WO2019117037A1 - Linear sensor, belt-like sensor, and planar sensor - Google Patents
Linear sensor, belt-like sensor, and planar sensor Download PDFInfo
- Publication number
- WO2019117037A1 WO2019117037A1 PCT/JP2018/045125 JP2018045125W WO2019117037A1 WO 2019117037 A1 WO2019117037 A1 WO 2019117037A1 JP 2018045125 W JP2018045125 W JP 2018045125W WO 2019117037 A1 WO2019117037 A1 WO 2019117037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- conductor
- wire
- linear
- wires
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/16—Measuring force or stress, in general using properties of piezoelectric devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/60—Piezoelectric or electrostrictive devices having a coaxial cable structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/857—Macromolecular compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
Definitions
- the present invention relates to a linear sensor in which a piezoelectric material is disposed between an inner conductor and an outer conductor, and a strip sensor and a planar sensor using the linear sensor.
- a piezoelectric fabric device in which a band-like piezoelectric fiber in which a piezoelectric film of a piezoelectric material is sandwiched between electrode films is used as a fabric (see Patent Document 1).
- This piezoelectric textile device can be used as a tactile sensor or a vibration sensor.
- a tactile sensor it may be used in the form which a person touches, and a soft touch may be calculated
- the sensor may be wound around an object, or the sensor may be used in a bent state, and flexibility may be required.
- the linear piezoelectric sensor which can make width and thickness comparable can be considered.
- a linear sensor in which one core wire is used as an inner conductor, a strip-shaped piezoelectric film is spirally wound around the outer peripheral surface of the core wire, and a shield wire (outer conductor) is disposed on the outer peripheral surface of the piezoelectric film Conceivable. And in order to obtain softness and flexibility, it is sufficient to make the linear sensor thin.
- the strip-shaped piezoelectric film when the strip-shaped piezoelectric film is spirally wound, when the linear sensor is bent, a gap may be generated between the piezoelectric films adjacent in the extending direction of the inner conductor.
- the place where the gap is generated is the place where the sensing can not be performed, and it can not be said that it is a high quality linear sensor.
- one core wire which is an inner conductor, is thinned to obtain softness and flexibility, the tensile strength is too low and the wire is broken. This is also a high quality linear sensor and I can not say.
- An object of the present invention is to provide a high quality linear sensor and a strip sensor and a planar sensor using the linear sensor in view of the above-mentioned circumstances.
- the first linear sensor that solves the above purpose is Internal conductor, A band-shaped piezoelectric film spirally wound around the outer peripheral surface of the inner conductor; And an outer conductor disposed on the outer peripheral surface of the piezoelectric film, The piezoelectric film may be wound around the outer peripheral surface of the inner conductor in a state where one end side and the other end side in the width direction adjacent to the extending direction of the inner conductor are overlapped.
- the piezoelectric film is wound in a state in which one end side and the other end side in the width direction adjacent in the extension direction of the internal conductor overlap each other, Even when the linear sensor is bent, a gap does not easily occur between the piezo films adjacent in the extending direction of the inner conductor.
- the piezoelectric film is wound around the outer peripheral surface of the inner conductor in a state in which the half or less of one end side and the half or less of the other end side of the width direction adjacent to the extending direction of the inner conductor are overlapped. And may be wound around the outer peripheral surface of the inner conductor in a state in which one half or more on one end side and the half or more on the other end of the width direction adjacent to each other in the extension direction of the inner conductor are overlapped. It may be.
- the inner conductor may be one in which a single central conductor line is disposed at the center, and a plurality of outer conductor lines thinner than the central conductor line surround the central conductor line.
- the center conductor line may be surrounded by a plurality of outer conductor lines having the same thickness as the center conductor line, or may be surrounded by a plurality of outer conductor lines thicker than the center conductor line. It is good.
- the central conductor line may have higher mechanical strength than the outer conductor line, and may be, for example, stainless steel.
- the outer conductor wire may have a lower electrical resistance than the central conductor wire, and / or be softer, and may be made of, for example, copper.
- the inner conductor may be one in which one conductor wire is disposed at the center, and the periphery of the conductor wire is surrounded by a plurality of stranded wires thinner than the conductor wire.
- the conductor wire does not have a stranded wire structure.
- the stranded wire may have the same thickness as the conductor wire, may be thinner than the conductor wire, or may be thicker than the conductor wire.
- the conductor wire is higher in mechanical strength than the conductor wire,
- the conductive wire may have a lower electrical resistance than the conductive wire.
- the central conductor wire for example, a stainless steel conductor wire
- conductivity is ensured by the surrounding stranded wire (for example, a stranded wire obtained by twisting copper wires).
- the surrounding stranded wire for example, a stranded wire obtained by twisting copper wires.
- the inner conductor may be a stranded wire obtained by twisting a plurality of stainless steel wires.
- stainless steel wire has higher mechanical strength than copper wire, but it is less flexible, but it is opposite to the direction of twisting by using multiple stainless steel wires as stranded wire. It allows for loosening of the direction, which can provide flexibility and balance mechanical strength and flexibility.
- only one strand of the stainless steel wire may be disposed, or a plurality of strands may be disposed.
- the inner conductor may be a stainless steel stranded wire obtained by twisting stainless steel wires and a copper stranded wire obtained by twisting copper wires.
- the inner conductor may surround the stainless steel stranded wire with the copper stranded wire.
- the inner conductor may itself be twisted as a whole.
- the inner conductor has a plurality of primary stranded wires, and the inner conductor itself becomes a secondary stranded wire.
- the flexibility is further improved by dividing and twisting in two steps such as a primary stranded wire and a secondary stranded wire.
- the twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire. However, in order to further increase the flexibility of the inner conductor, the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed.
- a second linear sensor that solves the above purpose is An internal conductor in which a plurality of stranded wires in which a plurality of conductive wires are twisted are arranged; A piezo material carried on the outer peripheral surface of the inner conductor; And an external conductor disposed on the outer peripheral surface of the piezoelectric material, It is characterized in that the inner conductor is itself twisted as a whole.
- the piezoelectric material may be applied to the outer peripheral surface of the inner conductor or may be welded.
- the strip-shaped piezoelectric film may be wound around the outer peripheral surface of the inner conductor in a state in which one end side and the other end side in the width direction adjacent to the extending direction of the inner conductor are overlapped.
- the inner conductor has a plurality of primary stranded wires, and the inner conductor itself becomes a secondary stranded wire.
- the flexibility is further improved by dividing and twisting in two steps such as a primary stranded wire and a secondary stranded wire.
- the twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire. However, in order to further increase the flexibility of the inner conductor, the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed.
- the strip sensor which solves the above-mentioned purpose is The first or second linear sensor; A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor; It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
- a planar sensor that solves the above purpose is A sheet and A plurality of first linear sensors comprising the first or second linear sensors; A plurality of second linear sensors consisting of the first or second linear sensors; The plurality of first linear sensors are seam-stitched on the planar body at an interval in the width direction of the first linear sensors, The plurality of second linear sensors are characterized by being seam-stitched on the planar body at intervals in the extending direction of the first linear sensors.
- the planar body may be a woven fabric or a non-woven fabric. More specifically, it may be mesh cloth, cotton cloth, satin cloth, or felt.
- a front side sheet body covering from the front side the planar body in which the first linear sensor is seam-stitched and the second linear sensor is seam-stitched, and the planar body is backside It may be an aspect provided with the back side sheet body covered from the above.
- These front side sheet members and back side sheet members may be made of the same material as that of the planar body, or may be made of different materials.
- FIG. It is a figure for demonstrating the effect of the electric wire sensor demonstrated here. It is a figure which shows the example of the electric wire sensor which formed the piezo coat layer and then formed the 2nd conductor layer, after twisting seven conductor wires. It is a figure which shows the example of the electric wire sensor which formed 2nd conductor layer B13 ', after twisting 7 conductor wire B111 in which piezo coat layer B12 is formed, respectively. It is sectional drawing of two types of electric wire sensors. It is a figure which shows a mode that a piezo film is wound around the outer peripheral surface of the internal conductor C11. It is a disassembled perspective view of the planar sensor using the electric wire sensor C1 shown in FIG.
- FIG. 1 is a cross-sectional view of a wire sensor corresponding to one embodiment of a linear sensor.
- An electric wire sensor A1 shown in FIG. 1 includes an inner conductor A11, a piezoelectric body A12, an outer conductor A13, and a sheath A14.
- the inner conductor A11 is obtained by further twisting these strands A111 in a state in which a strand A111 obtained by twisting seven stainless steel wires Asy having a diameter of 30 ⁇ m is disposed at each vertex of the regular hexagon and at the center of the regular hexagon. It is a thing. That is, seven stranded wires A111 are arranged as a primary stranded wire in a close-packed structure, and these seven primary stranded wires are further twisted to form a secondary stranded wire. By twisting a plurality of linear bodies into a sweet-twisted or medium-twisted degree, loosening in the direction opposite to the direction of twisting is permitted, and this loosening can provide flexibility.
- flexibility is further improved by dividing into two steps such as a primary stranded wire and a secondary stranded wire and twisting.
- a plurality of secondary stranded wires may be prepared, and may be further twisted and divided into a plurality of three or more stages such as a third stranded wire and so on and twisted.
- the twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire.
- the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed.
- the diameter of the entire internal conductor A11 shown in FIG. 1 is 0.27 mm, and the cutting load of the internal conductor A11 is 0.058 kN.
- the number of stainless steel wires Asy constituting the primary stranded wire is not limited to seven.
- the diameter of one stainless steel wire Asy may be 10 ⁇ m or more and 40 ⁇ m or less, and preferably 20 ⁇ m or more and 30 ⁇ m or less. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength.
- the cutting load of the inner conductor A11 is 0.025 kN
- the cutting load of the inner conductor A11 is 0. It will be 107kN.
- the diameter of the entire internal conductor may be 0.15 mm or more and 0.8 mm or less, and preferably 0.18 mm or more and 0.5 mm or less.
- the diameter of the primary stranded wire may be made different.
- the diameter of the stranded wire A111 located at the center of the inner conductor A11 may be thicker than that of the stranded wire A111 located therearound, or may be made smaller.
- the diameter of the stainless steel wire Asy forming the stranded wire A111 may be different for each of the stranded wire A111.
- relatively thick stainless steel wire Asy may be used to obtain thick stranded wire A111
- relatively thin stainless steel wire Asy may be used to obtain thin stranded wire A111.
- the number of stainless steel wires Asy that constitute the stranded wire A111 may be different for each of the stranded wire A111.
- a relatively large number of stainless steel wires Asy may be used to obtain thick stranded wire A111, or a relatively small number of stainless steel wires Asy may be used to obtain thin stranded wire A111.
- the stranded wire A111 may be a wire made of other conductive material and a wire made of stainless steel wire Asy in addition to the wire made of only the stainless steel wire Asy.
- the conductive material referred to here is a material different from stainless steel or a material different in mechanical strength from stainless steel. For example, copper, titanium, magnesium or the like may be used alone, or a combination of these materials may be used.
- the internal conductor A11 may be configured of only the stranded wire A111, or may be configured of the stranded wire A111 and another metal wire.
- a metal wire having lower electrical resistance than stainless steel may be used, or a metal wire softer than stainless steel may be used.
- a copper metal wire having a lower electrical resistance than stainless steel and softer may be used. More specifically, one copper wire is used as another metal wire, and the whole is obtained in a state in which the stranded wire A111 is arranged at each vertex of the regular hexagon and one copper wire is arranged at the center of the regular hexagon.
- the twisted wire A111 may be disposed at every other vertex of the regular hexagon, and the copper wire may be disposed at the remaining vertices, and the copper wire or the stranded wire may be disposed at the center of the regular hexagon. The whole may be twisted in the state where A111 is arranged.
- one copper wire one obtained by twisting a plurality of thin copper wires may be used, or one obtained by twisting a thin copper wire and a stainless steel wire Asy may be used.
- titanium or magnesium may be used, or a combination of dissimilar metals such as copper and titanium, copper and magnesium, titanium and magnesium, copper and titanium and magnesium may be used. The same is true when copper is exemplified.
- a linear body located at the center of the internal conductor A11 and a linear body (6 strands A111 in FIG. 1) located around the linear body
- a linear body may be arranged.
- the linear body disposed in the gap AS1 may be a single copper wire, a stranded wire of a stainless steel wire Asy, or a stranded wire obtained by twisting a plurality of thin copper wires. It may be.
- the linear bodies may be arranged in the gap AS2 outside the linear bodies (six stranded wires A111 in FIG. 1) located in the periphery.
- the linear body disposed in the outer gap AS2 may also be a single copper wire, a stranded wire of a stainless steel wire Asy, or a stranded wire obtained by twisting a plurality of thin copper wires. It may be As described above, linear bodies may be further added to the gaps between the linear bodies constituting the internal conductor A11.
- the internal conductor A11 is not limited to the close-packed structure described above, and may have a configuration in which a single stranded copper wire is surrounded by a stranded wire A111 thinner than the central copper wire, or 20 ⁇ m
- the configuration may be such that a single stainless steel wire having a diameter of 30 ⁇ m or less is surrounded by a copper wire thinner than the central stainless steel wire.
- the thickness of the linear body constituting the internal conductor A11 is made different.
- the single copper wire described here may be a plurality of thin copper wires twisted together.
- the piezoelectric body A12 is formed of a strip-shaped piezoelectric film having a width of 3 mm. This piezo film is made of polyvinylidene fluoride (PVDF). Polyvinylidene fluoride is a lightweight polymer material that generates a piezoelectric effect when a high voltage is applied and is polarized. When an external force is applied to this, a voltage is generated, and a distortion is generated when a voltage is applied. .
- the piezoelectric body A12 is subjected to polarization processing, and when a force is applied to the piezoelectric body A12 from the outside, a voltage is induced between the inner conductor A11 and the outer conductor A13.
- the piezoelectric film is spirally wound around the outer peripheral surface of the internal conductor A11 without any gap. That is, when the piezoelectric film is spirally wound around the outer peripheral surface of the inner conductor A11, winding is performed in a state where one end and the other end of the width direction of the piezoelectric film adjacent in the extension direction of the inner conductor A11 overlap each other. . By so doing, the area of the piezo film can be made as large as possible, leading to an improvement in sensor sensitivity.
- the width of the strip-shaped piezoelectric film is not limited to 3 mm, and may be 2 mm or more and 5 mm or less, preferably 3 mm or more and 4 mm or less.
- the width of the piezoelectric film is too narrow, when spirally wound around the outer peripheral surface of the inner conductor A11, a gap is easily generated between the piezoelectric films adjacent in the extending direction of the inner conductor A11. The place where the gap is generated is the place where the sensing can not be made.
- the width of the piezo film is too wide, slack tends to be generated when spirally wound around the outer peripheral surface of the internal conductor A11.
- the thickness of the piezoelectric film constituting the piezoelectric body A12 shown in FIG. 1 is 28 ⁇ m, but may be 20 ⁇ m or more and 100 ⁇ m or less, and preferably 25 ⁇ m or more and 80 ⁇ m or less. If the thickness of the piezo film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the electric wire sensor A1 will be too hard and the flexibility will be lost.
