+

WO2020066190A1 - Method for fusion splicing optical fiber, optical fiber, and fusing device - Google Patents

Method for fusion splicing optical fiber, optical fiber, and fusing device Download PDF

Info

Publication number
WO2020066190A1
WO2020066190A1 PCT/JP2019/025703 JP2019025703W WO2020066190A1 WO 2020066190 A1 WO2020066190 A1 WO 2020066190A1 JP 2019025703 W JP2019025703 W JP 2019025703W WO 2020066190 A1 WO2020066190 A1 WO 2020066190A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
diameter
tip
fusion
optical
Prior art date
Application number
PCT/JP2019/025703
Other languages
French (fr)
Japanese (ja)
Inventor
大介 小西
政直 村上
茂樹 時田
日和 上原
賢治 合谷
Original Assignee
三星ダイヤモンド工業株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社, 国立大学法人大阪大学 filed Critical 三星ダイヤモンド工業株式会社
Priority to JP2020547999A priority Critical patent/JPWO2020066190A1/en
Priority to CN201980062816.8A priority patent/CN112823302A/en
Publication of WO2020066190A1 publication Critical patent/WO2020066190A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding

Definitions

  • the present invention provides a fusion method for fusing two optical fibers made of materials having different melting points at the tip thereof, and a method for fusing two optical fibers made of different materials using the method.
  • Optical fiber Optical fiber.
  • optical fibers When an optical system such as an optical circuit is configured by optical fibers, it is necessary to connect optical fibers made of different materials at the tip.
  • the connection of the optical fiber is generally performed by fusion.
  • Optical fibers have different physical properties depending on the material.
  • the melting point of quartz used in general optical fibers is higher than the melting point of a material other than quartz (for example, fluoride glass).
  • the diameter of the optical fiber having a high melting point is made smaller than the diameter of the optical fiber having a low melting point, and the optical fiber having a high melting point is heated to thereby form an optical fiber having a low melting point.
  • a method is known in which these two optical fibers are fused by pressing them together (see, for example, Patent Document 1).
  • the low-melting-point optical fiber is softened by the heat of heating the high-melting-point optical fiber, and the high-melting-point optical fiber is fused while being inserted into the low-melting-point optical fiber tip. The strength of the part has been improved.
  • the fusion strength of the optical fiber fused by the above-mentioned fusion method is about 80 kPa, which is insufficient for forming an optical system using this optical fiber. This is because with such a fusion strength, there is a high possibility that the fusion of the optical fiber is released when handling the optical fiber.
  • the optical fiber fused by the above fusion method is easily damaged by bending or the like.
  • a step portion whose diameter changes rapidly is formed at the connection portion.
  • stress is concentrated on the step portion, and the optical fiber at or near the step portion may be damaged.
  • An object of the present invention is to improve the strength of an optical fiber formed by fusion splicing two optical fibers having different melting points.
  • An optical fiber fusion method is a method of fusing a first optical fiber having a first melting point and a second optical fiber having a second melting point higher than the first melting point.
  • the fusing method includes the following steps.
  • the second optical fiber is further inserted into the first optical fiber. It is moved in a second direction opposite to the one direction. That is, the second optical fiber is moved in a direction away from the first optical fiber.
  • the tip of the first optical fiber on the side connected to the second optical fiber is elongated. Due to this stretching, the diameter of the distal end portion of the first optical fiber decreases, and the connecting portion between the first optical fiber and the second optical fiber becomes tapered.
  • the strength of the optical fiber manufactured by connecting these two optical fibers can be improved. For example, when a manufactured optical fiber is bent, stress can be less likely to be concentrated on a connection portion between two optical fibers, so that strength can be improved.
  • the above fusion method may further include a step of gradually cooling the first optical fiber and the second optical fiber after moving the second optical fiber in the second direction.
  • an insertion distance of the distal end of the second optical fiber into the first optical fiber may be a distance in a range of 20% to 40% of the second diameter.
  • the insertion depth of the tip of the second optical fiber into the first optical fiber is set to an appropriate depth, and these two optical fibers can be connected with a sufficiently high fusion strength.
  • the moving distance of the second optical fiber may be a distance in a range of 50% to 70% of the second diameter.
  • the taper angle of the tip of the first optical fiber can be set to an appropriate angle at which stress is less likely to be concentrated on the connection portion between the first optical fiber and the second optical fiber.
  • the distal end of the first optical fiber and the distal end of the second optical fiber may be disposed close to each other. Thereby, not only the tip of the first optical fiber but also the tip of the second optical fiber can be heated. As a result, when the second optical fiber comes into contact with the first optical fiber, the temperature of the first optical fiber can be prevented from lowering.
  • the first diameter may be in the range of 1.5 to 3 times the second diameter. Thereby, the first optical fiber and the second optical fiber can be connected with sufficient strength.
  • the first temperature may be a softening point of the first optical fiber.
  • the second temperature may be a crystallization temperature of the first optical fiber. Accordingly, it is possible to reliably prevent the first optical fiber from being crystallized and the transparency of the first optical fiber from being reduced. As a result, the fusion loss at the fusion portion between the first optical fiber and the second optical fiber can be reduced.
  • the first optical fiber may be a ZBLAN fiber.
  • the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, and the like.
  • the second optical fiber may be an optical fiber made of quartz.
  • the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, a fiber sensor, a transmission fiber, and the like.
  • An optical fiber according to another aspect of the present invention includes a first optical fiber and a second optical fiber.
  • the first optical fiber has a tapered portion.
  • the tapered portion is a portion whose diameter decreases from the first diameter toward the tip.
  • the second optical fiber has a second diameter smaller than the first diameter.
  • the second optical fiber is connected to the first optical fiber with the tip inserted into the tip of the tapered portion.
  • the strength of the optical fiber can be improved by forming a tapered shape at the connection portion between the first optical fiber and the second optical fiber. For example, when this optical fiber is bent, stress can be less likely to be concentrated on the connection portion between the two optical fibers.
  • the insertion depth of the tip of the second optical fiber into the tapered portion of the first optical fiber may be in the range of 4% to 16% of the second diameter.
  • the taper angle between the side surface of the tapered portion and the length direction of the first optical fiber may be in a range of 20 degrees to 50 degrees.
  • the tapered portion can be formed into an optimal shape in which stress is less likely to be concentrated on the connection portion between the first optical fiber and the second optical fiber.
  • the first diameter may be in the range of 1.5 to 3 times the second diameter. Thereby, the first optical fiber and the second optical fiber can be connected with sufficient strength.
  • the first diameter may be twice as large as the second diameter, and a taper angle between a side surface of the tapered portion and a length direction of the first optical fiber may be in a range of 22 degrees to 30 degrees.
  • the first diameter may be three times the second diameter, and a taper angle between a side surface of the tapered portion and a length direction of the first optical fiber may be in a range of 35 degrees to 50 degrees.
  • the first optical fiber may be a ZBLAN fiber.
  • the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, and the like.
  • the second optical fiber may be an optical fiber made of quartz.
  • the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, a fiber sensor, a transmission fiber, and the like.
  • a fusion device is a device for fusing a first optical fiber having a first melting point and a second optical fiber having a second melting point higher than the first melting point.
  • the fusion device includes a heating light source and a fiber moving device.
  • the heating light source heats the distal end of the first optical fiber having the first diameter to a temperature equal to or higher than a first temperature at which the first optical fiber softens and lower than a second temperature at which the first optical fiber crystallizes.
  • the fiber moving device moves a second optical fiber having a second diameter smaller than the first diameter in a first direction closer to the first optical fiber in a state where at least the distal end of the first optical fiber is heated, and moves the distal end of the second optical fiber. Is inserted into the first optical fiber, the tip of the second optical fiber is inserted into the first optical fiber, and then the second optical fiber is moved in a second direction opposite to the first direction.
  • the second optical fiber is further inserted into the first optical fiber in the first direction in which the tip of the second optical fiber is inserted.
  • the second optical fiber is moved in a direction away from the first optical fiber.
  • the strength of the optical fiber manufactured by connecting these two optical fibers can be improved. For example, when a manufactured optical fiber is bent, stress can be less likely to be concentrated on a connection portion between two optical fibers, so that strength can be improved.
  • by heating at least the distal end of the first optical fiber having a low melting point it is easy to form a tapered shape at the connection portion when the second optical fiber is moved in a direction away from the first optical fiber.
  • FIG. 2 is a diagram illustrating an optical microscope image of the optical fiber of the first embodiment.
  • FIG. 8 is a diagram showing an optical microscope image of the optical fiber of Example 2.
  • FIG. 3 is a diagram illustrating a relationship between a taper angle and a fusion loss of the optical fiber of the first embodiment.
  • FIG. 9 is a diagram illustrating a relationship between a taper angle and a fusion loss of the optical fiber of the second embodiment.
  • FIG. 5 is a view showing a transmission optical microscope image of the optical fiber manufactured in Comparative Example 1.
  • FIG. 9 is a view showing an optical microscope image of the optical fiber of Comparative Example 2.
  • FIG. 1 is a diagram showing a structure of an optical fiber manufactured by fusion. As shown in FIG. 1, the optical fiber 1 has a first optical fiber 2 and a second optical fiber 3. The first optical fiber 2 and the second optical fiber 3 are fusion-spliced at their distal ends by the fusion method of the present embodiment.
  • the first optical fiber 2 is an optical fiber made of a material having a first melting point.
  • the first optical fiber 2 is a ZBLAN fiber.
  • the first melting point is about 300 degrees, which is the softening point of the ZBLAN fiber.
  • the melting point is about 440 degrees
  • the crystallization point is about 350 degrees
  • the glass transition point is about 260 degrees.
  • This ZBLAN fiber is often used as a laser medium of a fiber laser.
  • the core of the first optical fiber 2 which is a ZBLAN fiber may be doped with an element such as erbium (Er).
  • glass fibers such as aluminum fluoride, chalcogenide glass (for example, arsenic trisulfide (As 2 S 3 ), Ge 33 As 12 Se 55, etc.), tellurite (TeO) glass, and the like are used as the first optical fiber.
  • chalcogenide glass for example, arsenic trisulfide (As 2 S 3 ), Ge 33 As 12 Se 55, etc.
  • TeO tellurite
  • the first optical fiber 2 has a circular cross section perpendicular to the length direction having a first diameter d1.
  • the first optical fiber 2 has a tapered portion 21 at a distal end which is a connection portion with the second optical fiber 3.
  • the diameter of the tapered portion 21 decreases from the first diameter d1 toward the distal end.
  • the diameter of the tip of the tapered portion 21 that is the connection portion with the second optical fiber 3 is substantially the same as the diameter of the second optical fiber 3 (second diameter d2).
  • the optimum value of the taper angle ⁇ of the tapered portion 21 varies depending on the ratio between the first diameter d1 and the second diameter d2, as described later, but is in the range of 20 to 50 degrees.
  • the taper angle ⁇ is defined as an angle between the side surface of the tapered portion 21 and the length direction of the first optical fiber 2.
  • the second optical fiber 3 is an optical fiber made of a material having a second melting point.
  • the second optical fiber 3 is an optical fiber made of quartz.
  • the second melting point is about 1700 degrees, which is the melting point of quartz.
  • the cross section of the second optical fiber 3 perpendicular to the length direction is a circle having a second diameter d2.
  • the second diameter d2 is smaller than the first diameter d1.
  • the first diameter d1 can range from 1.5 times to 3 times the second diameter d2.
  • the second optical fiber 3 is fusion-spliced to the first optical fiber 2 with its tip inserted into the tip of the tapered portion 21 of the first optical fiber 2.
  • the insertion depth of the tip of the second optical fiber 3 into the tapered portion 21 can be in the range of 4% to 16% of the second diameter d2.
  • the insertion depth can be in the range of 5 ⁇ m to 20 ⁇ m.
  • the optical fiber 1 manufactured by fusion splicing the first optical fiber 2 and the second optical fiber 3 makes it difficult for the second optical fiber 3 to be separated from the first optical fiber 2 during handling, and is bent. Hard to be destroyed when Specifically, the first optical fiber 2 and the second optical fiber 3 are sufficiently strong by inserting the distal end of the second optical fiber 3 into the distal end of the tapered portion 21 of the first optical fiber 2 by a depth within the above range. Connection can be made with fusion strength. Further, by providing the tapered portion 21 having the above-described taper angle ⁇ at the connection portion between the first optical fiber 2 and the second optical fiber 3, for example, when the optical fiber 1 is bent, stress is applied to the connection portion between the two optical fibers. It can be difficult to concentrate.
  • the optical fiber 1 in which two optical fibers made of different materials are fusion-spliced can be applied as, for example, a fiber laser, a fiber amplifier, a fiber sensor, a transmission fiber, or the like, depending on the material of the first optical fiber 2.
  • FIG. 2 is a diagram showing the overall configuration of the fusion device.
  • FIG. 3 is a diagram illustrating a configuration of the fiber moving device.
  • the fusion device 100 heats and softens the first optical fiber 2 having a low melting point by irradiating the heating laser beam HL, and presses the second optical fiber 3 against the softened first optical fiber 2 to thereby fuse the first optical fiber 2.
  • the fusion device 100 mainly includes a fiber moving device 4, a heating light source 6, and a shutter 8.
  • the fiber moving device 4 moves the first optical fiber 2 and / or the second optical fiber 3 in a first direction (FIG. 3) and a second direction (FIG. 3) opposite thereto. It is. Specifically, the fiber moving device 4 includes a first moving unit 41 and a second moving unit 43.
  • the first direction is defined as a direction parallel to the length direction of the first optical fiber 2 and approaching the first optical fiber 2.
  • the second direction is defined as a direction parallel to the length direction of the first optical fiber 2 and away from the first optical fiber 2.
  • the first moving unit 41 moves the first optical fiber 2 in the first direction or the second direction.
  • the first moving section 41 has a first moving stage 41a and a first holding section 41b.
  • the first moving stage 41a is a stage that can move in the first direction or the second direction.
  • the first moving stage 41a is, for example, an XY stage. By allowing the first moving stage 41a to move two-dimensionally, the tip of the first optical fiber 2 can be accurately positioned.
  • the movement of the first movement stage 41a can be controlled with high accuracy in units of ⁇ m by, for example, a piezo element.
  • the first holding unit 41b holds the first optical fiber 2.
  • the first holding part 41b is, for example, a clamp for an optical fiber that presses and holds the first optical fiber 2 against the bottom of the V-shaped groove with a screw or the like.
  • the first holding unit 41b is fixed on the upper part of the first moving stage 41a, and moves in the first direction or the second direction along with the movement of the first moving stage 41a.
  • the second moving unit 43 moves the second optical fiber 3 in the first direction or the second direction.
  • the second moving section 43 has a second moving stage 43a and a second holding section 43b.
  • the configurations and functions of the second moving stage 43a and the second holding unit 43b are the same as those of the first moving stage 41a and the first holding unit 41b, respectively, and thus description thereof will be omitted.
  • the heating light source 6 is a light source that outputs the heating laser light HL.
  • the heating light source 6 for example, a CO 2 laser light source that outputs infrared light can be used.
  • the heating light source 6 can precisely control the intensity of the heating laser beam HL.
  • the path of the heating laser beam HL output from the heating light source 6 is changed by the first mirror 61 and is incident on the light splitting member 62 (for example, a half mirror).
  • the heating laser beam HL incident on the light branching member 62 is branched in two directions.
  • One of the heating laser beams HL branched by the light branching member 62 has its path changed by the second mirror 63 and reaches the position where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged from one predetermined direction. I do.
  • the one heating laser beam HL is focused by the first lens 64 at a position (or a vicinity thereof) where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged.
  • the other one of the heating laser beams HL branched by the light branching member 62 is changed in path by the third mirror 65 and is positioned at the position where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged in the above-mentioned predetermined one direction. Arrives from the opposite direction.
  • the other heating laser beam HL is focused by the second lens 66 at a position (or a vicinity thereof) where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged.
  • the tip of the first optical fiber 2 and the tip of the second optical fiber 3 can be uniformly heated.
  • the irradiation diameter (diameter) of the heating laser beam HL applied to the first optical fiber 2 and the second optical fiber 3 is sufficiently larger than the diameter of the first optical fiber 2.
  • the irradiation diameter of the heating laser beam HL can be set to about several hundred ⁇ m.
  • the shutter 8 is arranged on or near the optical path of the heating laser beam HL from the heating light source 6 to the light branching member 62. In the present embodiment, as shown in FIG. 2, the shutter 8 is arranged between the heating light source 6 and the first mirror 61.
  • the heating laser beam HL by the shutter 8 is shut off, and the heating of the distal ends of the first optical fiber 2 and the second optical fiber 3 is stopped.
  • the shutter 8 deviates from the optical path of the heating laser light HL, the heating laser light HL reaches the tips of the first optical fiber 2 and the second optical fiber 3, and the tips are heated.
  • the shutter 8 controls the execution and stop of the heating of the tips of the first optical fiber 2 and the second optical fiber 3. By controlling the execution and stop of the heating by the shutter 8, it is possible to heat the fiber tip for a short time.
  • the fusion device 100 further includes a control unit (not shown).
  • the control unit is a computer system having a CPU, a storage device (RAM, ROM, etc.) and various interfaces, and controls each unit of the fusion device 100. Specifically, the control unit controls the fiber moving device 4, the heating light source 6, and the shutter 8.
  • the control unit may execute control of each unit of the fusion device 100 by a program stored in a storage device of a computer system constituting the control unit.
  • the fusion device 100 has a configuration for monitoring the fusion state and the like of the first optical fiber 2 and the second optical fiber 3.
  • the fusion device 100 includes a pair of cameras 10.
  • the camera 10 acquires the arrangement state of the first optical fiber 2 and the second optical fiber 3, the fusion step of these optical fibers, and the fusion state of the optical fibers based on visual information (for example, a moving image, a still image).
  • Each of the pair of cameras 10 acquires the state of the first optical fiber 2 and the second optical fiber 3 from each of the two directions in which the heating laser light HL is irradiated.
