+

WO2020066003A1 - Refrigerating cycle apparatus - Google Patents

Refrigerating cycle apparatus Download PDF

Info

Publication number
WO2020066003A1
WO2020066003A1 PCT/JP2018/036528 JP2018036528W WO2020066003A1 WO 2020066003 A1 WO2020066003 A1 WO 2020066003A1 JP 2018036528 W JP2018036528 W JP 2018036528W WO 2020066003 A1 WO2020066003 A1 WO 2020066003A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
cycle apparatus
ratio
receiver
Prior art date
Application number
PCT/JP2018/036528
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
野本 宗
亮 築山
智隆 石川
肇 藤本
池田 隆
佐多 裕士
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020547866A priority Critical patent/JP7105903B2/en
Priority to CN201880097418.5A priority patent/CN112714849B/en
Priority to PCT/JP2018/036528 priority patent/WO2020066003A1/en
Publication of WO2020066003A1 publication Critical patent/WO2020066003A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to a refrigeration cycle device using a non-azeotropic mixed refrigerant.
  • Patent Document 1 discloses an air conditioner in which a non-azeotropic mixed refrigerant containing R32 as a low-boiling refrigerant and HFC134a as a high-boiling refrigerant is filled.
  • a refrigerant regulator is provided between the heat source side heat exchanger and the expansion mechanism.
  • the refrigerant regulator supplies the amount of refrigerant corresponding to the storage amount of the liquid non-azeotropic mixed refrigerant to the heat source side heat exchanger during the heating operation cycle, and adjusts the amount of circulating refrigerant.
  • a large amount of HFC134a is stored in the refrigerant controller during the heating operation cycle, so that the ratio of R32 in the circulating refrigerant amount increases. As a result, the performance of the air conditioner can be improved.
  • the refrigerant regulator of the air conditioner disclosed in Patent Document 1 stores excess non-azeotropic mixed refrigerant during a cooling operation cycle.
  • the capacity of the refrigerant regulator is increased while keeping the amount of the non-azeotropic mixed refrigerant to be pre-filled in the air conditioner constant, the amount of gas low-boiling refrigerant in the refrigerant regulator increases, and the low-boiling point in the circulating refrigerant amount increases.
  • the amount of refrigerant decreases. As a result, the cooling capacity of the use side heat exchanger may decrease.
  • Patent Literature 1 depending on the relationship between the capacity of the refrigerant regulator and the amount of the non-azeotropic mixed refrigerant pre-filled, the cooling capacity of the use side heat exchanger is reduced, and may be lower than the desired cooling capacity. Is not taken into account.
  • the present invention has been made to solve the above-described problems, and an object thereof is to secure a desired cooling capacity of a refrigeration cycle device.
  • the refrigeration cycle apparatus is charged in advance with a specific amount of non-azeotropic mixed refrigerant containing R463A.
  • the refrigeration cycle device includes a compressor, a first heat exchanger, a refrigerant container, a pressure reducing device, and a second heat exchanger.
  • the non-azeotropic mixed refrigerant circulates in the order of the compressor, the first heat exchanger, the refrigerant container, the pressure reducing device, and the second heat exchanger.
  • the ratio of the volume of the refrigerant container to the specific amount of the non-azeotropic mixed refrigerant is more than 0 L / kg and 11 L / kg or less.
  • FIG. 4 is a diagram illustrating a relationship between a receiver volume ratio and a cooling capacity ratio of a refrigeration cycle device.
  • FIG. 4 is a diagram illustrating a relationship between a receiver volume ratio and a weight composition ratio of a slightly burnt refrigerant to an unburnt refrigerant.
  • FIG. 1 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100 according to the embodiment.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2 (first heat exchanger), a receiver 3 (refrigerant container), an expansion valve 4 (decompression device), and an evaporator. 5 (second heat exchanger) and a control device 6.
  • R463A which is a non-azeotropic refrigerant mixture, circulates in the order of the compressor 1, the condenser 2, the receiver 3, the expansion valve 4, and the evaporator 5.
  • the pipe 7 connects the condenser 2 and the receiver 3.
  • the end 71 of the pipe 7 is arranged in the receiver 3.
  • R463A flows into the receiver 3 from the end 71.
  • the pipe 8 communicates the receiver 3 and the expansion valve 4.
  • the end 81 of the pipe 8 is arranged in the receiver 3.
  • R463A in the receiver 3 flows out from the end 81.
  • the receiver 3 has, for example, a tubular structure formed by welding both ends of a flat plate.
  • the control device 6 controls the amount of non-azeotropic refrigerant mixture discharged by the compressor 1 per unit time by controlling the drive frequency fc of the compressor 1.
  • the control device 6 includes a storage unit 11.
  • the storage unit 11 stores in advance, for example, physical property values of R463A, the volume of the receiver 3, and control target values of specific parameters (for example, evaporation temperature or condensation temperature).
