+

WO2019123999A1 - Portable electrolyzed water sprayer - Google Patents

Portable electrolyzed water sprayer Download PDF

Info

Publication number
WO2019123999A1
WO2019123999A1 PCT/JP2018/043679 JP2018043679W WO2019123999A1 WO 2019123999 A1 WO2019123999 A1 WO 2019123999A1 JP 2018043679 W JP2018043679 W JP 2018043679W WO 2019123999 A1 WO2019123999 A1 WO 2019123999A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
water
unit
ozone
tank
Prior art date
Application number
PCT/JP2018/043679
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 優子
茂 笹部
妃代江 郡司
勤 古田
谷 知子
大江 良尚
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017245701A external-priority patent/JP2019111474A/en
Priority claimed from JP2018132813A external-priority patent/JP7122512B2/en
Priority claimed from JP2018193934A external-priority patent/JP2020063460A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019123999A1 publication Critical patent/WO2019123999A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present invention relates to an electrolyzer that electrolyzes water to produce an active substance.
  • the present invention relates to a portable electrolyzed water sprayer suitable for carrying around at the time of going out and spraying an electrolyzed water to any part to sterilize and deodorize the part.
  • a hypochlorous acid generating sprayer is known as a hospital, a facility where people enter and leave, or a device for disinfecting fingers and the like in a home (for example, see Patent Document 1).
  • the hypochlorous acid generation sprayer of Patent Document 1 electrolyzes a solution of a chlorine compound contained in a container to generate hypochlorous acid water, and sprays it from a spray part of the container.
  • the hypochlorous acid generating sprayer includes a container containing a solution of a large amount of chlorine compounds, and a trigger sprayer detachably attached to the upper end of the container. Then, the hypochlorous acid generating sprayer is configured to pump a solution of 0.1 ml to 1 ml of a chlorine compound from the container and spray it from the nozzle of the trigger spray.
  • FIG. 7 is a cross-sectional view of a conventional portable electrolytic water sprayer 21 disclosed in Patent Document 2. As shown in FIG.
  • the electrolytic water sprayer 21 has a cylindrical outer appearance, and is configured by arranging a cylindrical water tank portion 22, a power supply portion 23, and a spray mechanism portion 24 inside.
  • the water tank portion 22 is open at the top and is disposed in the middle of the electrolytic water sprayer 21.
  • the power supply unit 23 is disposed below the electrolyzed water sprayer 21, and the spray mechanism unit 24 is disposed above the electrolyzed water sprayer 21.
  • the water tank unit 22 includes a tubular electrolytic unit 25 disposed inside.
  • the electrolytic unit 25 is disposed in the axial direction of the water tank unit 22.
  • An electrode 26 is disposed in the inside of the electrolytic unit 25 to electrolyze water in the water tank unit 22 flowing from the lower part.
  • ozone water is generated.
  • the generated ozone water is sprayed from the nozzle at the tip of the spray mechanism 24 and is configured to be disinfected.
  • hypochlorous acid generating sprayer of Patent Document 1 since the hypochlorous acid generating sprayer of Patent Document 1 is used by being installed on a shelf of a hospital, a facility, or a home, it has a large overall shape and is unsuitable for portable use. Furthermore, hypochlorous acid to be sprayed is weak in oxidizing power. Therefore, while sterilization takes time, it is difficult to deodorize aging odor and mold odor that are difficult to be decomposed.
  • the electrolytic water sprayer of patent document 2 sprays ozone water, and disinfects.
  • Ozone water to be sprayed has high oxidizing power and is effective.
  • ozone water can disinfect bacteria on hands, toilet seats, tables, etc. in a short time, and is suitable for deodorizing such as age-related odor and mold odor.
  • ozone water is consumed in ozone when disinfecting fabric products such as clothes because ozone water does not have the persistence of oxidizing power. For this reason, it is difficult to secure the sterilization and deodorizing performance of clothes.
  • the present invention provides a portable electrolytic water sprayer capable of disinfecting and deodorizing fabric products such as clothes, shoes and the like while disinfecting arbitrary sites such as hands, tables and toilet seats.
  • the portable electrolytic water sprayer comprises a tank unit, and an electrolysis unit disposed in the tank unit and having at least a first electrode and a second electrode for electrolyzing water flowing from the tank unit. Furthermore, the portable electrolytic water sprayer includes a power supply unit that supplies power to the electrolytic unit, a control unit that reverses the polarity of the power of the power supply unit, and controls the power supply to the first electrode and the second electrode. A spray unit is provided for spraying water electrolyzed by the electrolysis unit.
  • FIG. 1 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer according to Embodiment 1 and Embodiment 2 of the present invention.
  • FIG. 2 is an exploded perspective view showing the relationship between the electrolytic unit and the power supply unit of the portable electrolytic water sprayer.
  • FIG. 3 is sectional drawing which shows the electrode structure of the same electrolysis part.
  • FIG. 4 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer according to Embodiment 3 of the present invention.
  • FIG. 5 is a view showing the correlation between the applied current and the concentration of hypochlorous acid with the chloride ion concentration of the portable electrolytic water sprayer as a parameter.
  • FIG. 6 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer according to Embodiment 4 of the present invention.
  • FIG. 7 is a cross-sectional view of a conventional portable electrolytic water sprayer.
  • Embodiment 1 the portable electrolytic water sprayer according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • FIG. 1 is a cross-sectional view showing an internal configuration of the portable electrolytic water sprayer according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing the relationship between the electrolytic unit and the power supply unit of the portable electrolytic water sprayer.
  • FIG. 3 is sectional drawing which shows the electrode structure of the same electrolysis part.
  • the portable electrolyzed water sprayer 1 (hereinafter abbreviated as “electrolyzer 1”) shown in FIG. 1 is formed in a tubular external shape.
  • any cross-sectional shape such as a cylindrical shape, an oval shape, or a polygonal shape can be selected.
  • the electrolytic device 1 is configured by arranging a cylindrical tank portion 2 at an intermediate portion, a power supply portion 3 at a lower portion, and a push type spray mechanism portion 4 at an upper portion.
  • the external shape of the tank portion 2 and the power supply portion 3 is formed in a cylindrical shape having substantially the same diameter (including the same diameter).
  • the power supply unit 3 is detachably screwed to the lower part of the tank unit 2. Thereby, the tank unit 2 and the power supply unit 3 are held in a watertight manner. Further, the spray mechanism unit 4 is detachably screwed to the upper portion of the tank unit 2. Thereby, the tank part 2 and the spray mechanism part 4 are held in a watertight manner. That is, the inside of the tank unit 2 constitutes a water reservoir. Then, by removing the spray mechanism unit 4 and supplying water, the water is stored in the tank unit 2.
  • a cylindrical electrolytic unit 5 is disposed along the axial direction of the tank unit 2 at a cylindrical radial center.
  • the water of the tank unit 2 flows into the electrolytic unit 5 from the lower inflow hole 5E (see FIG. 2) and flows out to the spray mechanism unit 4 from the upper surface opening 5F (see FIG. 2). Therefore, the electrolytic device 1 is configured such that the water levels of the electrolytic unit 5 and the tank unit 2 become the same level in the vertical arrangement state in which the push type spray mechanism unit 4 is up.
  • the electrolysis unit 5 accommodates an electrode 6 for producing electrolytic water for producing electrolytic water so as to be immersed in the water flowing into the inside.
  • the electrode 6 is composed of a first electrode 6A and a second electrode 6B.
  • the first electrode 6A constitutes an ozone generating electrode that generates ozone
  • the second electrode 6B constitutes a chlorine material generating electrode for generating water containing a chlorine material.
  • the first electrode 6A and the second electrode 6B face each other at a predetermined distance, and are accommodated in the cylindrical body 5P. .
  • the electrolysis chamber 5S which becomes a flow passage of water is formed between the first electrode 6A and the second electrode 6B.
  • the water is not electrolyzed and therefore contains ozone or a chlorine substance. It will not be water. Therefore, when the water containing no ozone or chlorine substance is sprayed from the push type spray mechanism unit 4, the sterilization effect by the electrolytic device 1 is lost. Therefore, the electrolytic unit 5 is provided with a seal configuration so that water does not flow through the portion other than the portion between the first electrode 6A and the second electrode 6B. This prevents the presence of water in the portion other than the electrolysis chamber 5S.
  • the first electrode 6A and the second electrode 6B are accommodated in the axial direction of the electrolytic device 1, that is, the electrode 6 is parallel to the axial direction of the tank portion 2.
  • the electrode 6 is formed of, for example, two to five first electrodes 6A and second electrodes 6B.
  • the electrode 6 may be configured by a pair of one first electrode 6A and one second electrode 6B.
  • the electrode 6 of the first embodiment has a first electrode 6A of one sheet and a second electrode 6B on both sides thereof as a preferred embodiment of the electrode 6.
  • the configuration is such that a predetermined interval is provided.
  • the electrolytic device 1 further includes a control unit 7 that supplies power from the power supply unit 3 to the electrode 6 and controls the power supply unit 3.
  • the control unit 7 controls to invert the polarity of the power (voltage and current) supplied to the first electrode 6A and the second electrode 6B. Specifically, when the control unit 7 controls the power supply unit 3 so that the first electrode 6A becomes an anode, ozone water is generated. Further, when the control unit 7 controls the power supply unit 3 so that the second electrode 6B becomes an anode, water containing a chlorine substance is generated.
  • switching of the polarity supplied to the first electrode 6A and the second electrode 6B constituting the electrode 6 is selected by the switching unit 8 disposed in the electrolytic device 1. That is, when the user operates the switching unit 8 (for example, a push operation), the control unit 7 controls to switch the polarity of the power supplied to the first electrode 6A and the second electrode 6B. Thereby, the generation of ozone water and the generation of water containing a chlorine substance are selected. As a result, it is possible to select the production of active species suitable for the object of eradication and deodorization.
  • the operation mode such as, for example, the generation mode of ozone water or the generation mode of water containing a chlorine substance
  • the electrolytic device 1 of Embodiment 1 is configured.
  • the second electrode 6B is formed on both sides of the first electrode 6A, for example, a resin such as polypropylene (PP) or acrylonitrile butadiene styrene resin (ABS) or the like. It arrange
  • a substantially uniform (including uniform) predetermined interval for example, about 0.1 mm to 1 mm.
  • the non-facing surface of the second electrode 6B that does not act on the electrolysis with the first electrode 6A is covered with a cylindrical body 5P made of an insulating material such as a resin such as PP or ABS.
  • the cylindrical body 5P is made of, for example, a heat-shrinkable tube made of synthetic resin such as vinyl chloride, silicon, or fluorine. Therefore, when the heat-shrinkable tube is shrunk by heating, the heat-shrinkable tube is closely attached to the periphery of the second electrode 6B, and the cylindrical body 5P is formed so as to enclose the electrode 6.
  • the electrolysis chamber 5S which becomes a flow passage of water is formed between the 1st electrode 6A and the 2nd electrode 6B which oppose via the spacer 5B. Then, by supplying power of a predetermined polarity to the electrode 6, the water present in the electrolysis chamber 5S is electrolyzed. As a result, ozone or water containing a chlorine substance can be generated according to the supplied polar power, and each electrolyzed water can be effectively generated.
  • control unit 7 controls power supply from power supply unit 3 to first electrode 6A and second electrode 6B only when spray mechanism unit 4 is operated.
  • hypochlorous acid produced with the time of electrolysis increases.
  • the control described above suppresses fluctuations in the operating time of the concentration of water containing a substance to be sprayed such as ozone and a chlorine substance such as hypochlorous acid.
  • water containing a chlorine substance such as ozone or hypochlorous acid can be stably generated at a constant concentration.
  • the lower end of the electrode 6 is watertightly sealed to the power source 3 and the upper end is watertightly sealed to the spray mechanism 4 in a state where the spray mechanism 4 is attached to the tank 2.
  • the electrolysis part 5 is substantially comprised by the cylindrical shape which water does not flow through parts other than the electrolysis chamber 5S.
  • the electrolysis chamber 5S constitutes a generation region of electrolyzed water. Therefore, electrolyzed water is generated between the plate-shaped first electrode 6A and the plate-shaped second electrode 6B on both sides of the electrode 6. Furthermore, the electrolysis chamber 5S constitutes a flow path for flowing the water of the tank unit 2 to the spray mechanism unit 4. Therefore, the configuration of the flow path of water flowing from the tank portion 2 to the spray mechanism portion 4 can be simplified. Thereby, a compact configuration in which the electrolytic unit 5 is disposed at the center of the tank unit 2 can be realized.
  • the first electrode 6A of Embodiment 1 functions as an ozone generating electrode as described above. Therefore, the first electrode 6A includes an electrode catalyst formed of, for example, tantalum oxide or the like on the surface of a metal substrate of, for example, titanium. Further, the second electrode 6B functions as a chlorine material generation electrode. Therefore, the second electrode 6B is formed of an alloy layer of platinum and iridium.
  • the electrode 6 of the electrolytic unit 5 of the electrolytic device 1 is configured.
  • a thin depletion layer is formed at the interface between the surface of the electrode catalyst tantalum oxide (eg, tantalum oxide) and the cleaning water.
  • the electrode catalyst tantalum oxide eg, tantalum oxide
  • the potential of the first electrode 6A at which the exchange of electrons is performed becomes equal to or higher than the oxidation-reduction potential of ozone, and it is considered that ozone can be generated.
  • the ozone generation reaction is more efficiently performed to generate ozone.
  • tantalum oxide is used as the electrode catalyst for generating ozone of the first electrode 6A in the above, it is conceivable to use lead dioxide, diamond, platinum or the like, for example.
  • lead oxide there are concerns about environmental and human effects.
  • diamond or platinum the cost is high and the efficiency of ozone generation is low.
  • tantalum oxide is used as the electrode catalyst. That is, tantalum oxide can generate ozone at a lower current density than platinum. In addition, tantalum oxide has a feature that the generation efficiency of ozone increases as the current density decreases. In addition, tantalum oxide has high oxygen overvoltage.
  • ozone can be generated at a low voltage of, for example, about 1.5 V or so, without generating oxygen, by the electrode catalyst of tantalum oxide.
  • tantalum oxide can generate ozone with a power of about one-fourth. Therefore, it becomes possible to operate the electrolysis device 1 with a battery or a rechargeable battery.
  • a mixture of tantalum oxide and platinum may be used as the electrode catalyst of the first electrode 6A, and the same effect can be obtained.
  • the second electrode 6B functions as a chlorine substance generation electrode. Therefore, the second electrode 6B of the first embodiment is configured of an electrode catalyst made of an alloy layer of platinum and iridium.
  • the second electrode 6B of the first embodiment is configured by an electrode catalyst in which 60% of platinum and 40% of iridium are mixed in a molar ratio.
  • the generation efficiency of hypochlorous acid is improved by about 3.5 times as compared with the platinum-only electrode catalyst. The reason is presumed to be that the oxygen overpotential is lowered by the electrode catalyst.
  • the electrode catalyst of the second electrode 6B may include, for example, a noble metal such as platinum or a noble metal oxide such as ruthenium, rhodium, or ruthenium.
  • the portable electrolyzed water sprayer 1 (electrolytic device 1) of Embodiment 1 is used for applications that use both ozone water and water containing a chlorine substance (for example, hypochlorous acid). Accordingly, it can be selected and generated by the switching operation of the switching unit 8.
  • a chlorine substance for example, hypochlorous acid
  • ozone in the case of producing ozone, ozone has high oxidizing power and immediate effect. Therefore, it becomes possible to oxidatively decompose, for example, nonenal or mold smell which is a main component of aging odor which is difficult to be oxidatively decomposed, and further sebum components. Further, ozone can eliminate bacteria attached to a toilet seat, a table, hands, toys, etc. in a short time.
  • ozone is highly reactive, as described above, ozone is not suitable for use in disinfecting bacteria attached to clothes or the like and in deodorizing tobacco odor.
  • the use of hypochlorous acid having high oxidation persistence is more suitable. Therefore, the hypochlorite is generated by switching the polarity of the power supplied to the electrode 6 of the electrolytic device 1 in order to eliminate bacteria attached to clothes or the like and to deodorize the tobacco odor.
  • one electrolysis device 1 can produce suitable electrolysis water.
  • the electrolytic device 1 of Embodiment 1 is configured.
  • ozone water for example, containing ozone at a concentration of 0.1 to 0.4 ppm
  • hypochlorous acid water for example, a concentration of 1 to 5 ppm 1 ml of each was sprayed with an acid
  • hypochlorous acid water for example, a concentration of 1 to 5 ppm 1 ml of each was sprayed with an acid
  • hypochlorous acid water had difficulty achieving a 99% eradication rate in a short time even at 2 ppm of 10 times the concentration of ozone water. This is considered to be the effect by the high oxidizing power of ozone water maintained in a short time.
  • hypochlorous acid water eg containing hypochlorous acid at a concentration of 10 ppm, 18 ppm, 30 ppm
  • hypochlorous acid water eg containing hypochlorous acid at a concentration of 10 ppm, 18 ppm, 30 ppm
  • hypochlorous acid is not as high in reactivity as ozone, it is considered that hypochlorous acid can be caused to act on microbes inside the cloth while maintaining its oxidizing power even if consumed somewhat by the cloth.
  • hypochlorous acid water has a deodorizing effect equivalent to that of a commercial clothes deodorant.
  • the ozone water and hypochlorous acid water produced by the electrolytic device 1 exert the action and effect appropriately in accordance with applications such as sterilization and deodorization.
  • a scale component such as calcium adheres to the surface of the electrode 6 usually during long-term use. Therefore, the electrolytic action of the electrolytic device 1 is inhibited by the attached scale component.
  • the inhibition of the electrolysis action by the scale component is suppressed, for example, by the following method.
  • the spray mechanism unit 4 is sometimes removed from the tank unit 2 from time to time.
  • water and citric acid are put into the tank portion 2 and the inside of the tank portion 2 is washed with citric acid.
  • citric acid can dissolve and remove scale components such as calcium attached to the surface of the electrode 6.
  • the electrolytic action of the electrolytic device 1 is maintained for a long time.
  • the controller 7 reverses the polarity of the power applied to the first electrode 6A and the second electrode 6B. Thereby, the adhesion of the scale component to the first electrode 6A and the second electrode 6B is suppressed.
  • cations such as calcium and magnesium contained in the water to be treated are electrically attracted to the second electrode 6B which is a cathode. That is, the surface of the second electrode 6B becomes alkaline by the electrolysis. Therefore, calcium and magnesium in the water to be treated are precipitated on the surface of the second electrode 6B as calcium hydroxide and calcium hydroxide.
  • control unit 7 inverts the polarity of the power applied to the first electrode 6A and the second electrode 6B, for example, every predetermined time or every predetermined period, and performs electrolysis. As a result, it is possible to suppress the formation and adhesion of calcium hydroxide and calcium hydroxide generated on the surface of the second electrode 6B and scale components such as calcium carbonate and magnesium carbonate.
  • scale component attached to the surface of the second electrode 6B can be removed by the same control as described above.
  • the vicinity of the second electrode 6B has a strongly acidic pH. Therefore, the scale component deposited on the surface of the second electrode 6B is dissolved or peeled off from the electrode interface. Thereby, the scale component can be removed from the surface of the second electrode 6B.
  • first electrode 6A is an anode and the second electrode 6B is a cathode
  • first electrode 6A is a cathode and the second electrode 6B is an anode
  • the opposite control operation can remove the scale component of the first electrode 6A.
  • the adhesion of the scale component to the electrode 6 can be suppressed by the above operation. Therefore, it is possible to prevent, for example, the clogging of the electrolysis chamber 5S constituting the flow passage due to the adhesion of the scale component. Thereby, the deterioration of the performance of the electrode 6 due to the adhesion of the scale component can be suppressed. As a result, stable performance and durability of the electrolytic device 1 can be ensured over a long period of time.
  • Embodiment 1 although the example which comprised the electrode catalyst of 1st electrode 6A with the tantalum oxide as an ozone generation electrode was demonstrated, it is not restricted to this.
  • an electrode catalyst for example, a diamond electrode or the like to which conductivity is imparted by doping boron or the like to diamond which is an insulator may be used.
  • the present invention is not limited thereto.
  • the electrode catalyst may contain, for example, other noble metals such as platinum, iridium, rhodium and ruthenium or noble metal oxides such as iridium, rhodium and ruthenium, and the same effect as the above-mentioned alloy layer can be obtained.
  • Embodiment 2 the portable electrolytic water sprayer (electrolytic device) of Embodiment 2 of the present invention will be described.
  • the electrolytic device 1 of Embodiment 2 is the same as that of Embodiment 1 except the structure of 2nd electrode 6B, it demonstrates, referring FIGS. 1-3.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the first electrode 6A is an ozone generating electrode that generates ozone
  • the second electrode 6B is a metal ion generating electrode for generating water containing metal ions.
  • the second electrode 6B is formed of an Ag substrate.
  • switching of the polarity supplied to the first electrode 6A and the second electrode 6B constituting the electrode 6 is selected by the switching unit 8 disposed in the electrolytic device 1. That is, when the user operates the switching unit 8 (for example, a push operation), the control unit 7 controls to switch the polarity of the power supplied to the first electrode 6A and the second electrode 6B. Thereby, the generation of ozone water and the generation of water containing metal ions such as Ag ions are selected. As a result, it is possible to select the generation of active species suitable for the object of sterilization and deodorization.
  • the first electrode 6A of the second embodiment functions as an ozone generating electrode as described above. Therefore, the first electrode 6A includes an electrode catalyst formed of, for example, tantalum oxide or the like on the surface of a metal substrate of, for example, titanium.
  • the second electrode 6B functions as a metal ion generation electrode. Therefore, the second electrode 6B is made of an Ag substrate to generate Ag ions. Note that the second electrode may generate at least an Ag ion, a Cu ion, a Zn ion, or the like as a metal ion generation electrode. Therefore, the second electrode 6B may be made of, for example, a metal substrate containing Ag, Cu, Zn, or an electrode catalyst containing a metal or metal oxide of Ag, Cu, Zn, in addition to the above Ag substrate.
  • the electrolysis device 1 of Embodiment 2 provided with the above-mentioned electrode 6 composition is constituted.
  • ozone water for example, containing ozone at a concentration of 0.1 ppm to 0.4 ppm
  • Ag ion water for example, at a concentration of 0.1 ppm to 2.0 ppm
  • ozone water containing ozone at a concentration of 0.1 ppm to 0.4 ppm
  • Ag ion water for example, at a concentration of 0.1 ppm to 2.0 ppm
  • ozone water a high sterilization rate of 99% or more was obtained in a short time and at a concentration of 0.2 ppm.
  • ozone water eg 0.4 ppm, containing ozone at a concentration of 1.0 ppm
  • Ag ion water eg 0.1 ppm, 0.2 ppm, 1.0 ppm, 2.0 ppm 1 ml of each was sprayed by concentration (containing Ag ion), and the sterilization effect after standing for 3 hours was evaluated.
  • concentration containing Ag ion
  • 0.2 ppm Ag ionized water achieved a sterilization rate of 99% or more. That is, since ozone is highly reactive, it reacts with the cloth to decrease its concentration, and it is considered that the oxidizing power does not act on bacteria inside the cloth.
  • Ag since Ag is not highly reactive, it is considered that it can be caused to act on bacteria inside the cloth while maintaining the oxidizing power.
  • a configuration using an Ag substrate has been described as an example in order to generate Ag ions as the second electrode 6B.
  • the present invention is not limited to this.
  • a metal substrate containing Ag or an electrode catalyst may be used, and the same effect as in the case of an Ag substrate can be obtained.
  • a substrate containing Cu, Zn metal, a noble metal oxide, or a metal catalyst may be used as the second electrode 6B. Even in this case, the same effect as in the case of the Ag substrate can be obtained.
  • FIG. 4 is a cross-sectional view showing the internal configuration of the portable electrolytic water sprayer 11 according to the third embodiment.
  • the electrolysis part 5 of the electrolysis apparatus 11 of Embodiment 3 is the same as that of Embodiment 1, it attaches
  • the electrolytic device 11 is formed to have a tubular or rectangular outer appearance. That is, the cross-sectional shape of the electrolyzer 11 can select arbitrary shapes, such as a cylindrical shape, an ellipse, and a polygon.
  • the electrolysis apparatus 11 includes an electrolysis unit 5, a tank unit 12 for storing an aqueous solution, a power supply unit 13, a push type spray unit 14, a control unit 17, a chloride supply unit 18, a pump power supply 19 and the like. .
  • the chloride supply unit 18 is disposed adjacent to the tank unit 12 and supplies chloride ions to the tank unit 12.
  • the control unit 17 is provided in the lower part of the tank unit 12, controls the power supplied from the power supply unit 13 to a predetermined current or voltage, and applies it to the electrolytic unit 5 provided in the tank unit 12. As a result, electrolyzed water is generated in the electrolytic unit 5.
  • the spray unit 14 is disposed at the top of the tank unit 12 and sprays the electrolytic water generated by the electrolysis when the user pushes it.
  • the external shape of the tank unit 12 and the power supply unit 13 is formed to be substantially the same square (including the same square).
  • the tubular electrolytic unit 5 is disposed along the axial direction of the tank portion 12 at a cylindrical radial center.
  • the water in the tank portion 12 flows into the electrolytic portion 5 from the lower inflow hole (not shown), and flows out from the top opening (not shown) to the push type spray portion 14. Therefore, the electrolytic device 11 is configured such that the water levels of the electrolytic unit 5 and the tank unit 12 become the same level in the vertical arrangement state in which the spray unit 14 is at the top.
  • the chloride supply unit 18 is disposed adjacent to the tank unit 12 and includes a chloride storage tank 18a, a pump 18b, and the like.
  • the chloride storage tank 18a stores an aqueous solution containing a high concentration of chloride ions.
  • the pump 18 b supplies the aqueous solution containing chloride ions in the chloride storage tank 18 a to the tank unit 12. Specifically, when the user turns on (turns on) the pump power supply 19, the pump 18b converts the aqueous solution in the chloride storage tank 18a to a predetermined concentration of chloride ions. Supply into the tank unit 12.
  • the electrolytic device 11 of the third embodiment operates when the user puts a predetermined amount of water into the tank portion 12 and turns on the pump power supply 19.
  • the aqueous solution in the chloride storage tank 18a is configured to be supplied to the tank unit 12 by a predetermined amount.
  • physiological saline is stored as an aqueous solution containing chloride ions.
  • the electrolytic unit 5 contains an electrode 6 for producing electrolytic water for producing electrolytic water so as to be immersed in the water inside the tank unit 12.
  • the electrolytic unit 5 includes the first electrode 6A and the second electrode 6B.
  • a platinum iridium-based or platinum-rhodium-based electrode material that generates hypochlorous acid is used for the first electrode 6A of the electrode 6.
  • a Ti substrate excellent in corrosion resistance is used for the second electrode 6B.
  • control unit 17 controls power supply from power supply unit 13 to first electrode 6A and second electrode 6B only when spray unit 14 is operated. Is preferred. Thereby, the fluctuation
  • control unit 17 may be configured to maintain power supply to the first electrode 6A and the second electrode 6B in the electrolytic unit 5 for a predetermined time when the user operates the spray unit 14 . Thereby, regardless of the slowing of the operation speed of the spray unit 14 pushed by the user, hypochlorous acid having a stable concentration can be generated for a certain period of time and injected. At this time, the operation of the spray unit 14 by the user may be detected by, for example, a capacitance sensor or a conductive switch installed in the spray unit 14.
  • the first electrode 6A of the third embodiment is formed of an electrode catalyst made of an alloy layer of platinum and iridium so as to function as a hypochlorous acid generating electrode.
  • the electrolytic device 11 is configured.
  • chloride ions contained in the aqueous solution in the tank portion 12 are oxidized by the first electrode 6A to generate chlorine, as shown in the following (Formula 1).
  • the generated chlorine partially reacts with water to form hypochlorous acid as shown in the following (Formula 2).
  • FIG. 5 shows the chloride ion concentration in the tank 12 and the generated hypochlorous acid concentration when varying the applied current applied from the controller 17 to the first electrode 6A and the second electrode 6B. It shows the relationship with
  • the control unit 17 applies an applied current of, for example, 0.05A, 0.1A, 0.2A, and 0.3A to the first electrode 6A and the second electrode 6B.
  • the control unit 17 controls the supply amount of the 0.8% NaCl saline solution stored in the chloride storage tank 18 a by the pump 18 b of the chloride supply unit 18.
  • physiological saline is added to the inside of the tank 12 to adjust the chloride ion concentration in the tank 12 to, for example, 18 ppm, 50 ppm and 100 ppm.
  • the concentration of hypochlorous acid generated when each of the above applied currents was applied was measured.
  • the electrolytic device 11 of the third embodiment can always supply a constant NaCl solution addition amount into the tank portion 12 by the control of the pump 18 b. Therefore, the electrolytic device 11 which can generate a stable hypochlorous acid concentration can be obtained.
  • hypochlorous acid having a predetermined concentration can be produced in the tank portion 12 with a small amount of added NaCl. Therefore, if a high concentration NaCl solution is stored in the chloride storage tank 18a first, stable electrolytic water such as hypochlorous acid can be obtained only by supplying water to the tank portion 12 for a long period of time. Can be generated. Thereby, for example, at the time of going out, electrolytic water can be easily generated only by the supply of water.
  • the first electrode 6A of Embodiment 3 is formed of an electrode catalyst containing 60% of platinum and 40% of iridium in a molar ratio.
  • the electrode catalyst of the first electrode 6A includes, for example, an electrode catalyst composed of an alloy layer of platinum and rhodium, a noble metal such as platinum, or a noble metal oxide such as iridium, rhodium or ruthenium. You may
  • control unit 17 changes the applied voltage and the current to generate hypochlorous acid as an example.
  • the control unit 17 may control to change the polarity of the power supplied to the first electrode 6A and the second electrode 6B.
  • the control unit 17 may control to change the polarity of the power supplied to the first electrode 6A and the second electrode 6B.
  • the active species generated by the first electrode 6A but also the active species that can be generated by the second electrode 6B can be generated by changing the polarity.
  • one electrolyzer 11 can generate a plurality of active species according to the application.
  • the second electrode 6B is formed of a Ti substrate.
  • tantalum oxide may be formed as an electrode catalyst on a Ti substrate. This makes it possible to generate ozone.
  • a thin depletion layer is formed at the interface between the surface of the tantalum oxide (e.g., tantalum oxide), which is an electrode catalyst, and the cleaning water.
  • the tantalum oxide e.g., tantalum oxide
  • the potential of the second electrode 6B at which the exchange of electrons is performed becomes equal to or higher than the oxidation-reduction potential of ozone, so that ozone can be generated.
  • the ozone generation reaction is more efficiently performed to generate ozone.
  • tantalum oxide is used as the electrode catalyst for generating ozone of the second electrode 6B in the above description, it is also conceivable to use lead dioxide, diamond, platinum or the like, for example.
  • lead oxide there are concerns about environmental and human effects.
  • diamond or platinum the cost is high and the efficiency of ozone generation is low.
  • tantalum oxide is used as an electrode catalyst. That is, tantalum oxide can generate ozone at a lower current density than platinum. In addition, tantalum oxide has a feature that the generation efficiency of ozone increases as the current density decreases. In addition, tantalum oxide has high oxygen overvoltage.
  • ozone can be generated at a low voltage of, for example, about 1.5 V or so, without generating oxygen, by the electrode catalyst of tantalum oxide.
  • tantalum oxide can generate ozone with a power of about one-fourth. Therefore, it becomes possible to operate the electrolysis device 11 with a battery or a rechargeable battery. Thereby, it is suitable as a small-sized and portable electrolytic device 11.
  • a mixture of tantalum oxide and platinum may be used as the electrode catalyst of the second electrode 6B, and the same effect can be obtained.
  • the portable electrolyzed water sprayer 11 (electrolyzer 11) of the third embodiment can be used in the switching unit 8 according to the application that uses both hypochlorous acid water and ozone water. It can be selected and generated by switching operation.
  • ozone in the case of producing ozone, ozone has high oxidizing power and immediate effect. Therefore, it becomes possible to oxidatively decompose, for example, nonenal or mold smell which is a main component of aging odor which is difficult to be oxidatively decomposed, and further sebum components. Further, ozone can eliminate bacteria attached to a toilet seat, a table, hands, toys, etc. in a short time.
  • the electrolytic device 11 of the third embodiment is configured.
  • ozone water for example, containing ozone at a concentration of 0.1 to 0.4 ppm
  • hypochlorous acid water for example, a concentration of 1 to 5 ppm 1 ml of each was sprayed with an acid
  • hypochlorous acid water for example, a concentration of 1 to 5 ppm 1 ml of each was sprayed with an acid
  • hypochlorous acid water had difficulty achieving a 99% eradication rate in a short time even at 2 ppm of 10 times the concentration of ozone water. This is considered to be the effect by the high oxidizing power of ozone water maintained in a short time.
  • the cloth on which E. coli is attached contains ozone water (for example, containing 0.1 ppm and 1.0 ppm of ozone) and hypochlorous acid water (for example, containing 10 ppm, 18 ppm and 30 ppm of hypochlorous acid) 1 ml of each was sprayed, and the sterilization effect after leaving for 30 minutes was evaluated.
  • ozone water for example, containing 0.1 ppm and 1.0 ppm of ozone
  • hypochlorous acid water for example, containing 10 ppm, 18 ppm and 30 ppm of hypochlorous acid
  • hypochlorous acid is not as high in reactivity as ozone, it is considered that hypochlorous acid can be caused to act on microbes inside the cloth while maintaining its oxidizing power even if consumed somewhat by the cloth.
  • hypochlorous acid water has a deodorizing effect equivalent to that of a commercial clothes deodorant.
  • the ozone water and the hypochlorous acid water generated by the electrolytic device 11 appropriately exhibit the action and the effect depending on the application such as sterilization and deodorization.
  • the occurrence of the inhibition of the electrolytic action by the scale component is suppressed, for example, by the following method.
  • the spray unit 14 is sometimes removed from the tank unit 12.
  • water and citric acid are put into the tank portion 12, and the inside of the tank portion 12 is washed with citric acid.
  • citric acid can dissolve and remove scale components such as calcium attached to the surface of the electrode 6.
  • the electrolytic action of the electrolytic device 11 is maintained for a long time.
  • the controller 7 reverses the polarity of the power applied to the first electrode 6A and the second electrode 6B. Thereby, the adhesion of the scale component to the first electrode 6A and the second electrode 6B is suppressed.
  • cations such as calcium and magnesium contained in the water to be treated are electrically attracted to the second electrode 6B which is a cathode. That is, the surface of the second electrode 6B becomes alkaline by the electrolysis. Therefore, calcium and magnesium in the water to be treated are precipitated on the surface of the second electrode 6B as calcium hydroxide and calcium hydroxide.
  • control unit 7 inverts the polarity of the power applied to the first electrode 6A and the second electrode 6B, for example, every predetermined time or every predetermined period, and performs electrolysis. As a result, it is possible to suppress the formation and adhesion of calcium hydroxide and calcium hydroxide generated on the surface of the second electrode 6B and scale components such as calcium carbonate and magnesium carbonate.
  • scale component attached to the surface of the second electrode 6B can be removed by the same control as described above.
  • the vicinity of the second electrode 6B has a strongly acidic pH. Therefore, the scale component deposited on the surface of the second electrode 6B is dissolved or peeled off from the electrode interface. Thereby, the scale component can be removed from the surface of the second electrode 6B.
  • first electrode 6A is an anode and the second electrode 6B is a cathode
  • first electrode 6A is a cathode and the second electrode 6B is an anode
  • the opposite control operation can remove the scale component of the first electrode 6A.
  • the adhesion of the scale component to the electrode 6 can be suppressed by the above operation. Therefore, it is possible to prevent, for example, the blockage of the electrolysis chamber 5S constituting the flow passage due to the adhesion of the scale component. Thereby, the deterioration of the performance of the electrode 6 due to the adhesion of the scale component can be suppressed. As a result, stable performance and durability of the electrolytic device 11 can be ensured over a long period of time.
  • Embodiment 3 although the example which comprised the electrode catalyst of 2nd electrode 6B with the tantalum oxide as an ozone generation electrode was demonstrated, it is not restricted to this.
  • a diamond electrode may be used as an electrode catalyst.
  • Embodiment 3 although the structure which used Ti board
  • a metal substrate containing Ag, or an electrode catalyst may be used, and the same effect as in the case of an Ag substrate can be obtained.
  • a substrate containing Cu, Zn metal, a noble metal oxide, or a metal catalyst may be used as the second electrode 6B. Even in this case, the same effect as in the case of the Ag substrate can be obtained.
  • Embodiment 4 the portable electrolytic water sprayer 20 (electrolytic device 20) of the fourth embodiment of the present invention will be described with reference to FIG.
  • FIG. 6 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer 20 (electrolytic device 20) according to a fourth embodiment.
  • the electrolytic device 20 according to the fourth embodiment is configured such that the chloride supply unit 18 according to the third embodiment is an eye drop container 18c storing an aqueous chloride solution, and the eye drop container 18c can be removed from the electrolytic device 20. This is different from the third embodiment.
  • the electrolytic device 20 eliminates the pump 18b for automatically supplying chloride ions to the tank 12 and the pump power supply 19 according to the third embodiment, and the chloride in the tank 12 from the eye drop container 18c manually. An aqueous solution was added.
  • the eye drop container 18c can drop a solution such as an aqueous chloride solution by directly pushing the container with a light force. Furthermore, the eye drop container 18c can prevent liquid leakage from the opening of the pressure valve when the container is restored after being pressed.
  • the eye drop container 18c includes, for example, a flexible container main body that contains a drug solution, and a discharge port.
  • the discharge port is provided in the container body, and configured to discharge the chemical solution stored in the container body.
  • the eye drop container 18c deforms the container body by pressing. At this time, when the internal pressure of the container body becomes higher than the atmospheric pressure, the chemical solution is discharged from the discharge port. When the pressure on the container body is released, the internal pressure of the container body becomes lower than the atmospheric pressure. As a result, external air is allowed to flow into the container body from the discharge port, and the container body is restored to the shape before pressing. As a result, the eye drop container 18c is configured to add a certain amount of drug solution.
  • the pump 18b and the pump power supply 19 can be deleted. Therefore, the size and weight of the electrolytic device 20 can be reduced. Thereby, the convenience as the portable electrolytic device 20 is further improved.
  • a recess is provided at a position corresponding to the eye drop container 18c of the electrolytic device 20 to install the eye drop container 18c in the recess, but the present invention is not limited to this.
  • the eye drop container 18c may be attached to the outside of the electrolytic device 20, for example, like a strap.
  • the electrolysis device 20 of further miniaturization can be realized.
  • the cleaning property of the eye drop container 18c can be improved.
  • the portable electrolyzed water sprayer according to the present invention encompasses various forms in the technical scope. Therefore, the present invention is not limited to the configuration shown in the above embodiment, and can be applied to various forms of portable electrolytic water sprayers.
  • Electrolyzer Portable Electrolyzed Water Sprayer
  • 12 tank part 13, 13 power supply part 4, 24 spray mechanism part 5, 25 electrolysis part 5B spacer 5E inflow hole 5F upper surface opening 5P cylindrical body 5S electrolysis room 6, 26 electrode 6A first electrode 6B second Electrodes 17, 17 control unit 8 switching unit 14 spray unit 18 chloride supply unit 18a chloride storage tank 18b pump 18c eye dropper container 19 pump power supply 21 electrolyzed water sprayer 22 water tank unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The invention is provided with: a tank (2); an electrolysis part (5), which is set inside the tank (2) and is configured from at least a first electrode and a second electrode that electrolyze water flowing in from the tank (2); a power source part (3) for supplying electric power to the electrolysis part (5); a control part (7) for controlling the supply of electric power to the first and second electrodes by reversing the polarity of the power of the power source part (3); and a spraying mechanism (4) for spraying the water electrolyzed in the electrolysis part (5). As a result, it is possible to control the polarity of the power supply to the first and second electrodes and selectively generate two kinds of active species such as ozone and hypochlorous acid. In other words, the invention provides a small portable electrolyzed water sprayer that is capable of sterilizing or deodorizing by generating, depending on the object, the active species therefor.

