WO2019117952A1 - Fatty acid modified polyurethane composites with improved dimensional stability - Google Patents
Fatty acid modified polyurethane composites with improved dimensional stability Download PDFInfo
- Publication number
- WO2019117952A1 WO2019117952A1 PCT/US2017/066742 US2017066742W WO2019117952A1 WO 2019117952 A1 WO2019117952 A1 WO 2019117952A1 US 2017066742 W US2017066742 W US 2017066742W WO 2019117952 A1 WO2019117952 A1 WO 2019117952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite
- fatty acid
- less
- weight
- combination
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 307
- 239000000194 fatty acid Substances 0.000 title claims abstract description 252
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 248
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 248
- 239000004814 polyurethane Substances 0.000 title claims abstract description 206
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 205
- 150000004665 fatty acids Chemical class 0.000 title claims abstract description 124
- 229920005862 polyol Polymers 0.000 claims abstract description 162
- 150000003077 polyols Chemical class 0.000 claims abstract description 159
- -1 fatty acid salt Chemical class 0.000 claims abstract description 135
- 239000000203 mixture Substances 0.000 claims abstract description 83
- 239000012948 isocyanate Substances 0.000 claims abstract description 69
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 67
- 239000011256 inorganic filler Substances 0.000 claims abstract description 64
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 43
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 11
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 11
- 125000005442 diisocyanate group Chemical group 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 53
- 239000010881 fly ash Substances 0.000 claims description 37
- 238000002156 mixing Methods 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 26
- 239000003365 glass fiber Substances 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 20
- 239000003054 catalyst Substances 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 17
- 238000003795 desorption Methods 0.000 claims description 15
- 230000003993 interaction Effects 0.000 claims description 13
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 12
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 11
- 239000008116 calcium stearate Substances 0.000 claims description 11
- 235000013539 calcium stearate Nutrition 0.000 claims description 11
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 claims description 10
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 claims description 10
- 238000009736 wetting Methods 0.000 claims description 10
- 239000004566 building material Substances 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 7
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 7
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 6
- 239000010754 BS 2869 Class F Substances 0.000 claims description 6
- 239000005639 Lauric acid Substances 0.000 claims description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 6
- CUXYLFPMQMFGPL-UHFFFAOYSA-N (9Z,11E,13E)-9,11,13-Octadecatrienoic acid Natural products CCCCC=CC=CC=CCCCCCCCC(O)=O CUXYLFPMQMFGPL-UHFFFAOYSA-N 0.000 claims description 5
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 claims description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 5
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 5
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 claims description 5
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000005642 Oleic acid Substances 0.000 claims description 5
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 5
- 235000021314 Palmitic acid Nutrition 0.000 claims description 5
- 235000021319 Palmitoleic acid Nutrition 0.000 claims description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 5
- 235000021355 Stearic acid Nutrition 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- CUXYLFPMQMFGPL-SUTYWZMXSA-N all-trans-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C\CCCCCCCC(O)=O CUXYLFPMQMFGPL-SUTYWZMXSA-N 0.000 claims description 5
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 claims description 5
- 235000020661 alpha-linolenic acid Nutrition 0.000 claims description 5
- 229940114079 arachidonic acid Drugs 0.000 claims description 5
- 235000021342 arachidonic acid Nutrition 0.000 claims description 5
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 claims description 5
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 claims description 5
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 5
- 229960004488 linolenic acid Drugs 0.000 claims description 5
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 claims description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 5
- 239000011976 maleic acid Substances 0.000 claims description 5
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 5
- 235000021313 oleic acid Nutrition 0.000 claims description 5
- 239000008117 stearic acid Substances 0.000 claims description 5
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 claims description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- 229920005628 alkoxylated polyol Polymers 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- 235000019738 Limestone Nutrition 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 239000006028 limestone Substances 0.000 claims description 3
- 229940006486 zinc cation Drugs 0.000 claims description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims 3
- 239000000945 filler Substances 0.000 abstract description 17
- 239000000835 fiber Substances 0.000 description 55
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 38
- 229920000768 polyamine Polymers 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 14
- 230000002787 reinforcement Effects 0.000 description 14
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 13
- 125000002947 alkylene group Chemical group 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000002657 fibrous material Substances 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 9
- 239000004721 Polyphenylene oxide Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000011147 inorganic material Substances 0.000 description 8
- 229920000570 polyether Polymers 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical group C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 7
- 229930006000 Sucrose Natural products 0.000 description 7
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 150000002989 phenols Chemical class 0.000 description 7
- 239000005720 sucrose Substances 0.000 description 7
- 239000004971 Cross linker Substances 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 239000007822 coupling agent Substances 0.000 description 6
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 6
- 238000005187 foaming Methods 0.000 description 6
- 239000012784 inorganic fiber Substances 0.000 description 6
- 239000004970 Chain extender Substances 0.000 description 5
- 239000002956 ash Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 239000004088 foaming agent Substances 0.000 description 5
- 229920005906 polyester polyol Polymers 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical class 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010883 coal ash Substances 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920005749 polyurethane resin Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229960004418 trolamine Drugs 0.000 description 3
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- TUAMRELNJMMDMT-UHFFFAOYSA-N 3,5-xylenol Chemical compound CC1=CC(C)=CC(O)=C1 TUAMRELNJMMDMT-UHFFFAOYSA-N 0.000 description 2
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 2
- YQUQWHNMBPIWGK-UHFFFAOYSA-N 4-isopropylphenol Chemical compound CC(C)C1=CC=C(O)C=C1 YQUQWHNMBPIWGK-UHFFFAOYSA-N 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical group [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 2
- 229940043276 diisopropanolamine Drugs 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 2
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 2
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- IXQGCWUGDFDQMF-UHFFFAOYSA-N o-Hydroxyethylbenzene Natural products CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- ULSIYEODSMZIPX-UHFFFAOYSA-N phenylethanolamine Chemical compound NCC(O)C1=CC=CC=C1 ULSIYEODSMZIPX-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000582 polyisocyanurate Polymers 0.000 description 2
- 239000011495 polyisocyanurate Substances 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- GBAXGHVGQJHFQL-UHFFFAOYSA-N 1-(2-hydroxyethylamino)propan-2-ol Chemical compound CC(O)CNCCO GBAXGHVGQJHFQL-UHFFFAOYSA-N 0.000 description 1
- RDTCWQXQLWFJGY-UHFFFAOYSA-N 1-(methylamino)butan-2-ol Chemical compound CCC(O)CNC RDTCWQXQLWFJGY-UHFFFAOYSA-N 0.000 description 1
- HHKUQCFQGCCLGA-UHFFFAOYSA-N 1-[2-hydroxyethyl(2-hydroxypropyl)amino]propan-2-ol Chemical compound CC(O)CN(CCO)CC(C)O HHKUQCFQGCCLGA-UHFFFAOYSA-N 0.000 description 1
- ZFECCYLNALETDE-UHFFFAOYSA-N 1-[bis(2-hydroxyethyl)amino]propan-2-ol Chemical compound CC(O)CN(CCO)CCO ZFECCYLNALETDE-UHFFFAOYSA-N 0.000 description 1
- KODLUXHSIZOKTG-UHFFFAOYSA-N 1-aminobutan-2-ol Chemical compound CCC(O)CN KODLUXHSIZOKTG-UHFFFAOYSA-N 0.000 description 1
- NZIGXAQHXJFYEW-UHFFFAOYSA-N 1-aminobutan-2-ol;ethanol Chemical compound CCO.CCC(O)CN NZIGXAQHXJFYEW-UHFFFAOYSA-N 0.000 description 1
- KYTMHUXSDFKSEO-UHFFFAOYSA-N 1-aminobutan-2-ol;propan-2-ol Chemical compound CC(C)O.CCC(O)CN KYTMHUXSDFKSEO-UHFFFAOYSA-N 0.000 description 1
- WHJWHBMJEOQRPH-UHFFFAOYSA-N 1-aminohexan-2-ol;ethanol Chemical compound CCO.CCCCC(O)CN WHJWHBMJEOQRPH-UHFFFAOYSA-N 0.000 description 1
- CEVWBJCREUNMRI-UHFFFAOYSA-N 1-aminohexan-2-ol;propan-2-ol Chemical compound CC(C)O.CCCCC(O)CN CEVWBJCREUNMRI-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- AXFVIWBTKYFOCY-UHFFFAOYSA-N 1-n,1-n,3-n,3-n-tetramethylbutane-1,3-diamine Chemical compound CN(C)C(C)CCN(C)C AXFVIWBTKYFOCY-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- HOLHYSJJBXSLMV-UHFFFAOYSA-N 2,6-dichlorophenol Chemical compound OC1=C(Cl)C=CC=C1Cl HOLHYSJJBXSLMV-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- CMWUSCNTMPWOKZ-UHFFFAOYSA-N 2-(methylamino)propan-2-ol Chemical compound CNC(C)(C)O CMWUSCNTMPWOKZ-UHFFFAOYSA-N 0.000 description 1
- WRVIGSXNYQECJV-UHFFFAOYSA-N 2-bromo-6-cyclohexylphenol Chemical compound OC1=C(Br)C=CC=C1C1CCCCC1 WRVIGSXNYQECJV-UHFFFAOYSA-N 0.000 description 1
- VADKRMSMGWJZCF-UHFFFAOYSA-N 2-bromophenol Chemical compound OC1=CC=CC=C1Br VADKRMSMGWJZCF-UHFFFAOYSA-N 0.000 description 1
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 1
- AQDKZPFDOWHRDZ-UHFFFAOYSA-N 2-methyl-6-nitrophenol Chemical compound CC1=CC=CC([N+]([O-])=O)=C1O AQDKZPFDOWHRDZ-UHFFFAOYSA-N 0.000 description 1
- IIBOYMCHHLZIKC-UHFFFAOYSA-N 2-nitro-6-phenylphenol Chemical compound C1=CC=C([N+]([O-])=O)C(O)=C1C1=CC=CC=C1 IIBOYMCHHLZIKC-UHFFFAOYSA-N 0.000 description 1
- SDXAWLJRERMRKF-UHFFFAOYSA-N 3,5-dimethyl-1h-pyrazole Chemical compound CC=1C=C(C)NN=1 SDXAWLJRERMRKF-UHFFFAOYSA-N 0.000 description 1
- IYUVNGUJOOMKHQ-UHFFFAOYSA-N 3-[2-hydroxyethyl(3-hydroxypropyl)amino]propan-1-ol Chemical compound OCCCN(CCO)CCCO IYUVNGUJOOMKHQ-UHFFFAOYSA-N 0.000 description 1
- NHIRIMBKJDSLBY-UHFFFAOYSA-N 3-[bis(3-hydroxypropyl)amino]propan-1-ol Chemical compound OCCCN(CCCO)CCCO NHIRIMBKJDSLBY-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- PIFPCDRPHCQLSJ-WYIJOVFWSA-N 4,8,12,15,19-Docosapentaenoic acid Chemical compound CC\C=C\CC\C=C\C\C=C\CC\C=C\CC\C=C\CCC(O)=O PIFPCDRPHCQLSJ-WYIJOVFWSA-N 0.000 description 1
- NBOCQTNZUPTTEI-UHFFFAOYSA-N 4-[4-(hydrazinesulfonyl)phenoxy]benzenesulfonohydrazide Chemical compound C1=CC(S(=O)(=O)NN)=CC=C1OC1=CC=C(S(=O)(=O)NN)C=C1 NBOCQTNZUPTTEI-UHFFFAOYSA-N 0.000 description 1
- HESBSZDDIGGELX-UHFFFAOYSA-N 4-[4-hydroxybutyl(2-hydroxyethyl)amino]butan-1-ol Chemical compound OCCCCN(CCO)CCCCO HESBSZDDIGGELX-UHFFFAOYSA-N 0.000 description 1
- HMRLYSGDNOUYEO-UHFFFAOYSA-N 4-[bis(3-hydroxypropyl)amino]butan-1-ol Chemical compound OCCCCN(CCCO)CCCO HMRLYSGDNOUYEO-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 description 1