  • R463A contains R32, R125, R1234yf, R134a, and CO2 in a weight percent (wt%) ratio (pure composition ratio) of 36: 30: 14: 14: 6.
  • R463A contains CO2 to secure the refrigerant pressure.
  • the boiling points of R32, R125, R1234yf, R134a, and CO2 at one atmosphere are -51.7 ° C, -48.1 ° C, -29.4 ° C, -26.1 ° C, and -78.5 ° C. It is.
  • CO2 has the lowest boiling point among the refrigerants contained in R463A, and R32 has the second lowest boiling point after CO2.
  • R463A has a low boiling point refrigerant including R32 and CO2.
  • FIG. 2 is a diagram showing the relationship between the ratio of the volume of the receiver 3 to the specific amount of R463A pre-filled in the refrigeration cycle apparatus 100 (receiver volume ratio) and the circulation composition ratio.
  • the receiver volume ratio increases, the ratio of the volume of the liquid refrigerant stored in the receiver 3 to the volume of the receiver 3 decreases. Therefore, the ratio of the volume of the gas refrigerant to the volume of the receiver 3 increases.
  • the proportion of the low-boiling-point refrigerant in R463A circulating in refrigeration cycle apparatus 100 decreases. As a result, the cooling capacity of the refrigeration cycle device 100 is reduced, and may be lower than the desired cooling capacity.
  • the cooling capacity ratio of the refrigeration cycle device is often designed with a margin of about 20%.
  • the desired cooling capacity of the refrigeration cycle apparatus is a cooling capacity ratio of 80% or more.
  • FIG. 3 is a diagram showing the relationship between the receiver volume ratio and the cooling capacity ratio of the refrigeration cycle device 100.
  • the cooling capacity ratio on the vertical axis indicates that the cooling capacity when the circulation composition ratio of R463A is a pure composition ratio is 100%.
  • the cooling capacity ratio decreases as the receiver volume ratio increases, and when the receiver volume ratio is 11, the cooling capacity ratio becomes 80%. If the receiver volume ratio is greater than 11, the cooling capacity ratio will be less than 80%.
  • the receiver volume ratio is set to be larger than 0 L / kg and 11 L / kg.
  • a cooling capacity ratio of 80% or more can be secured.
  • R463A the flammability of R463A will be described.
  • refrigerants included in R463A according to the classification of, for example, ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers), R32 and R1234yf are classified as low-flammable refrigerants, and R125, R134a, and CO2 are classified as noncombustible refrigerants.
  • ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • R32 and R1234yf are classified as low-flammable refrigerants
  • R125, R134a, and CO2 are classified as noncombustible refrigerants.
  • the weight composition ratio of the slightly burnt refrigerant to the nonburnable refrigerant is desirably 1 or less. Since the welded portion has a relatively low strength and is easily broken, the leaked portion of the refrigerant may be, for example, a welded portion of the cylindrical receiver 3.
  • FIG. 4 is a diagram showing the relationship between the receiver volume ratio and the weight composition ratio of the slightly-burning refrigerant to the non-burning refrigerant.
  • the weight composition ratio of the slightly-burning refrigerant to the non-burning refrigerant is determined when the receiver volume ratio is greater than 0 L / kg and not more than 2.4 L / kg, or not less than 9.8 L / kg.
  • the weight composition ratio of the slightly-burning refrigerant to the non-burning refrigerant is 1 or less. Therefore, in refrigeration cycle apparatus 100, the receiver volume ratio is greater than 0 L / kg and not more than 2.4 L / kg, or 9.8 L / kg or more and 11 L / kg or less. By limiting the receiver volume ratio to this range, a desired cooling capacity can be ensured, and the combustibility of the refrigerant leaked from the refrigeration cycle device 100 can be suppressed.
  • a desired cooling capacity can be ensured. Further, according to the refrigeration cycle device according to the embodiment, the combustibility of the leaked refrigerant can be suppressed.
  • ⁇ 1 ⁇ compressor 2 ⁇ condenser, 3 ⁇ receiver, 4 ⁇ expansion valve, 5 ⁇ evaporator, 6 ⁇ control device, 7, 8 piping, 11 ⁇ storage unit, 100 ⁇ refrigeration cycle device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A refrigerating cycle apparatus (100) is filled with a specific amount of non-azeotropic mixed refrigerant containing R463A in advance. The refrigerating cycle device (100) comprises a compressor (1), a first heat-exchanger (2), a refrigerating container (3), a decompression device (4), and a second heat exchanger (5). The non-azeotropic mixed refrigerant circulates in the order of the compressor (1), the first heat-exchanger (2), the refrigerating container (3), the decompression device (4), and the second head-exchanger (5). A volume ratio of the refrigerating container (3) with respect to the specific amount of the non-azeotropic mixed refrigerant is larger than 0 L/kg and equal to or smaller than 11 L/kg.

