+

WO2020246845A1 - Mutant strain for improving genome of microorganism, method for preparing same, and method for improving genome of microorganism by using same - Google Patents

Mutant strain for improving genome of microorganism, method for preparing same, and method for improving genome of microorganism by using same Download PDF

Info

Publication number
WO2020246845A1
WO2020246845A1 PCT/KR2020/007332 KR2020007332W WO2020246845A1 WO 2020246845 A1 WO2020246845 A1 WO 2020246845A1 KR 2020007332 W KR2020007332 W KR 2020007332W WO 2020246845 A1 WO2020246845 A1 WO 2020246845A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
sequence encoding
strain
protein
mutant strain
Prior art date
Application number
PCT/KR2020/007332
Other languages
French (fr)
Korean (ko)
Inventor
최용준
정선욱
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2020246845A1 publication Critical patent/WO2020246845A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT

Definitions

  • the present invention relates to a mutant strain for improving the genome of a microorganism, a method for preparing the same, and a method for improving the genome of a microorganism using the same.
  • Microbial metabolic engineering is a technology that improves the genome of microorganisms and uses them for a desired purpose.
  • Useful metabolites can be obtained from the genetic information and metabolic circuits of microorganisms, and more useful metabolites or technologies that can improve their properties are being developed through manipulation of microbial genes.
  • site-specific recombination technologies such as CRISPR/Cas9, Flp/FRT, and cre/lox are applied to various models of living organisms such as plants, yeast, and microorganisms.
  • a plasmid capable of self-replicating in the microorganism to be improved is essential for the introduction of foreign genes and overexpression of a specific protein.
  • the system is being introduced. Examples thereof include a promoter for expressing the Cre recombinant enzyme, an Origin for self-replication in cells, and a plasmid containing an antibiotic resistance gene.
  • it may be host specific because it must be a plasmid capable of self-replicating in cells.
  • a broad-host-range plasmid has been developed to overexpress a specific gene in a variety of microbial organisms, but the stability in cells is different for each microbial strain. It is difficult to apply to microorganisms.
  • the cell mass and productivity may finally decrease depending on the plasmid copy number and the expression strength of the promoter in the cell.
  • an inducer such as arabinose, tryptophan, and IPTG
  • the expression level of the target gene is large, it is difficult to continuously and stably express the gene, and there are difficulties in industrial application due to the cost of the inducer to be processed.
  • these inducers may be toxic to the cells, there is a disadvantage in that they may affect the amount of cells.
  • Deinococcus radiodurans is known to have resistance to ionizing radiation that can directly damage the DNA or protein of an organism (Makarova, KS et al Microbiology and molecular biology reviews 65:44-79, 2001). .
  • the strain can recover DNA damage caused by ionizing radiation in a short time (Grimsley, JK et al, International journal of radiation biology 60:613-626, 1991), and is produced in cells by enzymatic or non-enzymatic systems. It has the ability to effectively remove the activated oxygen species (ROS) (Shashidhar, R et al, Canadian journal of microbiology 56:195-201, 2010). Due to these characteristics, Deinococcus radiodurans are used for the purification of radioactive waste. In addition, cases of technology applying Deinococcus radiodurance are expected to increase in various fields such as medicine, health care, and biotechnology.
  • ROS activated oxygen species
  • the inventors of the present invention cre-lox By applying a position-specific recombination technology such as the system , an antibiotic-resistance-related protein containing a trc promoter , a sequence encoding a cre recombinant enzyme, and a lox nucleotide sequence at both ends Preparation of a recombinant plasmid containing the encoding sequence and the sequence encoding the lac ⁇ q protein, and introducing the recombinant plasmid into the strain to include a trc promoter , a sequence encoding a cre recombinant enzyme, and a lox nucleotide sequence at both ends related to antibiotic resistance Protein
  • the nucleic acid fragment containing the encoding sequence and the sequence encoding the lac ⁇ q protein was successfully inserted into the DH-1 strain of the genus Deinococcus radiodurans and Methylomonas.
  • Cre recombinase is conditionally expressed by an IPTG inducer, and the antibiotic resistance-related protein inserted in the strain is It was confirmed that the encoding sequence was completely removed, and a mutant strain in which the above process was stably maintained was obtained. Then, it was confirmed that the target gene was efficiently deleted using the mutant strain prepared above. Accordingly, it is possible to provide a method of efficiently replacing, deleting, or inserting a target sequence of a target gene sequence for various strains using the method of preparing the mutant strain to modify a target gene in the strain.
  • the present invention relates to a sequence encoding an upper fragment sequence of a target intergenic region, a trc promoter, and a cre protein regulated by it, a sequence encoding an antibiotic resistance-related protein including a lox nucleotide sequence at both ends, a lacIq protein
  • a polynucleotide is provided in which a sequence encoding a sequence and a sequence of a lower fragment of a target intergenic region are sequentially linked.
  • the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain; And
  • the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain;
  • It provides a method of producing a mutant strain further comprising the step of removing a sequence encoding an antibiotic resistance-related protein by culturing in a medium to which isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG) is added.
  • IPTG isopropyl ⁇ -D-1-thiogalactopyranoside
  • the present invention provides a mutant strain in which the trc promoter prepared by the above method and the sequence encoding the cre protein and the sequence encoding the lacIq protein are inserted.
  • the present invention is the purpose of the mutant strain by introducing a polynucleotide in which the upper and lower fragment sequences of the target sequence are combined at both ends of the lox nucleic acid fragment containing the sequence encoding the antibiotic resistance-related protein to the mutant strain. It provides a way to modify genes.
  • the mutant strain for the improvement of the genome of the microorganism produced by the method of the present invention has a specific location such as cre recombinant enzyme in the strain to remove the sequence encoding the antibiotic resistance-related protein, which is a selective marker artificially inserted into the genome. Since there is no need to re-introduce a plasmid capable of expressing an enemy recombinant enzyme, the mutant strain can be used to efficiently replace, delete, or insert the target sequence into the strain, thereby efficiently modifying the target gene of the strain. In addition, it can be usefully used to produce a genome mutant strain of microorganisms for basic research.
  • FIG. 1 is a diagram showing a process of preparing a mutant strain into which a trc promoter and a sequence encoding a cre protein regulated by the trc promoter and a sequence encoding a lacIq protein are inserted.
  • 2A is a diagram showing a pAM1 plasmid comprising a sequence encoding a lox nucleotide sequence, a kat promoter, and a kanamycin resistance-related protein.
  • 2B is a diagram showing a pAM3 plasmid comprising a trc promoter, a sequence encoding a cre protein, and a sequence encoding a lacIq protein.
  • FIG. 3 is a process for preparing a pAM4 plasmid comprising a trc promoter, a sequence encoding a cre protein, a kat promoter including a lox nucleotide sequence at both ends, a sequence encoding a kanamycin resistance-related protein, and a sequence encoding a lacIq protein. It is a diagram shown.
  • Figure 4 is a kanamycin resistance including a partial nucleotide sequence of the Dinococcus radiodurans dr_C0022 gene and an upper fragment sequence of the target intergenic region, a trc promoter and a sequence encoding a cre protein regulated by it, and a lox nucleotide sequence at both ends. It is a diagram showing a pAM5 plasmid including a sequence encoding a related protein, a sequence encoding a lacIq protein, a lower fragment sequence of a target intergenic region, and a partial nucleotide sequence of a dr_C0023 gene.
  • Figure 5 is a mutant strain in which the sequence encoding the trc promoter and the cre protein regulated by it, the sequence encoding the kanamycin resistance protein including the lox nucleotide sequence at both ends, and the sequence encoding the lacIq protein are inserted, including IPTG. It is a diagram showing a process of producing a Deinococcus radiodurans mutant strain (DrCre) from which the sequence encoding a kanamycin resistance-related protein has been removed by culturing in a medium.
  • DrCre Deinococcus radiodurans mutant strain
  • Figure 6a is a wild-type Deinococcus radiodurans strain (WT), a sequence encoding a trc promoter and a cre protein regulated by the introduction of the pAM5 plasmid, a sequence encoding a kanamycin resistance protein including a lox nucleotide sequence at both ends And Deinococcus radiodurans strain (DrCreKm) in which the sequence encoding the lacIq protein was inserted and the cre recombinant enzyme was expressed by IPTG and the sequence encoding the kanamycin-resistant protein was removed (DrCre). It is a diagram showing the result of PCR amplification of the mutation site of.
  • WT wild-type Deinococcus radiodurans strain
  • DrCreKm a sequence encoding a trc promoter and a cre protein regulated by the introduction of the pAM5 plasmid
  • DrCreKm a sequence encoding a kanamycin resistance protein including a
  • Figure 6b is a diagram showing the results of culturing the strain of Figure 6a in TGY medium containing kanamycin and TGY medium not containing kanamycin.
  • TGY medium containing kanamycin and kanamycin are not included in the strain in which the sequence was not removed ( ⁇ crtBI_Km) and the strain in which the crtB and crtI genes were deleted (deletion) and the sequence encoding the kanamycin resistance-related protein was removed ( ⁇ crtBI). It is a diagram showing the result of culturing in a non-TGY medium.
  • Figure 7b is the color of the Deinococcus radiodurans strain (DrCre) from which the cre recombinant enzyme was expressed by IPTG and the sequence encoding the kanamycin resistance-related protein was removed, and the strain in which the crtB and crtI genes were deleted. This is a comparison diagram.
  • Figure 8a is a wild-type methylomonas sp. DH-1 strain (WT), a sequence encoding a trc promoter and a cre protein regulated by the introduction of the pAM6 plasmid, encoding a kanamycin resistance-related protein including lox nucleotide sequences at both ends DH-1 strain (DH-1:Km) of the genus Methylomonas into which the sequence and the sequence encoding the lacIq protein was inserted, and the cre recombinant enzyme was expressed by IPTG, and the sequence encoding the kanamycin resistance-related protein was removed.
  • WT wild-type methylomonas sp. DH-1 strain
  • DH-1:Km a sequence encoding a trc promoter and a cre protein regulated by the introduction of the pAM6 plasmid
  • a kanamycin resistance-related protein including lox nucleotide sequences at both ends DH
  • FIG. 8B is a diagram showing the results of culturing the strain of FIG. 8A in an NMS medium containing kanamycin and an NMS medium not containing kanamycin.
  • DH-1 AYM39_00230 gene of the genus Methylomonas and an upper fragment sequence of the target intergenic region, a trc promoter and a sequence encoding a cre protein regulated thereby, kanamycin including a lox nucleotide sequence at both ends.
  • It is a diagram showing a pAM6 plasmid including a sequence encoding a resistance-related protein, a sequence encoding a lacIq protein, a lower fragment sequence of a target intergenic region, and a partial nucleotide sequence of the AYM39_00235 gene.
  • the present invention relates to a sequence encoding an upper fragment sequence of a target intergenic region, a trc promoter, and a Cre protein regulated by it, a sequence encoding an antibiotic resistance-related protein comprising a lox nucleotide sequence at both ends, a lacIq protein
  • a polynucleotide is provided in which a sequence encoding a sequence and a sequence of a lower fragment of a target intergenic region are sequentially linked.
  • intergenic region refers to a DNA sequence located between portions where genes are clustered, and refers to a DNA sequence that does not encode a protein. This is different from introns (non-expression sites, introns, intragenic regions), which are short, protein-free regions found in genes in eukaryotes. Some intergenic regions control the expression of adjacent genes, but most of them do not function. Not known The intergenic region is one of the DNA sequences collectively called junk DNA, but recently it is known to contain the DNA sequence of a promoter or enhancer, and it has been revealed that not all intergenic regions are junk DNA.
  • the intergenic region may be a DNA sequence located between the dr_C0021 gene and the dr_C0022 gene of the Deinococcus radiodurans strain, but is not limited thereto.
  • the intergenic region may be a DNA sequence located between the AYM39_00230 gene and the AYM39_00235 gene of the DH-1 strain of the genus Methylomonas, but is not limited thereto.
  • the upper fragment sequence of the target intergenic region may be a 770 bp nucleotide sequence including a part of the nucleotide sequence of the dr_C0022 gene and a 5′ upstream region of the target intergenic region, but is not limited thereto.
  • the upper fragment sequence of the target intergenic region may be a 820 bp nucleotide sequence including a part of the nucleotide sequence of the AYM39_00230 gene and a 5′ upstream region of the target intergenic region, but is not limited thereto.
  • the lower fragment sequence of the target intergenic region may be a 710 bp nucleotide sequence including a downstream region of the target intergenic region and a part of the nucleotide sequence of the dr_C0023 gene, but is not limited thereto.
  • the lower fragment sequence of the target intergenic region may be a 810 bp nucleotide sequence including a part of the nucleotide sequence of the AYM39_00235 gene and a downstream region of the target intergenic region, but is not limited thereto.
  • promoter is an untranslated nucleic acid sequence upstream of the coding region that includes a binding site for RNA polymerase and has an activity to initiate transcription of a lower gene of the promoter into mRNA.
  • promoter refers to a TATA box or TATA box-like, which is located upstream from the transcription initiation point (+1) to the 20th to 30th base, and is responsible for initiating transcription to RNA polymerase from the correct position. Regions are included, but are not necessarily limited before and after these regions, and regions other than these regions may include regions necessary for association of proteins other than RNA polymerase for expression regulation.
  • the promoter is operably linked to induce the expression of a target gene, which is a foreign gene, wherein "operably linked” refers to a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. It refers to a functional connection.
  • the operative linkage with the recombinant vector can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and linkage use enzymes generally known in the art.
  • the promoter used in the present invention may be a Kat promoter or a trc promoter, but is not limited thereto.
  • Ker promoter used in the present invention is preferably a base sequence (SEQ ID NO: 1) containing 101bp of an upstream region of the KatE1 (NCBI acc. number: 1800077) gene.
  • trc promoter used in the present invention is preferably a 74bp base sequence (SEQ ID NO: 2) contained in the ptrc99a plasmid (Pharmarcia Biotech, Uppsala, Sweden).
  • sequence encoding Cre protein refers to a DNA sequence expressing a Cre recombinant enzyme, and pAM2 plasmid (Jeong et al., Korean J. Chem. Eng. 34:1728-1733, 2017) It is preferably a base sequence of 1032 bp (SEQ ID NO: 25) contained in.
  • lox nucleotide sequence used in the present invention may be lox 66 (SEQ ID NO: 26) or lox71 (SEQ ID NO: 27), but is not limited thereto.
  • the term "selective marker” means a product of a specific gene. Microorganisms containing the product have special traits that do not appear in microorganisms that do not contain them, thereby enabling the microbial to be distinguished.
  • the selection marker may be a sequence encoding an antibiotic resistance-related protein, but is not limited thereto.
  • antibiotic resistance-related protein used in the present invention is a protein that allows bacteria to proliferate without being affected by a specific antibiotic, and may be an antibiotic degrading enzyme, but is not limited thereto.
  • An example of an antibiotic degrading enzyme is the beta-lactamase ( ⁇ -lactamase) possessed by Streptomyces clavuligerus.
  • Beta-lactamase ⁇ -lactamase
  • Beta-lactamase is a hydrolytic enzyme that cleaves the beta-lactam ring of beta-lactams antibiotics.
  • sequence encoding an antibiotic resistance-related protein means a DNA sequence expressing the antibiotic resistance-related protein.
  • the antibiotic may be one selected from the group consisting of kanamycin, chloramphenicol, spectinomycin, and streptomycin, but is not limited thereto.
  • sequence encoding lac ⁇ q protein is a DNA sequence expressing a repressor protein. It binds to the trc promoter under normal culture conditions to prevent binding to RNA polymerase, and is linked to the trc promoter. It is a regulatory protein that plays a role in inhibiting the transcription of genes, and is preferably a nucleotide sequence of 1,092 bp (SEQ ID NO: 3) contained in the ptrc99a plasmid.
  • Cre-lox system refers to a site-specific recombinant enzyme technology used to perform deletion, insertion, translocation, and inversion at a specific site of DNA.
  • the Cre-lox system can be used to mutate genes in eukaryotic and prokaryotic organisms. It consists of a single enzyme, Cre recombinase, and recombines the short target sequence, lox sequence. By appropriately arranging the lox sequence at a position to cause mutation, the target gene may be activated or suppressed, or may be substituted with another gene.
  • lox P is a bacteriophage P1 site composed of 34 bases, contains an asymmetric 8 bp nucleotide sequence, and has 2 pairs of palimdromics with a size of 13 bp except for 2 bases in the center ( ATAACTTCGTATANNNTANNN-TATACGAAGTTAT).
  • transformation means introducing a specific foreign DNA strand from outside the cell into the cell. Host microorganisms including the introduced DNA strands are called “transformed microorganisms.” 'Transformation', which means that DNA can be replicated as an extrachromosomal factor or by the completion of chromosomal integration by introducing DNA into a host cell, or introducing a vector containing a polynucleotide encoding a target protein into a host cell. It means to integrate and complete the encoding polynucleotide into the chromosome of the host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • Transformed polynucleotides include all of them, whether inserted into the host cell's chromosome or outside the chromosome, as long as it can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding the target protein.
  • the polynucleotide may be introduced in any form as long as it can be introduced into a host cell and expressed.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression.
  • the expression cassette usually includes a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell.
  • the present invention provides a vector comprising the polynucleotide.
  • vector refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host.
  • Vectors can be plasmids, phage particles, or simply potential genomic inserts. Once transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are currently the most commonly used form of vectors, plasmids and vectors are sometimes used interchangeably in the specification of the present invention. However, the present invention encompasses other forms of vectors that have functions equivalent to those known or become known in the art.
  • Vectors containing the polynucleotide can be prepared by gene recombination techniques well known in the art, and cleavage and linkage of site-specific DNA sequences are generally known in the art and DNA ligase can be used.
  • the vector is a plasmid vector, cosmid vector, HIV (Human immunodeficiency virus) vector, MLV (Murineleukemia virus) vector, ASLV (Avian sarcoma/leukosis) vector, SNV (Spleen necrosis virus) vector, RSV (Rous sarcoma virus) vector, It may be any one selected from the group consisting of a mouse mammary tumor virus (MMTV) vector, an adenovirus vector and a herpes simplex virus vector, a lentivirus vector, and an episomal vector, and , Preferably, it may be a plasmid vector, but is not limited thereto.
  • the restriction enzyme collectively refers to an enzyme that cleaves a DNA sequence by binding to a specific DNA sequence.
  • the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain; And
  • the trc promoter and the sequence encoding the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, and the lacIq protein It provides a method for producing a mutant strain comprising; the step of inserting the sequence.
  • the strains include Methylomonas sp., Escherichia coli, Bacillus subtilis, D. radiodurans, D. indicus, D. indicus, and Deinococcus.
  • D. caeni D. aquaticus, D. depolymerans, D. grandis, Deinococcus dezonesis (D. daejeonensis), D. radiotolerans, D. geothermalis, D. ruber, D. antarcticus, D. antarcticus ), D. proteolyticus, D. radiopugnans, D. radiophilus, D. proteolyticus, D. cellulosilyticus) and Deinococcus swuensis (D. swuensis) may be any one or more selected from the group consisting of, but is not limited thereto, and may be any microorganism whose entire nucleotide sequence is known.
  • the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain;
  • the trc promoter and the sequence encoding the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, and the lacIq protein The step of inserting the sequence;
  • It provides a method of producing a mutant strain further comprising the step of removing a sequence encoding an antibiotic resistance-related protein by culturing in a medium to which isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG) is added.
  • IPTG isopropyl ⁇ -D-1-thiogalactopyranoside
  • the removal of the sequence encoding the antibiotic resistance-related protein may be performed through expression of the Cre recombinant enzyme.
  • the concentration of IPTG may be 0.5mM to 1.0mM, preferably 1.0mM, but is not limited thereto.
  • the present invention provides a mutant strain in which the trc promoter prepared by the above method and the sequence encoding the Cre protein and the sequence encoding the lacIq protein are inserted.
  • the present invention is the purpose of the mutant strain by introducing a polynucleotide in which the upper and lower fragment sequences of the target sequence are combined at both ends of the lox nucleic acid fragment containing the sequence encoding the antibiotic resistance-related protein to the mutant strain. It provides a way to modify genes.
  • target sequence refers to a portion of a target gene, for example, one or more exon sequences of a target gene, an intron sequence or a regulatory sequence of a target gene, or an exon of a target gene, unless specifically specified otherwise. And intron sequences, introns and regulatory sequences, exons and regulatory sequences, or combinations of exons, introns and regulatory sequences.
  • the target gene may be crtB and crtI , but is not limited thereto.
  • the upper fragment sequence of the target sequence may be 0.5 to 1 kb, preferably 1 kb, but is not limited thereto.
  • the lower fragment sequence of the target sequence may be 0.5 to 1 kb, preferably 1 kb, but is not limited thereto.
  • the lox nucleic acid fragment containing the sequence encoding the antibiotic resistance-related protein may sequentially include a sequence encoding a lox66, a kat promoter, a kanamycin resistance-related protein, and lox71, but is not limited thereto.
  • the antibiotic may be one selected from the group consisting of kanamycin, chloramphenicol, spectinomycin, and streptomycin, but is not limited thereto.
  • the present invention provides a method for producing a mutant strain in which the sequence encoding an antibiotic resistance-related protein is removed by culturing the mutant strain in which the target gene is modified in a medium to which Isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG) is added. do.
  • IPTG Isopropyl ⁇ -D-1-thiogalactopyranoside
  • the removal of the sequence encoding the antibiotic resistance-related protein may be performed through expression of the Cre recombinant enzyme.
  • the concentration of IPTG may be 0.5mM to 1.0mM, preferably 1.0mM, but is not limited thereto.
  • the modification may be a substitution, deletion of the target gene sequence, or insertion of the target sequence, but is not limited thereto.
  • a sequence encoding a trc promoter and a Cre protein regulated by the trc promoter in the deinococcus radiodurans dr_C0022 gene and the dr_C0023 intergenic region, and an antibiotic comprising a lox nucleotide sequence at both ends To prepare a mutant strain in which a sequence encoding a resistance-related protein and a sequence encoding a lacIq protein were inserted (FIG. 5), the strain was cultured in a medium to which Isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG) was added, thereby kanamycin resistance.
  • IPTG Isopropyl ⁇ -D-1-thiogalactopyranoside
  • a mutant strain from which a sequence encoding a related protein was removed was obtained and named as a basic mutant strain (DrCre) for genome improvement.
  • DrCre basic mutant strain
  • a polynucleotide in which a partial sequence of crtB and a partial sequence of crtI are conjugated to both ends of a lox nucleic acid fragment containing a sequence encoding a kanamycin resistance-related protein, respectively, and the crtB and crtI genes of the mutant strain was deleted, and cultured in a medium to which IPTG was added to remove the sequence encoding the kanamycin resistance-related protein, thereby obtaining a Deinococcus radiodurans strain from which all the sequences encoding the crtB and crtI genes and the kanamycin resistance-related protein were removed.
  • the genome of the strain can be improved using the basic mutant strain (FIGS. 7A and 7B).
  • the DH-1 mutant strain of the genus Methylomonas stably expressing the Cre recombinant enzyme was obtained, and the genome improvement method of the present invention can be applied regardless of the type of the strain (FIGS. 8A and 8B ).
  • the basic mutant strains (DrCre and DH-1:Cre) of the present invention are used in a method of modifying a target gene, in order to remove a selective marker artificially introduced to select the transformed strain Since there is no need to introduce a separate plasmid and go through the process to remove it, the target gene can be easily and efficiently modified, and furthermore, it can be usefully used to create a genome mutant strain of microorganisms for basic research. .
  • Example 1 Preparation of a plasmid (pAM3) containing a trc promoter, a sequence encoding a Cre protein, and a sequence encoding a lac ⁇ q protein
  • a plasmid (pAM3) containing a trc promoter, a sequence encoding a Cre protein, and a sequence encoding a lac ⁇ q protein (pAM3) was prepared by the following method.
  • CreF having the nucleotide sequence shown in Table 1 below using the pAM2 plasmid (Jeong et al., Korean J. Chem. Eng. 34:1728-1733, 2017; patent registration number, 10-1835852) as a template (SEQ ID NO: 5) and CreR (SEQ ID NO: 6) primers were used to amplify the sequence encoding the Cre protein.
  • a mixture of 1 ⁇ l of pAM2, 1 ⁇ l of each of CreF and CreR primers (10 pmole/ ⁇ l) and 17 ⁇ l of sterile distilled water was added to the pfu polymerase mix (Bioneer), followed by T-100 Thermal cycler.
  • PCR was performed using a DNA amplifier (Bio-rad). PCR was performed by reacting at 95° C. for 5 minutes, then repeating the reaction process of 95° C. for 30 seconds, 60° C. for 30 seconds, and 72° C. for 2 minutes once and repeating this 25 times.
  • the obtained PCR product was confirmed by applying a voltage of 120V on a 1% agarose gel and electrophoresis for 20 minutes, put it in a 1.5ml tube, and purified using a DNA fragment purification kit (Intron lifetechnology).
  • the obtained PCR product and pTrc99a plasmid (Invitrogen) were added to 5 ⁇ l of buffer solution, 1 ⁇ l of EcoR I, 1 ⁇ l of Sal I, 20 ⁇ l of PCR product or pTrc99a DNA solution, and 23 ⁇ l of sterile distilled water to a 1.5 ml tube. It was reacted at for 6 hours and digested with EcoRI and SalI restriction enzymes, respectively.
  • a plasmid comprising a trc promoter, a sequence encoding a Cre protein, a sequence encoding a kanamycin resistance-related protein including a loxP nucleotide sequence at both ends, and a sequence encoding a lac ⁇ q protein making
  • a plasmid (pAM4) including a sequence encoding a trc promoter, a sequence encoding a Cre protein, a kanamycin resistance-related protein including a loxP nucleotide sequence at both ends and a sequence encoding a lac ⁇ q protein (pAM4) was prepared in the following manner. Was prepared.
  • the pAM3 plasmid prepared by the method of Example 1 was used as a template, and trcCreF (SEQ ID NO: 8) and trcCreR having the nucleotide sequences shown in Table 2 below. (SEQ ID NO: 9)
  • SEQ ID NO: 9 A sequence encoding a Cre protein containing a trc promoter was amplified using a primer.
  • PCR was performed using 2 ⁇ l of pAM3, 1 ⁇ l of trcCreF and 2 ⁇ l of trcCreR primers (10 pmole/ ⁇ l) and 16 ⁇ l of sterile distilled water using AccuPower TM pfu PCR premix mix (Bioneer). As a result, a PCR product of the sequence encoding the Cre protein containing the trc promoter was obtained.
  • ⁇ 2-2> Obtaining a sequence encoding a kanamycin resistance-related protein including lox nucleotide sequences at both ends
  • pAM1 in Fig. 2A (Jeong et al., 2017 Korean J. Chem. Eng ., 4June 2017, Volume 34, Issue 6, pp 1728-1733, and Patent Registration No. 10-1835852) as a template, except that the loxKmF (SEQ ID NO: 10) and loxKmR (SEQ ID NO: 11) primers having the nucleotide sequence shown in Table 3 were used.
  • PCR was performed under the same conditions and methods as in 1. As a result, a PCR product of a sequence encoding a kanamycin resistance-related protein including a lox nucleotide sequence was obtained.
  • Sequence number name Sequence 5'-3'
  • SEQ ID NO: 10 loxKmF ggtaccgggcccccctcgaggtc
  • SEQ ID NO: 11 loxKmR ctctagaggatcctaccgttcgta
  • Example 2 In order to obtain a sequence encoding a lac ⁇ q protein, the pAM3 plasmid prepared in Example 1 was used as a template, except that the primers of lac ⁇ qF (SEQ ID NO: 12) and lac ⁇ qR (SEQ ID NO: 13) described in Table 4 were used. Then, PCR was performed under the same conditions and methods as in Example 1. As a result, a PCR product of the sequence encoding the lac ⁇ q protein was obtained.
  • pAM4 plasmid
  • pAM4 plasmid comprising a trc promoter, a sequence encoding a Cre protein, a sequence encoding a kanamycin resistance-related protein including a lox nucleotide sequence at both ends, and a sequence encoding a lac ⁇ q protein making
  • the PCR product of the sequence encoding the Cre protein containing the trc promoter obtained in Example 2-1 was digested with restriction enzymes Kpn I and Xho I, and lox nucleotide sequences at both ends obtained in Example 2-2.
  • the PCR product of the sequence encoding the kanamycin resistance-related protein including, was digested with restriction enzymes Kpn I and Xba I, and the PCR product of the sequence encoding the lac ⁇ q protein obtained in Example 2-3 was restriction enzyme B amH I
  • a plasmid prepared by digesting with Sal I and ligated to pUC19 plasmid (SEQ ID NO: 36) was named pAM4 (SEQ ID NO: 4) (FIG. 3).
  • Example 3 Deinococcus radiodurans mutant strain in which a sequence encoding a kanamycin resistance-related protein including a trc promoter, a Cre protein encoding sequence, a lox nucleotide sequence at both ends, and a sequence encoding a lac ⁇ q protein were inserted Preparation of (DrCreKm)
  • the nucleotide sequence of 770 bp including a partial sequence of the drC0022 gene and the intergenic region is the primers of drc0022upF (SEQ ID NO: 14) and drc0022upR (SEQ ID NO: 15) in Table 5 below,
  • the primers of drc0023dnF (SEQ ID NO: 16) and drc0023dnR (SEQ ID NO: 17) shown in Table 5 below and the nucleotide sequence of 710bp including a partial sequence of the intergenic region and the drC0023 gene. PCR was performed by the method.
  • a PCR product of a nucleotide sequence of 770 bp including a partial sequence of the drC0022 gene and an intergenic region and a nucleotide sequence of 710 bp including a partial sequence of the intergenic region and the drC0023 gene was obtained.
  • the 770 bp nucleotide sequence PCR product containing the drC0022 gene and some intergenic regions was digested with restriction enzymes Nde I and Kpn I
  • the 710 bp nucleotide sequence containing the drC0023 gene was digested with restriction enzymes Nde I and Kpn I.
  • Silver restriction enzymes Sal I and Sph I were digested and ligated to the pAM4 plasmid prepared by the method of Example 2-4 to prepare a pAM5 plasmid (SEQ ID NO: 18) (FIG. 4).
  • deinococcus radiodurans ATCC 13939, Agricultural Genetic Resource Information Center, Korea
  • TGY medium 0.5% (w/v) tryptone, 0.1% (w/v) glucose and 0.3% (w).
  • yeast extract was incubated at a temperature of 30°C until a value of 600 nm of OD (optical density) reached 0.3.
  • the cultured cells were centrifuged for 15 minutes at 4000 rpm and 4° C., and suspended in 2x TGY medium containing 30 mM calcium chloride (CaCl 2 ), and the suspension was allowed to stand on ice for 1 hour.
  • 2 X TGY solution 900 ⁇ l was added and incubated for 16 hours at 30° C., and then 2 X TGY agar medium (1% (w/v) tryptone, 0.2%) containing 25 ⁇ g/ml kanamycin antibiotic (w/v) Glucose, 0.6% (w/v) yeast extract and 1.5% (w/v) Bactoagar) were plated 200 ⁇ l and cultured in a 30° C. incubator for 3 to 4 days.
  • 2 X TGY agar medium 1% (w/v) tryptone, 0.2%) containing 25 ⁇ g/ml kanamycin antibiotic (w/v) Glucose, 0.6% (w/v) yeast extract and 1.5% (w/v) Bactoagar
  • a kanamycin resistance-related protein was prepared from a mutant strain in which a trc promoter, a sequence encoding a Cre protein, a sequence encoding a kanamycin resistance-related protein including a lox nucleotide sequence at both ends, and a sequence encoding a lac ⁇ q protein were inserted. Removal of the coding sequence
  • the following method was performed in order to remove the sequence encoding the kanamycin resistance related protein from the DrCreKm strain prepared in Example 3-2.
  • the DrCeKm strain prepared in Example 3-2 was cultured with shaking at 30° C. for 16 hours in 3 mL of TGY medium to which kanamycin was not added, and then until the value of OD (optical density) 600 nm became 0.25 1 Mm isoprophyl- ⁇ -D-1-thiogalactopyranoside (IPTG) was added and incubated for 16 hours under the same culture conditions. Thereafter, the culture solution was diluted to 1/1000, spread on a TGY agar medium containing 10 mM IPTG, and cultured at 30° C. until colonies were formed.
  • OD optical density 600 nm became 0.25 1 Mm isoprophyl- ⁇ -D-1-thiogalactopyranoside
  • Each single colony formed on the TGY agar medium was simultaneously inoculated into TGY agar medium containing kanamycin and TGY agar medium not containing kanamycin using a sterilized tip. Thereafter, strains that could not be grown in a medium containing kanamycin and grown only in a TGY agar medium not containing kanamycin were finally selected (FIGS. 5, 6A and 6B ).
  • the final selected strain was confirmed that the sequence encoding the kanamycin resistance-related protein was removed from the Deinococcus radiodurans mutant strain through diagnostic PCR, sequencing analysis, and plate assay, and the strain was Deinococcus radiodurans genome It was named as a basic mutant strain (DrCre) for improvement (FIGS. 5, 6A and 6B).
  • Example using a mutant strain obtained in fourth deleting the crtI gene to verify that can improve the genome of the strain, encoding a crtB gene and payito yen unsaturated enzyme encoding a synthase involved payito yen the carotenoid biosynthesis pathway ( deletion) was performed.
  • the base sequence 1010bp (SEQ ID NO: 28) containing the crtB gene is the primers of dr6162-1 (SEQ ID NO: 19) and dr6162-2 (SEQ ID NO: 20) in Table 6 below
  • the nucleotide sequence 820bp (SEQ ID NO: 29) containing the crtI gene was the same conditions as in Example 1, except that the primers of dr6162-5 (SEQ ID NO: 23) and dr6162-6 (SEQ ID NO: 24) in Table 6 were used.
  • PCR was performed by the method. As a result, PCR products of the crtB and crtI genes were obtained, respectively.
  • a sequence encoding a kanamycin resistance-related protein containing lox71 and lox66 genes at both ends was obtained using dr6162-3 (SEQ ID NO: 21) and dr6162-4 (SEQ ID NO: 22) described in Table 6 above. Except that, PCR was performed under the same conditions and methods of Example 1. As a result, a PCR product of a sequence encoding a kanamycin resistance-related protein containing lox71 and lox66 genes at both ends was obtained.
  • the PCR products obtained in Examples 5-1 and 5-2 were confirmed by electrophoresis on a 1% agarose gel, and these were respectively purified using a DNA fragment purification kit (Intron lifetechnology).
  • the purified PCR product was mixed and used as a template, except that the primers dr6162-1 (SEQ ID NO: 19) and dr6162-6 (SEQ ID NO: 24) described in Table 6 were used and reacted for 4 minutes at 72°C in the PCR process. Then, PCR was performed under the same conditions and methods as in Example 1.
  • a PCR product of 2450 bp was obtained in which a sequence encoding a kanamycin resistance-related protein containing crtB and crtI nucleotide sequences and lox nucleotide sequences at both ends was linked.
  • the basic mutant strain (DrCre) prepared in Example 4 was TGY medium (0.5% (w/v) tryptone, 0.1% (w/v) glucose, and 0.3% (w/v) yeast extract. ) was incubated at a temperature of 30° C. until a value of 600 nm of OD (optical density) reached 0.3. The cultured cells were centrifuged for 15 minutes at 4000 rpm and 4° C., and suspended in 2x TGY medium containing 30 mM calcium chloride (CaCl2), and the suspension was allowed to stand on ice for 1 hour.
  • TGY medium (0.5% (w/v) tryptone, 0.1% (w/v) glucose, and 0.3% (w/v) yeast extract.
  • Example 5-3 the PCR product obtained in Example 5-3 was electrophoresed on a 1% agarose gel, and this was purified using a DNA fragment purification kit (Intron lifetechnology).
  • 2 X TGY solution 900 ⁇ l was added and incubated for 16 hours at 30° C., and then 2 X TGY agar medium (1% (w/v) tryptone, 0.2%) containing 25 ⁇ g/ml kanamycin antibiotic (w/v) Glucose, 0.6% (w/v) yeast extract and 1.5% (w/v) Bactoagar) were plated 200 ⁇ l and cultured in a 30° C. incubator for 3 to 4 days.
  • 2 X TGY agar medium 1% (w/v) tryptone, 0.2%) containing 25 ⁇ g/ml kanamycin antibiotic (w/v) Glucose, 0.6% (w/v) yeast extract and 1.5% (w/v) Bactoagar
  • a mutant strain in which the crtB and crtI genes were deleted and carotenoids were not synthesized and thus did not appear orange was obtained, and this was designated as ⁇ crtBI_Km (Fig. 7b).
  • the ⁇ crtBI_Km strain prepared in Example 5-2 was incubated for 16 hours or longer in a TY (trypton 0.5%, yeast extract 0.3%) liquid medium, and a new 3 mL TY liquid medium to which 1 mM IPTG was added.
  • 30 ⁇ l of the culture solution of the ⁇ crtBI_Km strain was added to the mixture, followed by further culturing at 37°C for 16 hours or longer. After diluting the culture solution in sterilized water at a ratio of 1:10000, 50 ⁇ l of the diluted solution was uniformly spread on TY solid medium containing 1 mM IPTG, followed by stationary culture in a 37°C incubator for 3 days.
  • a mutant strain expressing Cre recombinase (DH-1) using a gram-positive strain of Deinococcus radiodurans as well as a gram-negative strain of methylomonas genus (DH-1: Cre) was prepared by the following method.
  • pAM6 Construction of a plasmid (pAM6) containing the gene of the DH-1 strain of the genus Methylomonas
  • DH1 intRG-1 SEQ ID NO: 30
  • the primer of DH1 intRG-2 SEQ ID NO: 31
  • a 810bp nucleotide sequence SEQ ID NO: 39
  • DH1 intRG-3 SEQ ID NO: 32
  • DH1 intRG PCR was performed in the same conditions and methods as in Example 1, except that a primer of -4 (SEQ ID NO: 33) was used.
  • a PCR product of a 820 bp nucleotide sequence including the AYM39_00230 gene and a partial sequence of the intergenic region and a 810 bp nucleotide sequence including the AYM39_00235 gene was obtained.
  • PCR was performed to link the two PCR products to finally obtain a PCR product having a nucleotide sequence of 1,656 bp.
  • the PCR product having a nucleotide sequence of 1,656 bp was digested with restriction enzyme Kpn I and ligated to pUC19 plasmid digested with the same restriction enzyme (SEQ ID NO: 34), and a plasmid containing a partial sequence of the AYM39_00230 gene and a partial sequence of the AYM39_00235 gene (sequence No. 40) was produced.
  • ⁇ 6-1-2> The sequence encoding the upper fragment sequence of the target intergenic region, the trc promoter, and the Cre protein regulated by it, the antibiotic resistance-related protein including the lox nucleotide sequence at both ends Construction of a plasmid (pAM6) containing the sequence, the sequence encoding the lacIq protein, and the lower fragment sequence of the target intergenic region
  • trcCreF2 sequence in Table 8 below as a template No. 35
  • lacIqR2 SEQ ID No. 36
  • DH-1 mutation in the genus Methylomonas into which the trc promoter, the sequence encoding the Cre protein, the sequence encoding the kanamycin resistance-related protein including the lox nucleotide sequence at both ends, and the sequence encoding the lac ⁇ q protein are inserted Preparation of strain (DH-1:Km)
  • methylomonas DH-1 (Hur et al., J Chem Technol Biotechnol 2017; 92: 311-318, registered patent 1017149670000) containing the NMS medium (Nitrate mineral salts) composed of the composition of Table 9 below.
  • NMS medium Naitrate mineral salts
  • the cultured cells were centrifuged at 4,000 rpm and 4° C. for 15 minutes and then suspended in sterilized tertiary distilled water.
  • the suspension was centrifuged again under the same conditions to remove the supernatant, resuspended in sterilized tertiary distilled water, and dispensed 200 ⁇ l into a sterilized 1.5 ml tube.
  • the cultured cells were centrifuged at 4,000 rpm and 4°C for 15 minutes to remove the supernatant, resuspended in 200 ⁇ l NMS medium, and plated on NMS agar medium containing 2.5 mg/L of kanamycin antibiotic.
  • the NMS agar medium was put in an anaerobic jar (Oxoid, UK) used for culturing anaerobic bacteria and sealed, and 30% of the gas inside the anaerobic jar was removed using a vacuum pump, and then the same amount of sterilized methane gas was filled.
  • ⁇ NMS medium composition Ingredients (from) Final concentration MgSO 4 *7H 2 O (DAEJUNG, Korea) 1 g/l KNO 3 (JUNSEI, Japan) 1 g/l CaCl 2 *H 2 O (JUNSEI, Japan) 0.2 g/l 3.8% (w/v) solution Fe-EDTA (DUKSAN, Korea) 0.1 ml/l 0.1% (w/v) NaMo*4H 2 O (DUKSAN, Korea) 0.5 ml/l Trace element solution (Table 10) 1.0 ml/l Phosphate stock solution (Table 11) 10 ml/l Vitamin stock solution (Table 12) 10 ml/l CuCl 2 *2H 2 O (DAEJUNG, Korea) 1.4 mg/l Bacto agar (if needed) (BD, USA) 15 g/l
  • ⁇ Trace element solution composition Ingredients (from) Final concentration FeSO 4 *7H 2 O (JUNSEI, Japan) 500 mg/l ZnSO 4 *7H 2 O (JUNSEI, Japan) 400 mg/l MnCl 2 *7H 2 O (SIGMA, USA) 20 mg/l CoCl 2 *6H 2 O (DAEJUNG, Korea) 50 mg/l NiCl 2 *6H 2 O (SAMCHUN, Korea) 10 mg/l H 3 BO 3 (boric acid) (KANTO, Japan) 15 mg/l EDTA (SAMCHUN, Korea) 250 mg/l
  • ⁇ phosphate stock solution composition Ingredients (from) Final concentration KH 2 PO 4 (JUNSEI, Japan) 26 g/l Na 2 HPO 4 *7(H 2 O) (JUNSEI, Japan) 62 g/l
  • ⁇ Vitamin stock solution composition Ingredients (from) Final concentration Biotin (ACROS, USA) 2.0 mg/l Folic acid (SIGMA, USA) 2.0 mg/l Thiamine HCl (DAEJUNG, Korea) 5.0 mg/l Ca pantothenate (KANTO, Japan) 5.0 mg/l Vitamin B12 (SAMCHUN, Korea) 0.1 mg/l Riboflavin (JUNSEI, Japan) 5.0 mg/l Nicotiamide (SIGMA, USA) 5.0 mg/l
  • ⁇ 6-3> DH-1 mutation of the genus Methylomonas into which the trc promoter, the sequence encoding the Cre protein, the sequence encoding the kanamycin resistance-related protein including the lox nucleotide sequence at both ends, and the sequence encoding the lac ⁇ q protein are inserted Removal of the sequence encoding the kanamycin resistance-related protein from the strain
  • the following method was performed in order to remove the sequence encoding the kanamycin resistance related protein from the DH-1:Km strain prepared in Example 6-2.
  • Example 6-2 50 mL of NMS medium without kanamycin was added to a flask sealed with a screw lid, 1 mM isoprophyl- ⁇ -D-1-thiogalactopyranoside (IPTG) was added, and then the DH prepared in Example 6-2. 500 ⁇ l of -1:Km strain was inoculated and cultured with shaking at 30° C. for 24 hours. At this time, 30% of the gas inside the flask was replaced with sterilized methane gas. The cultured cells were diluted to 1/10000, plated on NMS agar medium containing 1 mM IPTG, and cultured at 30° C. using anaerobic jar containing 30% methane gas until colonies were formed.
  • IPTG isoprophyl- ⁇ -D-1-thiogalactopyranoside
  • Each single colony formed on the NMS agar medium was simultaneously inoculated into the NMS agar medium containing kanamycin and the NMS agar medium not containing kanamycin using a sterilized tip. Thereafter, strains that could not be grown in a medium containing kanamycin and only grown in an NMS agar medium not containing kanamycin were finally selected (FIG. 8B).
  • the final selected strain was confirmed that the sequence encoding the kanamycin resistance-related protein was removed from the DH-1 mutant strain of the genus Methylomonas through diagnostic PCR, sequencing analysis, and plate assay, and the strain was DH- 1 It was named as a basic mutant strain (DH-1:Cre) for genome improvement (FIGS. 8A and 8B ).