- the piezoelectric film employed for the piezoelectric body A12 corresponds to a plurality of directions (elongation direction and bending direction) depending on the orientation of the crystal than the piezoelectric characteristic corresponding to only the longitudinal direction (elongation direction). Is preferable.
- the outer conductor A13 is formed by spirally winding one copper wire in one row around the outer peripheral surface of the piezoelectric body A12. That is, it is the structure of a side winding shield.
- a copper wire a tin-plated soft copper wire with a diameter of 50 ⁇ m is used.
- the outer conductor A13 is not limited to a copper wire, but may be a stranded wire of stainless steel wire, and may be, for example, the same as a primary stranded wire (stranded wire A111) constituting the inner conductor A11.
- the thickness of the outer conductor A13 may be 10 ⁇ m or more and 120 ⁇ m or less, and preferably 25 ⁇ m or more and 90 ⁇ m or less.
- the outer conductor A13 may be a braided shield in which a conducting wire is crossed and braided around the outer peripheral surface of the piezoelectric body A12, or a tape shield in which a tape-shaped conductor is spirally wound. Good. However, the side shield is the most flexible. Furthermore, the outer conductor A13 may be one in which a plurality of conducting wires are spirally wound, or may be one in which a plurality of tape-like conductors are spirally wound.
- the internal conductor A11 is higher in mechanical strength than the external conductor A13.
- the sheath A14 is for covering the outer conductor A13, and is for enhancing the abrasion resistance, the chemical resistance, and the rust prevention.
- the sheath A 14 may be a polyester tape, and its thickness may be 20 ⁇ m or more and 40 ⁇ m or less. In addition, if it is not necessary to improve the abrasion resistance, the chemical resistance, and the rustproofness, the sheath A 14 may not be provided.
- the sheath A14 shown in FIG. 1 has a single-layer structure with a thickness of 30 ⁇ m, but may have a multi-layer structure.
- it may have a two-layer structure consisting of an inner layer and an outer layer, and the inner layer is formed of a softer material (for example, a polyamide synthetic resin or polyvinyl chloride resin) than the outer layer, and the outer layer is compared with the inner layer.
- a material having high abrasion resistance for example, polytetrafluoroethylene
- the outer layer may be thicker than the inner layer.
- the inner layer may be formed of a flammable material, but the outer layer is preferably formed of a flame retardant material, a non-combustible material, and a flame resistant material.
- the wire sensor A1 shown in FIG. 1 has an overall diameter (thickness) of 0.378 mm and is sufficiently thin, the cutting load of the inner conductor A11 is 0.058 kN.
- a band-shaped piezo film can be wound in a stretched state, and a gap can be prevented from being generated between the outer peripheral surface of the internal conductor A11 and the piezo film, and accurate measurement or detection using the electric wire sensor A1 Becomes possible.
- the piezo film When a piezo film is spirally wound around the outer peripheral surface of the inner conductor A11, the piezo film conforms to the outer peripheral shape of the inner conductor A11, and the piezoelectric body A12 strictly enters inside as shown by a two-dot chain line shown in FIG. It becomes a shape.
- the piezo film since the piezo film can be strongly wound around the outer peripheral surface of the internal conductor A11, the piezo film has a shape in which it enters the outer gap AS2 as shown by a two-dot chain line shown in FIG. Prone.
- FIG. 2 is a view schematically showing a strip-like sensor using the electric wire sensor shown in FIG.
- the strip sensor A2 shown in FIG. 2 extends diagonally in the lateral direction, and the left side of the figure is the tip of the strip sensor A2 and extends toward the right side of the figure. Only the tip of the strip sensor A2 is shown.
- the extending direction of the strip sensor A2 may be referred to as the vertical direction
- the width direction of the strip sensor A2 may be referred to as the lateral direction.
- belt-shaped sensor A2 five electric wire sensors A1 shown in FIG. 1 are arranged in the width direction at intervals. That is, the wire sensor A1 extends in the longitudinal direction.
- a plurality of longitudinal wires A21 extending in the longitudinal direction are disposed between the wire sensors A1 adjacent to each other at intervals in the lateral direction.
- the longitudinal wire A21 shown in FIG. 2 is the same as the internal conductor A11 shown in FIG. 1 and corresponds to an example of a longitudinal linear body.
- the longitudinal wire A21 may have a mechanical strength higher than that of the electric wire sensor A1 shown in FIG.
- a primary stranded wire made of a stainless steel wire thicker than the stainless steel wire Asy shown in FIG. 1 may be twisted to form a secondary stranded wire.
- the wire A21 is disposed.
- non-metallic linear bodies for example, chemical fibers or natural fibers
- the longitudinal wire A21 may be formed by twisting a stainless steel wire and a non-metallic linear body (for example, chemical fiber or natural fiber).
- a plurality of transversely-twisted yarns A22 extending in the lateral direction are arranged at intervals in the longitudinal direction.
- the horizontal twisting yarn A22 is formed by twisting stainless steel wire yarn and polytetrafluoroethylene, and corresponds to an example of a horizontal linear body.
- the twisted yarn of this stainless steel wire is the same as the primary stranded wire (twisted wire A111) constituting the internal conductor A11 shown in FIG. 1, and is for providing mechanical strength of the strip sensor A2.
- polytetrafluoroethylene is for producing flexibility of the belt-like sensor A2, and is not limited to polytetrafluoroethylene, and may be other chemical fibers or natural fibers such as cotton yarn Good.
- FIG. 2 the front surface of the belt-shaped sensor A2 is shown.
- the front surface of the belt-shaped sensor A2 is simply referred to as the front surface
- the back surface of the belt-shaped sensor A2 is simply referred to as the back surface. It is called.
- the horizontal twisting yarn A22 is for binding the electric wire sensor A1 and the vertical wire A21, and the front surface side and the back surface side are alternately passed. That is, in FIG.
- the longitudinal wire A21 which is a longitudinal wire
- the horizontal twisted yarn A22 which is a horizontal wire
- various directions are applied to the strip sensor A2. Because of this, tension may be applied, and the longitudinal wire A21 and the weft yarn A22 are not always in an orthogonal relationship.
- the strip sensor A2 shown in FIG. 2 is excellent in mechanical strength in the vertical direction by using the wire sensor A1 shown in FIG. 1, and the wire sensor A1 is thin and flexible and is bent halfway in the longitudinal direction Even when the degree of curvature changes, it is possible to follow smoothly. Moreover, since the mechanical strength in the longitudinal direction is further enhanced by the plurality of longitudinal wires A21, and the flexibility in the transverse direction is ensured by the horizontal twisting yarn A22, it is used by being folded back in the longitudinal direction It is suitable for a vibration sensor etc. Moreover, since a plurality (five in FIG. 2) of the wire sensors A1 are arranged in the lateral direction, the signal strength is increased, and the reliability of the sensor is enhanced.
- the electric wire sensor A1 shown in FIG. 1 attention is focused on the fact that mechanical strength in the longitudinal direction is enhanced by the plurality of longitudinal wires A21 and flexibility in the transverse direction is ensured by the horizontal twisted yarn A22.
- the wire sensor may be thick, it can be coped with by replacing the inner conductor of the wire sensor with a metal wire such as one thick copper wire.
- FIG. 3 is a view schematically showing a planar sensor using the wire sensor shown in FIG.
- the planar sensor A3 shown in FIG. 3 has a double structure including a first sensor body A31 and a second sensor body A32.
- the first sensor body A31 has a plurality of wire sensors A1 arranged at intervals in the radial direction (Y-axis direction) of the wire sensor A1 shown in FIG.
- the wire sensor A1 constituting the first sensor body A31 is hereinafter referred to as a first wire sensor A1a.
- a plurality of first fibers A311 extending in the same direction as the extending direction (X axis direction) of the first electric wire sensor A1a is provided between the adjacent first electric wire sensors A1a. It is arranged.
- first fibers A311 Although only two first fibers A311 are shown between the adjacent first electric wire sensors A1a in FIG. 3 in practice, three or more first fibers are filled so as to fill the distance. A311 is arranged.
- the first fiber A311 is softer than the first electric wire sensor A1a, and corresponds to an example of a first linear body.
- the second sensor body A32 is provided below the first sensor body A31, and spaced apart in the extending direction of the first electric wire sensor A1a disposed on the first sensor body A31, separately.
- a plurality of wire sensors A1 are arranged.
- the wire sensor A1 constituting the second sensor body A32 is hereinafter referred to as a second wire sensor A1 b.
- FIG. 4 is an enlarged view showing the double structure of the planar sensor A3 shown in FIG. 3 in an easily understandable manner.
- the left and right direction of the paper surface is the extending direction of the first electric wire sensor A1a.
- the second electric wire sensor A1b is orthogonal to the first electric wire sensor A1a, and in FIG. 4, one first electric wire sensor A1a extending in the left-right direction (X-axis direction) is shown. Three two-wire sensors A1b are shown at intervals in the extending direction (X-axis direction) of the first wire sensor A1a.
- the planar sensor A3 is manufactured, the first wire sensor A1a and the second wire sensor A1b are in an orthogonal relationship, but when the planar sensor A3 is used, tension is applied to the planar sensor A3 from various directions. In some cases, the first wire sensor A1a and the second wire sensor A1b are not necessarily in an orthogonal relationship.
- a plurality of second fibers A321 extending in the same direction as the extending direction (Y axis direction) of the second electric wire sensors A1b are arranged between the adjacent second electric wire sensors A1b.
- the second fiber A 321 is softer than the second electric wire sensor A1 b, and corresponds to an example of a second linear body.
- 5 or more 2nd fiber A321 may be arrange
- the first fiber A311 or the second fiber A321 may be a twisted yarn of synthetic fibers such as polyamide and rayon having a diameter of 0.3 mm or more and 1.2 mm or less, or a twisted yarn of natural fibers such as cotton. It may be. Both the first fiber A311 and the second fiber A321 are softer than the electric wire sensor A1, and when a force is applied, the electric wire sensor A1 is unlikely to be crushed, but the first fiber A311 and the second fiber A321 are easily crushed. For this reason, if the first fiber A311 is crushed and only the first electric wire sensor A1a protrudes, or if the second fiber A321 is crushed and only the second electric wire sensor A1b is protruded, the touch feeling is felt.
- the first fiber A311 has a diameter larger than that of the first wire sensor A1a (for example, a diameter of 0.5 mm), and is crushed to less than the thickness of the first wire sensor A1a even if the first fiber A311 is crushed.
- the first electric wire sensor A1a has a structure that is difficult to protrude so as not to be damaged.
- the second fiber A321 has a diameter larger than that of the second electric wire sensor A1b (for example, a diameter of 0.5 mm), and is crushed to less than the thickness of the second electric wire sensor A1b even if the second fiber A321 is crushed. In order to prevent the second electric wire sensor A1b from protruding, the second electric wire sensor A1b is difficult to protrude. For this reason, the planar sensor A3 of the present embodiment has a good touch.
- the first sensor body A31 and the second sensor body A32 are inseparably overlapped, and in the present embodiment, a dedicated first bonding fiber A331 is provided separately from the first fiber A311.
- a dedicated second bonding fiber A332 is provided separately from the two-fiber A321. Whether the first binding fiber A331 or the second binding fiber A332, the front surface (surface on the first sensor body A31 side) of the planar sensor A3 and the back surface (second sensor body) of the planar sensor A3
- the second electric wire sensor A1b and the second fiber A321 are bound by the first bonding fiber A331 by alternately passing through the surface A32) and the first electric wire sensor A1a and the first fiber by the second bonding fiber A332.
- A311 is spelled.
- the first bonding fiber A331 may be thinner than the first electric wire sensor A1a, and the diameter of the first bonding fiber A331 may be 1 ⁇ 5 or more and 1 ⁇ 3 or less of the diameter of the first electric wire sensor A1a.
- the second bonding fiber A332 may be thinner than the second electric wire sensor A1b, and the diameter of the second bonding fiber A332 may be 1 ⁇ 5 or more and 1 ⁇ 3 or less of the diameter of the second electric wire sensor A1b.
- Synthetic fibers such as polyamide, polytetrafluoroethylene, polyester and rayon and natural fibers such as cotton are used for both the first bonding fiber A331 and the second bonding fiber A332, and they are softer than the wire sensor A1. is there.
- the wire sensor (first wire sensor A1a) itself extending in the X-axis direction and the wire sensor (second wire sensor A1b) itself extending in the Y-axis direction are directly woven into the first wire sensor A1a and the second wire sensor A1b. And the portion where the first wire sensor A1a overlaps with the second wire sensor A1b alternately exist, and the portion where the second wire sensor A1b overlaps with the first wire sensor A1a protrudes to one side, and the second wire sensor A1b By projecting to the other side where the first electric wire sensor A1a overlaps the electric wire sensor A1b, a sense of asperity appears and the touch (feel) is deteriorated.
- planar sensor A3 of this embodiment is the composition where 1st sensor object A31 and 2nd sensor object A32 were piled up in the direction of the Z-axis, Z of 1st electric wire sensor A1a and 2nd electric wire sensor A1b The positional relationship in the axial direction does not change.
- it is much thinner and more flexible than the electric wire sensor A1 in both the first bonding fiber A331 which connects the first sensor body A31 and the second sensor body A32 or the second bonding fiber A332, the uneven feeling is felt Is hard to come out and feels good in this sense as well.
- the second electric wire sensor A1b and the second fiber A321 can be bound by part or all of the plurality of first fibers A311 without providing the first bonding fibers A331 and the second bonding fibers A332, and there are a plurality of them.
- the first electric wire sensor A1a and the first fiber A311 can also be spelled by part or all of the second fiber A321.
- one or more other sensor bodies in which the wire sensor A1 shown in FIG. 1 is disposed may be further provided.
- the control unit is provided with a detection circuit, an A / D conversion circuit, a CPU, a ROM storing a program executed by the CPU, a RAM temporarily storing data used for processing of the CPU, and the like.
- the detection circuit includes an impedance conversion circuit, an amplification circuit, and a low pass filter. This detection circuit amplifies the level of the output signal sent from the planar sensor A3 after matching it to a predetermined level, and attenuates and cuts off components of frequencies higher than the cut-off frequency which is the limit of system response. The component of the frequency lower than the frequency is sent to the A / D conversion circuit.
- the A / D conversion circuit converts the signal sent from the detection circuit into a digital signal and sends it to the CPU.
- the CPU performs various arithmetic processing. For example, when pressure is applied to the planar sensor A3, the positions of the first electric wire sensor A1a and the second electric wire sensor A1b that generate a voltage from the piezoelectric generated in the first electric wire sensor A1a and the second electric wire sensor A1b By calculating the magnitude of the voltage and the voltage, it can be determined which pressure is applied to which portion of the planar sensor A3.
- the intersection of the first electric wire sensor A1a and the second electric wire sensor A1b is handled as a detection point.
- the value (X) of the output signal from the first electric wire sensor A1a and the value (Y) of the output signal from the second electric wire sensor A1b are not simply multiplied (X ⁇ Y), but an exponential function ( Treat as e x + y ). This makes it possible to distinguish between noise and contact with a slight pressing force.
- the shape of the one in contact with the planar sensor A3 and the position of the pressure peak are determined can do.
- the electric wire sensor A1 generates a signal when pressure is applied and deformation occurs, but no signal is generated when the same state of applied pressure continues.