Description

冷凍サイクル装置Refrigeration cycle device
 本発明は、非共沸混合冷媒が使用される冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device using a non-azeotropic mixed refrigerant.
 従来、非共沸混合冷媒が使用される冷凍サイクル装置が知られている。たとえば、特開平7-139833号公報(特許文献1)には、低沸点冷媒としてR32、および高沸点冷媒としてHFC134aを含む非共沸混合冷媒が充填される空気調和装置が開示されている。当該空気調和装置においては、熱源側熱交換器と膨脹機構との間に冷媒調節器が設けられている。冷媒調節器は、暖房運転サイクル時に液体の非共沸混合冷媒の貯溜量に対応した冷媒量を熱源側熱交換器に供給し、循環冷媒量を調節する。暖房運転サイクル時において冷媒調節器にHFC134aが多量に貯留されることにより、循環冷媒量におけるR32の割合が高くなる。その結果、空気調和装置の能力を向上させることができる。 Conventionally, a refrigeration cycle device using a non-azeotropic refrigerant mixture is known. For example, Japanese Patent Laying-Open No. 7-139833 (Patent Document 1) discloses an air conditioner in which a non-azeotropic mixed refrigerant containing R32 as a low-boiling refrigerant and HFC134a as a high-boiling refrigerant is filled. In the air conditioner, a refrigerant regulator is provided between the heat source side heat exchanger and the expansion mechanism. The refrigerant regulator supplies the amount of refrigerant corresponding to the storage amount of the liquid non-azeotropic mixed refrigerant to the heat source side heat exchanger during the heating operation cycle, and adjusts the amount of circulating refrigerant. A large amount of HFC134a is stored in the refrigerant controller during the heating operation cycle, so that the ratio of R32 in the circulating refrigerant amount increases. As a result, the performance of the air conditioner can be improved.
特開平7-139833号公報JP-A-7-139833
 特許文献1に開示されている空気調和装置の冷媒調節器は、冷房運転サイクル時に余剰な非共沸混合冷媒を貯溜する。空気調和装置に予め充填する非共沸混合冷媒の量を一定のまま、冷媒調節器の容量を大きくすると、冷媒調節器内における気体の低沸点冷媒の量が増加し、循環冷媒量における低沸点冷媒の量が減少する。その結果、利用側熱交換器の冷却能力が低下し得る。しかし、特許文献1においては、冷媒調節器の容量と予め充填された非共沸混合冷媒の量との関係によっては利用側熱交換器の冷却能力が低下し、所望の冷却能力を下回り得ることについて考慮されていない。 冷媒 The refrigerant regulator of the air conditioner disclosed in Patent Document 1 stores excess non-azeotropic mixed refrigerant during a cooling operation cycle. When the capacity of the refrigerant regulator is increased while keeping the amount of the non-azeotropic mixed refrigerant to be pre-filled in the air conditioner constant, the amount of gas low-boiling refrigerant in the refrigerant regulator increases, and the low-boiling point in the circulating refrigerant amount increases. The amount of refrigerant decreases. As a result, the cooling capacity of the use side heat exchanger may decrease. However, in Patent Literature 1, depending on the relationship between the capacity of the refrigerant regulator and the amount of the non-azeotropic mixed refrigerant pre-filled, the cooling capacity of the use side heat exchanger is reduced, and may be lower than the desired cooling capacity. Is not taken into account.
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、冷凍サイクル装置の所望の冷却能力を確保することである。 The present invention has been made to solve the above-described problems, and an object thereof is to secure a desired cooling capacity of a refrigeration cycle device.
 本発明に係る冷凍サイクル装置には、R463Aを含む特定量の非共沸混合冷媒が予め充填される。冷凍サイクル装置は、圧縮機と、第1熱交換器と、冷媒容器と、減圧装置と、第2熱交換器とを備える。非共沸混合冷媒は、圧縮機、第1熱交換器、冷媒容器、減圧装置、および第2熱交換器の順に循環する。特定量の非共沸混合冷媒に対する冷媒容器の容積の比は、0L/kgより大きく11L/kg以下である。 特定 The refrigeration cycle apparatus according to the present invention is charged in advance with a specific amount of non-azeotropic mixed refrigerant containing R463A. The refrigeration cycle device includes a compressor, a first heat exchanger, a refrigerant container, a pressure reducing device, and a second heat exchanger. The non-azeotropic mixed refrigerant circulates in the order of the compressor, the first heat exchanger, the refrigerant container, the pressure reducing device, and the second heat exchanger. The ratio of the volume of the refrigerant container to the specific amount of the non-azeotropic mixed refrigerant is more than 0 L / kg and 11 L / kg or less.