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a mutant strain for improving the genome of a microorganism, a method for preparing same, and a method for improving the genome of a microorganism by using same, wherein the mutant strain for improving the genome of a microorganism prepared by the method of the present invention does not require re-introduction of a plasmid capable of expressing a site-specific recombinant enzyme such as a Cre recombinant enzyme in a strain to remove the sequence encoding an antibiotic resistance-related protein, which is a selective marker artificially inserted into the genome, and therefore, by utilizing the mutant strain, it is possible to efficiently replace or delete a target gene sequence in the strain or insert a target sequence into the strain, such that a target gene of the strain can be efficiently modified, and furthermore the mutant strain can be utilized to prepare a mutant strain of the genome of a microorganism for basic research.

Description

미생물의 유전체를 개량하기 위한 변이 균주, 이의 제조방법 및 이를 이용한 미생물의 유전체 개량 방법Mutant strain for improving the genome of microorganisms, manufacturing method thereof, and method of improving genome of microorganisms using the same
본 발명은 미생물의 유전체를 개량하기 위한 변이 균주, 이의 제조방법 및 이를 이용한 미생물의 유전체 개량 방법에 관한 것이다.The present invention relates to a mutant strain for improving the genome of a microorganism, a method for preparing the same, and a method for improving the genome of a microorganism using the same.
미생물 대사공학은 미생물 등의 유전체를 개량하여 원하는 목적에 맞게 활용하는 기술이다. 유용 대사산물은 미생물의 유전정보와 대사회로로부터 얻을 수 있으며, 미생물 유전자의 조작을 통해서 더 유용한 대사물질이나 그 특성을 개선시킬 수 있는 기술들이 개발되고 있다. 특히, 대사공학분야에서 CRISPR/Cas9, Flp/FRT 및 cre/lox와 같은 위치-특이적 재조합 기술은 식물, 효모, 미생물과 같은 다양한 생명체 모델에 적용되고 있으며, 이를 이용하여 항생제 마커가 제거된 유전자 돌연변이 균주의 제작이 가능하다(Datsenko, K, A et al, PNAS 97:6640-6645, 2000; Gilbertson, L Trends in biotechnology 21:550-555, 2003; Baba, T et al. Molecular systems biology 2, 2006; Yan, X et al, Applied and environmental microbiology 74:5556-5562, 2008).Microbial metabolic engineering is a technology that improves the genome of microorganisms and uses them for a desired purpose. Useful metabolites can be obtained from the genetic information and metabolic circuits of microorganisms, and more useful metabolites or technologies that can improve their properties are being developed through manipulation of microbial genes. In particular, in the field of metabolic engineering, site-specific recombination technologies such as CRISPR/Cas9, Flp/FRT, and cre/lox are applied to various models of living organisms such as plants, yeast, and microorganisms. It is possible to produce mutant strains (Datsenko, K, A et al, PNAS 97:6640-6645, 2000; Gilbertson, L Trends in biotechnology 21:550-555, 2003; Baba, T et al. Molecular systems biology 2, 2006; Yan, X et al, Applied and environmental microbiology 74:5556-5562, 2008).
한편, 미생물 유전체 개량에 있어 외부유전자의 도입 및 특정 단백질의 과발현을 위해서는 개량하고자 하는 미생물에서 자가복제가 가능한 플라스미드가 필수적 요구되며, Cre-lox 및 CRISPR-Cas9과 같은 유전체 개량 기술에도 플라스미드 기반 유전자 발현 시스템이 도입되고 있다. Cre 재조합 효소를 발현하기 위한 프로모터 및 세포 내에서 자가복제를 위한 Origin, 그리고 항생제 내성 유전자가 포함된 플라스미드가 그 예 일 수 있다. 그러나 이는 세포내에서 자가 복제가 가능한 플라스미드여야 하기 때문에 균주 특이적 (host specific) 일 수 있다. 이를 극복하기 위하여, 다양한 미생물 개체에서 특정 유전자를 과발현하기 위한 광범용성 플라스미드 (Broad-host-range plasmid)가 개발된 바 있으나, 세포내에서의 안정성 (plasmid stablility)이 미생물 종 (strain) 마다 달라 모든 미생물에 적용되기 어렵다. 또한, 플라스미드에 의해 도입된 유전자가 과발현되는 경우 세포내에서의 플라스미드 복제 수 (copy number) 및 프로모터의 발현 강도에 따라 최종적으로 균체량 및 생산성의 감소가 나타날 수 있다. 이에, arabinose, tryptophan, 및 IPTG 등의 유도물질 (inducer)의 처리를 통해 특정 시간 및 균체의 생장 상태 (growth phase)에 따라서 특정 유전자의 발현을 증가시키기 위한 방법들이 고안된 바 있으나, 상기의 방법은 유도물질의 종류 및 농도에 따라 목적 유전자의 발현량의 변화가 크고, 지속적이고 안정적인 유전자 발현이 어려우며, 처리되는 유도물질 (inducer)의 비용 문제로 산업적 적용에 어려운 점이 있다. 또한, 이러한 유도물질들은 균체에 대하여 독성을 가질 수 있기 때문에 결과적으로 균체량에 영향을 줄 수 있는 단점이 있다. Meanwhile, in order to improve the microbial genome, a plasmid capable of self-replicating in the microorganism to be improved is essential for the introduction of foreign genes and overexpression of a specific protein. The system is being introduced. Examples thereof include a promoter for expressing the Cre recombinant enzyme, an Origin for self-replication in cells, and a plasmid containing an antibiotic resistance gene. However, it may be host specific because it must be a plasmid capable of self-replicating in cells. To overcome this, a broad-host-range plasmid has been developed to overexpress a specific gene in a variety of microbial organisms, but the stability in cells is different for each microbial strain. It is difficult to apply to microorganisms. In addition, when the gene introduced by the plasmid is overexpressed, the cell mass and productivity may finally decrease depending on the plasmid copy number and the expression strength of the promoter in the cell. Accordingly, methods have been devised to increase the expression of specific genes according to a specific time and growth phase of the cells through treatment of an inducer such as arabinose, tryptophan, and IPTG, but the above method Depending on the type and concentration of the inducer, the expression level of the target gene is large, it is difficult to continuously and stably express the gene, and there are difficulties in industrial application due to the cost of the inducer to be processed. In addition, since these inducers may be toxic to the cells, there is a disadvantage in that they may affect the amount of cells.
한편, 데이노코쿠스 라디오두란스는 생물체의 DNA 또는 단백질에 직접 손상을 입할 수 있는 이온화 방사선에 대해 내성을 갖는 것으로 알려져 있다(Makarova, K.S et al Microbiology and molecular biology reviews 65:44-79, 2001). 상기 균주는 이온화 방사선에 의한 DNA 손상을 빠른 시간 내에 복구할 수 있고(Grimsley, J K et al, International journal of radiation biology 60:613-626, 1991), 효소적 또는 비효소적 시스템에 의하여 세포 내에 생성된 활성산소종(ROS)를 효과적으로 제거할 수 있는 능력을 지니고 있다(Shashidhar, R et al, Canadian journal of microbiology 56:195-201, 2010). 이와 같은 특성 때문에 데이노코쿠스 라디오두란스는 방사성 폐기물의 정화에 사용되고 있다. 또한, 의약, 보건, 생명공학 등의 다양한 분야에서 데이노코쿠스 라디오두란스를 적용한 기술의 사례가 증가할 것으로 전망된다.On the other hand, Deinococcus radiodurans is known to have resistance to ionizing radiation that can directly damage the DNA or protein of an organism (Makarova, KS et al Microbiology and molecular biology reviews 65:44-79, 2001). . The strain can recover DNA damage caused by ionizing radiation in a short time (Grimsley, JK et al, International journal of radiation biology 60:613-626, 1991), and is produced in cells by enzymatic or non-enzymatic systems. It has the ability to effectively remove the activated oxygen species (ROS) (Shashidhar, R et al, Canadian journal of microbiology 56:195-201, 2010). Due to these characteristics, Deinococcus radiodurans are used for the purification of radioactive waste. In addition, cases of technology applying Deinococcus radiodurance are expected to increase in various fields such as medicine, health care, and biotechnology.
현재까지 보고된 바에 의하면, 데이노코쿠스 라디오두란스의 대사공학적 제어를 위해, 다른 미생물의 유전자를 세포 내로 도입시키거나, 상동적 재조합 방법을 이용한 돌연변이 균주의 제작 기술이 고안되었다. 그러나, 이러한 돌연변이 제작 기술은 반복적인 유전자 클로닝 과정으로 인해 많은 시간이 소요될뿐만 아니라, 돌연변이 균주를 선별하기 위한 항생제 마커의 제한성으로 다중 돌연변이 균주를 제작하는데 어려움이 있다. 즉, 유전체 내에 인위적으로 삽입한 선별 마커(selective marker)인 항생제 내성 유전자의 제거를 위하여 균주 내에 Cre 재조합효소 등과 같은 위치 특이적 재조합 효소를 발현 할 수 있는 플라스미드를 재도입하고 이를 다시 균주로부터 제거하는 반복적인 작업이 요구된다. As reported so far, for metabolic engineering control of Deinococcus radiodurans, a technique for producing a mutant strain by introducing a gene of another microorganism into cells or using a homologous recombination method has been devised. However, this mutant production technique not only takes a lot of time due to the repetitive gene cloning process, but also has difficulty in producing multiple mutant strains due to the limitation of antibiotic markers for selecting mutant strains. In other words, in order to remove the antibiotic resistance gene, which is a selective marker artificially inserted into the genome, a plasmid capable of expressing a site-specific recombinant enzyme such as Cre recombinase is re-introduced in the strain and removed from the strain again. It requires repetitive work.
이에 본 발명자들은 cre-lox 시스템과 같은 위치 특이적 재조합 기술을 응용하여, trc 프로모터 , cre 재조합 효소를 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열, lacΙq 단백질을 암호화하는 서열을 포함하는 재조합 플라스미드를 제조하고, 상기 재조합 플라스미드를 균주 내로 도입하여 trc 프로모터 , cre 재조합 효소를 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열, lacΙq 단백질을 암호화하는 서열을 포함하는 핵산 단편을 데이노코쿠스 라디오두란스와 메틸로모나스 속 DH-1 균주 내로 삽입하는데 성공하였다. 그 후, IPTG 유도물질(inducer)에 의해서 조건적으로 Cre 재조합효소가 발현되어 상기 균주 내에 삽입된 항생제 저항성 관련 단백질을 암호화하는 서열이 완전히 제거됨을 확인하였고, 상기의 과정이 안정적으로 유지되는 변이 균주를 수득하였다. 이후, 상기 제조한 변이 균주를 이용하여 목적 유전자(target gene)가 효율적으로 결실되는 것을 확인하였다. 따라서 상기 변이 균주를 제조하는 방법을 활용하여 다양한 균주에 대해 효율적으로 목적 유전자 서열의 치환, 결실 또는 목적 서열을 삽입하여 균주 내의 목적 유전자를 변형하는 방법을 제공할 수 있다.Therefore, the inventors of the present invention cre-lox By applying a position-specific recombination technology such as the system , an antibiotic-resistance-related protein containing a trc promoter , a sequence encoding a cre recombinant enzyme, and a lox nucleotide sequence at both ends Preparation of a recombinant plasmid containing the encoding sequence and the sequence encoding the lacΙq protein, and introducing the recombinant plasmid into the strain to include a trc promoter , a sequence encoding a cre recombinant enzyme, and a lox nucleotide sequence at both ends related to antibiotic resistance Protein The nucleic acid fragment containing the encoding sequence and the sequence encoding the lacΙq protein was successfully inserted into the DH-1 strain of the genus Deinococcus radiodurans and Methylomonas. Thereafter, Cre recombinase is conditionally expressed by an IPTG inducer, and the antibiotic resistance-related protein inserted in the strain is It was confirmed that the encoding sequence was completely removed, and a mutant strain in which the above process was stably maintained was obtained. Then, it was confirmed that the target gene was efficiently deleted using the mutant strain prepared above. Accordingly, it is possible to provide a method of efficiently replacing, deleting, or inserting a target sequence of a target gene sequence for various strains using the method of preparing the mutant strain to modify a target gene in the strain.
본 발명의 목적은 미생물의 유전체를 개량하기 위한 변이 균주의 제조방법 및 상기 방법으로 제조된 변이 균주를 제공하는 것이다.It is an object of the present invention to provide a method for preparing a mutant strain for improving the genome of a microorganism and a mutant strain prepared by the method.
상기 목적을 달성하기 위해,To achieve the above object,
본 발명은 표적 유전자간부위(intergenic region)의 상부 단편 서열, trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열, lacⅠq 단백질을 암호화하는 서열 및 표적 유전자간부위(intergenic region)의 하부 단편 서열이 순차적으로 연결된 폴리뉴클레오티드를 제공한다.The present invention relates to a sequence encoding an upper fragment sequence of a target intergenic region, a trc promoter, and a cre protein regulated by it, a sequence encoding an antibiotic resistance-related protein including a lox nucleotide sequence at both ends, a lacIq protein A polynucleotide is provided in which a sequence encoding a sequence and a sequence of a lower fragment of a target intergenic region are sequentially linked.
또한, 본 발명은 1) 제 1항의 폴리뉴클레오티드를 균주 내에 도입하는 단계; 및In addition, the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain; And
2) 상기 균주의 표적 유전자간부위(intergenic region)에 trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입되는 단계;를 포함하는 변이 균주의 제조방법을 제공한다.2) The sequence encoding the trc promoter and the cre protein regulated by the trc promoter in the target intergenic region of the strain, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends and the lacIq protein It provides a method for producing a mutant strain comprising; the step of inserting the sequence.
또한, 본 발명은 1) 제 1항의 폴리뉴클레오티드를 균주 내에 도입하는 단계; In addition, the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain;
2) 상기 균주의 표적 유전자간부위(intergenic region)에 trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입되는 단계; 및2) The sequence encoding the trc promoter and the cre protein regulated by the trc promoter in the target intergenic region of the strain, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends and the lacIq protein The step of inserting the sequence; And
3) IPTG(Isopropyl β-D-1-thiogalactopyranoside)가 첨가된 배지에 배양하여 항생제 저항성 관련 단백질을 암호화하는 서열을 제거하는 단계를 더 포함하는 변이 균주의 제조방법을 제공한다.3) It provides a method of producing a mutant strain further comprising the step of removing a sequence encoding an antibiotic resistance-related protein by culturing in a medium to which isopropyl β-D-1-thiogalactopyranoside (IPTG) is added.
또한, 본 발명은 상기 방법으로 제조된 trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입된 변이 균주를 제공한다.In addition, the present invention provides a mutant strain in which the trc promoter prepared by the above method and the sequence encoding the cre protein and the sequence encoding the lacIq protein are inserted.
또한, 본 발명은 상기 변이 균주에 항생제 내성 관련 단백질을 암호화하는 서열을 함유한 lox 핵산단편의 양 말단에 각각 표적 서열의 상부 단편 서열과 하부 단편 서열이 결합된 폴리뉴클레오티드를 도입하여 변이 균주의 목적유전자를 변형하는 방법을 제공한다.In addition, the present invention is the purpose of the mutant strain by introducing a polynucleotide in which the upper and lower fragment sequences of the target sequence are combined at both ends of the lox nucleic acid fragment containing the sequence encoding the antibiotic resistance-related protein to the mutant strain. It provides a way to modify genes.
본 발명의 방법으로 제조된 미생물의 유전체 개량을 위한 변이 균주는 유전체 내에 인위적으로 삽입한 선별 마커(selective marker)인 항생제 저항성 관련 단백질을 암호화하는 서열의 제거를 위하여 균주 내에 cre 재조합 효소 등과 같은 위치 특이적 재조합 효소를 발현 할 수 있는 플라스미드를 재도입 할 필요가 없으므로 상기 변이 균주를 활용하여 효율적으로 균주 내에 목적 유전자 서열의 치환, 결실 또는 목적 서열을 삽입할 수 있어 균주의 목적 유전자를 효율적으로 변형할 수 있고, 나아가, 기초 연구를 위한 미생물의 유전체 변이 균주를 제작하는데에 유용하게 활용될 수 있다.The mutant strain for the improvement of the genome of the microorganism produced by the method of the present invention has a specific location such as cre recombinant enzyme in the strain to remove the sequence encoding the antibiotic resistance-related protein, which is a selective marker artificially inserted into the genome. Since there is no need to re-introduce a plasmid capable of expressing an enemy recombinant enzyme, the mutant strain can be used to efficiently replace, delete, or insert the target sequence into the strain, thereby efficiently modifying the target gene of the strain. In addition, it can be usefully used to produce a genome mutant strain of microorganisms for basic research.
도 1은 trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입된 변이 균주를 제조하는 과정을 나타낸 도이다.1 is a diagram showing a process of preparing a mutant strain into which a trc promoter and a sequence encoding a cre protein regulated by the trc promoter and a sequence encoding a lacIq protein are inserted.
도 2a는 lox 염기 서열, kat 프로모터 및 카나마이신 저항성 관련 단백질을 암호화하는 서열을 포함하는 pAM1 플라스미드를 나타낸 도이다.2A is a diagram showing a pAM1 plasmid comprising a sequence encoding a lox nucleotide sequence, a kat promoter, and a kanamycin resistance-related protein.
도 2b는 trc 프로모터, cre 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열을 포함하는 pAM3 플라스미드를 나타낸 도이다.2B is a diagram showing a pAM3 plasmid comprising a trc promoter, a sequence encoding a cre protein, and a sequence encoding a lacIq protein.
도 3은 trc 프로모터, cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 kat 프로모터와 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열을 포함하는 pAM4 플라스미드를 제조하는 과정을 나타낸 도이다.3 is a process for preparing a pAM4 plasmid comprising a trc promoter, a sequence encoding a cre protein, a kat promoter including a lox nucleotide sequence at both ends, a sequence encoding a kanamycin resistance-related protein, and a sequence encoding a lacIq protein. It is a diagram shown.
도 4는 데이노코쿠스 라디오두란스 dr_C0022 유전자의 일부 염기 서열 및 표적 유전자간부위의 상부 단편 서열, trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열, lacⅠq 단백질을 암호화하는 서열 및 표적 유전자간부위의 하부 단편 서열 및 dr_C0023 유전자의 일부 염기 서열을 포함하는 pAM5 플라스미드를 나타낸 도이다.Figure 4 is a kanamycin resistance including a partial nucleotide sequence of the Dinococcus radiodurans dr_C0022 gene and an upper fragment sequence of the target intergenic region, a trc promoter and a sequence encoding a cre protein regulated by it, and a lox nucleotide sequence at both ends. It is a diagram showing a pAM5 plasmid including a sequence encoding a related protein, a sequence encoding a lacIq protein, a lower fragment sequence of a target intergenic region, and a partial nucleotide sequence of a dr_C0023 gene.
도 5는 trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입된 변이 균주를 IPTG가 포함된 배지에서 배양하여 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 데이노코쿠스 라디오두란스 변이 균주(DrCre)를 제조하는 과정을 나타낸 도이다.Figure 5 is a mutant strain in which the sequence encoding the trc promoter and the cre protein regulated by it, the sequence encoding the kanamycin resistance protein including the lox nucleotide sequence at both ends, and the sequence encoding the lacIq protein are inserted, including IPTG. It is a diagram showing a process of producing a Deinococcus radiodurans mutant strain (DrCre) from which the sequence encoding a kanamycin resistance-related protein has been removed by culturing in a medium.
도 6a는 야생형 데이노코쿠스 라디오두란스 균주(WT), pAM5 플라스미드의 도입으로 trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입된 데이노코쿠스 라디오두란스 균주(DrCreKm) 및 IPTG에 의해 cre 재조합 효소가 발현되어 카나마이신 저항성 단백질을 암호화하는 서열이 제거된 데이노코쿠스 라디오두란스 균주(DrCre)의 변이 부위를 PCR 증폭한 결과를 나타낸 도이다.Figure 6a is a wild-type Deinococcus radiodurans strain (WT), a sequence encoding a trc promoter and a cre protein regulated by the introduction of the pAM5 plasmid, a sequence encoding a kanamycin resistance protein including a lox nucleotide sequence at both ends And Deinococcus radiodurans strain (DrCreKm) in which the sequence encoding the lacIq protein was inserted and the cre recombinant enzyme was expressed by IPTG and the sequence encoding the kanamycin-resistant protein was removed (DrCre). It is a diagram showing the result of PCR amplification of the mutation site of.
도 6b는 도 6a의 균주를 카나마이신이 포함된 TGY 배지 및 카나마이신이 포함되지 않은 TGY 배지에서 배양한 결과를 나타낸 도이다.Figure 6b is a diagram showing the results of culturing the strain of Figure 6a in TGY medium containing kanamycin and TGY medium not containing kanamycin.