- the planar sensor A3 it is preferable to measure from the electric wire sensor A1 located on the outside where no pressure is applied and no signal is generated, and the critical point with respect to the pressure applied portion is determined. That is, the contour of a portion subjected to pressure is determined by scanning from the electric wire sensor A1 on the outside where no signal is generated, and next time scanning is performed, it is determined that pressure is applied to that portion.
- the electric wire sensor A1 located in the vicinity is scanned to obtain a contour under pressure. By doing this, it is possible to cope with changes in the pressure applied range. Further, by time-differentiating the value of the outermost detection point, it is possible to obtain the shape of the portion to which pressure is applied.
- an area where no output signal is output is specified, and the inside of the area is defined as a contact area where one comes into contact.
- wire sensor A1 shown in FIG. 1 has higher flexibility than conventional sensors, wire sensor A1 is spirally wound around a soluble base line, and if the base line is dissolved and eliminated, the final In practice, it is possible to obtain the electric wire sensor A1 which is spirally wound.
- the spirally wound electric wire sensor A1 is stretchable at its winding portion, and functions as a sensor for sensing by expansion and contraction. Further, the degree of expansion and contraction can be adjusted by changing the thickness of the base line to be dissolved. Also, the sensor sensitivity can be adjusted by changing the number of turns per unit length with respect to the baseline to be dissolved. That is, the sensor sensitivity increases as the number of turns increases.
- the wire sensor A1 spirally wound can be used as the strip sensor A2, or can be used as the planar sensor A3.
- spiral shape is easy to be maintained by weft twisting yarn A22.
- the sheet sensor A3 is used as the first electric wire sensor A1a
- the spirally wound electric wire sensor A1 is easily maintained by the second fiber A321 and the second bonding fiber A332.
- the electric wire sensor A1 which has been spirally wound and used as the second electric wire sensor A1b is likely to maintain a spiral shape by the first fiber A311 and the first bonding fiber A331.
- two types of electric wire sensor A1 which varied the thickness of the base line to be dissolved can also be used.
- the first sensor body A31 may use a plurality of types of electric wire sensors A1 having different numbers of turns with respect to the base line to be dissolved, or may use a plurality of types of electric wire sensors A1 having different thicknesses of the base lines
- the second sensor body A32 plural kinds of electric wire sensors A1 in which the number of turns with respect to the base line is different may be used, or plural kinds of electric wire sensors A1 in which the thickness of the base line is different may be used.
- the electric wire sensor A1 may be folded down like a knit or may be knitted .
- FIG. 5 is a view for explaining another application example and the like of the electric wire sensor A1 shown in FIG.
- the wire sensor A1 of the present embodiment has higher flexibility than a conventional sensor, as shown in FIG. 5A, a plurality of loop portions Ar are continuously formed by the wire sensor A1, and the loop is formed. By intertwining the partial Ar, it becomes a knitted sensor. In this knitted sensor, stretchability can be realized by using these loop portions Ar, and the stretch sensor can function as a sensor for sensing. Furthermore, since each wire sensor A1 is tortuous so as to form a knot, it becomes easy to deform and thereby the detection sensitivity is improved. In addition, the stretchability of the loop portion Ar makes it possible to follow the surface of a hemispherical or spherical object to be detected, and the range of the object to be treated is expanded.
- the sensor sensitivity is proportional to the area of the piezo film, and the larger the area, the better the sensor sensitivity.
- the purpose of the wire sensor A1 of this embodiment is to make it as thin as possible. However, when it is desired to enhance the sensor impression, a thin wire sensor A1 is mixed with a wire sensor having a thick inner conductor to The belt-like sensor and the planar sensor may be manufactured while balancing the flexibility.
- the strip-shaped piezoelectric film AF, AF may be wound in the same direction while being shifted by 180 degrees. Since tension is applied to the piezoelectric film AF so as not to cause slack when winding the belt-shaped piezoelectric film AF, it is possible that the balance may be pulled by pulling in one direction. By winding the piezoelectric films AF and AF in the same direction while shifting them by 180 degrees, tension is applied in the direction opposite to one direction, and the balance can be taken just.
- the internal conductor A11 is a secondary stranded wire obtained by further twisting a plurality of primary stranded wires
- the twisting direction of the secondary stranded wire and the direction in which the piezoelectric film AF is wound are the same direction.
- the twisting direction of the secondary stranded wire and the direction in which the piezo film AF is wound may be reversed.
- the wire sensor A1 can be divided into a sensor unit and a transmission line of an output signal.
- the portion heated to a temperature exceeding the Curie temperature is significantly reduced in piezoelectric characteristics, and therefore, in the wire sensor A1, a portion heated to a temperature above the Curie temperature functions as a transmission line.
- the electric wire sensor A1 is heated at a heating temperature of 70 ° C. to 150 ° C. for 10 seconds to 10 minutes, preferably at a heating temperature of 80 ° C. to 120 ° C. for 10 seconds to 60 seconds. It is good.
- planar sensor A3 shown in FIG. 3 does not expand and contract in the X axis direction and does not expand and contract in the Y axis direction, but can expand and contract in the diagonal direction, as shown in FIG. As shown, when used in a state of being rotated by 90 degrees, it becomes a planar sensor A3 that can expand and contract in the direction of the white arrow. Furthermore, if the planar sensor shown in FIG. 5C overlaps the planar sensor shown in FIG. 5C, the planar sensor shown in FIG. 5C overlaps the planar sensor in which the first electrical wire sensor A1a extends in the X axis direction and the second electrical wire sensor A1b extends in the Y axis direction. It is possible to realize a sensor that can extend and contract both in the X axis direction, in the Y axis direction, and in the diagonal direction.
- the strip sensor A2 shown in FIG. 2 can be wound around a welded pipe and used for defect inspection of a welded portion.
- the strip sensor A2 can detect vibration due to the fluid leaking out of the weld or can also detect air vibration due to gas leakage.
- planar sensor A3 shown in FIG. 3 is disposed on the surface of a floating body such as a balloon or a balloon, and the floating body is floated up to a high place (for example, the ceiling of a tunnel) to which the hand or tool can not reach
- a high place for example, the ceiling of a tunnel
- a belt-like sensor A2 shown in FIG. 2 or a sheet-like sensor A3 shown in FIG. 3 is disposed on a seat belt or steering wheel of a car etc.
- the driver's heartbeat or respiration is detected as vibration.
- People's health can be monitored.
- the flat sensor A3 shown in FIG. 3 is placed on the underwear or hat, or if the underwear or hat itself is sewn by the flat sensor A3 shown in FIG.
- the health condition can be monitored by detecting the heartbeat and respiration of the person who is wearing it as vibration.
- planar sensor A3 shown in FIG. 3 can detect a person's heart beat and respiration as vibrations
- the planar sensor A3 can be arranged on the seat or back of a seat such as a car. For example, it is possible to identify whether the person located in the seat is a person or an object.
- the sheet-like sensor A3 shown in FIG. 3 functions as a non-invasive heart rate and / or respiration sensor. It also functions as a watching sensor for existence confirmation and operation confirmation of elderly people and sick people.
- the planar sensor A3 since the planar sensor A3 has high flexibility, the person sleeping does not feel painful. To explain these points in more detail, since the planar sensor A3 is flexible and is a woven fabric, it has features of good breathability, being able to cut and sew, and producing a large area at low cost. Is also possible.
- the surface condition sensor A3 By placing the surface condition sensor A3 under the bed sheet, not only the patient and the care recipient's leaving alarm but also automatic monitoring and turning of breathing (apnea), automatic monitoring of excretion, etc., turning turn auxiliary bed etc. Application to control is possible. Furthermore, the planar sensor A3 can also be used to monitor the balance of walking as a foot sole stress sensor, and if the planar sensor A3 is placed on the seat surface of a wheelchair, application to monitoring of seat pressure balance etc. becomes possible. .
- the belt-like sensor shown in FIG. 2 or the sheet-like sensor A3 shown in FIG. 3 is wound around the pet's collar or the sheet-like sensor A3 is placed on the pet's clothes, it will be used as a pet activity monitor and sleep monitor. be able to. Furthermore, by linking the Internet service and the smartphone, it is possible to watch the state of the pet in the answering machine from the outside.
- planar sensor A3 shown in FIG. 3 may be disposed on a glove.
- a planar sensor in which the wire sensor A1 shown in FIG. 1 is disposed at a high density (for example, 1 mm intervals) is disposed at the fingertips, and a medium density (for example, 4 mm to 6 mm) is provided from the second joint to the third joint of the finger.
- a planar sensor in which the wire sensor A1 is disposed may be disposed at the following intervals), and a planar sensor in which the electrical wire sensor A1 is disposed at a low density (for example, 5 mm or more and 8 mm or less) may be disposed on the palm.
- the finger touch sensor can be realized by disposing a high-density planar sensor at the fingertip.
- the planar sensor is sewed on the glove fiber or bonded with an adhesive.
- the glove itself may be sewn with a planar sensor.
- a control board such as a microcomputer may be disposed on the back of the hand of the glove.
- the glove in which the planar sensor A3 is disposed may be worn on a robot hand imitating a human hand (robot hand).
- robot hand if the robot hand is a rigid body, it is preferable that the glove fibers be impregnated with or coated with a soft substance, and the glove fibers be soft so as to allow deformation of the planar sensor.
- a glove on which the planar sensor A3 is disposed may be worn by a person and used for data acquisition such as gripping force in various operations.
- the data obtained in this way can be used to program the robot's hand movement when the robot performs the data acquisition operation.
- a glove on which the planar sensor A3 is disposed as a glove for rehabilitation of fingers, for example, by performing a gripping operation, it is possible to measure the stiffness of muscles and joints of fingers, or for rehabilitation It is also possible to collect data to determine the effect and degree of achievement.
- it can also be used as a reading device for the person who has difficulty in making a call. That is, it is also possible to read the coordinates of a character written on the palm and convert it into text data, or convert this text data into speech and use it as a conversation support function device.
- This grip-like device has a sheet-like sensor A3 shown in FIG. 3 disposed on the surface of an inflatable body that is inflated by air pressure, and when the inflatable body is inflated, the degree of finger The bending angle of the joint can be measured by the planar sensor A3, which is useful for analyzing the firmness of the finger muscles and joints. Also, by recording past data, it is possible to confirm the recovery state. Furthermore, by monitoring the output signal from the planar sensor A3, excessive movement of the finger can be suppressed. In addition, by adjusting the air pressure to the inflatable body, depending on the opening and strength of the fingers without hurting the fingers and wrists naturally perform opening and closing of the fingers safely, achieving rehabilitation that can promote contracture relief can do.
- FIG. 6 is a view showing an example in which the planar sensor shown in FIG. 3 is applied to the finger of the robot hand.
- the finger A4 of the robot hand shown in FIG. 6A includes four components of a bone portion A41, an elastic portion A42, a planar sensor A3 shown in FIG. 3, and an outer skin portion A43.
- the bone portion A41 is a rigid body and is the hardest of these four components.
- the outer skin part A43 is a material (for example, polyurethane) excellent in abrasion resistance that prevents the wear of the planar sensor A3, but is a material softer than the softness of the contact object assumed. When the contact object is touched, the skin portion A43 elastically deforms, thereby pressing the planar sensor A3 located inside. In addition, when the skin portion A43 is soft, it does not hurt when it touches a person.
- the elastic portion A42 has a softness that allows the sheet-like sensor A3 to be deformed by pressing the sheet-like sensor A3.
- the elastic deformation of the elastic portion A42 stops in a certain range.
- the contact object touches the outer skin portion A43 the outer skin portion A43 elastically deforms, so that the sheet-like sensor A3 located inside thereof is pushed and the elastic portion A42 is also supported from the inner side by the bone portion A41.
- the sheet-like sensor A3 can be deformed, and it can be detected at what position and at what contact pressure the contact object contacts.
- 6A holds the sheet-like sensor A3 with an elastically deformable material (skin part A43, elastic part A42) while being supported by the rigid bone part A41 from the inside. It is a structure. Note that by making the skin part A43 relatively thin and making the elastic part A42 relatively thick, contact with the skin part A43 is readily transmitted to the planar sensor A3, and the planar sensor A3 Is more easily deformed to the inside (bone A41 side), and the detection sensitivity is improved.
- the outer skin portion A43 may be formed by applying a silicone rubber to the planar sensor A3.
- the bone portion A41 is not rigid but elastically deformable, and the entire finger A4 is elastically deformable. Even in such a case, when the contact object touches the silicone rubber skin portion A43, the planar sensor A3 also bends, and it is possible to detect at which position the contact object contacts with what contact pressure.
- a finger A4 'of the robot hand shown in FIG. 6B includes a bone A41, an elastic part A42, a first planar sensor A3a, a second planar sensor A3b, an outer skin A43, and a claw A44. That is, the point having the claw portion A44 is different from the finger A4 of the robot hand shown in FIG.
- differences from the finger A4 of the robot hand shown in FIG. 6A will be mainly described, and the overlapping description will be omitted.
- the claw portion A44 is rotatable with the root A441 as a rotation fulcrum, and in FIG. 6B, the solid line indicates the initial posture of the claw portion A44, and the two-dot chain line indicates the rotational posture of the claw portion A44 Is shown.
- both the first planar sensor A3a and the second planar sensor A3b are the planar sensor A3 shown in FIG. 3, the first planar sensor A3a is disposed on the ventral side of the finger. It has the same function as the planar sensor A3 shown in a).
- the second planar sensor A3b is disposed inside the root A441 that is the pivot point of the claw A44, and when the claw A44 pivots, it is pushed by the root A441 and outputs an output signal. Therefore, with the finger A4 'of the robot hand shown in FIG. 6 (b), the movement of the claw portion A44 can also be detected.
- the first characteristic linear sensor described so far is An internal conductor in which a plurality of stranded wires formed by twisting a plurality of stainless steel wires are arranged; A band-shaped piezoelectric film spirally wound around the outer peripheral surface of the inner conductor; And an outer conductor disposed on the outer peripheral surface of the piezoelectric film.
- the slack causes a gap between the outer peripheral surface of the core wire and the piezoelectric film.
- the gap is crushed, vibration occurs at that time, and the noise is superimposed on the output signal.
- it is necessary to wind the piezoelectric film in a state where the copper wire is pulled with a certain degree of tension.
- copper wire tends to have low tensile strength and it is difficult to maintain sufficient tension.
- the diameter of the copper wire is made small to obtain a thin linear sensor, the tensile strength is lowered and this tendency becomes strong, and eventually, a thin linear sensor can not be obtained.
- the inner conductor in the first characteristic linear sensor described above, a stainless steel wire is used as the inner conductor, and since a plurality of stranded wires are disposed, sufficient tensile strength is obtained even if the diameter of the entire inner conductor is reduced. You can get As a result, it is possible to wind a strip-shaped piezoelectric film in a state in which the inner conductor is stretched, and it is possible to make the linear sensor as thin as possible.
- the diameter of one stainless steel wire may be 10 ⁇ m or more and 40 ⁇ m or less, and preferably 20 ⁇ m or more and 30 ⁇ m or less. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength.
- the inner conductor may have a cross-sectional shape in which the stranded wire is disposed at each vertex of a regular hexagon and at the center of the regular hexagon. That is, it may be a close packed structure.
- the inner conductor itself may have a stranded wire structure. That is, the whole may be twisted in a state in which the stranded wire is disposed at each vertex of the regular hexagon and at the center of the regular hexagon.