  • the fusion splicer 100 has a configuration for measuring the light transmittance of the optical fiber 1 manufactured by fusion splicing the first optical fiber 2 and the second optical fiber 3.
  • the fusion device 100 includes an inspection light source 12 and a light receiving device 14.
  • the inspection light source 12 outputs inspection light IL that enters from the second optical fiber 3 side of the optical fiber 1.
  • the inspection light source 12 is, for example, a laser diode.
  • the light receiving device 14 measures the intensity of the inspection light IL transmitted through the first optical fiber 2 and the second optical fiber 3.
  • the light receiving device 14 is, for example, a power meter that measures the intensity of the inspection light IL.
  • the light transmittance of the optical fiber 1 can be calculated based on the ratio between the intensity of the inspection light IL output from the inspection light source 12 and the intensity of the inspection light IL measured by the light receiving device 14. . If the light transmittance of the optical fiber 1 is low, it means that the loss due to fusion splicing of the first optical fiber 2 and the second optical fiber 3 is large, and it is determined that the connection of these two optical fibers is inappropriate. it can.
  • the case where the connection between the two optical fibers is inappropriate is, for example, a case where the tip of the first optical fiber 2 is crystallized and the transparency is reduced, so that the light transmittance of the optical fiber 1 is reduced.
  • the temperature of the first optical fiber 2 has been equal to or higher than the crystallization temperature for a long time, it can be assumed that the connection has become inappropriate.
  • the fusion of these optical fibers is released by stress when the first optical fiber 2 and the second optical fiber 3 are heated and gradually cooled, optical coupling loss occurs due to a defective shape of the fusion spliced portion of these optical fibers.
  • the transmittance of the optical fiber 1 may be reduced even when a foreign substance is mixed into the fusion surface. Even in such a case, it can be assumed that the fusion splicing has become inappropriate.
  • FIG. 4 is a diagram schematically showing a method for fusing optical fibers.
  • a method for fusing two optical fibers having different melting points will be described using a process of fusing the first optical fiber 2 and the second optical fiber 3 to manufacture the optical fiber 1 as shown in FIG.
  • the first optical fiber 2 and the second optical fiber 3 are arranged in the fusion device 100. Specifically, first, the first optical fiber 2 is held by the first holding unit 41b, and the second optical fiber 3 is held by the second holding unit 43b.
  • the first optical fiber 2 and / or the second optical fiber 3 is moved by the first moving stage 41a and / or the second moving stage 43a, and the first optical fiber 2 and the second optical fiber 3 are aligned.
  • the center line of the first optical fiber 2 coincides with the center line of the second optical fiber 3. Align.
  • first optical fiber 2 and / or the second optical fiber 3 is moved by the first moving stage 41a and / or the second moving stage 43a so that the tip of the first optical fiber 2 and the tip of the second optical fiber 3 are close to each other. Let it.
  • the heating laser light HL is output from the heating light source 6 and the shutter 8 is removed from the optical path of the heating laser light HL.
  • the tip of the first optical fiber 2 is irradiated with the heating laser beam HL.
  • the irradiation area of the heating laser beam HL is indicated by a dotted circle.
  • the heating laser light HL is applied to the distal end of the first optical fiber 2 and the distal end of the second optical fiber 3. Both are irradiated. As a result, not only the tip of the first optical fiber 2 but also the tip of the second optical fiber 3 is heated.
  • the heated first optical fiber 2 is connected to the second optical fiber 2.
  • the heating laser beam HL is applied to the tip of the first optical fiber 2 and the tip of the second optical fiber 3 for several seconds. Thereby, the tip portion of the first optical fiber 2 is heated to a temperature equal to or higher than the first temperature at which the first optical fiber 2 softens and lower than the second temperature at which the first optical fiber 2 crystallizes.
  • the first temperature is the softening point of the first optical fiber 2.
  • the second temperature is a crystallization temperature of the first optical fiber 2.
  • the first temperature is about 300 ° C. and the second temperature is about 370 ° C.
  • the distal end portion of the first optical fiber 2 By setting the distal end portion of the first optical fiber 2 in the above-mentioned temperature range, it is possible to reliably avoid the crystallization of the first optical fiber 2 and the decrease in the transparency while reliably softening the first optical fiber. As a result, it is possible to reduce the fusion loss of the fusion portion while ensuring the fusion connection between the first optical fiber 2 and the second optical fiber 3. It should be noted that the second optical fiber 3 does not soften at a temperature in the range from the first temperature to the second temperature.
  • the distal end portions of the first optical fiber 2 and the second optical fiber 3 are heated, and the distal end portion of the first optical fiber 2 is maintained in the above-mentioned temperature range, and as shown in FIG.
  • the second optical fiber 3 is moved in the first direction with respect to the first optical fiber 2, and the tip of the second optical fiber 3 is inserted into the first optical fiber 2. That is, the second optical fiber 3 is moved in a direction approaching the first optical fiber 2, and the tip of the second optical fiber 3 is inserted into the first optical fiber 2.
  • the second optical fiber 3 is moved in the first direction by the second moving unit 43, thereby connecting the second optical fiber 3 to the first optical fiber. 2 relative to the first direction.
  • the insertion distance of the tip of the second optical fiber 3 into the first optical fiber 2 is preferably in the range of 20% to 40% of the second diameter d2, and is preferably 25% to 35% of the second diameter d2.
  • a range distance is more preferable, and a distance of 32% of the second diameter d2 is most preferable.
  • the insertion distance of the tip of the second optical fiber 3 into the first optical fiber 2 is preferably 25 ⁇ m to 50 ⁇ m, more preferably 30 ⁇ m to 45 ⁇ m, and more preferably 40 ⁇ m. Is most preferable.
  • the insertion depth of the tip of the second optical fiber 3 into the first optical fiber 2 is set to an appropriate depth, and these two optical fibers can be connected with a sufficiently high fusion strength.
  • the speed at which the second optical fiber 3 is moved in the first direction is, for example, about several tens of ⁇ m per second.
  • the boundary portion (connection portion) between the first optical fiber 2 and the second optical fiber 3 is: It has a step shape.
  • the two optical fibers are connected while the connecting portion between the first optical fiber 2 and the second optical fiber 3 remains in the stepped shape. Will be done.
  • stress is concentrated on the connection portion having such a step shape, and the connection portion is easily damaged.
  • the connecting portion between the first optical fiber 2 and the second optical fiber 3 is formed into a tapered shape in which the strength is stronger than the stepped shape.
  • the connection portion is formed in a tapered shape as described below.
  • the second optical fiber 3 is moved in the second direction by the second moving unit 43, whereby the second optical fiber 3 is moved to the first optical fiber. 2 relative to the second direction.
  • the tip of the first optical fiber 2 on the side connected to the second optical fiber 3 is moved in the second direction while the second optical fiber 3 is attached to the tip of the second optical fiber 3 by surface tension. Move with.
  • the tip portion of the first optical fiber 2 is elongated by the movement of the second optical fiber 3 in the second direction. Due to this stretching, the diameter of the tip of the first optical fiber 2 on the side connected to the second optical fiber 3 becomes smaller than the first diameter d1 and becomes substantially the same as the second diameter d2.
  • the connecting portion between the first optical fiber 2 and the second optical fiber 3 has a tapered shape.
  • the distal end portion of the first optical fiber 2 having a low melting point is heated.
  • the viscosity of the first optical fiber 2 on the side to be stretched becomes low, so that when the second optical fiber 3 is moved away from the first optical fiber 2, the connection between the first optical fiber 2 and the second optical fiber 3 is made. It becomes easy to form a tapered shape in the portion.
  • the moving distance of the second optical fiber 3 in the second direction is preferably in the range of 50% to 70% of the second diameter d2, and is preferably in the range of 55% to 65% of the second diameter d2. Is more preferable, and a distance of 64% of the second diameter d2 is most preferable.
  • the moving distance of the second optical fiber 3 in the second direction is preferably 62 ⁇ m to 88 ⁇ m, more preferably 68 ⁇ m to 82 ⁇ m, and more preferably 80 ⁇ m. Is most preferred.
  • the taper angle ⁇ at the tip of the first optical fiber 2 can be set to an appropriate angle at which stress is less likely to be concentrated on the connection portion between the first optical fiber 2 and the second optical fiber 3.
  • the moving speed of the second optical fiber 3 when forming the tapered shape is, for example, about several tens of ⁇ m per second.
  • the distal end portion of the first optical fiber 2 is elongated to form a tapered shape at the connection portion, and then the heating laser beam HL is applied as shown in FIG. Is stopped, the first optical fiber 2 and the second optical fiber 3 are cooled, and the first optical fiber 2 and the second optical fiber 3 are connected.
  • the first optical fiber 2 and the second optical fiber 3 are gradually cooled by gradually lowering the intensity of the heating laser beam HL over several tens of seconds to several minutes to finally reduce it to zero.
  • the expansion coefficient of ZBLAN glass used for the first optical fiber 2 is 20 ⁇ 10 ⁇ 6 / K
  • the expansion coefficient of quartz used for the second optical fiber 3 is 0.55 ⁇ 10 ⁇ 6 / K.
  • the two optical fibers are different due to the difference in expansion coefficient between the first optical fiber and the second optical fiber. Can be prevented from being damaged due to the occurrence of stress at the connection portion.
  • an optical fiber made of ZBLAN glass was used as the first optical fiber 2 having a low melting point.
  • an optical fiber made of quartz was used as the second optical fiber 3 having a high melting point.
  • the second diameter d2 of the second optical fiber 3 was 125 ⁇ m (core diameter: 100 ⁇ m, clad diameter: 125 ⁇ m).
  • the first diameter d1 of the first optical fiber 2 was set to two types: 240 ⁇ m (core diameter: 170 ⁇ m, clad diameter: 240 ⁇ m) and 330 ⁇ m (core diameter: 280 ⁇ m, clad diameter: 330 ⁇ m). That is, the first diameter d1 was 1.9 times and 2.6 times the second diameter d2.
  • Example 1 an example in which the first diameter d1 is 240 ⁇ m
  • Example 2 an example in which the first diameter d1 is 330 ⁇ m
  • a tensile load is applied to the optical fiber 1 in a state where both ends of the optical fiber 1 after fusion are gripped, and the tensile load when the joint is broken is fused. It was measured as the strength of the connection.
  • This tensile test can be performed using, for example, a fiber cleaver.
  • FIG. 5 and 6 show optical microscope images of a connection portion of the optical fiber 1 manufactured in the present example.
  • FIG. 5 is a diagram illustrating an optical microscope image of the optical fiber of the first embodiment.
  • FIG. 6 is a diagram illustrating an optical microscope image of the optical fiber of the second embodiment.
  • FIGS. 5 and 6 show an optical microscope image ((A) of each drawing) of the outer periphery of the optical fiber 1 and a transmission optical microscope image ((B) of each drawing) of the optical fiber 1.
  • the first optical fiber 2 is labeled as "2"
  • the second optical fiber 3 is labeled as "3".
  • the distal end of the first optical fiber 2 on the side connected to the second optical fiber 3 has a reduced diameter and is tapered. . No step at which the diameter changes suddenly at the connection between the two optical fibers is observed. From the transmission optical microscope image, it can be seen that the tip of the second optical fiber 3 is inserted into the core of the first optical fiber 2 and the tip of the second optical fiber 3 is covered by the core of the first optical fiber 2 from three directions. I understand.
  • connection portion of the optical fiber 1 of the present example can withstand a load of 200 gf to 250 gf (in terms of pressure, 1.6 MPa to 2 MPa). I understood that.
  • connection portion was improved by a factor of two or more by forming a tapered shape in the connection portion, that is, by having the tapered portion 21 in the first optical fiber 2. .
  • the optical fiber 1 having the tapered portions 21 having various taper angles ⁇ was manufactured.
  • the fusion loss of the optical fiber 1 was measured.
  • the fusion loss is obtained by measuring the intensity of the inspection light IL on the side of the first optical fiber 2 with the light receiving device 14 by inputting the inspection light IL output from the inspection light source 12 from the second optical fiber 3 side, and calculating from the following equation. did.
  • “the transmitted light intensity of the second optical fiber 3 alone” is an actual measurement obtained by measuring the intensity of the inspection light IL incident from one of the second optical fibers 3 and output from the other by the light receiving device 14. It may be a value or a theoretical value calculated from the transmittance of the second optical fiber 3.
  • Fusion loss 1 ⁇ (intensity of inspection light IL measured by light receiving device 14 / intensity of transmitted light by second optical fiber 3 alone)
  • FIG. 7 is a diagram illustrating the relationship between the taper angle and the fusion loss of the optical fiber according to the first embodiment.
  • FIG. 8 is a diagram illustrating a relationship between the taper angle and the fusion loss of the optical fiber according to the second embodiment. 7 and 8, “*” indicates that the fusion loss is extremely large, and the optical fiber 1 is broken at the connection portion (for example, at the time of fusion splicing of the optical fiber (at the time of heating / cooling). At the time of handling the optical fiber 1 after the fusion splicing was released.
  • the fusion loss of the optical fiber 1 in which the connection portion was not broken is extremely low at 0.2 dB or less. That is, it can be seen that the fusion method according to the first embodiment described above is an excellent method that generates only a fusion loss that does not interfere with actual use.
  • connection portions of all the optical fibers 1 were broken. From this, it can be seen that if the taper angle ⁇ of the tapered portion 21 is set to an appropriate angle, the strength of the connection portion can be made sufficient. Specifically, if the taper angle ⁇ is set to 20 to 50 degrees, the strength of the connection portion can be improved.
  • the optimum value of the taper angle ⁇ for increasing the strength of the connection portion differs between the case of the first embodiment and the case of the second embodiment.
  • the optimum taper angle ⁇ is 22 degrees or less. The range was 30 degrees.
  • the optimum taper angle ⁇ is 35 degrees to 50 degrees. Was in the range.
  • the tapered portion 21 can be formed into the first optical fiber 2 It is possible to obtain an optimum shape in which stress is not easily concentrated on the connection portion between the first optical fiber 3 and the second optical fiber 3.
  • Comparative Example 1 a comparative experiment was performed to confirm the effectiveness of the optical fiber 1 according to the first embodiment and the method of fusing the optical fiber.
  • FIG. 9 is a view showing a transmission optical microscope image of the optical fiber manufactured in Comparative Example 1.
  • connection portion cannot be formed in a tapered shape.
  • the connection portion was broken by a load smaller than 100 gf (pressure conversion: 0.8 MPa).
  • the first diameter d1 is sufficiently larger than the second diameter d2, for example, the second diameter d2. It can be seen that it is preferably in the range from 1.5 times to 3 times of.
  • the second optical fiber 3 was inserted in the second direction while the second optical fiber 3 was inserted into the first optical fiber 2 as shown in FIG.
  • the first optical fiber 2 and the second optical fiber 3 were fusion-spliced without being moved.
  • the first optical fiber 2 and the second optical fiber 3 used were the same as those used in Example 1 above.
  • FIG. 10 shows an optical microscope image of an optical fiber manufactured without moving the second optical fiber 3 in the second direction from the state where the second optical fiber 3 is inserted into the first optical fiber 2.
  • FIG. 10 is a diagram illustrating an optical microscope image of the optical fiber of Comparative Example 2. As shown in FIG. 10, in the optical fiber of Comparative Example 2, the first optical fiber 2 and the second optical fiber 3 are fusion-spliced. Are shown). The optical fiber having a step at the connection portion breaks at or near the step at the connection portion when it is taken out of the fusion device 100 after fusion, and its handling is difficult.
  • connection portion between the first optical fiber 2 and the second optical fiber 3 is preferably tapered.
  • the first embodiment has the following configurations and functions in common.
  • the fusion method of the optical fiber includes a first optical fiber 2 having a first melting point (an example of a first optical fiber) and a second optical fiber 3 having a second melting point higher than the first melting point (an example of a second optical fiber). This is a fusion method.
  • the fusing method includes the following steps. A step of arranging a first optical fiber 2 having a first diameter d1 (an example of a first diameter) and a second optical fiber 3 having a second diameter d2 (an example of a second diameter) smaller than the first diameter d1. .
  • the second optical fiber 3 is further connected to the first optical fiber 2.
  • the tip of the second optical fiber 3 is moved in a second direction opposite to the first direction in which it is inserted. That is, the second optical fiber 3 is moved in a direction away from the first optical fiber 2.
  • the end of the first optical fiber 2 on the side connected to the second optical fiber 3 is elongated. Due to this stretching, the diameter of the distal end portion of the first optical fiber 2 decreases, and the connecting portion between the first optical fiber and the second optical fiber becomes tapered.
  • the strength of the optical fiber 1 (an example of an optical fiber) manufactured by connecting these two optical fibers can be improved.
  • the manufactured optical fiber 1 is bent, stress can hardly be concentrated on a connecting portion between the two optical fibers, so that the strength can be improved.
  • the tip of the first optical fiber 2 and the tip of the second optical fiber 3 can be heated not only by the irradiation of the heating laser beam HL but also by another heating method. For example, discharge heating and heating by a heater are possible.
  • the fusion splicing of the first optical fiber 2 and the second optical fiber 3 can be performed in a controlled atmosphere.
  • a deliquescent glass such as ZBLAN glass
  • the first optical fiber 2 should be placed in a dry atmosphere.
  • fusion splicing can be performed in a controlled atmosphere such as an atmosphere with a small amount of oxygen (eg, a nitrogen atmosphere or an inert gas atmosphere) or a dry atmosphere, depending on the properties of the material used as the optical fiber.
  • fusion splicing can be performed in a windless atmosphere.
  • the present invention can be widely applied to a fusion method in which two optical fibers made of materials having different melting points are fused at a tip thereof, and an optical fiber in which two optical fibers made of materials having different melting points are fusion-spliced. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

The present invention makes it possible to increase the strength of an optical fiber created by fusion splicing two optical fibers that have different melting points. A method for fusion splicing an optical fiber comprises: a step of placing a first optical fiber 2 that has a first diameter d1 and a first melting point and a second optical fiber 3 that has a second diameter d2 less than the first diameter d1 and a second melting point higher than the first melting point; a step of heating at least the tip end of the first optical fiber 2 to a temperature that is higher than or equal to a first temperature that allows the first optical fiber 2 to soften and lower than a second temperature that allows the first optical fiber 2 to crystallize; a step of inserting the tip end of the second optical fiber 3 into the first optical fiber 2 by moving the second optical fiber 3 in a first direction in which the second optical fiber 3 approaches the first optical fiber with the tip end of the first optical fiber 2 heated; and a step of moving the second optical fiber 3 in a second direction opposite the first direction after the tip end of the second optical fiber 3 is inserted into the first optical fiber 2.