도 7a는 IPTG에 의해 cre 재조합 효소가 발현되어 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 데이노코쿠스 라디오두란스 균주(DrCre), crtBcrtI 유전자가 결실(deletion)되고 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거되지 않은 균주(△crtBI_Km) 및 crtBcrtI 유전자가 결실(deletion)되고 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 균주(△crtBI)를 카나마이신이 포함된 TGY 배지 및 카나마이신이 포함되지 않은 TGY 배지에서 배양한 결과를 나타낸 도이다.7A is a Deinococcus radiodurans strain (DrCre) from which the cre recombinant enzyme was expressed by IPTG and the sequence encoding the kanamycin resistance-related protein was removed, the crtB and crtI genes were deleted, and the kanamycin resistance-related protein was encoded. TGY medium containing kanamycin and kanamycin are not included in the strain in which the sequence was not removed (ΔcrtBI_Km) and the strain in which the crtB and crtI genes were deleted (deletion) and the sequence encoding the kanamycin resistance-related protein was removed (ΔcrtBI). It is a diagram showing the result of culturing in a non-TGY medium.
도 7b는 IPTG에 의해 cre 재조합 효소가 발현되어 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 데이노코쿠스 라디오두란스 균주(DrCre)와 상기 균주에서 crtBcrtI 유전자가 결실(deletion)된 균주의 색을 비교한 도이다. Figure 7b is the color of the Deinococcus radiodurans strain (DrCre) from which the cre recombinant enzyme was expressed by IPTG and the sequence encoding the kanamycin resistance-related protein was removed, and the strain in which the crtB and crtI genes were deleted. This is a comparison diagram.
도 8a는 야생형 메틸로모나스 속 DH-1 균주(WT), pAM6 플라스미드의 도입으로 trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입된 메틸로모나스 속 DH-1 균주(DH-1:Km) 및 IPTG에 의해 cre 재조합 효소가 발현되어 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 메틸로모나스 속 DH-1 균주(DH-1:cre)를 전기영동한 결과를 나타낸 도이다.Figure 8a is a wild-type methylomonas sp. DH-1 strain (WT), a sequence encoding a trc promoter and a cre protein regulated by the introduction of the pAM6 plasmid, encoding a kanamycin resistance-related protein including lox nucleotide sequences at both ends DH-1 strain (DH-1:Km) of the genus Methylomonas into which the sequence and the sequence encoding the lacIq protein was inserted, and the cre recombinant enzyme was expressed by IPTG, and the sequence encoding the kanamycin resistance-related protein was removed. It is a diagram showing the results of electrophoresis of the DH-1 strain (DH-1:cre) of the genus Monas.
1 : 야생형 메틸로모나스 속 DH-1 균주(WT)1: Wild type methylomonas sp. DH-1 strain (WT)
2 : DH-1:Km2: DH-1:Km
3 : DH-1:cre3: DH-1:cre
도 8b는 도 8a의 균주를 카나마이신이 포함된 NMS 배지 및 카나마이신이 포함되지 않은 NMS 배지에 배양한 결과를 나타낸 도이다.8B is a diagram showing the results of culturing the strain of FIG. 8A in an NMS medium containing kanamycin and an NMS medium not containing kanamycin.
1 : 야생형 메틸로모나스 속 DH-1 균주(WT)1: Wild type methylomonas sp. DH-1 strain (WT)
2 : DH-1:Km2: DH-1:Km
3 : DH-1:cre3: DH-1:cre
도 9는 메틸로모나스 속 DH-1 AYM39_00230 유전자의 일부 염기 서열 및 표적 유전자간부위의 상부 단편 서열, trc 프로모터 및 이에 의해 조절되는 cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열, lacⅠq 단백질을 암호화하는 서열 및 표적 유전자간부위의 하부 단편 서열 및 AYM39_00235 유전자의 일부 염기 서열을 포함하는 pAM6 플라스미드를 나타낸 도이다.9 is a partial nucleotide sequence of the DH-1 AYM39_00230 gene of the genus Methylomonas and an upper fragment sequence of the target intergenic region, a trc promoter and a sequence encoding a cre protein regulated thereby, kanamycin including a lox nucleotide sequence at both ends. It is a diagram showing a pAM6 plasmid including a sequence encoding a resistance-related protein, a sequence encoding a lacIq protein, a lower fragment sequence of a target intergenic region, and a partial nucleotide sequence of the AYM39_00235 gene.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 표적 유전자간부위(intergenic region)의 상부 단편 서열, trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열, lacⅠq 단백질을 암호화하는 서열 및 표적 유전자간부위(intergenic region)의 하부 단편 서열이 순차적으로 연결된 폴리뉴클레오티드를 제공한다.The present invention relates to a sequence encoding an upper fragment sequence of a target intergenic region, a trc promoter, and a Cre protein regulated by it, a sequence encoding an antibiotic resistance-related protein comprising a lox nucleotide sequence at both ends, a lacIq protein A polynucleotide is provided in which a sequence encoding a sequence and a sequence of a lower fragment of a target intergenic region are sequentially linked.
본 발명에서 사용되는 용어, "유전자간부위(intergenic region)"는 유전자가 모여 있는 부분 사이에 위치한 DNA 서열로, 단백질을 코딩하지 않는 DNA 서열을 의미한다. 이는 진핵생물의 유전자 내에서 발견되는 짧고 단백질을 코딩하지 않는 부위인 인트론(비발현부위, intron, intragenic region)과 다른 것으로, 일부 유전자간부위는 인접한 유전자의 발현을 조절하기도 하지만 대부분은 그 기능이 알려져 있지 않다. 유전자간부위는 총체적으로 정크 DNA라고 불리는 DNA 서열 중 하나이나, 최근 프로모터나 인핸서의 DNA 서열을 포함하는 것으로 알려지며 모든 유전자간부위가 정크 DNA가 아님이 밝혀지고 있다.The term "intergenic region" used in the present invention refers to a DNA sequence located between portions where genes are clustered, and refers to a DNA sequence that does not encode a protein. This is different from introns (non-expression sites, introns, intragenic regions), which are short, protein-free regions found in genes in eukaryotes. Some intergenic regions control the expression of adjacent genes, but most of them do not function. Not known The intergenic region is one of the DNA sequences collectively called junk DNA, but recently it is known to contain the DNA sequence of a promoter or enhancer, and it has been revealed that not all intergenic regions are junk DNA.
상기 유전자간부위(intergenic region)는 데이노코쿠스 라디오두란스 균주의 dr_C0021 유전자와 dr_C0022 유전자 사이에 위치한 DNA 서열일 수 있으나, 이에 한정되는 것은 아니다.The intergenic region may be a DNA sequence located between the dr_C0021 gene and the dr_C0022 gene of the Deinococcus radiodurans strain, but is not limited thereto.
상기 유전자간부위(intergenic region)는 메틸로모나스 속 DH-1 균주의 AYM39_00230 유전자와 AYM39_00235 유전자 사이에 위치한 DNA 서열일 수 있으나, 이에 한정되는 것은 아니다.The intergenic region may be a DNA sequence located between the AYM39_00230 gene and the AYM39_00235 gene of the DH-1 strain of the genus Methylomonas, but is not limited thereto.
상기 표적 유전자간부위의 상부 단편 서열은 dr_C0022 유전자의 염기 서열의 일부와 표적 유전자간부위의 5' 상류 부위를 포함하는 770bp의 염기 서열일 수 있으나, 이에 한정되는 것은 아니다.The upper fragment sequence of the target intergenic region may be a 770 bp nucleotide sequence including a part of the nucleotide sequence of the dr_C0022 gene and a 5′ upstream region of the target intergenic region, but is not limited thereto.
상기 표적 유전자간부위의 상부 단편 서열은 AYM39_00230 유전자의 염기 서열의 일부와 표적 유전자간부위의 5' 상류 부위를 포함하는 820bp의 염기 서열일 수 있으나, 이에 한정되는 것은 아니다.The upper fragment sequence of the target intergenic region may be a 820 bp nucleotide sequence including a part of the nucleotide sequence of the AYM39_00230 gene and a 5′ upstream region of the target intergenic region, but is not limited thereto.
상기 표적 유전자간부위의 하부 단편 서열은 표적 유전자간부위의 하류 부위와 dr_C0023 유전자의 염기 서열의 일부를 포함하는 710bp의 염기 서열일 수 있으나, 이에 한정되는 것은 아니다.The lower fragment sequence of the target intergenic region may be a 710 bp nucleotide sequence including a downstream region of the target intergenic region and a part of the nucleotide sequence of the dr_C0023 gene, but is not limited thereto.
상기 표적 유전자간부위의 하부 단편 서열은 표적 유전자간부위의 하류 부위와 AYM39_00235 유전자의 염기 서열의 일부를 포함하는 810bp의 염기 서열일 수 있으나, 이에 한정되는 것은 아니다.The lower fragment sequence of the target intergenic region may be a 810 bp nucleotide sequence including a part of the nucleotide sequence of the AYM39_00235 gene and a downstream region of the target intergenic region, but is not limited thereto.
본 발명에서 사용되는 용어 "프로모터"는 RNA 폴리머라아제(RNA polymerase)에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산 서열을 의미한다. 구체적으로, "프로모터"란, 전사개시점 (+1) 부터 20~30번째 염기에 대해 상류에 위치하고, 정확한 위치로부터 RNA 폴리머라아제에 전사를 개시시키는 기능을 담당하는 TATA 박스 또는 TATA 박스 유사의 영역이 포함되지만, 반드시 이들 영역의 전후에 한정되는 것은 아니고, 이 영역 이외에 발현조절을 위해 RNA 폴리머라아제 이외의 단백질이 회합하기 위해 필요한 영역을 포함할 수 있다. 프로모터는 외래 유전자인 목적 유전자의 발현을 유도하도록 작동 가능하게 연결되어 있으며 여기서, "작동 가능하게 연결된 (operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용한다.The term "promoter" as used in the present invention is an untranslated nucleic acid sequence upstream of the coding region that includes a binding site for RNA polymerase and has an activity to initiate transcription of a lower gene of the promoter into mRNA. Means. Specifically, "promoter" refers to a TATA box or TATA box-like, which is located upstream from the transcription initiation point (+1) to the 20th to 30th base, and is responsible for initiating transcription to RNA polymerase from the correct position. Regions are included, but are not necessarily limited before and after these regions, and regions other than these regions may include regions necessary for association of proteins other than RNA polymerase for expression regulation. The promoter is operably linked to induce the expression of a target gene, which is a foreign gene, wherein "operably linked" refers to a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. It refers to a functional connection. The operative linkage with the recombinant vector can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and linkage use enzymes generally known in the art.
본 발명에서 사용되는 프로모터는 Kat 프로모터 또는 trc 프로모터 일 수 있으나, 이에 한정되는 것은 아니다. The promoter used in the present invention may be a Kat promoter or a trc promoter, but is not limited thereto.
본 발명에서 사용되는 용어 "Kat 프로모터"는 KatE1 (NCBI acc. number: 1800077) 유전자의 상류(upstream) 부위 101bp를 포함하는 염기서열 (서열번호 1)인 것이 바람직하다.The term "Kat promoter" used in the present invention is preferably a base sequence (SEQ ID NO: 1) containing 101bp of an upstream region of the KatE1 (NCBI acc. number: 1800077) gene.
본 발명에서 사용되는 용어 "trc 프로모터"는 ptrc99a 플라스미드 (Pharmarcia Biotech, Uppsala, Sweden)에 포함된 74bp의 염기 서열(서열번호 2)인 것이 바람직하다. The term "trc promoter" used in the present invention is preferably a 74bp base sequence (SEQ ID NO: 2) contained in the ptrc99a plasmid (Pharmarcia Biotech, Uppsala, Sweden).
본 발명에서 사용되는 용어 "Cre 단백질을 암호화하는 서열"은 Cre 재조합 효소를 발현하는 DNA 서열을 의미하며, pAM2 플라스미드(Jeong et al., Korean J. Chem. Eng. 34:1728-1733, 2017)에 포함된 1032bp의 염기 서열(서열번호 25)인 것이 바람직하다. The term "sequence encoding Cre protein" as used herein refers to a DNA sequence expressing a Cre recombinant enzyme, and pAM2 plasmid (Jeong et al., Korean J. Chem. Eng. 34:1728-1733, 2017) It is preferably a base sequence of 1032 bp (SEQ ID NO: 25) contained in.
본 발명에서 사용되는 용어 "lox 염기 서열"은 lox 66(서열번호 26) 또는 lox71(서열번호 27)일 수 있으나, 이에 한정되는 것은 아니다. The term "lox nucleotide sequence" used in the present invention may be lox 66 (SEQ ID NO: 26) or lox71 (SEQ ID NO: 27), but is not limited thereto.
본 발명에서 "선별 마커(selective marker)" 란 특정 유전자의 산물을 의미한다. 상기 산물을 포함하는 미생물은 이를 포함하지 않는 미생물에는 나타나지 않는 특별한 형질을 가짐으로써, 이에 의해 미생물의 구별을 가능하게 한다.In the present invention, the term "selective marker" means a product of a specific gene. Microorganisms containing the product have special traits that do not appear in microorganisms that do not contain them, thereby enabling the microbial to be distinguished.
상기 선별 마커는 항생제 저항성 관련 단백질을 암호화하는 서열일 수 있으나, 이에 한정되는 것은 아니다.The selection marker may be a sequence encoding an antibiotic resistance-related protein, but is not limited thereto.
본 발명에서 사용되는 용어 "항생제 저항성 관련 단백질"은 세균이 특정한 항생제의 영향을 받지 않고 증식할 수 있게 하는 단백질로 항생제 분해 효소일 수 있으나 이에 한정되는 것은 아니다. 항생제 분해 효소의 예로, Streptomyces clavuligerus가 가지고 있는 베타락탐분해효소(β-lactamase)를 들 수 있다. 베타락탐분해효소(β-lactamase)는 베타락탐계(β-lactams) 항생제의 베타락탐 환을 절단하는 가수분해 효소이다. The term "antibiotic resistance-related protein" used in the present invention is a protein that allows bacteria to proliferate without being affected by a specific antibiotic, and may be an antibiotic degrading enzyme, but is not limited thereto. An example of an antibiotic degrading enzyme is the beta-lactamase (β-lactamase) possessed by Streptomyces clavuligerus. Beta-lactamase (β-lactamase) is a hydrolytic enzyme that cleaves the beta-lactam ring of beta-lactams antibiotics.
본 발명에서 사용되는 용어 "항생제 저항성 관련 단백질을 암호화하는 서열"은 상기 항생제 저항성 관련 단백질을 발현하는 DNA 서열을 의미한다.The term "sequence encoding an antibiotic resistance-related protein" as used herein means a DNA sequence expressing the antibiotic resistance-related protein.
상기 항생제는 카나마이신, 클로람페니콜, 스펙티노마이신 및 스트렙토마이신으로 구성된 군으로부터 선택되는 하나일 수 있으나, 이에 한정되는 것은 아니다.The antibiotic may be one selected from the group consisting of kanamycin, chloramphenicol, spectinomycin, and streptomycin, but is not limited thereto.
본 발명에서 사용되는 용어 "lacΙq 단백질을 암호화하는 서열"은 억제 조절 단백질 (repressor protein)을 발현하는 DNA 서열로, 일반적인 배양조건에서 trc 프로모터에 결합하여 RNA polymerase와의 결합을 방해하고, trc 프로모터와 연결된 유전자의 전사를 억제하는 역할을 하는 조절 단백질이며, ptrc99a 플라스미드에 포함된 1,092 bp의 염기서열(서열번호 3)인 것이 바람직하다.The term "sequence encoding lacΙq protein" as used in the present invention is a DNA sequence expressing a repressor protein. It binds to the trc promoter under normal culture conditions to prevent binding to RNA polymerase, and is linked to the trc promoter. It is a regulatory protein that plays a role in inhibiting the transcription of genes, and is preferably a nucleotide sequence of 1,092 bp (SEQ ID NO: 3) contained in the ptrc99a plasmid.
본 발명에서 사용되는 용어, "Cre-lox 시스템"은 DNA의 특정 부위에서 결실, 삽입, 전좌 및 역위를 수행하는데 사용되는 위치특이적 재조합 효소기술 을 의미한다. 상기 Cre-lox 시스템은 진핵 및 원핵 생물의 유전자로부터 돌연변이를 유발시키는데 사용가능하다. 이는 단일 효소인 Cre 재조합 효소로 구성되어 있고, 짧은 표적 서열인 lox 서열을 재조합한다. 돌연변이를 유발시키고자 하는 위치에 lox 서열을 적절히 배치함으로써, 표적 유전자가 활성화 또는 억제되거나, 다른 유전자와 치환될 수도 있다. 일반적으로 lox P는 34개의 염기로 구성된 박테리오파지 P1 부위로 비대칭인 8 bp의 염기 서열을 포함하고, 중앙에 2개의 염기를 제외하고는, 13 bp 크기인 2쌍의 회문구조(palimdromic)를 갖는다(ATAACTTCGTATANNNTANNN-TATACGAAGTTAT).As used herein, the term "Cre-lox system" refers to a site-specific recombinant enzyme technology used to perform deletion, insertion, translocation, and inversion at a specific site of DNA. The Cre-lox system can be used to mutate genes in eukaryotic and prokaryotic organisms. It consists of a single enzyme, Cre recombinase, and recombines the short target sequence, lox sequence. By appropriately arranging the lox sequence at a position to cause mutation, the target gene may be activated or suppressed, or may be substituted with another gene. In general, lox P is a bacteriophage P1 site composed of 34 bases, contains an asymmetric 8 bp nucleotide sequence, and has 2 pairs of palimdromics with a size of 13 bp except for 2 bases in the center ( ATAACTTCGTATANNNTANNN-TATACGAAGTTAT).
본 발명에서 사용되는 용어 "형질전환"이란 특정 외래의 DNA 가닥을 세포 밖에서 세포 내로 도입하는 것을 의미한다. 도입된 DNA 가닥을 포함한 숙주 미생물은 ‘형질 전환된 미생물’이라 한다. DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미하는 '형질전환'은 표적 단백질을 암호화하는 폴리뉴클레오타이드를 포함하는 벡터를 숙주세포 내에 도입하거나 표적 단백질을 암호화하는 폴리뉴클레오타이드를 숙주세포의 염색체에 통합 완성시켜 숙주세포 내에서 상기 폴리뉴클레오타이드가 암호화하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오타이드는 숙주세포내에 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하든지 상관없이 이들 모두를 포함한다. 또한, 상기 폴리뉴클레오타이드는 표적 단백질을 암호화하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오타이드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오타이드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오타이드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결 신호, 리보좀 결합부위 및 번역 종결신호를 포함한다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오타이드는 그 자체의 형태로 숙주세포에 도입되어, 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있다.The term "transformation" as used in the present invention means introducing a specific foreign DNA strand from outside the cell into the cell. Host microorganisms including the introduced DNA strands are called "transformed microorganisms." 'Transformation', which means that DNA can be replicated as an extrachromosomal factor or by the completion of chromosomal integration by introducing DNA into a host cell, or introducing a vector containing a polynucleotide encoding a target protein into a host cell. It means to integrate and complete the encoding polynucleotide into the chromosome of the host cell so that the protein encoded by the polynucleotide can be expressed in the host cell. Transformed polynucleotides include all of them, whether inserted into the host cell's chromosome or outside the chromosome, as long as it can be expressed in the host cell. In addition, the polynucleotide includes DNA and RNA encoding the target protein. The polynucleotide may be introduced in any form as long as it can be introduced into a host cell and expressed. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression. The expression cassette usually includes a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replicating. In addition, the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell.
또한, 본 발명은 상기 폴리뉴클레오티드를 포함하는 벡터(vector)를 제공한다.Further, the present invention provides a vector comprising the polynucleotide.
본 발명에서 사용되는 용어, "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 플라스미드 (plasmid) 및 벡터 (vector)는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다. The term "vector" as used herein refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. Vectors can be plasmids, phage particles, or simply potential genomic inserts. Once transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are currently the most commonly used form of vectors, plasmids and vectors are sometimes used interchangeably in the specification of the present invention. However, the present invention encompasses other forms of vectors that have functions equivalent to those known or become known in the art.
상기 폴리뉴클레오티드를 포함하는 벡터는 당해 기술분야에서 잘 알려진 유전자 재조합(cloning) 기술로 제조할 수 있으며, 부위 특이적 DNA 서열의 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 제한효소(restriction enzyme) 및 DNA 리가아제(DNA ligase)를 사용할 수 있다.Vectors containing the polynucleotide can be prepared by gene recombination techniques well known in the art, and cleavage and linkage of site-specific DNA sequences are generally known in the art and DNA ligase can be used.
상기 벡터는 플라스미드 벡터, 코즈미드 벡터, HIV(Human immunodeficiency virus) 벡터, MLV(Murineleukemia virus) 벡터, ASLV(Avian sarcoma/leukosis) 벡터, SNV(Spleen necrosis virus) 벡터, RSV(Rous sarcoma virus) 벡터, MMTV(Mouse mammary tumor virus) 벡터, 아데노바이러스(Adenovirus) 벡터 및 헤르페스 심플렉스 바이러스(Herpes simplex virus) 벡터, 렌티바이러스 (lentivirus) 벡터 및 에피조말(episomal) 벡터로 이루어진 군에서 선택된 어느 하나일 수 있고, 바람직하게는 플라스미드 벡터일 수 있으나 이에 한정되는 것은 아니다.The vector is a plasmid vector, cosmid vector, HIV (Human immunodeficiency virus) vector, MLV (Murineleukemia virus) vector, ASLV (Avian sarcoma/leukosis) vector, SNV (Spleen necrosis virus) vector, RSV (Rous sarcoma virus) vector, It may be any one selected from the group consisting of a mouse mammary tumor virus (MMTV) vector, an adenovirus vector and a herpes simplex virus vector, a lentivirus vector, and an episomal vector, and , Preferably, it may be a plasmid vector, but is not limited thereto.