- the inner conductor may be constituted only by the stranded wire, or may be constituted by the stranded wire and another metal wire.
- the whole may be twisted in a state in which the stranded wire is disposed at each vertex of a regular hexagon and a copper wire is disposed at the center of the regular hexagon, or the stranded wire may be a vertex of a regular hexagon
- copper wires may be disposed at every other apex, and copper wires or twisted wires may be disposed at the center of the regular hexagon, and the whole may be twisted.
- the diameter of the internal conductor may be 0.15 mm or more and 0.8 mm or less, and preferably 0.18 mm or more and 0.5 mm or less.
- the piezoelectric film has a width of 2 mm or more and 5 mm or less, preferably 3 mm or more and 4 mm or less.
- the piezoelectric film is wound in a state where one end and the other end of the width direction of the piezoelectric film adjacent in the extension direction of the inner conductor overlap each other Will not occur. If the width of the piezo film is too narrow, a gap is likely to be generated between the piezo films adjacent in the extending direction of the inner conductor when spirally wound around the outer peripheral surface of the inner conductor. The place where the gap is generated is the place where the sensing can not be made.
- the width of the piezo film is too wide, slack is easily generated when it is spirally wound around the outer peripheral surface of the inner conductor.
- the area of the piezoelectric film can be made as large as possible by superposing one end and the other end in the width direction of the piezoelectric film, which leads to the improvement of the sensor sensitivity.
- the thickness of the piezoelectric film is preferably 20 ⁇ m to 100 ⁇ m, and more preferably 25 ⁇ m to 80 ⁇ m. If the thickness of the piezoelectric film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the linear sensor will be too hard and the flexibility will be lost.
- the piezoelectric film preferably has a piezoelectric property corresponding to a plurality of directions (elongation direction and bending direction) due to crystal orientation, compared with a case where the piezoelectric characteristic corresponds only to the longitudinal direction (elongation direction).
- the outer conductor may be a copper wire (for example, a tin-plated copper wire), but may be a stainless steel wire.
- the stranded wire may be used.
- the thickness of the outer conductor is preferably 10 ⁇ m to 120 ⁇ m, and more preferably 25 ⁇ m to 90 ⁇ m. That is, it is smaller or thinner than the diameter of the inner conductor.
- the outer conductor may be a braided shield in which a conducting wire is crossed and braided around the outer peripheral surface of the piezoelectric film, or a laterally wound shield in which the conducting wire is spirally wound in one row.
- the outer conductor may be a tape shield in which a tape-like (strip-like) conductor is spirally wound around the outer peripheral surface of the piezoelectric film.
- the side shield is the most flexible.
- the outer conductor may be one in which a plurality of conducting wires are spirally wound, or one in which a plurality of tape-like (band-like) conductors are spirally wound. Good.
- the inner conductor may have higher mechanical strength than the outer conductor.
- a sheath covering the outer conductor may be provided. This sheath is for enhancing the abrasion resistance, the chemical resistance and the rust prevention.
- the sheath may have a multilayer structure.
- the diameter of the linear sensor including the sheath is less than 0.6 mm, and preferably less than 0.5 mm (e.g., 0.4 mm or more and less than 0.5 mm).
- the thickness of the sheath is about 20 ⁇ m to 40 ⁇ m.
- the first characteristic strip sensor described so far is The first characteristic linear sensor; A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor; It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
- the metal longitudinal wire is for providing mechanical strength, and may include, for example, a stainless steel wire. More specifically, it may be a stranded wire of a stainless steel wire, or may be a wire in which a stainless steel wire and a non-metallic linear body are twisted. Furthermore, the metallic longitudinal wire may have a mechanical strength higher than that of the first characteristic strip sensor. In addition, a plurality of linear sensors may be disposed at intervals rather than one, and the vertical linear bodies may be disposed at the intervals. In this case, only the vertical linear body may be disposed at the interval, or the vertical linear body and the nonmetallic linear body may be disposed.
- the horizontal linear body may be a strand of stainless steel wire and a non-metallic linear body.
- the non-metallic linear body described here may be a resin-made linear body, or may be a natural fiber such as cotton yarn. That is, the non-metallic linear body may be a chemical fiber or a natural fiber.
- the first characteristic planar sensor described so far is A first sensor body in which the first characteristic linear sensor is a first linear sensor, and a plurality of the first linear sensors are arranged at intervals in the radial direction of the first linear sensor; A first linear body disposed between the adjacent first linear sensors and extending in the same direction as the extension direction of the first linear sensors, wherein the first linear body is softer than the first linear sensors; A second sensor body in which the first characteristic linear sensor is a second linear sensor, and a plurality of the second linear sensors are arranged at intervals in the extending direction of the first linear sensor; And a second linear body disposed between the adjacent second linear sensors and extending in the same direction as the extension direction of the second linear sensors, wherein the second linear body is softer than the second linear sensors.
- the first sensor body and the second sensor body are inseparably overlapped.
- Coupling means for coupling the first sensor body and the second sensor body may be provided, and the coupling means may be part or all of the first linear body, or the second linear body. It may be part or all of the body.
- the second linear sensor and the second linear body are attached by the first linear object, and the first linear sensor and the first linear object are attached by the second linear object. It may be done.
- it comprises a first coupling linear body for binding the second linear sensor and the second linear body, and a second coupling linear body for binding the first linear sensor and the first linear body. It may be
- the first coupling linear body is thinner than the first characteristic linear sensor, and the diameter of the first coupling linear body is 1 ⁇ 5 of the diameter of the first characteristic linear sensor. It may be 1/3 or less.
- the second coupling linear body is also thinner than the first characteristic linear sensor, and the diameter of the second coupling linear body is 1/1 of the diameter of the first characteristic linear sensor. It may be 5 or more and 1/3 or less.
- the first linear body may be larger in diameter than the first linear sensor, and the second linear body may be larger in diameter than the second linear sensor.
- one or more sensor bodies may be provided in which the first characteristic linear sensor is disposed.
- FIG. 7 is a perspective view of the wire sensor in the dispersion mode
- FIG. 8 (a) is a view schematically showing a cross-sectional view of the wire sensor shown in FIG.
- a wire sensor B1 shown in FIG. 7 has a first conductor B11 in which seven conductor wires B111 are twisted.
- the seven conductor lines B111 are constituted by four conductor lines B111S of stainless steel wires having a diameter of 20 ⁇ m and three conductor lines B111C of copper having a diameter of 20 ⁇ m.
- the copper conductor line B111C has lower electric resistance and is softer than the stainless steel conductor line B111S.
- the conductor wire B111S of the stainless steel wire has a higher electrical resistance but a higher mechanical strength (for example, a tensile strength or the like) than the conductor wire B111C of copper.
- the first conductor B ⁇ b> 11 is obtained by twisting the conductor lines B ⁇ b> 111 in the state of being disposed at each vertex of a regular hexagon and at the center of the regular hexagon. That is, the first conductor B11 is obtained by arranging seven conductor wires B111 in the close-packed structure and twisting them. By twisting the plurality of conductor wires B111 in a sweet-twisted or medium-twist manner, loosening in the direction opposite to the twisting direction is permitted, and the slack can provide flexibility.
- the former six conductors The line B111 is referred to as an outer conductor line B1111, and the latter one conductor line B111 is referred to as a central conductor line B1112.
- a conductor wire B111S of stainless steel wire is used for the central conductor wire B1112.
- a conductor wire B111S of a stainless steel wire and a conductor wire B111C of copper are used for the outer conductor wire B1111.
- conductor lines B111S of stainless steel wires and conductor lines B111C of copper are alternately arranged in the circumferential direction.
- the conductor wire hatched downward to the left is the conductor wire B111S of a stainless steel wire
- the conductor wire hatched downward to the right is the copper conductor wire B111C.
- the diameter of the conductor wire B111 is not limited to 20 ⁇ m, and may be 10 ⁇ m or more and 40 ⁇ m or less, and preferably 20 ⁇ m or more and 30 ⁇ m or less.
- the wire sensor B1 appears to be composed of only the first conductor B11.
- all the conductor lines B111 of the seven conductor lines B111 are A piezo coat layer B12 which is a piezoelectric body is formed on the entire peripheral surface.
- a second conductor layer B13 which is a second conductor is provided on the piezo coat layer B12 in each conductor line B111. That is, the second conductor is disposed outside the piezo coat layer B12, and the piezo coat layer B12 is provided between the conductor wire B111 and the second conductor layer B13. Therefore, the piezo coat layer B12 and the second conductor layer B13 are interposed between the adjacent conductor lines B111, and the conductor lines B111 are distributed.
- the piezo coat layer B12 shown in FIG. 8A is a layer formed by applying a piezo material such as polyvinylidene fluoride (PVDF).
- PVDF polyvinylidene fluoride
- Polyvinylidene fluoride is a lightweight polymer material that generates a piezoelectric effect when a high voltage is applied and is polarized. When an external force is applied to this, a voltage is generated, and a distortion is generated when a voltage is applied. .
- the piezoelectric coating layer B12 is subjected to polarization processing, and when a force is applied to the piezoelectric coating layer B12 from the outside, a voltage is induced between the conductor wire B111 and the second conductor layer B13.
- Piezo materials include, in addition to polyvinylidene fluoride, trifluoroethylene (TrEF), mixed crystal materials of PVDF and TrEF, and polymer materials having a dipole moment such as polylactic acid, polyuric acid and polyamino acid. .
- a method of applying a piezo material it may be immersion (dubbing) coating, spray coating by spray etc., it may be impregnation coating, and brush coating may be carried out. The coating may be performed by a coating device using a coater or the like.
- the thickness of the piezo coat layer B12 is preferably equal to or greater than the diameter of the conductor wire B111.
- the thickness of the piezo coat layer B12 shown in FIG. 8A is 20 ⁇ m, but may be 10 ⁇ m to 50 ⁇ m.
- the thicker the thickness of the piezo coat layer B12 the better the sensor sensitivity.
- the limit value of the thickness of the piezo coat layer B12 is determined by the viscosity of the piezo material to be applied and the coating method.
- the wire sensor B1 becomes too hard and lacks flexibility.
- the second conductor layer B13 shown in FIG. 8A is a layer formed by applying a polymer conductive material containing carbon such as carbon nanotubes.
- a conductive material which forms 2nd conductor layer B13 the polymeric conductive material containing silver microparticles
- this conductive material it may be immersion (dubbing) coating, spray coating by spray etc., may be impregnation coating, or may be brush coating.
- the coating may be performed by a coating device using a coater or the like.
- the thickness of the second conductor layer B13 is preferably equal to or less than the diameter of the conductor wire B111, and preferably equal to or less than the thickness of the piezo coat layer B12. Although the thickness of 2nd conductor layer B13 shown to Fig.8 (a) is 10 micrometers, it should just be 5 micrometers or more and 50 micrometers or less.
- a piezo coat layer B12 is formed on the entire circumferential surface of each conductor wire B111, then a second conductor layer B13 is formed, and finally, seven conductor wires B111 are formed.
- the electric wire sensor B1 shown in FIG. 7 is completed.
- the conductor wire B111 constituting the first conductor B11 a plurality of types of conductor wires having different mechanical strengths and electrical resistances are used as the conductor wire B111 constituting the first conductor B11, but in the case of further enhancing softness or flexibility, or In the case of further lowering, the central conductor line B1112 may be replaced with a copper conductor line B111C. Alternatively, all seven conductor lines B111 may be made of copper conductor lines B111C. On the other hand, in order to further increase the mechanical strength, all the seven conductor lines B111 may be made of stainless steel conductor lines B111S.
- a conductor wire made of high tensile steel or ultrahigh tensile steel such as tungsten, tungsten and its alloy may be used, or titanium or titanium instead of copper conductor wire B111C.
- the conductor wire B111 thus far has a single wire structure, the conductor wire B111 itself may be a stranded wire structure.
- FIG. 8B is a view showing an example in which the conductor wire B111S of one stainless steel wire has a stranded wire structure of seven stainless steel wires Bsy.
- the conductor wire shown on the right side of FIG. 8B is a stranded wire obtained by twisting seven stainless steel wires Bsy each having a diameter of 30 ⁇ m, and the conductor wire becomes thick.
- a piezo-coated layer B12 is formed on the entire circumferential surface of the primary stranded wire with each of the seven conductor wires as the primary stranded wire. Then, after the second conductor layer B13 is formed, these primary stranded wires are arranged in the closest packing structure.
- the first conductor is a secondary stranded wire obtained by further twisting seven primary stranded wires on which the piezo coat layer B12 and the second conductor layer B13 are respectively formed.
- the twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire. However, in order to further increase the flexibility of the first conductor B11, the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed.
- the cutting load of the first conductor B11 using seven conductor lines B111s shown on the right side of FIG. 8B is 0.058 kN.
- the number of stainless steel wires Bsy constituting the primary stranded wire is not limited to seven.
- the diameter of one stainless steel wire Bsy may be 10 ⁇ m or more and 40 ⁇ m or less, and preferably 20 ⁇ m or more and 30 ⁇ m or less. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength.
- the cutting load of the first conductor B11 is 0.025 kN
- the cutting load of the first conductor B11 is It becomes 0.107 kN.
- the diameter of the stainless steel wire Bsy which comprises a primary strand wire may also be varied for every conductor wire B111.
- a relatively thick stainless steel wire Bsy may be used to obtain a thick primary stranded wire, or a relatively thin stainless steel wire Bsy may be used to obtain a thin primary stranded wire.
- the number of stainless steel wires Bsy that constitute the primary stranded wire may be different for each conductor wire B111.
- a relatively large number of stainless steel wires Bsy may be used to obtain a thick primary stranded wire, or a relatively small number of stainless steel wires Bsy may be used to obtain a thin primary stranded wire. It is also good.
- the primary stranded wire may be a wire made of another conductive material and a stainless wire Bsy in addition to one made of only the stainless wire Bsy.
- the conductive material referred to here is a material different from stainless steel or a material different in mechanical strength from stainless steel. For example, copper, titanium, magnesium or the like may be used alone, or a combination of these materials may be used.
- the first conductor B11 may be formed of only the conductor wire of the primary stranded wire, or the conductor wire of the primary stranded wire and the conductor wire B111 shown on the left side of FIG. 8 (b). Thus, it may be composed of one metal conductor wire which is not a stranded wire structure.
- a conductor wire of primary stranded wire may be used as the outer conductor wire B1111, and a conductor wire not having a stranded wire structure may be used as the central conductor wire B1112, or vice versa.
- a conductor wire not having a stranded wire structure may be used, and a conductor wire of a primary stranded wire may be used as the central conductor wire B1112, or a conductor wire not having a stranded wire structure and a conductor wire having a primary stranded wire as an outer conductor wire B1111. May be alternately arranged in the circumferential direction, and a conductor wire of primary stranded wire or a conductor wire not having a stranded wire structure may be used as the central conductor wire B1112.
- the piezo coat layer B12 and the second conductor layer B13 are also formed on the center conductor line B1112, a conductor line on which the piezo coat layer B12 and the second conductor layer B13 are not formed on the center conductor line B1112 May be used.
- the center conductor line B1112 uses the second conductor layer B13 of the outer conductor line B1111 Sensing on the conductor line B1112 is enabled.