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 229920002748 Basalt fiber Polymers 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- PIFPCDRPHCQLSJ-UHFFFAOYSA-N Clupanodonic acid Natural products CCC=CCCC=CCC=CCCC=CCCC=CCCC(O)=O PIFPCDRPHCQLSJ-UHFFFAOYSA-N 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 239000009261 D 400 Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- OPGOLNDOMSBSCW-CLNHMMGSSA-N Fursultiamine hydrochloride Chemical compound Cl.C1CCOC1CSSC(\CCO)=C(/C)N(C=O)CC1=CN=C(C)N=C1N OPGOLNDOMSBSCW-CLNHMMGSSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 235000021353 Lignoceric acid Nutrition 0.000 description 1
- CQXMAMUUWHYSIY-UHFFFAOYSA-N Lignoceric acid Natural products CCCCCCCCCCCCCCCCCCCCCCCC(=O)OCCC1=CC=C(O)C=C1 CQXMAMUUWHYSIY-UHFFFAOYSA-N 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 241001520808 Panicum virgatum Species 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- 244000273256 Phragmites communis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 235000005018 Pinus echinata Nutrition 0.000 description 1
- 241001236219 Pinus echinata Species 0.000 description 1
- 235000017339 Pinus palustris Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241001625808 Trona Species 0.000 description 1
- 239000013036 UV Light Stabilizer Substances 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229920013701 VORANOL™ Polymers 0.000 description 1
- 235000021322 Vaccenic acid Nutrition 0.000 description 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical compound O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- OTBHHUPVCYLGQO-UHFFFAOYSA-N bis(3-aminopropyl)amine Chemical compound NCCCNCCCN OTBHHUPVCYLGQO-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 239000010882 bottom ash Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- VNSBYDPZHCQWNB-UHFFFAOYSA-N calcium;aluminum;dioxido(oxo)silane;sodium;hydrate Chemical compound O.[Na].[Al].[Ca+2].[O-][Si]([O-])=O VNSBYDPZHCQWNB-UHFFFAOYSA-N 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 235000004879 dioscorea Nutrition 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- FARYTWBWLZAXNK-WAYWQWQTSA-N ethyl (z)-3-(methylamino)but-2-enoate Chemical compound CCOC(=O)\C=C(\C)NC FARYTWBWLZAXNK-WAYWQWQTSA-N 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- LQJBNNIYVWPHFW-QXMHVHEDSA-N gadoleic acid Chemical compound CCCCCCCCCC\C=C/CCCCCCCC(O)=O LQJBNNIYVWPHFW-QXMHVHEDSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical class O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910003471 inorganic composite material Inorganic materials 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- UPRXAOPZPSAYHF-UHFFFAOYSA-N lithium;cyclohexyl(propan-2-yl)azanide Chemical compound CC(C)N([Li])C1CCCCC1 UPRXAOPZPSAYHF-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 150000002672 m-cresols Chemical class 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 235000021290 n-3 DPA Nutrition 0.000 description 1
- WHIVNJATOVLWBW-UHFFFAOYSA-N n-butan-2-ylidenehydroxylamine Chemical compound CCC(C)=NO WHIVNJATOVLWBW-UHFFFAOYSA-N 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 150000002931 p-cresols Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 229950006768 phenylethanolamine Drugs 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 229920005903 polyol mixture Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 229920003226 polyurethane urea Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001415 potassium malate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- ZNZJJSYHZBXQSM-UHFFFAOYSA-N propane-2,2-diamine Chemical compound CC(C)(N)N ZNZJJSYHZBXQSM-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000003473 refuse derived fuel Substances 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 102220051014 rs141837529 Human genes 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- JIWBIWFOSCKQMA-UHFFFAOYSA-N stearidonic acid Natural products CCC=CCC=CCC=CCC=CCCCCC(O)=O JIWBIWFOSCKQMA-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1825—Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4829—Polyethers containing at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
Definitions
- This disclosure relates generally to polyurethane composites, more particularly, to the use of fatty acids in polyurethane composites.
- Organic-inorganic composite materials provide for a class of materials with superior flexural properties compared to inorganic materials without organic matter.
- the superior properties of organic-inorganic materials are achieved through use of the organic material as a matrix material that acts as a glue with enhanced flexural properties or as a fibrous component providing reinforcement and improved tensile properties.
- the inorganic material imparts various properties of rigidity, toughness, hardness, optical appearance and interaction with electromagnetic radiation, density, and many other physical and chemical attributes.
- a proper blend of the inorganic and organic materials provides for a composite with optimal properties at an optimal cost.
- Organic-inorganic materials with or without fillers and/or fiber reinforcement, have been shown to be very useful for preparing structural or non-structural products such as buildings, vehicles, and marine products. Specific uses of such materials include applications as interior and exterior cladding on buildings.
- one of the major challenges for organic-inorganic materials is that they may expand and shrink when absorbing and desorbing moisture. This is especially true if the materials are exposed to wetting and drying cyclic conditions.
- the dimensional instability in the organic-inorganic materials may cause potential structural and cosmetic problems.
- products derived from organic-inorganic materials may increase in length when exposed to water for an extended period of time. When installed and dried, these products may shrink resulting in the appearance of a gap.
- polyurethane composites comprising a fatty acid, a fatty acid salt, or a combination thereof and methods of manufacturing are described herein.
- the polyurethane composites can include a) a polyurethane formed by the reaction of (i) one or more isocyanates selected from the group consisting of diisocyanates, polyisocyanates, and mixtures thereof, and (ii) one or more polyols; and (b) an inorganic filler.
- the fatty acid, the fatty acid salt, or the combination thereof are not pre-reacted with the one or more polyols prior to reacting with the one or more isocyanates.
- the amount of polyurethane in the polyurethane composites can be from 15% to 60% by weight, for example, from 15% to 45% by weight, based on the total weight of the polyurethane composite.
- Suitable fatty acids for use in the polyurethane composites can be derived from a C6-C26 fatty acid.
- the fatty acid can be derived from a C12-C24 fatty acid.
- Specific examples of fatty acids can include lauric acid, maleic acid, myristic acid, palmitic acid, stearic acid, palmitoleic acid, oleic acid, erucic acid, linoleic acid, linolenic acid, eleostearic acid, arachidonic acid or mixtures thereof.
- Suitable fatty acid salts can be derived from any one or more of the fatty acids described herein.
- the fatty acid salts can include a Group I metal, a Group II metal, a Group III metal, zinc, or ammonium cation.
- the fatty acid salts comprise a stearate such as calcium stearate.
- the fatty acid, fatty acid salt, or combination thereof can be present in an amount of from 0.05% to 10% by weight, such as from 0.1% to 5% by weight, based on the total weight of the composite.
- the fatty acid, the fatty acid salt, or the combination thereof can associate with the polyurethane through non-covalent interaction.
- 50% or greater by weight for example, greater than 50%, greater than 60%, greater than 70%, greater than 75%, greater than 80%, or greater than 85% by weight
- 50% or greater by weight for example, greater than 50%, greater than 60%, greater than 70%, greater than 75%, greater than 80%, or greater than 85% by weight
- the polyurethane composites can include an inorganic filler.
- the inorganic filler can include a particulate filler.
- the inorganic filler in the polyurethane composites can include limestone, coal ash such as fly ash, or a mixture thereof. Specific examples of fly ash that can be used in the composites include Class C or Class F fly ash.
- the amount of inorganic filler in the polyurethane composites can be from 40 to 90% by weight, based on the total weight of the polyurethane composite.
- the inorganic filler can be present in an amount from 50% to 90%, from 50% to 80% or from 60% to 80% by weight, based on the total weight of the polyurethane composite.
- the fatty acid, the fatty acid salt, or the combination thereof can interact with the inorganic filler.
- the fatty acid, the fatty acid salt, or the combination thereof can interact with the inorganic filler through covalent, non-covalent, and/or ionic interactions.
- the composites can further comprise glass fibers.
- the glass fibers can be present in an amount from 0.2% to 20%, based on the total weight of the polyurethane composite.
- the polyurethane composites described herein are dimensionally stable.
- the polyurethane composites exhibit a higher dimensional stability compared to identical composites that do not include a fatty acid and/or fatty acid salt.
- the polyurethane composites after wetting in water for 8 days and drying at 46 ° C for 48 hours, exhibit a dimensional change that is less than 50% of the dimensional change of an identical composite excluding the fatty acid and/or fatty acid salt.
- the dimensional change can be in length, width, weight, or a combination thereof.
- the polyurethane composites after wetting in water for 8 days and drying at 46 ° C for 48 hours, exhibit a water absorption or desorption of from 0% to less than 0.5% by weight, based on the weight of the initial composite. In certain embodiments, the polyurethane composites, after wetting in water for 8 days and drying at 46 ° C for 48 hours, increase or decrease in length by 0% to less than 0.2% compared to the initial composite.
- the density of the polyurethane composites can be from 10 lb/ft 3 to 75 lb/ft 3 . In some embodiments, the density of the polyurethane composites can be from 10 lb/ft 3 to 30 lb/ft 3 , from 35 lb/ft 3 to 75 lb/ft 3 , or from 35 lb/ft 3 to 50 lb/ft 3 . In some examples, the polyurethane composites are foamed.
- the polyurethane composites can have a flexural strength of 200 psi or greater, such as from 200 psi to 2,500 psi, as measured by ASTM Cl 185.
- Articles comprising the polyurethane composites are also disclosed. In some embodiments,
- the articles can be building products.
- the building products formed from the composites can be selected from sidings, building panels, sheets, architectural moldings, sound barriers, thermal barriers, insulations, wall boards, ceiling tiles, ceiling boards, soffits, trims, backers, or roofing materials.
- Methods of making the polyurethane composites are also described herein.
- the method can include mixing the (a) one or more isocyanates selected from the group consisting of diisocyanates, polyisocyanates, and mixtures thereof, one or more polyols, a fatty acid, a fatty acid salt, or a combination thereof, and an inorganic filler to produce a mixture.
- the method of making the polyurethane composites does not include pre-reacting the fatty acid, the fatty acid salt, or the combination thereof with the one or more polyols prior to mixing with the one or more isocyanates.
- the method can include mixing the one or more isocyanates and the one or more polyols prior to mixing with the fatty acid, the fatty acid salt, or the combination thereof.
- the method can include mixing the one or more isocyanates and the fatty acid, the fatty acid salt, or the combination thereof prior to mixing with the one or more polyols.
- the method can include simultaneously mixing the one or more isocyanates, the one or more polyols, and the fatty acid, the fatty acid salt, or the combination thereof.
- the mixture may further comprise a catalyst.
- the mixture can include the catalyst at 0.05 to 0.5 part per hundred parts of polyol.