상기 제한 효소(restriction enzyme)는 특정한 DNA 서열에 결합하여 DNA 서열을 절단하는 효소를 통칭한다.The restriction enzyme collectively refers to an enzyme that cleaves a DNA sequence by binding to a specific DNA sequence.
또한, 본 발명은 1) 제 1항의 폴리뉴클레오티드를 균주 내에 도입하는 단계; 및In addition, the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain; And
2) 상기 균주의 표적 유전자간부위(intergenic region)에 trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입되는 단계;를 포함하는 변이 균주의 제조방법을 제공한다.2) In the target intergenic region of the strain, the trc promoter and the sequence encoding the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, and the lacIq protein It provides a method for producing a mutant strain comprising; the step of inserting the sequence.
상기 균주는 메틸로모나스 속(Methylomonas sp.), 대장균(Escherichia coli), 고초균(Bacillus subtilis), 데이노코쿠스 라디오두란스(D. radiodurans), 데이노코쿠스 인디쿠스(D. indicus), 데이노코쿠스 카에니(D. caeni), 데이노코쿠스 아쿠아티쿠스(D. aquaticus), 데이노코쿠스 디폴리머란스(D. depolymerans), 데이노코쿠스 그란디스(D. grandis), 데이노코쿠스 데죠네시스(D. daejeonensis), 데이노코쿠스 라디오톨러란스(D. radiotolerans), 데이노코쿠스 지오써말리스(D. geothermalis), 데이노코쿠스 루버(D. ruber), 데이노코쿠스 안타티커스(D. antarcticus), 데이노코쿠스 프로테오리티쿠스(D. proteolyticus), 데이노코쿠스 라디오푸그난스(D. radiopugnans), 데이노코쿠스 라디오필러스(D. radiophilus), 데이노코쿠스 셀룰로실리티쿠스(D. cellulosilyticus) 및 데이노코쿠스 스웬시스(D. swuensis)로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있으나, 이에 한정되는 것은 아니며 전체 염기 서열이 공지되어 있는 모든 미생물일 수 있다.The strains include Methylomonas sp., Escherichia coli, Bacillus subtilis, D. radiodurans, D. indicus, D. indicus, and Deinococcus. D. caeni, D. aquaticus, D. depolymerans, D. grandis, Deinococcus dezonesis (D. daejeonensis), D. radiotolerans, D. geothermalis, D. ruber, D. antarcticus, D. antarcticus ), D. proteolyticus, D. radiopugnans, D. radiophilus, D. proteolyticus, D. cellulosilyticus) and Deinococcus swuensis (D. swuensis) may be any one or more selected from the group consisting of, but is not limited thereto, and may be any microorganism whose entire nucleotide sequence is known.
또한, 본 발명은 1) 제 1항의 폴리뉴클레오티드를 균주 내에 도입하는 단계; In addition, the present invention comprises the steps of 1) introducing the polynucleotide of claim 1 into a strain;
2) 상기 균주의 표적 유전자간부위(intergenic region)에 trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입되는 단계; 및2) In the target intergenic region of the strain, the trc promoter and the sequence encoding the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, and the lacIq protein The step of inserting the sequence; And
3) IPTG(Isopropyl β-D-1-thiogalactopyranoside)가 첨가된 배지에 배양하여 항생제 저항성 관련 단백질을 암호화하는 서열을 제거하는 단계를 더 포함하는 변이 균주의 제조방법을 제공한다.3) It provides a method of producing a mutant strain further comprising the step of removing a sequence encoding an antibiotic resistance-related protein by culturing in a medium to which isopropyl β-D-1-thiogalactopyranoside (IPTG) is added.
상기 항생제 저항성 관련 단백질을 암호화하는 서열의 제거는 Cre 재조합 효소의 발현을 통해 수행될 수 있다. The removal of the sequence encoding the antibiotic resistance-related protein may be performed through expression of the Cre recombinant enzyme.
상기 IPTG의 농도는 0.5mM 내지 1.0mM일 수 있고, 바람직하게는 1.0mM일 수 있으나 이에 한정되는 것은 아니다.The concentration of IPTG may be 0.5mM to 1.0mM, preferably 1.0mM, but is not limited thereto.
또한, 본 발명은 상기 방법으로 제조된 trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입된 변이 균주를 제공한다. In addition, the present invention provides a mutant strain in which the trc promoter prepared by the above method and the sequence encoding the Cre protein and the sequence encoding the lacIq protein are inserted.
또한, 본 발명은 상기 변이 균주에 항생제 내성 관련 단백질을 암호화하는 서열을 함유한 lox 핵산단편의 양 말단에 각각 표적 서열의 상부 단편 서열과 하부 단편 서열이 결합된 폴리뉴클레오티드를 도입하여 변이 균주의 목적유전자를 변형하는 방법을 제공한다.In addition, the present invention is the purpose of the mutant strain by introducing a polynucleotide in which the upper and lower fragment sequences of the target sequence are combined at both ends of the lox nucleic acid fragment containing the sequence encoding the antibiotic resistance-related protein to the mutant strain. It provides a way to modify genes.
본 발명에서 사용되는 용어 "표적 서열"은 구체적으로 달리 명시되지 않는 한, 표적 유전자의 일부분, 예를 들어, 표적 유전자의 하나 이상의 엑손 서열, 표적 유전자의 인트론 서열 또는 조절 서열, 또는 표적 유전자의 엑손 및 인트론 서열, 인트론 및 조절 서열, 엑손 및 조절 서열, 또는 엑손, 인트론 및 조절 서열의 조합을 가리킨다.The term "target sequence" as used in the present invention refers to a portion of a target gene, for example, one or more exon sequences of a target gene, an intron sequence or a regulatory sequence of a target gene, or an exon of a target gene, unless specifically specified otherwise. And intron sequences, introns and regulatory sequences, exons and regulatory sequences, or combinations of exons, introns and regulatory sequences.
상기 목적 유전자는 crtBcrtI일 수 있으나, 이에 한정되는 것은 아니다.The target gene may be crtB and crtI , but is not limited thereto.
상기 표적 서열의 상부 단편 서열은 0.5 내지 1kb일 수 있고, 바람직하게는 1kb일 수 있으나 이에 한정되는 것은 아니다.The upper fragment sequence of the target sequence may be 0.5 to 1 kb, preferably 1 kb, but is not limited thereto.
상기 표적 서열의 하부 단편 서열은 0.5 내지 1kb일 수 있고, 바람직하게는 1kb일 수 있으나 이에 한정되는 것은 아니다.The lower fragment sequence of the target sequence may be 0.5 to 1 kb, preferably 1 kb, but is not limited thereto.
상기 항생제 저항성 관련 단백질을 암호화하는 서열을 함유한 lox 핵산 단편은 lox66, kat 프로모터, 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lox71을 순차적으로 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다. The lox nucleic acid fragment containing the sequence encoding the antibiotic resistance-related protein may sequentially include a sequence encoding a lox66, a kat promoter, a kanamycin resistance-related protein, and lox71, but is not limited thereto.
상기 항생제는 카나마이신, 클로람페니콜, 스펙티노마이신 및 스트렙토마이신으로 구성된 군으로부터 선택되는 하나일 수 있으나, 이에 한정되는 것은 아니다.The antibiotic may be one selected from the group consisting of kanamycin, chloramphenicol, spectinomycin, and streptomycin, but is not limited thereto.
또한, 본 발명은 상기 목적유전자가 변형된 변이 균주를 IPTG(Isopropyl β-D-1-thiogalactopyranoside)가 첨가된 배지에 배양하여 항생제 저항성 관련 단백질을 암호화하는 서열이 제거된 변이 균주의 제조방법을 제공한다.In addition, the present invention provides a method for producing a mutant strain in which the sequence encoding an antibiotic resistance-related protein is removed by culturing the mutant strain in which the target gene is modified in a medium to which Isopropyl β-D-1-thiogalactopyranoside (IPTG) is added. do.
상기 항생제 저항성 관련 단백질을 암호화하는 서열의 제거는 Cre 재조합 효소의 발현을 통해 수행될 수 있다. The removal of the sequence encoding the antibiotic resistance-related protein may be performed through expression of the Cre recombinant enzyme.
상기 IPTG의 농도는 0.5mM 내지 1.0mM일 수 있고, 바람직하게는 1.0mM일 수 있으나 이에 한정되는 것은 아니다.The concentration of IPTG may be 0.5mM to 1.0mM, preferably 1.0mM, but is not limited thereto.
상기 변형은 목적유전자 서열의 치환, 결실 또는 목적 서열을 삽입하는 것일 수 있으나, 이에 한정되는 것은 아니다. The modification may be a substitution, deletion of the target gene sequence, or insertion of the target sequence, but is not limited thereto.
본 발명의 구체적인 실시예에서, 데이노코쿠스 라디오두란스 dr_C0022 유전자와 dr_C0023 유전자간부위(intergenic region)에 trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입된 변이 균주를 제조하고(도 5), 상기 균주를 IPTG(Isopropyl β-D-1-thiogalactopyranoside)가 첨가된 배지에 배양하여 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 변이 균주를 수득하여 이를 유전체 개량을 위한 기본 변이 균주(DrCre)로 명명하였다. 상기 변이 균주를 이용하여, 카나마이신 저항성 관련 단백질을 암호화하는 서열을 함유한 lox 핵산 단편의 양 말단에 각각 crtB의 일부 서열과 crtI의 일부 서열이 결합된 폴리뉴클레오티드를 도입하여 변이 균주의 crtBcrtI 유전자를 결실시키고, IPTG가 첨가된 배지에 배양하여 카나마이신 저항성 관련 단백질을 암호화하는 서열을 제거하여, crtBcrtI 유전자와 카나마이신 저항성 관련 단백질을 암호화하는 서열이 모두 제거된 데이노코쿠스 라디오두란스 균주를 수득한바, 상기 기본 변이 균주를 이용하여 균주의 유전체를 개량할 수 있음을 확인하였다(도 7a 및 도 7b). 또한, Cre 재조합 효소를 안정적으로 발현하는 메틸로모나스 속 DH-1 변이 균주를 수득하여 균주의 종류에 관계없이 본 발명의 유전체 개량 방법을 적용할 수 있음을 확인하였다(도 8a 및 도 8b).In a specific embodiment of the present invention, a sequence encoding a trc promoter and a Cre protein regulated by the trc promoter in the deinococcus radiodurans dr_C0022 gene and the dr_C0023 intergenic region, and an antibiotic comprising a lox nucleotide sequence at both ends To prepare a mutant strain in which a sequence encoding a resistance-related protein and a sequence encoding a lacIq protein were inserted (FIG. 5), the strain was cultured in a medium to which Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added, thereby kanamycin resistance. A mutant strain from which a sequence encoding a related protein was removed was obtained and named as a basic mutant strain (DrCre) for genome improvement. Using the mutant strain, a polynucleotide in which a partial sequence of crtB and a partial sequence of crtI are conjugated to both ends of a lox nucleic acid fragment containing a sequence encoding a kanamycin resistance-related protein, respectively, and the crtB and crtI genes of the mutant strain Was deleted, and cultured in a medium to which IPTG was added to remove the sequence encoding the kanamycin resistance-related protein, thereby obtaining a Deinococcus radiodurans strain from which all the sequences encoding the crtB and crtI genes and the kanamycin resistance-related protein were removed. First, it was confirmed that the genome of the strain can be improved using the basic mutant strain (FIGS. 7A and 7B). In addition, it was confirmed that the DH-1 mutant strain of the genus Methylomonas stably expressing the Cre recombinant enzyme was obtained, and the genome improvement method of the present invention can be applied regardless of the type of the strain (FIGS. 8A and 8B ).
따라서, 본 발명의 기본 변이 균주(DrCre 및 DH-1:Cre)를 목적 유전자를 변형하는 방법에 이용할 경우, 형질 전환된 균주를 선별하기 위해 인위적으로 도입한 선별 마커(selective marker)를 제거하기 위해 별도의 플라스미드를 도입하고 이를 제거하기 위한 과정을 거칠 필요가 없어, 목적 유전자를 간편하고 효율적으로 변형할 수 있으며 나아가, 기초 연구를 위한 미생물의 유전체 변이 균주를 제작하는 데에 유용하게 활용될 수 있다.Therefore, when the basic mutant strains (DrCre and DH-1:Cre) of the present invention are used in a method of modifying a target gene, in order to remove a selective marker artificially introduced to select the transformed strain Since there is no need to introduce a separate plasmid and go through the process to remove it, the target gene can be easily and efficiently modified, and furthermore, it can be usefully used to create a genome mutant strain of microorganisms for basic research. .
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples and experimental examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다. However, the following examples and experimental examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples and experimental examples.
<실시예 1> trc 프로모터, Cre 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열을 포함하는 플라스미드(pAM3)의 제작<Example 1> Preparation of a plasmid (pAM3) containing a trc promoter, a sequence encoding a Cre protein, and a sequence encoding a lacΙq protein
trc 프로모터, Cre 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열을 포함하는 플라스미드(pAM3)를 하기의 방법으로 제조하였다.A plasmid (pAM3) containing a trc promoter, a sequence encoding a Cre protein, and a sequence encoding a lacΙq protein (pAM3) was prepared by the following method.
먼저, pAM2 플라스미드(Jeong et al., Korean J. Chem. Eng. 34:1728-1733, 2017; 특허등록번호, 10-1835852)를 주형으로 하여 하기 표 1에 기재된 염기 서열을 갖는 CreF(서열번호 5) 및 CreR(서열번호 6) 프라이머를 이용하여 Cre 단백질을 암호화하는 서열을 증폭시켰다. 구체적으로, 1 ㎕의 pAM2, 각각 1 ㎕의 CreF와 CreR 프라이머 (10 pmole/㎕) 및 17 ㎕의 멸균증류수의 혼합물을 pfu 폴리머라아제 믹스(Bioneer)에 첨가한 뒤, 이를 T-100 Thermal cycler DNA 증폭기(Bio-rad)를 이용하여 PCR을 수행하였다. PCR은 95℃에서 5분 동안 반응시킨 뒤, 95℃ 30초, 60℃ 30초 및 72℃ 2분의 반응과정을 1회로 하여 이를 25회 반복함으로써 수행되었다.First, CreF having the nucleotide sequence shown in Table 1 below using the pAM2 plasmid (Jeong et al., Korean J. Chem. Eng. 34:1728-1733, 2017; patent registration number, 10-1835852) as a template (SEQ ID NO: 5) and CreR (SEQ ID NO: 6) primers were used to amplify the sequence encoding the Cre protein. Specifically, a mixture of 1 µl of pAM2, 1 µl of each of CreF and CreR primers (10 pmole/µl) and 17 µl of sterile distilled water was added to the pfu polymerase mix (Bioneer), followed by T-100 Thermal cycler. PCR was performed using a DNA amplifier (Bio-rad). PCR was performed by reacting at 95° C. for 5 minutes, then repeating the reaction process of 95° C. for 30 seconds, 60° C. for 30 seconds, and 72° C. for 2 minutes once and repeating this 25 times.
서열번호Sequence number 이름name 서열(5'-3')Sequence (5'-3')
서열번호 5SEQ ID NO: 5 CreFCreF gatcgaattcatgtccaatttactgcccgtagatcgaattcatgtccaatttactgcccgta
서열번호 6SEQ ID NO: 6 CreRCreR gatcgtcgacctaatcgccatcttccagcagatcgtcgacctaatcgccatcttccagca
수득한 PCR 산물을 1% 아가로오스 겔에서 120V의 전압을 걸어 20분 동안 전기영동하여 확인하고, 이를 1.5ml 튜브에 넣고 DNA fragment purification kit(Intron lifetechnology)를 이용하여 정제하였다. 상기 수득한 PCR 산물과 pTrc99a 플라스미드(Invitrogen)를 완충용액 5 ㎕, EcoRI 1 ㎕, SalI 1 ㎕, PCR 산물 또는 pTrc99a DNA 용액 20 ㎕, 그리고 멸균 증류수 23 ㎕를 1.5 ml 튜브에 첨가하여 37℃에서 6시간 동안 반응시켜 각각 EcoRI SalI 제한효소로 절단하였다. 그 후, 제한효소 처리된 PCR 산물 7 ㎕와 pTrc99a 1 ㎕, T4 DNA ligase (Enzynomics) 1 ㎕, 완충용액 1 ㎕ 를 1.5 ml 튜브에 첨가하여 16℃에서 8시간 반응시켜 결찰(ligation)시켰다. DNA 결찰 혼합용액은 대장균 ( E. coli DH5α)에 형질전환하고, 형질전환 된 대장균으로부터 plasmid preparation kit (intron lifetechnology사)를 이용하여 제조사에 권고된 방법으로 플라스미드 DNA를 추출하고 해당 염기서열을 분석하여 최종적으로 클로닝된 플라스미드를 확인하였으며 이를 pAM3 (서열번호 7) 플라스미드로 명명하였다 (도 2b).The obtained PCR product was confirmed by applying a voltage of 120V on a 1% agarose gel and electrophoresis for 20 minutes, put it in a 1.5ml tube, and purified using a DNA fragment purification kit (Intron lifetechnology). The obtained PCR product and pTrc99a plasmid (Invitrogen) were added to 5 µl of buffer solution, 1 µl of EcoR I, 1 µl of Sal I, 20 µl of PCR product or pTrc99a DNA solution, and 23 µl of sterile distilled water to a 1.5 ml tube. It was reacted at for 6 hours and digested with EcoRI and SalI restriction enzymes, respectively. Then, 7 µl of restriction enzyme-treated PCR product, 1 µl of pTrc99a, 1 µl of T4 DNA ligase (Enzynomics), and 1 µl of a buffer solution were added to a 1.5 ml tube, followed by reaction at 16° C. for 8 hours for ligation. The DNA ligation mixed solution was transformed into E. coli ( E. coli DH5α), and plasmid DNA was extracted from the transformed E. coli using a plasmid preparation kit (intron lifetechnology) according to the method recommended by the manufacturer, and the corresponding nucleotide sequence was analyzed. Finally, the cloned plasmid was confirmed, and it was named pAM3 (SEQ ID NO: 7) plasmid (Fig. 2b).
<실시예 2> trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 loxP 염기 서열을 포함하는 카나마이신 (kanamycin) 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열을 포함하는 플라스미드(pAM4)의 제작<Example 2> of a plasmid (pAM4) comprising a trc promoter, a sequence encoding a Cre protein, a sequence encoding a kanamycin resistance-related protein including a loxP nucleotide sequence at both ends, and a sequence encoding a lacΙq protein making
trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 loxP 염기 서열을 포함하는 카나마이신 (kanamycin) 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열을 포함하는 플라스미드(pAM4)를 하기와 같은 방법으로 제조하였다.A plasmid (pAM4) including a sequence encoding a trc promoter, a sequence encoding a Cre protein, a kanamycin resistance-related protein including a loxP nucleotide sequence at both ends and a sequence encoding a lacΙq protein (pAM4) was prepared in the following manner. Was prepared.
<2-1> trc 프로모터를 포함하는 Cre 단백질을 암호화하는 서열의 수득<2-1> Obtaining a sequence encoding a Cre protein containing a trc promoter
trc 프로모터를 포함하는 Cre 단백질을 암호화하는 서열을 수득하기 위해, 상기 실시예 1의 방법으로 제조한 pAM3 플라스미드를 주형으로 사용하고, 하기 표 2에 기재된 염기서열을 갖는 trcCreF(서열번호 8) 및 trcCreR(서열번호 9) 프라이머를 이용하여 trc 프로모터를 포함하는 Cre 단백질을 암호화하는 서열을 증폭시켰다. 구체적으로, 2 ㎕의 pAM3, 각각 1 ㎕의 trcCreF 및 trcCreR 프라이머 2 ㎕ (10 pmole/㎕) 및 멸균증류수 16 ㎕를 AccuPower TM pfu PCR premix mix (Bioneer사)를 사용하여 PCR을 수행하였다. 그 결과, trc 프로모터가 포함된 Cre 단백질을 암호화하는 서열의 PCR 산물을 수득하였다.In order to obtain a sequence encoding a Cre protein containing a trc promoter, the pAM3 plasmid prepared by the method of Example 1 was used as a template, and trcCreF (SEQ ID NO: 8) and trcCreR having the nucleotide sequences shown in Table 2 below. (SEQ ID NO: 9) A sequence encoding a Cre protein containing a trc promoter was amplified using a primer. Specifically, PCR was performed using 2 µl of pAM3, 1 µl of trcCreF and 2 µl of trcCreR primers (10 pmole/µl) and 16 µl of sterile distilled water using AccuPower pfu PCR premix mix (Bioneer). As a result, a PCR product of the sequence encoding the Cre protein containing the trc promoter was obtained.
서열번호Sequence number 이름name 서열(5'-3')Sequence (5'-3')
서열번호 8SEQ ID NO: 8 trcCreFtrcCreF ctagggtaccgccgacatcataacggttctctagggtaccgccgacatcataacggttct
서열번호 9SEQ ID NO: 9 trcCreRtrcCreR gatcctcgagtgtcctactcaggagagcgtgatcctcgagtgtcctactcaggagagcgt
<2-2> 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열의 수득<2-2> Obtaining a sequence encoding a kanamycin resistance-related protein including lox nucleotide sequences at both ends
양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열을 수득하기 위해, 도 2a의 pAM1(Jeong et al., 2017 Korean J. Chem. Eng.,4June 2017, Volume 34, Issue 6, pp 1728-1733이고, 등록특허 10-1835852)를 주형으로 사용하고, 하기 표 3에 기재된 염기 서열을 갖는 loxKmF(서열번호 10) 및 loxKmR(서열번호 11) 프라이머를 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 PCR을 수행하였다. 그 결과, lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열의 PCR 산물을 수득하였다.In order to obtain a sequence encoding a kanamycin resistance-related protein comprising lox nucleotide sequences at both ends, pAM1 in Fig. 2A (Jeong et al., 2017 Korean J. Chem. Eng ., 4June 2017, Volume 34, Issue 6, pp 1728-1733, and Patent Registration No. 10-1835852) as a template, except that the loxKmF (SEQ ID NO: 10) and loxKmR (SEQ ID NO: 11) primers having the nucleotide sequence shown in Table 3 were used. PCR was performed under the same conditions and methods as in 1. As a result, a PCR product of a sequence encoding a kanamycin resistance-related protein including a lox nucleotide sequence was obtained.
서열번호Sequence number 이름name 서열(5'-3')Sequence (5'-3')
서열번호 10SEQ ID NO: 10 loxKmFloxKmF ggtaccgggccccccctcgaggtcggtaccgggccccccctcgaggtc
서열번호 11SEQ ID NO: 11 loxKmRloxKmR ctctagaggatcctaccgttcgtactctagaggatcctaccgttcgta
<2-3> lacΙq 단백질을 암호화하는 서열의 수득<2-3> Obtaining a sequence encoding lacΙq protein
lacΙq 단백질을 암호화하는 서열을 수득하기 위해, 상기 실시예 1에서 제조한 pAM3 플라스미드를 주형으로 사용하고, 하기 표 4에 기재된 lacΙqF(서열번호 12) 및 lacΙqR(서열번호 13)의 프라이머를 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 PCR을 수행하였다. 그 결과, lacΙq 단백질을 암호화하는 서열의 PCR 산물을 수득하였다. In order to obtain a sequence encoding a lacΙq protein, the pAM3 plasmid prepared in Example 1 was used as a template, except that the primers of lacΙqF (SEQ ID NO: 12) and lacΙqR (SEQ ID NO: 13) described in Table 4 were used. Then, PCR was performed under the same conditions and methods as in Example 1. As a result, a PCR product of the sequence encoding the lacΙq protein was obtained.