- the number of conductor lines B111 constituting the first conductor B11 is not limited to seven, and may not be arranged in the close-packed structure.
- a plurality of inner conductor lines may be disposed instead of one central conductor line B1112.
- the center conductor line B1112 may be surrounded by seven or more outer conductor lines B1111, or may be surrounded by five or less outer conductor lines B1111.
- the diameter of the conductor wire B111 which comprises 1st conductor B11 may be varied.
- the diameter of the central conductor line B1112 may be larger than or smaller than the diameter of the outer conductor line B1111.
- the conducting wire may be disposed in a gap BS1 (between the adjacent outer conductor wires B1111 between the central conductor wire B1112 and the outer conductor wire B1111 shown in FIG. 8).
- the conductor disposed in the gap BS1 may be a single copper wire, a stranded wire of a stainless steel wire Bsy, or a stranded wire obtained by twisting a plurality of thin copper wires. It is also good.
- the conductive wire may be disposed also in the gap BS2 outside the gaps between adjacent outer conductor wires B1111.
- the linear body disposed in the outer space BS2 may also be a single copper wire, or may be a stranded wire of a stainless steel wire Bsy, or a stranded wire obtained by twisting a plurality of thin copper wires. It may be As described here, a conducting wire may be further added to the gap between the conductor lines B111 that constitute the first conductor B11.
- a strip-shaped piezo film may be wound in a spiral shape.
- a piezo film made of band-like polyvinylidene fluoride (PVDF) having a width of 0.07 mm spirally on the circumferential surface of the conductor wire B111 the width direction of the piezo film adjacent in the extending direction of the conductor wire B111 You may wind in the state which overlap
- PVDF polyvinylidene fluoride
- the width of the strip-shaped piezoelectric film is not limited to 0.07 mm, but may be 0.03 mm or more and 2 mm or less, preferably 0.05 mm or more and 1.0 mm or less.
- the width of the piezoelectric film is too narrow, when spirally wound around the circumferential surface of the conductor wire B111, a gap is easily generated between the piezoelectric films adjacent in the extending direction of the conductor wire B111.
- the location where the gap is created becomes a location where sensing can not be performed, and at the same time, a short circuit occurs with the second conductor layer B13 disposed outside, which causes a problem that the sensor signal can not be obtained.
- the thickness of the piezoelectric film is preferably 20 ⁇ m to 100 ⁇ m and more preferably 25 ⁇ m to 80 ⁇ m. If the thickness of the piezoelectric film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the linear sensor will be too hard and the flexibility will be lost. Furthermore, it is more preferable that the piezoelectric film corresponds to a plurality of directions (elongation direction and bending direction) due to the orientation of crystals, than the piezoelectric characteristic corresponding to only the longitudinal direction (elongation direction).
- the wire sensor B1 can be made thinner.
- one lead may be spirally wound in one row on the outside of the piezo coat layer B12 or the piezo film. That is, it is the structure of a side winding shield.
- a tin-plated soft copper wire having a diameter of 50 ⁇ m may be used as the conducting wire here.
- not only a copper wire but a stranded wire of stainless steel wire may be used.
- it may be a braided shield in which a conducting wire is crossed and braided on the outside of the piezo coat layer B12 or the piezo film, or it may be a tape shield in which a tape-like conductor is spirally wound.
- the side shield is the most flexible.
- a plurality of conducting wires may be spirally wound around the piezoelectric coating layer B12 or the piezoelectric film, or a plurality of tape-shaped conductors may be spirally wound. It may be.
- the conductor line B111 is higher in mechanical strength than the second conductor.
- the thickness of the second conductor may be reduced by applying the conductive material than using the conducting wire. It is easy and can make electric wire sensor B1 thin.
- the diameter of the wire sensor B1 shown in FIGS. 7 and 8A is 0.24 mm.
- electric wire sensor B1 shown in FIG. 7 may provide a sheath in the further outer side of a 2nd conductor.
- the sheath is for covering the second conductor, and is for enhancing the abrasion resistance, the chemical resistance, and the corrosion resistance.
- the sheath is also a sheath layer formed by application.
- the application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like.
- the sheath layer may have a single layer structure or a multilayer structure.
- the inner layer may have a two-layer structure consisting of an inner layer and an outer layer, and the inner layer is formed by applying a soft material (for example, a polyamide synthetic resin or polyvinyl chloride resin) compared to the outer layer, and the outer layer is an inner layer
- Materials with high abrasion resistance compared to eg, polytetrafluoroethylene (PTFE), 4-fluoro- and 6-fluoro-propylene fluorocarbon resin (FEP), tetrafluoroethylene-ethylene copolymer (EPFE), tetrafluoroethylene perco
- PTFE polytetrafluoroethylene
- FEPFE tetrafluoroethylene-ethylene copolymer
- EPFE tetrafluoroethylene perco
- PFA coating fluoro alkoxy ethylene copolymer fluorine resin
- the outer layer may be thicker than the inner layer.
- the inner layer may be formed of a flammable material, but the outer layer is preferably formed of a flame retardant material, a non-combustible material, and a flame resistant material.
- the total thickness of the sheath layer is about 5 ⁇ m to 50 ⁇ m.
- the sheath may be a polyester tape or tube type, and its thickness may be 20 ⁇ m or more and 50 ⁇ m or less. It may be a tape or tube type, may have a single layer structure, or may have a multilayer structure. However, when the sheath layer is formed by coating, it is easier to make the thickness of the sheath thinner than the tape or tube type, and the wire sensor B1 can be made thinner. In addition, if it is not necessary to improve the abrasion resistance, the chemical resistance, and the rustproofness, the sheath may not be provided.
- the first conductor B ⁇ b> 11 is formed by twisting seven conductor wires B ⁇ b> 111, but a plurality of conductor wires may be linearly bundled. A bundle of a plurality of conductor wires in a straight line can be bundled by a sheath.
- FIG. 9 is a figure for demonstrating the effect of the electric wire sensor demonstrated here.
- FIG. 9A shows a thick first conductor B11f and a piezoelectric material BP covering the periphery thereof.
- the radius of the first conductor B11f shown in FIG. 9A is five, and the thickness of the piezoelectric material BP is one.
- the thickness of the entire first conductor B11f shown in FIG. 9A and the piezo material BP covering the periphery thereof is 12 and the cross-sectional area of the piezo material BP shown in FIG. 9A is 11 ⁇ .
- the limit value of the thickness of the piezo material is determined by the viscosity of the piezo material and the application method.
- the thickness of the piezoelectric material BP can be maintained at 1, and an example is shown in which the first conductor is thinned while the thickness of the piezoelectric material BP is the same.
- the radius of the first conductor B11t illustrated in FIG. 9B is four.
- the thickness of the whole of the first conductor B11t shown in FIG. 9B and the piezo material BP covering the periphery thereof is 10, and the cross-sectional area of the piezo material BP shown in FIG. 9B is 9 ⁇ . It can be seen that if the first conductor is thinned while keeping the thickness of the piezoelectric material BP the same, the cross-sectional area of the piezoelectric material BP decreases.
- FIG. 9C shows a first conductor consisting of seven conductor lines.
- the radius of each conductor line B111t is 2/3.
- the thickness of the piezoelectric material BP covering the periphery of each conductor line B111t can be kept at 1, which is the same as the thickness of the piezoelectric material BP shown in FIG. 9A or FIG. While the total thickness shown in FIG. 9C is also 10, the total cross-sectional area of the piezoelectric material BP covering the periphery of each of the seven conductor lines B111t shown in FIG. It becomes 3 ⁇ (2.3 ⁇ ⁇ 7) and is larger than 11 ⁇ which is the cross-sectional area of FIG.
- FIG. 9A is a cross-sectional perspective view of the electric wire sensor B1 cut in the vertical direction. The second conductor is not shown. A force is applied to the electric wire sensor B1 shown in FIG. 9A from the lower side toward the upper side, and the electric wire sensor B1 is deformed into a curved shape with the upper side convex.
- FIG. 9 (2) is a view of the electric wire sensor B1 having a curved shape in which the upper side is convex, viewed from the side opposite to the side shown in FIG. 9 (1). That is, it is the figure seen in the direction of the arrow shown in FIG. 9 (1).
- the piezoelectric material BP is softer than the conductor wire B111, the upper piezoelectric material BP tends to expand and the lower piezoelectric material BP tends to shrink. It is considered that the generation of charges may be offset between the upper side and the lower side due to this expansion / contraction relationship. Even when this happens, charges are generated on the side (the back of the paper in FIG. 9 (2)) and the opposite side (the front of the paper in FIG. 9 (2)) shown in FIG. It is considered that a signal is output. Therefore, the thickness of the piezoelectric material BP on the side and the opposite side becomes important.
- the thickness of the piezoelectric material BP is made as thick as possible in any direction.
- the ratio of the thickness of the piezoelectric material BP to the thickness of one conductor wire is higher than in the example shown in FIG. 9 (a) or FIG. 9 (b). That is, the thickness of the piezoelectric material is preferably equal to or greater than the diameter of the conductor wire.
- FIG. 10 is a view showing an example of an electric wire sensor in a collective mode in which the piezo coat layer B12 'is formed after the seven conductor lines B111 are twisted and then the second conductor layer B13' is formed.
- FIG. 10A is a view showing a state after seven conductor wires B111 arranged in the close-packed structure are twisted together.
- a conductor line B111S of a stainless steel wire and a conductor line B111C of copper are used as a first conductor B11 shown in FIG. 10A. That is, the first conductor B11 shown in FIG. 10A is obtained by twisting different types of conductor wires. Adjacent conductor lines B111 shown in FIG. 10A are in contact with each other.
- One conductor wire B111 shown in FIG. 10A has a diameter of 10 ⁇ m, and the thickness of the first conductor B11 is 30 ⁇ m.
- the first conductor B11 shown in FIG. 10A corresponds to an example of the inner conductor.
- FIG. 10 (b) is a view showing a state in which a piezoelectric material such as polyvinylidene fluoride (PVDF) is applied to the seven conductor wires B111 twisted together shown in FIG. 10 (a).
- PVDF polyvinylidene fluoride
- a piezo material is supported on the portion of the outer conductor wire B1111 shown in FIG. That is, the piezo coat layer B12 'is formed only on the portion of the outer conductor wire B1111 facing the outside.
- the piezo coat layer B12 'shown in FIG. 10 (b) depressions BD are formed at six places. The depression BD is not formed even when the piezoelectric material is applied to the first conductor which is not a stranded wire structure but is formed of one conductor wire. The depression BD causes a change in the thickness of the piezo material.
- the thickness td of the piezoelectric material in the portion in which the recess D is formed is larger than the thickness t2 of the piezoelectric material in the middle portion between the recess BD and the recess BD. Therefore, in the portion where the depression BD is formed, the sensor sensitivity is better than other portions because the volume of the piezoelectric material is large.
- the depressions BD are uniformly provided in the circumferential direction, and become a factor that functions as a highly sensitive electric wire sensor regardless of the direction in which the depressions are bent.
- the thickness (t2) of the piezo coat layer B12 'shown in FIG. 10 (b) is 10 .mu.m. Further, although adjacent conductor wires B111 shown in FIG. 10A are in contact with each other, the piezoelectric material is not in contact with each other due to capillary action, and the gap BS1 between the central conductor wire B1112 and the outer conductor wire B1111 (the adjacent outer conductor wires B1111 The gap BS1 is filled with the piezoelectric material.
- the piezo material does not penetrate into the above-mentioned gap BS1 and the piezo material is supported only on the part of the peripheral surface of the outer conductor wire B111 facing the outside. is there.
- FIG. 10C shows polymer conduction including carbon such as carbon nanotubes in the case where the piezo coat layer B12 ′ is formed only on the portion facing the outside of the outer conductor wire B111 shown in FIG. 10B.
- FIG. 2 is a view showing a state in which an elastic material is applied.
- a second conductor layer B13 ' is formed outside the piezo coat layer B12' shown in FIG. 10C, and the piezo coat layer B12 'is covered by the second conductor layer B13'. That is, the second conductor formed of the second conductor layer B13 'is supported only on the portion facing the outer side of the piezo material carried on the peripheral surface of the outer conductor wire B111.
- the 2nd conductor which consists of 2nd conductor layer B13 'shown in FIG.10 (c) is corresponded to an example of an outer conductor. Thickness (t3) of 2nd conductor layer B13 'shown in FIG.10 (c) is 5 micrometers.
- the gap BS1 between the central conductor line B1112 and the outer conductor line B1111 is filled with the piezo material as described above, there is no room for the polymer conductive material to enter.
- the polymer conductive material may permeate into the gap BS1 by capillary action, and the gap BS1 may be filled with the polymer conductive material.
- the polymer conductive material may not penetrate into the space BS1, and the space BS1 may remain as a space.
- the electric wire sensor B1 shown in FIG. 10C is completed.
- the electric wire sensor shown in FIG. 10 (c) is not the same as the electric wire sensor shown in FIG. 8 (a), but the reference numeral "1" is used in common.
- the configuration of the electric wire sensor B1 shown in FIG. 10C can be made the thinnest, and the thickness to the second conductor layer B13 'is 60 ⁇ m. Even if the sheath layer is provided in a double structure, a wire sensor B1 of 0.1 mm can be realized.
- the electric wire sensor B1 which can be easily manufactured and obtained at low cost, using the conductor wire B111 having a diameter of 20 ⁇ m, the piezo conductor layer B12 ′ having a thickness of 20 ⁇ m is applied to the first conductor B11 having a thickness of 60 ⁇ m. Then, a second conductor layer B13 'having a thickness of 10 ⁇ m is formed. In this configuration, the thickness to the second conductor layer B13 'is 0.12 mm. In this case, even if the sheath layer is provided in a double structure, the wire sensor B1 of 0.15 mm or less can be realized.
- the first conductor B11 shown in FIG. 10A is obtained by twisting seven conductor wires B111, but a plurality of conductor wires are bundled in a straight line without twisting. May be Even in this case, by applying a piezoelectric material or applying a conductive material, a plurality of conductor wires are bonded to one another and bundled. Alternatively, it can be bundled by a sheath.
- FIG. 11 is a view showing an example of the wire sensor in a dispersion mode in which the second conductor layer B13 'is formed after the seven conductor wires B111 on which the piezo coat layer B12 is formed are twisted.
- a piezo coat layer B12 is formed on the circumferential surface of each of the seven conductor wires B111 shown in FIG.
- belt-shaped piezo film may be a conductor wire wound helically.
- These seven conductor wires B111 are twisted together in a state of being arranged in the close-packed structure, and the piezo coat layers B12 formed on the peripheral surfaces of the adjacent conductor wires B111 shown in FIG. ing.
- the piezo coat layer B12 is interposed between the adjacent conductor lines B111 shown in FIG. 11A, and the conductor lines B111 are distributed. Further, one conductor wire B111 shown in FIG. 11A has a diameter of 10 ⁇ m, and the thickness of the piezo coat layer B12 is also 10 ⁇ m.
- FIG. 11B is a view showing a state in which a polymer conductive material containing carbon such as a carbon nanotube is applied to the seven conductor wires B111 twisted together shown in FIG. 11A.