 本発明に係る冷凍サイクル装置によれば、冷凍サイクル装置に予め充填される非共沸混合冷媒の量に対する冷媒容器の容量の比が0L/kgより大きく11L/kg以下であることにより、所望の冷却能力を確保することができる。 ADVANTAGE OF THE INVENTION According to the refrigeration cycle apparatus which concerns on this invention, since the ratio of the capacity | capacitance of the refrigerant | coolant container with respect to the quantity of the non-azeotropic mixed refrigerant previously filled into a refrigeration cycle apparatus is more than 0 L / kg and 11 L / kg or less, desired. Cooling capacity can be secured.
実施の形態に係る冷凍サイクル装置の構成を示す機能ブロック図である。It is a functional block diagram showing the composition of the refrigeration cycle device concerning an embodiment. 冷凍サイクル装置に予め充填されたR463Aの特定量に対するレシーバの容積の比(レシーバ容積比)、および循環組成比の関係を示す図である。It is a figure which shows the ratio of the receiver volume with respect to the specific amount of R463A pre-filled in the refrigeration cycle apparatus (receiver volume ratio), and the relationship of a circulation composition ratio. レシーバ容積比と冷凍サイクル装置の冷却能力比との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a receiver volume ratio and a cooling capacity ratio of a refrigeration cycle device. レシーバ容積比と不燃冷媒に対する微燃冷媒の重量組成比との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a receiver volume ratio and a weight composition ratio of a slightly burnt refrigerant to an unburnt refrigerant.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated in principle.
 図1は、実施の形態に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1に示されるように、冷凍サイクル装置100は、圧縮機1と、凝縮器2(第1熱交換器)と、レシーバ3(冷媒容器)と、膨張弁4(減圧装置)と、蒸発器5(第2熱交換器)と、制御装置6とを備える。 FIG. 1 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100 according to the embodiment. As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2 (first heat exchanger), a receiver 3 (refrigerant container), an expansion valve 4 (decompression device), and an evaporator. 5 (second heat exchanger) and a control device 6.
 冷凍サイクル装置100には、冷凍サイクル装置100の仕様上定められた特定量のR463Aが予め充填される。非共沸混合冷媒であるR463Aは、圧縮機1、凝縮器2、レシーバ3、膨張弁4、および蒸発器5の順に循環する。 (4) The refrigeration cycle apparatus 100 is charged in advance with a specific amount of R463A defined in the specifications of the refrigeration cycle apparatus 100. R463A, which is a non-azeotropic refrigerant mixture, circulates in the order of the compressor 1, the condenser 2, the receiver 3, the expansion valve 4, and the evaporator 5.
 配管7は、凝縮器2とレシーバ3とを連通している。配管7の端部71は、レシーバ3内に配置されている。R463Aは、端部71からレシーバ3に流入する。配管8は、レシーバ3と膨張弁4とを連通している。配管8の端部81は、レシーバ3内に配置されている。レシーバ3内のR463Aは、端部81から流出する。レシーバ3は、たとえば、平板の両端を溶接することによって成形された筒状構造を有する。 The pipe 7 connects the condenser 2 and the receiver 3. The end 71 of the pipe 7 is arranged in the receiver 3. R463A flows into the receiver 3 from the end 71. The pipe 8 communicates the receiver 3 and the expansion valve 4. The end 81 of the pipe 8 is arranged in the receiver 3. R463A in the receiver 3 flows out from the end 81. The receiver 3 has, for example, a tubular structure formed by welding both ends of a flat plate.
 制御装置6は、圧縮機1の駆動周波数fcを制御することにより、圧縮機1が単位時間当たりに吐出する非共沸混合冷媒の量を制御する。制御装置6は、記憶部11を含む。記憶部11には、たとえばR463Aの物性値、レシーバ3の容積、および特定パラメータ(たとえば蒸発温度あるいは凝縮温度)の制御目標値が予め保存されている。 The control device 6 controls the amount of non-azeotropic refrigerant mixture discharged by the compressor 1 per unit time by controlling the drive frequency fc of the compressor 1. The control device 6 includes a storage unit 11. The storage unit 11 stores in advance, for example, physical property values of R463A, the volume of the receiver 3, and control target values of specific parameters (for example, evaporation temperature or condensation temperature).