Description

光ファイバーの融着方法、光ファイバー、及び、融着装置Optical fiber fusion method, optical fiber, and fusion device
 本発明は、融点が異なる材料で構成された2つの光ファイバーをその先端にて融着する融着方法、及び、当該方法を用いて異なる材料で構成された2つの光ファイバーを融着して製造される光ファイバーに関する。 The present invention provides a fusion method for fusing two optical fibers made of materials having different melting points at the tip thereof, and a method for fusing two optical fibers made of different materials using the method. Optical fiber.
 光ファイバーにより光学回路などの光学系を構成する場合に、異なる材料で構成された光ファイバーを先端で接続することが必要となる。光ファイバーの接続は、一般的に、融着により行われる。 す る When an optical system such as an optical circuit is configured by optical fibers, it is necessary to connect optical fibers made of different materials at the tip. The connection of the optical fiber is generally performed by fusion.
 光ファイバーは、その材料に応じて異なる物理的特性を有する。例えば、一般的な光ファイバーで用いられる石英の融点は、石英以外の材料(例えば、フッ化物ガラス)の融点よりも高い。 Optical fibers have different physical properties depending on the material. For example, the melting point of quartz used in general optical fibers is higher than the melting point of a material other than quartz (for example, fluoride glass).
 このような互いに融点が異なる異種材料の光ファイバーを接続する方法として、高融点を有する光ファイバーの直径を、低融点の光ファイバーの直径よりも小さくし、高融点を有する光ファイバーを加熱して低融点の光ファイバーに押しつけて、これら2つの光ファイバーを融着させる方法が知られている(例えば、特許文献1を参照)。
 この融着方法では、高融点の光ファイバーを加熱した熱により低融点の光ファイバーを軟化させて、高融点の光ファイバーの先端を低融点の光ファイバー先端内部に挿入した状態で融着することで、融着部分の強度を向上させている。
As a method of connecting such optical fibers of different materials having different melting points, the diameter of the optical fiber having a high melting point is made smaller than the diameter of the optical fiber having a low melting point, and the optical fiber having a high melting point is heated to thereby form an optical fiber having a low melting point. A method is known in which these two optical fibers are fused by pressing them together (see, for example, Patent Document 1).
In this fusion method, the low-melting-point optical fiber is softened by the heat of heating the high-melting-point optical fiber, and the high-melting-point optical fiber is fused while being inserted into the low-melting-point optical fiber tip. The strength of the part has been improved.
特開2003-156652号公報JP 2003-156652 A
 しかしながら、上記の融着方法により融着した光ファイバーの融着強度は80kPa程度であり、この光ファイバーを用いて光学系を構成するには不十分である。なぜなら、この程度の融着強度では、光ファイバーを取り扱う際に、光ファイバーの融着が解除される可能性が大きいからである。 However, the fusion strength of the optical fiber fused by the above-mentioned fusion method is about 80 kPa, which is insufficient for forming an optical system using this optical fiber. This is because with such a fusion strength, there is a high possibility that the fusion of the optical fiber is released when handling the optical fiber.
 また、上記の融着方法により融着された光ファイバーは、曲げなどに対して損傷しやすくなっていると考えられる。
 具体的には、上記の融着方法により融着された光ファイバーにおいては、接続部分に急激に直径が変化する段差部分が形成される。例えば、このような段差部分を有する光ファイバーを曲げると、当該段差部分に応力が集中し、段差部分又はその近傍の光ファイバーが損傷することが考えられる。
Further, it is considered that the optical fiber fused by the above fusion method is easily damaged by bending or the like.
Specifically, in the optical fiber fused by the above-mentioned fusion method, a step portion whose diameter changes rapidly is formed at the connection portion. For example, when an optical fiber having such a step portion is bent, stress is concentrated on the step portion, and the optical fiber at or near the step portion may be damaged.
 本発明の目的は、異なる融点を有する2つの光ファイバーを融着接続して形成される光ファイバーの強度を向上させることにある。 An object of the present invention is to improve the strength of an optical fiber formed by fusion splicing two optical fibers having different melting points.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係る光ファイバーの融着方法は、第1融点を有する第1光ファイバーと、第1融点よりも高い第2融点を有する第2光ファイバーと、を融着する方法である。融着方法は、以下のステップを備える。
 ◎第1直径を有する第1光ファイバーと、第1直径よりも小さい第2直径を有する第2光ファイバーと、を配置するステップ。
 ◎少なくとも第1光ファイバーの先端を、第1光ファイバーが軟化する第1温度以上、かつ、第1光ファイバーが結晶化する第2温度よりも小さい温度に加熱するステップ。
 ◎第1光ファイバーの少なくとも先端を加熱した状態で、第2光ファイバーを第1光ファイバーに近づける第1方向に移動させて、第2光ファイバーの先端を第1光ファイバーに挿入させるステップ。
 ◎第2光ファイバーの先端を第1光ファイバーに挿入後、第1方向とは逆の第2方向に第2光ファイバーを移動させるステップ。
Hereinafter, a plurality of modes will be described as means for solving the problems. These embodiments can be arbitrarily combined as needed.
An optical fiber fusion method according to one aspect of the present invention is a method of fusing a first optical fiber having a first melting point and a second optical fiber having a second melting point higher than the first melting point. The fusing method includes the following steps.
Disposing a first optical fiber having a first diameter and a second optical fiber having a second diameter smaller than the first diameter;
Heating at least the tip of the first optical fiber to a temperature equal to or higher than a first temperature at which the first optical fiber softens and lower than a second temperature at which the first optical fiber crystallizes;
◎ a step of moving the second optical fiber in a first direction to approach the first optical fiber with at least the distal end of the first optical fiber being heated, and inserting the distal end of the second optical fiber into the first optical fiber;
Moving the second optical fiber in a second direction opposite to the first direction after inserting the tip of the second optical fiber into the first optical fiber;
 上記の光ファイバーの融着方法においては、第1光ファイバーを軟化して第2光ファイバーの先端を第1光ファイバーに挿入後、さらに、第2光ファイバーを、第1光ファイバーに第2光ファイバーの先端を挿入する第1方向とは逆の第2方向に移動させている。すなわち、第2光ファイバーを第1光ファイバーから離れる方向に移動させている。
 これにより、第2光ファイバーを第1光ファイバーから離れる方向に移動させる際に、第1光ファイバーの第2光ファイバーと接続された側の先端部分が引き延ばされる。この引き延ばしにより、第1光ファイバーの先端部分の直径が減少して、第1光ファイバーと第2光ファイバーの接続部分がテーパー形状になる。
In the above optical fiber fusion method, after the first optical fiber is softened and the tip of the second optical fiber is inserted into the first optical fiber, the second optical fiber is further inserted into the first optical fiber. It is moved in a second direction opposite to the one direction. That is, the second optical fiber is moved in a direction away from the first optical fiber.
Thus, when the second optical fiber is moved in a direction away from the first optical fiber, the tip of the first optical fiber on the side connected to the second optical fiber is elongated. Due to this stretching, the diameter of the distal end portion of the first optical fiber decreases, and the connecting portion between the first optical fiber and the second optical fiber becomes tapered.
 このように、第1光ファイバーと第2光ファイバーとの接続部分にテーパー形状を形成することにより、これら2つの光ファイバーを接続して製造される光ファイバーの強度を向上できる。例えば、製造された光ファイバーを曲げた際に、2つの光ファイバーの接続部分に応力を集中しにくくできるので、強度を向上できる。 As described above, by forming the tapered shape at the connecting portion between the first optical fiber and the second optical fiber, the strength of the optical fiber manufactured by connecting these two optical fibers can be improved. For example, when a manufactured optical fiber is bent, stress can be less likely to be concentrated on a connection portion between two optical fibers, so that strength can be improved.
 また、低融点の第1光ファイバーの少なくとも先端を加熱することにより、第2光ファイバーを第1光ファイバーから離れる方向に移動させる際に、接続部分にテーパー形状を形成しやすくなる。 In addition, by heating at least the tip of the first optical fiber having a low melting point, it is easy to form a tapered shape at the connection portion when the second optical fiber is moved in a direction away from the first optical fiber.
 上記の融着方法は、第2方向に第2光ファイバーを移動後に、第1光ファイバー及び第2光ファイバーを徐冷するステップをさらに備えてもよい。
 これにより、第1光ファイバーと第2光ファイバーを冷却する際に、これら2つの光ファイバーの膨張係数の違いにより、これら2つの光ファイバーの接続部分に応力が発生して破損ことを抑制できる。
The above fusion method may further include a step of gradually cooling the first optical fiber and the second optical fiber after moving the second optical fiber in the second direction.
Thus, when the first optical fiber and the second optical fiber are cooled, stress is generated at a connection portion between the two optical fibers due to a difference in expansion coefficient between the two optical fibers, so that breakage can be suppressed.
 第2光ファイバーの先端を第1光ファイバーに挿入するステップにおいて、第2光ファイバーの先端の第1光ファイバーへの挿入距離は、第2直径の20%~40%の範囲の距離であってもよい。
 これにより、第2光ファイバーの先端の第1光ファイバーへの挿入深さを適切な深さとして、これら2つの光ファイバーを十分に強い融着強度にて接続できる。
In the step of inserting the distal end of the second optical fiber into the first optical fiber, an insertion distance of the distal end of the second optical fiber into the first optical fiber may be a distance in a range of 20% to 40% of the second diameter.
With this, the insertion depth of the tip of the second optical fiber into the first optical fiber is set to an appropriate depth, and these two optical fibers can be connected with a sufficiently high fusion strength.
 第2光ファイバーを第2方向に移動させるステップにおいて、第2光ファイバーの移動距離は、第2直径の50%~70%の範囲の距離であってもよい。
 これにより、第1光ファイバー先端のテーパー角度を、第1光ファイバーと第2光ファイバーの接続部分に応力が集中しにくい適切な角度とできる。
In the moving the second optical fiber in the second direction, the moving distance of the second optical fiber may be a distance in a range of 50% to 70% of the second diameter.
Thereby, the taper angle of the tip of the first optical fiber can be set to an appropriate angle at which stress is less likely to be concentrated on the connection portion between the first optical fiber and the second optical fiber.
 第1光ファイバーと第2光ファイバーを配置するステップにおいて、第1光ファイバーの先端と第2光ファイバーの先端とを近接させて配置してもよい。
 これにより、第1光ファイバーの先端だけでなく、第2光ファイバーの先端も加熱できる。その結果、第1光ファイバーに第2光ファイバーが接触したときに、第1光ファイバーの温度が下がることを抑制できる。
In the step of disposing the first optical fiber and the second optical fiber, the distal end of the first optical fiber and the distal end of the second optical fiber may be disposed close to each other.
Thereby, not only the tip of the first optical fiber but also the tip of the second optical fiber can be heated. As a result, when the second optical fiber comes into contact with the first optical fiber, the temperature of the first optical fiber can be prevented from lowering.
 第1直径は、第2直径の1.5倍から3倍までの範囲にあってもよい。これにより、第1光ファイバーと第2光ファイバーを十分な強度にて接続できる。 The first diameter may be in the range of 1.5 to 3 times the second diameter. Thereby, the first optical fiber and the second optical fiber can be connected with sufficient strength.
 第1温度は、第1光ファイバーの軟化点であってもよい。これにより、第1光ファイバーを確実に軟化して、第2光ファイバーの先端の挿入と、テーパー形状の形成とを適切に実行できる。 The first temperature may be a softening point of the first optical fiber. Thereby, the first optical fiber is reliably softened, and the insertion of the tip of the second optical fiber and the formation of the tapered shape can be appropriately performed.
 第2温度は、第1光ファイバーの結晶化温度であってもよい。これにより、第1光ファイバーが結晶化して第1光ファイバーの透明度が低下することを確実に回避できる。その結果、第1光ファイバーと第2光ファイバーの融着部分の融着損失を低くできる。 The second temperature may be a crystallization temperature of the first optical fiber. Accordingly, it is possible to reliably prevent the first optical fiber from being crystallized and the transparency of the first optical fiber from being reduced. As a result, the fusion loss at the fusion portion between the first optical fiber and the second optical fiber can be reduced.
 第1光ファイバーはZBLANファイバーであってもよい。これにより、第1光ファイバーと第2光ファイバーを接続した光ファイバーを、ファイバーレーザー、ファイバー増幅器などに応用できる。 The first optical fiber may be a ZBLAN fiber. Thus, the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, and the like.
 第2光ファイバーは石英製の光ファイバーであってもよい。これにより、第1光ファイバーと第2光ファイバーを接続した光ファイバーを、ファイバーレーザー、ファイバー増幅器、ファイバーセンサ、伝送ファイバーなどに応用できる。 The second optical fiber may be an optical fiber made of quartz. Thus, the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, a fiber sensor, a transmission fiber, and the like.
 本発明の他の見地に係る光ファイバーは、第1光ファイバーと、第2光ファイバーと、を備える。
 第1光ファイバーは、テーパー部分を有する。テーパー部分は、先端に向けて直径が第1直径から減少する部分である。
 第2光ファイバーは、第1直径よりも小さい第2直径を有する。また、第2光ファイバーは、先端がテーパー部分の先端に挿入された状態で、第1光ファイバーに接続される。
An optical fiber according to another aspect of the present invention includes a first optical fiber and a second optical fiber.
The first optical fiber has a tapered portion. The tapered portion is a portion whose diameter decreases from the first diameter toward the tip.
The second optical fiber has a second diameter smaller than the first diameter. The second optical fiber is connected to the first optical fiber with the tip inserted into the tip of the tapered portion.
 第1光ファイバーと第2光ファイバーを接続して構成される光ファイバーにおいて、第1光ファイバーと第2光ファイバーとの接続部分にテーパー形状を形成することにより、光ファイバーの強度を向上できる。例えば、この光ファイバーを曲げた際に、2つの光ファイバーの接続部分に応力を集中しにくくできる。 光 In an optical fiber configured by connecting the first optical fiber and the second optical fiber, the strength of the optical fiber can be improved by forming a tapered shape at the connection portion between the first optical fiber and the second optical fiber. For example, when this optical fiber is bent, stress can be less likely to be concentrated on the connection portion between the two optical fibers.
 第2光ファイバーの先端の第1光ファイバーのテーパー部分への挿入深さは、第2直径の4%~16%の範囲であってもよい。
 これにより、第1光ファイバーと第2光ファイバーとを十分に強い融着強度にて接続できる。
The insertion depth of the tip of the second optical fiber into the tapered portion of the first optical fiber may be in the range of 4% to 16% of the second diameter.
Thereby, the first optical fiber and the second optical fiber can be connected with a sufficiently high fusion strength.
 テーパー部分の側面と第1光ファイバーの長さ方向とがなすテーパー角度は、20度~50度の範囲であってもよい。
 これにより、テーパー部分を、第1光ファイバーと第2光ファイバーの接続部分に応力が集中しにくい最適な形状とできる。
The taper angle between the side surface of the tapered portion and the length direction of the first optical fiber may be in a range of 20 degrees to 50 degrees.
Thereby, the tapered portion can be formed into an optimal shape in which stress is less likely to be concentrated on the connection portion between the first optical fiber and the second optical fiber.
 第1直径は、第2直径の1.5倍から3倍までの範囲にあってもよい。これにより、第1光ファイバーと第2光ファイバーを十分な強度にて接続できる。 The first diameter may be in the range of 1.5 to 3 times the second diameter. Thereby, the first optical fiber and the second optical fiber can be connected with sufficient strength.
 第1直径が第2直径の2倍であり、かつ、テーパー部分の側面と第1光ファイバーの長さ方向とがなすテーパー角度が22度~30度の範囲にあってもよい。
 第1直径が第2直径の3倍であり、かつ、テーパー部分の側面と第1光ファイバーの長さ方向とがなすテーパー角度が35度~50度の範囲にあってもよい。
 これにより、第1直径と第2直径の比率に応じて、テーパー角度を適切な範囲とすることで、テーパー部分を第1光ファイバーと第2光ファイバーの接続部分に応力が集中しにくい最適な形状とできる。
The first diameter may be twice as large as the second diameter, and a taper angle between a side surface of the tapered portion and a length direction of the first optical fiber may be in a range of 22 degrees to 30 degrees.
The first diameter may be three times the second diameter, and a taper angle between a side surface of the tapered portion and a length direction of the first optical fiber may be in a range of 35 degrees to 50 degrees.
Thus, by setting the taper angle in an appropriate range in accordance with the ratio between the first diameter and the second diameter, the tapered portion is formed into an optimal shape in which stress is less likely to be concentrated on the connection portion between the first optical fiber and the second optical fiber. it can.
 第1光ファイバーはZBLANファイバーであってもよい。これにより、第1光ファイバーと第2光ファイバーを接続した光ファイバーを、ファイバーレーザー、ファイバー増幅器などに応用できる。 The first optical fiber may be a ZBLAN fiber. Thus, the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, and the like.
 第2光ファイバーは石英製の光ファイバーであってもよい。これにより、第1光ファイバーと第2光ファイバーを接続した光ファイバーを、ファイバーレーザー、ファイバー増幅器、ファイバーセンサ、伝送ファイバーなどに応用できる。 The second optical fiber may be an optical fiber made of quartz. Thus, the optical fiber connecting the first optical fiber and the second optical fiber can be applied to a fiber laser, a fiber amplifier, a fiber sensor, a transmission fiber, and the like.
 本発明のさらに他の見地に係る融着装置は、第1融点を有する第1光ファイバーと、第1融点よりも高い第2融点を有する第2光ファイバーと、を融着する装置である。融着装置は、加熱光源と、ファイバー移動装置と、を備える。
 加熱光源は、第1直径を有する第1光ファイバーの先端を、第1光ファイバーが軟化する第1温度以上、かつ、第1光ファイバーが結晶化する第2温度よりも小さい温度に加熱する。
 ファイバー移動装置は、第1光ファイバーの少なくとも先端を加熱した状態で、第1直径よりも小さい第2直径を有する第2光ファイバーを第1光ファイバーに近づける第1方向に移動させて、第2光ファイバーの先端を第1光ファイバーに挿入し、第2光ファイバーの先端を第1光ファイバーに挿入後、第1方向とは逆の第2方向に第2光ファイバーを移動させる。
A fusion device according to still another aspect of the present invention is a device for fusing a first optical fiber having a first melting point and a second optical fiber having a second melting point higher than the first melting point. The fusion device includes a heating light source and a fiber moving device.
The heating light source heats the distal end of the first optical fiber having the first diameter to a temperature equal to or higher than a first temperature at which the first optical fiber softens and lower than a second temperature at which the first optical fiber crystallizes.
The fiber moving device moves a second optical fiber having a second diameter smaller than the first diameter in a first direction closer to the first optical fiber in a state where at least the distal end of the first optical fiber is heated, and moves the distal end of the second optical fiber. Is inserted into the first optical fiber, the tip of the second optical fiber is inserted into the first optical fiber, and then the second optical fiber is moved in a second direction opposite to the first direction.
 上記の融着装置においては、第1光ファイバーを軟化して第2光ファイバーの先端を第1光ファイバーに挿入後、さらに、第2光ファイバーを、第1光ファイバーに第2光ファイバーの先端を挿入する第1方向とは逆の第2方向に移動させている。すなわち、第2光ファイバーを第1光ファイバーから離れる方向に移動させている。
 これにより、第2光ファイバーを第1光ファイバーから離れる方向に移動させる際に、第1光ファイバーの第2光ファイバーと接続された側の先端部分が引き延ばされる。この引き延ばしにより、第1光ファイバーの先端部分の直径が減少して、第1光ファイバーと第2光ファイバーの接続部分がテーパー形状になる。
In the above fusion device, after the first optical fiber is softened and the tip of the second optical fiber is inserted into the first optical fiber, the second optical fiber is further inserted into the first optical fiber in the first direction in which the tip of the second optical fiber is inserted. Are moved in the second direction opposite to the above. That is, the second optical fiber is moved in a direction away from the first optical fiber.
Thus, when the second optical fiber is moved in a direction away from the first optical fiber, the tip of the first optical fiber on the side connected to the second optical fiber is elongated. Due to this stretching, the diameter of the distal end portion of the first optical fiber decreases, and the connecting portion between the first optical fiber and the second optical fiber becomes tapered.
 このように、第1光ファイバーと第2光ファイバーとの接続部分にテーパー形状を形成することにより、これら2つの光ファイバーを接続して製造される光ファイバーの強度を向上できる。例えば、製造された光ファイバーを曲げた際に、2つの光ファイバーの接続部分に応力を集中しにくくできるので、強度を向上できる。
 また、低融点の第1光ファイバーの少なくとも先端を加熱することにより、第2光ファイバーを第1光ファイバーから離れる方向に移動させる際に、接続部分にテーパー形状を形成しやすくなる。
 