Description

携帯用電解水噴霧器Portable Electrolyzed Water Sprayer
 本発明は、水を電気分解し、活性物質を生成する電解装置に関する。特に、本発明は、外出時に持ち歩き、任意の部位に電解水を噴霧して、その部位を除菌消臭することに適する携帯用電解水噴霧器に関する。 The present invention relates to an electrolyzer that electrolyzes water to produce an active substance. In particular, the present invention relates to a portable electrolyzed water sprayer suitable for carrying around at the time of going out and spraying an electrolyzed water to any part to sterilize and deodorize the part.
 従来、病院、人が出入りする施設、あるいは、家庭内で手指などを除菌する機器として、次亜塩素酸生成噴霧器が知られている(例えば、特許文献1参照)。 Conventionally, a hypochlorous acid generating sprayer is known as a hospital, a facility where people enter and leave, or a device for disinfecting fingers and the like in a home (for example, see Patent Document 1).
 特許文献1の次亜塩素酸生成噴霧器は、容器に収容した塩素化合物の溶液を電気分解し、次亜塩素酸水を生成して、容器のスプレー部から噴霧する。 The hypochlorous acid generation sprayer of Patent Document 1 electrolyzes a solution of a chlorine compound contained in a container to generate hypochlorous acid water, and sprays it from a spray part of the container.
 具体的には、次亜塩素酸生成噴霧器は、多量の塩素化合物の溶液を収容する容器と、容器の上端に着脱自在に取り付けられるトリガスプレーを備える。そして、次亜塩素酸生成噴霧器は、0.1ml~1mlの塩素化合物の溶液を容器内から汲み上げて、トリガスプレーのノズルから噴霧するように構成される。 Specifically, the hypochlorous acid generating sprayer includes a container containing a solution of a large amount of chlorine compounds, and a trigger sprayer detachably attached to the upper end of the container. Then, the hypochlorous acid generating sprayer is configured to pump a solution of 0.1 ml to 1 ml of a chlorine compound from the container and spray it from the nozzle of the trigger spray.
 また、図7に示す携帯用の電解水噴霧器21が提案されている(例えば、特許文献2参照)。 Also, a portable electrolytic water sprayer 21 shown in FIG. 7 has been proposed (see, for example, Patent Document 2).
 図7は、特許文献2に開示の従来の携帯用の電解水噴霧器21の断面図である。 FIG. 7 is a cross-sectional view of a conventional portable electrolytic water sprayer 21 disclosed in Patent Document 2. As shown in FIG.
 図7に示すように、電解水噴霧器21は、外観が円筒状に形成され、内部に、筒状の水タンク部22、電源部23、噴霧機構部24を配置して構成される。水タンク部22は、上面が開口され、電解水噴霧器21の中間部に配置される。電源部23は、電解水噴霧器21の下部に、噴霧機構部24は電解水噴霧器21の上部に配置される。水タンク部22は、内部に配置される、筒状の電解部25を備える。電解部25は、水タンク部22の軸方向に配置される。電解部25は、内部に、電極26が配置され、下部から流入する水タンク部22の水を電解する。これにより、オゾン水が生成される。生成されたオゾン水は、噴霧機構部24先端のノズルから噴霧され、除菌するように構成される。 As shown in FIG. 7, the electrolytic water sprayer 21 has a cylindrical outer appearance, and is configured by arranging a cylindrical water tank portion 22, a power supply portion 23, and a spray mechanism portion 24 inside. The water tank portion 22 is open at the top and is disposed in the middle of the electrolytic water sprayer 21. The power supply unit 23 is disposed below the electrolyzed water sprayer 21, and the spray mechanism unit 24 is disposed above the electrolyzed water sprayer 21. The water tank unit 22 includes a tubular electrolytic unit 25 disposed inside. The electrolytic unit 25 is disposed in the axial direction of the water tank unit 22. An electrode 26 is disposed in the inside of the electrolytic unit 25 to electrolyze water in the water tank unit 22 flowing from the lower part. Thus, ozone water is generated. The generated ozone water is sprayed from the nozzle at the tip of the spray mechanism 24 and is configured to be disinfected.
 しかしながら、特許文献1の次亜塩素酸生成噴霧器は、病院、施設、あるいは、家庭の棚などに設置して使用されるため、全体の形状が大きく、携帯用としては不向きである。さらに、噴霧される次亜塩素酸は、酸化力が弱い。そのため、殺菌に時間を要するとともに、分解しにくい加齢臭やカビ臭の消臭は困難である。 However, since the hypochlorous acid generating sprayer of Patent Document 1 is used by being installed on a shelf of a hospital, a facility, or a home, it has a large overall shape and is unsuitable for portable use. Furthermore, hypochlorous acid to be sprayed is weak in oxidizing power. Therefore, while sterilization takes time, it is difficult to deodorize aging odor and mold odor that are difficult to be decomposed.
 また、特許文献2の電解水噴霧器は、オゾン水を噴霧し、除菌する。噴霧されるオゾン水は、酸化力が高く、即効性がある。つまり、オゾン水は、手や便座、テーブルなどの除菌を短時間で行えるとともに、加齢臭、カビ臭などの消臭に適している。 Moreover, the electrolytic water sprayer of patent document 2 sprays ozone water, and disinfects. Ozone water to be sprayed has high oxidizing power and is effective. In other words, ozone water can disinfect bacteria on hands, toilet seats, tables, etc. in a short time, and is suitable for deodorizing such as age-related odor and mold odor.
 しかしながら、オゾン水は、酸化力の持続性がないため、衣類などのファブリック製品を除菌する場合、布にオゾンが消費される。そのため、衣類の除菌や消臭性能の確保が困難である。 However, ozone water is consumed in ozone when disinfecting fabric products such as clothes because ozone water does not have the persistence of oxidizing power. For this reason, it is difficult to secure the sterilization and deodorizing performance of clothes.
特開2004-130263号公報JP 2004-130263 A 特開2011-092883号公報JP, 2011-092883, A
 本発明は、手やテーブル、便座など任意の部位を除菌するとともに、衣類などのファブリック製品や靴などの、除菌消臭が可能な携帯用電解水噴霧器を提供する。 The present invention provides a portable electrolytic water sprayer capable of disinfecting and deodorizing fabric products such as clothes, shoes and the like while disinfecting arbitrary sites such as hands, tables and toilet seats.
 本発明の携帯用電解水噴霧器は、タンク部と、タンク部内に設置され、タンク部から流入した水を電気分解する、少なくとも第1の電極と第2の電極を有する電解部を備える。さらに、携帯用電解水噴霧器は、電解部に電力を供給する電源部と、電源部の電力の極性を反転させ、第1の電極と第2の電極への電力供給を制御する制御部と、電解部で電解された水を噴霧する噴霧部を備える。 The portable electrolytic water sprayer according to the present invention comprises a tank unit, and an electrolysis unit disposed in the tank unit and having at least a first electrode and a second electrode for electrolyzing water flowing from the tank unit. Furthermore, the portable electrolytic water sprayer includes a power supply unit that supplies power to the electrolytic unit, a control unit that reverses the polarity of the power of the power supply unit, and controls the power supply to the first electrode and the second electrode. A spray unit is provided for spraying water electrolyzed by the electrolysis unit.
 この構成によれば、外出時にハンドバッグなどに収容して携帯可能な小型の携帯用電解水噴霧器を実現できる。さらに、手やテーブル、便座など任意の部位の除菌のみならず、衣類などのファブリック製品や靴などの、除菌、消臭が可能な携帯用電解水噴霧器を提供できる。 According to this configuration, it is possible to realize a small portable electrolytic water sprayer that can be contained and carried in a handbag or the like when going out. Furthermore, it is possible to provide a portable electrolyzed water sprayer capable of disinfecting and deodorizing fabric products such as clothes, shoes, etc. as well as disinfecting arbitrary parts such as hands, tables and toilet seats.
図1は、本発明の実施の形態1および実施の形態2に係る携帯用電解水噴霧器の内部構成を示す断面図である。FIG. 1 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer according to Embodiment 1 and Embodiment 2 of the present invention. 図2は、同携帯用電解水噴霧器の電解部と電源部の関係を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the relationship between the electrolytic unit and the power supply unit of the portable electrolytic water sprayer. 図3は、同電解部の電極構成を示す断面図である。FIG. 3: is sectional drawing which shows the electrode structure of the same electrolysis part. 図4は、本発明の実施の形態3に係る携帯用電解水噴霧器の内部構成を示す断面図である。FIG. 4 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer according to Embodiment 3 of the present invention. 図5は、同携帯用電解水噴霧器の塩化物イオン濃度をパラメータにした印加電流と次亜塩素酸の濃度との相関を示す図である。FIG. 5 is a view showing the correlation between the applied current and the concentration of hypochlorous acid with the chloride ion concentration of the portable electrolytic water sprayer as a parameter. 図6は、本発明の実施の形態4に係る携帯用電解水噴霧器の内部構成を示す断面図である。FIG. 6 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer according to Embodiment 4 of the present invention. 図7は、従来の携帯用の電解水噴霧器の断面図である。FIG. 7 is a cross-sectional view of a conventional portable electrolytic water sprayer.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.
 (実施の形態1)
 以下、本発明の実施の形態1の携帯用電解水噴霧器について、図1から図3を参照しながら、説明する。
Embodiment 1
Hereinafter, the portable electrolytic water sprayer according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
 図1は、実施の形態1に係る携帯用電解水噴霧器の内部構成を示す断面図である。図2は、同携帯用電解水噴霧器の電解部と電源部の関係を示す分解斜視図である。図3は、同電解部の電極構成を示す断面図である。 FIG. 1 is a cross-sectional view showing an internal configuration of the portable electrolytic water sprayer according to the first embodiment. FIG. 2 is an exploded perspective view showing the relationship between the electrolytic unit and the power supply unit of the portable electrolytic water sprayer. FIG. 3: is sectional drawing which shows the electrode structure of the same electrolysis part.
 図1に示す携帯用電解水噴霧器1(以下、「電解装置1」と略記する)は、筒状の外観形状で形成される。なお、筒状において、断面形状は、円筒形、楕円形、多角形などの任意の形状を選択できる。 The portable electrolyzed water sprayer 1 (hereinafter abbreviated as “electrolyzer 1”) shown in FIG. 1 is formed in a tubular external shape. In the cylindrical shape, any cross-sectional shape such as a cylindrical shape, an oval shape, or a polygonal shape can be selected.
 電解装置1は、中間部に筒状のタンク部2、下部に電源部3、上部にプッシュ式の噴霧機構部4を配置して構成される。 The electrolytic device 1 is configured by arranging a cylindrical tank portion 2 at an intermediate portion, a power supply portion 3 at a lower portion, and a push type spray mechanism portion 4 at an upper portion.
 実施の形態1の電解装置1は、タンク部2と電源部3の外観形状が、略同じ直径(同じ直径を含む)の円筒形で形成される。 In the electrolytic device 1 of the first embodiment, the external shape of the tank portion 2 and the power supply portion 3 is formed in a cylindrical shape having substantially the same diameter (including the same diameter).
 タンク部2は、下部に、電源部3が着脱可能に螺着される。これにより、タンク部2と電源部3とが、水密的に保持される。また、タンク部2は、上部に、噴霧機構部4が着脱可能に螺着される。これにより、タンク部2と噴霧機構部4とが、水密的に保持される。つまり、タンク部2は、内部が水溜め部を構成する。そして、噴霧機構部4を取り外して、水を供給することにより、タンク部2の内部に、水が溜められる。 The power supply unit 3 is detachably screwed to the lower part of the tank unit 2. Thereby, the tank unit 2 and the power supply unit 3 are held in a watertight manner. Further, the spray mechanism unit 4 is detachably screwed to the upper portion of the tank unit 2. Thereby, the tank part 2 and the spray mechanism part 4 are held in a watertight manner. That is, the inside of the tank unit 2 constitutes a water reservoir. Then, by removing the spray mechanism unit 4 and supplying water, the water is stored in the tank unit 2.
 タンク部2は、筒状の径方向の中央部に、筒状の電解部5が、タンク部2の軸方向に沿って配置される。電解部5には、タンク部2の水が下部の流入孔5E(図2参照)から流入し、上面開口5F(図2参照)から噴霧機構部4へ流出する。そのため、電解装置1は、プッシュ式の噴霧機構部4を上にした垂直方向の配置状態において、電解部5とタンク部2の水位が、同レベルとなるように構成される。 In the tank unit 2, a cylindrical electrolytic unit 5 is disposed along the axial direction of the tank unit 2 at a cylindrical radial center. The water of the tank unit 2 flows into the electrolytic unit 5 from the lower inflow hole 5E (see FIG. 2) and flows out to the spray mechanism unit 4 from the upper surface opening 5F (see FIG. 2). Therefore, the electrolytic device 1 is configured such that the water levels of the electrolytic unit 5 and the tank unit 2 become the same level in the vertical arrangement state in which the push type spray mechanism unit 4 is up.
 電解部5は、内部に流入した水に浸漬するように、電解水を生成するための電解水生成用の電極6が収容される。電極6は、第1の電極6Aと第2の電極6Bから構成される。実施の形態1の電極6は、第1の電極6Aが、オゾンを発生するオゾン発生電極を構成し、第2の電極6Bが、塩素物質を含む水を生成するための塩素物質発生電極を構成する。 The electrolysis unit 5 accommodates an electrode 6 for producing electrolytic water for producing electrolytic water so as to be immersed in the water flowing into the inside. The electrode 6 is composed of a first electrode 6A and a second electrode 6B. In the electrode 6 of the first embodiment, the first electrode 6A constitutes an ozone generating electrode that generates ozone, and the second electrode 6B constitutes a chlorine material generating electrode for generating water containing a chlorine material. Do.
 具体的には、電解部5は、図2および図3に示すように、第1の電極6Aと第2の電極6Bとが、所定の間隔で対向し、筒状体5P内に収容される。これにより、第1の電極6Aと第2の電極6Bとの間に、水の流通路となる電解室5Sが形成される。このとき、第1の電極6Aと第2の電極6Bとの間に形成される電解室5S以外の部分に、水が存在すると、その水は、電気分解されないため、オゾンや塩素物質を含んでいない水となる。そのため、オゾンや塩素物質を含まない水がプッシュ式の噴霧機構部4から噴霧されると、電解装置1による除菌効果が損なわれる。そこで、電解部5は、第1の電極6Aと第2の電極6Bとの間以外の部分を水が流れないようにシール構成を設けている。これにより、電解室5S以外の部分に、水が存在するのを防止している。 Specifically, as shown in FIGS. 2 and 3, in the electrolytic unit 5, the first electrode 6A and the second electrode 6B face each other at a predetermined distance, and are accommodated in the cylindrical body 5P. . Thereby, the electrolysis chamber 5S which becomes a flow passage of water is formed between the first electrode 6A and the second electrode 6B. At this time, if water is present in a portion other than the electrolysis chamber 5S formed between the first electrode 6A and the second electrode 6B, the water is not electrolyzed and therefore contains ozone or a chlorine substance. It will not be water. Therefore, when the water containing no ozone or chlorine substance is sprayed from the push type spray mechanism unit 4, the sterilization effect by the electrolytic device 1 is lost. Therefore, the electrolytic unit 5 is provided with a seal configuration so that water does not flow through the portion other than the portion between the first electrode 6A and the second electrode 6B. This prevents the presence of water in the portion other than the electrolysis chamber 5S.
 電極6は、第1の電極6Aと第2の電極6Bが電解装置1の軸方向、すなわち、電極6は、タンク部2の軸方向に対して、平行に収容される。 In the electrode 6, the first electrode 6A and the second electrode 6B are accommodated in the axial direction of the electrolytic device 1, that is, the electrode 6 is parallel to the axial direction of the tank portion 2.
 また、電極6は、例えば2枚から5枚の、第1の電極6Aおよび第2の電極6Bで構成される。なお、1枚の第1の電極6Aと、1枚の第2の電極6Bの一対で、電極6を構成してもよい。 The electrode 6 is formed of, for example, two to five first electrodes 6A and second electrodes 6B. The electrode 6 may be configured by a pair of one first electrode 6A and one second electrode 6B.
 実施の形態1の電極6は、除菌用の電解水を効果的に生成するために、電極6の好ましい形態として、1枚の第1の電極6Aと、その両側に第2の電極6Bを所定の間隔を設けて配置する構成としている。 In order to effectively generate electrolytic water for sterilization, the electrode 6 of the first embodiment has a first electrode 6A of one sheet and a second electrode 6B on both sides thereof as a preferred embodiment of the electrode 6. The configuration is such that a predetermined interval is provided.
 また、電解装置1は、電源部3から電極6に電力を供給し、電源部3を制御する制御部7を備える。制御部7は、第1の電極6Aと第2の電極6Bへ供給する電力(電圧および電流)の極性を反転させるように制御する。具体的には、第1の電極6Aが陽極となるように、制御部7が電源部3を制御すると、オゾン水が生成される。また、第2の電極6Bが陽極となるように、制御部7が電源部3を制御すると、塩素物質を含む水が生成される。 The electrolytic device 1 further includes a control unit 7 that supplies power from the power supply unit 3 to the electrode 6 and controls the power supply unit 3. The control unit 7 controls to invert the polarity of the power (voltage and current) supplied to the first electrode 6A and the second electrode 6B. Specifically, when the control unit 7 controls the power supply unit 3 so that the first electrode 6A becomes an anode, ozone water is generated. Further, when the control unit 7 controls the power supply unit 3 so that the second electrode 6B becomes an anode, water containing a chlorine substance is generated.
 このとき、電極6を構成する、第1の電極6Aおよび第2の電極6Bに供給される極性の切替は、電解装置1に配設した切替部8により選択される。つまり、使用者が切替部8を操作(例えば、プッシュ動作など)すると、制御部7は、第1の電極6Aおよび第2の電極6Bに供給される電力の極性を切り替えるように制御する。これにより、オゾン水の生成と、塩素物質を含む水の生成が、選択される。その結果、除菌と消臭との対象物に適した活性種の生成の選択が、可能となる。 At this time, switching of the polarity supplied to the first electrode 6A and the second electrode 6B constituting the electrode 6 is selected by the switching unit 8 disposed in the electrolytic device 1. That is, when the user operates the switching unit 8 (for example, a push operation), the control unit 7 controls to switch the polarity of the power supplied to the first electrode 6A and the second electrode 6B. Thereby, the generation of ozone water and the generation of water containing a chlorine substance are selected. As a result, it is possible to select the production of active species suitable for the object of eradication and deodorization.
 なお、電解装置1に、例えばLEDなどの発光装置(図示せず)を設けてもよい。つまり、発光装置は、切替部8の切り替え操作に応じて、発光装置の色や発光強度を可変させる。これにより、例えばオゾン水の生成モードか、塩素物質を含む水の生成モードなのか、などの動作モードを、視覚化させて、使用者に知らせることができる。その結果、使用者は、対象物に適した活性種を、効果的に生成させることができる。 In addition, you may provide light-emitting devices (not shown), such as LED, in the electrolysis apparatus 1, for example. That is, the light emitting device changes the color and the light emission intensity of the light emitting device according to the switching operation of the switching unit 8. As a result, it is possible to visualize the operation mode such as, for example, the generation mode of ozone water or the generation mode of water containing a chlorine substance to notify the user. As a result, the user can effectively generate an active species suitable for the object.