- the polyurethane mixture can be formed in a mold.
- the method can include applying the mixture to a mold at the temperature of the mixture.
- the method of making the polyurethane composite can include allowing the mixture to react and expand to form the polyurethane composite.
- the mixture can be allowed to rise freely during foaming in the mold.
- Figure 1 is a line graph showing the changes in the weight of filled polyurethane composites during absorption and desorption at room temperature.
- Figure 2 is a line graph showing the changes in the weight of filled polyurethane composites during absorption and desorption at 46°C.
- Figure 3 is a line graph showing the changes in the length of filled polyurethane composites during absorption and desorption at room temperature.
- Figure 4 is a line graph showing the changes in the width of filled polyurethane composites during absorption and desorption at room temperature.
- Figure 5 is a line graph showing the changes in the length of filled polyurethane composites during absorption and desorption at 46°C.
- Figure 6 is a line graph showing the changes in the width of filled polyurethane composites during absorption and desorption at 46°C.
- polyurethane composites comprising a fatty acid, a fatty acid salt, or a combination thereof and methods of preparing the composites are described herein.
- the polyurethane composites can include a) a polyurethane formed by the reaction of (i) one or more isocyanates selected from the group consisting of diisocyanates, polyisocyanates, and mixtures thereof, and (ii) one or more polyols in the presence of the fatty acid, the fatty acid salt, or the combination thereof; and (b) an inorganic filler.
- moisture can be incorporated into filled polyurethane composite materials attributable to one or more of the following reasons.
- the urethane (-NH-) bond and ester (-COO-) bond in polyurethane are both hydrophilic and thus make it easy for the polyurethane resin to absorb moisture.
- water can penetrate into the composite structure by interacting with polyurethane through hydrogen bond and subsequently causing increased free volume and plasticizing of the polymer matrix.
- the polyurethane composites described herein include a fatty acid salt, a fatty acid salt, or a combination thereof that associates with the polyurethane matrix.
- Fatty acids and their salts usually have non-polar alkyl chains and polar carboxylic functional groups.
- the fatty acid and/or the fatty acid salt can be dispersed within the polyurethane matrix.
- the hydrocarbon chain of the fatty acids or fatty acid salts associates with the polyurethane matrix, and the carboxylic functional group associates with the inorganic filler surface.
- the polyurethane matrix and fillers can form stronger interactions, making it more difficult for water and moisture to penetrate into the interfacial zone of the composite and cause expansion and shrinkage.
- the fatty acids or fatty acid salts can increase the hydrophobicity of the polyurethane matrix, thus reducing the potential for moisture to induce volume change by plasticizing the matrix.
- the fatty acids or fatty acid salts may also function as a lubricant to improve the flow of the raw material mixture of the filled polyurethane material. Accordingly, the composite structure may become denser and less likely for moisture to be incorporated.
- the term“associate” as used herein refers to the interaction between two or more individual components (e.g. molecules) present in the polyurethane composites by non-covalent or covalent bonds.
- the association may depend on, for example, polarity, charge, and/or other characteristics of the individual components, and includes, without limitation, electrostatic (e.g., ionic) interactions, dipole-dipole interactions, van der Waal’s forces, covalent bonds, and combinations of two or more thereof.
- electrostatic e.g., ionic
- dipole-dipole interactions e.g., van der Waal’s forces, covalent bonds, and combinations of two or more thereof.
- a substantial amount of the fatty acids or fatty acid salts associate with the polyurethane composites through non-covalent interactions.
- fatty acids or fatty acid salts can associate with the polyurethane composite through non-covalent interactions.
- the strength of the association can be modulated by altering one or more of the above-mentioned intermolecular interactions.
- the fatty acids or fatty acid salts do not associate with the polyurethane composite through covalent bonds.
- the fatty acids or fatty acid salts do not associate with the polyol or isocyanate present in the polyurethane composite through covalent bonds. In other specific embodiments, less than 50% by weight (for example, less than 40% by weight, less than 30% by weight, less than 20% by weight, less than 15% by weight, or less than 10% by weight) of the fatty acids or fatty acid salts associate with the polyol or isocyanate present in the polyurethane composite through covalent bonds.
- the fatty acids or fatty acid salts should have relatively low solubility in water.
- the polyurethane composites can include fatty acids or fatty acid salts whose equivalent fatty acids have a water solubility of 1 g/lOO g water or less at 20°C.
- the polyurethane composites can include fatty acids or fatty acid salts whose equivalent fatty acids have a water solubility in water, measured at 20°C, of 0.8 g/lOO g water or less, 0.6 g/lOO g water or less, 0.2 g/lOO g water or less, 0.1 g/lOO g water or less, 0.05 g/lOO g water or less, 0.03 g/lOO g water or less, or 0.01 g/lOO g water or less.
- Suitable fatty acids or fatty acid salts for use in the composites can be derived from a Ce- or greater fatty acid.
- the fatty acids or fatty acid salts can be derived from a CV or greater, a Cs- or greater, a Cs>- or greater, a Cio- or greater, a C12- or greater, or a C14- or greater fatty acid.
- the fatty acids or fatty acid salts can be derived from a C26- or less, a C24- or less, a C20- or less, or a Cie- or less fatty acid.
- the fatty acid salts can be derived from a C6-C26, a C6-C24, a C8-C24, a C10-C24, a C12-C24, a C6-C20, a C8-C20, a C10-C20, or a C12-C20 fatty acid.
- the fatty acids or fatty acid salts used in the composites can include saturated and/or unsaturated fatty acids as well as branched and/or unbranched carbon chain.
- the“fatty acid” may additionally include hydroxyl groups or epoxy groups.
- At least 50% by weight of the fatty acids or fatty acid salts in the polyurethane composites can be saturated.
- at least 55% by weight e.g., at least 60%, at least 65%, at least 70%, at least 75%, 30 at least 80%, at least 85%, at 90%, at least 95%, from 50% to 99%, from 55% to 99%, from 60% to 98%, from 70% to 98%, from 80% to 98%, from 80% to 95%, or from 85% to 95%) of the fatty acids or fatty acid salts in the polyurethane composites can be saturated.
- At least 50% by weight of the fatty acids or fatty acid salts in the polyurethane composites comprise a C12- or greater hydrocarbon chain.
- at least 55% by weight e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at 90%, at least 95%, from 50% to 99%, from 55% to 99%, from 60% to 98%, from 70% to 98%, from 80% to 98%, from 80% to 95%, or from 85% to 95%) of the fatty acids or fatty acid salts in the polyurethane composites comprise a C12- or greater hydrocarbon chain.
- fatty acids or fatty acid salts can include salts derived from lauric acid, maleic acid, myristic acid, palmitic acid, stearic acid, palmitoleic acid, oleic acid, erucic acid, linoleic acid, linolenic acid, eleostearic acid, arachidonic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, pentadecylic acid, hepatadecanoic acid, behenic acid, lignoceric acid, myristoleic acid, trans-9-octadecenoic acid, vaccenic acid, stearidonic acid, gadoleic acid, eicosapentaenoic acid (EPA), cis-l3-docosenoic acid, clupanodonic acid, docosahexaenoic acid (DHA), cis-l5-tetracosenoic acid,
- the fatty acid salts can include any suitable cationic group.
- the fatty acid salts can include a cationic group derived from a Group I metal, a Group II metal, a Group III metal, zinc, or ammonium.
- the fatty acid salts can include sodium, potassium, calcium, magnesium, aluminum, or a mixture thereof.
- the fatty acid salt can comprise calcium stearate.
- the polyurethane compositions can include fatty acids or fatty acid salts derived from the hydrolysis of a natural fat or oil. Particularly suitable natural fats or oils include those which contain a comparatively high proportion of fatty acids with a C6-or greater chain length.
- the fatty acids or fatty acid salts can be derived from coconut oil with a high proportion of lauric acid (from 45 to 51% by weight) and myristic acid (16.5 to 18.5% by weight).
- the natural fats or oils can be hydrolyzed, for example, by addition of metal hydroxides.
- the fatty acids and/or fatty acid salts can be present in an amount of 0.05% or greater by weight, based on the total weight of the composite.
- the fatty acids and/or fatty acid salts can be present in an amount of 0.1% or greater, 0.2% or greater, 0.3% or greater, 0.5% or greater, 1% or greater, 1.5% or greater, 2% or greater, 2.5% or greater, or 3% or greater by weight, based on the total weight of the composite.
- the fatty acids and/or fatty acid salts can be present in an amount of 10% or less, 9% or less, 8% or less, 7% or less, 5% or less, 4% or less, 3% or less, 2.5% or less, 2% or less, 1.5% or less, or 1% or less by weight, based on the total weight of the composite. In some embodiments, the fatty acids and/or fatty acid salts can be present in an amount of from 0.05% to 10%, from 0.1% to 10%, from 0.1% to 8%, from 0.5% to 8%, from 0.1% to 5%, from 0.5% to 5% by weight, based on the total weight of the composite.
- the polyurethane composites can comprise a polyurethane formed using reactive systems such as reactive isocyanates and reactive polyols.
- the composites can be formed using highly reactive systems including highly reactive polyols, highly reactive isocyanates, or both.
- Isocyanates suitable for use in the polyurethane composites can include one or more monomeric or oligomeric poly- or di-isocyanates.
- the monomeric or oligomeric poly- or di-isocyanate may include aromatic diisocyanates and polyisocyanates.
- the isocyanates can also be blocked isocyanates or pre polymer isocyanates.
- the particular isocyanate used in the composites can be selected based on the desired properties of the composites, such as the amount of foaming, strength of bonding to the filler, wetting of the inorganic particulates in the reaction mixture, strength of the resulting composite, stiffness (elastic modulus), reactivity, and viscosity of the mixture.
- a useful diisocyanate is methylene diphenyl diisocyanate (MDI).
- MDI methylene diphenyl diisocyanate
- Suitable MDI’s include MDI monomers, MDI oligomers, and mixtures thereof.
- Further examples of useful isocyanates include those having NCO (i.e., the reactive group of an isocyanate) contents ranging from about 25% to about 35% by weight. Examples of useful isocyanates are found, for example, in Polyurethane Handbook: Chemistry, Raw Materials, Processing Application, Properties, 2 nd Edition, Ed: Gunter Oertel; Hanser/Gardner Publications, Inc., Cincinnati, OH, which is herein incorporated by reference.
- aromatic polyisocyanates include 2,4- or 2,6-toluene diisocyanate, including mixtures thereof; p-phenylene diisocyanate; tetramethylene and hexamethylene diisocyanates; 4,4-dicyclohexylmethane diisocyanate;
- triisocyanates may be used, for example, 4, 4, 4-triphenylmethane triisocyanate; 1,2, 4-benzene triisocyanate; polymethylene polyphenyl polyisocyanate; methylene polyphenyl polyisocyanate; and mixtures thereof.
- Suitable blocked isocyanates are formed by the treatment of the isocyanates described herein with a blocking agent (e.g., diethyl malonate, 3,5-dimethylpyrazole, methylethylketoxime, and caprolactam).
- a blocking agent e.g., diethyl malonate, 3,5-dimethylpyrazole, methylethylketoxime, and caprolactam.
- Isocyanates are commercially available, for example, from Bayer Corporation (Pittsburgh, PA) under the trademarks MONDUR and DESMODUR.