 レシーバ3には、液体のR463Aが貯留されるとともに、R463Aに含まれる冷媒のうち他の冷媒よりも比較的沸点が低い冷媒(低沸点冷媒)が気化する。R463Aが冷凍サイクル装置100を循環することに伴い、レシーバ3に含まれる気体の冷媒(ガス冷媒)が増加する。冷凍サイクル装置100を循環するR463Aに含まれる低沸点冷媒が減少するため、冷凍サイクル装置100を循環するR463Aの組成比(循環組成比)が変化する。 (4) While the liquid R463A is stored in the receiver 3, a refrigerant having a relatively lower boiling point than other refrigerants (low-boiling refrigerant) among the refrigerants contained in the R463A is vaporized. As R463A circulates through the refrigeration cycle apparatus 100, the amount of gaseous refrigerant (gas refrigerant) contained in the receiver 3 increases. Since the low boiling point refrigerant contained in R463A circulating through refrigeration cycle apparatus 100 decreases, the composition ratio (circulation composition ratio) of R463A circulating through refrigeration cycle apparatus 100 changes.
 R463Aは、R32、R125、R1234yf、R134a、およびCO2を、36:30:14:14:6の重量パーセント(wt%)比(純組成比)で含む。R463Aには、冷媒圧力を確保するためにCO2が含まれる。R32、R125、R1234yf、R134a、およびCO2の1気圧での沸点は、それぞれ、-51.7℃、-48.1℃、-29.4℃、-26.1℃、および-78.5℃である。CO2は、R463Aに含まれる冷媒の中で沸点が最も低く、R32がCO2に次いで沸点が低い。R463Aの低沸点冷媒には、R32およびCO2が含まれる。 R463A contains R32, R125, R1234yf, R134a, and CO2 in a weight percent (wt%) ratio (pure composition ratio) of 36: 30: 14: 14: 6. R463A contains CO2 to secure the refrigerant pressure. The boiling points of R32, R125, R1234yf, R134a, and CO2 at one atmosphere are -51.7 ° C, -48.1 ° C, -29.4 ° C, -26.1 ° C, and -78.5 ° C. It is. CO2 has the lowest boiling point among the refrigerants contained in R463A, and R32 has the second lowest boiling point after CO2. R463A has a low boiling point refrigerant including R32 and CO2.
 図2は、冷凍サイクル装置100に予め充填されたR463Aの特定量に対するレシーバ3の容積の比(レシーバ容積比)、および循環組成比の関係を示す図である。レシーバ容積比が増加するにつれて、レシーバ3の容積に占めるレシーバ3に貯留される液冷媒の体積の割合が減少する。そのため、レシーバ3の容積に占めるガス冷媒の体積の割合が増加する。その結果、図2に示されるように、レシーバ容積比の増加に伴い、冷凍サイクル装置100を循環するR463Aにおける低沸点冷媒の割合が減少する。その結果、冷凍サイクル装置100の冷却能力が低下し、所望の冷却能力を下回り得る。 FIG. 2 is a diagram showing the relationship between the ratio of the volume of the receiver 3 to the specific amount of R463A pre-filled in the refrigeration cycle apparatus 100 (receiver volume ratio) and the circulation composition ratio. As the receiver volume ratio increases, the ratio of the volume of the liquid refrigerant stored in the receiver 3 to the volume of the receiver 3 decreases. Therefore, the ratio of the volume of the gas refrigerant to the volume of the receiver 3 increases. As a result, as shown in FIG. 2, as the receiver volume ratio increases, the proportion of the low-boiling-point refrigerant in R463A circulating in refrigeration cycle apparatus 100 decreases. As a result, the cooling capacity of the refrigeration cycle device 100 is reduced, and may be lower than the desired cooling capacity.
 一般に、冷凍サイクル装置の冷却能力比は、20%程度の余裕をもって設計されることが多い。この場合、冷凍サイクル装置の所望の冷却能力は、80%以上の冷却能力比である。 Generally, the cooling capacity ratio of the refrigeration cycle device is often designed with a margin of about 20%. In this case, the desired cooling capacity of the refrigeration cycle apparatus is a cooling capacity ratio of 80% or more.
 図3は、レシーバ容積比と冷凍サイクル装置100の冷却能力比との関係を示す図である。図3において、縦軸の冷却能力比は、R463Aの循環組成比が純組成比である場合の冷却能力を100%としている。図3に示されるように、レシーバ容積比が増加するにつれて冷却能力比は減少し、レシーバ容積比が11の場合に冷却能力比が80%となる。レシーバ容積比が11より大きい場合、冷却能力比は80%を下回る。 FIG. 3 is a diagram showing the relationship between the receiver volume ratio and the cooling capacity ratio of the refrigeration cycle device 100. In FIG. 3, the cooling capacity ratio on the vertical axis indicates that the cooling capacity when the circulation composition ratio of R463A is a pure composition ratio is 100%. As shown in FIG. 3, the cooling capacity ratio decreases as the receiver volume ratio increases, and when the receiver volume ratio is 11, the cooling capacity ratio becomes 80%. If the receiver volume ratio is greater than 11, the cooling capacity ratio will be less than 80%.