 以上のように、実施の形態1の電解装置1は構成される。 As described above, the electrolytic device 1 of Embodiment 1 is configured.
 つぎに、電解装置1の電解部5の電極6の構成について、具体的に説明する。 Below, the structure of the electrode 6 of the electrolysis part 5 of the electrolysis apparatus 1 is demonstrated concretely.
 図3に示すように、実施の形態1の電極6は、第1の電極6Aの両側に第2の電極6Bが、例えばポリプロピレン(PP)やアクリロニトリル・ブタジエン・スチレン樹脂(ABS)などの樹脂やセラミックスなどの絶縁材のスペーサ5Bを介して配置される。これにより、第1の電極6Aと第2の電極6Bとは、略均一な(均一を含む)所定の間隔(例えば0.1mm~1mm程度)を設けて、対向して配置される。このとき、第2の電極6Bの電気分解に作用しない第1の電極6Aとの非対向面は、例えばPPやABSなど樹脂などの絶縁材からなる筒状体5Pで覆われる。筒状体5Pは、例えば塩化ビニルやシリコン、フッ素などの合成樹脂製の熱収縮チューブで構成される。そのため、加熱により熱収縮チューブを収縮させると、熱収縮チューブが第2の電極6Bの周囲に密着し、電極6を内包するように、筒状体5Pが形成される。 As shown in FIG. 3, in the electrode 6 of the first embodiment, the second electrode 6B is formed on both sides of the first electrode 6A, for example, a resin such as polypropylene (PP) or acrylonitrile butadiene styrene resin (ABS) or the like. It arrange | positions via the spacer 5B of insulating materials, such as ceramics. As a result, the first electrode 6A and the second electrode 6B are disposed opposite to each other at a substantially uniform (including uniform) predetermined interval (for example, about 0.1 mm to 1 mm). At this time, the non-facing surface of the second electrode 6B that does not act on the electrolysis with the first electrode 6A is covered with a cylindrical body 5P made of an insulating material such as a resin such as PP or ABS. The cylindrical body 5P is made of, for example, a heat-shrinkable tube made of synthetic resin such as vinyl chloride, silicon, or fluorine. Therefore, when the heat-shrinkable tube is shrunk by heating, the heat-shrinkable tube is closely attached to the periphery of the second electrode 6B, and the cylindrical body 5P is formed so as to enclose the electrode 6.
 これにより、スペーサ5Bを介して対向する第1の電極6Aと第2の電極6Bとの間に、水の流通路となる電解室5Sが形成される。そして、電極6に所定の極性の電力を供給することにより、電解室5Sに存在する水が、電気分解される。これにより、供給された極性の電力に応じて、オゾン、もしくは、塩素物質を含む水を発生させ、各々の電解水を効果的に生成できる。 Thereby, the electrolysis chamber 5S which becomes a flow passage of water is formed between the 1st electrode 6A and the 2nd electrode 6B which oppose via the spacer 5B. Then, by supplying power of a predetermined polarity to the electrode 6, the water present in the electrolysis chamber 5S is electrolyzed. As a result, ozone or water containing a chlorine substance can be generated according to the supplied polar power, and each electrolyzed water can be effectively generated.
 なお、実施の形態1において、制御部7は、電源部3から第1の電極6Aおよび第2の電極6Bへの電力供給を、噴霧機構部4の作動時のみに行うように制御する構成が好ましい。つまり、電解する時間とともに生成される次亜塩素酸は、増加する。そこで、上記制御により、噴霧されるオゾンや次亜塩素酸などの塩素物質を含む水の濃度の、動作時間での変動が抑制される。その結果、オゾンや次亜塩素酸などの塩素物質を含む水を、一定の濃度で、安定して生成できる。 In the first embodiment, control unit 7 controls power supply from power supply unit 3 to first electrode 6A and second electrode 6B only when spray mechanism unit 4 is operated. preferable. That is, hypochlorous acid produced with the time of electrolysis increases. Thus, the control described above suppresses fluctuations in the operating time of the concentration of water containing a substance to be sprayed such as ozone and a chlorine substance such as hypochlorous acid. As a result, water containing a chlorine substance such as ozone or hypochlorous acid can be stably generated at a constant concentration.
 また、電極6は、タンク部2に噴霧機構部4を装着した状態で、下端部が電源部3に水密的にシールされ、上端部が噴霧機構部4に水密的にシールされる。これにより、噴霧機構部4の作動により、オゾン水などが噴霧されるとき、電解部5は、実質的に、電解室5S以外の部分を水が流れない筒状で構成される。 The lower end of the electrode 6 is watertightly sealed to the power source 3 and the upper end is watertightly sealed to the spray mechanism 4 in a state where the spray mechanism 4 is attached to the tank 2. Thereby, when ozone water etc. are sprayed by the action | operation of the spraying mechanism part 4, the electrolysis part 5 is substantially comprised by the cylindrical shape which water does not flow through parts other than the electrolysis chamber 5S.
 つまり、電解室5Sは、電解水の生成領域を構成する。そのため、電極6を構成する、板状の第1の電極6Aとその両側の板状の第2の電極6Bとの間で、電解水が生成される。さらに、電解室5Sは、タンク部2の水を、噴霧機構部4へ通流させる流路を構成する。そのため、タンク部2から噴霧機構部4へ通流する水の流路の構成を簡素化できる。これにより、タンク部2の中心部に電解部5を配置する、コンパクトな構成を実現できる。 That is, the electrolysis chamber 5S constitutes a generation region of electrolyzed water. Therefore, electrolyzed water is generated between the plate-shaped first electrode 6A and the plate-shaped second electrode 6B on both sides of the electrode 6. Furthermore, the electrolysis chamber 5S constitutes a flow path for flowing the water of the tank unit 2 to the spray mechanism unit 4. Therefore, the configuration of the flow path of water flowing from the tank portion 2 to the spray mechanism portion 4 can be simplified. Thereby, a compact configuration in which the electrolytic unit 5 is disposed at the center of the tank unit 2 can be realized.
 なお、実施の形態1の第1の電極6Aは、上述したように、オゾン発生電極として機能する。そのため、第1の電極6Aは、例えばチタンなどの金属基板の表面に、例えばタンタル酸化物などで形成される電極触媒を備える。また、第2の電極6Bは、塩素物質生成電極として機能する。そのため、第2の電極6Bは、白金とイリジウムとの合金層で形成される。 The first electrode 6A of Embodiment 1 functions as an ozone generating electrode as described above. Therefore, the first electrode 6A includes an electrode catalyst formed of, for example, tantalum oxide or the like on the surface of a metal substrate of, for example, titanium. Further, the second electrode 6B functions as a chlorine material generation electrode. Therefore, the second electrode 6B is formed of an alloy layer of platinum and iridium.
 以上のように、電解装置1の電解部5の電極6は構成される。 As described above, the electrode 6 of the electrolytic unit 5 of the electrolytic device 1 is configured.
 つぎに、上述したタンタル酸化物を電極触媒とした第1の電極6Aにおいて、オゾン生成のメカニズムについて、説明する。 Next, the mechanism of ozone generation in the first electrode 6A using the above-described tantalum oxide as an electrode catalyst will be described.
 第1の電極6Aは、電力が供給されると、電極触媒であるタンタル酸化物(例えば、酸化タンタル)の表面と、洗浄水との界面に、薄い空乏層が形成される。その状態で、水が電気分解されると、水と第1の電極6Aとの反応により、電子が生成される。生成された電子は、酸化タンタル表面に形成された空乏層を、トンネル効果により通過する。これにより、第1の電極6Aの、電子の授受が行われる電位が、オゾンの酸化還元電位以上になるため、オゾンが生成可能になると考えられる。その結果、オゾンの生成反応が、より効率的に行われ、オゾンが生成される。 When power is supplied to the first electrode 6A, a thin depletion layer is formed at the interface between the surface of the electrode catalyst tantalum oxide (eg, tantalum oxide) and the cleaning water. In that state, when water is electrolyzed, electrons are generated by the reaction of water with the first electrode 6A. The generated electrons pass through the depletion layer formed on the tantalum oxide surface by tunneling. As a result, the potential of the first electrode 6A at which the exchange of electrons is performed becomes equal to or higher than the oxidation-reduction potential of ozone, and it is considered that ozone can be generated. As a result, the ozone generation reaction is more efficiently performed to generate ozone.
 なお、上記では、第1の電極6Aのオゾン生成用の電極触媒として、タンタル酸化物を用いたが、例えば二酸化鉛、ダイヤモンド、白金などを用いることが考えられる。しかし、鉛の酸化物の場合、環境や人体への影響が懸念される。また、ダイヤモンドや白金などの場合、コスト高や、オゾンの生成効率が低くなる。 Although tantalum oxide is used as the electrode catalyst for generating ozone of the first electrode 6A in the above, it is conceivable to use lead dioxide, diamond, platinum or the like, for example. However, in the case of lead oxide, there are concerns about environmental and human effects. In the case of diamond or platinum, the cost is high and the efficiency of ozone generation is low.
 そこで、実施の形態1では、電極触媒として、タンタル酸化物を用いている。つまり、タンタル酸化物は、白金と比べて、低電流密度でのオゾン生成が可能である。また、タンタル酸化物は、電流密度が低いほどオゾンの生成効率が高まるという特長を有している。さらに、タンタル酸化物は、高い酸素過電圧を備える。 Therefore, in the first embodiment, tantalum oxide is used as the electrode catalyst. That is, tantalum oxide can generate ozone at a lower current density than platinum. In addition, tantalum oxide has a feature that the generation efficiency of ozone increases as the current density decreases. In addition, tantalum oxide has high oxygen overvoltage.
 そのため、タンタル酸化物の電極触媒により、酸素を発生させることなく、例えば1.5V程度を超える程度の低い電圧で、オゾンを発生させることができる。特に、白金と比べて、タンタル酸化物は、1/4程度の電力で、オゾンを生成することができる。そのため、電解装置1を、電池や充電池で動作させることが可能となる。 Therefore, ozone can be generated at a low voltage of, for example, about 1.5 V or so, without generating oxygen, by the electrode catalyst of tantalum oxide. In particular, compared to platinum, tantalum oxide can generate ozone with a power of about one-fourth. Therefore, it becomes possible to operate the electrolysis device 1 with a battery or a rechargeable battery.
 なお、第1の電極6Aの電極触媒としては、上記以外に、タンタル酸化物と白金との混合物などででもよく、同様の効果が得られる。 In addition to the above, a mixture of tantalum oxide and platinum may be used as the electrode catalyst of the first electrode 6A, and the same effect can be obtained.
 つぎに、第2の電極6Bの構成について、より具体的に、説明する。 Next, the configuration of the second electrode 6B will be described more specifically.
 第2の電極6Bは、塩素物質生成電極として機能する。そのため、実施の形態1の第2の電極6Bは、白金とイリジウムの合金層からなる電極触媒で構成される。 The second electrode 6B functions as a chlorine substance generation electrode. Therefore, the second electrode 6B of the first embodiment is configured of an electrode catalyst made of an alloy layer of platinum and iridium.
 なお、白金単体でも、次亜塩素酸の生成は可能である。しかし、白金とイリジウムとの合金層とすることにより、次亜塩素酸の生成効率を、さらに向上させることが可能となる。そこで、実施の形態1の第2の電極6Bは、モル比で、白金を60%、イリジウムを40%配合した電極触媒で構成する。第2の電極6Bの電極触媒を上記材料組成にすることにより、白金のみの電極触媒に比べて、次亜塩素酸の生成効率が、約3.5倍に向上した。この理由は、上記電極触媒により、酸素過電圧が低下したためと推察される。 Even with platinum alone, hypochlorous acid can be produced. However, by forming an alloy layer of platinum and iridium, the generation efficiency of hypochlorous acid can be further improved. Therefore, the second electrode 6B of the first embodiment is configured by an electrode catalyst in which 60% of platinum and 40% of iridium are mixed in a molar ratio. By setting the electrode catalyst of the second electrode 6B to the above-described material composition, the generation efficiency of hypochlorous acid is improved by about 3.5 times as compared with the platinum-only electrode catalyst. The reason is presumed to be that the oxygen overpotential is lowered by the electrode catalyst.
 なお、第2の電極6Bの電極触媒は、上記以外に、例えば、白金などの貴金属または、ルテニウム、ロジウム、ルテニウムなどの貴金属酸化物を含んで構成してもよい。 In addition to the above, the electrode catalyst of the second electrode 6B may include, for example, a noble metal such as platinum or a noble metal oxide such as ruthenium, rhodium, or ruthenium.
 以上の構成によれば、実施の形態1の携帯用電解水噴霧器1(電解装置1)は、オゾン水と、塩素物質を含む水(例えば次亜塩素酸)の両方を、使用する用途などに応じて、切替部8の切り替え操作により選択して生成できる。 According to the above configuration, the portable electrolyzed water sprayer 1 (electrolytic device 1) of Embodiment 1 is used for applications that use both ozone water and water containing a chlorine substance (for example, hypochlorous acid). Accordingly, it can be selected and generated by the switching operation of the switching unit 8.
 例えばオゾンを生成する場合、オゾンは、特に、高い酸化力と即効性を有する。そのため、例えば酸化分解が困難な加齢臭の主成分であるノネナールやカビ臭、さらには、皮脂成分を酸化分解することが可能となる。さらに、オゾンは、便座やテーブル、手、玩具などに付着した菌を、短時間で除菌することが可能となる。 For example, in the case of producing ozone, ozone has high oxidizing power and immediate effect. Therefore, it becomes possible to oxidatively decompose, for example, nonenal or mold smell which is a main component of aging odor which is difficult to be oxidatively decomposed, and further sebum components. Further, ozone can eliminate bacteria attached to a toilet seat, a table, hands, toys, etc. in a short time.
 しかし、オゾンは、反応性が高いため、上述したように、衣類などに付着した菌の除菌や、タバコ臭の消臭への使用には、不向きである。この場合、高い酸化持続力を有する次亜塩素酸の使用が、より適している。そこで、衣類などに付着した菌の除菌や、タバコ臭の消臭に対しては、電解装置1の電極6に供給する電力の極性を切り替えて、次亜塩素酸を生成する。これにより、使用する用途などに応じて、1つの電解装置1で、適切な電解水を生成できる。 However, since ozone is highly reactive, as described above, ozone is not suitable for use in disinfecting bacteria attached to clothes or the like and in deodorizing tobacco odor. In this case, the use of hypochlorous acid having high oxidation persistence is more suitable. Therefore, the hypochlorite is generated by switching the polarity of the power supplied to the electrode 6 of the electrolytic device 1 in order to eliminate bacteria attached to clothes or the like and to deodorize the tobacco odor. Thereby, according to the use to be used, etc., one electrolysis device 1 can produce suitable electrolysis water.
 以上のように、実施の形態1の電解装置1は構成される。 As described above, the electrolytic device 1 of Embodiment 1 is configured.
 つぎに、上記構成を備える電解装置1で生成するオゾン水および次亜塩素酸水の作用・効果について、具体的に説明する。 Below, the effect | action and effect of the ozone water and hypochlorous acid water which are produced | generated with the electrolyzer 1 provided with the said structure are demonstrated concretely.
 はじめに、実施の形態1の電解装置1の除菌効果について、評価した。 First, the sterilization effect of the electrolytic device 1 of Embodiment 1 was evaluated.
 具体的には、まず、大腸菌を付着させたシャーレに、オゾン水(例えば0.1~0.4ppmの濃度でオゾンを含有)と次亜塩素酸水(例えば1~5ppmの濃度で次亜塩素酸を含有)を、それぞれ1ml噴霧し、5秒放置後の除菌効果を評価した。その結果、オゾン水は、短時間で、かつ、0.2ppmの濃度でも、99%以上の高い除菌率が得られた。一方、次亜塩素酸水は、オゾン水の10倍の濃度の2ppmでも、短時間での、99%の除菌率の達成は困難であった。これは、短時間で維持される、オゾン水の高い酸化力による効果と考えられる。 Specifically, first, in a petri dish to which E. coli is attached, ozone water (for example, containing ozone at a concentration of 0.1 to 0.4 ppm) and hypochlorous acid water (for example, a concentration of 1 to 5 ppm) 1 ml of each was sprayed with an acid), and the sterilization effect after standing for 5 seconds was evaluated. As a result, in ozone water, a high sterilization rate of 99% or more was obtained in a short time and at a concentration of 0.2 ppm. On the other hand, hypochlorous acid water had difficulty achieving a 99% eradication rate in a short time even at 2 ppm of 10 times the concentration of ozone water. This is considered to be the effect by the high oxidizing power of ozone water maintained in a short time.
 さらに、大腸菌を付着させた布に、オゾン水(例えば0.4ppm、1ppmの濃度でオゾンを含有)と次亜塩素酸水(例えば10ppm、18ppm、30ppmの濃度で次亜塩素酸を含有)を、それぞれ1ml噴霧し、30分放置後の除菌効果を評価した。その結果、1ppmの濃度のオゾン水では、99%の除菌率の達成は困難であった。一方、18ppmの濃度の次亜塩素酸水は、99%以上の除菌率を達成した。つまり、オゾンは、反応性が高いため、布と反応して濃度が低下し、布の内部の菌にまで酸化力が作用しないことによるものと考えられる。一方、次亜塩素酸は、反応性がオゾンほど高くないので、布で多少消費されても、酸化力を維持したまま、布内部の菌に作用させることができることによるものと考えられる。 Furthermore, ozone water (eg 0.4 ppm, containing ozone at a concentration of 1 ppm) and hypochlorous acid water (eg containing hypochlorous acid at a concentration of 10 ppm, 18 ppm, 30 ppm) on a cloth to which E. coli has been attached 1 ml each was sprayed, and the sterilization effect after leaving for 30 minutes was evaluated. As a result, it was difficult to achieve a 99% eradication rate with ozone water at a concentration of 1 ppm. On the other hand, hypochlorous acid water at a concentration of 18 ppm achieved a sterilization rate of 99% or more. That is, since ozone is highly reactive, it reacts with the cloth to decrease its concentration, and it is considered that the oxidizing power does not act on bacteria inside the cloth. On the other hand, since hypochlorous acid is not as high in reactivity as ozone, it is considered that hypochlorous acid can be caused to act on microbes inside the cloth while maintaining its oxidizing power even if consumed somewhat by the cloth.
 つぎに、実施の形態1の電解装置1の消臭効果について、評価した。 Next, the deodorizing effect of the electrolytic device 1 of Embodiment 1 was evaluated.
 具体的には、タバコ臭をしみ込ませた布に、上記と同程度の濃度に調製した、オゾン水と次亜塩素酸水を、それぞれ1ml噴霧して、30分放置後の消臭効果を評価した。その結果、オゾン水では、消臭効果は確認できなかった。一方、次亜塩素酸水は、市販の衣類消臭剤と同等の、消臭効果が得られることが確認された。 Specifically, 1 ml of each of ozone water and hypochlorous acid water prepared to the same concentration as above was sprayed on a cloth impregnated with tobacco odor, and the deodorizing effect after standing for 30 minutes was evaluated. did. As a result, with ozone water, the deodorizing effect could not be confirmed. On the other hand, it was confirmed that hypochlorous acid water has a deodorizing effect equivalent to that of a commercial clothes deodorant.
 以上のように、電解装置1で生成するオゾン水および次亜塩素酸水は、除菌や消臭などの用途に応じて、適切に作用・効果を発揮することが分かった。 As described above, it has been found that the ozone water and hypochlorous acid water produced by the electrolytic device 1 exert the action and effect appropriately in accordance with applications such as sterilization and deodorization.