- Other examples of suitable isocyanates include MONDUR MR Light (Bayer Corporation; Pittsburgh, PA), PAPI 27 (Dow Chemical Company; Midland, MI), Lupranate M20 (BASF Corporation; Florham Park, NJ), Lupranate M70L (BASF Corporation; Florham Park, NJ), Rubinate M (Huntsman
- the isocyanate compositions used to form the composite can include those having viscosities ranging from 25 to 700 cPs at 25°C.
- the average functionality of isocyanates useful with the polyurethane composites described herein can be from 1.5 to 5. Further, examples of useful isocyanates include isocyanates with an average functionality of from 2 to 4.5, from 2.2 to 4, from 2.4 to 3.7, from 2.6 to 3.4, or from 2.8 to 3.2.
- the polyurethane composites can include one or more polyols.
- the one or more polyols for use in the polyurethane composites can include polyester polyols, poly ether polyols, Mannich polyols, or combinations thereof.
- the one or more polyols can include a first polyol and/or a second polyol as described herein.
- the one or more polyols can include one or more less reactive (or first) polyols.
- the less reactive polyol can have lower numbers of primary hydroxyl groups, lower primary hydroxyl numbers, and higher numbers of secondary hydroxyl groups, than a highly reactive polyol.
- the primary hydroxyl number is defined as the hydroxyl number multiplied by the percentage of primary hydroxyl groups based on the total number of hydroxyl groups in the polyol.
- the one or more less reactive polyols can have about 40% or less primary hydroxyl groups, about 35% or less primary hydroxyl groups, about 30% or less primary hydroxyl groups, about 25% or less primary hydroxyl groups, about 20% or less primary hydroxyl groups, about 15% or less primary hydroxyl groups, or even about 10% or less primary hydroxyl groups.
- the one or more less reactive polyols can have primary hydroxyl numbers (as measured in units of mg KOH/g) of less than about 220, less than about 200, less than about 180, less than about 160, less than about 140, less than about 120, less than about 100, less than about 80, less than about 60, less than about 40, or even less than about 20.
- the number of primary hydroxyl groups can be determined using fluorine NMR spectroscopy as described in ASTM D4273.
- the one or more less reactive polyols can have hydroxyl numbers (as measured in units of mg KOH/g) of 700 or less, 650 or less, 600 or less, 550 or less, 500 or less, 450 or less, 400 or less, 350 or less, 300 or less, 250 or less, 200 or less, 150 or less, 125 or less, 100 or less, 80 or less, 60 or less, 40 or less, or even 20 or less.
- the one or more less reactive polyols can have hydroxyl numbers (as measured in units of mg KOH/g) of 50 or more, 100 or more, 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more.
- the average hydroxyl number can be 700 or less, 650 or less, 600 or less, 550 or less, 500 or less, 450 or less, 400 or less, 350 or less, 300 or less, or 250 or less, and/or is 100 or more, 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more,
- the average hydroxyl number can be from 100 to 700, from 100 to 500, from 150 to 450, or from 200 to 400.
- the one or more less reactive polyols can include two or more polyols. For example, there can be a blend of 75% of a polyol having a hydroxyl number of 400 and 25% of a polyol having a hydroxyl number of 100 to produce an average hydroxyl number of 325.
- the functionality of the one or more less reactive polyols useful with the polyurethane composites described herein can be 4 or less, 3.5 or less, 3.25 or less, 3 or less, 2.75 or less, 2.5 or less, or 2.25 or less. In some embodiments, the functionality of the one or more less reactive polyols can be 2 or greater, 2.25 or greater, 2.5 or greater, 2.75 or greater, 3 or greater, 3.25 or greater, 3.5 or greater, or 3.75 or greater.
- the average functionality of the one or more less reactive polyols useful with the composites described herein can be 4 or less, 3.5 or less, 3.25 or less, 3 or less, 2.75 or less, 2.5 or less, or 2.25 or less.
- the average functionality of the one or more less reactive polyols can be 2 or greater, 2.25 or greater, 2.5 or greater, 2.75 or greater, 3 or greater, 3.25 or greater, 3.5 or greater, or 3.75 or greater.
- useful less reactive polyols include polyols with an average functionality of from 2 to 4, from 2.5 to 4, or from 2 to 3.5.
- the one or more less reactive polyols can have an average molecular weight of 250 g/mol or greater (e.g., 300 g/mol or greater, 350 g/mol or greater, 400 g/mol or greater, 450 g/mol or greater, 500 g/mol or greater, 550 g/mol or greater, 600 g/mol or greater, 650 g/mol or greater, or 700 g/mol or greater).
- the one or more less reactive polyols have an average molecular weight of 700 g/mol or less (e.g., 650 g/mol or less, 600 g/mol or less, 550 g/mol or less, 500 g/mol or less, 450 g/mol or less, 400 g/mol or less, 350 g/mol or less, or 300 g/mol or less). In some cases, the one or more less reactive polyols have an average molecular weight of from 250 g/mol to 750 g/mol, from 250 g/mol to 600 g/mol, or from 250 g/mol to 500 g/mol.
- the one or more less reactive polyols can include an aromatic polyester polyol, an aromatic poly ether polyol, or a combination thereof.
- the aromatic polyol can have an aromaticity of 50% or less, such as 45% or less, or 40% or less. In some embodiments, the aromatic polyol can have an aromaticity of 35% or greater, such as 38% or greater, 40% or greater, or 45% or greater.
- the one or more less reactive polyols include an aromatic polyester polyol such as those sold under the TEROL® trademark (e.g., TEROL® 198 and TEROL® 250). Other examples of less reactive polyols include a glycerin-based polyol and derivatives thereof commercially available from Carpenter Co.
- the one or more less reactive polyols can be present in an amount of greater than 10%, greater than 20%, greater than 30%, greater than 40%, greater than 45%, greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, or 100% by weight, based on the weight of the at one or more polyols.
- the one or more less reactive polyols can be present in an amount of 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 35% or less, 25% or less, or 20% or less, based on the weight of the at one or more polyols.
- the one or more polyols can include one or more highly reactive (or second) polyols.
- the one or more highly reactive polyols can include polyols having a large number of primary hydroxyl groups (e.g. 75% or more) based on the total number of hydroxyl groups in the polyol.
- the high primary hydroxyl group polyols can include 80% or more, 85% or more, 90% or more, 95% or more, or 100% of primary hydroxyl groups.
- the one or more highly reactive polyols can include polyols having a primary hydroxyl number of greater than 250.
- the primary hydroxyl number can be greater than 300, greater than 320, greater than 340, greater than 360, greater than 380, greater than 400, greater than 420, greater than 460, greater than 465, or greater than 470.
- the one or more highly reactive polyols can include polyols having a hydroxyl number of greater than 250.
- the hydroxyl number can be greater than 275, greater than 300, greater than 325, greater than 350, greater than 375, greater than 400, greater than 425, greater than 450, greater than 475, greater than 500, greater than 525, greater than 550, greater than 575, greater than 600, greater than 625, greater than 650, greater than 675, greater than 700, greater than 725, or greater than 750.
- the average functionality of the one or more highly reactive polyols useful with the polyurethane composites described herein can be 3.5 or greater, (e.g., 3.5 or greater, 3.6 or greater, 3.7 or greater, 3.8 or greater, 3.9 or greater, 4.0 or greater, 4.1 or greater, 4.2 or greater,
- the average functionality of the one or more highly reactive polyols useful with the polyurethane composites can be 8 or less, (e.g., 7 or less, 6 or less, 5.5 or less, 5 or less, or 4.5 or less).
- examples of useful one or more highly reactive polyols include polyols with an average functionality of from 3.5 to 8, from
- the one or more highly reactive polyols has a molecular weight of 350 g/mol or greater (e.g., 400 g/mol or greater, 450 g/mol or greater, 460 g/mol or greater, 470 g/mol or greater, 480 g/mol or greater, or 500 g/mol or greater).
- the one or more highly reactive polyols has a molecular weight of 1000 g/mol or less (e.g., 900 g/mol or less, 800 g/mol or less, 700 g/mol or less, 600 g/mol or less, 550 g/mol or less, 540 g/mol or less, 530 g/mol or less, 520 g/mol or less, 500 g/mol or less, 480 g/mol or less, or 450 g/mol or less).
- 1000 g/mol or less e.g., 900 g/mol or less, 800 g/mol or less, 700 g/mol or less, 600 g/mol or less, 550 g/mol or less, 540 g/mol or less, 530 g/mol or less, 520 g/mol or less, 500 g/mol or less, 480 g/mol or less, or 450 g/mol or less.
- the one or more highly reactive polyols has a molecular weight of from 350 g/mol to 1000 g/mol or less, from 350 g/mol to 900 g/mol or less, from 400 g/mol to 800 g/mol or less, or from 400 g/mol to 700 g/mol or less.
- the one or more highly reactive polyols can include a Mannich polyol.
- Mannich polyols are the condensation product of a substituted or unsubstituted phenol, an alkanolamine, and formaldehyde.
- Mannich polyols can be prepared using methods known in the art. For example, Mannich polyols can be prepared by premixing the phenolic compound with a desired amount of the alkanolamine, and then slowly adding formaldehyde to the mixture at a temperature below the temperature of Novolak formation. At the end of the reaction, water is stripped from the reaction mixture to provide a Mannich base. See, for example, U.S. Patent No. 4,883,826, which is incorporated herein by reference in its entirety. The Mannich base can then be alkoxylated to provide a Mannich polyol.
- the substituted or unsubstituted phenol can include one or more phenolic hydroxyl groups.
- the substituted or unsubstituted phenol includes a single hydroxyl group bound to a carbon in an aromatic ring.
- the phenol can be substituted with substituents which do not undesirably react under the conditions of the Mannich condensation reaction, a subsequent alkoxylation reaction (if performed), or the preparation of polyurethanes from the final product.
- suitable substituents include alkyl (e.g., a Ci-Cie alkyl, or a C1-C12 alkyl), aryl, alkoxy, phenoxy, halogen, and nitro groups.
- Suitable substituted or unsubstituted phenols that can be used to form Mannich polyols include phenol, 0-, p-, or m-cresols, ethylphenol, nonylphenol, dodecylphenol, p-phenylphenol, various bisphenols including 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), b-naphthol, b-hydroxyanthracene, p-chlorophenol, o-bromophenol, 2,6-dichlorophenol, p- nitrophenol, 4- or 2-nitro-6-phenylphenol, 2-nitro-6- or 4-methylphenol, 3,5-dimethylphenol, p- isopropylphenol, 2-bromo-6-cyclohexylphenol, and combinations thereof.
- bisphenol A 2,2-bis(4-hydroxyphenyl)propane
- bisphenol A 2,2-bis(4-hydroxyphenyl)propane
- b-naphthol 2,2-
- the Mannich polyol is derived from phenol or a monoalkyl phenols (e.g., a para- alkyl phenols). In some embodiments, the Mannich polyol is derived from a substituted or unsubstituted phenol selected from the group consisting of phenol, para-n-nonylphenol, and combinations thereof.
- the alkanolamine used to produce the Mannich polyol can include a monoalkanolamine, a dialkanolamine, a trialkanolamine, a tetraalkanolamine, or combinations thereof.
- suitable monoalkanolamines include methylethanolamine, ethylethanolamine,
- Suitable dialkanolamines include dialkanolamines which include two hydroxy -substituted C1-C12 alkyl groups (e.g., two hydroxy-substituted C i-Cs alkyl groups, or two hydroxy-substituted C1-C6 alkyl groups).