As described above, by forming the tapered shape at the connecting portion between the first optical fiber and the second optical fiber, the strength of the optical fiber manufactured by connecting these two optical fibers can be improved. For example, when a manufactured optical fiber is bent, stress can be less likely to be concentrated on a connection portion between two optical fibers, so that strength can be improved.
In addition, by heating at least the distal end of the first optical fiber having a low melting point, it is easy to form a tapered shape at the connection portion when the second optical fiber is moved in a direction away from the first optical fiber.
 2つの光ファイバーの接続部分にテーパー形状を形成することにより、これら2つの光ファイバーを接続して製造される光ファイバーの強度を向上できる。 に よ り By forming a tapered shape at the connecting portion of the two optical fibers, the strength of the optical fiber manufactured by connecting the two optical fibers can be improved.
融着により製造される光ファイバーの構造を示す図。The figure which shows the structure of the optical fiber manufactured by fusion. 融着装置の全体構成を示す図。The figure which shows the whole structure of a fusion device. ファイバー移動装置の構成を示す図。The figure which shows the structure of a fiber moving apparatus. 光ファイバーの融着方法を模式的に示す図。The figure which shows typically the fusion | fusion method of an optical fiber. 実施例1の光ファイバーの光学顕微鏡像を示す図。FIG. 2 is a diagram illustrating an optical microscope image of the optical fiber of the first embodiment. 実施例2の光ファイバーの光学顕微鏡像を示す図。FIG. 8 is a diagram showing an optical microscope image of the optical fiber of Example 2. 実施例1の光ファイバーのテーパー角と融着損失との関係を示す図。FIG. 3 is a diagram illustrating a relationship between a taper angle and a fusion loss of the optical fiber of the first embodiment. 実施例2の光ファイバーのテーパー角と融着損失との関係を示す図。FIG. 9 is a diagram illustrating a relationship between a taper angle and a fusion loss of the optical fiber of the second embodiment. 比較例1にて製造した光ファイバーの透過光学顕微鏡像を示す図。FIG. 5 is a view showing a transmission optical microscope image of the optical fiber manufactured in Comparative Example 1. 比較例2の光ファイバーの光学顕微鏡像を示す図。FIG. 9 is a view showing an optical microscope image of the optical fiber of Comparative Example 2.
1.第1実施形態
(1)光ファイバー
 以下、第1実施形態に係る光ファイバーの融着方法について説明していく。
 まず、図1を用いて、本実施形態に係る融着方法により製造される光ファイバー1の構造について説明する。図1は、融着により製造される光ファイバーの構造を示す図である。
 図1に示すように、光ファイバー1は、第1光ファイバー2と、第2光ファイバー3と、を有している。第1光ファイバー2と第2光ファイバー3は、本実施形態の融着方法により、先端部分において互いに融着接続されている。
1. First Embodiment (1) Optical Fiber A method for fusing an optical fiber according to the first embodiment will be described below.
First, the structure of the optical fiber 1 manufactured by the fusion method according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a structure of an optical fiber manufactured by fusion.
As shown in FIG. 1, the optical fiber 1 has a first optical fiber 2 and a second optical fiber 3. The first optical fiber 2 and the second optical fiber 3 are fusion-spliced at their distal ends by the fusion method of the present embodiment.
 第1光ファイバー2は、第1融点を有する材料にて構成された光ファイバーである。本実施形態において、第1光ファイバー2は、ZBLANファイバーである。第1融点は、ZBLANファイバーの軟化点である約300度である。また、第1光ファイバー2がZBLANファイバーの場合、融点は440度程度、結晶化点は350度程度、ガラス転移点が260度程度である。このZBLANファイバーは、ファイバーレーザーのレーザー媒体としてよく用いられている。
 なお、ZBLANファイバーである第1光ファイバー2のコアには、エルビウム(Er)などの元素がドープされていてもよい。
The first optical fiber 2 is an optical fiber made of a material having a first melting point. In the present embodiment, the first optical fiber 2 is a ZBLAN fiber. The first melting point is about 300 degrees, which is the softening point of the ZBLAN fiber. When the first optical fiber 2 is a ZBLAN fiber, the melting point is about 440 degrees, the crystallization point is about 350 degrees, and the glass transition point is about 260 degrees. This ZBLAN fiber is often used as a laser medium of a fiber laser.
The core of the first optical fiber 2 which is a ZBLAN fiber may be doped with an element such as erbium (Er).
 その他、フッ化アルミニウム、カルコゲナイド系ガラス(例えば、三硫化二ヒ素(As)、Ge33As12Se55など)、テルライト(TeO)系ガラス、などのガラス製の光ファイバーを、第1光ファイバー2とできる。これらのガラスも、後述する第2光ファイバー3の材料である石英の融点よりも低い融点を有する。 In addition, glass fibers such as aluminum fluoride, chalcogenide glass (for example, arsenic trisulfide (As 2 S 3 ), Ge 33 As 12 Se 55, etc.), tellurite (TeO) glass, and the like are used as the first optical fiber. Can be 2. These glasses also have a melting point lower than the melting point of quartz, which is a material of the second optical fiber 3 described later.
 また、第1光ファイバー2は、長さ方向に垂直な断面が第1直径d1を有する円形となっている。第1光ファイバー2は、第2光ファイバー3との接続部分である先端に、テーパー部分21を有する。
 テーパー部分21は、先端に向けて直径が第1直径d1から減少している。テーパー部分21の第2光ファイバー3との接続部分である先端の直径は、第2光ファイバー3の直径(第2直径d2)とほぼ同じとなっている。
The first optical fiber 2 has a circular cross section perpendicular to the length direction having a first diameter d1. The first optical fiber 2 has a tapered portion 21 at a distal end which is a connection portion with the second optical fiber 3.
The diameter of the tapered portion 21 decreases from the first diameter d1 toward the distal end. The diameter of the tip of the tapered portion 21 that is the connection portion with the second optical fiber 3 is substantially the same as the diameter of the second optical fiber 3 (second diameter d2).
 テーパー部分21のテーパー角度θは、後述するように第1直径d1と第2直径d2との比率により最適値は異なるが、20度~50度の角度範囲とされている。なお、本実施形態において、テーパー角度θは、テーパー部分21の側面と第1光ファイバー2の長さ方向とがなす角度と定義する。 The optimum value of the taper angle θ of the tapered portion 21 varies depending on the ratio between the first diameter d1 and the second diameter d2, as described later, but is in the range of 20 to 50 degrees. In the present embodiment, the taper angle θ is defined as an angle between the side surface of the tapered portion 21 and the length direction of the first optical fiber 2.
 第2光ファイバー3は、第2融点を有する材料にて構成された光ファイバーである。本実施形態において、第2光ファイバー3は、石英製の光ファイバーである。第2融点は、石英の融点である約1700度である。 The second optical fiber 3 is an optical fiber made of a material having a second melting point. In the present embodiment, the second optical fiber 3 is an optical fiber made of quartz. The second melting point is about 1700 degrees, which is the melting point of quartz.
 第2光ファイバー3は、長さ方向に垂直な断面が第2直径d2を有する円形となっている。本実施形態において、第2直径d2は、第1直径d1よりも小さい。具体的には、第1直径d1は、第2直径d2の1.5倍から3倍までの範囲とできる。
 これにより、後述する融着方法により、第1光ファイバー2と第2光ファイバー3とを十分な強度にて接続できる。
The cross section of the second optical fiber 3 perpendicular to the length direction is a circle having a second diameter d2. In the present embodiment, the second diameter d2 is smaller than the first diameter d1. Specifically, the first diameter d1 can range from 1.5 times to 3 times the second diameter d2.
Thereby, the first optical fiber 2 and the second optical fiber 3 can be connected with sufficient strength by a fusion method described later.
 また、第2光ファイバー3は、その先端が第1光ファイバー2のテーパー部分21の先端に挿入された状態で、第1光ファイバー2と融着接続されている。第2光ファイバー3の先端のテーパー部分21への挿入深さは、第2直径d2の4%~16%の範囲とできる。例えば、第2光ファイバー3の第2直径d2を125μmとした場合には、上記挿入深さは、5μm~20μmの範囲とできる。 {Circle around (2)} The second optical fiber 3 is fusion-spliced to the first optical fiber 2 with its tip inserted into the tip of the tapered portion 21 of the first optical fiber 2. The insertion depth of the tip of the second optical fiber 3 into the tapered portion 21 can be in the range of 4% to 16% of the second diameter d2. For example, when the second diameter d2 of the second optical fiber 3 is 125 μm, the insertion depth can be in the range of 5 μm to 20 μm.
 上記の構成を有することにより、第1光ファイバー2と第2光ファイバー3とを融着接続して製造される光ファイバー1は、取り扱い時に第2光ファイバー3が第1光ファイバー2から分離しにくく、また、曲げたときに破壊されにくい。
 具体的には、第2光ファイバー3の先端を、第1光ファイバー2のテーパー部分21の先端に上記の範囲の深さだけ挿入することで、第1光ファイバー2と第2光ファイバー3とを十分に強い融着強度にて接続できる。
 また、第1光ファイバー2と第2光ファイバー3の接続部分に、上記のテーパー角度θを有するテーパー部分21を設けることで、例えば、光ファイバー1を曲げた際に、2つの光ファイバーの接続部分に応力を集中しにくくできる。
With the above configuration, the optical fiber 1 manufactured by fusion splicing the first optical fiber 2 and the second optical fiber 3 makes it difficult for the second optical fiber 3 to be separated from the first optical fiber 2 during handling, and is bent. Hard to be destroyed when
Specifically, the first optical fiber 2 and the second optical fiber 3 are sufficiently strong by inserting the distal end of the second optical fiber 3 into the distal end of the tapered portion 21 of the first optical fiber 2 by a depth within the above range. Connection can be made with fusion strength.
Further, by providing the tapered portion 21 having the above-described taper angle θ at the connection portion between the first optical fiber 2 and the second optical fiber 3, for example, when the optical fiber 1 is bent, stress is applied to the connection portion between the two optical fibers. It can be difficult to concentrate.
 異なる材料にて構成される2つの光ファイバーを融着接続した上記光ファイバー1は、第1光ファイバー2の材料に応じて、例えば、ファイバーレーザー、ファイバー増幅器、ファイバーセンサ、伝送ファイバーなどとして応用できる。 The optical fiber 1 in which two optical fibers made of different materials are fusion-spliced can be applied as, for example, a fiber laser, a fiber amplifier, a fiber sensor, a transmission fiber, or the like, depending on the material of the first optical fiber 2.
(2)融着装置
 次に、図2及び図3を用いて、融着装置100を説明する。図2は、融着装置の全体構成を示す図である。図3は、ファイバー移動装置の構成を示す図である。
 本実施形態に係る融着装置100は、加熱レーザー光HLを照射することで融点が低い第1光ファイバー2を加熱して軟化させ、第2光ファイバー3を軟化した第1光ファイバー2に押しつけることで融着する。
 融着装置100は、ファイバー移動装置4と、加熱光源6と、シャッター8と、を主に備える。
(2) Fusing Apparatus Next, the fusing apparatus 100 will be described with reference to FIGS. FIG. 2 is a diagram showing the overall configuration of the fusion device. FIG. 3 is a diagram illustrating a configuration of the fiber moving device.
The fusion device 100 according to the present embodiment heats and softens the first optical fiber 2 having a low melting point by irradiating the heating laser beam HL, and presses the second optical fiber 3 against the softened first optical fiber 2 to thereby fuse the first optical fiber 2. To wear.
The fusion device 100 mainly includes a fiber moving device 4, a heating light source 6, and a shutter 8.
(2-1)ファイバー移動装置
 ファイバー移動装置4は、第1光ファイバー2及び/又は第2光ファイバー3を、第1方向(図3)とそれとは逆の第2方向(図3)に移動させる装置である。具体的には、ファイバー移動装置4は、第1移動部41と、第2移動部43と、を有する。
 第1方向は、第1光ファイバー2の長さ方向に平行であり、かつ、第1光ファイバー2に近づく方向と定義される。一方、第2方向は、第1光ファイバー2の長さ方向に平行であり、かつ、第1光ファイバー2から離れる方向と定義される。
(2-1) Fiber moving device The fiber moving device 4 moves the first optical fiber 2 and / or the second optical fiber 3 in a first direction (FIG. 3) and a second direction (FIG. 3) opposite thereto. It is. Specifically, the fiber moving device 4 includes a first moving unit 41 and a second moving unit 43.
The first direction is defined as a direction parallel to the length direction of the first optical fiber 2 and approaching the first optical fiber 2. On the other hand, the second direction is defined as a direction parallel to the length direction of the first optical fiber 2 and away from the first optical fiber 2.
 第1移動部41は、第1光ファイバー2を、第1方向又は第2方向に移動させる。第1移動部41は、第1移動ステージ41aと、第1保持部41bと、を有する。
 第1移動ステージ41aは、第1方向又は第2方向に移動可能なステージである。第1移動ステージ41aは、例えば、X-Yステージである。第1移動ステージ41aを二次元に移動可能とすることで、第1光ファイバー2の先端を精度よく位置合わせできる。第1移動ステージ41aは、例えばピエゾ素子などにより、μm単位にて精度よく移動が制御可能となっている。
The first moving unit 41 moves the first optical fiber 2 in the first direction or the second direction. The first moving section 41 has a first moving stage 41a and a first holding section 41b.
The first moving stage 41a is a stage that can move in the first direction or the second direction. The first moving stage 41a is, for example, an XY stage. By allowing the first moving stage 41a to move two-dimensionally, the tip of the first optical fiber 2 can be accurately positioned. The movement of the first movement stage 41a can be controlled with high accuracy in units of μm by, for example, a piezo element.
 第1保持部41bは、第1光ファイバー2を保持する。第1保持部41bは、例えば、V形状の溝の底部に第1光ファイバー2をネジなどで押しつけて保持する、光ファイバー用のクランプである。
 第1保持部41bは、第1移動ステージ41aの上部に固定され、第1移動ステージ41aの移動と共に、第1方向又は第2方向に移動する。
The first holding unit 41b holds the first optical fiber 2. The first holding part 41b is, for example, a clamp for an optical fiber that presses and holds the first optical fiber 2 against the bottom of the V-shaped groove with a screw or the like.
The first holding unit 41b is fixed on the upper part of the first moving stage 41a, and moves in the first direction or the second direction along with the movement of the first moving stage 41a.
 第2移動部43は、第2光ファイバー3を、第1方向又は第2方向に移動させる。第2移動部43は、第2移動ステージ43aと、第2保持部43bと、を有する。
 第2移動ステージ43a及び第2保持部43bの構成及び機能は、それぞれ、第1移動ステージ41aと第1保持部41bと同じであるので、ここでは説明を省略する。
The second moving unit 43 moves the second optical fiber 3 in the first direction or the second direction. The second moving section 43 has a second moving stage 43a and a second holding section 43b.
The configurations and functions of the second moving stage 43a and the second holding unit 43b are the same as those of the first moving stage 41a and the first holding unit 41b, respectively, and thus description thereof will be omitted.
(2-2)加熱光源
 加熱光源6は、加熱レーザー光HLを出力する光源である。加熱光源6としては、例えば、赤外光を出力するCOレーザー光源を用いることができる。加熱光源6は、加熱レーザー光HLの強度を精度よく制御可能となっている。
 加熱光源6から出力された加熱レーザー光HLは、第1ミラー61により経路を変更され、光分岐部材62(例えば、ハーフミラー)に入射される。光分岐部材62に入射された加熱レーザー光HLは、2方向に分岐される。
(2-2) Heating Light Source The heating light source 6 is a light source that outputs the heating laser light HL. As the heating light source 6, for example, a CO 2 laser light source that outputs infrared light can be used. The heating light source 6 can precisely control the intensity of the heating laser beam HL.
The path of the heating laser beam HL output from the heating light source 6 is changed by the first mirror 61 and is incident on the light splitting member 62 (for example, a half mirror). The heating laser beam HL incident on the light branching member 62 is branched in two directions.
 光分岐部材62により分岐された加熱レーザー光HLの一方は、第2ミラー63により経路を変えられ、第1光ファイバー2と第2光ファイバー3の先端が配置された位置に、所定の一方向から到達する。
 当該一方の加熱レーザー光HLは、第1レンズ64により、第1光ファイバー2と第2光ファイバー3の先端が配置された位置(又はその近傍)に焦点を結ぶ。
One of the heating laser beams HL branched by the light branching member 62 has its path changed by the second mirror 63 and reaches the position where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged from one predetermined direction. I do.
The one heating laser beam HL is focused by the first lens 64 at a position (or a vicinity thereof) where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged.
 光分岐部材62により分岐された加熱レーザー光HLの他方は、第3ミラー65により経路を変えられ、第1光ファイバー2と第2光ファイバー3の先端が配置された位置に、上記の所定の一方向とは逆の方向から到達する。
 当該他方の加熱レーザー光HLは、第2レンズ66により、第1光ファイバー2と第2光ファイバー3の先端が配置された位置(又はその近傍)に焦点を結ぶ。
The other one of the heating laser beams HL branched by the light branching member 62 is changed in path by the third mirror 65 and is positioned at the position where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged in the above-mentioned predetermined one direction. Arrives from the opposite direction.
The other heating laser beam HL is focused by the second lens 66 at a position (or a vicinity thereof) where the tips of the first optical fiber 2 and the second optical fiber 3 are arranged.
 このように、加熱レーザー光HLを、第1光ファイバー2と第2光ファイバー3の先端に互いに逆となる2方向から照射することにより、第1光ファイバー2と第2光ファイバー3の先端を均一に加熱できる。 By irradiating the heating laser beam HL to the tip of the first optical fiber 2 and the tip of the second optical fiber 3 in two directions opposite to each other, the tip of the first optical fiber 2 and the tip of the second optical fiber 3 can be uniformly heated. .
 第1光ファイバー2及び第2光ファイバー3に照射する加熱レーザー光HLの照射径(直径)は、第1光ファイバー2の直径よりも十分に大きいことが好ましい。例えば、加熱レーザー光HLの照射径を、数百μm程度とできる。 It is preferable that the irradiation diameter (diameter) of the heating laser beam HL applied to the first optical fiber 2 and the second optical fiber 3 is sufficiently larger than the diameter of the first optical fiber 2. For example, the irradiation diameter of the heating laser beam HL can be set to about several hundred μm.
(2-3)シャッター
 シャッター8は、加熱光源6から光分岐部材62までの加熱レーザー光HLの光路上又はその近傍に配置される。本実施形態では、図2に示すように、シャッター8は、加熱光源6と第1ミラー61との間に配置されている。
(2-3) Shutter The shutter 8 is arranged on or near the optical path of the heating laser beam HL from the heating light source 6 to the light branching member 62. In the present embodiment, as shown in FIG. 2, the shutter 8 is arranged between the heating light source 6 and the first mirror 61.
 シャッター8が加熱レーザー光HLの光路上に配置されると、シャッター8による加熱レーザー光HLが遮断され、第1光ファイバー2及び第2光ファイバー3の先端の加熱が停止される。
 その一方、シャッター8が加熱レーザー光HLの光路から外れると、加熱レーザー光HLは、第1光ファイバー2及び第2光ファイバー3の先端まで到達し、当該先端が加熱される。
When the shutter 8 is disposed on the optical path of the heating laser beam HL, the heating laser beam HL by the shutter 8 is shut off, and the heating of the distal ends of the first optical fiber 2 and the second optical fiber 3 is stopped.
On the other hand, when the shutter 8 deviates from the optical path of the heating laser light HL, the heating laser light HL reaches the tips of the first optical fiber 2 and the second optical fiber 3, and the tips are heated.
 すなわち、シャッター8は、第1光ファイバー2及び第2光ファイバー3の先端の加熱の実行と停止を制御する。シャッター8により加熱の実行と停止を制御することにより、ファイバー先端の短時間の加熱が可能となる。 That is, the shutter 8 controls the execution and stop of the heating of the tips of the first optical fiber 2 and the second optical fiber 3. By controlling the execution and stop of the heating by the shutter 8, it is possible to heat the fiber tip for a short time.
 融着装置100は、さらに、図示しない制御部を備える。制御部は、CPU、記憶装置(RAM、ROMなど)、各種インターフェースを有するコンピュータシステムであり、融着装置100の各部を制御する。具体的には、制御部は、ファイバー移動装置4、加熱光源6、及びシャッター8を制御する。
 制御部は、融着装置100の各部の制御を、制御部を構成するコンピュータシステムの記憶装置に記憶されたプログラムにより実行してもよい。
The fusion device 100 further includes a control unit (not shown). The control unit is a computer system having a CPU, a storage device (RAM, ROM, etc.) and various interfaces, and controls each unit of the fusion device 100. Specifically, the control unit controls the fiber moving device 4, the heating light source 6, and the shutter 8.
The control unit may execute control of each unit of the fusion device 100 by a program stored in a storage device of a computer system constituting the control unit.
(2-4)融着状態等をモニターするための構成
 その他、融着装置100は、第1光ファイバー2と第2光ファイバー3の融着状態等を監視するための構成を備えている。
 具体的には、融着装置100は、一対のカメラ10を備える。カメラ10は、第1光ファイバー2と第2光ファイバー3の配置状態、これらの光ファイバーの融着工程、光ファイバーの融着状態を視覚的な情報(例えば、動画、静止画)により取得する。
 一対のカメラ10のそれぞれは、加熱レーザー光HLが照射される2方向のそれぞれから、第1光ファイバー2と第2光ファイバー3の状態を取得する。
(2-4) Configuration for Monitoring the Fusion State and the Like In addition, the fusion device 100 has a configuration for monitoring the fusion state and the like of the first optical fiber 2 and the second optical fiber 3.
Specifically, the fusion device 100 includes a pair of cameras 10. The camera 10 acquires the arrangement state of the first optical fiber 2 and the second optical fiber 3, the fusion step of these optical fibers, and the fusion state of the optical fibers based on visual information (for example, a moving image, a still image).
Each of the pair of cameras 10 acquires the state of the first optical fiber 2 and the second optical fiber 3 from each of the two directions in which the heating laser light HL is irradiated.
 また、融着装置100は、第1光ファイバー2と第2光ファイバー3とを融着接続して製造された光ファイバー1の光の透過率を測定するための構成を備えている。具体的には、融着装置100は、検査光源12と、受光装置14と、を備える。
 検査光源12は、光ファイバー1の第2光ファイバー3側から入射する検査光ILを出力する。検査光源12は、例えば、レーザーダイオードである。
 受光装置14は、第1光ファイバー2及び第2光ファイバー3を伝搬した検査光ILの強度を測定する。受光装置14は、例えば、検査光ILの強度を測定するパワーメーターである。
Further, the fusion splicer 100 has a configuration for measuring the light transmittance of the optical fiber 1 manufactured by fusion splicing the first optical fiber 2 and the second optical fiber 3. Specifically, the fusion device 100 includes an inspection light source 12 and a light receiving device 14.
The inspection light source 12 outputs inspection light IL that enters from the second optical fiber 3 side of the optical fiber 1. The inspection light source 12 is, for example, a laser diode.
The light receiving device 14 measures the intensity of the inspection light IL transmitted through the first optical fiber 2 and the second optical fiber 3. The light receiving device 14 is, for example, a power meter that measures the intensity of the inspection light IL.