 なお、実施の形態1の電解装置1は、通常、長期間の使用の間に、電極6の表面にカルシウムなどのスケール成分が付着する。そのため、付着したスケール成分により、電解装置1の電気分解作用が阻害される。 In the electrolytic device 1 of the first embodiment, a scale component such as calcium adheres to the surface of the electrode 6 usually during long-term use. Therefore, the electrolytic action of the electrolytic device 1 is inhibited by the attached scale component.
 そこで、一般的に、例えば以下の方法により、スケール成分による電気分解作用の阻害を抑制している。 Therefore, in general, the inhibition of the electrolysis action by the scale component is suppressed, for example, by the following method.
 具体的には、まず、時々、噴霧機構部4をタンク部2から外す。つぎに、タンク部2内に、水とクエン酸を入れて、タンク部2内をクエン酸で洗浄する。これにより、クエン酸で、電極6の表面に付着したカルシウムなどのスケール成分を溶解して、取り除くことができる。その結果、電解装置1の電気分解作用が、長期間に亘って、維持される。 Specifically, the spray mechanism unit 4 is sometimes removed from the tank unit 2 from time to time. Next, water and citric acid are put into the tank portion 2 and the inside of the tank portion 2 is washed with citric acid. Thereby, citric acid can dissolve and remove scale components such as calcium attached to the surface of the electrode 6. As a result, the electrolytic action of the electrolytic device 1 is maintained for a long time.
 また、他のスケール成分の除去方法として、以下に示す方法もある。 Moreover, there is also a method shown below as a method of removing other scale components.
 具体的には、制御部7によって、第1の電極6Aと第2の電極6Bに印加する電力の極性を反転させる。これにより、第1の電極6Aや第2の電極6Bへのスケール成分の付着が抑制される。 Specifically, the controller 7 reverses the polarity of the power applied to the first electrode 6A and the second electrode 6B. Thereby, the adhesion of the scale component to the first electrode 6A and the second electrode 6B is suppressed.
 まず、第1の電極6Aが陽極、第2の電極6Bが陰極になるように接続して、電力を印加する。この接続状態で、電気分解すると、被処理水中に含まれるカルシウムやマグネシウムなどの陽イオンが、陰極である第2の電極6Bに、電気的に引き寄せられる。つまり、電気分解により、第2の電極6Bの表面は、アルカリ性になる。そのため、被処理水中のカルシウムやマグネシウムが、水酸化カルシウムや水酸化カルシウムとして、第2の電極6Bの表面に析出する。また、炭酸イオンと反応すると、カルシウムやマグネシウムは、炭酸カルシウムや炭酸マグネシウムとして、第2の電極6Bの表面に付着する。 First, power is applied by connecting the first electrode 6A as an anode and the second electrode 6B as a cathode. In this connected state, when electrolyzed, cations such as calcium and magnesium contained in the water to be treated are electrically attracted to the second electrode 6B which is a cathode. That is, the surface of the second electrode 6B becomes alkaline by the electrolysis. Therefore, calcium and magnesium in the water to be treated are precipitated on the surface of the second electrode 6B as calcium hydroxide and calcium hydroxide. Moreover, when it reacts with a carbonate ion, calcium and magnesium adhere to the surface of the second electrode 6B as calcium carbonate and magnesium carbonate.
 そこで、制御部7は、例えば所定の時間毎、あるいは所定の期間毎に、第1の電極6Aと第2の電極6Bに印加する電力の極性を反転して、電気分解する。これにより、第2の電極6Bの表面に生成される水酸化カルシウムや水酸化カルシウム、炭酸カルシウムや炭酸マグネシウムなどのスケール成分の生成および付着などを抑制できる。 Therefore, the control unit 7 inverts the polarity of the power applied to the first electrode 6A and the second electrode 6B, for example, every predetermined time or every predetermined period, and performs electrolysis. As a result, it is possible to suppress the formation and adhesion of calcium hydroxide and calcium hydroxide generated on the surface of the second electrode 6B and scale components such as calcium carbonate and magnesium carbonate.
 また、上記と同様の制御により、第2の電極6Bの表面に付着したスケール成分も除去できる。 Further, the scale component attached to the surface of the second electrode 6B can be removed by the same control as described above.
 具体的には、電極6の転極により、第2の電極6B近傍は強酸性のPHになる。そのため、第2の電極6Bの表面に析出したスケール成分が、溶解、もしくは、電極界面から剥離する。これにより、第2の電極6B表面からスケール成分を除去できる。 Specifically, due to the polarity inversion of the electrode 6, the vicinity of the second electrode 6B has a strongly acidic pH. Therefore, the scale component deposited on the surface of the second electrode 6B is dissolved or peeled off from the electrode interface. Thereby, the scale component can be removed from the surface of the second electrode 6B.
 なお、上記では、第1の電極6Aが陽極、第2の電極6Bが陰極の場合を例に説明したが、第1の電極6Aが陰極、第2の電極6Bが陽極の場合は、上記と反対の制御動作により、第1の電極6Aのスケール成分を除去できる。 Although the case where the first electrode 6A is an anode and the second electrode 6B is a cathode has been described above as an example, the case where the first electrode 6A is a cathode and the second electrode 6B is an anode is described above. The opposite control operation can remove the scale component of the first electrode 6A.
 つまり、上記の操作により、スケール成分の電極6への付着を抑制できる。そのため、スケール成分の付着による、例えば流通路を構成する電解室5Sの閉塞などを防止できる。これにより、スケール成分の付着による電極6の性能の劣化を抑制できる。その結果、長期に亘って、電解装置1の安定した性能と耐久性を確保できる。 That is, the adhesion of the scale component to the electrode 6 can be suppressed by the above operation. Therefore, it is possible to prevent, for example, the clogging of the electrolysis chamber 5S constituting the flow passage due to the adhesion of the scale component. Thereby, the deterioration of the performance of the electrode 6 due to the adhesion of the scale component can be suppressed. As a result, stable performance and durability of the electrolytic device 1 can be ensured over a long period of time.
 また、実施の形態1では、オゾン発生電極として、第1の電極6Aの電極触媒をタンタル酸化物で構成した例で説明したが、これに限られない。電極触媒として、例えば絶縁体であるダイヤモンドにホウ素などをドーピングすることにより導電性を付与したダイヤモンド電極などを使用してもよい。 Moreover, in Embodiment 1, although the example which comprised the electrode catalyst of 1st electrode 6A with the tantalum oxide as an ozone generation electrode was demonstrated, it is not restricted to this. As an electrode catalyst, for example, a diamond electrode or the like to which conductivity is imparted by doping boron or the like to diamond which is an insulator may be used.
 また、実施の形態1では、第2の電極6Bの電極触媒として、白金(Pt)とイリジウム(Ir)の合金層を用いた例で説明したが、これに限られない。電極触媒として、例えば白金やイリジウム、ロジウム、ルテニウムなどのその他の貴金属または、イリジウム、ロジウム、ルテニウムなどの貴金属酸化物を含んでもよく、上記合金層と同様の効果が得られる。 In the first embodiment, although an example using an alloy layer of platinum (Pt) and iridium (Ir) as the electrode catalyst of the second electrode 6B has been described, the present invention is not limited thereto. The electrode catalyst may contain, for example, other noble metals such as platinum, iridium, rhodium and ruthenium or noble metal oxides such as iridium, rhodium and ruthenium, and the same effect as the above-mentioned alloy layer can be obtained.
 (実施の形態2)
 以下、本発明の実施の形態2の携帯用電解水噴霧器(電解装置)について、説明する。なお、実施の形態2の電解装置1は、第2の電極6Bの構成以外は、実施の形態1と同一であるので、図1から図3を参照しながら、説明する。このとき、実施の形態1と同一部品には同一符号を付して、説明を省略する。
Second Embodiment
Hereinafter, the portable electrolytic water sprayer (electrolytic device) of Embodiment 2 of the present invention will be described. In addition, since the electrolytic device 1 of Embodiment 2 is the same as that of Embodiment 1 except the structure of 2nd electrode 6B, it demonstrates, referring FIGS. 1-3. At this time, the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 実施の形態2の電解装置1は、第1の電極6Aを、オゾンを発生するオゾン発生電極で構成し、第2の電極6Bを、金属イオンを含む水を生成するための金属イオン発生電極で構成する。 In the electrolytic device 1 according to the second embodiment, the first electrode 6A is an ozone generating electrode that generates ozone, and the second electrode 6B is a metal ion generating electrode for generating water containing metal ions. Configure.
 具体的には、金属イオンとしてAgイオンを選定する。そのため、第2の電極6Bを、Ag基板で構成した。 Specifically, Ag ion is selected as the metal ion. Therefore, the second electrode 6B is formed of an Ag substrate.
 この構成によれば、制御部7が、電源部3を第1の電極6Aが陽極となるように制御すると、オゾン水が生成される。一方、制御部7が、電源部3を第2の電極6Bが陽極となるように制御すると、金属イオンであるAgイオンを含む水が生成される。 According to this configuration, when the control unit 7 controls the power supply unit 3 so that the first electrode 6A becomes an anode, ozone water is generated. On the other hand, when the control unit 7 controls the power supply unit 3 so that the second electrode 6B becomes an anode, water containing Ag ions as metal ions is generated.
 このとき、電極6を構成する、第1の電極6Aおよび第2の電極6Bに供給される極性の切替は、電解装置1に配設した切替部8により選択される。つまり、使用者が切替部8を操作(例えば、プッシュ動作など)すると、制御部7は、第1の電極6Aおよび第2の電極6Bに供給される電力の極性を切り替えるように制御する。これにより、オゾン水の生成と、Agイオンのような金属イオンを含む水の生成が、選択される。その結果、除菌と消臭との対象物に適した活性種の生成の選択が可能となる。 At this time, switching of the polarity supplied to the first electrode 6A and the second electrode 6B constituting the electrode 6 is selected by the switching unit 8 disposed in the electrolytic device 1. That is, when the user operates the switching unit 8 (for example, a push operation), the control unit 7 controls to switch the polarity of the power supplied to the first electrode 6A and the second electrode 6B. Thereby, the generation of ozone water and the generation of water containing metal ions such as Ag ions are selected. As a result, it is possible to select the generation of active species suitable for the object of sterilization and deodorization.
 なお、実施の形態2の第1の電極6Aは、上述したように、オゾン発生電極として機能する。そのため、第1の電極6Aは、例えばチタンなどの金属基板の表面に、例えばタンタル酸化物などで形成される電極触媒を備える。 The first electrode 6A of the second embodiment functions as an ozone generating electrode as described above. Therefore, the first electrode 6A includes an electrode catalyst formed of, for example, tantalum oxide or the like on the surface of a metal substrate of, for example, titanium.
 また、第2の電極6Bは、金属イオン生成電極として機能する。そのため、第2の電極6Bは、Agイオンを生成するために、Ag基板で構成される。なお、第2の電極は、金属イオン生成電極として、少なくとも、Agイオン、Cuイオン、Znイオンなどを生成すればよい。そのため、第2の電極6Bは、上記Ag基板以外に、例えばAg、Cu、Znを含む金属基板や、Ag、Cu、Znの金属や金属酸化物を含む電極触媒で構成してもよい。 Further, the second electrode 6B functions as a metal ion generation electrode. Therefore, the second electrode 6B is made of an Ag substrate to generate Ag ions. Note that the second electrode may generate at least an Ag ion, a Cu ion, a Zn ion, or the like as a metal ion generation electrode. Therefore, the second electrode 6B may be made of, for example, a metal substrate containing Ag, Cu, Zn, or an electrode catalyst containing a metal or metal oxide of Ag, Cu, Zn, in addition to the above Ag substrate.
 以上のように、上記電極6構成を備える実施の形態2の電解装置1は構成される。 As mentioned above, the electrolysis device 1 of Embodiment 2 provided with the above-mentioned electrode 6 composition is constituted.
 つぎに、上記構成の電解装置1で生成するオゾン水およびAgイオン水の作用・効果について、具体的に説明する。 Below, the effect | action and effect of the ozone water and Ag ion water which are produced | generated with the electrolyzer 1 of the said structure are demonstrated concretely.
 はじめに、実施の形態2の電解装置1の除菌効果について、評価した。 First, the sterilization effect of the electrolytic device 1 of Embodiment 2 was evaluated.
 具体的には、まず、大腸菌を付着させたシャーレに、オゾン水(例えば0.1ppm~0.4ppmの濃度でオゾンを含有)とAgイオン水(例えば0.1ppm~2.0ppmの濃度でAgイオンを含有)を、それぞれ1ml噴霧し、5秒放置後の除菌効果を評価した。その結果、オゾン水は、短時間で、かつ、0.2ppmの濃度でも、99%以上の高い除菌率が得られた。一方、Agイオン水は、オゾン水の10倍の濃度の2ppmでも、短時間での、99%の除菌率の達成は困難であった。これは、短時間で維持される、オゾン水の高い酸化力による効果と考えられる。 Specifically, first, ozone water (for example, containing ozone at a concentration of 0.1 ppm to 0.4 ppm) and Ag ion water (for example, at a concentration of 0.1 ppm to 2.0 ppm) in a petri dish to which E. coli is attached 1 ml of each was sprayed, and the sterilization effect after standing for 5 seconds was evaluated. As a result, in ozone water, a high sterilization rate of 99% or more was obtained in a short time and at a concentration of 0.2 ppm. On the other hand, it was difficult to achieve an eradication rate of 99% in a short time even at 2 ppm of Ag ion water at a concentration of 10 times that of ozone water. This is considered to be the effect by the high oxidizing power of ozone water maintained in a short time.
 さらに、大腸菌を付着させた布に、オゾン水(例えば0.4ppm、1.0ppmの濃度でオゾンを含有)とAgイオン水(例えば0.1ppm、0.2ppm、1.0ppm、2.0ppmの濃度でAgイオンを含有)を、それぞれ1ml噴霧し、3時間放置後の除菌効果を評価した。その結果、1ppmのオゾン水では、99%の除菌率の達成は困難であった。一方、0.2ppmのAgイオン水は、99%以上の除菌率を達成した。つまり、オゾンは、反応性が高いため、布と反応して濃度が低下し、布の内部の菌にまで酸化力が作用しないことによるものと考えられる。一方、Agは、反応性が高くないので、酸化力を維持したまま、布内部の菌に作用させることができることによるものと考えられる。 Furthermore, ozone water (eg 0.4 ppm, containing ozone at a concentration of 1.0 ppm) and Ag ion water (eg 0.1 ppm, 0.2 ppm, 1.0 ppm, 2.0 ppm 1 ml of each was sprayed by concentration (containing Ag ion), and the sterilization effect after standing for 3 hours was evaluated. As a result, it was difficult to achieve a 99% eradication rate with 1 ppm ozone water. On the other hand, 0.2 ppm Ag ionized water achieved a sterilization rate of 99% or more. That is, since ozone is highly reactive, it reacts with the cloth to decrease its concentration, and it is considered that the oxidizing power does not act on bacteria inside the cloth. On the other hand, since Ag is not highly reactive, it is considered that it can be caused to act on bacteria inside the cloth while maintaining the oxidizing power.
 つぎに、実施の形態2の電解装置1の消臭効果について、評価した。 Next, the deodorizing effect of the electrolytic device 1 of Embodiment 2 was evaluated.
 具体的には、タバコ臭をしみ込ませた布に、上記と同程度の濃度に調製した、オゾン水とAgイオン水を、それぞれ1ml噴霧して、3時間放置後の消臭効果を評価した。その結果、オゾン水では、消臭効果は確認できなかった。一方、Agイオン水は、市販の衣類消臭剤と同等の、消臭効果が得られることが確認された。 Specifically, 1 ml of each of ozone water and Ag ion water prepared to have the same concentration as above was sprayed onto a cloth impregnated with tobacco odor, and the deodorizing effect after standing for 3 hours was evaluated. As a result, with ozone water, the deodorizing effect could not be confirmed. On the other hand, it was confirmed that Ag ionized water can obtain the same deodorizing effect as a commercially available clothes deodorant.
 つぎに、実施の形態2の電解装置1の菌の増殖抑制効果について、評価した。 Next, the growth inhibitory effect of the bacteria of the electrolytic device 1 of Embodiment 2 was evaluated.
 具体的には、まず、布に、上記と同程度の濃度に調製した、予めオゾン水、Agイオン水を、それぞれ1ml噴霧して、30分後に大腸菌を付着させた。そして、12時間後に菌数を計測して、菌の増殖抑制効果を評価した。その結果、オゾン水を噴霧した布は、菌が増殖していた。一方、Agイオン水を噴霧した布は、予め付着させた大腸菌が除菌され、さらに菌の増殖も抑制されていた。これにより、Agイオン水の高い抗菌作用を確認できた。 Specifically, first, 1 ml of each of ozone water and Ag ion water prepared beforehand to a concentration similar to the above was sprayed onto the cloth, and E. coli was allowed to adhere after 30 minutes. After 12 hours, the number of bacteria was counted to evaluate the growth inhibitory effect of the bacteria. As a result, in the cloth sprayed with ozone water, bacteria were proliferating. On the other hand, in the cloth sprayed with Ag ionized water, E. coli adhered in advance was disinfected, and the growth of bacteria was also suppressed. Thereby, the high antibacterial action of Ag ion water was able to be confirmed.
 なお、実施の形態2では、第2の電極6Bとして、Agイオンを生成するため、Ag基板を使用した構成を例に説明したが、これに限られない。例えばAgを含む金属基板や電極触媒を使用してもよく、Ag基板の場合と同様の効果が得られる。さらに、Ag基板以外に、第2の電極6Bとして、Cu、Zn金属を含む基板や貴金属酸化物、あるいは金属触媒を使用してもよい。この場合でも、Ag基板の場合と同様の効果を得ることができる。 In the second embodiment, a configuration using an Ag substrate has been described as an example in order to generate Ag ions as the second electrode 6B. However, the present invention is not limited to this. For example, a metal substrate containing Ag or an electrode catalyst may be used, and the same effect as in the case of an Ag substrate can be obtained. In addition to the Ag substrate, a substrate containing Cu, Zn metal, a noble metal oxide, or a metal catalyst may be used as the second electrode 6B. Even in this case, the same effect as in the case of the Ag substrate can be obtained.
 (実施の形態3)
 以下、本発明の実施の形態3の携帯用電解水噴霧器11(電解装置11)について、図4を参照しながら、説明する。
Third Embodiment
Hereinafter, the portable electrolytic water sprayer 11 (electrolytic device 11) of the third embodiment of the present invention will be described with reference to FIG.
 図4は、実施の形態3に係る携帯用電解水噴霧器11の内部構成を示す断面図である。なお、実施の形態3の電解装置11の電解部5は、実施の形態1と同様であるので、実施の形態1と同一符号を付して説明を省略する。 FIG. 4 is a cross-sectional view showing the internal configuration of the portable electrolytic water sprayer 11 according to the third embodiment. In addition, since the electrolysis part 5 of the electrolysis apparatus 11 of Embodiment 3 is the same as that of Embodiment 1, it attaches | subjects the code | symbol same as Embodiment 1, and abbreviate | omits description.
 図4に示すように、実施の形態3の電解装置11は、筒状、あるいは四角形の外観形状で形成される。つまり、電解装置11の断面形状は、円筒形、楕円形、多角形などの任意の形状を選択できる。 As shown in FIG. 4, the electrolytic device 11 according to the third embodiment is formed to have a tubular or rectangular outer appearance. That is, the cross-sectional shape of the electrolyzer 11 can select arbitrary shapes, such as a cylindrical shape, an ellipse, and a polygon.