 そこで、冷凍サイクル装置100においては、レシーバ容積比を0L/kgより大きく、かつ11L/kgとする。レシーバ容積比の範囲を当該範囲に限定することにより、80%以上の冷却能力比を確保することができる。 Therefore, in the refrigeration cycle apparatus 100, the receiver volume ratio is set to be larger than 0 L / kg and 11 L / kg. By limiting the range of the receiver volume ratio to the range, a cooling capacity ratio of 80% or more can be secured.
 次に、R463Aの燃焼性について説明する。R463Aに含まれる冷媒のうち、たとえばASHRAE(American Society of Heating, Refrigerating and Air-Conditioning Engineers)の分類によると、R32,R1234yfは微燃冷媒に分類され、R125,R134a,CO2は不燃冷媒に分類される。R463Aの純組成比においては、不燃冷媒に対する微燃冷媒の重量組成比は1である。R463Aがスローリーク等により冷凍サイクル装置100から漏洩した冷媒の燃焼性を抑制するため、不燃冷媒に対する微燃冷媒の重量組成比は、1以下であることが望ましい。なお、溶接部分は強度が比較的低く、壊れ易い部分であるため、冷媒の漏洩箇所としては、たとえば筒状のレシーバ3の溶接部分を挙げることができる。 Next, the flammability of R463A will be described. Among the refrigerants included in R463A, according to the classification of, for example, ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers), R32 and R1234yf are classified as low-flammable refrigerants, and R125, R134a, and CO2 are classified as noncombustible refrigerants. You. In the pure composition ratio of R463A, the weight composition ratio of the slightly combustible refrigerant to the non-combustible refrigerant is 1. In order for R463A to suppress the combustibility of the refrigerant leaked from the refrigeration cycle apparatus 100 due to slow leak or the like, the weight composition ratio of the slightly burnt refrigerant to the nonburnable refrigerant is desirably 1 or less. Since the welded portion has a relatively low strength and is easily broken, the leaked portion of the refrigerant may be, for example, a welded portion of the cylindrical receiver 3.
 図4は、レシーバ容積比と不燃冷媒に対する微燃冷媒の重量組成比との関係を示す図である。図4に示されるように、不燃冷媒に対する微燃冷媒の重量組成比は、レシーバ容積比が0L/kgより大きく2.4L/kg以下であるか、または9.8L/kg以上である場合に、不燃冷媒に対する微燃冷媒の重量組成比は1以下となる。そこで、冷凍サイクル装置100においては、レシーバ容積比が0L/kgより大きく2.4L/kg以下であるか、または9.8L/kg以上11L/kg以下とする。レシーバ容積比を当該範囲に限定することにより、所望の冷却能力を確保することができるとともに、冷凍サイクル装置100から漏洩した冷媒の燃焼性を抑制することができる。 FIG. 4 is a diagram showing the relationship between the receiver volume ratio and the weight composition ratio of the slightly-burning refrigerant to the non-burning refrigerant. As shown in FIG. 4, the weight composition ratio of the slightly-burning refrigerant to the non-burning refrigerant is determined when the receiver volume ratio is greater than 0 L / kg and not more than 2.4 L / kg, or not less than 9.8 L / kg. The weight composition ratio of the slightly-burning refrigerant to the non-burning refrigerant is 1 or less. Therefore, in refrigeration cycle apparatus 100, the receiver volume ratio is greater than 0 L / kg and not more than 2.4 L / kg, or 9.8 L / kg or more and 11 L / kg or less. By limiting the receiver volume ratio to this range, a desired cooling capacity can be ensured, and the combustibility of the refrigerant leaked from the refrigeration cycle device 100 can be suppressed.
 以上、実施の形態に係る冷凍サイクル装置によれば、所望の冷却能力を確保することができる。また、実施の形態に係る冷凍サイクル装置によれば、漏洩した冷媒の燃焼性を抑制することができる。 As described above, according to the refrigeration cycle apparatus according to the embodiment, a desired cooling capacity can be ensured. Further, according to the refrigeration cycle device according to the embodiment, the combustibility of the leaked refrigerant can be suppressed.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 圧縮機、2 凝縮器、3 レシーバ、4 膨張弁、5 蒸発器、6 制御装置、7,8 配管、11 記憶部、100 冷凍サイクル装置。 {1} compressor, 2} condenser, 3} receiver, 4} expansion valve, 5} evaporator, 6} control device, 7, 8 piping, 11} storage unit, 100} refrigeration cycle device.