서열번호Sequence number 이름name 서열(5'-3')Sequence (5'-3')
서열번호 12SEQ ID NO: 12 lacΙqFlacΙqF ctagggatcctcctgcgttatcccctgattctagggatcctcctgcgttatcccctgatt
서열번호 13SEQ ID NO: 13 lacΙqRlacΙqR taacgtcgactctagatcactgcccgctttccagtctaacgtcgactctagatcactgcccgctttccagtc
<2-4> trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 (kanamycin) 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열을 포함하는 플라스미드(pAM4)의 제작<2-4> of a plasmid (pAM4) comprising a trc promoter, a sequence encoding a Cre protein, a sequence encoding a kanamycin resistance-related protein including a lox nucleotide sequence at both ends, and a sequence encoding a lacΙq protein making
상기 실시예 2-1로 수득한 trc 프로모터가 포함된 Cre 단백질을 암호화하는 서열의 PCR 산물은 제한효소 KpnI과 XhoI으로 절단하고, 상기 실시예 2-2로 수득한 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열의 PCR 산물은 제한효소 KpnI과 XbaI로 절단하였으며, 상기 실시예 2-3로 수득한 lacΙq 단백질을 암호화하는 서열의 PCR 산물은 제한효소 B amHI과 SalI로 절단하여 모두 pUC19 플라스미드(서열번호 36)에 결찰(ligation)시켜 제조한 플라스미드를 pAM4(서열번호 4)로 명명하였다(도 3).The PCR product of the sequence encoding the Cre protein containing the trc promoter obtained in Example 2-1 was digested with restriction enzymes Kpn I and Xho I, and lox nucleotide sequences at both ends obtained in Example 2-2. The PCR product of the sequence encoding the kanamycin resistance-related protein including, was digested with restriction enzymes Kpn I and Xba I, and the PCR product of the sequence encoding the lacΙq protein obtained in Example 2-3 was restriction enzyme B amH I A plasmid prepared by digesting with Sal I and ligated to pUC19 plasmid (SEQ ID NO: 36) was named pAM4 (SEQ ID NO: 4) (FIG. 3).
<실시예 3> trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열이 삽입된 데이노코쿠스 라디오두란스 변이 균주(DrCreKm)의 제조<Example 3> Deinococcus radiodurans mutant strain in which a sequence encoding a kanamycin resistance-related protein including a trc promoter, a Cre protein encoding sequence, a lox nucleotide sequence at both ends, and a sequence encoding a lacΙq protein were inserted Preparation of (DrCreKm)
<3-1> 표적 유전자간부위(intergenic region)의 상부 단편 서열, trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열, lacⅠq 단백질을 암호화하는 서열 및 표적 유전자간부위(intergenic region)의 하부 단편 서열을 포함하는 플라스미드(pAM5)의 제작<3-1> the sequence encoding the upper fragment sequence of the target intergenic region, the trc promoter and the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, Construction of a plasmid (pAM5) containing the sequence encoding the lacIq protein and the lower fragment sequence of the target intergenic region
데이노코쿠스 라디오두란스의 DNA를 주형으로 하여, drC0022 유전자와 유전자간부위의 일부 서열을 포함하는 770bp의 염기 서열은 하기 표 5의 drc0022upF(서열번호 14) 및 drc0022upR(서열번호 15)의 프라이머, 유전자간부위의 일부 서열과 drC0023 유전자를 포함하는 710bp의 염기 서열은 하기 표 5의 drc0023dnF(서열번호 16) 및 drc0023dnR(서열번호 17)의 프라이머를 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 PCR을 수행하였다. 그 결과, drC0022 유전자와 유전자간부위의 일부 서열을 포함하는 770bp의 염기 서열 및 유전자간부위의 일부 서열과 drC0023 유전자를 포함하는 710bp의 염기 서열의 PCR 산물을 수득하였다. Using the DNA of Deinococcus radiodurans as a template, the nucleotide sequence of 770 bp including a partial sequence of the drC0022 gene and the intergenic region is the primers of drc0022upF (SEQ ID NO: 14) and drc0022upR (SEQ ID NO: 15) in Table 5 below, In the same conditions as in Example 1, except for using the primers of drc0023dnF (SEQ ID NO: 16) and drc0023dnR (SEQ ID NO: 17) shown in Table 5 below, and the nucleotide sequence of 710bp including a partial sequence of the intergenic region and the drC0023 gene. PCR was performed by the method. As a result, a PCR product of a nucleotide sequence of 770 bp including a partial sequence of the drC0022 gene and an intergenic region and a nucleotide sequence of 710 bp including a partial sequence of the intergenic region and the drC0023 gene was obtained.
drC0022 유전자와 유전자간부위의 일부 서열을 포함하는 770bp의 염기 서열의 PCR 산물은 제한효소 NdeI 및 KpnI로 절단하고, 유전자간부위의 일부 서열과 drC0023 유전자를 포함하는 710bp의 염기 서열의 PCR 산물은 제한효소 SalI 및 SphI으로 절단하여 상기 실시예 2-4의 방법으로 제작된 pAM4 플라스미드에 결찰시켜 pAM5 플라스미드(서열번호 18)을 제조하였다(도 4). The 770 bp nucleotide sequence PCR product containing the drC0022 gene and some intergenic regions was digested with restriction enzymes Nde I and Kpn I, and the 710 bp nucleotide sequence containing the drC0023 gene was digested with restriction enzymes Nde I and Kpn I. Silver restriction enzymes Sal I and Sph I were digested and ligated to the pAM4 plasmid prepared by the method of Example 2-4 to prepare a pAM5 plasmid (SEQ ID NO: 18) (FIG. 4).
서열번호Sequence number 이름name 서열(5'-3')Sequence (5'-3')
서열번호14SEQ ID NO: 14 drc0022upFdrc0022upF atcgcatatgggtgcgcatctcaagtcttgatcgcatatgggtgcgcatctcaagtcttg
서열번호15SEQ ID NO: 15 drc0022upRdrc0022upR ctagggtaccggcctgtcactgtgattaagctagggtaccggcctgtcactgtgattaag
서열번호16SEQ ID NO: 16 drc0023dnFdrc0023dnF ctgggtcgaccggagcatgacctaagaggtctgggtcgaccggagcatgacctaagaggt
서열번호17SEQ ID NO: 17 drc0023dnRdrc0023dnR tacggcatgcggtgatcgcgagttggcgtttacggcatgcggtgatcgcgagttggcgtt
<3-2> trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열이 삽입된 변이 균주의 제조<3-2> Preparation of a mutant strain in which the sequence encoding the trc promoter, the Cre protein, the kanamycin resistance-related protein including the lox nucleotide sequence at both ends, and the sequence encoding the lacΙq protein are inserted
먼저, 데이노코쿠스 라디오두란스(ATCC 13939, 농업유전자원정보센터, 한국) 균주를 TGY 배지(0.5%(w/v)의 트립톤, 0.1%(w/v)의 글루코오스 및 0.3%(w/v)의 효모 추출물)을 이용하여 30℃의 온도에서 OD(optical density) 600nm의 값이 0.3에 도달할 때까지 배양하였다. 배양한 세포를 4000rpm, 4℃ 조건에서 15분간 원심분리하여 30 mM의 칼슘클로라이드(CaCl 2)가 포함된 2x TGY 배지에 현탁한 뒤, 현탁액을 얼음에서 1시간 동안 정치시켰다. 이를 다시 4000rpm, 4℃ 조건에서 15분간 원심분리하여 상등액을 제거하고 30 mM의 칼슘클로라이드(CaCl 2) 및 10%(v/v) 글리세롤이 포함된 TGY배지를 첨가하여 재현탁 한 뒤, 멸균된 1.5 ml 튜브에 50 ㎕씩 분주하여 준비하였다.First, deinococcus radiodurans (ATCC 13939, Agricultural Genetic Resource Information Center, Korea) strain was used in TGY medium (0.5% (w/v) tryptone, 0.1% (w/v) glucose and 0.3% (w). /v) yeast extract) was incubated at a temperature of 30°C until a value of 600 nm of OD (optical density) reached 0.3. The cultured cells were centrifuged for 15 minutes at 4000 rpm and 4° C., and suspended in 2x TGY medium containing 30 mM calcium chloride (CaCl 2 ), and the suspension was allowed to stand on ice for 1 hour. This was again centrifuged at 4000rpm and 4℃ for 15 minutes to remove the supernatant, and resuspended by adding TGY medium containing 30 mM calcium chloride (CaCl 2 ) and 10% (v/v) glycerol, and then sterilized. It was prepared by dispensing 50 µl into a 1.5 ml tube.
준비된 데이노코쿠스 라이오두란스 균주 50 ㎕에 상기 실시예 3-1에서 제조한 pAM5 플라스미드 DNA 10 ㎕와 30 mM 칼슘클로라이드 (CaCl 2)가 포함된 2 X TGY 용액을 첨가하고 얼음에서 30분 동안 정치시킨뒤, 32℃에서 1.5시간 반응시켰다. 그 후, 2 X TGY 용액 900 ㎕를 첨가하여 30℃에서 16시간 배양한 뒤, 25 ㎍/ml의 카나마이신 항생제가 포함된 2 X TGY agar 배지(1%(w/v)의 트립톤, 0.2%(w/v)의 Glucose , 0.6%(w/v)의 효모 추출물 및 1.5%(w/v)의 Bactoagar)에 200 ㎕ 도말하여 30℃ 배양기에서 3 내지 4일 동안 정치배양하였다. 최종적으로 25 ㎍/ml의 카나마이신 항생제가 포함된 2 X TGY agar 배지에서 집락 (colony)을 형성한 trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열이 삽입된 변이 균주는 진단 PCR 및 염기서열분석으로 확인하고, 최종 선별된 균주를 DrCreKm으로 명명하였다 (도 5). To 50 µl of the prepared Deinococcus riodurans strain, 10 µl of the pAM5 plasmid DNA prepared in Example 3-1 and 2 X TGY solution containing 30 mM calcium chloride (CaCl 2 ) were added, and left to stand on ice for 30 minutes. After that, it was reacted at 32° C. for 1.5 hours. Then, 900 µl of 2 X TGY solution was added and incubated for 16 hours at 30° C., and then 2 X TGY agar medium (1% (w/v) tryptone, 0.2%) containing 25 µg/ml kanamycin antibiotic (w/v) Glucose, 0.6% (w/v) yeast extract and 1.5% (w/v) Bactoagar) were plated 200 µl and cultured in a 30° C. incubator for 3 to 4 days. Finally, in 2 X TGY agar medium containing 25 μg/ml kanamycin antibiotic, the trc promoter that formed a colony, the sequence encoding the Cre protein, and the kanamycin resistance-related protein including the lox nucleotide sequence at both ends were encoded. The mutant strain into which the sequence and the sequence encoding the lacΙq protein were inserted was confirmed by diagnostic PCR and sequencing, and the final selected strain was named DrCreKm (FIG. 5).
<실시예 4> trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열이 삽입된 변이 균주로부터 카나마이신 저항성 관련 단백질을 암호화하는 서열의 제거<Example 4> A kanamycin resistance-related protein was prepared from a mutant strain in which a trc promoter, a sequence encoding a Cre protein, a sequence encoding a kanamycin resistance-related protein including a lox nucleotide sequence at both ends, and a sequence encoding a lacΙq protein were inserted. Removal of the coding sequence
상기 실시예 3-2에서 제조된 DrCreKm 균주로부터 카나마이신 저항성 관련 단백질을 암호화하는 서열을 제거하기 위하여 하기의 방법을 수행하였다.The following method was performed in order to remove the sequence encoding the kanamycin resistance related protein from the DrCreKm strain prepared in Example 3-2.
구체적으로, 상기 실시예 3-2에서 제조된 DrCeKm 균주를 카나마이신을 첨가하지 않은 3 mL의 TGY배지에 30 ℃에서 16시간 진탕 배양한 후 OD(optical density) 600nm의 값이 0.25가 될 때까지 1 mM isoprophyl-β-D-1-thiogalactopyranoside (IPTG)를 첨가하여 동일한 배양조건에서 16시간동안 추가 배양하였다. 그 후, 배양액을 1/1000로 희석하여 10 mM IPTG가 포함된 TGY agar 배지에 도말한 뒤 콜로니가 형성될 때까지 30℃에서 정치배양 하였다. TGY agar 배지에 형성된 각각의 단일 집락(colony)을 멸균된 팁(tip)을 이용하여 카나마이신이 포함된 TGY agar 배지 및 카나마이신이 포함되지 않은 TGY agar 배지에 동시에 접종하였다. 그 후 카나마이신이 포함된 배지에서는 생장할 수 없고 카나마이신이 포함되지 않는 TGY agar 배지에서만 생장할 수 있는 균주를 최종 선별하였다(도 5, 도 6a 및 도 6b). Specifically, the DrCeKm strain prepared in Example 3-2 was cultured with shaking at 30° C. for 16 hours in 3 mL of TGY medium to which kanamycin was not added, and then until the value of OD (optical density) 600 nm became 0.25 1 Mm isoprophyl-β-D-1-thiogalactopyranoside (IPTG) was added and incubated for 16 hours under the same culture conditions. Thereafter, the culture solution was diluted to 1/1000, spread on a TGY agar medium containing 10 mM IPTG, and cultured at 30° C. until colonies were formed. Each single colony formed on the TGY agar medium was simultaneously inoculated into TGY agar medium containing kanamycin and TGY agar medium not containing kanamycin using a sterilized tip. Thereafter, strains that could not be grown in a medium containing kanamycin and grown only in a TGY agar medium not containing kanamycin were finally selected (FIGS. 5, 6A and 6B ).
최종선별 된 균주는 진단 PCR과 염기서열 분석 그리고 plate assay를 통해 데이노코쿠스 라디오두란스 변이 균주로부터 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 것을 확인 하였고, 상기 균주는 데이노코쿠스 라디오두란스 유전체 개량을 위한 기본 변이 균주(DrCre)로 명명하였다 (도 5, 도 6a 및 도 6b). The final selected strain was confirmed that the sequence encoding the kanamycin resistance-related protein was removed from the Deinococcus radiodurans mutant strain through diagnostic PCR, sequencing analysis, and plate assay, and the strain was Deinococcus radiodurans genome It was named as a basic mutant strain (DrCre) for improvement (FIGS. 5, 6A and 6B).
<실시예 5> <Example 5> crtBcrtB And crtIcrtI 유전자가 결실된 데이노코쿠스 라디오두란스 균주의 제조 Preparation of Deinococcus radiodurans strain in which the gene was deleted
상기 실시예 4에서 수득한 변이 균주를 이용해 균주의 유전체를 개량할 수 있는지 확인하기 위하여, 카로테노이드 생합성 경로에 관계된 파이토엔 합성 효소를 코딩하는 crtB 유전자와 파이토엔 불포화효소를 코딩하는 crtI 유전자를 결실(deletion)시키는 하기의 실험을 수행하였다. Example using a mutant strain obtained in fourth deleting the crtI gene to verify that can improve the genome of the strain, encoding a crtB gene and payito yen unsaturated enzyme encoding a synthase involved payito yen the carotenoid biosynthesis pathway ( deletion) was performed.
<5-1> crtBcrtI 염기 서열의 수득<5-1> obtaining crtB and crtI base sequences
데이노코쿠스 라디오두란스 DNA를 주형으로 하여, crtB 유전자를 포함하는 염기 서열 1010bp(서열번호 28)은 하기 표 6의 dr6162-1(서열번호 19) 및 dr6162-2(서열번호 20)의 프라이머, crtI 유전자를 포함하는 염기서열 820bp(서열번호 29)은 하기 표 6의 dr6162-5(서열번호 23) 및 dr6162-6(서열번호 24)의 프라이머를 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 PCR을 수행하였다. 그 결과, crtBcrtI 유전자의 PCR 산물을 각각 수득하였다.Using Deinococcus radiodurans DNA as a template, the base sequence 1010bp (SEQ ID NO: 28) containing the crtB gene is the primers of dr6162-1 (SEQ ID NO: 19) and dr6162-2 (SEQ ID NO: 20) in Table 6 below, The nucleotide sequence 820bp (SEQ ID NO: 29) containing the crtI gene was the same conditions as in Example 1, except that the primers of dr6162-5 (SEQ ID NO: 23) and dr6162-6 (SEQ ID NO: 24) in Table 6 were used. And PCR was performed by the method. As a result, PCR products of the crtB and crtI genes were obtained, respectively.
서열번호Sequence number 이름name 서열(5'→3')Sequence (5'→3')
서열번호19SEQ ID NO: 19 dr6162-1dr6162-1 aagtagtcgggcgtgatgaaaagtagtcgggcgtgatgaa
서열번호20SEQ ID NO: 20 dr6162-2dr6162-2 agcttatcgataccgtcgacggcacgtatttcgactacgaagcttatcgataccgtcgacggcacgtatttcgactacga
서열번호21SEQ ID NO: 21 dr6162-3dr6162-3 tcgtagtcgaaatacgtgccgtcgacggtatcgataagcttcgtagtcgaaatacgtgccgtcgacggtatcgataagct
서열번호22SEQ ID NO:22 dr6162-4dr6162-4 attctggacgacctcgaacgcatgcctgcaggtcgactctattctggacgacctcgaacgcatgcctgcaggtcgactct
서열번호23SEQ ID NO: 23 dr6162-5dr6162-5 agagtcgacctgcaggcatgcgttcgaggtcgtccagaatagagtcgacctgcaggcatgcgttcgaggtcgtccagaat
서열번호24SEQ ID NO: 24 dr6162-6dr6162-6 tcaccgtgacggactattcatcaccgtgacggactattca
<5-2> lox 염기 서열을 양 말단에 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열의 증폭<5-2> Amplification of a sequence encoding a kanamycin resistance-related protein containing lox nucleotide sequences at both ends
pAM1 플라스미드를 주형으로 하여, lox71 및 lox66 유전자를 양 말단에 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열을 상기 표 6에 기재된 dr6162-3(서열번호 21) 및 dr6162-4(서열번호 22)를 사용한 것을 제외하고는 상기 실시예 1의 동일한 조건 및 방법으로 PCR을 수행하였다. 그 결과, lox71 및 lox66 유전자를 양 말단에 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열의 PCR 산물을 수득하였다.Using the pAM1 plasmid as a template, a sequence encoding a kanamycin resistance-related protein containing lox71 and lox66 genes at both ends was obtained using dr6162-3 (SEQ ID NO: 21) and dr6162-4 (SEQ ID NO: 22) described in Table 6 above. Except that, PCR was performed under the same conditions and methods of Example 1. As a result, a PCR product of a sequence encoding a kanamycin resistance-related protein containing lox71 and lox66 genes at both ends was obtained.
<5-3> crtBcrtI 염기 서열과 lox 염기 서열을 양 말단에 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열의 연결<5-3> Linkage of a sequence encoding a kanamycin resistance-related protein containing crtB and crtI nucleotide sequences and lox nucleotide sequences at both ends
먼저, 실시예 5-1 및 5-2에서 수득된 PCR 산물을 1% 아가로오스 겔에서 전기영동하여 확인하고, 이를 DNA fragment purification kit(Intron lifetechnology)를 이용하여 각각 정제하였다. 정제된 PCR 산물을 혼합하여 주형으로 사용하고, 상기 표 6에 기재된 dr6162-1(서열번호 19) 및 dr6162-6(서열번호 24) 프라이머를 사용한 것과 PCR 과정에서 72℃ 4분 동안 반응시킨 것을 제외하고는, 상기 실시예 1과 동일한 조건 및 방법으로 PCR을 수행하였다. 그 결과, crtBcrtI 염기 서열과 lox 염기 서열을 양 말단에 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열이 연결된 2450bp의 PCR 산물을 수득하였다.First, the PCR products obtained in Examples 5-1 and 5-2 were confirmed by electrophoresis on a 1% agarose gel, and these were respectively purified using a DNA fragment purification kit (Intron lifetechnology). The purified PCR product was mixed and used as a template, except that the primers dr6162-1 (SEQ ID NO: 19) and dr6162-6 (SEQ ID NO: 24) described in Table 6 were used and reacted for 4 minutes at 72°C in the PCR process. Then, PCR was performed under the same conditions and methods as in Example 1. As a result, a PCR product of 2450 bp was obtained in which a sequence encoding a kanamycin resistance-related protein containing crtB and crtI nucleotide sequences and lox nucleotide sequences at both ends was linked.
<5-4> crtBcrtI 유전자가 결실된 변이 균주의 제조<5-4> Preparation of a mutant strain in which the crtB and crtI genes are deleted
먼저, 상기 실시예 4에서 제조한 기본 변이 균주(DrCre)를 TGY 배지(0.5%(w/v)의 트립톤, 0.1%(w/v)의 글루코오스 및 0.3%(w/v)의 효모 추출물)를 이용하여 30℃의 온도에서 OD(optical density) 600nm의 값이 0.3에 도달할 때까지 배양하였다. 배양한 세포를 4000rpm, 4℃ 조건에서 15분간 원심분리하여 30 mM의 칼슘클로라이드(CaCl2)가 포함된 2x TGY 배지에 현탁한 뒤, 현탁액을 얼음에서 1시간 동안 정치시켰다. 이를 다시 4000rpm, 4℃ 조건에서 15분간 원심분리하여 상등액을 제거하고 30 mM의 CaCl2 및 10%(v/v) 글리세롤이 포함된 50 ㎕의 TGY 배지를 첨가하여 재현탁한 뒤, 멸균된 15 ㎖ 튜브에 50 ㎕ 씩 분주하여 준비하였다. First, the basic mutant strain (DrCre) prepared in Example 4 was TGY medium (0.5% (w/v) tryptone, 0.1% (w/v) glucose, and 0.3% (w/v) yeast extract. ) Was incubated at a temperature of 30° C. until a value of 600 nm of OD (optical density) reached 0.3. The cultured cells were centrifuged for 15 minutes at 4000 rpm and 4° C., and suspended in 2x TGY medium containing 30 mM calcium chloride (CaCl2), and the suspension was allowed to stand on ice for 1 hour. This was again centrifuged at 4000 rpm for 15 minutes at 4°C to remove the supernatant and resuspended by adding 50 µl of TGY medium containing 30 mM CaCl2 and 10% (v/v) glycerol, and then resuspended in a sterile 15 ml tube. Prepared by dispensing 50 µl into each.
한편, 실시예 5-3에서 수득한 PCR 산물은 1% 아가로오스 겔에서 전기영동하고, 이를 이를 DNA fragment purification kit(Intron lifetechnology)를 이용하여 정제하였다. Meanwhile, the PCR product obtained in Example 5-3 was electrophoresed on a 1% agarose gel, and this was purified using a DNA fragment purification kit (Intron lifetechnology).
준비된 상기 실시예 4에서 제조한 기본 변이 균주(DrCre) 50 ㎕에 상기 실시예 5-3에서 제조한 DNA 10 ㎕와 30 mM 칼슘클로라이드 (CaCl 2)가 포함된 2 X TGY 용액을 첨가하고 얼음에서 30분 동안 정치시킨뒤, 32℃에서 1.5시간 반응시켰다. 그 후, 2 X TGY 용액 900 ㎕를 첨가하여 30℃에서 16시간 배양한 뒤, 25 ㎍/ml의 카나마이신 항생제가 포함된 2 X TGY agar 배지(1%(w/v)의 트립톤, 0.2%(w/v)의 Glucose , 0.6%(w/v)의 효모 추출물 및 1.5%(w/v)의 Bactoagar)에 200 ㎕ 도말하여 30℃ 배양기에서 3 내지 4일 동안 정치배양하였다. 최종적으로 25 ㎍/ml의 카나마이신 항생제가 포함된 2 X TGY agar 배지에서 집락 (colony)을 형성한 crtBcrtI 유전자가 결실되고 lox 염기 서열을 양 말단에 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열이 포함된 균주를 수득하였다(도 7a).To 50 µl of the prepared basic mutant strain (DrCre) prepared in Example 4, 10 µl of the DNA prepared in Example 5-3 and 2 X TGY solution containing 30 mM calcium chloride (CaCl 2 ) were added, and then in ice. After allowing it to stand for 30 minutes, it was reacted at 32°C for 1.5 hours. Then, 900 µl of 2 X TGY solution was added and incubated for 16 hours at 30° C., and then 2 X TGY agar medium (1% (w/v) tryptone, 0.2%) containing 25 µg/ml kanamycin antibiotic (w/v) Glucose, 0.6% (w/v) yeast extract and 1.5% (w/v) Bactoagar) were plated 200 µl and cultured in a 30° C. incubator for 3 to 4 days. Finally, in 2 X TGY agar medium containing 25 μg/ml of kanamycin antibiotic, the crtB and crtI genes that formed colonies were deleted, and the sequence encoding the kanamycin resistance-related protein containing the lox nucleotide sequence at both ends was The included strain was obtained (Fig. 7a).