 電解装置11は、電解部5と、水溶液を貯蔵するタンク部12と、電源部13と、プッシュ式の噴霧部14と、制御部17と、塩化物供給部18と、ポンプ電源19などを含む。塩化物供給部18は、タンク部12に隣接して配置され、タンク部12に塩化物イオンを供給する。制御部17は、タンク部12の下部に設けられ、電源部13からの供給電力を所定の電流や電圧に制御して、タンク部12内に設けた電解部5に印加する。これにより、電解部5で、電解水が生成される。噴霧部14は、タンク部12の上部に配置され、使用者がプッシュすることにより、電気分解で生成した電解水を噴霧する。 The electrolysis apparatus 11 includes an electrolysis unit 5, a tank unit 12 for storing an aqueous solution, a power supply unit 13, a push type spray unit 14, a control unit 17, a chloride supply unit 18, a pump power supply 19 and the like. . The chloride supply unit 18 is disposed adjacent to the tank unit 12 and supplies chloride ions to the tank unit 12. The control unit 17 is provided in the lower part of the tank unit 12, controls the power supplied from the power supply unit 13 to a predetermined current or voltage, and applies it to the electrolytic unit 5 provided in the tank unit 12. As a result, electrolyzed water is generated in the electrolytic unit 5. The spray unit 14 is disposed at the top of the tank unit 12 and sprays the electrolytic water generated by the electrolysis when the user pushes it.
 実施の形態3の電解装置11は、タンク部12と電源部13の外観形状が、略同じ四角形(同じ四角形を含む)で形成される。 In the electrolytic device 11 according to the third embodiment, the external shape of the tank unit 12 and the power supply unit 13 is formed to be substantially the same square (including the same square).
 タンク部12は、筒状の径方向の中央部に、筒状の電解部5が、タンク部12の軸方向に沿って配置される。電解部5には、タンク部12の水が下部の流入孔(図示せず)から流入し、上面開口(図示せず)からプッシュ式の噴霧部14へ流出する。そのため、電解装置11は、噴霧部14を上にした垂直方向の配置状態において、電解部5とタンク部12の水位が、同レベルとなるように構成される。 In the tank portion 12, the tubular electrolytic unit 5 is disposed along the axial direction of the tank portion 12 at a cylindrical radial center. The water in the tank portion 12 flows into the electrolytic portion 5 from the lower inflow hole (not shown), and flows out from the top opening (not shown) to the push type spray portion 14. Therefore, the electrolytic device 11 is configured such that the water levels of the electrolytic unit 5 and the tank unit 12 become the same level in the vertical arrangement state in which the spray unit 14 is at the top.
 塩化物供給部18は、タンク部12に隣接して配置され、塩化物貯蔵タンク18aと、ポンプ18bなどを含む。塩化物貯蔵タンク18aは、高濃度の塩化物イオンを含む水溶液を貯蔵する。ポンプ18bは、塩化物貯蔵タンク18a内の塩化物イオンを含む水溶液を、タンク部12に供給する。具体的には、ポンプ18bは、使用者がポンプ電源19をON(オン)すると、タンク部12内の水溶液が所定の濃度の塩化物イオンになるように、塩化物貯蔵タンク18a内の水溶液をタンク部12内へ供給する。 The chloride supply unit 18 is disposed adjacent to the tank unit 12 and includes a chloride storage tank 18a, a pump 18b, and the like. The chloride storage tank 18a stores an aqueous solution containing a high concentration of chloride ions. The pump 18 b supplies the aqueous solution containing chloride ions in the chloride storage tank 18 a to the tank unit 12. Specifically, when the user turns on (turns on) the pump power supply 19, the pump 18b converts the aqueous solution in the chloride storage tank 18a to a predetermined concentration of chloride ions. Supply into the tank unit 12.
 つまり、実施の形態3の電解装置11は、使用者がタンク部12に所定量の水を入れ、ポンプ電源19を入れると、動作する。これにより、塩化物貯蔵タンク18a内の水溶液を、所定量、タンク部12に供給するように構成される。 That is, the electrolytic device 11 of the third embodiment operates when the user puts a predetermined amount of water into the tank portion 12 and turns on the pump power supply 19. Thus, the aqueous solution in the chloride storage tank 18a is configured to be supplied to the tank unit 12 by a predetermined amount.
 なお、実施の形態3の塩化物貯蔵タンク18aには、塩化物イオンを含む水溶液として、例えば生理食塩水が貯蔵される。 In the chloride storage tank 18a of the third embodiment, for example, physiological saline is stored as an aqueous solution containing chloride ions.
 電解部5は、タンク部12内部の水に浸漬するように、電解水を生成するための電解水生成用の電極6が収容される。電解部5は、実施の形態1と同様に、第1の電極6Aと第2の電極6Bから構成される。具体的には、電極6の第1の電極6Aには、次亜塩素酸を発生する白金イリジウム系もしくは白金ロジウム系の電極材料が用いられる。一方、第2の電極6Bには、耐食性に優れるTi基板が用いられる。 The electrolytic unit 5 contains an electrode 6 for producing electrolytic water for producing electrolytic water so as to be immersed in the water inside the tank unit 12. As in the first embodiment, the electrolytic unit 5 includes the first electrode 6A and the second electrode 6B. Specifically, for the first electrode 6A of the electrode 6, a platinum iridium-based or platinum-rhodium-based electrode material that generates hypochlorous acid is used. On the other hand, a Ti substrate excellent in corrosion resistance is used for the second electrode 6B.
 なお、制御部17は、実施の形態1と同様に、電源部13から第1の電極6Aおよび第2の電極6Bへの電力供給を、噴霧部14の作動時のみに行うように制御する構成が好ましい。これにより、噴霧される次亜塩素酸水の濃度の、動作時間での変動を抑制できる。その結果、次亜塩素酸水を、一定の濃度で、安定して生成できる。 As in the first embodiment, control unit 17 controls power supply from power supply unit 13 to first electrode 6A and second electrode 6B only when spray unit 14 is operated. Is preferred. Thereby, the fluctuation | variation in the operating time of the density | concentration of hypochlorous acid water sprayed can be suppressed. As a result, hypochlorous acid water can be stably produced at a constant concentration.
 また、制御部17は、使用者が噴霧部14を動作させたとき、電解部5内の第1の電極6Aおよび第2の電極6Bへの電力供給を、所定時間、維持する構成としてもよい。これにより、使用者がプッシュする噴霧部14の動作スピードの遅速に関わらず、安定した濃度の次亜塩素酸を、一定時間生成して、噴射できる。このとき、使用者の噴霧部14の動作は、噴霧部14内に設置した、例えば静電容量センサや導電スイッチなどで検知すればよい。 Further, the control unit 17 may be configured to maintain power supply to the first electrode 6A and the second electrode 6B in the electrolytic unit 5 for a predetermined time when the user operates the spray unit 14 . Thereby, regardless of the slowing of the operation speed of the spray unit 14 pushed by the user, hypochlorous acid having a stable concentration can be generated for a certain period of time and injected. At this time, the operation of the spray unit 14 by the user may be detected by, for example, a capacitance sensor or a conductive switch installed in the spray unit 14.
 なお、実施の形態3の第1の電極6Aは、上述したように、次亜塩素酸発生電極として機能するように、白金とイリジウムの合金層からなる電極触媒で形成している。 As described above, the first electrode 6A of the third embodiment is formed of an electrode catalyst made of an alloy layer of platinum and iridium so as to function as a hypochlorous acid generating electrode.
 以上のように、電解装置11は構成される。 As described above, the electrolytic device 11 is configured.
 つぎに、第1の電極6Aを陽極、第2の電極6Bを陰極として、電力を供給した場合の電気分解による次亜塩素酸の生成メカニズムについて、簡単に説明する。 Next, the generation mechanism of hypochlorous acid by electrolysis when power is supplied with the first electrode 6A as an anode and the second electrode 6B as a cathode will be briefly described.
 まず、タンク部12内の水溶液中に含まれる塩化物イオンは、以下の(化1)で示すように、第1の電極6Aで酸化されて塩素を発生する。発生した塩素は、一部、水と反応して、以下の(化2)で示すように、次亜塩素酸を生成する。 First, chloride ions contained in the aqueous solution in the tank portion 12 are oxidized by the first electrode 6A to generate chlorine, as shown in the following (Formula 1). The generated chlorine partially reacts with water to form hypochlorous acid as shown in the following (Formula 2).
  2Cl →Cl+2e      ----------(化1)
  Cl+HO → HCl+HClO ----------(化2)
 そのため、電気分解で生成される次亜塩素酸の濃度は、タンク部12内の水溶液の塩化物イオン濃度によって、変化する。
2Cl - → Cl 2 + 2e - ---------- ( Formula 1)
Cl 2 + H 2 O → HCl + HClO ---------- (Formula 2)
Therefore, the concentration of hypochlorous acid generated by electrolysis changes with the chloride ion concentration of the aqueous solution in the tank portion 12.
 以下に、生成される次亜塩素酸の濃度と、塩化物イオン濃度との関係について、図5を参照しながら、説明する。 The relationship between the concentration of hypochlorous acid to be generated and the concentration of chloride ion will be described below with reference to FIG.
 図5は、制御部17から第1の電極6Aと第2の電極6Bに印加する印加電流を可変させた際における、タンク部12内の塩化物イオン濃度と、生成される次亜塩素酸濃度との関係を示している。 FIG. 5 shows the chloride ion concentration in the tank 12 and the generated hypochlorous acid concentration when varying the applied current applied from the controller 17 to the first electrode 6A and the second electrode 6B. It shows the relationship with
 つまり、まず、制御部17は、第1の電極6Aと第2の電極6Bに、例えば0.05A、0.1A、0.2Aおよび0.3Aの印加電流を印加する。このとき、制御部17は、塩化物貯蔵タンク18aに貯蔵した0.8%NaClの生理食塩水の供給量を、塩化物供給部18のポンプ18bにより制御する。これにより、生理食塩水をタンク部12内に添加して、タンク部12内の塩化物イオン濃度が、例えば18ppm、50ppmおよび100ppmとなるように調整する。そして、それぞれの塩化物イオン濃度に対して、上記それぞれの印加電流を印加したときに生成される次亜塩素酸の濃度を測定した。 That is, first, the control unit 17 applies an applied current of, for example, 0.05A, 0.1A, 0.2A, and 0.3A to the first electrode 6A and the second electrode 6B. At this time, the control unit 17 controls the supply amount of the 0.8% NaCl saline solution stored in the chloride storage tank 18 a by the pump 18 b of the chloride supply unit 18. Thus, physiological saline is added to the inside of the tank 12 to adjust the chloride ion concentration in the tank 12 to, for example, 18 ppm, 50 ppm and 100 ppm. Then, for each of the chloride ion concentrations, the concentration of hypochlorous acid generated when each of the above applied currents was applied was measured.
 その結果、図5に示すように、同じ印加電流において、塩化物イオン濃度が高いほど、生成される次亜塩素酸濃度が高いことが確認された。これにより、印加電流が一定の場合、タンク部12内の塩化物イオン濃度がばらつくと、生成される次亜塩素酸濃度もばらつくことが分った。 As a result, as shown in FIG. 5, it was confirmed that the generated hypochlorous acid concentration is higher as the chloride ion concentration is higher at the same applied current. From this, it was found that when the applied current is constant, if the chloride ion concentration in the tank portion 12 varies, the generated hypochlorous acid concentration also varies.
 しかしながら、実施の形態3の電解装置11は、ポンプ18bの制御により、タンク部12内に、常に一定のNaCl溶液添加量を供給できる。そのため、安定した次亜塩素酸濃度の生成が可能な、電解装置11が得られる。 However, the electrolytic device 11 of the third embodiment can always supply a constant NaCl solution addition amount into the tank portion 12 by the control of the pump 18 b. Therefore, the electrolytic device 11 which can generate a stable hypochlorous acid concentration can be obtained.
 また、塩化物貯蔵タンク18a内に高濃度のNaCl溶液を貯留することにより、タンク部12内へは、微量のNaClの添加量で、所定の濃度の次亜塩素酸を生成できる。そのため、最初に、塩化物貯蔵タンク18aに高濃度のNaCl溶液を貯留しておけば、長期間に亘って、タンク部12に水を供給するだけで、安定した次亜塩素酸などの電解水を生成できる。これにより、例えば外出時などにおいて、水の供給だけで、手軽に電解水を生成できる。 In addition, by storing a high concentration NaCl solution in the chloride storage tank 18a, hypochlorous acid having a predetermined concentration can be produced in the tank portion 12 with a small amount of added NaCl. Therefore, if a high concentration NaCl solution is stored in the chloride storage tank 18a first, stable electrolytic water such as hypochlorous acid can be obtained only by supplying water to the tank portion 12 for a long period of time. Can be generated. Thereby, for example, at the time of going out, electrolytic water can be easily generated only by the supply of water.
 なお、第1の電極6Aを白金単体で構成しても、次亜塩素酸の生成は可能である。しかし、第1の電極6Aを、白金とイリジウムとの合金層で形成することにより、次亜塩素酸の生成効率を、さらに向上させることが可能となる。そこで、実施の形態3の第1の電極6Aは、モル比で、白金を60%、イリジウムを40%配合した電極触媒で形成した。第1の電極6Aの電極触媒を上記材料組成にすることにより、白金のみの電極触媒に比べて、次亜塩素酸の生成効率を、約3.5倍に向上させることが可能となった。この理由は、上記電極触媒により、酸素過電圧が低下したためと推察される。 Even if the first electrode 6A is made of platinum alone, hypochlorous acid can be generated. However, by forming the first electrode 6A with an alloy layer of platinum and iridium, the generation efficiency of hypochlorous acid can be further improved. Therefore, the first electrode 6A of Embodiment 3 is formed of an electrode catalyst containing 60% of platinum and 40% of iridium in a molar ratio. By setting the electrode catalyst of the first electrode 6A to the above-described material composition, it has become possible to improve the generation efficiency of hypochlorous acid by about 3.5 times as compared with a platinum-only electrode catalyst. The reason is presumed to be that the oxygen overpotential is lowered by the electrode catalyst.
 なお、第1の電極6Aの電極触媒は、上記以外に、例えば、白金とロジウムの合金層からなる電極触媒や、白金などの貴金属または、イリジムやロジウム、ルテニウムなどの貴金属酸化物を含んで構成してもよい。 In addition to the above, the electrode catalyst of the first electrode 6A includes, for example, an electrode catalyst composed of an alloy layer of platinum and rhodium, a noble metal such as platinum, or a noble metal oxide such as iridium, rhodium or ruthenium. You may
 また、上記実施の形態3では、制御部17で、印加電圧、電流を可変させて、次亜塩素酸を生成させる構成を例に説明したが、これに限られない。例えば、制御部17で、第1の電極6Aと第2の電極6Bに供給する電力の極性を変更させるように制御してもよい。これにより、第1の電極6Aで生成される活性種だけでなく、極性の変更により、第2の電極6Bで生成可能な活性種も生成することができる。その結果、1つの電解装置11で、用途に応じた、複数の活性種を生成できる。 In the third embodiment, the control unit 17 changes the applied voltage and the current to generate hypochlorous acid as an example. However, the present invention is not limited to this. For example, the control unit 17 may control to change the polarity of the power supplied to the first electrode 6A and the second electrode 6B. Thus, not only the active species generated by the first electrode 6A but also the active species that can be generated by the second electrode 6B can be generated by changing the polarity. As a result, one electrolyzer 11 can generate a plurality of active species according to the application.
 また、上記実施の形態3では、第2の電極6BをTi基板で構成した例で説明したが、これに限られない。例えば、Ti基板の上に、電極触媒として、タンタル酸化物を形成してもよい。これにより、オゾンの生成が可能となる。 In the third embodiment, the second electrode 6B is formed of a Ti substrate. However, the present invention is not limited to this. For example, tantalum oxide may be formed as an electrode catalyst on a Ti substrate. This makes it possible to generate ozone.
 そこで、第2の電極6Bの電極触媒に、タンタル酸化物を用いた構成におけるオゾン生成のメカニズムについて、以下に説明する。 Therefore, the mechanism of ozone generation in the configuration using tantalum oxide for the electrode catalyst of the second electrode 6B will be described below.
 まず、第2の電極6Bは、電力が供給されると、電極触媒であるタンタル酸化物(例えば、酸化タンタル)の表面と、洗浄水との界面に、薄い空乏層が形成される。その状態で、水が電気分解されると、水と第2の電極6Bとの反応により、電子が生成される。生成された電子は、酸化タンタル表面に形成された空乏層を、トンネル効果により通過する。これにより、第2の電極6Bの、電子の授受が行われる電位が、オゾンの酸化還元電位以上になるため、オゾンが生成可能になると考えられる。その結果、オゾンの生成反応が、より効率的に行われ、オゾンが生成される。 First, when power is supplied to the second electrode 6B, a thin depletion layer is formed at the interface between the surface of the tantalum oxide (e.g., tantalum oxide), which is an electrode catalyst, and the cleaning water. In that state, when water is electrolyzed, electrons are generated by the reaction between the water and the second electrode 6B. The generated electrons pass through the depletion layer formed on the tantalum oxide surface by tunneling. As a result, the potential of the second electrode 6B at which the exchange of electrons is performed becomes equal to or higher than the oxidation-reduction potential of ozone, so that ozone can be generated. As a result, the ozone generation reaction is more efficiently performed to generate ozone.
 なお、上記では、第2の電極6Bのオゾン生成用の電極触媒として、タンタル酸化物を用いたが、例えば二酸化鉛、ダイヤモンド、白金などを用いることも考えられる。しかし、鉛の酸化物の場合、環境や人体への影響が懸念される。また、ダイヤモンドや白金などの場合、コスト高や、オゾンの生成効率が低くなる。 Although tantalum oxide is used as the electrode catalyst for generating ozone of the second electrode 6B in the above description, it is also conceivable to use lead dioxide, diamond, platinum or the like, for example. However, in the case of lead oxide, there are concerns about environmental and human effects. In the case of diamond or platinum, the cost is high and the efficiency of ozone generation is low.
 そこで、実施の形態3の第2の電極6Bでは、電極触媒として、タンタル酸化物を用いている。つまり、タンタル酸化物は、白金と比べて、低電流密度でのオゾン生成が可能である。また、タンタル酸化物は、電流密度が低いほどオゾンの生成効率が高まるという特長を有している。さらに、タンタル酸化物は、高い酸素過電圧を備える。 Therefore, in the second electrode 6B of Embodiment 3, tantalum oxide is used as an electrode catalyst. That is, tantalum oxide can generate ozone at a lower current density than platinum. In addition, tantalum oxide has a feature that the generation efficiency of ozone increases as the current density decreases. In addition, tantalum oxide has high oxygen overvoltage.
 そのため、タンタル酸化物の電極触媒により、酸素を発生させることなく、例えば1.5V程度を超える程度の低い電圧で、オゾンを発生させることができる。特に、白金と比べて、タンタル酸化物は、1/4程度の電力で、オゾンを生成することができる。そのため、電解装置11を、電池や充電池で動作させることが可能となる。これにより、小型で携帯用の電解装置11として好適である。なお、第2の電極6Bの電極触媒としては、上記以外に、タンタル酸化物と白金との混合物などでもよく、同様の効果が得られる。 Therefore, ozone can be generated at a low voltage of, for example, about 1.5 V or so, without generating oxygen, by the electrode catalyst of tantalum oxide. In particular, compared to platinum, tantalum oxide can generate ozone with a power of about one-fourth. Therefore, it becomes possible to operate the electrolysis device 11 with a battery or a rechargeable battery. Thereby, it is suitable as a small-sized and portable electrolytic device 11. In addition to the above, a mixture of tantalum oxide and platinum may be used as the electrode catalyst of the second electrode 6B, and the same effect can be obtained.