 上記の構成において、検査光源12から出力された検査光ILの強度と、受光装置14にて測定された検査光ILの強度と、の比率に基づいて、光ファイバー1の光の透過率を算出できる。
 光ファイバー1の光の透過率が低い場合には、第1光ファイバー2と第2光ファイバー3の融着接続による損失が大きいことを意味しており、これら2つの光ファイバーの接続が不適切であると判断できる。
 2つの光ファイバーの接続が不適切な場合としては、例えば、第1光ファイバー2の先端が結晶化して透明度が低くなった結果、光ファイバー1の光の透過率が低下した場合がある。この場合には、第1光ファイバー2の温度が長時間結晶化温度以上となったために、接続が不適切になったと推測できる。
 その他、第1光ファイバー2及び第2光ファイバー3の加熱時及び徐冷時に応力によりこれらの光ファイバーの融着が解除された場合、これらの光ファイバーの融着接続部分の形状不良により光結合損失が生じた場合、融着面に異物が混入した場合などにも、光ファイバー1の透過率が低下する可能性がある。このような場合にも、融着接続が不適切になったと推測できる。
In the above configuration, the light transmittance of the optical fiber 1 can be calculated based on the ratio between the intensity of the inspection light IL output from the inspection light source 12 and the intensity of the inspection light IL measured by the light receiving device 14. .
If the light transmittance of the optical fiber 1 is low, it means that the loss due to fusion splicing of the first optical fiber 2 and the second optical fiber 3 is large, and it is determined that the connection of these two optical fibers is inappropriate. it can.
The case where the connection between the two optical fibers is inappropriate is, for example, a case where the tip of the first optical fiber 2 is crystallized and the transparency is reduced, so that the light transmittance of the optical fiber 1 is reduced. In this case, since the temperature of the first optical fiber 2 has been equal to or higher than the crystallization temperature for a long time, it can be assumed that the connection has become inappropriate.
In addition, when the fusion of these optical fibers is released by stress when the first optical fiber 2 and the second optical fiber 3 are heated and gradually cooled, optical coupling loss occurs due to a defective shape of the fusion spliced portion of these optical fibers. In this case, the transmittance of the optical fiber 1 may be reduced even when a foreign substance is mixed into the fusion surface. Even in such a case, it can be assumed that the fusion splicing has become inappropriate.
(3)光ファイバーの融着方法
 以下、図4を用いて、第1実施形態に係る光ファイバーの融着方法を説明する。図4は、光ファイバーの融着方法を模式的に示す図である。以下では、上記の第1光ファイバー2と第2光ファイバー3を融着して、図1に示すような光ファイバー1を製造する工程を用いて、融点が異なる2つの光ファイバーの融着方法を説明する。
 最初に、第1光ファイバー2と第2光ファイバー3とを、融着装置100に配置する。
 具体的には、まず、第1光ファイバー2を第1保持部41bにより保持し、第2光ファイバー3を第2保持部43bにより保持する。
 その後、第1移動ステージ41a及び/又は第2移動ステージ43aにより、第1光ファイバー2及び/又は第2光ファイバー3を移動させて、第1光ファイバー2及び第2光ファイバー3の位置合わせをする。例えば、図4の(A)に示すように、第1光ファイバー2の中心線(図4の(A)では、点線にて示した線)と第2光ファイバー3の中心線が一致するように、位置合わせをする。
(3) Method for Fusing Optical Fiber A method for fusing an optical fiber according to the first embodiment will be described below with reference to FIG. FIG. 4 is a diagram schematically showing a method for fusing optical fibers. Hereinafter, a method for fusing two optical fibers having different melting points will be described using a process of fusing the first optical fiber 2 and the second optical fiber 3 to manufacture the optical fiber 1 as shown in FIG.
First, the first optical fiber 2 and the second optical fiber 3 are arranged in the fusion device 100.
Specifically, first, the first optical fiber 2 is held by the first holding unit 41b, and the second optical fiber 3 is held by the second holding unit 43b.
Thereafter, the first optical fiber 2 and / or the second optical fiber 3 is moved by the first moving stage 41a and / or the second moving stage 43a, and the first optical fiber 2 and the second optical fiber 3 are aligned. For example, as shown in FIG. 4A, the center line of the first optical fiber 2 (the dotted line in FIG. 4A) coincides with the center line of the second optical fiber 3. Align.
 さらに、第1移動ステージ41a及び/又は第2移動ステージ43aにより、第1光ファイバー2及び/又は第2光ファイバー3を移動させて、第1光ファイバー2の先端と第2光ファイバー3の先端とを互いに近接させる。 Further, the first optical fiber 2 and / or the second optical fiber 3 is moved by the first moving stage 41a and / or the second moving stage 43a so that the tip of the first optical fiber 2 and the tip of the second optical fiber 3 are close to each other. Let it.
 第1光ファイバー2と第2光ファイバー3とを融着装置100に配置後、加熱光源6から加熱レーザー光HLを出力し、シャッター8を加熱レーザー光HLの光路から外すことで、図4の(B)に示すように、第1光ファイバー2の先端部分に加熱レーザー光HLを照射する。なお、図3において、加熱レーザー光HLの照射領域は、点線丸にて示している。 After the first optical fiber 2 and the second optical fiber 3 are arranged in the fusion splicer 100, the heating laser light HL is output from the heating light source 6 and the shutter 8 is removed from the optical path of the heating laser light HL. As shown in (), the tip of the first optical fiber 2 is irradiated with the heating laser beam HL. In FIG. 3, the irradiation area of the heating laser beam HL is indicated by a dotted circle.
 上記のように、第1光ファイバー2の先端と第2光ファイバー3の先端とを互いに近接させて配置しているので、加熱レーザー光HLは、第1光ファイバー2の先端と第2光ファイバー3の先端の両方に照射される。その結果、第1光ファイバー2の先端部分だけでなく、第2光ファイバー3の先端部分も加熱される。
 第1光ファイバー2の先端部分と第2光ファイバー3の先端部分とを両方加熱することにより、後述する第2光ファイバー3を第1方向に移動する工程において、加熱された第1光ファイバー2に第2光ファイバー3が接触したときに、第2光ファイバー3が第1光ファイバー2の熱を奪い、第1光ファイバー2の温度が下がることを抑制できる。
As described above, since the distal end of the first optical fiber 2 and the distal end of the second optical fiber 3 are arranged close to each other, the heating laser light HL is applied to the distal end of the first optical fiber 2 and the distal end of the second optical fiber 3. Both are irradiated. As a result, not only the tip of the first optical fiber 2 but also the tip of the second optical fiber 3 is heated.
By heating both the distal end portion of the first optical fiber 2 and the distal end portion of the second optical fiber 3, in the step of moving the second optical fiber 3 in the first direction, which will be described later, the heated first optical fiber 2 is connected to the second optical fiber 2. When the contacts 3 come in contact with each other, the second optical fiber 3 takes away the heat of the first optical fiber 2 and the temperature of the first optical fiber 2 can be prevented from lowering.
 加熱光源6から出力する加熱レーザー光HLの強度を所定の強度に調整した状態で、当該加熱レーザー光HLを、第1光ファイバー2の先端と第2光ファイバー3の先端に数秒間照射する。
 これにより、第1光ファイバー2の先端部分が、第1光ファイバー2が軟化する第1温度以上、かつ、第1光ファイバー2が結晶化する第2温度よりも小さい温度に加熱される。
 上記の第1温度は、第1光ファイバー2の軟化点である。第2温度は、第1光ファイバー2の結晶化温度である。例えば、第1光ファイバー2がZBLANガラスである場合には、第1温度は約300°Cであり、第2温度は約370°Cである。
With the intensity of the heating laser beam HL output from the heating light source 6 adjusted to a predetermined intensity, the heating laser beam HL is applied to the tip of the first optical fiber 2 and the tip of the second optical fiber 3 for several seconds.
Thereby, the tip portion of the first optical fiber 2 is heated to a temperature equal to or higher than the first temperature at which the first optical fiber 2 softens and lower than the second temperature at which the first optical fiber 2 crystallizes.
The first temperature is the softening point of the first optical fiber 2. The second temperature is a crystallization temperature of the first optical fiber 2. For example, when the first optical fiber 2 is ZBLAN glass, the first temperature is about 300 ° C. and the second temperature is about 370 ° C.
 第1光ファイバー2の先端部分を上記の温度範囲とすることで、第1光ファイバーを確実に軟化させつつ、第1光ファイバー2が結晶化して透明度が低下することを確実に回避できる。その結果、第1光ファイバー2と第2光ファイバー3との融着接続を確実にしつつ、融着部分の融着損失を低くできる。
 なお、第2光ファイバー3は、上記の第1温度から第2温度までの範囲内の温度では軟化しない。
By setting the distal end portion of the first optical fiber 2 in the above-mentioned temperature range, it is possible to reliably avoid the crystallization of the first optical fiber 2 and the decrease in the transparency while reliably softening the first optical fiber. As a result, it is possible to reduce the fusion loss of the fusion portion while ensuring the fusion connection between the first optical fiber 2 and the second optical fiber 3.
It should be noted that the second optical fiber 3 does not soften at a temperature in the range from the first temperature to the second temperature.
 加熱レーザー光HLの照射により、第1光ファイバー2及び第2光ファイバー3の先端部分を加熱して、第1光ファイバー2の先端部分を上記の温度範囲に維持しつつ、図4の(C)に示すように、第2光ファイバー3を、第1光ファイバー2に対して第1方向に移動させて、第2光ファイバー3の先端部分を第1光ファイバー2に挿入させる。
 すなわち、第2光ファイバー3を、第1光ファイバー2に近づける方向に移動させて、第2光ファイバー3の先端部分を第1光ファイバー2に挿入させる。
By irradiating the heating laser beam HL, the distal end portions of the first optical fiber 2 and the second optical fiber 3 are heated, and the distal end portion of the first optical fiber 2 is maintained in the above-mentioned temperature range, and as shown in FIG. As described above, the second optical fiber 3 is moved in the first direction with respect to the first optical fiber 2, and the tip of the second optical fiber 3 is inserted into the first optical fiber 2.
That is, the second optical fiber 3 is moved in a direction approaching the first optical fiber 2, and the tip of the second optical fiber 3 is inserted into the first optical fiber 2.
 このとき、第1移動部41により第1光ファイバー2を第2方向に移動させつつ、第2移動部43により第2光ファイバー3を第1方向に移動させることで、第2光ファイバー3を第1光ファイバー2に対して相対的に第1方向に移動させる。 At this time, while the first optical fiber 2 is moved in the second direction by the first moving unit 41, the second optical fiber 3 is moved in the first direction by the second moving unit 43, thereby connecting the second optical fiber 3 to the first optical fiber. 2 relative to the first direction.
 上記の工程において、第2光ファイバー3の先端の第1光ファイバー2への挿入距離は、第2直径d2の20%~40%の範囲の距離が好ましく、第2直径d2の25%~35%の範囲の距離がより好ましく、第2直径d2の32%の距離が最も好ましい。
 例えば、第2直径d2を125μmとした場合には、第2光ファイバー3の先端の第1光ファイバー2への挿入距離を25μm~50μmとすることが好ましく、30μm~45μmとすることがより好ましく、40μmとすることが最も好ましい。
 これにより、第2光ファイバー3の先端の第1光ファイバー2への挿入深さを適切な深さとして、これら2つの光ファイバーを十分に強い融着強度にて接続できる。
In the above process, the insertion distance of the tip of the second optical fiber 3 into the first optical fiber 2 is preferably in the range of 20% to 40% of the second diameter d2, and is preferably 25% to 35% of the second diameter d2. A range distance is more preferable, and a distance of 32% of the second diameter d2 is most preferable.
For example, when the second diameter d2 is 125 μm, the insertion distance of the tip of the second optical fiber 3 into the first optical fiber 2 is preferably 25 μm to 50 μm, more preferably 30 μm to 45 μm, and more preferably 40 μm. Is most preferable.
Thus, the insertion depth of the tip of the second optical fiber 3 into the first optical fiber 2 is set to an appropriate depth, and these two optical fibers can be connected with a sufficiently high fusion strength.
 また、第2光ファイバー3を第1方向へ移動させるときの速度は、例えば、毎秒数十μm程度とする。 The speed at which the second optical fiber 3 is moved in the first direction is, for example, about several tens of μm per second.
 第2光ファイバー3の先端を第1光ファイバー2に挿入する際に第2光ファイバー3を第1光ファイバー2に押し込む状態となるので、第1光ファイバー2の最先端部は、図4の(C)に示すように、若干膨らんだ状態となる。
 また、図4の(C)に示すように、第2光ファイバー3の先端を第1光ファイバー2に挿入した状態においては、第1光ファイバー2と第2光ファイバー3との境界部分(接続部分)は、段差形状となっている。
When the tip of the second optical fiber 3 is inserted into the first optical fiber 2, the second optical fiber 3 is pushed into the first optical fiber 2. Therefore, the most distal end of the first optical fiber 2 is shown in FIG. As a result, a slightly expanded state is obtained.
Further, as shown in FIG. 4C, in a state where the tip of the second optical fiber 3 is inserted into the first optical fiber 2, the boundary portion (connection portion) between the first optical fiber 2 and the second optical fiber 3 is: It has a step shape.
 第1光ファイバー2と第2光ファイバー3との接続部分が段差形状となった状態で光ファイバーを冷却すると、第1光ファイバー2と第2光ファイバー3の接続部分が段差形状のまま、これら2つの光ファイバーが接続されることとなる。このような段差形状の接続部分は、光ファイバーを曲げたときに応力が集中して損傷しやすい。 When the optical fiber is cooled in a state where the connecting portion between the first optical fiber 2 and the second optical fiber 3 has a stepped shape, the two optical fibers are connected while the connecting portion between the first optical fiber 2 and the second optical fiber 3 remains in the stepped shape. Will be done. When the optical fiber is bent, stress is concentrated on the connection portion having such a step shape, and the connection portion is easily damaged.
 従って、本実施形態においては、第1光ファイバー2と第2光ファイバー3の接続部分を、強度が段差形状よりも強くなるテーパー形状にする。具体的には、以下のようにして、接続部分をテーパー形状とする。
 まず、図4の(C)に示すように第2光ファイバー3の先端を第1光ファイバー2に挿入した状態で、加熱レーザー光HLの照射を数秒間行う。
 その後、加熱レーザー光HLの照射を継続しつつ、第2光ファイバー3を第2方向に移動させる。すなわち、第2光ファイバー3を、第1光ファイバー2から離れる方向に移動させる。
Therefore, in the present embodiment, the connecting portion between the first optical fiber 2 and the second optical fiber 3 is formed into a tapered shape in which the strength is stronger than the stepped shape. Specifically, the connection portion is formed in a tapered shape as described below.
First, as shown in FIG. 4C, irradiation with the heating laser light HL is performed for several seconds with the tip of the second optical fiber 3 inserted into the first optical fiber 2.
After that, the second optical fiber 3 is moved in the second direction while the irradiation of the heating laser beam HL is continued. That is, the second optical fiber 3 is moved in a direction away from the first optical fiber 2.
 このとき、第1移動部41により第1光ファイバー2を第1方向に移動させつつ、第2移動部43により第2光ファイバー3を第2方向に移動させることで、第2光ファイバー3を第1光ファイバー2に対して相対的に第2方向に移動させる。 At this time, while the first optical fiber 2 is moved in the first direction by the first moving unit 41, the second optical fiber 3 is moved in the second direction by the second moving unit 43, whereby the second optical fiber 3 is moved to the first optical fiber. 2 relative to the second direction.
 上記の工程において、第1光ファイバー2の第2光ファイバー3と接続された側の先端部分は、表面張力により第2光ファイバー3の先端に付着した状態で、第2光ファイバー3の第2方向への移動と共に移動する。その結果、第1光ファイバー2の当該先端部分は、第2光ファイバー3の第2方向への移動により引き延ばされる。
 この引き延ばしにより、第1光ファイバー2の第2光ファイバー3と接続された側の先端の直径が、第1直径d1よりも減少して第2直径d2とほぼ同じになる。その結果、図4の(D)に示すように、第1光ファイバー2と第2光ファイバー3の接続部分がテーパー形状になる。
In the above step, the tip of the first optical fiber 2 on the side connected to the second optical fiber 3 is moved in the second direction while the second optical fiber 3 is attached to the tip of the second optical fiber 3 by surface tension. Move with. As a result, the tip portion of the first optical fiber 2 is elongated by the movement of the second optical fiber 3 in the second direction.
Due to this stretching, the diameter of the tip of the first optical fiber 2 on the side connected to the second optical fiber 3 becomes smaller than the first diameter d1 and becomes substantially the same as the second diameter d2. As a result, as shown in FIG. 4D, the connecting portion between the first optical fiber 2 and the second optical fiber 3 has a tapered shape.
 上記のように、本実施形態においては、低融点の第1光ファイバー2の先端部分が加熱されている。これにより、引き延ばされる側の第1光ファイバー2の粘度が低い状態となるので、第2光ファイバー3を第1光ファイバー2から離れる方向に移動させる際に、第1光ファイバー2と第2光ファイバー3の接続部分にテーパー形状が形成しやすくなる。 As described above, in the present embodiment, the distal end portion of the first optical fiber 2 having a low melting point is heated. As a result, the viscosity of the first optical fiber 2 on the side to be stretched becomes low, so that when the second optical fiber 3 is moved away from the first optical fiber 2, the connection between the first optical fiber 2 and the second optical fiber 3 is made. It becomes easy to form a tapered shape in the portion.
 また、上記の工程において、第2光ファイバー3の第2方向への移動距離は、第2直径d2の50%~70%の範囲の距離が好ましく、第2直径d2の55%~65%の範囲の距離がより好ましく、第2直径d2の64%の距離が最も好ましい。
 例えば、第2直径d2を125μmとした場合には、第2光ファイバー3の第2方向への移動距離を62μm~88μmとすることが好ましく、68μm~82μmとすることがより好ましく、80μmとすることが最も好ましい。
 これにより、第1光ファイバー2先端のテーパー角度θを、第1光ファイバー2と第2光ファイバー3の接続部分に応力が集中しにくい適切な角度とできる。
In the above step, the moving distance of the second optical fiber 3 in the second direction is preferably in the range of 50% to 70% of the second diameter d2, and is preferably in the range of 55% to 65% of the second diameter d2. Is more preferable, and a distance of 64% of the second diameter d2 is most preferable.
For example, when the second diameter d2 is 125 μm, the moving distance of the second optical fiber 3 in the second direction is preferably 62 μm to 88 μm, more preferably 68 μm to 82 μm, and more preferably 80 μm. Is most preferred.
Accordingly, the taper angle θ at the tip of the first optical fiber 2 can be set to an appropriate angle at which stress is less likely to be concentrated on the connection portion between the first optical fiber 2 and the second optical fiber 3.
 さらに、テーパー形状を形成する際の第2光ファイバー3の移動速度は、例えば、毎秒数十μm程度とする。 移動 Further, the moving speed of the second optical fiber 3 when forming the tapered shape is, for example, about several tens of μm per second.
 第2光ファイバー3を第2方向へ移動させることにより、第1光ファイバー2の先端部分を引き延ばして接続部分にテーパー形状を形成後、図4の(E)に示すように、加熱レーザー光HLの照射を停止して第1光ファイバー2及び第2光ファイバー3を冷却し、第1光ファイバー2と第2光ファイバー3とを接続する。
 本実施形態においては、数十秒~数分程度かけて加熱レーザー光HLの強度を徐々に低下させて最終的に0とすることにより、第1光ファイバー2及び第2光ファイバー3を徐冷する。
By moving the second optical fiber 3 in the second direction, the distal end portion of the first optical fiber 2 is elongated to form a tapered shape at the connection portion, and then the heating laser beam HL is applied as shown in FIG. Is stopped, the first optical fiber 2 and the second optical fiber 3 are cooled, and the first optical fiber 2 and the second optical fiber 3 are connected.
In this embodiment, the first optical fiber 2 and the second optical fiber 3 are gradually cooled by gradually lowering the intensity of the heating laser beam HL over several tens of seconds to several minutes to finally reduce it to zero.
 一般的に、低融点である第1光ファイバー2と高融点である第2光ファイバー3との間には、熱膨張係数に大きな違いがある。例えば、第1光ファイバー2に用いられるZBLANガラスの膨張係数は20×10-6/Kであるのに対し、第2光ファイバー3に用いられる石英の膨張係数は0.55×10-6/Kであり、40倍近くの差がある。
 そのため、第1光ファイバー2と第2光ファイバー3とを急激に冷却すると、この熱膨張係数の違いにより、第1光ファイバー2と第2光ファイバー3との接続部分に応力が発生して、冷却時に当該接続部分が破損する可能性がある。
Generally, there is a large difference in the coefficient of thermal expansion between the first optical fiber 2 having a low melting point and the second optical fiber 3 having a high melting point. For example, the expansion coefficient of ZBLAN glass used for the first optical fiber 2 is 20 × 10 −6 / K, whereas the expansion coefficient of quartz used for the second optical fiber 3 is 0.55 × 10 −6 / K. There is a difference of nearly 40 times.
Therefore, when the first optical fiber 2 and the second optical fiber 3 are rapidly cooled, a stress is generated at a connection portion between the first optical fiber 2 and the second optical fiber 3 due to the difference in the coefficient of thermal expansion, and the connection is made during cooling. Parts may be damaged.
 従って、上記のように、数十秒~数分程度かけて第1光ファイバー2及び第2光ファイバー3を徐冷することにより、第1光ファイバーと第2光ファイバーの膨張係数の違いにより、これら2つの光ファイバーの接続部分に応力が発生して破損ことを抑制できる。 Therefore, as described above, by gradually cooling the first optical fiber 2 and the second optical fiber 3 for about several tens of seconds to several minutes, the two optical fibers are different due to the difference in expansion coefficient between the first optical fiber and the second optical fiber. Can be prevented from being damaged due to the occurrence of stress at the connection portion.
(4)実施例
 上記にて説明した光ファイバーの融着方法により強度の強い融着接続を実現できるかを確認するため、実際に2つの光ファイバーを上記の融着方法により融着接続して、光ファイバー1を製造した。以下、当該光ファイバー1の製造についての実施例について説明する。
(4) Example In order to confirm whether the fusion splicing method of the optical fiber described above can achieve high-strength fusion splicing, two optical fibers were actually fusion spliced by the fusion method described above. 1 was produced. Hereinafter, an example of manufacturing the optical fiber 1 will be described.
 以下の実施例においては、低融点の第1光ファイバー2として、ZBLANガラス製の光ファイバーを用いた。一方、高融点の第2光ファイバー3として、石英製の光ファイバーを用いた。
 第2光ファイバー3の第2直径d2を、125μm(コア径:100μm、クラッド径:125μm)とした。
 一方、第1光ファイバー2の第1直径d1を、240μm(コア径:170μm、クラッド径240μm)と、330μm(コア径:280μm、クラッド径:330μm)の2種類とした。すなわち、第1直径d1を第2直径d2の1.9倍、及び、2.6倍とした。
 以下では、第1直径d1を240μmとした実施例を「実施例1」、330μmとした実施例を「実施例2」と呼ぶことにする。
In the following examples, an optical fiber made of ZBLAN glass was used as the first optical fiber 2 having a low melting point. On the other hand, an optical fiber made of quartz was used as the second optical fiber 3 having a high melting point.
The second diameter d2 of the second optical fiber 3 was 125 μm (core diameter: 100 μm, clad diameter: 125 μm).