그 결과, 도 7b에 나타난 바와 같이 crtBcrtI 유전자가 결실, 카로티노이드가 합성되지 않아 주황색을 띄지 않는 변이 균주를 수득하였고, 이를 △crtBI_Km으로 명명하였다(도 7b). As a result, as shown in Fig. 7b, a mutant strain in which the crtB and crtI genes were deleted and carotenoids were not synthesized and thus did not appear orange was obtained, and this was designated as ΔcrtBI_Km (Fig. 7b).
<5-5> crtB, crtI 및 카나마이신 저항성 관련 단백질을 암호화하는 서열이 모두 제거된 데이노코쿠스 라디오두란스 변이 균주의 제조<5-5> Preparation of a Deinococcus radiodurans mutant strain from which all sequences encoding crtB , crtI and kanamycin resistance-related proteins have been removed
상기 실시예 5-4에서 수득한 △crtBI_Km 균주에 포함된 카나마이신 저항성 관련 단백질을 암호화하는 서열의 제거는 상기 실시예 4에서 제조한 DrCre 변이 균주에 도입된 Cre 단백질을 암호화하는 서열이 발현되어 Cre 재조합 효소가 생산됨과 동시에 제거된다. Removal of the sequence encoding the kanamycin resistance-related protein contained in the ΔcrtBI_Km strain obtained in Example 5-4 was performed by expressing the sequence encoding the Cre protein introduced in the DrCre mutant strain prepared in Example 4, thereby recombining Cre As the enzyme is produced, it is removed at the same time.
구체적으로, 상기 실시예 5-2에서 제조한 △crtBI_Km 균주를 TY (트립톤 0.5%, 효모추출물 0.3%) 액체배지에서 16 시간 이상 배양하고, 1 mM의 IPTG가 첨가된 새로운 3 mL TY 액체배지에 30 ㎕의 △crtBI_Km 균주의 배양액을 첨가하여 37℃에서 16시간 이상 추가 배양하였다. 배양액을 멸균수에 1:10000 배율로 희석한 뒤, 1 mM IPTG가 포함된 TY 고체배지에 50 ㎕의 희석액을 균일하게 도말하고 37℃ 배양기에 3일간 정치 배양하였다. TY 고체배지에 형성된 각각의 단일 집락 (single colony)들을 멸균 팁(tip)을 이용하여 25 ㎍/㎖의 카나마이신이 포함된 TY 고체배지 및 카나마이신이 포함되지 않은 TY 고체배지에 동시에 접종한 후 37℃에서 1일간 배양하였다. 그 후, 도 7a와 같이 카나마이신이 포함되지 않은 배지에서만 생장하는 단일 콜로니를 최종적으로 선별하고, crtB, crtI 및 카나마이신 저항성 관련 단백질을 암호화하는 서열이 모두 제거된 데이노코쿠스 라디오두란스 변이 균주를 △crtBI 으로 명명하였다(도 7b). 상기 결과를 통해 실시예 4에서 제조한 유전체 개량을 위한 기본 변이 균주(DrCre)를 이용하여 항생제 저항성 관련 단백질을 암호화하는 서열과 목적 유전자가 모두 제거된 변이 균주를 수득할 수 있음을 확인하였다.Specifically, the ΔcrtBI_Km strain prepared in Example 5-2 was incubated for 16 hours or longer in a TY (trypton 0.5%, yeast extract 0.3%) liquid medium, and a new 3 mL TY liquid medium to which 1 mM IPTG was added. 30 µl of the culture solution of the ΔcrtBI_Km strain was added to the mixture, followed by further culturing at 37°C for 16 hours or longer. After diluting the culture solution in sterilized water at a ratio of 1:10000, 50 µl of the diluted solution was uniformly spread on TY solid medium containing 1 mM IPTG, followed by stationary culture in a 37°C incubator for 3 days. Each single colony formed on the TY solid medium was simultaneously inoculated into the TY solid medium containing 25 μg/ml of kanamycin and the TY solid medium not containing kanamycin using a sterile tip, and then at 37°C. Incubated for 1 day. Thereafter, as shown in Figure 7a, a single colony growing only in a medium containing no kanamycin was finally selected, and the sequence encoding crtB , crtI, and kanamycin resistance-related proteins were all removed, and the Deinococcus radiodurans mutant strain △ Named as crtBI (Fig. 7b). Through the above results, it was confirmed that using the basic mutant strain (DrCre) for genome improvement prepared in Example 4, a mutant strain in which both the sequence encoding the antibiotic resistance-related protein and the target gene were removed can be obtained.
<실시예 6> Cre 재조합 효소를 발현하는 메틸로모나스 속<Example 6> Genus Methylomonas expressing Cre recombinant enzyme (Methylomonas sp.)(Methylomonas sp.) DH-1 변이 균주의 제조 Preparation of DH-1 mutant strain
그람 양성균(gram-positive)인 데이노코쿠스 라디오두란스 균주 뿐 아니라 그람 음성균(gram-negative)인 메틸로모나스 속 균주를 이용하여 Cre 재조합 효소(Cre recombinase)를 발현하는 변이 균주(DH-1:Cre)를 하기의 방법으로 제조하였다.A mutant strain expressing Cre recombinase (DH-1) using a gram-positive strain of Deinococcus radiodurans as well as a gram-negative strain of methylomonas genus (DH-1: Cre) was prepared by the following method.
<6-1> 메틸로모나스 속 DH-1 균주의 유전자를 포함하는 플라스미드(pAM6)의 제작<6-1> Construction of a plasmid (pAM6) containing the gene of the DH-1 strain of the genus Methylomonas
<6-1-1> AYM39_00230 유전자 및 AYM39_00235 유전자를 포함하는 플라스미드의 제작<6-1-1> Construction of a plasmid containing AYM39_00230 gene and AYM39_00235 gene
메틸로모나스 속 DH-1의 DNA를 주형으로 하여, AYM39_00230 유전자와 유전자간부위의 일부 서열을 포함하는 820bp의 염기 서열(서열번호 38)은 하기 표 7의 DH1 intRG-1(서열번호 30) 및 DH1 intRG-2(서열번호 31)의 프라이머, 유전자간부위의 일부 서열과 AYM39_00235 유전자를 포함하는 810bp의 염기 서열(서열번호 39)은 하기 표 7의 DH1 intRG-3(서열번호 32) 및 DH1 intRG-4(서열번호 33)의 프라이머를 사용한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 PCR을 수행하였다. Using the DNA of DH-1 of the genus Methylomonas as a template, the 820bp nucleotide sequence (SEQ ID NO: 38) including the AYM39_00230 gene and some sequences of the intergenic region is shown in Table 7 below: DH1 intRG-1 (SEQ ID NO: 30) and The primer of DH1 intRG-2 (SEQ ID NO: 31), a 810bp nucleotide sequence (SEQ ID NO: 39) including a partial sequence of the intergenic region and the AYM39_00235 gene is shown in Table 7 below: DH1 intRG-3 (SEQ ID NO: 32) and DH1 intRG PCR was performed in the same conditions and methods as in Example 1, except that a primer of -4 (SEQ ID NO: 33) was used.
그 결과, AYM39_00230 유전자와 유전자간부위의 일부 서열을 포함하는 820bp의 염기 서열 및 유전자간부위의 일부 서열과 AYM39_00235 유전자를 포함하는 810bp의 염기 서열의 PCR 산물을 수득하였다. As a result, a PCR product of a 820 bp nucleotide sequence including the AYM39_00230 gene and a partial sequence of the intergenic region and a 810 bp nucleotide sequence including the AYM39_00235 gene was obtained.
서열번호Sequence number 이름name 서열(5'-3')Sequence (5'-3')
서열번호30SEQ ID NO: 30 DH1 intRG-1DH1 intRG-1 ctagggtacctgagttcgtattctgagccgctagggtacctgagttcgtattctgagccg
서열번호31SEQ ID NO: 31 DH1 intRG-2DH1 intRG-2 cgttatgatgcagcgcttcaaggcctagtgacgcaagttcggctatcgttatgatgcagcgcttcaaggcctagtgacgcaagttcggctat
서열번호32SEQ ID NO: 32 DH1 intRG-3DH1 intRG-3 atagccgaacttgcgtcactaggccttgaagcgctgcatcataacgatagccgaacttgcgtcactaggccttgaagcgctgcatcataacg
서열번호33SEQ ID NO: 33 DH1 intRG-4DH1 intRG-4 ctagggtaccacgaacacgcctgtgatactctagggtaccacgaacacgcctgtgatact
수득한 두 PCR산물을 주형으로 하여, 상기 표 7의 DH1 intRG-1 프라이머(서열번호 30)와 DH1 intRG-4 프라이머(서열번호 33)를 사용하는 것을 제외하고 상기 실시예 1과 동일한 조건 및 방법으로 PCR을 수행하여 두 PCR산물을 연결하여 최종적으로 1,656 bp의 염기 서열을 가진 PCR 산물을 수득하였다. 1,656 bp의 염기서열을 가진 PCR 산물은 제한효소 KpnI으로 절단하여 동일한 제한 효소로 절단된 pUC19 플라스미드(서열번호 34)에 결찰시켜, AYM39_00230 유전자 일부 서열 및 AYM39_00235 유전자의 일부 서열을 포함하는 플라스미드(서열번호 40)를 제작하였다.Using the obtained two PCR products as a template, the same conditions and methods as in Example 1, except that the DH1 intRG-1 primer (SEQ ID NO: 30) and DH1 intRG-4 primer (SEQ ID NO: 33) of Table 7 were used. PCR was performed to link the two PCR products to finally obtain a PCR product having a nucleotide sequence of 1,656 bp. The PCR product having a nucleotide sequence of 1,656 bp was digested with restriction enzyme Kpn I and ligated to pUC19 plasmid digested with the same restriction enzyme (SEQ ID NO: 34), and a plasmid containing a partial sequence of the AYM39_00230 gene and a partial sequence of the AYM39_00235 gene (sequence No. 40) was produced.
<6-1-2> 표적 유전자간부위(intergenic region)의 상부 단편 서열, trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열, lacⅠq 단백질을 암호화하는 서열 및 표적 유전자간부위(intergenic region)의 하부 단편 서열을 포함하는 플라스미드(pAM6)의 제작<6-1-2> The sequence encoding the upper fragment sequence of the target intergenic region, the trc promoter, and the Cre protein regulated by it, the antibiotic resistance-related protein including the lox nucleotide sequence at both ends Construction of a plasmid (pAM6) containing the sequence, the sequence encoding the lacIq protein, and the lower fragment sequence of the target intergenic region
AYM39_00230 유전자 일부 서열 및 AYM39_00235 유전자의 일부 서열 사이에 Cre 단백질을 암호화하는 서열, 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacIq 단백질을 암호화하는 서열을 삽입하기 위하여 pAM5 플라스미드를 주형으로 하기 표 8의 trcCreF2(서열번호 35) 및 lacIqR2(서열번호 36) 프라이머를 이용하여 상기 실시예 1의 방법과 동일한 방법으로 PCR을 수행하여 4,118 bp의 PCR 산물을 수득하였다. 수득한 4118 bp의 PCR 산물과 상기 실시예 6-1-1에서 제작한 AYM39_00230 유전자 일부 서열 및 AYM39_00235 유전자의 일부 서열을 포함하는 플라스미드를 각각 StuI 제한효소로 처리하고 결찰시켜 pAM6 플라스미드 (서열번호 37)를 제작하였다(도 9).In order to insert the sequence encoding the Cre protein, the sequence encoding the kanamycin resistance-related protein, and the sequence encoding the lacIq protein between the partial sequence of the AYM39_00230 gene and the partial sequence of the AYM39_00235 gene, trcCreF2 (sequence) in Table 8 below as a template No. 35) and lacIqR2 (SEQ ID No. 36) primers were used to perform PCR in the same manner as in Example 1 to obtain a PCR product of 4,118 bp. The resulting PCR product of 4118 bp and a plasmid containing a partial sequence of the AYM39_00230 gene and a partial sequence of the AYM39_00235 gene prepared in Example 6-1-1 were treated with Stu I restriction enzyme and ligated to pAM6 plasmid (SEQ ID NO: 37 ) Was produced (FIG. 9).
서열번호Sequence number 이름name 서열(5'-3')Sequence (5'-3')
서열번호35SEQ ID NO:35 trcCreF2trcCreF2 ctagaggcctgccgacatcataacggttctctagaggcctgccgacatcataacggttct
서열번호36SEQ ID NO: 36 lacIqR2lacIqR2 taacaggccttcactgcccgctttccagtctaacaggccttcactgcccgctttccagtc
<6-2> trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열이 삽입된 메틸로모나스 속 DH-1 변이 균주(DH-1:Km)의 제조<6-2> DH-1 mutation in the genus Methylomonas into which the trc promoter, the sequence encoding the Cre protein, the sequence encoding the kanamycin resistance-related protein including the lox nucleotide sequence at both ends, and the sequence encoding the lacΙq protein are inserted Preparation of strain (DH-1:Km)
먼저, 메틸로모나스 속 DH-1(Hur et al., J Chem Technol Biotechnol 2017; 92: 311-318, 등록특허 1017149670000) 균주를 하기 표 9의 조성으로 구성된 NMS 배지(Nitrate mineral salts)가 포함된 플라스크에 접종한 뒤 플라스크를 스크루 뚜껑을 이용하여 밀폐하였다. 진공펌프를 이용하여 플라스크 내부에 메탄가스를 30% 농도가 되도록 채워 넣고 30℃에서 OD(optical density) 600nm의 값이 0.5에 도달할 때까지 배양하였다. 배양한 세포를 4,000 rpm, 4℃ 조건에서 15분간 원심분리한 뒤 멸균된 3차 증류수에 현탁하였다. 현탁액을 다시 동일한 조건에서 원심분리하여 상등액을 제거하고 멸균된 3차 증류수에 재현탁 한 뒤 멸균된 1.5 ml 튜브에 200 ㎕씩 분주하였다.First, methylomonas DH-1 (Hur et al., J Chem Technol Biotechnol 2017; 92: 311-318, registered patent 1017149670000) containing the NMS medium (Nitrate mineral salts) composed of the composition of Table 9 below. After inoculation into the flask, the flask was sealed with a screw cap. The flask was filled with methane gas to a concentration of 30% using a vacuum pump, and incubated at 30° C. until a value of 600 nm OD (optical density) reached 0.5. The cultured cells were centrifuged at 4,000 rpm and 4° C. for 15 minutes and then suspended in sterilized tertiary distilled water. The suspension was centrifuged again under the same conditions to remove the supernatant, resuspended in sterilized tertiary distilled water, and dispensed 200 µl into a sterilized 1.5 ml tube.
준비된 메틸로모나스 속 DH-1 균주 200 ㎕에 상기 실시예 6-1-2에서 제조한 pAM6 플라스미드 DNA 1.0 ㎍을 첨가한 뒤 0.2 cm gap 크기를 가진 Electroporation cuvette (Gene Pulser®™, MicroPulser™, Bio-Rad, 미국)에 옮겼다. Micropulser electroporator (Bio-Rad, 미국)를 이용하여 2.5 kV 조건에서 electroporation하여 DNA를 도입하고 10ml NMS 배지가 들어있는 멸균된 세럼병에 옮겨 밀폐하였다. 세럼병 내부에 메탄가스를 30% 농도가 되도록 채워 넣고 30℃에서 24시간 동안 진탕 배양하였다. 배양한 세포를 4,000 rpm, 4℃ 조건에서 15분간 원심분리하여 상등액을 제거하고 200 ㎕ NMS 배지에 재현탁한 뒤 2.5 mg/L의 카나마이신 항생제가 포함된 NMS agar 배지에 도말하였다. NMS agar배지를 혐기성 세균을 배양할 때 사용하는 Anaerobic jar (Oxoid, 영국)에 넣고 밀폐하였고, 진공펌프를 이용하여 anaerobic jar 내부 기체의 30%를 제거한 뒤 동일한 양의 멸균된 메탄가스를 채워 넣었다. 30℃ 배양기에서 6일 내지 7일 동안 정치 배양한 후 2.5 mg/L의 카나마이신이 포함된 NMS agar 배지에서 집락 (colony)을 형성한 trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열이 삽입된 변이 균주를 진단 PCR 및 염기 서열 분석으로 확인하였다. 최종 선별된 균주를 DH-1:Km으로 명명하였다(도 8a 및 도 8b). After adding 1.0 μg of pAM6 plasmid DNA prepared in Example 6-1-2 to 200 μl of the prepared DH-1 strain of the genus Methylomonas, Electroporation cuvette (Gene Pulser®™, MicroPulser™, Bio -Rad, USA). DNA was introduced by electroporation at 2.5 kV using a Micropulser electroporator (Bio-Rad, USA), and then transferred to a sterilized serum bottle containing 10 ml NMS medium and sealed. The serum bottle was filled with methane gas to a concentration of 30% and incubated with shaking at 30° C. for 24 hours. The cultured cells were centrifuged at 4,000 rpm and 4°C for 15 minutes to remove the supernatant, resuspended in 200 µl NMS medium, and plated on NMS agar medium containing 2.5 mg/L of kanamycin antibiotic. The NMS agar medium was put in an anaerobic jar (Oxoid, UK) used for culturing anaerobic bacteria and sealed, and 30% of the gas inside the anaerobic jar was removed using a vacuum pump, and then the same amount of sterilized methane gas was filled. The trc promoter that formed a colony in NMS agar medium containing 2.5 mg/L of kanamycin after stationary culture in an incubator at 30° C. for 6 to 7 days, a sequence encoding a Cre protein, and a lox nucleotide sequence at both ends The mutant strain into which the sequence encoding the kanamycin resistance-related protein and the sequence encoding the lacΙq protein was inserted was confirmed by diagnostic PCR and nucleotide sequence analysis. The final selected strain was named DH-1:Km (FIGS. 8A and 8B ).
<NMS 배지 조성><NMS medium composition>
성분 (입수처)Ingredients (from) 최종 농도Final concentration
MgSO 4*7H 2O (DAEJUNG, 대한민국)MgSO 4 *7H 2 O (DAEJUNG, Korea) 1 g/ℓ1 g/ℓ
KNO 3 (JUNSEI, 일본)KNO 3 (JUNSEI, Japan) 1 g/ℓ1 g/ℓ
CaCl 2*H 2O (JUNSEI, 일본)CaCl 2 *H 2 O (JUNSEI, Japan) 0.2 g/ℓ0.2 g/ℓ
3.8% (w/v) solution Fe-EDTA (DUKSAN, 대한민국)3.8% (w/v) solution Fe-EDTA (DUKSAN, Korea) 0.1 ㎖/ℓ0.1 ml/ℓ
0.1% (w/v) NaMo*4H 2O (DUKSAN, 대한민국)0.1% (w/v) NaMo*4H 2 O (DUKSAN, Korea) 0.5 ㎖/ℓ0.5 ml/ℓ
Trace element solution (표 10)Trace element solution (Table 10) 1.0 ㎖/ℓ1.0 ml/ℓ
Phosphate stock solution (표 11)Phosphate stock solution (Table 11) 10 ㎖/ℓ10 ml/ℓ
Vitamin stock solution (표 12)Vitamin stock solution (Table 12) 10 ㎖/ℓ10 ml/ℓ
CuCl 2*2H 2O (DAEJUNG, 대한민국)CuCl 2 *2H 2 O (DAEJUNG, Korea) 1.4 mg/ℓ1.4 mg/ℓ
Bacto agar (필요시) (BD, 미국)Bacto agar (if needed) (BD, USA) 15 g/ℓ15 g/ℓ
<Trace element solution 조성><Trace element solution composition>
성분 (입수처)Ingredients (from) 최종 농도Final concentration
FeSO 4*7H 2O (JUNSEI, 일본)FeSO 4 *7H 2 O (JUNSEI, Japan) 500 mg/ℓ500 mg/ℓ
ZnSO 4*7H 2O (JUNSEI, 일본)ZnSO 4 *7H 2 O (JUNSEI, Japan) 400 mg/ℓ400 mg/ℓ
MnCl 2*7H 2O (SIGMA, 미국)MnCl 2 *7H 2 O (SIGMA, USA) 20 mg/ℓ20 mg/ℓ
CoCl 2*6H 2O (DAEJUNG, 대한민국)CoCl 2 *6H 2 O (DAEJUNG, Korea) 50 mg/ℓ50 mg/ℓ
NiCl 2*6H 2O (SAMCHUN, 대한민국)NiCl 2 *6H 2 O (SAMCHUN, Korea) 10 mg/ℓ10 mg/ℓ
H 3BO 3 (boric acid) (KANTO, 일본)H 3 BO 3 (boric acid) (KANTO, Japan) 15 mg/ℓ15 mg/ℓ
EDTA (SAMCHUN, 대한민국)EDTA (SAMCHUN, Korea) 250 mg/ℓ250 mg/ℓ
<phosphate stock solution 조성><phosphate stock solution composition>
성분 (입수처)Ingredients (from) 최종 농도Final concentration
KH 2PO 4 (JUNSEI, 일본)KH 2 PO 4 (JUNSEI, Japan) 26 g/ℓ26 g/ℓ
Na 2HPO 4*7(H 2O) (JUNSEI, 일본)Na 2 HPO 4 *7(H 2 O) (JUNSEI, Japan) 62 g/ℓ62 g/ℓ
<vitamin stock solution 조성><Vitamin stock solution composition>
성분 (입수처)Ingredients (from) 최종 농도Final concentration
Biotin (ACROS, 미국)Biotin (ACROS, USA) 2.0 mg/ℓ2.0 mg/ℓ
Folic acid (SIGMA, 미국)Folic acid (SIGMA, USA) 2.0 mg/ℓ2.0 mg/ℓ
Thiamine HCl (DAEJUNG, 대한민국)Thiamine HCl (DAEJUNG, Korea) 5.0 mg/ℓ5.0 mg/ℓ
Ca pantothenate (KANTO, 일본)Ca pantothenate (KANTO, Japan) 5.0 mg/ℓ5.0 mg/ℓ
Vitamin B12 (SAMCHUN, 대한민국)Vitamin B12 (SAMCHUN, Korea) 0.1 mg/ℓ0.1 mg/ℓ
Riboflavin (JUNSEI, 일본)Riboflavin (JUNSEI, Japan) 5.0 mg/ℓ5.0 mg/ℓ
Nicotiamide (SIGMA, 미국)Nicotiamide (SIGMA, USA) 5.0 mg/ℓ5.0 mg/ℓ
<6-3> trc 프로모터, Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 카나마이신 저항성 관련 단백질을 암호화하는 서열 및 lacΙq 단백질을 암호화하는 서열이 삽입된 메틸로모나스 속 DH-1 변이 균주로부터 카나마이신 저항성 관련 단백질을 암호화하는 서열의 제거<6-3> DH-1 mutation of the genus Methylomonas into which the trc promoter, the sequence encoding the Cre protein, the sequence encoding the kanamycin resistance-related protein including the lox nucleotide sequence at both ends, and the sequence encoding the lacΙq protein are inserted Removal of the sequence encoding the kanamycin resistance-related protein from the strain
상기 실시예 6-2에서 제조된 DH-1:Km 균주로부터 카나마이신 저항성 관련 단백질을 암호화하는 서열을 제거하기 위하여 하기의 방법을 수행하였다.The following method was performed in order to remove the sequence encoding the kanamycin resistance related protein from the DH-1:Km strain prepared in Example 6-2.
구체적으로, 스크루 뚜껑으로 밀폐된 플라스크에 카나마이신을 첨가하지 않은 50 mL의 NMS 배지를 넣고 1 mM isoprophyl-β-D-1-thiogalactopyranoside (IPTG)를 첨가한 뒤 상기 실시예 6-2에서 제조한 DH-1:Km 균주 500㎕를 접종하여 30 ℃에서 24 시간 동안 진탕 배양하였다. 이 때, 플라스크 내부 기체의 30%는 멸균된 메탄가스로 치환하였다. 배양한 세포를 1/10000로 희석하여 1 mM IPTG가 포함된 NMS agar 배지에 도말한 뒤 콜로니가 형성될 때까지 30% 메탄 가스를 포함하는 anaerobic jar를 이용하여 30℃에서 정치 배양 하였다. NMS agar 배지에 형성된 각각의 단일 집락(colony)을 멸균된 팁(tip)을 이용하여 카나마이신이 포함된 NMS agar 배지 및 카나마이신이 포함되지 않은 NMS agar 배지에 동시에 접종하였다. 그 후 카나마이신이 포함된 배지에서는 생장할 수 없고 카나마이신이 포함되지 않는 NMS agar 배지에서만 생장할 수 있는 균주를 최종 선별하였다(도 8b). Specifically, 50 mL of NMS medium without kanamycin was added to a flask sealed with a screw lid, 1 mM isoprophyl-β-D-1-thiogalactopyranoside (IPTG) was added, and then the DH prepared in Example 6-2. 500 µl of -1:Km strain was inoculated and cultured with shaking at 30° C. for 24 hours. At this time, 30% of the gas inside the flask was replaced with sterilized methane gas. The cultured cells were diluted to 1/10000, plated on NMS agar medium containing 1 mM IPTG, and cultured at 30° C. using anaerobic jar containing 30% methane gas until colonies were formed. Each single colony formed on the NMS agar medium was simultaneously inoculated into the NMS agar medium containing kanamycin and the NMS agar medium not containing kanamycin using a sterilized tip. Thereafter, strains that could not be grown in a medium containing kanamycin and only grown in an NMS agar medium not containing kanamycin were finally selected (FIG. 8B).
최종선별 된 균주는 진단 PCR과 염기서열 분석 그리고 plate assay를 통해 메틸로모나스 속 DH-1 변이 균주로부터 카나마이신 저항성 관련 단백질을 암호화하는 서열이 제거된 것을 확인하였고, 상기 균주는 메틸로모나스 속 DH-1 유전체 개량을 위한 기본 변이 균주(DH-1:Cre)로 명명하였다(도 8a 및 도 8b).The final selected strain was confirmed that the sequence encoding the kanamycin resistance-related protein was removed from the DH-1 mutant strain of the genus Methylomonas through diagnostic PCR, sequencing analysis, and plate assay, and the strain was DH- 1 It was named as a basic mutant strain (DH-1:Cre) for genome improvement (FIGS. 8A and 8B ).
따라서, 메틸로모나스 속 DH-1 균주에 유전체 개량을 위한 기본 변이 균주의 제조 방법을 적용할 수 있음을 확인하였다.Therefore, it was confirmed that the method of preparing a basic mutant strain for genome improvement can be applied to the DH-1 strain of the genus Methylomonas.