 以上の構成によれば、実施の形態3の携帯用電解水噴霧器11(電解装置11)は、次亜塩素酸水と、オゾン水の両方を、使用する用途などに応じて、切替部8の切り替え操作により選択して生成できる。 According to the above configuration, the portable electrolyzed water sprayer 11 (electrolyzer 11) of the third embodiment can be used in the switching unit 8 according to the application that uses both hypochlorous acid water and ozone water. It can be selected and generated by switching operation.
 例えばオゾンを生成する場合、オゾンは、特に、高い酸化力と即効性を有する。そのため、例えば酸化分解が困難な加齢臭の主成分であるノネナールやカビ臭、さらには、皮脂成分を酸化分解することが可能となる。さらに、オゾンは、便座やテーブル、手、玩具などに付着した菌を、短時間で除菌することが可能となる。 For example, in the case of producing ozone, ozone has high oxidizing power and immediate effect. Therefore, it becomes possible to oxidatively decompose, for example, nonenal or mold smell which is a main component of aging odor which is difficult to be oxidatively decomposed, and further sebum components. Further, ozone can eliminate bacteria attached to a toilet seat, a table, hands, toys, etc. in a short time.
 以上のように、実施の形態3の電解装置11は構成される。 As described above, the electrolytic device 11 of the third embodiment is configured.
 つぎに、上記構成を備える電解装置11で生成するオゾン水および次亜塩素酸水の作用・効果について、具体的に説明する。 Below, the effect | action and effect of the ozone water and hypochlorous acid water which are produced | generated with the electrolyzer 11 provided with the said structure are demonstrated concretely.
 はじめに、実施の形態3の電解装置11の除菌効果について、評価した。 First, the sterilization effect of the electrolytic device 11 of Embodiment 3 was evaluated.
 具体的には、まず、大腸菌を付着させたシャーレに、オゾン水(例えば0.1~0.4ppmの濃度でオゾンを含有)と次亜塩素酸水(例えば1~5ppmの濃度で次亜塩素酸を含有)を、それぞれ1ml噴霧し、5秒放置後の除菌効果を評価した。その結果、オゾン水は、短時間で、かつ、0.2ppmの濃度でも、99%以上の高い除菌率が得られた。一方、次亜塩素酸水は、オゾン水の10倍の濃度の2ppmでも、短時間での、99%の除菌率の達成は困難であった。これは、短時間で維持される、オゾン水の高い酸化力による効果と考えられる。 Specifically, first, in a petri dish to which E. coli is attached, ozone water (for example, containing ozone at a concentration of 0.1 to 0.4 ppm) and hypochlorous acid water (for example, a concentration of 1 to 5 ppm) 1 ml of each was sprayed with an acid), and the sterilization effect after standing for 5 seconds was evaluated. As a result, in ozone water, a high sterilization rate of 99% or more was obtained in a short time and at a concentration of 0.2 ppm. On the other hand, hypochlorous acid water had difficulty achieving a 99% eradication rate in a short time even at 2 ppm of 10 times the concentration of ozone water. This is considered to be the effect by the high oxidizing power of ozone water maintained in a short time.
 さらに、大腸菌を付着させた布に、オゾン水(例えば0.1ppm、1.0ppmの濃度でオゾンを含有)と次亜塩素酸水(例えば10ppm、18ppm、30ppmの濃度で次亜塩素酸を含有)を、それぞれ1ml噴霧し、30分放置後の除菌効果を評価した。その結果、1ppmの濃度のオゾン水では、99%の除菌率の達成は困難であった。一方、18ppmの濃度の次亜塩素酸水は、99%以上の除菌率を達成した。つまり、オゾンは、反応性が高いため、布と反応して濃度が低下し、布の内部の菌にまで酸化力が作用しないことによるものと考えられる。一方、次亜塩素酸は、反応性がオゾンほど高くないので、布で多少消費されても、酸化力を維持したまま、布内部の菌に作用させることができることによるものと考えられる。 Furthermore, the cloth on which E. coli is attached contains ozone water (for example, containing 0.1 ppm and 1.0 ppm of ozone) and hypochlorous acid water (for example, containing 10 ppm, 18 ppm and 30 ppm of hypochlorous acid) 1 ml of each was sprayed, and the sterilization effect after leaving for 30 minutes was evaluated. As a result, it was difficult to achieve a 99% eradication rate with ozone water at a concentration of 1 ppm. On the other hand, hypochlorous acid water at a concentration of 18 ppm achieved a sterilization rate of 99% or more. That is, since ozone is highly reactive, it reacts with the cloth to decrease its concentration, and it is considered that the oxidizing power does not act on bacteria inside the cloth. On the other hand, since hypochlorous acid is not as high in reactivity as ozone, it is considered that hypochlorous acid can be caused to act on microbes inside the cloth while maintaining its oxidizing power even if consumed somewhat by the cloth.
 つぎに、実施の形態3の電解装置11の消臭効果について、評価した。 Next, the deodorizing effect of the electrolytic device 11 of Embodiment 3 was evaluated.
 具体的には、タバコ臭をしみ込ませた布に、上記と同程度の濃度に調製した、オゾン水と次亜塩素酸水を、それぞれ1ml噴霧して、30分放置後の消臭効果を評価した。その結果、オゾン水では、消臭効果は確認できなかった。一方、次亜塩素酸水は、市販の衣類消臭剤と同等の、消臭効果が得られることが確認された。 Specifically, 1 ml of each of ozone water and hypochlorous acid water prepared to the same concentration as above was sprayed on a cloth impregnated with tobacco odor, and the deodorizing effect after standing for 30 minutes was evaluated. did. As a result, with ozone water, the deodorizing effect could not be confirmed. On the other hand, it was confirmed that hypochlorous acid water has a deodorizing effect equivalent to that of a commercial clothes deodorant.
 以上のように、電解装置11で生成するオゾン水および次亜塩素酸水は、除菌や消臭などの用途に応じて、適切に作用・効果を発揮することが分かった。 As described above, it has been found that the ozone water and the hypochlorous acid water generated by the electrolytic device 11 appropriately exhibit the action and the effect depending on the application such as sterilization and deodorization.
 なお、実施の形態3の電解装置11は、通常、長期間の使用の間に、電極6の表面にカルシウムなどのスケール成分が付着する。そのため、付着したスケール成分により、電解装置11の電気分解作用が阻害される。 In the electrolytic device 11 of Embodiment 3, scale components such as calcium adhere to the surface of the electrode 6 during long-term use. Therefore, the electrolytic action of the electrolytic device 11 is inhibited by the attached scale component.
 そこで、一般的に、例えば以下の方法により、スケール成分による電気分解作用の阻害の発生を抑制している。 Therefore, in general, the occurrence of the inhibition of the electrolytic action by the scale component is suppressed, for example, by the following method.
 具体的には、まず、時々、噴霧部14をタンク部12から外す。つぎに、タンク部12内に、水とクエン酸を入れて、タンク部12内をクエン酸で洗浄する。これにより、クエン酸で、電極6の表面に付着したカルシウムなどのスケール成分を溶解して、取り除くことができる。その結果、電解装置11の電気分解作用が、長期間に亘って、維持される。 Specifically, first, the spray unit 14 is sometimes removed from the tank unit 12. Next, water and citric acid are put into the tank portion 12, and the inside of the tank portion 12 is washed with citric acid. Thereby, citric acid can dissolve and remove scale components such as calcium attached to the surface of the electrode 6. As a result, the electrolytic action of the electrolytic device 11 is maintained for a long time.
 また、他のスケール成分の除去方法として、以下に示す方法もある。 Moreover, there is also a method shown below as a method of removing other scale components.
 具体的には、制御部7によって、第1の電極6Aと第2の電極6Bに印加する電力の極性を反転させる。これにより、第1の電極6Aや第2の電極6Bへのスケール成分の付着が抑制される。 Specifically, the controller 7 reverses the polarity of the power applied to the first electrode 6A and the second electrode 6B. Thereby, the adhesion of the scale component to the first electrode 6A and the second electrode 6B is suppressed.
 まず、第1の電極6Aが陽極、第2の電極6Bが陰極になるように接続して、電力を印加する。この接続状態で、電気分解すると、被処理水中に含まれるカルシウムやマグネシウムなどの陽イオンが、陰極である第2の電極6Bに、電気的に引き寄せられる。つまり、電気分解により、第2の電極6Bの表面は、アルカリ性になる。そのため、被処理水中のカルシウムやマグネシウムが、水酸化カルシウムや水酸化カルシウムとして、第2の電極6Bの表面に析出する。また、炭酸イオンと反応すると、カルシウムやマグネシウムは、炭酸カルシウムや炭酸マグネシウムとして、第2の電極6Bの表面に付着する。 First, power is applied by connecting the first electrode 6A as an anode and the second electrode 6B as a cathode. In this connected state, when electrolyzed, cations such as calcium and magnesium contained in the water to be treated are electrically attracted to the second electrode 6B which is a cathode. That is, the surface of the second electrode 6B becomes alkaline by the electrolysis. Therefore, calcium and magnesium in the water to be treated are precipitated on the surface of the second electrode 6B as calcium hydroxide and calcium hydroxide. Moreover, when it reacts with a carbonate ion, calcium and magnesium adhere to the surface of the second electrode 6B as calcium carbonate and magnesium carbonate.
 そこで、制御部7は、例えば所定の時間毎、あるいは所定の期間毎に、第1の電極6Aと第2の電極6Bに印加する電力の極性を反転して、電気分解する。これにより、第2の電極6Bの表面に生成される水酸化カルシウムや水酸化カルシウム、炭酸カルシウムや炭酸マグネシウムなどのスケール成分の生成および付着などを抑制できる。 Therefore, the control unit 7 inverts the polarity of the power applied to the first electrode 6A and the second electrode 6B, for example, every predetermined time or every predetermined period, and performs electrolysis. As a result, it is possible to suppress the formation and adhesion of calcium hydroxide and calcium hydroxide generated on the surface of the second electrode 6B and scale components such as calcium carbonate and magnesium carbonate.
 また、上記と同様の制御により、第2の電極6Bの表面に付着したスケール成分も除去できる。 Further, the scale component attached to the surface of the second electrode 6B can be removed by the same control as described above.
 具体的には、電極6の転極により、第2の電極6B近傍は強酸性のPHになる。そのため、第2の電極6Bの表面に析出したスケール成分が、溶解、もしくは、電極界面から剥離する。これにより、第2の電極6Bの表面からスケール成分を除去できる。 Specifically, due to the polarity inversion of the electrode 6, the vicinity of the second electrode 6B has a strongly acidic pH. Therefore, the scale component deposited on the surface of the second electrode 6B is dissolved or peeled off from the electrode interface. Thereby, the scale component can be removed from the surface of the second electrode 6B.
 なお、上記では、第1の電極6Aが陽極、第2の電極6Bが陰極の場合を例に説明したが、第1の電極6Aが陰極、第2の電極6Bが陽極の場合は、上記と反対の制御動作により、第1の電極6Aのスケール成分を除去できる。 Although the case where the first electrode 6A is an anode and the second electrode 6B is a cathode has been described above as an example, the case where the first electrode 6A is a cathode and the second electrode 6B is an anode is described above. The opposite control operation can remove the scale component of the first electrode 6A.
 つまり、上記の操作により、スケール成分の電極6への付着を抑制できる。そのため、スケール成分の付着による、例えば流通路を構成する電解室5Sの閉塞を防止できる。これにより、スケール成分の付着による電極6の性能の劣化を抑制できる。その結果、長期に亘って、電解装置11の安定した性能と耐久性を確保できる。 That is, the adhesion of the scale component to the electrode 6 can be suppressed by the above operation. Therefore, it is possible to prevent, for example, the blockage of the electrolysis chamber 5S constituting the flow passage due to the adhesion of the scale component. Thereby, the deterioration of the performance of the electrode 6 due to the adhesion of the scale component can be suppressed. As a result, stable performance and durability of the electrolytic device 11 can be ensured over a long period of time.
 また、実施の形態3では、オゾン発生電極として、第2の電極6Bの電極触媒をタンタル酸化物で構成した例で説明したが、これに限られない。電極触媒として、例えばダイヤモンド電極などを使用してもよい。 Moreover, in Embodiment 3, although the example which comprised the electrode catalyst of 2nd electrode 6B with the tantalum oxide as an ozone generation electrode was demonstrated, it is not restricted to this. For example, a diamond electrode may be used as an electrode catalyst.
 また、実施の形態3では、第2の電極6Bとして、Ti基板を使用した構成を例に説明したが、これに限られない。Agイオンを生成するために、例えばAg基板の使用や、Agを含む金属基板や電極触媒を使用してもよく、Ag基板の場合と同様の効果が得られる。さらに、Ag基板以外に、第2の電極6Bとして、Cu、Zn金属を含む基板や貴金属酸化物あるいは金属触媒を使用してもよい。この場合でも、Ag基板の場合と同様の効果を得ることができる。 Moreover, in Embodiment 3, although the structure which used Ti board | substrate was demonstrated to the example as 2nd electrode 6B, it is not restricted to this. In order to generate Ag ions, for example, the use of an Ag substrate, a metal substrate containing Ag, or an electrode catalyst may be used, and the same effect as in the case of an Ag substrate can be obtained. Furthermore, besides the Ag substrate, a substrate containing Cu, Zn metal, a noble metal oxide, or a metal catalyst may be used as the second electrode 6B. Even in this case, the same effect as in the case of the Ag substrate can be obtained.
 (実施の形態4)
 以下、本発明の実施の形態4の携帯用電解水噴霧器20(電解装置20)について、図6を参照しながら、説明する。
Embodiment 4
Hereinafter, the portable electrolytic water sprayer 20 (electrolytic device 20) of the fourth embodiment of the present invention will be described with reference to FIG.
 図6は、実施の形態4に係る携帯用電解水噴霧器20(電解装置20)の内部構成を示す断面図である。 FIG. 6 is a cross-sectional view showing an internal configuration of a portable electrolytic water sprayer 20 (electrolytic device 20) according to a fourth embodiment.
 実施の形態4の電解装置20は、実施の形態3の塩化物供給部18を、塩化物水溶液を貯蔵する点眼容器18cで構成し、点眼容器18cを電解装置20から取り外し可能な構成とする点で、実施の形態3と異なる。 The electrolytic device 20 according to the fourth embodiment is configured such that the chloride supply unit 18 according to the third embodiment is an eye drop container 18c storing an aqueous chloride solution, and the eye drop container 18c can be removed from the electrolytic device 20. This is different from the third embodiment.
 上記構成により、電解装置20は、実施の形態3の、自動でタンク部12に塩化物イオンを供給するポンプ18bおよびポンプ電源19を廃止し、手動で点眼容器18cからタンク部12内に塩化物水溶液を添加する構成とした。 With the above configuration, the electrolytic device 20 eliminates the pump 18b for automatically supplying chloride ions to the tank 12 and the pump power supply 19 according to the third embodiment, and the chloride in the tank 12 from the eye drop container 18c manually. An aqueous solution was added.
 ここで、点眼容器18cは、直接、容器を軽い力で押すことにより、塩化物水溶液などの液を滴下させることができる。さらに、点眼容器18cは、押圧後の容器復元時において、圧力弁の開口からの液漏れを防止できる。 Here, the eye drop container 18c can drop a solution such as an aqueous chloride solution by directly pushing the container with a light force. Furthermore, the eye drop container 18c can prevent liquid leakage from the opening of the pressure valve when the container is restored after being pressed.
 具体的には、点眼容器18cは、例えば薬液を収容する可撓性の容器本体と、吐出口を備える。吐出口は、容器本体に設けられ、容器本体に収容されている薬液を吐出させるように構成される。 Specifically, the eye drop container 18c includes, for example, a flexible container main body that contains a drug solution, and a discharge port. The discharge port is provided in the container body, and configured to discharge the chemical solution stored in the container body.
 つまり、点眼容器18cは、押圧により、容器本体を変形させる。このとき、容器本体の内圧が大気圧より高くなると、吐出口より薬液が吐出される。そして、容器本体の押圧を解除すると、容器本体の内圧が大気圧より低くなる。これにより、容器本体内に、吐出口から外部空気を流入させて、容器本体を押圧前の形に復元させる。その結果、点眼容器18cは、一定量の薬液を、添加するように構成される。 That is, the eye drop container 18c deforms the container body by pressing. At this time, when the internal pressure of the container body becomes higher than the atmospheric pressure, the chemical solution is discharged from the discharge port. When the pressure on the container body is released, the internal pressure of the container body becomes lower than the atmospheric pressure. As a result, external air is allowed to flow into the container body from the discharge port, and the container body is restored to the shape before pressing. As a result, the eye drop container 18c is configured to add a certain amount of drug solution.
 上記点眼容器18cの構成により、ポンプ18bやポンプ電源19を削除できる。そのため、電解装置20の小型化および軽量化が可能となる。これにより、携帯用の電解装置20としての利便性が、さらに向上する。 With the configuration of the eye drop container 18c, the pump 18b and the pump power supply 19 can be deleted. Therefore, the size and weight of the electrolytic device 20 can be reduced. Thereby, the convenience as the portable electrolytic device 20 is further improved.
 なお、実施の形態4では、電解装置20の点眼容器18cに対応する位置に窪みを設けて、点眼容器18cを窪みの中に設置する構成としたが、これに限られない。例えば、点眼容器18cを、例えばストラップのように、電解装置20の外部に取り付ける構成としてもよい。これにより、より小型化の電解装置20を実現できる。 In the fourth embodiment, a recess is provided at a position corresponding to the eye drop container 18c of the electrolytic device 20 to install the eye drop container 18c in the recess, but the present invention is not limited to this. For example, the eye drop container 18c may be attached to the outside of the electrolytic device 20, for example, like a strap. Thereby, the electrolysis device 20 of further miniaturization can be realized.
 また、点眼容器18cを着脱可能な構成とすることにより、点眼容器18cの清掃性の向上が可能となる。 Further, by making the eye drop container 18c detachable, the cleaning property of the eye drop container 18c can be improved.
 本発明に係る携帯用電解水噴霧器は、技術範囲において種々の形態を包含する。そのため、上記実施の形態に示した構成に限定されず、種々の形態の携帯用電解水噴霧器に適用できる。 The portable electrolyzed water sprayer according to the present invention encompasses various forms in the technical scope. Therefore, the present invention is not limited to the configuration shown in the above embodiment, and can be applied to various forms of portable electrolytic water sprayers.
 1,11,20  電解装置(携帯用電解水噴霧器)
 2,12  タンク部
 3,13,23  電源部
 4,24  噴霧機構部
 5,25  電解部
 5B  スペーサ
 5E  流入孔
 5F  上面開口
 5P  筒状体
 5S  電解室
 6,26  電極
 6A  第1の電極
 6B  第2の電極
 7,17  制御部
 8  切替部
 14  噴霧部
 18  塩化物供給部
 18a  塩化物貯蔵タンク
 18b  ポンプ
 18c  点眼容器
 19  ポンプ電源
 21  電解水噴霧器
 22  水タンク部
1,11,20 Electrolyzer (Portable Electrolyzed Water Sprayer)
2, 12 tank part 3, 13, 23 power supply part 4, 24 spray mechanism part 5, 25 electrolysis part 5B spacer 5E inflow hole 5F upper surface opening 5P cylindrical body 5S electrolysis room 6, 26 electrode 6A first electrode 6B second Electrodes 17, 17 control unit 8 switching unit 14 spray unit 18 chloride supply unit 18a chloride storage tank 18b pump 18c eye dropper container 19 pump power supply 21 electrolyzed water sprayer 22 water tank unit