Claims (4)

  1.  R463Aを含む特定量の非共沸混合冷媒が予め充填される冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     冷媒容器と、
     減圧装置と、
     第2熱交換器とを備え、
     前記非共沸混合冷媒は、前記圧縮機、前記第1熱交換器、前記冷媒容器、前記減圧装置、および前記第2熱交換器の順に循環し、
     前記特定量の非共沸混合冷媒に対する前記冷媒容器の容積の比は、0L/kgより大きく、かつ11L/kg以下である、冷凍サイクル装置。
    A refrigeration cycle apparatus in which a specific amount of a non-azeotropic mixed refrigerant including R463A is pre-filled,
    A compressor,
    A first heat exchanger;
    A refrigerant container,
    A decompression device;
    A second heat exchanger,
    The non-azeotropic mixed refrigerant circulates in the order of the compressor, the first heat exchanger, the refrigerant container, the pressure reducing device, and the second heat exchanger,
    The refrigeration cycle apparatus, wherein a ratio of the volume of the refrigerant container to the specific amount of the non-azeotropic mixed refrigerant is greater than 0 L / kg and equal to or less than 11 L / kg.
  2.  前記比は、0L/kgより大きく2.4L/kg以下であるか、または9.8L/kg以上11L/kg以下である、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the ratio is greater than 0 L / kg and not more than 2.4 L / kg, or not less than 9.8 L / kg and not more than 11 L / kg.
  3.  前記第1熱交換器と前記冷媒容器とを連通する第1配管の一方の端部は、前記冷媒容器内に配置され、
     前記冷媒容器と前記減圧装置とを連通する第2配管の一方の端部は、前記冷媒容器内に配置されている、請求項1または2に記載の冷凍サイクル装置。
    One end of a first pipe that communicates the first heat exchanger and the refrigerant container is disposed in the refrigerant container,
    The refrigeration cycle apparatus according to claim 1, wherein one end of a second pipe that communicates the refrigerant container and the decompression device is disposed inside the refrigerant container.
  4.  前記冷媒容器は、平板の両端を溶接することによって成形された筒状構造を有する、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigerant container has a tubular structure formed by welding both ends of a flat plate.
PCT/JP2018/036528 2018-09-28 2018-09-28 Refrigerating cycle apparatus WO2020066003A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020547866A JP7105903B2 (en) 2018-09-28 2018-09-28 refrigeration cycle equipment
CN201880097418.5A CN112714849B (en) 2018-09-28 2018-09-28 Refrigeration cycle device
PCT/JP2018/036528 WO2020066003A1 (en) 2018-09-28 2018-09-28 Refrigerating cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036528 WO2020066003A1 (en) 2018-09-28 2018-09-28 Refrigerating cycle apparatus