Claims (12)

  1. 표적 유전자간부위(intergenic region)의 상부 단편 서열, trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열, lacⅠq 단백질을 암호화하는 서열 및 표적 유전자간부위(intergenic region)의 하부 단편 서열이 순차적으로 연결된 폴리뉴클레오티드.The sequence encoding the upper fragment sequence of the target intergenic region, the trc promoter and the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, the sequence encoding the lacIq protein A polynucleotide in which the sequence and the sequence of the lower fragment of the target intergenic region are sequentially linked.
  2. 제 1항의 폴리뉴클레오티드를 포함하는 벡터(vector).A vector comprising the polynucleotide of claim 1.
  3. 제 1항에 있어서, 상기 trc 프로모터는 서열번호 2의 염기 서열로 구성된 폴리뉴클레오티드.The polynucleotide of claim 1, wherein the trc promoter is composed of the nucleotide sequence of SEQ ID NO: 2.
  4. 제 1항에 있어서, 상기 Cre 단백질을 암호화하는 서열은 서열번호 25의 염기 서열로 구성된 폴리뉴클레오티드.The polynucleotide of claim 1, wherein the sequence encoding the Cre protein is composed of the nucleotide sequence of SEQ ID NO: 25.
  5. 제 1항에 있어서, 상기 lox 염기 서열은 서열번호 26의 염기 서열로 구성되는 lox66 또는 서열번호 27의 염기 서열로 구성되는 lox71인 것인 폴리뉴클레오티드.The polynucleotide according to claim 1, wherein the lox base sequence is lox66 consisting of the nucleotide sequence of SEQ ID NO: 26 or lox71 consisting of the nucleotide sequence of SEQ ID NO: 27.
  6. 제 1항에 있어서, lacⅠq 단백질을 암호화하는 서열은 서열번호 3의 염기 서열로 구성된 폴리뉴클레오티드.The polynucleotide of claim 1, wherein the sequence encoding the lacIq protein is composed of the nucleotide sequence of SEQ ID NO: 3.
  7. 1) 제 1항의 폴리뉴클레오티드를 균주 내에 도입하는 단계; 및1) introducing the polynucleotide of claim 1 into a strain; And
    2) 상기 균주의 표적 유전자간부위(intergenic region)에 trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입되는 단계;를 포함하는 변이 균주의 제조방법.2) In the target intergenic region of the strain, the trc promoter and the sequence encoding the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, and the lacIq protein The method for producing a mutant strain comprising; the step of inserting the sequence.
  8. 1) 제 1항의 폴리뉴클레오티드를 균주 내에 도입하는 단계; 1) introducing the polynucleotide of claim 1 into a strain;
    2) 상기 균주의 표적 유전자간부위(intergenic region)에 trc 프로모터 및 이에 의해 조절되는 Cre 단백질을 암호화하는 서열, 양 말단에 lox 염기 서열을 포함하는 항생제 저항성 관련 단백질을 암호화하는 서열 및 lacⅠq 단백질을 암호화하는 서열이 삽입되는 단계; 및2) In the target intergenic region of the strain, the trc promoter and the sequence encoding the Cre protein regulated thereby, the sequence encoding the antibiotic resistance-related protein including the lox nucleotide sequence at both ends, and the lacIq protein The step of inserting the sequence; And
    3) IPTG(Isopropyl β-D-1-thiogalactopyranoside)가 첨가된 배지에 배양하여 항생제 저항성 관련 단백질을 암호화하는 서열을 제거하는 단계를 더 포함하는 변이 균주의 제조방법.3) A method of producing a mutant strain further comprising the step of removing a sequence encoding an antibiotic resistance-related protein by culturing it in a medium to which isopropyl β-D-1-thiogalactopyranoside (IPTG) is added.
  9. 제 8항의 제조방법으로 제조된 변이 균주.A mutant strain prepared by the manufacturing method of claim 8.
  10. 제 9항의 변이 균주에 항생제 내성 관련 단백질을 암호화하는 서열을 함유한 lox 핵산단편의 양 말단에 각각 표적 서열의 상부 단편 서열과 하부 단편 서열이 결합된 폴리뉴클레오티드를 도입하여 변이 균주의 목적유전자를 변형하는 방법.The target gene of the mutant strain is modified by introducing polynucleotides in which the upper and lower fragment sequences of the target sequence are combined at both ends of the lox nucleic acid fragment containing the sequence encoding the antibiotic resistance-related protein to the mutant strain of claim 9 How to.
  11. 제 10항에 있어서, 상기 목적유전자가 변형된 변이 균주를 IPTG(Isopropyl β-D-1-thiogalactopyranoside)가 첨가된 배지에 배양하여 항생제 저항성 관련 단백질을 암호화하는 서열이 제거된, 변이 균주의 목적유전자를 변형하는 방법.The target gene of the mutant strain according to claim 10, wherein a sequence encoding an antibiotic resistance-related protein is removed by culturing the mutant strain in which the target gene is modified in a medium to which Isopropyl β-D-1-thiogalactopyranoside (IPTG) is added. How to transform it.
  12. 제 10항에 있어서, 상기 변형은 목적유전자 서열의 치환, 결실 또는 목적 서열을 삽입하는 것인 목적유전자를 변형하는 방법.The method of claim 10, wherein the modification is a substitution, deletion or insertion of the target gene sequence.
PCT/KR2020/007332 2019-06-05 2020-06-05 Mutant strain for improving genome of microorganism, method for preparing same, and method for improving genome of microorganism by using same WO2020246845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0066895 2019-06-05
KR1020190066895A KR102194368B1 (en) 2019-06-05 2019-06-05 Mutant strain for editing genome of microorganisms, manufacturing method thereof and method for editing genome of microorganisms using the same