Claims (10)

  1. タンク部と、
    前記タンク部内に設置され、前記タンク部から流入した水を電気分解する、少なくとも第1の電極と第2の電極を有する電解部と、
    前記電解部に電力を供給する電源部と、
    前記電源部の電力の極性を反転可能に、前記第1の電極と前記第2の電極への電力供給を制御する制御部と、
    前記電解部で電解された前記水を噴霧する噴霧部と、を備える、
    携帯用電解水噴霧器。
    The tank section,
    An electrolysis unit disposed in the tank unit, the electrolysis unit having at least a first electrode and a second electrode, which electrolyzes the water flowing in from the tank unit;
    A power supply unit for supplying power to the electrolysis unit;
    A control unit configured to control power supply to the first electrode and the second electrode so that the polarity of the power of the power supply unit can be reversed;
    And a sprayer for spraying the water electrolyzed by the electrolyzer.
    Portable electrolytic water sprayer.
  2. 前記電解部の前記第1の電極は、オゾン水を生成するためのオゾン発生電極を構成し、
    前記電解部の前記第2の電極は、塩素物質を含む水を生成するための塩素物質発生電極を構成する、
    請求項1に記載の携帯用電解水噴霧器。
    The first electrode of the electrolysis unit constitutes an ozone generating electrode for generating ozone water.
    The second electrode of the electrolysis unit constitutes a chlorine material generating electrode for generating water containing a chlorine material.
    The portable electrolytic water sprayer according to claim 1.
  3. 前記第1の電極および前記第2の電極は、次亜塩素酸とオゾンと金属イオンの少なくとも2種類を、同時もしくは、それぞれを単独で生成するように構成される、
    請求項1に記載の携帯用電解水噴霧器。
    The first electrode and the second electrode are configured to simultaneously or individually generate at least two of hypochlorous acid, ozone, and metal ions.
    The portable electrolytic water sprayer according to claim 1.
  4. 前記第1の電極と前記第2の電極へ供給される前記電力の極性を選択する切替部を、さらに備える、
    請求項1~3のいずれか1項に記載の携帯用電解水噴霧器。
    The switch further includes a switching unit that selects the polarity of the power supplied to the first electrode and the second electrode.
    The portable electrolytic water sprayer according to any one of claims 1 to 3.
  5. 前記オゾン発生電極は、金属基板の表面に電極触媒を備え、
    少なくとも1つの前記電極触媒は、タンタル酸化物、もしくは、タンタル酸化物と白金とで形成される、
    請求項2に記載の携帯用電解水噴霧器。
    The ozone generating electrode comprises an electrode catalyst on the surface of a metal substrate,
    The at least one electrocatalyst is formed of tantalum oxide or tantalum oxide and platinum
    The portable electrolytic water sprayer according to claim 2.
  6. 前記第2の電極は、少なくともAgイオン、Cuイオン、Znイオンを生成するために、少なくともAg、Cu、Znの金属を含む電極触媒もしくは基材で構成される、
    請求項3に記載の携帯用電解水噴霧器。
    The second electrode is composed of an electrode catalyst or a base material containing at least Ag, Cu, Zn metal to generate at least Ag ion, Cu ion, Zn ion,
    The portable electrolytic water sprayer of Claim 3.
  7. 前記タンク部は、塩化物イオンを供給する塩化物供給部を、さらに備える、
    請求項1に記載の携帯用電解水噴霧器。
    The tank unit further comprises a chloride supply unit for supplying chloride ions,
    The portable electrolytic water sprayer according to claim 1.
  8. 前記塩化物供給部は、
    塩化物水溶液を貯蔵する塩化物貯蔵タンクと、
    前記タンク部内の水溶液を所定の塩化物イオン濃度になるよう前記塩化物水溶液を前記タンク部に所定量添加するポンプと、を含む、
    請求項7に記載の携帯用電解水噴霧器。
    The chloride supply unit
    A chloride storage tank for storing an aqueous chloride solution;
    A pump for adding a predetermined amount of the aqueous chloride solution to the tank portion so that the aqueous solution in the tank portion has a predetermined chloride ion concentration;
    The portable electrolytic water sprayer of Claim 7.
  9. 前記塩化物供給部は、塩化物水溶液を貯蔵する点眼容器で構成される、
    請求項7に記載の携帯用電解水噴霧器。
    The chloride supply unit comprises an eyedropper storing an aqueous chloride solution,
    The portable electrolytic water sprayer of Claim 7.
  10. 前記点眼容器は、取り外し可能に構成され、前記タンク部に手動で塩化物水溶液を添加するように構成される、
    請求項9に記載の携帯用電解水噴霧器。
    The eye drop container is configured to be removable and configured to manually add an aqueous chloride solution to the tank portion.
    The portable electrolytic water sprayer of Claim 9.
PCT/JP2018/043679 2017-12-22 2018-11-28 Portable electrolyzed water sprayer WO2019123999A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-245701 2017-12-22
JP2017245701A JP2019111474A (en) 2017-12-22 2017-12-22 Portable electrolytic water sprayer
JP2018-132813 2018-07-13
JP2018132813A JP7122512B2 (en) 2018-07-13 2018-07-13 portable electrolytic water sprayer
JP2018-193934 2018-10-15
JP2018193934A JP2020063460A (en) 2018-10-15 2018-10-15 Portable electrolytic water atomizer