- the two hydroxy-substituted alkyl groups can be branched or linear, and can be of identical or different chemical composition.
- dialkanolamines examples include diethanolamine, diisopropanolamine, ethanolisopropanolamine, ethanol-2-hydroxybutylamine, isopropanol-2 -hydroxybutylamine, isopropanol-2-hydroxyhexylamine, ethanol-2- hydroxyhexylamine, and combinations thereof.
- Suitable trialkanolamines include
- trialkanolamines which include three hydroxy-substituted C1-C12 alkyl groups (e.g., three hydroxy-substituted Ci-Ce alkyl groups, or three hydroxy-substituted C1-C6 alkyl groups).
- the three hydroxy-substituted alkyl groups can be branched or linear, and can be of identical or different chemical composition.
- suitable trialkanolamines include
- TIP A triisopropanolamine
- DEIPA N,N-bis(2 -hydroxy ethyl)-N-(2- hydroxypropyl)amine
- EDIPA N,N-bis(2-hydroxypropyl)-N-(hydroxyethyl)amine
- TIP B triisopropanolamine
- DEIPA N,N-bis(2 -hydroxy ethyl)-N-(2- hydroxypropyl)amine
- EDIPA N,N-bis(2-hydroxypropyl)-N-(hydroxyethyl)amine
- tetraalkanolamines include four hydroxy-substituted C1-C12 alkyl groups (e.g., four hydroxy- substituted Ci-Ce alkyl groups, or four hydroxy-substituted C1-C6 alkyl groups).
- the alkanolamine is selected from the group consisting of diethanolamine, diisopropanolamine, and combinations thereof.
- the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof.
- the Mannich polyol is alkoxylated with from 100% to about 80% propylene oxide and from 0 to about 20 wt% ethylene oxide.
- Mannich polyols are known in the art, and include, for example, ethylene and propylene oxide-capped Mannich polyols sold under the trade names CARPOL® MX-425 and CARPOL® MX-470 (Carpenter Co., Richmond, VA).
- the one or more highly reactive polyols can be present in an amount of greater than 10%, greater than 20%, greater than 30%, greater than 40%, greater than 45%, greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, or 100% by weight, based on the weight of the at one or more polyols.
- the one or more highly reactive polyols can be present in an amount of 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 35% or less, 25% or less, or 20% or less, based on the weight of the at one or more polyols.
- the one or more polyols can include a sucrose and/or amine-based polyol.
- the sucrose and/or amine-based polyol can include, for example, a poly ether polyol (including for example ethylene oxide, propylene oxide, butylene oxide, and combinations thereof) which is initiated by a sucrose and/or amine group.
- Sucrose and/or amine-based polyols are known in the art, and include, for example, sucrose/amine initiated poly ether polyol sold under the trade name CARPOL® SPA-357 or CARPOL® SPA-530 (Carpenter Co., Richmond, VA) and triethanol amine initiated poly ether polyol sold under the trade name CARPOL® TEAP-265 (Carpenter Co., Richmond, VA).
- the sucrose and/or amine-based polyol can be present in an amount of greater than 10%, greater than 20%, greater than 30%, greater than 40%, greater than 45%, greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, or 100% by weight, based on the weight of the at one or more polyols.
- the sucrose and/or amine-based polyol can be present in an amount of 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 35% or less, 25% or less, or 20% or less, based on the weight of the at one or more polyols.
- Suitable isocyanate-reactive monomers that can be used in the polyurethane composites include one or more polyamines.
- Suitable polyamines can correspond to the polyols described herein (for example, a polyester polyol or a poly ether polyol), with the exception that the terminal hydroxy groups are converted to amino groups, for example by amination or by reacting the hydroxy groups with a diisocyanate and subsequently hydrolyzing the terminal isocyanate group to an amino group.
- the polyamine can be polyether polyamine, such as polyoxyalkylene diamine or polyoxyalkylene triamine.
- Polyether polyamines are known in the art, and can be prepared by methods including those described in U.S.
- Patent 3,236,895 to Lee and Winfrey Exemplary polyoxyalkylene diamines are commercially available, for example, from Huntsman Corporation under the trade names Jeffamine® D-230, Jeffamine® D-400 and Jeffamine® D-2000. Exemplary polyoxyalkylene triamines are commercially available, for example, from Huntsman Corporation under the trade names Jeffamine® T-403, Jeffamine® T-3000, and Jeffamine® T-5000.
- the one or more polyols can include an alkoxylated polyamine (i.e., alkylene oxide-capped polyamines) derived from a polyamine and an alkylene oxide.
- Alkoxylated polyamines can be formed by reacting a suitable polyamine with a desired number of moles of an alkylene oxide.
- Suitable polyamines include monomeric, oligomeric, and polymeric poly amines.
- the poly amines has a molecular weight of less than 1000 g/mol (e.g., less than 800 g/mol, less than 750 g/mol, less than 500 g/mol, less than 250 g/mol, or less than 200 less than 200 g/mol).
- Suitable poly amines that can be used to form alkoxylated poly amines include ethylenediamine, l,3-diaminopropane, putrescine, cadaverine, hexamethylenediamine, l,2-diaminopropane, o-phenylenediamine, m-phenylenediamine, p- phenylenediamine, spermidine, spermine, norspermidine, toluene diamine, 1, 2-propane-diamine, diethylenetriamine, triethylenetetramine, tetraethylene-pentamine (TEPA),
- TEPA tetraethylene-pentamine
- PHA pentaethylenehexamine
- Any suitable alkylene oxide or combination of alkylene oxides can be used to cap the polyamine.
- the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof.
- Alkylene oxide-capped polyamines are known in the art, and include, for example, propylene oxide-capped ethylene diamine sold under the trade name CARPOL® EDAP-770 (Carpenter Co., Richmond, VA) and ethylene and propylene oxide-capped ethylene diamine sold under the trade name CARPOL® EDAP-800 (Carpenter Co., Richmond, VA).
- the polyamines or alkoxylated polyamines can be present in varying amounts relative the one or more polyols used to form the polyurethane composite. In some embodiments, the polyamines or alkoxylated polyamines can be present in an amount of 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less by weight based on the weight of the one or more polyols.
- the one or more polyols can include one or more C3-C4 alkoxylated polyol.
- the one or more C3-C4 alkoxylated polyols can be present in an amount of 50% or greater by weight, based on the total weight of the one or more polyols present in the polyurethane composites.
- the one or more C3-C4 alkoxylated polyols can include a highly reactive polyol, a less reactive polyol, or a mixture thereof.
- the polyurethane composite can include at least two polyols.
- the polyurethane composite can be produced from one or more less reactive polyols and one or more highly reactive polyols.
- the at least two polyols can include 50% or more of the first (less reactive) polyol and 30% or less of the second (highly reactive) polyol.
- the at least two polyols can include 50% or less of the first (less reactive) polyol and 30% or more of the second (highly reactive) polyol.
- the one or more polyols for use in the polyurethane composite can have an average functionality of 1.5 to 6.0, 1.5 to 5.0, 1.8 to 4.0, or 1.8 to 3.5.
- the average hydroxyl number values (as measured in units of mg KOH/g) for the one or more polyols can be from 20 to 600 such as from 20 to 100, 100 to 600, from 150 to 550, from 200 to 500, from 250 to 440, from 300 to 415, from 340 to 400.
- one or more isocyanates are reacted with the one or more polyols (and any additional isocyanate-reactive monomers) to produce the polyurethane formulation.
- the ratio of isocyanate groups to the total isocyanate reactive groups, such as hydroxyl groups, water and amine groups is in the range of about 0.5: 1 to about 1.5:1, which when multiplied by 100 produces an isocyanate index between 50 and 150.
- the isocyanate index can be from about 80 to about 120, from about 90 to about 120, from about 100 to about 115, or from about 105 to about 110.
- Polyisocyanurate composites can also be formed from the one or more isocyanates and the one or more polyols described herein.
- the isocyanate index can be from 180 to 380, for example, from 180 to 350, from 200 to 350, or from 200 to 270.
- an isocyanate may be selected to provide a reduced isocyanate index, which can be reduced without compromising the chemical or mechanical properties of the composite material.
- One or more catalysts can be added to facilitate curing and can be used to control the curing time of the polyurethane matrix.
- useful catalysts include amine-containing catalysts (including tertiary amines such as DABCO and tetramethylbutanediamine, and diethanolamine) and tin-, mercury-, and bismuth-containing catalysts.
- the catalyst includes a delayed-action tin catalyst.
- 0.01 wt% to 2 wt% catalyst or catalyst system e.g., 0.025 wt% to 1 wt%, 0.05 wt% to 0.5 wt %, or 0.1 wt% to about 0.25 wt% can be used based on the weight of the polyurethane. In some embodiments, 0.05 to 0.5 parts catalyst or catalyst system per hundred parts of polyol can be used.
- the polyurethane can be present in the polyurethane composite in amounts from 10% to 60% based on the weight of polyurethane composite.
- the polyurethane can be included in an amount from 14% to 60% or 20% to 50% by weight, based on the weight of the polyurethane composite.
- the polyurethane can be present in an amount of 10% or greater, 15% or greater, 20% or greater, 25% or greater, 30% or greater, 35% or greater, 40% or greater, 45% or greater, 50% or greater, or 55% or greater by weight, based on the weight of the polyurethane composite.
- the polyurethane can be present in an amount of 60% or less, 55% or less, 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, or 15% or less by weight, based on the weight of polyurethane composite.
- the polyurethane composite can include an inorganic filler, particularly an inorganic particulate filler.
- inorganic fillers can be an ash, ground/recycled glass (e.g., window or bottle glass); milled glass; glass spheres; glass flakes; calcium carbonate;
- ATH aluminum trihydrate
- silica silica
- sand ground sand
- silica fume slate dust
- crusher fines red mud
- amorphous carbon e.g., carbon black
- clays e.g., kaolin
- mica talc
- wollastonite wollastonite
- alumina feldspar; bentonite; quartz; garnet; saponite; beidellite; granite; slag; calcium oxide; calcium hydroxide; antimony trioxide; barium sulfate; magnesium oxide; titanium dioxide; zinc carbonate; zinc oxide; nepheline syenite; perlite; diatomite; pyrophillite; flue gas desulfurization (FGD) material; soda ash; trona; expanded clay; expanded shale; expanded perlite; vermiculite; volcanic tuff; pumice; hollow ceramic spheres; hollow plastic spheres; expanded plastic beads (e.g., polystyrene beads); ground tire rubber; and mixtures thereof.
- FGD flue gas desulfurization
- the inorganic filler can have a median particle size diameter of from 0.2 micron to 100 microns.
- the inorganic filler can have a median particle size diameter of 100 microns or less, 95 microns or less, 90 microns or less, 85 microns or less, 80 microns or less, 75 microns or less, 70 microns or less, 65 microns or less, 60 microns or less, 55 microns or less, 50 microns or less, 45 microns or less, 40 microns or less, 35 microns or less, 30 microns or less, 25 microns or less, or 20 microns or less.
- the inorganic filler can have a median particle size diameter of 0.2 microns or more, 0.3 microns or more, 0.4 microns or more, 0.5 microns or more, 0.7 microns or more, 1 micron or more, 2 microns or more, 5 microns or more, 10 microns or more, 15 microns or more, 20 microns or more, 25 microns or more, 30 microns or more, 35 microns or more, 40 microns or more, or 45 microns or more.
