) | 2020-02-18 | 2020-02-18 | Method for preparing water repellent textile substrates and products thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/075646 WO2021163865A1 (en) | 2020-02-18 | 2020-02-18 | Method for preparing water repellent textile substrates and products thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021163865A1 true WO2021163865A1 (en) | 2021-08-26 |
Family
ID=77390300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/075646 WO2021163865A1 (en) | 2020-02-18 | 2020-02-18 | Method for preparing water repellent textile substrates and products thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021163865A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB881760A (en) * | 1958-10-31 | 1961-11-08 | Hardman & Holden Ltd | Improvements relating to the treatment of cellulosic textile materials |
US3432252A (en) * | 1965-11-23 | 1969-03-11 | Us Agriculture | Method for producing resilient cotton fabrics through partial esterification |
US6379753B1 (en) * | 1998-03-24 | 2002-04-30 | Nano-Tex, Llc | Modified textile and other materials and methods for their preparation |
CN110777567A (en) * | 2019-10-30 | 2020-02-11 | 刘丹丹 | Antibacterial super-hydrophobic finishing method for slow-release fragrant decorative paper |
-
2020
- 2020-02-18 WO PCT/CN2020/075646 patent/WO2021163865A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB881760A (en) * | 1958-10-31 | 1961-11-08 | Hardman & Holden Ltd | Improvements relating to the treatment of cellulosic textile materials |
US3432252A (en) * | 1965-11-23 | 1969-03-11 | Us Agriculture | Method for producing resilient cotton fabrics through partial esterification |
US6379753B1 (en) * | 1998-03-24 | 2002-04-30 | Nano-Tex, Llc | Modified textile and other materials and methods for their preparation |
CN110777567A (en) * | 2019-10-30 | 2020-02-11 | 刘丹丹 | Antibacterial super-hydrophobic finishing method for slow-release fragrant decorative paper |
Non-Patent Citations (1)
Title |
---|
YU YUANYUAN; WANG QIANG; YUAN JIUGANG; FAN XUERONG; WANG PING; CUI LI: "Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting", CARBOHYDRATE POLYMERS, vol. 137, 10 November 2015 (2015-11-10), GB, pages 549 - 555, XP029344731, ISSN: 0144-8617, DOI: 10.1016/j.carbpol.2015.11.026 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rani et al. | Wheat starch, gum arabic and chitosan biopolymer treatment of wool fabric for improved shrink resistance finishing | |
Haji et al. | Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes | |
Liu et al. | Cationic cellulose nanofibers with efficient anionic dye adsorption: adsorption mechanism and application in salt-free dyeing of paper | |
CA2665628A1 (en) | Cellulosic textiles treated with hyperbranched polyethyleneimine derivatives | |
Chattopadhyay et al. | Improvement in properties of cotton fabric through synthesized nano-chitosan application | |
WO2016061099A1 (en) | Water-repellent fabrics | |
CN113389049A (en) | Composite cotton fiber fabric easy to dye and preparation method thereof | |
Niu et al. | Investigation on multifunctional modification of cotton fabrics for salt-free dyeing, resisting crease and inhibiting bacteria | |
US12209358B2 (en) | Method for preparing water repellent textile substrates and products thereof | |
Arık et al. | Crease resistance improvement of hemp biofiber fabric via sol–gel and crosslinking methods | |
Shi et al. | Interaction enhancement of Lyocell cellulose chains for controlled fibrillation behavior with greener application in eco-textiles | |
Xu et al. | A self-stiffness finishing for cotton fabric with N-methylmorpholine-N-oxide | |
WO2021163865A1 (en) | Method for preparing water repellent textile substrates and products thereof | |
EP3868789A1 (en) | Method for preparing water repellent textile substrates and products thereof | |
CN112176746B (en) | Preparation method of natural fiber graphene composite material | |
US20230089849A1 (en) | Pad-steam cationization of textiles | |
US20230071562A1 (en) | Pad-dry cationization of textiles | |
EP1614797B1 (en) | Method for modifying fibers comprising animal fibers | |
WO2008119646A2 (en) | Method for treating textiles | |
Li et al. | Tri-functional aziridine-induced cellulose crosslinking network for enhanced fibrillation resistance of low-carbon lyocell fiber | |
Pervez et al. | Research on crystallinity, morphology of cotton subjected to enzyme and crosslinking treatment | |
Cai et al. | Modification of ramie fibre with a mixture of NaOH solution and iso-propanol solvent for enhancing its dyeing performance | |
Özdemir et al. | Imidazolium and Ammonium-Based Ionic Liquids for Reactive Dyeing | |
Hebeish et al. | Innovative Technology for Multifunctionalization of Cotton Fabric through Cellulase Biotreatment, Reactive Dyeing and Easy Care Finishing | |
JP2003342875A (en) | Method for processing cellulosic fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919849 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20919849 Country of ref document: EP Kind code of ref document: A1 |