Publications (1)

Publication Number Publication Date
WO2019123999A1 true WO2019123999A1 (en) 2019-06-27

Family

ID=66994126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043679 WO2019123999A1 (en) 2017-12-22 2018-11-28 Portable electrolyzed water sprayer

Country Status (2)

Country Link
TW (1) TW201927344A (en)
WO (1) WO2019123999A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258238A1 (en) * 2019-06-25 2020-12-30 慈溪市天泉电器科技有限公司 Disinfection machine using hypochlorous water
CN113373460A (en) * 2021-05-22 2021-09-10 冠宇(苏州)高新材料有限公司 Method for preparing ozone by electrolyzing water and maintaining cathode on line
WO2021174754A1 (en) * 2020-03-06 2021-09-10 广州市德百顺电气科技有限公司 Ozone water disinfection spray bottle
CN113718273A (en) * 2020-09-28 2021-11-30 上海赛一水处理科技股份有限公司 Portable disinfectant generating device and disinfectant device
CN114150332A (en) * 2021-12-15 2022-03-08 珠海格力电器股份有限公司 Disinfectant liquid manufacturing apparatus and control method thereof
WO2022062439A1 (en) * 2020-09-28 2022-03-31 上海赛一水处理科技股份有限公司 Electrolyte in solid dosage form, preparation method therefor, and use thereof
CN114867693A (en) * 2020-02-10 2022-08-05 松下知识产权经营株式会社 Portable electrolytic water sprayer
CN114901599A (en) * 2020-02-10 2022-08-12 松下知识产权经营株式会社 Portable electrolytic water sprayer
WO2023164766A1 (en) * 2022-03-02 2023-09-07 Marsix Solutions Ltd. On-demand hypochlorous acid (hocl) generator and sprayer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266073A (en) * 2002-03-13 2003-09-24 Sanyo Electric Co Ltd Apparatus for producing electrolytic water
JP2005007102A (en) * 2003-06-16 2005-01-13 Mututry:Kk Hand washer with small electrolytic water
JP2006346203A (en) * 2005-06-16 2006-12-28 Permelec Electrode Ltd Method of sterilization and electrolyzed water spraying device
JP2008049002A (en) * 2006-08-28 2008-03-06 Sanyo Electric Co Ltd Air sterilization device
JP2016023134A (en) * 2014-07-16 2016-02-08 ストラテジック リソース オプティミゼーション, インコーポレイテッド Electrolysis system and method for generating biocide containing electron-deficient carrier fluid and chlorine dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266073A (en) * 2002-03-13 2003-09-24 Sanyo Electric Co Ltd Apparatus for producing electrolytic water
JP2005007102A (en) * 2003-06-16 2005-01-13 Mututry:Kk Hand washer with small electrolytic water
JP2006346203A (en) * 2005-06-16 2006-12-28 Permelec Electrode Ltd Method of sterilization and electrolyzed water spraying device
JP2008049002A (en) * 2006-08-28 2008-03-06 Sanyo Electric Co Ltd Air sterilization device
JP2016023134A (en) * 2014-07-16 2016-02-08 ストラテジック リソース オプティミゼーション, インコーポレイテッド Electrolysis system and method for generating biocide containing electron-deficient carrier fluid and chlorine dioxide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258238A1 (en) * 2019-06-25 2020-12-30 慈溪市天泉电器科技有限公司 Disinfection machine using hypochlorous water
CN114867693A (en) * 2020-02-10 2022-08-05 松下知识产权经营株式会社 Portable electrolytic water sprayer
CN114901599A (en) * 2020-02-10 2022-08-12 松下知识产权经营株式会社 Portable electrolytic water sprayer
CN114867693B (en) * 2020-02-10 2024-09-24 松下知识产权经营株式会社 Portable electrolytic water sprayer
WO2021174754A1 (en) * 2020-03-06 2021-09-10 广州市德百顺电气科技有限公司 Ozone water disinfection spray bottle
CN113718273A (en) * 2020-09-28 2021-11-30 上海赛一水处理科技股份有限公司 Portable disinfectant generating device and disinfectant device
WO2022062439A1 (en) * 2020-09-28 2022-03-31 上海赛一水处理科技股份有限公司 Electrolyte in solid dosage form, preparation method therefor, and use thereof
WO2022062438A1 (en) * 2020-09-28 2022-03-31 上海赛一水处理科技股份有限公司 Portable disinfectant generating device and disinfectant device
CN113718273B (en) * 2020-09-28 2023-06-20 上海赛一水处理科技股份有限公司 Portable disinfectant generating device and disinfectant device
CN113373460A (en) * 2021-05-22 2021-09-10 冠宇(苏州)高新材料有限公司 Method for preparing ozone by electrolyzing water and maintaining cathode on line
CN114150332A (en) * 2021-12-15 2022-03-08 珠海格力电器股份有限公司 Disinfectant liquid manufacturing apparatus and control method thereof
WO2023164766A1 (en) * 2022-03-02 2023-09-07 Marsix Solutions Ltd. On-demand hypochlorous acid (hocl) generator and sprayer

Also Published As

Publication number Publication date
TW201927344A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2019123999A1 (en) Portable electrolyzed water sprayer
JP4410155B2 (en) Electrolyzed water ejection device
JP5870038B2 (en) Hand disinfection device
KR101081447B1 (en) Membrane-electrode assembly, electrolytic unit using the same, electrolytic water ejecting apparatus, and method of sterilization
TWI423827B (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP5098050B2 (en) Membrane-electrode assembly, electrolysis unit using the same, electrolyzed water ejection device, and sterilization method
JP2009125628A (en) Membrane-electrode assembly, electrolytic cell using the same, ozone water generator, and sterilization method
US20130277211A1 (en) Reusable spray bottle with integrated dispenser
JP2006518666A (en) Electrolyzer for surface and on-site sterilization
JP2004148108A (en) Hypochlorous acid generating sprayer
KR100643591B1 (en) Apparatus and method of producing electrolytic disinfection water
JP2012052168A (en) Cartridge for sustained release of salt, electrolytic water generator equipped with the cartridge for sustained release of salt and electrolytic water atomizer equipped with the cartridge for sustained release of salt
US20160097132A1 (en) Reusable spray bottle with integrated dispenser
JP2020063460A (en) Portable electrolytic water atomizer
JP6936998B2 (en) Electrolyzed water generation method, production atomizer and generation sprayer
JP2003334557A (en) Portable method and portable apparatus for producing sterilizing/cleaning water
JP2019111474A (en) Portable electrolytic water sprayer
US20140190820A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting
JP7122512B2 (en) portable electrolytic water sprayer
JP2015226598A (en) Sterilizable air cleaning machine
WO2013103827A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891687

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载