- the inorganic filler can have a median particle size diameter of from 0.2 microns to 100 microns, 0.2 microns to 90 microns, or 0.3 microns to 80 microns, 1 to 50 microns, 1 to 25 microns, or 5 to 15 microns.
- the inorganic filler includes an ash.
- the ash can be a coal ash or another type of ash such as those produced by firing fuels including industrial gases, petroleum coke, petroleum products, municipal solid waste, paper sludge, wood, sawdust, refuse derived fuels, switchgrass or other biomass material.
- the coal ash can be fly ash, bottom ash, or combinations thereof.
- the inorganic filler includes fly ash. Fly ash is produced from the combustion of pulverized coal in electrical power generating plants.
- the fly ash useful with the composite materials described herein can be Class C fly ash, Class F fly ash, or a mixture thereof. Fly ash produced by coal-fueled power plants is suitable for incorporation in the composites described herein.
- the inorganic filler consists of or consists essentially of fly ash.
- the fly ash can have a particle size distribution with at least two modes.
- the particle size distribution of the fly ash can be three, four, five, or more modes.
- the fly ash can be blended with another fly ash to modify the properties of the fly ash to produce a fly ash having a particle size distribution with at least three modes.
- the particle size distribution can include 11-35% of the particles by volume in the first mode, 65-89% of the particles by volume in the second mode. In some embodiments, the particle size distribution can include 11-17% of the particles by volume in the first mode, 56-74% of the particles by volume in the second mode, and 12-31% of the particles by volume in the third mode.
- the ratio of the volume of particles in the second mode to the volume of particles in the first mode can be from 4.5 to 7.5.
- the inorganic filler can be present in the polyurethane composite described herein in amounts from 20% to 90% by weight.
- Examples of the amount of inorganic filler present in the polyurethane composite described herein include 20%, 25%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%
- the inorganic filler for example fly ash, can be present in amounts from 35% to 80% by weight such as from 50% to 80% by weight or from 50% to 75% by weight.
- the inorganic filler can include calcium carbonate and can be present from 20% to 70% by weight such as from 45% to 65% by weight.
- the calcium carbonate can be limestone.
- the inorganic filler can include fly ash and calcium carbonate.
- fly ash the amount of calcium carbonate in the polyurethane composites can be 0.1% or greater, 0.5% or greater, 1% or greater, 2% or greater, 3% or greater, 5% or greater, 7% or greater, 10% or greater, 12% or greater, or 15% or greater by weight, based on the weight of the polyurethane composites.
- the polyurethane composites can include 15% or less, 14% or less, 12% or less, 10% or less, 8% or less, 5% or less, or 3% or less by weight calcium carbonate.
- the polyurethane composites when used with fly ash, can include 1% to 15%, 1% to 10%, or 1% to 8% by weight calcium carbonate.
- the fatty acid, the fatty acid salt, or the combination thereof can interact with the inorganic filler.
- the fatty acid, the fatty acid salt, or the combination thereof can interact with the inorganic filler through covalent, non-covalent, and/or ionic interactions.
- the fatty acid, the fatty acid salt, or the combination thereof can react with fly ash filler present in the composites.
- the fatty acid, the fatty acid salt, or the combination thereof can adhere via non-covalent interactions to fly ash filler present in the composites.
- the polyurethane composites can include an organic filler, such as a recycled polymeric material. Suitable examples include pulverized polymeric foam or recycled rubber material.
- the composites can include a plurality of inorganic fibers.
- the inorganic fibers can be any natural or synthetic fiber.
- Inorganic fibers suitable for use with the composites can include glass fibers, basalt fibers, alumina silica fibers, aluminum oxide fibers, silica fibers, carbon fibers, metal fibers, metal and metal-coated fibers, and mineral fibers (such as stone wool, slag wool, or ceramic fiber wool).
- the inorganic fibers can include glass fibers.
- Glass fibers can include fibrous glass such as E-glass, C-glass, S-glass, and AR-glass fibers.
- fire resistant or retardant glass fibers can be included to impart fire resistance or retarding properties to the polyurethane composites.
- the composites can include a combination of fibers that break and fibers that do not break when the polyurethane composites is being formed using processing machinery and/or fractured by external stress.
- the glass fibers can be dispersed within the composite.
- the glass fibers in the polyurethane composites can be present in the form of individual fibers, chopped fibers, bundles, strings such as yams, fabrics, papers, rovings, mats, or tows.
- the composite can include a plurality of glass fibers having an average length of 1 mm or greater, 1.5 mm or greater, 2 mm or greater, 3 mm or greater, 4 mm or greater, 5 mm or greater, or 6 mm or greater.
- the average length of the glass fibers can be 50 mm or less, 40 mm or less, 30 mm or less, 20 mm or less, 15 mm or less, 12 mm or less, or 10 mm or less.
- the glass fibers can be from 1 mm to 50 mm in average length.
- the glass fibers can be from 1.5 mm to 30 mm, from 2 mm to 30 mm, from 3 mm to 30 mm, or from 3 mm to 15 mm in average length.
- the glass fibers in the composite can have any dimension of from 1 pm to 30 pm in average diameter.
- the average diameter of the glass fibers can be 1.5 pm to 30 pm, 3 pm to 20 pm, 4 pm to 18 pm, or 5 pm to 15 pm.
- the glass fibers can be provided in the composite in a random orientation or can be axially oriented.
- the glass fibers can be present in the polyurethane composite in amounts of 15% or less by weight, based on the weight of composite.
- the glass fibers can be present in amounts from 0.25% to 15%, 0.5% to 15%, 1% to 15%, 0.25% to 10%, 0.5% to 10%, 1% to 10%, 0.25% to 8%, 0.25% to 6%, or 0.25% to 4% by weight, based on the weight of the polyurethane composite.
- the polyurethane composite can include additional fiber materials.
- the additional fiber materials can include polyalkylene fibers, polyamide fibers, polyester fibers, phenol- formaldehyde fibers, polyvinyl chloride fibers, polyacrylic fibers, acrylic polyester fibers, polyurethane fibers, polyacrylonitrile fibers, rayon fibers, cellulose fibers, carbon fibers, or combinations thereof.
- the additional fiber materials can include hemp fibers, sisal fibers, Lacts, or other grasses, jute, bagasse fibers, bamboo fibers, abaca fibers, flax, southern pine fibers, wood fibers, cellulose, saw dust, wood shavings, lint, vicose, leather fibers, rayon, and mixtures thereof.
- Other suitable additional fiber materials include synthetic fibers such as, Kevlar, viscose fibers, Dralon® fibers, polyethylene fibers, polyethylene naphthalate fibers, polypropylene fibers, polyvinyl alcohol fibers, aramid fibers, or combinations thereof.
- the fibers and/or the inorganic filler such as fly ash can be coated with a composition to modify their reactivity.
- the fibers and/or the inorganic filler can be coated with a sizing agent such as a coupling agent (compatibilizer).
- the fibers and/or the inorganic filler can be coated with a composition for promoting adhesion.
- U.S. Patent No. 5,064,876 to Hamada et al. and U.S. Patent No. 5,082,738 to Swofford disclose compositions for promoting adhesion.
- the fibers and/or the inorganic filler are surface coated with a composition comprising a silane compound such as aminosilane. In some embodiments, the fibers and/or the inorganic filler are surface coated with a
- composition comprising an oil, starch, or a combination thereof.
- the fibers and/or the inorganic filler are surface coated with a composition comprising a fatty acid and/or fatty acid salt as described herein.
- Additional components useful with the polyurethane composites can include foaming agents, blowing agents, surfactants, chain-extenders, crosslinkers, UV stabilizers, fire retardants, antimicrobials, anti-oxidants, and pigments. Though the use of such components is well known to those of skill in the art, some of these additional additives are further described herein.
- Chemical foaming agents include azodicarbonamides (e.g., Celogen manufactured by Lion Copolymer Geismar); and other materials that react at the reaction temperature to form gases such as carbon dioxide.
- azodicarbonamides e.g., Celogen manufactured by Lion Copolymer Geismar
- water is an exemplary foaming agent that reacts with isocyanate to yield carbon dioxide.
- the presence of water as an added component or in the filler also can result in the formation of poly urea bonds through the reaction of the water and isocyanate.
- water may be present in the mixture used to produce the polyurethane composites in an amount of from greater than 0% to 5% by weight or less, based on the weight of the mixture.
- water can be present in a range of 0.02% to 4%, 0.05% to 3%, 0.1% to 2%, or 0.2% to 1% by weight, based on the weight of the mixture.
- the mixture used to produce the composite includes less than 0.5% by weight water.
- no chemical foaming agents are used.
- water is the only foaming agent used.
- Surfactants can be used as wetting agents and to assist in mixing and dispersing the materials in a composite. Surfactants can also stabilize and control the size of bubbles formed during the foaming event and the resultant cell structure. Surfactants can be used, for example, in amounts below about 0.5 wt % based on the total weight of the mixture.
- surfactants useful with the polyurethanes described herein include anionic, non-ionic and cationic surfactants.
- silicone surfactants such as Tegostab B-8870, DC-197 and DC-193 (Air Products; Allentown, PA) can be used.
- Chain-extenders are difunctional molecules, such as diols or diamines, that can polymerize to lengthen the urethane polymer chains. Examples of chain-extenders include ethylene glycol; l,4-butanediol; ethylene diamine, 4,4’-methylenebis(2-chloroaniline)
- Crosslinkers are tri- or greater functional molecules that can integrate into a polymer chain through two functionalities and provide one or more further functionalities (i.e., linkage sites) to crosslink to additional polymer chains.
- crosslinkers include glycerin, trimethylolpropane, sorbitol, diethanolamine, and triethanolamine.
- a crosslinker or chain-extender may be used to replace at least a portion of the one or more polyols in the polyurethane composites.
- the polyurethane can be formed by the reaction of an isocyanate, a polyol, and a crosslinker.
- Coupling agents and other surface treatments such as viscosity reducers, flow control agents, or dispersing agents can be added directly to the filler or fiber, or incorporated prior to, during, and/or after the mixing and reaction of the polyurethane composites. Coupling agents may also reduce the viscosity of the polyurethane composites mixture. Coupling agents can also allow higher filler loadings of the inorganic filler such as fly ash, and/or fiber material, and may be used in small quantities.
- the polyurethane composites may comprise about 0.01 wt % to about 0.5 wt % of a coupling agent.
- Examples of coupling agents useful with the polyurethane composites described herein include Ken-React LICA 38 and KEN-React KR 55 (Kenrich Petrochemicals; Bayonne, NJ).
- Examples of dispersing agents useful with the polyurethane composites described herein include JEFFSPERSE X3202, JEFFSPERSE
- Ultraviolet light stabilizers such as UV absorbers, can be added to the polyurethane composites described herein.
- UV light stabilizers include hindered amine type stabilizers and opaque pigments like carbon black powder.
- Fire retardants can be included to increase the flame or fire resistance of the polyurethane composites.
- Antimicrobials can be used to limit the growth of mildew and other organisms on the surface of the composite.
- Antioxidants such as phenolic antioxidants, can also be added. Antioxidants provide increased UV protection, as well as thermal oxidation protection.