Publications (1)

Publication Number Publication Date
WO2020246845A1 true WO2020246845A1 (en) 2020-12-10

Family

ID=73652162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007332 WO2020246845A1 (en) 2019-06-05 2020-06-05 Mutant strain for improving genome of microorganism, method for preparing same, and method for improving genome of microorganism by using same

Country Status (2)

Country Link
KR (1) KR102194368B1 (en)
WO (1) WO2020246845A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513692A (en) * 2002-04-22 2006-04-27 ジェネンコー・インターナショナル・インク Methods for creating modified promoters that produce various levels of gene expression
US8476041B2 (en) * 2002-10-04 2013-07-02 Danisco Us Inc. Glucose transport mutants for production of biomaterial
KR101835852B1 (en) * 2016-12-27 2018-04-19 서울시립대학교 산학협력단 Method for Genetic Engineering of Deinococcus Microorganisms Using Cre-lox System
KR101927892B1 (en) * 2017-03-30 2019-02-26 서울시립대학교 산학협력단 Manufacturing method of mutant strain having increased phytoene productivity and mutant strain manufactured same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513692A (en) * 2002-04-22 2006-04-27 ジェネンコー・インターナショナル・インク Methods for creating modified promoters that produce various levels of gene expression
US8476041B2 (en) * 2002-10-04 2013-07-02 Danisco Us Inc. Glucose transport mutants for production of biomaterial
KR101835852B1 (en) * 2016-12-27 2018-04-19 서울시립대학교 산학협력단 Method for Genetic Engineering of Deinococcus Microorganisms Using Cre-lox System
KR101927892B1 (en) * 2017-03-30 2019-02-26 서울시립대학교 산학협력단 Manufacturing method of mutant strain having increased phytoene productivity and mutant strain manufactured same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, Y.: "An in vivo gene deletion system for determining temporal requirement of bacterial virulence factors", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 105, no. 27, 2008, pages 9385 - 9390, XP055268087, DOI: 10.1073/pnas.0801055105 *

Also Published As

Publication number Publication date
KR20200140442A (en) 2020-12-16
KR102194368B1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2019117671A1 (en) 5&#39;-inosine monophosphate producing microorganism and 5&#39;-inosine monophosphate producing method using same
WO2020175735A1 (en) Novel promoter and purine nucleotide production method using same
WO2019004778A2 (en) Novel aspartokinase mutant and method for production of l-amino acid using same
WO2019190193A1 (en) Microorganism having enhanced glycine productivity and method for producing fermented composition by using same
WO2013027977A2 (en) Composition for breaking down l-asparagine comprising l-asparaginase, and production method for l-asparaginase
WO2017007159A1 (en) Microorganism having l-lysine productivity and method for producing l-lysine by using same
WO2015093831A1 (en) Recombinant microorganism having increased d(-) 2,3-butanediol productivity, and method for producing d(-) 2,3-butanediol by using same
WO2023158175A1 (en) Novel transport protein variant and method for producing l-aromatic amino acid using same
WO2015163682A1 (en) Recombinant microorganism having enhanced ability to produce 2,3-butanediol, and method for producing 2,3-butanediol using same
WO2020032590A1 (en) Nucleic acid molecules comprising a variant rpoc coding sequence
WO2022239953A1 (en) Microorganism having enhanced activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase and uses thereof
WO2023287256A1 (en) Novel beta-carotene 15,15-oxygenase variant and retinoid production method using same
WO2020246845A1 (en) Mutant strain for improving genome of microorganism, method for preparing same, and method for improving genome of microorganism by using same
US6846658B1 (en) Method for cloning and producing the Msel restriction endonuclease
CZ281078B6 (en) Hk 1349.4 designated micro-organisms, hybrid plasmid and dna fragment
WO2021256703A1 (en) Method for manufacturing mutant strain having high deinoxanthin production ability and method for mass-producing deinoxanthin by using temperature control
WO2021125867A1 (en) Microorganism for producing compound and compound production method using same
WO2021125840A1 (en) Composition for editing gene or inhibiting expression thereof, comprising cpf1 and chimeric dna-rna guide
WO2018182334A1 (en) Method for preparing mutant strain having high producibility of phytoene and mutant strain prepared thereby
WO2023008664A1 (en) Biomineralization vector and transformant for transformation of chlorella vulgaris
WO2019231149A1 (en) Kit for selecting host cell transformed with target gene by using crispri system and use thereof
WO2020032595A1 (en) Nucleic acid molecules comprising a variant inc coding strand
WO2022065916A1 (en) Expression vector for use in methanotroph
WO2024147677A1 (en) Genetically engineered cas9 system to increase secondary metabolites and method for promoting secondary metabolites by using same
WO2023249422A1 (en) L-histidine export protein and method of producing l-histidine using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818255

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载