On the other hand, the first diameter d1 of the first optical fiber 2 was set to two types: 240 μm (core diameter: 170 μm, clad diameter: 240 μm) and 330 μm (core diameter: 280 μm, clad diameter: 330 μm). That is, the first diameter d1 was 1.9 times and 2.6 times the second diameter d2.
Hereinafter, an example in which the first diameter d1 is 240 μm is referred to as “Example 1”, and an example in which the first diameter d1 is 330 μm is referred to as “Example 2”.
 また、本実施例では、融着接続の強度を調べるため、融着後の光ファイバー1の両端を把持した状態で当該光ファイバー1に引張荷重を与え、接続部分が破断したときの引張荷重を融着接続の強度として測定した。この引張試験は、例えば、ファイバークリーバーを用いて実行できる。 Further, in the present embodiment, in order to examine the strength of the fusion splicing, a tensile load is applied to the optical fiber 1 in a state where both ends of the optical fiber 1 after fusion are gripped, and the tensile load when the joint is broken is fused. It was measured as the strength of the connection. This tensile test can be performed using, for example, a fiber cleaver.
 図5及び図6を用いて、本実施例にて製造した光ファイバー1の接続部分の光学顕微鏡像を示す。図5は、実施例1の光ファイバーの光学顕微鏡像を示す図である。図6は、実施例2の光ファイバーの光学顕微鏡像を示す図である。
 図5及び図6においては、光ファイバー1外周の光学顕微鏡像(各図の(A))と、光ファイバー1の透過光学顕微鏡像(各図の(B))と、を示す。また、図5及び図6においては、第1光ファイバー2を「2」とラベリングし、第2光ファイバー3を「3」とラベリングする。
5 and 6 show optical microscope images of a connection portion of the optical fiber 1 manufactured in the present example. FIG. 5 is a diagram illustrating an optical microscope image of the optical fiber of the first embodiment. FIG. 6 is a diagram illustrating an optical microscope image of the optical fiber of the second embodiment.
FIGS. 5 and 6 show an optical microscope image ((A) of each drawing) of the outer periphery of the optical fiber 1 and a transmission optical microscope image ((B) of each drawing) of the optical fiber 1. 5 and 6, the first optical fiber 2 is labeled as "2" and the second optical fiber 3 is labeled as "3".
 図5及び図6に示されるように、いずれの実施例の光ファイバー1においても、第1光ファイバー2の第2光ファイバー3と接続された側の先端部分は直径が減少してテーパー形状となっている。2つの光ファイバーの接続部分において急激に直径が変化するような段差は見られない。
 また、透過光学顕微鏡像からは、第2光ファイバー3の先端が第1光ファイバー2のコアに挿入されて、第2光ファイバー3の先端が3方向から第1光ファイバー2のコアに覆われていることが分かる。
As shown in FIGS. 5 and 6, in each of the optical fibers 1 of the embodiments, the distal end of the first optical fiber 2 on the side connected to the second optical fiber 3 has a reduced diameter and is tapered. . No step at which the diameter changes suddenly at the connection between the two optical fibers is observed.
From the transmission optical microscope image, it can be seen that the tip of the second optical fiber 3 is inserted into the core of the first optical fiber 2 and the tip of the second optical fiber 3 is covered by the core of the first optical fiber 2 from three directions. I understand.
 また、実施例1及び2の光ファイバー1を引張試験した結果、本実施例の光ファイバー1の接続部分は、200gf~250gfまでの荷重(圧力換算すると、1.6MPa~2MPa)に耐えられるものであることが分かった。
 これは、上記の特許文献1における光ファイバーのプルーフテスト結果(接続部分の強度:80kPa)と比較すると、本実施例の光ファイバー1接続部分は、従来の200倍程度の強度があることを示している。
 また、後述する比較例の光ファイバーと比較しても、接続部分にテーパー形状を形成する、すなわち、第1光ファイバー2がテーパー部分21を有することで、接続部分の強度は2倍以上向上していた。
As a result of a tensile test of the optical fibers 1 of Examples 1 and 2, the connection portion of the optical fiber 1 of the present example can withstand a load of 200 gf to 250 gf (in terms of pressure, 1.6 MPa to 2 MPa). I understood that.
This indicates that the connection portion of the optical fiber 1 of the present embodiment has about 200 times the strength of the conventional one, as compared with the result of the proof test of the optical fiber in Patent Document 1 (the strength of the connection portion: 80 kPa). .
In addition, even when compared with the optical fiber of a comparative example described later, the strength of the connection portion was improved by a factor of two or more by forming a tapered shape in the connection portion, that is, by having the tapered portion 21 in the first optical fiber 2. .
 さらに、本実施例で製造した光ファイバー1の接続部分での融着損失、及び、最適なテーパー角度θを調査するため、様々なテーパー角度θを有するテーパー部分21を有する光ファイバー1を製造し、各光ファイバー1の融着損失を測定した。
 融着損失は、検査光源12から出力した検査光ILを第2光ファイバー3側から入射し、当該検査光ILの強度を第1光ファイバー2側で受光装置14にて測定し、以下の式から算出した。
 なお、以下の式において、「第2光ファイバー3単体での透過光強度」は、第2光ファイバー3の一方から入射し他方にて出力された検査光ILの強度を受光装置14にて測定した実測値であってもよいし、第2光ファイバー3の透過率から算出された理論値であってもよい。
 融着損失=1-(受光装置14にて測定した検査光ILの強度/第2光ファイバー3単体での透過光強度)
Further, in order to investigate the fusion loss at the connection portion of the optical fiber 1 manufactured in the present embodiment and the optimum taper angle θ, the optical fiber 1 having the tapered portions 21 having various taper angles θ was manufactured. The fusion loss of the optical fiber 1 was measured.
The fusion loss is obtained by measuring the intensity of the inspection light IL on the side of the first optical fiber 2 with the light receiving device 14 by inputting the inspection light IL output from the inspection light source 12 from the second optical fiber 3 side, and calculating from the following equation. did.
In the following equation, “the transmitted light intensity of the second optical fiber 3 alone” is an actual measurement obtained by measuring the intensity of the inspection light IL incident from one of the second optical fibers 3 and output from the other by the light receiving device 14. It may be a value or a theoretical value calculated from the transmittance of the second optical fiber 3.
Fusion loss = 1− (intensity of inspection light IL measured by light receiving device 14 / intensity of transmitted light by second optical fiber 3 alone)
 以下、図7及び図8を用いて、テーパー部分21のテーパー角度θと、融着損失との関係を説明する。図7は、実施例1の光ファイバーのテーパー角と融着損失との関係を示す図である。図8は、実施例2の光ファイバーのテーパー角と融着損失との関係を示す図である。
 なお、図7及び図8において、「*」は、融着損失が極めて大きい値であることを示し、光ファイバー1が接続部分で破断(例えば、光ファイバーの融着接続時(加熱/徐冷時)に融着接続が解除されて破断、融着後の光ファイバー1の取扱時に破断)したことを意味している。
Hereinafter, the relationship between the taper angle θ of the tapered portion 21 and the fusion loss will be described with reference to FIGS. FIG. 7 is a diagram illustrating the relationship between the taper angle and the fusion loss of the optical fiber according to the first embodiment. FIG. 8 is a diagram illustrating a relationship between the taper angle and the fusion loss of the optical fiber according to the second embodiment.
7 and 8, “*” indicates that the fusion loss is extremely large, and the optical fiber 1 is broken at the connection portion (for example, at the time of fusion splicing of the optical fiber (at the time of heating / cooling). At the time of handling the optical fiber 1 after the fusion splicing was released.
 図7及び図8に示すように、接続部分が破断しなかった光ファイバー1の融着損失は、0.2dB以下と極めて低いことが分かる。すなわち、上記にて説明した第1実施形態に係る融着方法は、実際の使用にも差し支えない程度の融着損失しか発生させない、優れた方法であることが分かる。 (7) As shown in FIGS. 7 and 8, it can be seen that the fusion loss of the optical fiber 1 in which the connection portion was not broken is extremely low at 0.2 dB or less. That is, it can be seen that the fusion method according to the first embodiment described above is an excellent method that generates only a fusion loss that does not interfere with actual use.
 また、図7及び図8に示すように、テーパー角度θが特定の範囲外にある場合には、全ての光ファイバー1において接続部分は破断した。このことから、テーパー部分21のテーパー角度θを適切な角度とすれば、接続部分の強度を十分なものとできることが分かる。具体的には、テーパー角度θを20度~50度をすれば、接続部分の強度を向上できる。 Further, as shown in FIGS. 7 and 8, when the taper angle θ was out of the specific range, the connection portions of all the optical fibers 1 were broken. From this, it can be seen that if the taper angle θ of the tapered portion 21 is set to an appropriate angle, the strength of the connection portion can be made sufficient. Specifically, if the taper angle θ is set to 20 to 50 degrees, the strength of the connection portion can be improved.
 さらに、接続部分の強度を強くするためのテーパー角度θの最適値が、実施例1の場合と実施例2の場合で異なることが分かる。
 具体的には、図7に示す実施例1の場合、すなわち、第1直径d1(240μm)が第2直径d2(125μm)の2倍程度である場合、最適なテーパー角度θは、22度~30度の範囲であった。
 その一方、図8に示す実施例2の場合、すなわち、第1直径d1(330μm)が第2直径d2(125μm)の3倍程度である場合、最適なテーパー角度θは、35度~50度の範囲にあった。
Further, it can be seen that the optimum value of the taper angle θ for increasing the strength of the connection portion differs between the case of the first embodiment and the case of the second embodiment.
Specifically, in the case of Example 1 shown in FIG. 7, that is, when the first diameter d1 (240 μm) is about twice as large as the second diameter d2 (125 μm), the optimum taper angle θ is 22 degrees or less. The range was 30 degrees.
On the other hand, in the case of the second embodiment shown in FIG. 8, that is, when the first diameter d1 (330 μm) is about three times the second diameter d2 (125 μm), the optimum taper angle θ is 35 degrees to 50 degrees. Was in the range.
 このように、第1光ファイバー2の第1直径d1と、第2光ファイバー3の第2直径d2の比率に応じて、テーパー角度θを適切な範囲とすることで、テーパー部分21を第1光ファイバー2と第2光ファイバー3の接続部分に応力が集中しにくい最適な形状とできる。 As described above, by setting the taper angle θ in an appropriate range according to the ratio between the first diameter d1 of the first optical fiber 2 and the second diameter d2 of the second optical fiber 3, the tapered portion 21 can be formed into the first optical fiber 2 It is possible to obtain an optimum shape in which stress is not easily concentrated on the connection portion between the first optical fiber 3 and the second optical fiber 3.
(5)比較例
 以下、上記の第1実施形態に係る光ファイバー1、及び、光ファイバーの融着方法の有効性を確認するため、比較実験を行った。
 まず、比較例1として、第1光ファイバー2の直径と第2光ファイバー3の直径を同程度(第1直径d1=第2直径d2)として、これら2つの光ファイバーの融着接続を試みた。その結果を、図9に示す。図9は、比較例1にて製造した光ファイバーの透過光学顕微鏡像を示す図である。
(5) Comparative Example Hereinafter, a comparative experiment was performed to confirm the effectiveness of the optical fiber 1 according to the first embodiment and the method of fusing the optical fiber.
First, as Comparative Example 1, fusion splicing of these two optical fibers was attempted with the diameter of the first optical fiber 2 and the diameter of the second optical fiber 3 being approximately the same (first diameter d1 = second diameter d2). The result is shown in FIG. FIG. 9 is a view showing a transmission optical microscope image of the optical fiber manufactured in Comparative Example 1.
 図9に示すように、第1直径d1と第2直径d2とを同程度とすると、第2光ファイバー3が第1光ファイバー2に挿入されなかった。また、そのために、接続部分をテーパー形状とすることができなかった。
 なお、比較例1の光ファイバーでは、100gf(圧力換算:0.8MPa)よりも小さい荷重により接続部分が破断した。
As shown in FIG. 9, when the first diameter d1 and the second diameter d2 were substantially the same, the second optical fiber 3 was not inserted into the first optical fiber 2. In addition, the connection portion cannot be formed in a tapered shape.
In the optical fiber of Comparative Example 1, the connection portion was broken by a load smaller than 100 gf (pressure conversion: 0.8 MPa).
 このように、第2光ファイバー3を第1光ファイバー2に挿入して接続部分の強度を向上させるためには、第1直径d1は、第2直径d2よりも十分に大きい、例えば、第2直径d2の1.5倍から3倍までの範囲にあることが好ましいことが分かる。 As described above, in order to insert the second optical fiber 3 into the first optical fiber 2 and improve the strength of the connection portion, the first diameter d1 is sufficiently larger than the second diameter d2, for example, the second diameter d2. It can be seen that it is preferably in the range from 1.5 times to 3 times of.
 次に、比較例2として、上記の融着方法において、図4の(C)に示すように第2光ファイバー3を第1光ファイバー2に挿入した状態にて、第2光ファイバー3を第2方向に移動させずに冷却し、第1光ファイバー2と第2光ファイバー3とを融着接続した。
 なお、第1光ファイバー2及び第2光ファイバー3は、上記の実施例1で使用したものと同じものを用いた。
Next, as Comparative Example 2, in the above fusion method, the second optical fiber 3 was inserted in the second direction while the second optical fiber 3 was inserted into the first optical fiber 2 as shown in FIG. The first optical fiber 2 and the second optical fiber 3 were fusion-spliced without being moved.
The first optical fiber 2 and the second optical fiber 3 used were the same as those used in Example 1 above.
 図10に、第2光ファイバー3を第1光ファイバー2に挿入した状態から第2光ファイバー3を第2方向に移動させずに製造した光ファイバーの光学顕微鏡像を示す。図10は、比較例2の光ファイバーの光学顕微鏡像を示す図である。
 図10に示すように、比較例2の光ファイバーにおいては、第1光ファイバー2と第2光ファイバー3とは融着接続しているが、接続部分に直径が急激に変化する段差(図10において矢印にて示す)が存在する。
 接続部分に段差を有する光ファイバーは、融着後に融着装置100から取り出す際に接続部分の段差又はその近傍で破断し、その取り扱いが難しかった。
FIG. 10 shows an optical microscope image of an optical fiber manufactured without moving the second optical fiber 3 in the second direction from the state where the second optical fiber 3 is inserted into the first optical fiber 2. FIG. 10 is a diagram illustrating an optical microscope image of the optical fiber of Comparative Example 2.
As shown in FIG. 10, in the optical fiber of Comparative Example 2, the first optical fiber 2 and the second optical fiber 3 are fusion-spliced. Are shown).
The optical fiber having a step at the connection portion breaks at or near the step at the connection portion when it is taken out of the fusion device 100 after fusion, and its handling is difficult.
 このように、第1光ファイバー2と第2光ファイバー3の接続部分の強度を向上させるためには、これら2つの光ファイバーの接続部分をテーパー形状とすることが好ましいことが分かる。 分 か る Thus, in order to improve the strength of the connection portion between the first optical fiber 2 and the second optical fiber 3, it is understood that the connection portion between these two optical fibers is preferably tapered.
(6)実施形態の共通事項
 上記第1実施形態は、下記の構成及び機能を共通に有している。
 光ファイバーの融着方法は、第1融点を有する第1光ファイバー2(第1光ファイバーの一例)と、第1融点よりも高い第2融点を有する第2光ファイバー3(第2光ファイバーの一例)と、を融着する方法である。融着方法は、以下のステップを備える。
 ◎第1直径d1(第1直径の一例)を有する第1光ファイバー2と、第1直径d1よりも小さい第2直径d2(第2直径の一例)を有する第2光ファイバー3と、を配置するステップ。
 ◎少なくとも第1光ファイバー2の先端を、第1光ファイバー2が軟化する第1温度以上、かつ、第1光ファイバー2が結晶化する第2温度よりも小さい温度に加熱するステップ。
 ◎第1光ファイバーの先端を加熱した状態で、第2光ファイバー3を第1光ファイバー2に近づける第1方向に移動させて、第2光ファイバー3の先端を第1光ファイバー2に挿入させるステップ。
 ◎第2光ファイバー3の先端を第1光ファイバー2に挿入後、第1方向とは逆の第2方向に第2光ファイバー3を移動させるステップ。
(6) Common Items of the Embodiment The first embodiment has the following configurations and functions in common.
The fusion method of the optical fiber includes a first optical fiber 2 having a first melting point (an example of a first optical fiber) and a second optical fiber 3 having a second melting point higher than the first melting point (an example of a second optical fiber). This is a fusion method. The fusing method includes the following steps.
A step of arranging a first optical fiber 2 having a first diameter d1 (an example of a first diameter) and a second optical fiber 3 having a second diameter d2 (an example of a second diameter) smaller than the first diameter d1. .
Heating at least the tip of the first optical fiber 2 to a temperature equal to or higher than a first temperature at which the first optical fiber 2 softens and lower than a second temperature at which the first optical fiber 2 crystallizes;
◎ a step of moving the second optical fiber 3 in the first direction to approach the first optical fiber 2 with the distal end of the first optical fiber being heated, and inserting the distal end of the second optical fiber 3 into the first optical fiber 2;
◎ After inserting the tip of the second optical fiber 3 into the first optical fiber 2, moving the second optical fiber 3 in the second direction opposite to the first direction.
 第1実施形態に係る光ファイバーの融着方法においては、第1光ファイバー2を軟化して第2光ファイバー3の先端を第1光ファイバー2に挿入後、さらに、第2光ファイバー3を、第1光ファイバー2に第2光ファイバー3の先端を挿入する第1方向とは逆の第2方向に移動させている。すなわち、第2光ファイバー3を第1光ファイバー2から離れる方向に移動させている。
 これにより、第2光ファイバー3を第1光ファイバー2から離れる方向に移動させる際に、第1光ファイバー2の第2光ファイバー3と接続された側の先端部分が引き延ばされる。この引き延ばしにより、第1光ファイバー2の先端部分の直径が減少して、第1光ファイバーと第2光ファイバーの接続部分がテーパー形状になる。
In the optical fiber fusion method according to the first embodiment, after the first optical fiber 2 is softened and the tip of the second optical fiber 3 is inserted into the first optical fiber 2, the second optical fiber 3 is further connected to the first optical fiber 2. The tip of the second optical fiber 3 is moved in a second direction opposite to the first direction in which it is inserted. That is, the second optical fiber 3 is moved in a direction away from the first optical fiber 2.
As a result, when the second optical fiber 3 is moved in a direction away from the first optical fiber 2, the end of the first optical fiber 2 on the side connected to the second optical fiber 3 is elongated. Due to this stretching, the diameter of the distal end portion of the first optical fiber 2 decreases, and the connecting portion between the first optical fiber and the second optical fiber becomes tapered.
 このように、第1光ファイバー2と第2光ファイバー3との接続部分にテーパー形状を形成することにより、これら2つの光ファイバーを接続して製造される光ファイバー1(光ファイバーの一例)の強度を向上できる。例えば、製造された光ファイバー1を曲げた際に、2つの光ファイバーの接続部分に応力を集中しにくくできるので、強度を向上できる。 As described above, by forming a tapered shape at the connection portion between the first optical fiber 2 and the second optical fiber 3, the strength of the optical fiber 1 (an example of an optical fiber) manufactured by connecting these two optical fibers can be improved. For example, when the manufactured optical fiber 1 is bent, stress can hardly be concentrated on a connecting portion between the two optical fibers, so that the strength can be improved.
 また、低融点の第1光ファイバー2の先端を加熱することにより、第2光ファイバー3を第1光ファイバー2から離れる方向に移動させる際に、接続部分にテーパー形状を形成しやすくなる。 (4) By heating the tip of the first optical fiber 2 having a low melting point, when the second optical fiber 3 is moved in a direction away from the first optical fiber 2, it is easy to form a tapered shape at the connection portion.
2.他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 (A)第1光ファイバー2の先端部分と第2光ファイバー3の先端部分は、加熱レーザー光HLの照射のみでなく、他の加熱方法によっても加熱できる。例えば、放電加熱、ヒーターによる加熱が可能である。
2. Other Embodiments One embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the invention. In particular, a plurality of embodiments and modifications described in this specification can be arbitrarily combined as needed.
(A) The tip of the first optical fiber 2 and the tip of the second optical fiber 3 can be heated not only by the irradiation of the heating laser beam HL but also by another heating method. For example, discharge heating and heating by a heater are possible.
 (B)第1光ファイバー2と第2光ファイバー3の融着接続は、制御された雰囲気内で実行できる。例えば、ZBLANガラスなど潮解性のあるガラスを第1光ファイバー2として用いる場合には、大気中の湿度(水分)によりZBLANガラスの結晶化が促進されることを防止するために、乾燥した雰囲気中にて融着接続を実行できる。
 その他、光ファイバーとして用いる材料の性質に応じて、酸素が少ない雰囲気(例えば、窒素雰囲気、不活性ガス雰囲気)、乾燥した雰囲気などの制御された雰囲気にて融着接続を実行できる。
 さらに、2つの光ファイバーを効率よくかつ精度よく加熱するために、無風雰囲気で融着接続を実行することもできる。
(B) The fusion splicing of the first optical fiber 2 and the second optical fiber 3 can be performed in a controlled atmosphere. For example, when a deliquescent glass such as ZBLAN glass is used as the first optical fiber 2, in order to prevent the crystallization of the ZBLAN glass from being promoted by the humidity (moisture) in the atmosphere, the first optical fiber 2 should be placed in a dry atmosphere. To perform fusion splicing.
In addition, fusion splicing can be performed in a controlled atmosphere such as an atmosphere with a small amount of oxygen (eg, a nitrogen atmosphere or an inert gas atmosphere) or a dry atmosphere, depending on the properties of the material used as the optical fiber.
Furthermore, in order to heat the two optical fibers efficiently and accurately, fusion splicing can be performed in a windless atmosphere.
 本発明は、融点が異なる材料で構成された2つの光ファイバーをその先端にて融着する融着方法、及び、融点が異なる材料で構成された2つの光ファイバーを融着接続した光ファイバーに広く適用できる。 INDUSTRIAL APPLICABILITY The present invention can be widely applied to a fusion method in which two optical fibers made of materials having different melting points are fused at a tip thereof, and an optical fiber in which two optical fibers made of materials having different melting points are fusion-spliced. .
1     光ファイバー
2     第1光ファイバー
21   テーパー部分
θ     テーパー角度
d1   第1直径
3     第2光ファイバー
d2   第2直径
100 融着装置
4     ファイバー移動装置
41   第1移動部
41a 第1移動ステージ
41b 第1保持部
43   第2移動部
43a 第2移動ステージ
43b 第2保持部
6     加熱光源
HL   加熱レーザー光
61   第1ミラー
62   光分岐部材
63   第2ミラー
64   第1レンズ
65   第3ミラー
66   第2レンズ
8     シャッター
10   カメラ
12   検査光源
14   受光装置
IL   検査光
Reference Signs List 1 optical fiber 2 first optical fiber 21 tapered portion θ taper angle d1 first diameter 3 second optical fiber d2 second diameter 100 fusion device 4 fiber moving device 41 first moving portion 41a first moving stage 41b first holding portion 43 second Moving unit 43a Second moving stage 43b Second holding unit 6 Heating light source HL Heating laser beam 61 First mirror 62 Light splitting member 63 Second mirror 64 First lens 65 Third mirror 66 Second lens 8 Shutter 10 Camera 12 Inspection light source 14 Light receiving device IL inspection light