Publications (1)

Publication Number Publication Date
WO2020066003A1 true WO2020066003A1 (en) 2020-04-02

Family

ID=69951264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036528 WO2020066003A1 (en) 2018-09-28 2018-09-28 Refrigerating cycle apparatus

Country Status (3)

Country Link
JP (1) JP7105903B2 (en)
CN (1) CN112714849B (en)
WO (1) WO2020066003A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156271A (en) * 2001-11-16 2003-05-30 Mitsubishi Electric Corp Liquid-level detection device, liquid reservoir, refrigerating cycle device, refrigerant leakage detection system and liquid-level detection method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113067A (en) * 1995-10-20 1997-05-02 Showa Alum Corp Heat exchanger
JP2002081777A (en) * 2000-09-08 2002-03-22 Hitachi Ltd Refrigeration cycle
JP2002089978A (en) * 2000-09-11 2002-03-27 Daikin Ind Ltd Pair type refrigeration equipment and multi type refrigeration equipment
JP4848608B2 (en) * 2001-09-12 2011-12-28 三菱電機株式会社 Refrigerant circuit
CN100571967C (en) * 2008-04-21 2009-12-23 常州市浩峰汽车附件有限公司 The production method of condenser drying drum body for automobile air conditioner
JP6309739B2 (en) * 2013-10-31 2018-04-11 シャープ株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156271A (en) * 2001-11-16 2003-05-30 Mitsubishi Electric Corp Liquid-level detection device, liquid reservoir, refrigerating cycle device, refrigerant leakage detection system and liquid-level detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
May 2018 (2018-05-01), Retrieved from the Internet <URL:https://dl.mitsubishielectric.co.jp/dl/ldg/wink/ssl/wink_doc/m_contents/doc/FREE_PARTS/condensing-unit-r463a.pdf> [retrieved on 20181109] *

Also Published As

Publication number Publication date
JPWO2020066003A1 (en) 2021-08-30
JP7105903B2 (en) 2022-07-25
CN112714849A (en) 2021-04-27
CN112714849B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
EP3255114B2 (en) Use of compositions for refrigeration
US5688432A (en) Replacement refrigerant composition
JP2869038B2 (en) Heat pump device using ternary mixed refrigerant
WO2017145826A1 (en) Refrigeration cycle device
JPH08313120A (en) Three-constituent mixture refrigerant filling device and filling method
CN110878195B (en) Coolant containing trifluoroiodomethane, mixture containing coolant and heat exchange system
CN111492030A (en) Low GWP refrigerant blends
WO2017126447A1 (en) Filling method for mixed refrigerant including trifluoroethylene
JP2015214632A (en) Mixed refrigerant
JP2001248922A (en) Refrigeration equipment
CN110843457A (en) Automobile air conditioner heat pump system adopting environment-friendly refrigerant
JP2002228307A (en) Mixed refrigerant filling method and apparatus filled with mixed refrigerant
KR100473961B1 (en) Method of charging mixed cooling medium
US11371760B2 (en) Refrigeration cycle apparatus
WO2020066003A1 (en) Refrigerating cycle apparatus
US10400149B2 (en) Improving glide in refrigerant blends and/or azeotopic blends, alternatives to R123 refrigerant, and refrigerant compositions, methods, and systems thereof
JPH0925480A (en) Hydraulic fluid
Bolaji et al. Energy performance of eco-friendly RE170 and R510A refrigerants as alternatives to R134a in vapour compression refrigeration system
CN110591652B (en) Heat transfer composition and heat exchange system
JP2023546463A (en) heat pump refrigerant
CN110645743A (en) Centrifugal water chilling unit adopting environment-friendly refrigerant
WO2020066004A1 (en) Refrigeration cycle device
EP4509576A1 (en) Mixed refrigerant composition and heat pump including the same
JP2004175998A (en) Refrigerant composition
JP2020525747A (en) Refrigeration system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935768

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载