- Pigments or dyes can optionally be added to the polyurethane composites described herein.
- An example of a pigment is iron oxide, which can be added in amounts ranging from about 2 wt% to about 7 wt%, based on the total weight of the polyurethane composites.
- the polyurethane composites can include a fatty acid, a fatty acid salt, or a combination thereof. Incorporation of the fatty acid, fatty acid salt, or combination thereof salt in the polyurethane composites can improve the dimensional stability of the composites, compared to otherwise identical composites without the fatty acid and/or fatty acid salt.“Dimensional stability” as used herein refers to the ability of the composites to resist a change in its dimensions, particularly, in length, width, and/or weight.
- the polyurethane composites described herein are dimensionally stable to moisture related movements such as shrinking, swelling, warping, cupping, bowing, or twisting.
- the dimensional stability of the polyurethane composites can be determined by water absorption and desorption cycling experiments. Specifically, the dimensions of the composite are determined for a first time prior to the cycling experiment. The composite is then soaked in water at 46°C for eight (8) days and then dried at 46 ° C for 48 hours. The dimensions of the composite are then determined for a second time after completion of the wet/dry cycle.
- the dimensional stability of the polyurethane composites can be expressed in terms of % change in length, width, weight, or a combination thereof. The % change in width can be calculated as 100% x (widtht - initial width)/initial width, where the initial width can be determined within 15 minutes of extrusion and widtht can be determined after the absorption/desorption cycle.
- polyurethane composites described herein are desirably dimensionally stable to the extent that the change in dimensions of the composites, after at least one (1)
- absorption/desorption (wet/dry) cycle as described herein is less than the change in dimensions of an otherwise identical composite excluding the fatty acid and/or fatty acid salt.
- the composites described herein are at least 5% more dimensionally stable (in length, weight, and width) after at least one absorption/desorption cycle (i.e. when wetted in water for 8 days then dried at 46 ° C for 48 hours) compared to an otherwise identical composite excluding the fatty acid and/or fatty acid salt.
- the composites described herein are greater than 5%, greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 40%, greater than 45%, or greater than 50% more dimensionally stable after at least one absorption/desorption cycle when compared to an otherwise identical composite excluding the fatty acid and/or fatty acid salt.
- the composites described herein are greater than 5%, greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 40%, greater than 45%, or greater than 50% more dimensionally stable after at least one absorption/desorption cycle when compared to an otherwise identical composite excluding the fatty acid and/or fatty acid salt.
- the dimensional change of the composites described herein, when wetted in water for 8 days then dried at 46 ° C for 48 hours can be less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 15%, or less than 10% of the dimensional change of an otherwise identical composite excluding the fatty acid and/or fatty acid salt.
- the polyurethane composites when wetted in water for 8 days then dried at 46 ° C for 48 hours are dimensionally stable exhibiting less than 0.5% (e.g., less than 0.4%, less than 0.3%, less than 0.2%, or less than 0.1%) shrinkage in length and/or width.
- the polyurethane composites when wetted in water for 8 days then dried at 46 ° C for 48 hours are dimensionally stable exhibiting less than 0.5% (e.g., less than 0.4%, less than 0.3%, less than 0.2%, or less than 0.1%) swelling (expansion) in length and/or width.
- the polyurethane composites when wetted in water for 8 days then dried at 46 ° C for 48 hours are dimensionally stable exhibiting less than 0.5% by weight (e.g., less than 0.4% by weight, less than 0.3% by weight, or less than 0.2% by weight) water absorption.
- the polyurethane composites when wetted in water for 8 days then dried at 46 ° C for 48 hours are dimensionally stable exhibiting less than 0.2% (e.g., less than 0.15%, less than 0.10%, or less than 0.05%) increase in length.
- the polyurethane composites when wetted in water for 14 days at 46°C then dried at 46°C for 48 hours are dimensionally stable exhibiting less than 1% (e.g., less than 0.9%, less than 0.8%, less than 0.7%, or less than 0.6%) swelling (expansion) in length and/or width.
- the fatty acids and/or fatty acid salts can provide additional lubrication to the composite’s raw material mixture and thus improve the flow of the mixture during manufacturing. As a result, the composite structure may become denser and less likely for moisture to be incorporated.
- the density of the polyurethane composites described herein can be 5 lb/ft 3 or greater.
- the density of the polyurethane composite can be from 10 lb/ft 3 to 75 lb/ft 3 , from 40 lb/ft 3 to 75 lb/ft 3 , from 45 lb/ft 3 to 70 lb/ft 3 , from 5 lb/ft 3 to 60 lb/ft 3 , from 10 lb/ft 3 to 60 lb/ft 3 , from 35 lb/ft 3 to 50 lb/ft 3 , from 35 lb/ft 3 to 60 lb/ft 3 , from 5 lb/ft 3 to 30 lb/ft 3 , from 10 lb/ft 3 to 35 lb/ft 3 , from 15 lb/ft 3 to 35 lb/ft 3 or from 20 lb/ft 3 to 40 lb/ft 3 .
- the density of the polyurethane composite can be at least 10 lb
- the flexural strength of the polyurethane composites described herein can be 200 psi or greater.
- the flexural strength of the composites can be 300 psi or greater, 500 psi or greater, 750 psi or greater, 900 psi or greater, 1,000 psi or greater, 1,100 psi or greater, or 1,200 psi or greater.
- the flexural strength of the polyurethane composites can be from 900 to 2,000 psi or from 900 to 1,500 psi.
- the flexural strength can be determined by the load required to fracture a rectangular prism loaded in the three point bend test as described in ASTM Cl 185- OS (2012).
- the polyurethane composites can exhibit a ratio of flexural strength (in psi) to density (in lb/ft 3 ) of from 10: 1 to 200: 1. In some embodiments, the polyurethane composites can exhibit a ratio of flexural strength (in psi) to density (in lb/ft 3 ) of from 10: 1 to 100: 1 or from 20: 1 to 100: 1.
- the modulus of elasticity (stiffness) of the polyurethane composites described herein can be 100 ksi or greater, 110 ksi or greater, 120 ksi or greater, 125 ksi or greater, 130 ksi or greater, 135 ksi or greater, 140 ksi or greater, or 145 ksi or greater.
- the modulus of elasticity can be from 110 to 200 ksi or from 110 to 150 ksi.
- the modulus of elasticity can be determined as described in ASTM C947-03.
- the polyurethane composites can exhibit a ratio of modulus of elasticity (in ksi) to density (in lb/ft 3 ) of from 1: 1 to 10: 1. In some embodiments, the polyurethane composites can exhibit a ratio of modulus of elasticity (in ksi) to density (in lb/ft 3 ) of 1.5: 1 to 10: 1 or from 1.5: 1 to 5:1.
- the handleability of the polyurethane composites can be 3 in lb/in or greater ( e.g from 3 in lb/in to 8 in lb/in or from 3.5 in lb/in to 6 in lb/in).
- the handleability can be determined by measuring the ability of the composite to be flexed during use and is calculated as 0.5 x breaking load x ultimate deflection/thickness of the test specimen.
- the handleability of the composites can be determined using ASTM Cl 185-08.
- a reinforcement can be included on one or more surfaces of the polyurethane composites described herein. Fiber reinforcements are described in PCT/US2016/027863, the disclosure of which is herein incorporated by reference in its entirety. In some embodiments, the
- polyurethane composite can include a first fiber reinforcement on a first surface of the composite.
- the composite can include a first fiber reinforcement on a first surface of the polyurethane composite and a second fiber reinforcement on a second surface, opposite the first surface, of the polyurethane composite.
- the fiber reinforcement can include any of the fiber materials as described herein and can include a blend of different fibers (either type or size).
- the fiber reinforcement can include glass fibers.
- the fiber reinforcement can be woven or non-woven.
- the polyurethane composite can include a first fiber reinforcement on a first surface of the composite and a material, other than a fiber reinforcement, on a second surface of the composite.
- the material can include a cementitious layer, a paper sheet, a metal sheet, a polymeric layer, or a combination thereof.
- examples of such materials include an aluminum sheet, an aluminum- plated sheet, a zinc sheet, a zinc-plated sheet, an aluminum/zinc alloy sheet, an aluminum/zinc alloy-plated sheet, a stainless steel sheet, craft paper, a polymeric surfacing film, or a combination thereof.
- Further advantages of using a fiber reinforcement with the polyurethane composites described herein can also be realized. For example, in some cases, the fiber reinforcement can improve the dimensional stability of the composites.
- the composites can be produced using a batch, semi-batch, or continuous process.
- the method can include forming a polyurethane mixture.
- the polyurethane mixture can be produced by mixing the one or more isocyanates, the one or more polyols, and the inorganic filler in a mixing apparatus.
- the materials can be added in any suitable order.
- the mixing stage of the method used to prepare the polyurethane composite can include: (1) mixing the polyol, fatty acid and/or fatty acid salt, and inorganic filler; (2) mixing the isocyanate with the polyol, fatty acid and/or fatty acid salt, and inorganic filler; and optionally (3) mixing the catalyst with the isocyanate, polyol, fatty acid and/or fatty acid salt, and inorganic filler.
- the optional fibers can be added at the same time as the inorganic filler, or can be added prior to, during, or after stage (2) or (3).
- the mixing stage of the method used to prepare the polyurethane composite can include: (1) mixing the polyol and inorganic filler; (2) mixing the isocyanate with the polyol and inorganic filler; (3) mixing the fatty acid and/or fatty acid salt with the isocyanate, polyol, and inorganic filler; and optionally (4) mixing the catalyst with the isocyanate; polyol; inorganic filler, and fatty acid and/or fatty acid salt.
- the mixing stage of the method used to prepare the polyurethane composite can include simultaneously mixing the isocyanate; polyol; inorganic filler, fatty acid and/or fatty acid salt, and optional catalyst.
- the method of making the polyurethane composites disclosed herein does not include pre-reacting the fatty acid, the fatty acid salt, or the combination thereof with the one or more polyols prior to mixing with the one or more isocyanates.
- the one or more polyols and the one or more isocyanates are mixed prior to mixing with the fatty acid and/or fatty acid salt.
- the one or more isocyanates and the fatty acid, the fatty acid salt, or the combination thereof are mixed prior to mixing with the one or more polyols.
- the method does not include reacting the one or more polyols with the fatty acid and/or fatty acid salt prior to reacting with the one or more isocyanates.
- the method does not include reacting the one or more polyols with an alkylene oxide and the fatty acid and/or fatty acid salt prior to reacting with the one or more isocyanates.
- the one or more polyols are mixed with the inorganic filler before the one or more polyols and the inorganic filler are mixed with the one or more isocyanates, the fatty acid, the fatty acid salt, or the combination thereof, and the optional catalyst.
- the polyurethane mixture has a viscosity below a particular threshold at the desired loadings so it can be effectively processed.
- the amount of fatty acid and/or fatty acid salt, filler, and/or fiber material can be present in the composite mixture in amounts to produce a workable viscosity (initial viscosity) of from 25 Pa*s to 400 Pa*s.
- the fatty acid and/or fatty acid salt, filler, and/or fiber material in the polyurethane mixture can be in amounts to produce a workable viscosity from 30 Pa*s to 400 Pa » s, 65 Pa » s to 400 Pa » s, or 80 Pa » s to 400 Pa » s.
- the viscosity of the composite mixture can be measured using a Brookfield Viscometer.