Claims (19)

  1.  第1融点を有する第1光ファイバーと、前記第1融点よりも高い第2融点を有する第2光ファイバーと、を融着する融着方法であって、
     第1直径を有する前記第1光ファイバーと、前記第1直径よりも小さい第2直径を有する前記第2光ファイバーと、を配置するステップと、
     少なくとも前記第1光ファイバーの先端を、前記第1光ファイバーが軟化する第1温度以上、かつ、前記第1光ファイバーが結晶化する第2温度よりも小さい温度に加熱するステップと、
     前記第1光ファイバーの少なくとも先端を加熱した状態で、前記第2光ファイバーを前記第1光ファイバーに近づける第1方向に移動させて、前記第2光ファイバーの先端を前記第1光ファイバーに挿入させるステップと、
     前記第2光ファイバーの先端を前記第1光ファイバーに挿入後、前記第1方向とは逆の第2方向に前記第2光ファイバーを移動させるステップと、
     を備える、融着方法。
    A fusion method for fusing a first optical fiber having a first melting point and a second optical fiber having a second melting point higher than the first melting point,
    Disposing the first optical fiber having a first diameter and the second optical fiber having a second diameter smaller than the first diameter;
    Heating at least the tip of the first optical fiber to a temperature equal to or higher than a first temperature at which the first optical fiber softens and lower than a second temperature at which the first optical fiber crystallizes;
    Moving the second optical fiber in a first direction closer to the first optical fiber while at least heating the distal end of the first optical fiber, and inserting the distal end of the second optical fiber into the first optical fiber;
    Moving the second optical fiber in a second direction opposite to the first direction after inserting the tip of the second optical fiber into the first optical fiber;
    A fusion method comprising:
  2.  前記第2方向に前記第2光ファイバーを移動後に、前記第1光ファイバー及び前記第2光ファイバーを徐冷するステップをさらに備える、請求項1に記載の融着方法。 The method according to claim 1, further comprising: gradually moving the first optical fiber and the second optical fiber after moving the second optical fiber in the second direction.
  3.  前記第2光ファイバーの先端を前記第1光ファイバーに挿入するステップにおいて、前記第2光ファイバーの先端の前記第1光ファイバーへの挿入距離は、前記第2直径の20%~40%の範囲の距離である、請求項1又は2に記載の融着方法。 In the step of inserting the tip of the second optical fiber into the first optical fiber, an insertion distance of the tip of the second optical fiber into the first optical fiber is a distance in a range of 20% to 40% of the second diameter. The fusion method according to claim 1.
  4.  前記第2光ファイバーを前記第2方向に移動させるステップにおいて、前記第2光ファイバーの移動距離は、前記第2直径の50%~70%の範囲の距離である、請求項1~3のいずれかに記載の融着方法。 The method according to any one of claims 1 to 3, wherein in the step of moving the second optical fiber in the second direction, a moving distance of the second optical fiber is a distance in a range of 50% to 70% of the second diameter. The fusion method described.
  5.  前記第1光ファイバーと前記第2光ファイバーを配置するステップにおいて、前記第1光ファイバーの先端と前記第2光ファイバーの先端とを近接させて配置する、請求項1~4のいずれかに記載の融着方法。 The fusion method according to any one of claims 1 to 4, wherein in the step of disposing the first optical fiber and the second optical fiber, the distal end of the first optical fiber and the distal end of the second optical fiber are disposed close to each other. .
  6.  前記第1直径は、前記第2直径の1.5倍から3倍までの範囲にある、請求項1~5のいずれかに記載の融着方法。 The method according to any one of claims 1 to 5, wherein the first diameter is in a range from 1.5 times to 3 times the second diameter.
  7.  前記第1温度は、前記第1光ファイバーの軟化点である、請求項1~6のいずれかに記載の融着方法。 The method according to any one of claims 1 to 6, wherein the first temperature is a softening point of the first optical fiber.
  8.  前記第2温度は、前記第1光ファイバーの結晶化温度である、請求項1~7のいずれかに記載の融着方法。 The fusion method according to any one of claims 1 to 7, wherein the second temperature is a crystallization temperature of the first optical fiber.
  9.  前記第1光ファイバーはZBLANファイバーである、請求項1~8のいずれかに記載の融着方法。 The method according to any one of claims 1 to 8, wherein the first optical fiber is a ZBLAN fiber.
  10.  前記第2光ファイバーは石英製の光ファイバーである、請求項1~9のいずれかに記載の融着方法。 The method according to any one of claims 1 to 9, wherein the second optical fiber is a quartz optical fiber.
  11.  先端に向けて直径が第1直径から減少するテーパー部分を有する第1光ファイバーと、
     前記第1直径よりも小さい第2直径を有し、先端が前記テーパー部分の先端に挿入された状態で前記第1光ファイバーに接続された第2光ファイバーと、
     を備える、光ファイバー。
    A first optical fiber having a tapered portion whose diameter decreases from the first diameter toward the tip;
    A second optical fiber having a second diameter smaller than the first diameter and connected to the first optical fiber with a tip inserted into the tip of the tapered portion;
    An optical fiber.
  12.  前記第2光ファイバーの先端の前記テーパー部分への挿入深さは、前記第2直径の4%~16%の範囲である、請求項11に記載の光ファイバー。 The optical fiber according to claim 11, wherein an insertion depth of the tip of the second optical fiber into the tapered portion is in a range of 4% to 16% of the second diameter.
  13.  前記テーパー部分の側面と前記第1光ファイバーの長さ方向とがなすテーパー角度は、20度~50度の範囲である、請求項11又は12に記載の光ファイバー。 The optical fiber according to claim 11, wherein a taper angle formed between a side surface of the tapered portion and a length direction of the first optical fiber is in a range of 20 to 50 degrees.
  14.  前記第1直径は、前記第2直径の1.5倍から3倍までの範囲にある、請求項11~13のいずれかに記載の光ファイバー。 The optical fiber according to any one of claims 11 to 13, wherein the first diameter is in a range from 1.5 times to 3 times the second diameter.
  15.  前記第1直径が前記第2直径の2倍であり、かつ、前記テーパー部分の側面と前記第1光ファイバーの長さ方向とがなすテーパー角度が22度~30度の範囲にある、請求項14に記載の光ファイバー。 15. The method according to claim 14, wherein the first diameter is twice as large as the second diameter, and a taper angle between a side surface of the tapered portion and a length direction of the first optical fiber is in a range of 22 degrees to 30 degrees. An optical fiber according to claim 1.
  16.  前記第1直径が前記第2直径の3倍であり、かつ、前記テーパー部分の側面と前記第1光ファイバーの長さ方向とがなすテーパー角度が35度~50度の範囲にある、請求項14に記載の光ファイバー。 15. The method according to claim 14, wherein the first diameter is three times the second diameter, and a taper angle formed by a side surface of the tapered portion and a length direction of the first optical fiber is in a range of 35 degrees to 50 degrees. An optical fiber according to claim 1.
  17.  前記第1光ファイバーはZBLANファイバーである、請求項11~16のいずれかに記載の光ファイバー。 The optical fiber according to any one of claims 11 to 16, wherein the first optical fiber is a ZBLAN fiber.
  18.  前記第2光ファイバーは石英製の光ファイバーである、請求項11~17のいずれかに記載の光ファイバー。 18. The optical fiber according to claim 11, wherein the second optical fiber is an optical fiber made of quartz.
  19.  第1融点を有する第1光ファイバーと、前記第1融点よりも高い第2融点を有する第2光ファイバーと、を融着する融着装置であって、
     第1直径を有する前記第1光ファイバーの先端を、前記第1光ファイバーが軟化する第1温度以上、かつ、前記第1光ファイバーが結晶化する第2温度よりも小さい温度に加熱する加熱光源と、
     前記第1光ファイバーの少なくとも先端を加熱した状態で、前記第1直径よりも小さい第2直径を有する前記第2光ファイバーを前記第1光ファイバーに近づける第1方向に移動させて、前記第2光ファイバーの先端を前記第1光ファイバーに挿入し、前記第2光ファイバーの先端を前記第1光ファイバーに挿入後、前記第1方向とは逆の第2方向に前記第2光ファイバーを移動させるファイバー移動装置と、
     を備える、融着装置。
    A fusion device for fusing a first optical fiber having a first melting point and a second optical fiber having a second melting point higher than the first melting point,
    A heating light source that heats a tip of the first optical fiber having a first diameter to a temperature equal to or higher than a first temperature at which the first optical fiber softens, and lower than a second temperature at which the first optical fiber crystallizes;
    In a state where at least the tip of the first optical fiber is heated, the second optical fiber having a second diameter smaller than the first diameter is moved in a first direction closer to the first optical fiber, and the tip of the second optical fiber is moved. Is inserted into the first optical fiber, and after inserting the tip of the second optical fiber into the first optical fiber, a fiber moving device that moves the second optical fiber in a second direction opposite to the first direction,
    A fusion device comprising:
PCT/JP2019/025703 2018-09-28 2019-06-27 Method for fusion splicing optical fiber, optical fiber, and fusing device WO2020066190A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020547999A JPWO2020066190A1 (en) 2018-09-28 2019-06-27 Optical fiber fusion method, optical fiber, and fusion device
CN201980062816.8A CN112823302A (en) 2018-09-28 2019-06-27 Optical fiber fusion splicing method, optical fiber, and fusion splicing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184101 2018-09-28
JP2018184101 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066190A1 true WO2020066190A1 (en) 2020-04-02