- the second conductor layer B13 ' is formed only on the portion facing the outer side of the piezo coat layer B12 formed on the circumferential surface of the outer conductor wire B1111 shown in FIG. 11 (b). Thickness (t3) of 2nd conductor layer B13 'shown in FIG.11 (b) is 5 micrometers. Further, although the piezo coat layers B12 formed on the peripheral surfaces of the adjacent conductor wires B111 shown in FIG.
- the polymer conductive material is formed by the capillary phenomenon, the central conductor wire B1112 and the outer conductor It penetrates into the space BS1 with the line B1111 (between the adjacent outer conductor lines B1111, the inner side), and the space BS1 is filled with the polymer conductive material.
- the polymer conductive material may not penetrate into the gap BS1 depending on the viscosity of the polymer conductive material and the coating method.
- the outer space BS2 out of the gaps between the outer conductor wires B1111 may be filled with a polymer conductive material, as strictly shown by a two-dot chain line in FIG.
- the wire sensor B1 shown in FIG. 11B is completed.
- the electric wire sensor shown in FIG. 11 (b) is not the same as the electric wire sensor shown in FIG. 8 (a), but the same reference numeral is used here as "1".
- the thickness to the second conductor layer B13 ' is 0.1 mm.
- the 20 ⁇ m thick piezo-coated layer B12 is formed using the conductor wire B111 of 20 ⁇ m in diameter, and the second 10 ⁇ m thick Conductor layer B13 'is formed. In this configuration, the thickness to the second conductor layer B13 'is 0.2 mm.
- the seven conductor wires B111 on which the piezo coat layer B12 is formed are twisted together, but a plurality of conductor wires are bundled in a straight line without twisting. It may be. Even in this case, by applying the conductive material, the plurality of conductor wires are bonded to one another and bundled. Alternatively, if a sheath is provided, it can be bundled by the sheath.
- the electric wire sensor B1 described with reference to FIGS. 7 to 11 is sufficiently thin, it can be passed through a blood vessel.
- a contact can be provided at the tip of the electric wire sensor B1, inserted into the blood vessel from the contact, and the contact can be brought into contact with the wall surface of the organ to measure the hardness of the wall surface. If the hardness of the organ wall can be measured, it can lead to the discovery of cancer cells.
- a plurality of wire sensors B1 in FIGS. 7 to 11 provided with a sheath may be prepared, and the plurality of wire sensors B1 may be further covered with a sheath to form a linear sensor.
- seven electric wire sensors B1 provided with a sheath may be prepared, and the seven electric wire sensors B1 may be twisted in a close-packed state and further covered with a sheath.
- one wire sensor B1 if the sheath is torn, water etc. may enter and corrode, or the current may leak, but multiple wire sensors B1 provided with a sheath may be used.
- the wire sensor B1 described with reference to FIGS. 7 to 11 can be made sufficiently thin, even if a plurality of wire sensors B1 are further covered with a sheath in this manner, the overall thickness is greater than in the prior art Can be obtained.
- the wire sensor B1 described using FIGS. 7 to 11 may be used instead of the wire sensor A1.
- the vertical wire A21 corresponds to an example of a vertical linear body.
- the electric wire sensor B1 described with reference to FIGS. 7 to 11 may be used instead of the electric wire sensor A1.
- the wire sensor B1 When the wire sensor B1 is thin and soft (for example, when the thickness is 2 mm or less), it can be woven with other fibers in a general weave (for example, plain weave, twill weave, etc.).
- a general weave for example, plain weave, twill weave, etc.
- control unit here is also the same as the control unit provided when the planar sensor A3 shown in FIG. 3 is used for the tactile sensor, and is the same as the explanation on the control unit described above and the explanation of the determination. Omit.
- the wire sensor B1 described with reference to FIGS. 7 to 11 can be used in other application examples of the wire sensor A1 described with reference to FIGS. 5 and 6 and the like. That is, the wire sensor B1 can be used as a spirally wound electric wire sensor B1, and a belt-like sensor or a sheet shape sensor can be manufactured by weaving the electric wire sensor B1 like a woven fabric. In addition, you may hold down and you may knit.
- the electric wire sensor B1 can increase the flexibility by making the electric wire sensor B1 thinner than a conventional sensor, the electric wire sensor B1 can also be used as the knitted sensor described with reference to FIG. 5 (a).
- the piezoelectric coating layer B12 which is a piezoelectric body
- the piezoelectric film is wound around the conductor wire B111. Good.
- the electric wire sensor B1 can also be divided and used for a sensor part and the transmission line of an output signal by heating partially until it exceeds Curie temperature.
- the planar sensor using the electric wire sensor B1 does not expand and contract in the X-axis direction and does not expand and contract in the Y-axis direction, but in the diagonal direction
- the first electric wire sensor extends in the X axis direction
- the second electric wire sensor extends to the Y axis direction, and is applied to the planar sensor shown in FIG. 5C using the electric wire sensor B1. If the objects are stacked, it is possible to realize a sensor that expands and contracts in the X-axis direction, the Y-axis direction, and the diagonal direction.
- belt-shaped sensor using electric wire sensor B1 can also be wound around welded piping, and can be utilized for the defect inspection of a welding part.
- planar sensor using the electric wire sensor B1 is also used to detect vibrations at high places, to detect heartbeats and respirations of people as vibrations, and to monitor various types of care such as nursing care and pets. It can also be done.
- a glove having a planar sensor using the electric wire sensor B1 may be attached to a robot hand, or may be attached to a person and used for data acquisition such as gripping force in various operations.
- planar sensor using electric wire sensor B1 is also applicable to the grip for rehabilitation for the contracture patient of a finger.
- a planar sensor using the wire sensor B1 can also be applied to the robot hand as described with reference to FIG.
- the second characteristic linear sensor described with reference to FIGS. 7 to 11 is A first conductor having a plurality of conductor lines; And a second conductor, Among the plurality of conductor wires, an outer conductor wire constituting at least an outer peripheral surface of the first conductor carries a piezoelectric material on the peripheral surface, The second conductor may be disposed at least on the outer side of a piezo material carried on the circumferential surface of the outer conductor wire.
- a linear sensor in which a piezoelectric material (piezoelectric material) is disposed on the outer peripheral surface of the first conductor is known (see, for example, Japanese Patent Application Laid-Open No. 2008-151638).
- This linear sensor can be used as a tactile sensor or a vibration sensor.
- a tactile sensor may be used in a manner in which a human touches it, and the sensor itself may be required to have a soft touch.
- the sensor when using as a vibration sensor, the sensor may be wound around an object, or the sensor may be used in a bent state, and flexibility may be required. In order to obtain a soft touch and flexibility, it is conceivable to make the first conductor thinner. Moreover, even if it is too thick and it has not been possible to insert and inspect a linear sensor, if a linear sensor can be made thin, an inspection may become possible.
- the sensor sensitivity is proportional to the volume of the piezoelectric material, and the smaller the volume, the lower the sensor sensitivity.
- the first material can be made to have the same thickness. Even if the conductor is made thinner, the volume per unit length of the piezoelectric material does not decrease, or the decrease in volume is suppressed. Therefore, it is possible to realize a linear sensor in which the sensor sensitivity does not decrease even if the first conductor is thinned, or the decrease in sensor sensitivity is suppressed.
- the first conductor may be in the form of an assembly in which the plurality of conductor wires are integrated into one, or may be in the form of dispersion in which the plurality of conductor wires are distributed.
- the plurality of conductor wires may be linearly bundled, or the plurality of conductor wires may be twisted.
- the plurality of conductor wires When the plurality of conductor wires are twisted, it may be a stranded wire obtained by twisting stainless steel wires.
- the diameter of one stainless steel wire may be 10 ⁇ m to 40 ⁇ m, preferably 20 ⁇ m to 30 ⁇ m. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength.
- the cross-sectional shape of the first conductor may be entirely twisted in a state in which the stranded wire is disposed at each vertex of the regular hexagon and at the center of the regular hexagon. That is, it may be a close packed structure.
- the first conductor may be configured of only the stranded wire, or may be configured of the stranded wire and another metal wire.
- the whole may be twisted in a state in which the stranded wire is disposed at each vertex of a regular hexagon and a copper wire is disposed at the center of the regular hexagon, or the stranded wire may be a vertex of a regular hexagon
- copper wires may be disposed at every other apex, and copper wires or twisted wires may be disposed at the center of the regular hexagon, and the whole may be twisted.
- the diameter of the first conductor may be 0.03 mm or more and 0.8 mm or less, and being 0.06 mm or more can be manufactured at low cost or is easy to manufacture, and is 0.5 mm or less It is preferable in terms of fineness.
- the first conductor may have a twisted structure in which the outer conductor wire is disposed around a central conductor wire located at the center.
- the central conductor line may also be one carrying a piezo material on its peripheral surface, in which case the first conductor is in a dispersed state.
- the central conductor line may not carry the piezoelectric material on the circumferential surface, and in this case, the first conductors are in a collective mode.
- the central conductor wire is made of a high tensile steel such as stainless steel wire or tungsten, ultrahigh tensile steel, tungsten and its alloy, titanium and its alloy, Mg and It may consist of conducting wires, such as materials, such as the alloy, and mechanical strength may be higher than the said outer side conductor wire.
- the outer conductor wire may be made of copper, and may have a lower electrical resistance than the central conductor wire and be softer.
- two types of outer conductor wires, one with relatively low electrical resistance and softness, and one with relatively high electrical resistance and high mechanical strength, are provided, and these two types of outer conductor wires are circumferentially distributed. May be alternately arranged.
- the outer conductor wire may carry the piezo material on the entire circumferential surface, or may carry the piezo material only on the part of the circumferential surface facing the outside.
- the piezoelectric material may be a strip-shaped piezoelectric film. That is, before twisting together the plurality of conductor wires, a belt-like piezoelectric film may be spirally wound around the peripheral surface of each conductor wire, and the piezoelectric material may be supported on the peripheral surface of each conductor wire. In this structure, the first conductor is in a distributed manner.
- the piezoelectric film has a width of 0.03 mm or more and 2 mm or less, preferably 0.05 mm or more and 1.0 mm or less.
- the piezoelectric film When the piezoelectric film is spirally wound around the circumferential surface of the conductor wire, the piezoelectric film is wound in a state where one end and the other end of the width direction of the piezoelectric film adjacent in the extending direction of the conductor wire overlap each other Will not occur.
- the width of the piezoelectric film is too narrow, when spirally wound around the outer peripheral surface of the conductor wire, a gap is likely to be generated between the piezoelectric films adjacent in the extending direction of the conductor wire.
- a location where a gap is formed becomes a location where sensing can not be performed, and at the same time, there is a disadvantage that the sensor signal can not be obtained because it is short-circuited with the second conductor disposed outside.
- the width of the piezoelectric film is too wide, slack is easily generated when wound around the circumferential surface of the conductor wire.
- the area of the piezoelectric film can be made as large as possible by superposing one end and the other end in the width direction of the piezoelectric film, which leads to the improvement of the sensor sensitivity.
- the thickness of the piezoelectric film is preferably 20 ⁇ m to 100 ⁇ m, and more preferably 25 ⁇ m to 80 ⁇ m. If the thickness of the piezoelectric film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the linear sensor will be too hard and the flexibility will be lost.
- the piezoelectric film preferably has a piezoelectric property corresponding to a plurality of directions (elongation direction and bending direction) due to crystal orientation, compared with a case where the piezoelectric characteristic corresponds only to the longitudinal direction (elongation direction).
- a piezo material may be applied to the peripheral surface of the conductor wire and the piezoelectric material may be supported on the peripheral surface of the conductor wire.
- the application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like.
- the outer conductor wire itself is also a stranded wire structure, it may be impregnated with a piezo material, and the piezo material may penetrate into the outer conductor wire by capillary action. Also in this case, the first conductor is in the dispersed mode.
- the piezoelectric material may be supported on the peripheral surface of the outer conductor wire by applying the piezoelectric material to the outer peripheral surface of the first conductor after twisting the plurality of conductor wires.
- the application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like.
- the first conductor may be impregnated with a piezo material, and the piezo material may penetrate into the interior of the first conductor by capillary action. In this case, the first conductors are in a collective manner.
- the thickness of the applied piezoelectric material is preferably equal to or greater than the diameter of the conductor wire, and is, for example, 0.01 mm or more and 0.05 mm or less.
- a sheath covering the second conductor may be provided.
- This sheath is for enhancing the abrasion resistance, the chemical resistance and the rust prevention.
- the sheath may also be formed by application, and further may have a multilayer structure.
- the application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like. Moreover, it is preferable to apply a plurality of times in consideration of the occurrence of pinholes.
- the thickness of the sheath is about 5 ⁇ m to 50 ⁇ m.
- the diameter of the linear sensor including the sheath may be 0.1 mm.
- the first conductor may be formed by twisting the plurality of conductor wires.
- the piezoelectric material may be filled between the adjacent outer conductor wires.
- This aspect is an aspect that can be realized by applying a piezoelectric material to the outer peripheral surface of the first conductor after twisting the plurality of conductor wires.
- the piezoelectric material may be filled only between the outer side, the piezoelectric material may be filled only between the inner side, or between the outer side Both between the inside may be filled with piezo material.
- the piezo material filled in between the adjacent outer conductor wires is a piezo material penetrated by capillary action.
- the second conductor may be carried on at least a portion facing the outer side of the piezoelectric material carried on the circumferential surface of the outer conductor wire.
- the second conductor may be carried only on the portion facing the outside of the piezo material carried on the circumferential surface of the outer conductor wire, or may be carried on the entire circumferential surface of the outer conductor wire It may be carried on the entire piezo material.
- the second conductor may be formed by applying a conductive material.
- the application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like.
- the thickness of the applied conductive material forming the second conductor is preferably equal to or less than the diameter of the conductor wire, and preferably equal to or less than the thickness of the applied piezoelectric material.
- the thickness of the conductive material is, for example, 5 ⁇ m or more and 50 ⁇ m or less.
- the second conductor may be a braided shield in which a conducting wire is crossed and braided on the outside of the piezoelectric material, or a laterally wound shield in which the conducting wire is spirally wound in one row.
- the second conductor may be a tape shield in which a tape-like (strip-like) conductor is spirally wound on the outside of the piezoelectric material.
- the side shield is the most flexible.
- the second conductor may be one in which a plurality of conducting wires are spirally wound, or a plurality of tape-shaped (strip-like) conductors are spirally wound. It is also good.
- the second characteristic strip sensor described so far is The second characteristic linear sensor; A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor; It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
- the metal longitudinal wire is for providing mechanical strength, and may include, for example, a stainless steel wire. More specifically, it may be a stranded wire of a stainless steel wire, or may be a wire in which a stainless steel wire and a non-metallic linear body are twisted. Furthermore, the vertical wire-like body made of metal may have mechanical strength higher than that of the second characteristic linear sensor. In addition, a plurality of linear sensors may be disposed at intervals rather than one, and the vertical linear bodies may be disposed at the intervals. In this case, only the vertical linear body may be disposed at the interval, or the vertical linear body and the nonmetallic linear body may be disposed.
- the horizontal linear body may be a strand of stainless steel wire and a non-metallic linear body.
- the non-metallic linear body described here may be a resin-made linear body, or may be a natural fiber such as cotton yarn. That is, the non-metallic linear body may be a chemical fiber or a natural fiber.