- the polyurethane composite mixture can be blended in any suitable manner to obtain a homogeneous or heterogeneous blend of the one or more isocyanate, the one or more polyols, the inorganic filler, and the optional fiber material and catalyst.
- mixing can be conducted in a high speed mixer or an extruder an extruder.
- An ultrasonic device can be used for enhanced mixing and/or wetting of the various components of the composite.
- the ultrasonic device produces an ultrasound of a certain frequency that can be varied during the mixing and/or extrusion process.
- the ultrasonic device useful in the preparation of composite panels described herein can be attached to or adjacent to the extruder and/or mixer.
- the ultrasonic device can be attached to a die or nozzle or to the port of the extruder or mixer.
- An ultrasonic device may provide de-aeration of undesired gas bubbles and better mixing for the other components, such as blowing agents, surfactants, and catalysts.
- the method of making the polyurethane composites can include allowing the one or more isocyanates and the one or more polyols to react in the presence of the inorganic filler to form a polyurethane composite.
- the composite has a first surface and a second surface opposite the first surface.
- the curing stage of the method used to prepare the polyurethane composite can be carried out in a mold cavity of a mold, the mold cavity formed by at least an interior mold surface.
- the mold can be a continuous forming system such as a belt molding system or can include individual batch molds.
- the belt molding system can include a mold cavity formed at least in part by opposing surfaces of two opposed belts. In some embodiments, a molded article can then be formed prior to the additional method steps in forming the composites.
- the polyurethane mixture can be foamed.
- the polyols and the isocyanate can be allowed to produce a foamed composite material after mixing the components according to the methods described herein.
- polyurethane foams can be formed by allowing the mixture to expand via a gas phase to form the foam.
- the gas phase can be generated in situ from reaction of water with the one or more isocyanates.
- the gas can be introduced into the polyurethane mixture. Suitable gases are known in the art.
- the gas can be captured after gelation (i.e., formation) of the foam.
- the polyurethane composite can be formed while they are actively foaming or after they have foamed.
- the polyurethane composite can be placed under the pressure of a mold cavity prior to or during the foaming of the polyurethane composite. In some cases, the mixture can be allowed to rise freely during foaming in the mold.
- incorporation of the fatty acid and/or fatty acid salt into the polyurethane composites can improve their dimensional stability, compared to when the fatty acid and/or fatty acid salt are excluded from the polyurethane composite.
- the optimization of the dimensional stability of the composites allows their use in exterior building materials and other structural applications that is subject to typical fluctuations in the temperature and humidity of the outdoor environment that surrounds it.
- the polyurethane composites can be formed into shaped articles and used in building materials. Suitable building materials include siding materials, building panels, sheets, architectural moldings, sound barriers, thermal barriers, insulation, wall boards, ceiling tiles, ceiling boards, soffits, roofing materials, and other shaped articles.
- Examples of shaped articles made using the composite panels described herein include roof tiles such as roof tile shingles, roof cover boards, slate panels, shake panels, cast molded products, moldings, sills, stone, masonry, brick products, posts, signs, guard rails, retaining walls, park benches, tables, slats, comer arches, columns, ceiling tiles, or railroad ties.
- roof tiles such as roof tile shingles, roof cover boards, slate panels, shake panels, cast molded products, moldings, sills, stone, masonry, brick products, posts, signs, guard rails, retaining walls, park benches, tables, slats, comer arches, columns, ceiling tiles, or railroad ties.
- polyurethane composite The composites listed in Table 1 were prepared by mixing the polyol SPA357 with 2% by weight calcium stearate, 1% by weight of an amine catalyst (diethanolamine) and 2% by weight of a silicone surfactant in a mixer. Fly ash was added and wetted with the polyol mixture. Methylene diphenyl diisocyanate (MDI; 104 index; 51.5 g) was then added to the mixer with simultaneous stirring. The mixture was introduced into a confined mold and allowed to cure into a molded shape.
- MDI Methylene diphenyl diisocyanate
- the dimensional stability of the composites including changes in weight, length, and width as a function of temperature were determined on samples extracted from the molded product.
- the composites listed in Table 2 were prepared by adding a fatty acid or fatty acid salt to a polyurethane matrix filled with fly ash and reinforced with glass fibers.
- the samples were dried at 46°C for 48 hours. The weight, length, and width of the sample were determined. Absorption and desorption experiments were carried out at different temperatures to compare the weight absorption and dimensional change as compared to a control. Particularly, the samples listed in Table 1 were soaked in water at a predetermined temperature for 8 days. The samples were then removed and dried at 46°C for 48 hours. The weight, length, and width of the sample were measured again over time. The resultant dimensional size change as the sample was exposed to water at various temperatures was determined as a percent change from the initial measurement at the same temperature. From the data, a curve was generated showing the dimensional change (as %) over time. The samples listed in Table 2 were soaked in water for 14 days at 46°C. The length was measured and compared to the original length and the moisture content determined after submersion.
- Table 1 Composition of filled polyurethane composites comprising various amounts of calcium stearate.
- Table 2 Effect of the addition of fatty acids or fatty acid salts to a filled polyurethane matrix.
- Figures 1 to 6 The results for the composites listed in Table 1 are shown in Figures 1 to 6.
- Figure 3 shows that, at room temperature, the sample with Class-C fly ash and 2% calcium stearate expanded only 0.27% in length at 96 hours, while the control sample expanded 0.73% in length.
- Figure 6 shows that by the end of the desorption at 192 hours, at 46°C, the sample with Class-F fly ash and 2% calcium stearate has about 0.08% shrinkage in width, while the control sample still has 0.52% expansion in width.
- the total absorption rates are similar for samples with and without calcium stearate (with the exception of Class-F ash at room temperature).
- polyurethane resin and inorganic fillers/fibers may have compatibility problems because it can be difficult for the siliceous surface of fillers to form strong bonds with the polymer matrix.
- Fatty acids and their salts usually have long alkyl chains with carboxylic functional groups at the end. It is believed that when the fatty acid salts are used in the filled polyurethane composite, the hydrocarbon chain of fatty acid salts can react with polymer matrix, and the carboxylic functional groups can react with the filler surface. As a result, the polymer matrix and fillers/fillers can form a strong bond, making it more difficult for water and moisture to penetrate into the interfacial zone and cause expansion and shrinkage.
- fatty acid salts can increase the hydrophobicity of the polyurethane composite and consequently reduce the potential for moisture to induce volume change by plasticizing the matrix.
- urethane functional group (-NH-) may interact with water through hydrogen bond and thus can facilitate the penetration of moisture into polymer structure.
- compositions and methods of the appended claims are not limited in scope by the specific compositions and methods described herein, which are intended as illustrations of a few aspects of the claims and any compositions and methods that are functionally equivalent are intended to fall within the scope of the claims.
- Various modifications of the compositions and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/066742 WO2019117952A1 (en) | 2017-12-15 | 2017-12-15 | Fatty acid modified polyurethane composites with improved dimensional stability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/066742 WO2019117952A1 (en) | 2017-12-15 | 2017-12-15 | Fatty acid modified polyurethane composites with improved dimensional stability |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019117952A1 true WO2019117952A1 (en) | 2019-06-20 |
Family
ID=66820572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/066742 WO2019117952A1 (en) | 2017-12-15 | 2017-12-15 | Fatty acid modified polyurethane composites with improved dimensional stability |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019117952A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111763345A (en) * | 2020-07-27 | 2020-10-13 | 湖南省普力达高分子新材料股份有限公司 | Preparation method of polyurethane foam |
WO2024017938A1 (en) * | 2022-07-20 | 2024-01-25 | Basf Se | Laminate comprising a layer of a layered mineralic material and a polyurethane layer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075064A (en) * | 1993-05-12 | 2000-06-13 | Bayer Aktiengesellschaft | Rigid hydrophobic polyurethanes |
JP2005185836A (en) * | 2003-12-19 | 2005-07-14 | Acushnet Co | Plasticized polyurethane for use in golf ball |
US20090264548A1 (en) * | 2004-10-25 | 2009-10-22 | Van Der Wal Hanno R | Polyurethanes made from hydroxy-methyl containing fatty acids or alkyl esters of such fatty acids |
US20110086934A1 (en) * | 2009-08-14 | 2011-04-14 | Boral Material Technologies Inc. | Filled polyurethane composites and methods of making same |
US20160053078A1 (en) * | 2014-08-23 | 2016-02-25 | United States Gypsum Company | Inorganic filled lightweight polyurethane composites |
US20170114211A1 (en) * | 2015-06-05 | 2017-04-27 | Boral Ip Holdings (Australia) Pty Limited | Filled polyurethane composites with lightweight fillers |
-
2017
- 2017-12-15 WO PCT/US2017/066742 patent/WO2019117952A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075064A (en) * | 1993-05-12 | 2000-06-13 | Bayer Aktiengesellschaft | Rigid hydrophobic polyurethanes |
JP2005185836A (en) * | 2003-12-19 | 2005-07-14 | Acushnet Co | Plasticized polyurethane for use in golf ball |
US20090264548A1 (en) * | 2004-10-25 | 2009-10-22 | Van Der Wal Hanno R | Polyurethanes made from hydroxy-methyl containing fatty acids or alkyl esters of such fatty acids |
US20110086934A1 (en) * | 2009-08-14 | 2011-04-14 | Boral Material Technologies Inc. | Filled polyurethane composites and methods of making same |
US20160053078A1 (en) * | 2014-08-23 | 2016-02-25 | United States Gypsum Company | Inorganic filled lightweight polyurethane composites |
US20170114211A1 (en) * | 2015-06-05 | 2017-04-27 | Boral Ip Holdings (Australia) Pty Limited | Filled polyurethane composites with lightweight fillers |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111763345A (en) * | 2020-07-27 | 2020-10-13 | 湖南省普力达高分子新材料股份有限公司 | Preparation method of polyurethane foam |
WO2024017938A1 (en) * | 2022-07-20 | 2024-01-25 | Basf Se | Laminate comprising a layer of a layered mineralic material and a polyurethane layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240001661A1 (en) | Highly-filled polyurethane composites with fiber reinforcement | |
US10030126B2 (en) | Filled polyurethane composites with lightweight fillers | |
US10472281B2 (en) | Polyurethane composites with fillers | |
US10377868B2 (en) | Filled polyurethane composites with organic and inorganic fibers | |
US10324978B2 (en) | Composites formed from an absorptive filler and a polyurethane | |
US9944063B1 (en) | Method of producing reinforced substrate | |
US9752015B2 (en) | Filled polymeric composites including short length fibers | |
US11661472B2 (en) | Filled polyurethane or polyisocyanurate foam and method of making same | |
US20240392059A1 (en) | Surfactant-free filled polyurethane foam and method of making same | |
US11174372B2 (en) | Highly-filled polyurethane composites with non-silane treated glass fibers | |
US20250011522A1 (en) | Polymeric materials with improved environmental durability | |
US20210146655A1 (en) | Composites comprising cementitious coatings including fibers | |
WO2019117952A1 (en) | Fatty acid modified polyurethane composites with improved dimensional stability | |
US10737508B2 (en) | Building materials comprising composites with printed images | |
US10941292B2 (en) | Filled composites comprising glass and polyester fibers | |
AU2016408342B2 (en) | Filled polyurethane foam having tailored microstructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17934824 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17934824 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17934824 Country of ref document: EP Kind code of ref document: A1 |