Family

ID=69949780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025703 WO2020066190A1 (en) 2018-09-28 2019-06-27 Method for fusion splicing optical fiber, optical fiber, and fusing device

Country Status (3)

Country Link
JP (1) JPWO2020066190A1 (en)
CN (1) CN112823302A (en)
WO (1) WO2020066190A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113955926A (en) * 2021-12-03 2022-01-21 吉林大学 Low-temperature fusion welding method for improving strength of fusion welding point between soft glass optical fiber and quartz optical fiber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138342A (en) * 1992-06-24 1994-05-20 Sumitomo Electric Ind Ltd Optical fiber function parts and their production
JP2001318261A (en) * 2000-05-09 2001-11-16 Sumitomo Electric Ind Ltd Optical fiber element manufacturing method and optical fiber element
JP2006209085A (en) * 2004-12-28 2006-08-10 Precise Gauges Co Ltd Fabrication method and fabrication apparatus for optical device, and optical device
JP2007065437A (en) * 2005-09-01 2007-03-15 Juki Corp Fiber collimator
JP2011039493A (en) * 2009-07-13 2011-02-24 Central Glass Co Ltd Fusion-splicing structure and optical waveguide element having the structure, and light source device using the same, and splicing method
EP2703857A1 (en) * 2012-09-03 2014-03-05 P.H. Elmat Sp. z o.o. Method for fusion splicing of optical fibres
JP2014191277A (en) * 2013-03-28 2014-10-06 Sumitomo Electric Ind Ltd Laser transmission fiber and manufacturing method therefor
US20180259712A1 (en) * 2017-03-07 2018-09-13 Afl Telecommunications Llc Methods for splicing optical fibers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138342A (en) * 1992-06-24 1994-05-20 Sumitomo Electric Ind Ltd Optical fiber function parts and their production
JP2001318261A (en) * 2000-05-09 2001-11-16 Sumitomo Electric Ind Ltd Optical fiber element manufacturing method and optical fiber element
JP2006209085A (en) * 2004-12-28 2006-08-10 Precise Gauges Co Ltd Fabrication method and fabrication apparatus for optical device, and optical device
JP2007065437A (en) * 2005-09-01 2007-03-15 Juki Corp Fiber collimator
JP2011039493A (en) * 2009-07-13 2011-02-24 Central Glass Co Ltd Fusion-splicing structure and optical waveguide element having the structure, and light source device using the same, and splicing method
EP2703857A1 (en) * 2012-09-03 2014-03-05 P.H. Elmat Sp. z o.o. Method for fusion splicing of optical fibres
JP2014191277A (en) * 2013-03-28 2014-10-06 Sumitomo Electric Ind Ltd Laser transmission fiber and manufacturing method therefor
US20180259712A1 (en) * 2017-03-07 2018-09-13 Afl Telecommunications Llc Methods for splicing optical fibers

Also Published As

Publication number Publication date
JPWO2020066190A1 (en) 2021-08-30
CN112823302A (en) 2021-05-18

Similar Documents

Publication Publication Date Title
US6520689B2 (en) Optical fiber splicing method and device
US9151905B2 (en) Preterminated fiber optic connector sub-assemblies, and related fiber optic connectors, cable assemblies, and methods
US9477042B2 (en) Large diameter optical waveguide splice
US8490435B2 (en) Optical fiber end processing method and optical fiber end processing apparatus
US20110146071A1 (en) Thermal rounding shaped optical fiber for cleaving and splicing
Böhme et al. End cap splicing of photonic crystal fibers with outstanding quality for high-power applications
WO2020066190A1 (en) Method for fusion splicing optical fiber, optical fiber, and fusing device
JP5416721B2 (en) Optical fiber end processing method and optical fiber end processing apparatus
CN101802665B (en) Optical fiber structure, its manufacturing device, and block-shaped chip used therefor
US20040213526A1 (en) Fusion splicing method and fusion splicer for different-diameter optical fibers
US7080947B2 (en) Fusion-bonded optical component, a method for manufacturing the fusion-bonded optical component, and manufacturing equipment for the same
JP4729394B2 (en) Optical component manufacturing method and apparatus, and optical component
US11841535B2 (en) Method of fusion splicing optical fibers with lasers
CA3105604A1 (en) Method of fusion splicing optical fibers with lasers
JP2003075677A (en) Optical fiber fusion splicing method
US11808981B2 (en) Method of fusion splicing optical fibers with lasers
JP2004264843A (en) Optical fiber with optical function element, and method and device for manufacturing same
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
JP4901941B2 (en) Optical fiber processing apparatus and optical fiber processing method
Schaefer et al. Welding of glass fibres onto large-scale substrates with high mechanical stability and optical quality
CN119355878A (en) A method for fusion splicing zirconium fluoride-based glass optical fiber
US20230019700A1 (en) Optical fibers fusion-splicing to waveguides
CN116381859A (en) Fusion method of fluorine tellurate glass optical fiber and zirconium fluoride-based glass optical fiber
JPH06324229A (en) Optical fiber coupler manufacturing method
JP2002207138A (en) Optical fiber element manufacturing method and optical fiber element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865066

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载