- the second characteristic planar sensor described so far is A first sensor body in which the second characteristic linear sensor is a first linear sensor, and a plurality of the first linear sensors are arranged at intervals in the radial direction of the first linear sensor; A first linear body disposed between the adjacent first linear sensors and extending in the same direction as the extension direction of the first linear sensors, wherein the first linear body is softer than the first linear sensors; A second sensor body in which the second characteristic linear sensor is a second linear sensor, and a plurality of the second linear sensors are arranged at intervals in the extending direction of the first linear sensor; And a second linear body disposed between the adjacent second linear sensors and extending in the same direction as the extension direction of the second linear sensors, wherein the second linear body is softer than the second linear sensors.
- the first sensor body and the second sensor body are inseparably overlapped.
- Coupling means for coupling the first sensor body and the second sensor body may be provided, and the coupling means may be part or all of the first linear body, or the second linear body. It may be part or all of the body.
- the second linear sensor and the second linear body are attached by the first linear object, and the first linear sensor and the first linear object are attached by the second linear object. It may be done.
- it comprises a first coupling linear body for binding the second linear sensor and the second linear body, and a second coupling linear body for binding the first linear sensor and the first linear body. It may be
- the first coupling linear body is thinner than the second characteristic linear sensor, and the diameter of the first coupling linear body is one fifth of the diameter of the second characteristic linear sensor. It may be 1/3 or less.
- the second coupling linear body is also thinner than the second characteristic linear sensor, and the diameter of the second coupling linear body is also 1/1 of the diameter of the second characteristic linear sensor. It may be 5 or more and 1/3 or less.
- the first linear body may be larger in diameter than the first linear sensor, and the second linear body may be larger in diameter than the second linear sensor.
- one or more sensor bodies may be provided in which the second characteristic linear sensor is disposed.
- a linear sensor in which the sensor sensitivity does not decrease even if the first conductor is thinned, or a decrease in sensor sensitivity is suppressed, and a strip sensor and a surface using the linear sensor A shape sensor can be provided.
- FIG. 12 is a cross-sectional view of two types of wire sensors.
- the two types of electric wire sensors C1 shown in FIG. 12 are each composed of an inner conductor C11, a piezoelectric body C12, an outer conductor C13, and a sheath C14.
- the inner conductor C11 has a central conductor line C1112 passing through the center and an outer conductor line C1111 surrounding the central conductor line C1112.
- the wire sensor C1 shown in FIG. 12 (a) is a wire sensor not having a stranded wire structure. That is, the center conductor line C1112 and the outer conductor line C1111 are not stranded wires but one conductor line.
- the central conductor line C1112 shown in FIG. 12 (a) is a conductor line made of stainless steel, and the outer conductor line C1111 shown in FIG. 12 (a) is a copper conductor line.
- the center conductor line C1112 shown in FIG. 12A is thicker than the outer conductor line C1111 shown in FIG. 12A, for example, twice or more as thick as the outer conductor line C1111.
- the thickness of the central conductor line C1112 is determined by the mechanical strength required of the wire sensor C1.
- nineteen outer conductor lines C1111 are provided in the electric wire sensor C1 shown in FIG. 12A.
- the number of outer conductor lines C1111 is not limited to nineteen.
- Copper has a lower electrical resistance value than stainless steel and is excellent in conductivity, and in this example, mechanical strength is secured on the center side and conductivity is secured on the outside where current easily flows.
- the central conductor lines C1112 are arranged in a state where adjacent central conductor lines C1112 are in contact with each other without leaving a space.
- One central conductor line C1112 and nineteen outer conductor lines C1111 are bundled in a straight line, and the inner conductor C11 shown in FIG. 12A does not have a stranded wire structure.
- tungsten or titanium may be used instead of stainless steel.
- high-tensile fiber having conductivity for example, polyparaphenylene terephthalamide, aramid fiber, etc.
- This is not limited to the central conductor line C1112, and is the same as long as it is made of stainless steel, and is the same in the description from FIG. 1 to the above, and the same in the following description.
- the 19 outer conductor lines C1111 are bundled in the same direction as the center conductor line C1112, one outer conductor line C1111 may be spirally wound in one row around the center conductor line C1112. . That is, the outer conductor wire C1111 may be arranged in a lateral winding.
- the outer conductor wire C1111 has a thickness of 15 ⁇ m to 40 ⁇ m (for example, 30 ⁇ m), and the center conductor wire C1112 is 2 You may use the thing of thickness twice or more and 4 times or less (for example, 3 times).
- the outer conductor wire C1111 may be replaced by one made of copper, by one made of titanium, platinum or silver, or by a polymer material containing carbon nanofibers, or it may be made highly conductive. It may be replaced by a molecule. This is not limited to the outer conductor wire C1111, and is the same as long as it is made of copper, and is the same in the description from FIG.
- the internal conductor C11 is not in a stranded wire structure, but the outer conductor C11 1 may be twisted around the center conductor C1 1 12.
- the outer conductor wire C1111 may be eliminated, and a hard film of nitrogen-containing diamond like carbon (DLC) may be provided on the outer peripheral surface of the center conductor wire C1112.
- the nitrogen-containing diamond like carbon (DLC) has good conductivity and can be provided on the outer peripheral surface of the central conductor line C1112 by plasma deposition.
- the outer conductor line C1111 may be eliminated, and copper plating or copper deposition may be performed on the outer peripheral surface of the center conductor line C1112, or copper foil may be supported.
- central conductor line C1112 shown in FIG. 12 (a) may be a copper wire
- outer conductor line C1111 shown in FIG. 12 (a) may be a stainless steel conductor line.
- the wire sensor C1 shown in FIG. 12 (b) is a wire sensor having a stranded wire structure. That is, although the central conductor line C1112 is a single conductor line made of stainless steel, the outer conductor line C1111 is formed by twisting seven copper conductor lines C1111c. One conductor line C1 111 c has a diameter of 15 ⁇ m. The seven conductor lines C1111c are twisted in a state of being arranged at the respective apexes of the regular hexagon and at the center of the regular hexagon. That is, the outer conductor line C1111 is obtained by arranging seven conductor lines C1111c in the close-packed structure and twisting them.
- the diameter of the outer conductor wire C1111 shown in FIG. 12B is 45 ⁇ m.
- the diameter of central conductor line C1112 shown in FIG. 12B is also 45 ⁇ m.
- One central conductor line C1112 shown in FIG. 12 (b) and the outer conductor line C1111 shown in FIG. 12 (b) are bundled in a straight line, and do not have a stranded wire structure. However, the outer conductor wire C1111 shown in FIG. 12 (b) may be twisted around the center conductor wire C1112 shown in FIG. 12 (b).
- the number of conductor lines C1111c constituting the outer conductor line C1111 is not limited to seven.
- at least the six outer conductor lines are made of a material other than copper, preferably a surface of a material softer than stainless steel, such as nitrogen containing diamond like carbon (DLC) What provided the film
- DLC diamond like carbon
- supported copper foil may be used.
- the at least six outer conductor wires conductor wires of a polymer material containing carbon nanofibers may be replaced, or conductor wires of a conductive polymer may be replaced.
- central conductor line C1112 shown in FIG. 12B may be a copper wire
- outer conductor line C1111 shown in FIG. 12B may be a stranded wire of stainless steel wire.
- the central conductor line C1112 may not be a stranded wire but may be a single conductor line, which also applies to the electric wire sensors A1 and B1 described so far from FIG.
- the single conductor wire may be made of stainless steel, may be made of tungsten, and is not limited to metal, and may be a high tension fiber having conductivity (for example, It may be made of poly (p-phenylene terephthalamide), aramid fibers and the like.
- the proportion of stainless steel in the internal conductor C11 shown in FIG. 12A is higher than the proportion of copper, and the internal conductor C11 shown in FIG. Conversely, the proportion of stainless steel is lower than that of copper.
- the ratio referred to here is the ratio of the cross-sectional area. If the mechanical strength is high or the number of bending is large, the proportion of stainless steel is increased, and if the priority is flexibility or conductivity, the proportion of copper is increased.
- the piezoelectric body C12 is the same as the piezoelectric body A12 described with reference to FIG. 1, and is formed of a strip-shaped piezoelectric film having a width of 3 mm.
- FIG. 13 is a view showing how a piezo film is wound around the outer peripheral surface of the internal conductor C11.
- Piezo film CF is made of polyvinylidene fluoride (PVDF).
- PVDF polyvinylidene fluoride
- the overlapping width is preferably 1/4 or more and 3/4 or less of the width of the piezo film CF. If it is less than 1/4, if bending and stretching of the electric wire sensor C1 is repeated, a gap may occur. On the other hand, if it exceeds 3/4, the amount of using the piezo film CF will increase too much, leading to an increase in cost. Furthermore, when the overlapping width is set to a half of the width of the piezo film CF, double winding is performed, and a gap is less likely to occur.
- the width of the piezoelectric film CF may be 2 mm or more and 5 mm or less, preferably 3 mm or more and 4 mm or less. If the width of the piezo film CF is too narrow, a gap is likely to be generated between the piezo films CF adjacent in the extending direction of the inner conductor C11 when spirally wound around the outer peripheral surface of the inner conductor C11. On the other hand, when the width of the piezo film CF is too wide, slack is easily generated when being spirally wound around the outer peripheral surface of the internal conductor C11.
- the piezo film CF When the piezo film CF is spirally wound around the outer peripheral surface of the inner conductor C11, the piezo film conforms to the outer peripheral shape of the inner conductor C11, and the piezoelectric body C12 shown in FIG. It has a shape that gets inside.
- the thickness of the piezoelectric film CF may be 20 ⁇ m or more and 100 ⁇ m or less, and preferably 25 ⁇ m or more and 80 ⁇ m or less. If the thickness of the piezo film CF is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the electric wire sensor C1 will be too hard and the flexibility will be lost.
- the winding angle ⁇ of the piezoelectric film CF is preferably 10 ° or more and 50 ° or less.
- the winding angle ⁇ referred to here is the inner conductor C11, the piezo film CF And the angle with the downstream edge CF1. If it exceeds 50 °, the amount of using the piezo film CF will increase too much, leading to an increase in cost.
- the angle is less than 10 °, the wound piezo film CF is easily displaced in the direction in which the overlap of the piezo films CF is eliminated.
- the piezoelectric film CF employed for the piezoelectric body C12 corresponds to a plurality of directions (elongation direction and bending direction) according to the orientation of the crystal than the piezoelectric characteristic corresponding to only the longitudinal direction (elongation direction). It is preferable to be one.
- the piezo film CF as the piezoelectric body C12, it is not necessary to apply heat, there is no possibility of heating up to the Curie temperature, and the piezo characteristics are not affected.
- a copolymer P (VDF / TrFE) of vinylidene fluoride (VDF) and ethylene trifluoride (TrFE) is melted by heat, and the inner conductor C11 is passed there, the outer peripheral surface of the inner conductor C11 is A piezoelectric material is carried. In this case, a high electric field is applied later to perform polarization processing.
- the piezoelectric material it is also possible to apply a piezoelectric material to the outer peripheral surface of the inner conductor C11. As described above, even when the piezo film CF is spirally wound, the piezo film CF conforms to the outer peripheral shape of the inner conductor C11, and the shape which enters inside as shown by a two-dot chain line shown in FIG. However, when the piezoelectric material is welded or applied, the piezoelectric material gets in between the outer conductor wire C1111 and the outer conductor wire C1111 adjacent in the circumferential direction, and the space is filled with the piezoelectric material, The adhesion between the piezoelectric material and the inner conductor C11 is improved. When the adhesion is improved, charges induced on the surface of the inner conductor C11, that is, the outer surface of the outer conductor C11 1 are easily generated, the signal strength is increased, and the performance improvement as a sensor can be expected.
- the outer conductor C13 is the same as the outer conductor A13 described with reference to FIG. 1, and one copper wire is spirally wound in one row around the outer peripheral surface of the piezoelectric body C12. That is, it is the structure of a side winding shield.
- a copper wire a tin-plated soft copper wire with a diameter of 50 ⁇ m is used.
- the outer conductor C13 is not limited to a copper wire, but may be a stranded wire of a stainless steel wire.
- the thickness of the outer conductor C13 may be 10 ⁇ m or more and 120 ⁇ m or less, and preferably 25 ⁇ m or more and 90 ⁇ m or less. That is, it is thinner than the diameter of the internal conductor C11.
- the outer conductor C13 may be a braided shield in which a conducting wire is crossed and braided around the outer peripheral surface of the piezoelectric body C12, or a tape shield in which a tape-shaped conductor is spirally wound. Good. Furthermore, the outer conductor C13 may be formed by spirally winding a plurality of conducting wires, or may be formed by spirally winding a plurality of tape-shaped conductors.
- the internal conductor C11 is higher in mechanical strength than the external conductor C13.
- the outer conductor C13 may be replaced by a copper wire with a polymeric material containing carbon nanofibers or a conductive polymer. Further, a hard film of nitrogen-containing diamond like carbon (DLC) may be provided on the outer peripheral surface of the piezoelectric body C12 to form the external conductor C13, or copper plating or vapor deposition may be performed to form the external conductor C13, or copper foil May be carried as the outer conductor C13.
- DLC nitrogen-containing diamond like carbon
- the sheath C14 is the same as the sheath A14 described with reference to FIG. 1, covers the outer conductor C13, and is for enhancing the abrasion resistance, the chemical resistance, and the rust prevention.
- the sheath C14 may be a polyester tape, and the thickness thereof may be 20 ⁇ m or more and 40 ⁇ m or less.
- the sheath C 14 may not be provided if it is not necessary to enhance the abrasion resistance, the chemical resistance, and the rust prevention.
- the sheath C14 shown in FIG. 12 has a single-layer structure with a thickness of 30 ⁇ m, but may have a multi-layer structure.
- it may have a two-layer structure consisting of an inner layer and an outer layer, and the inner layer is formed of a softer material (for example, a polyamide synthetic resin or polyvinyl chloride resin) than the outer layer, and the outer layer is compared with the inner layer.
- a material having high abrasion resistance for example, polytetrafluoroethylene.
- the outer layer may be thicker than the inner layer.
- the inner layer may be formed of a flammable material, but the outer layer is preferably formed of a flame retardant material, a non-combustible material, and a flame resistant material.
- it may have a two-layer structure of a material supporting a conductive material and a material that improves the abrasion resistance, the chemical resistance, and the rust prevention.
- a strip-like PET film subjected to copper plating or copper deposition is wound on the outer circumferential surface of the outer conductor C13 in the same manner as the above-described piezo film CF, and a strip-like polyester tape is similarly overlaid thereon. It may be wound while fitting.
- the copper-loaded film provides a shielding effect.
- FIG. 14 is an exploded perspective view of a planar sensor using the electric wire sensor C1 shown in FIG.
- the planar sensor C3 has a mesh cloth C30 as a base material.
- the mesh cloth C30 corresponds to an example of a sheet.
- the electric wire sensor C1 shown in FIG. 12 is similarly stitched to the mesh cloth C30 at an interval in the width direction (Y-axis direction) of the electric wire sensor C1.
- seven electric wire sensors C ⁇ b> 1 are seamed and shown in gray.
- these seven electric wire sensors C1 shown in gray are referred to as a first electric wire sensor C31.
- the wire sensor C1 shown in FIG. 12 is seam-stitched at intervals in the extending direction (X-axis direction) of the first wire sensors C31.
- X-axis direction extending direction
- nine electric wire sensors C1 are seam-stitched and shown in black.
- these nine electric wire sensors C1 shown in black are referred to as a second electric wire sensor C32.
- the mesh fabric has a coarse mesh, and the first electric wire sensor C31 and the second electric wire sensor C32 can be easily stitched through the mesh.
- the relationship between the first electric wire sensor C31 and the second electric wire sensor C32 is that, in the part of the mesh cloth C30 where the first electric wire sensor C31 passes through the back side of the mesh cloth C30, the second electric wire sensor C32 is the front side of the mesh cloth C30.
- the first electric wire sensor C31 passes through the front side of the mesh fabric C30 at a portion of the mesh fabric C30 where the second electric wire sensor C32 passes through the back side of the mesh fabric C30. Also, between a portion of the first electric wire sensor C31 passing through the front side of the mesh cloth C30 and a portion of the first electric wire sensor C31 adjacent to the first electric wire sensor C31 passing through the front side of the mesh cloth C30.
- the second electric wire sensor C32 passes through the front side of the mesh cloth C30, and a portion of the second electric wire sensor C32 passing through the front side of the mesh cloth C30 and a second electric wire sensor adjacent to the second electric wire sensor C32
- the first electric wire sensor C31 passes through the front side of the mesh fabric C30 between the portion of C32 that passes through the front side of the mesh fabric C30. According to this relationship, a point in which the first wire sensor C31 and the second wire sensor C32 overlap with each other with the mesh cloth C30 interposed therebetween is formed.
- a signal is output from the deformed first electric wire sensor C31, and similarly, as the second electric wire sensor C32 is deformed, a signal is output from the deformed second electric wire sensor C32 .
- a deformed area can be detected by the first electric wire sensor C31 to which a signal is sent and the second electric wire sensor C32 to which a signal is sent by similarly deforming. it can.
- the planar sensor C3 shown in FIG. 14 has a front side sheet C33 that covers the mesh cloth C30 from the front side, and a back sheet C34 that covers the mesh cloth C30 from the back.
- Both the front side sheet body C33 and the back side sheet body C34 are cotton cloths, and are materials different from the mesh cloth C30.
- Cotton fabric is a material that feels better than mesh fabric, while mesh fabric is a coarser material than cotton fabric.
- both the front sheet body C33 and the back sheet body C34 may be mesh fabrics.
- the mesh cloth C30, the front side sheet C33, and the back side sheet C34 are shown separately, but in the completed planar sensor C3, the mesh cloth is between the front side sheet C33 and the back side sheet C34.
- C30 is sandwiched, and these three (C30, C33, C34) are integrated.
- the front sheet body C33 and the back sheet body C34 may be larger than the mesh cloth C30, and the outer peripheral portion of the front sheet body C33 and the outer peripheral portion of the back sheet body C34 may be sewn together.
- the front side sheet C33, the mesh cloth C30, and the back side sheet C34 may be stapled at the central portion so that the mesh cloth C30 does not shift between the front side sheet C33 and the back side sheet C34.
- the electric wire sensor C1 shown in FIG. 12 is used as an electric wire sensor, the electric wire sensor A1 shown in FIG. 1 and the electric wire sensor B1 shown in each of FIGS. You may use.
- the planar sensor C3 using the electric wire sensor C1 does not expand and contract in the X-axis direction and does not expand and contract in the Y-axis direction. If it is used after being rotated 90 degrees as shown in FIG. 5C, it becomes a planar sensor that can expand and contract in the direction of the white arrow. Furthermore, to the planar sensor shown in FIG. 5C using the planar sensor where the first electrical wire sensor C31 extends in the X-axis direction and the second electrical wire sensor C32 extends in the Y-axis direction, and the electrical wire sensor C1. By arranging the applied ones in an overlapping manner, it is possible to realize a sensor that expands and contracts both in the X axis direction, in the Y axis direction, and in the diagonal direction.
- planar sensor C3 using the electric wire sensor C1 is also used for detecting vibrations at high places, detecting heartbeats and respirations of people as vibrations, and monitoring various things such as nursing care and monitoring of pets. You can also
- a glove in which a sheet-like sensor C3 using the electric wire sensor C1 is disposed may be attached to a robot hand or may be attached to a person and used for data acquisition such as gripping force in various operations.
- planar sensor C3 using the electric wire sensor C1 can also be applied to a grip for rehabilitation for contracture patients with fingers.
- planar sensor C3 using the wire sensor C1 can also be applied to the robot hand as described with reference to FIG.
- the wire sensor C1 described using FIG. 12 may be used instead of the wire sensor A1.
- a band-shaped sensor using the electric wire sensor C1 can also be wound around a welded pipe and used for defect inspection of a welded portion.
- the wire sensor C1 described with reference to FIG. 12 can also be used in another application example of the wire sensor A1 described with reference to FIGS. 5 and 6 or the like. That is, the wire sensor C1 can be used as a spirally wound wire sensor, and a belt-like sensor or a planar sensor can be manufactured by weaving the wire sensor C1 like a fabric, but the wire sensor C1 can be knitted like In addition, you may hold down and you may knit.
- the wire sensor C1 can be made more flexible by making it thinner than a conventional sensor. Because of this, it can be used also as a knitted fabric sensor described using FIG. 5 (a).
- the electric wire sensor C1 demonstrated using FIG. 12 can also be divided and used for a sensor part and the transmission line of an output signal by heating partially until it exceeds Curie temperature.
- an insulating film may be provided in place of the piezoelectric film CF, which is the piezoelectric body C12, in the portion that becomes the transmission line of the output signal. Even in the portion where the insulating film is provided, the configurations of the inner conductor C11 and the outer conductor C13 are the same as the configurations of the inner conductor C11 and the outer conductor C13 in the portion where the piezo film CF is provided.
- the inner conductor C11 around which the piezoelectric film CF is wound extends, the insulating film is wound around, the outer conductor C13 provided on the outer peripheral surface of the piezoelectric film CF also extends, and the inner conductor C11 is provided also on the outer peripheral surface of the insulating film ing.
- the impedance in the sensor unit and the impedance in the transmission line of the output signal become equal, which is preferable.
- an insulating material may be applied or welded while keeping the inner conductor C11 and the outer conductor C13 the same.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
According to the present invention, high quality is achieved for a linear sensor, and a belt-like sensor and a planar sensor that use the same, the linear sensor having a piezo material disposed between an internal conductor and an external conductor. The present invention has: an internal conductor C11; a belt-like piezo film CF that is spirally wrapped onto the outer circumferential surface of the internal conductor C11; and an external conductor C13 disposed on the outer circumferential surface of the piezo film CF, wherein the piezo film CF is wrapped onto the outer circumferential surface of the internal conductor C11 in a state in which a widthwise end side and another adjacent end side overlap each other in the extension direction of the internal conductor C11.
Description
本発明は、内部導体と外部導体との間にピエゾ材料が配置された線状センサと、その線状センサを用いた、帯状センサおよび面状センサに関する。
The present invention relates to a linear sensor in which a piezoelectric material is disposed between an inner conductor and an outer conductor, and a strip sensor and a planar sensor using the linear sensor.
圧電素材のピエゾフィルムを電極膜で挟み込んだ帯状の圧電性ファイバを織物にした圧電性織物デバイスが知られている(特許文献1参照)。この圧電性織物デバイスは、触覚センサや振動センサ等に利用することができる。触覚センサでは、人が触れる態様で使用することがあり、センサ自身に柔らかい触感が求められる場合がある。また、振動センサとして利用する場合にも、センサを対象物に巻き付けたり、センサ自身が曲げられた状態で使用されることもあり、柔軟性が求められる場合がある。
A piezoelectric fabric device is known in which a band-like piezoelectric fiber in which a piezoelectric film of a piezoelectric material is sandwiched between electrode films is used as a fabric (see Patent Document 1). This piezoelectric textile device can be used as a tactile sensor or a vibration sensor. With a tactile sensor, it may be used in the form which a person touches, and a soft touch may be calculated | required by the sensor itself. Also, when using as a vibration sensor, the sensor may be wound around an object, or the sensor may be used in a bent state, and flexibility may be required.
ところが、この圧電性織物デバイスでは、厚みよりも遥かに大きな幅をもった帯状の圧電性ファイバを用いているため、長さ方向の柔らかさや柔軟性は得ることができるが、幅方向の柔らかさや柔軟性を得ることは難しい。
However, in this piezoelectric textile device, since a strip-like piezoelectric fiber having a width much larger than the thickness is used, the softness and the flexibility in the lengthwise direction can be obtained, but It is difficult to gain flexibility.
そこで、幅と厚みを同程度にすることができる線状の圧電センサが考えられる。例えば、内部導体として1本の芯線を用い、その芯線の外周面に帯状のピエゾフィルムを螺旋状に巻き付け、さらに、そのピエゾフィルムの外周面にシールド線(外部導体)を配置した線状センサが考えられる。そして、柔らかさや柔軟性を得るためには、線状センサを細くすればよい。
Then, the linear piezoelectric sensor which can make width and thickness comparable can be considered. For example, a linear sensor in which one core wire is used as an inner conductor, a strip-shaped piezoelectric film is spirally wound around the outer peripheral surface of the core wire, and a shield wire (outer conductor) is disposed on the outer peripheral surface of the piezoelectric film Conceivable. And in order to obtain softness and flexibility, it is sufficient to make the linear sensor thin.
しかしながら、帯状のピエゾフィルムを螺旋状に巻き付けた場合には、線状センサが曲がると、内部導体の延在方向に隣り合うピエゾフィルムの間に隙間が生じてしまう場合がある。隙間が生じた箇所は、センシングできない箇所になってしまい、高品質な線状センサとは言えない。また、柔らかさや柔軟性を得るために、内部導体である一本の芯線を細くしずぎると、引張強度が低くなりすぎて、断線してしまうため、これもまた、高品質な線状センサとは言えない。
However, when the strip-shaped piezoelectric film is spirally wound, when the linear sensor is bent, a gap may be generated between the piezoelectric films adjacent in the extending direction of the inner conductor. The place where the gap is generated is the place where the sensing can not be performed, and it can not be said that it is a high quality linear sensor. In addition, if one core wire, which is an inner conductor, is thinned to obtain softness and flexibility, the tensile strength is too low and the wire is broken. This is also a high quality linear sensor and I can not say.
本発明は上記事情に鑑み、高品質な線状センサと、その線状センサを用いた、帯状センサおよび面状センサを提供することを目的とする。
An object of the present invention is to provide a high quality linear sensor and a strip sensor and a planar sensor using the linear sensor in view of the above-mentioned circumstances.
上記目的を解決する第一の線状センサは、
内部導体と、
前記内部導体の外周面に螺旋状に巻き付けられた帯状のピエゾフィルムと、
前記ピエゾフィルムの外周面に配置された外部導体とを有し、
前記ピエゾフィルムが、前記内部導体の延在方向に隣り合う幅方向の一端側と他端側どうしを重ね合わせた状態で前記内部導体の外周面に巻き付けられたものであることを特徴とする。 The first linear sensor that solves the above purpose is
Internal conductor,
A band-shaped piezoelectric film spirally wound around the outer peripheral surface of the inner conductor;
And an outer conductor disposed on the outer peripheral surface of the piezoelectric film,
The piezoelectric film may be wound around the outer peripheral surface of the inner conductor in a state where one end side and the other end side in the width direction adjacent to the extending direction of the inner conductor are overlapped.
内部導体と、
前記内部導体の外周面に螺旋状に巻き付けられた帯状のピエゾフィルムと、
前記ピエゾフィルムの外周面に配置された外部導体とを有し、
前記ピエゾフィルムが、前記内部導体の延在方向に隣り合う幅方向の一端側と他端側どうしを重ね合わせた状態で前記内部導体の外周面に巻き付けられたものであることを特徴とする。 The first linear sensor that solves the above purpose is
Internal conductor,
A band-shaped piezoelectric film spirally wound around the outer peripheral surface of the inner conductor;
And an outer conductor disposed on the outer peripheral surface of the piezoelectric film,
The piezoelectric film may be wound around the outer peripheral surface of the inner conductor in a state where one end side and the other end side in the width direction adjacent to the extending direction of the inner conductor are overlapped.
この第一の線状センサによれば、前記ピエゾフィルムが、前記内部導体の延在方向に隣り合う幅方向の一端側と他端側どうしが重ね合った状態で巻き付けられたものであるため、線状センサが曲げられた場合であっても、内部導体の延在方向に隣り合うピエゾフィルムの間に隙間が生じにくい。
According to the first linear sensor, since the piezoelectric film is wound in a state in which one end side and the other end side in the width direction adjacent in the extension direction of the internal conductor overlap each other, Even when the linear sensor is bent, a gap does not easily occur between the piezo films adjacent in the extending direction of the inner conductor.
なお、前記ピエゾフィルムが、前記内部導体の延在方向に隣り合う幅方向の一端側の半分以下と他端側の半分以下どうしを重ね合わせた状態で前記内部導体の外周面に巻き付けられたものであってもよく、前記内部導体の延在方向に隣り合う幅方向の一端側の半分以上と他端側の半分以上どうしを重ね合わせた状態で前記内部導体の外周面に巻き付けられたものであってもよい。
The piezoelectric film is wound around the outer peripheral surface of the inner conductor in a state in which the half or less of one end side and the half or less of the other end side of the width direction adjacent to the extending direction of the inner conductor are overlapped. And may be wound around the outer peripheral surface of the inner conductor in a state in which one half or more on one end side and the half or more on the other end of the width direction adjacent to each other in the extension direction of the inner conductor are overlapped. It may be.
また、前記内部導体は、1本の中心導体線が中心に配置され、該中心導体線の周囲を該中心導体線よりも細い複数本の外側導体線で取り囲んだものであってよい。あるいは、該中心導体線の周囲を、該中心導体線と同じ太さの複数本の外側導体線で取り囲んだものであってよいし、該中心導体線よりも太い複数本の外側導体線で取り囲んだものであってよい。前記中心導体線としては、前記外側導体線よりも機械的強度が高いものであってもよく、例えば、ステンレス製のものであってもよい。また、前記外側導体線は、前記中心導体線よりも、電気抵抗が低いものであってもよいし、または/および柔らかいものであってもよく、例えば、銅製のものであってもよい。
Further, the inner conductor may be one in which a single central conductor line is disposed at the center, and a plurality of outer conductor lines thinner than the central conductor line surround the central conductor line. Alternatively, the center conductor line may be surrounded by a plurality of outer conductor lines having the same thickness as the center conductor line, or may be surrounded by a plurality of outer conductor lines thicker than the center conductor line. It is good. The central conductor line may have higher mechanical strength than the outer conductor line, and may be, for example, stainless steel. In addition, the outer conductor wire may have a lower electrical resistance than the central conductor wire, and / or be softer, and may be made of, for example, copper.
上記第一の線状センサにおいて、
前記内部導体は、1本の導体線が中心に配置され、該導体線の周囲を該導体線よりも細い複数本の導線を撚り合わせた撚り線で取り囲んだものであってもよい。 In the first linear sensor,
The inner conductor may be one in which one conductor wire is disposed at the center, and the periphery of the conductor wire is surrounded by a plurality of stranded wires thinner than the conductor wire.
前記内部導体は、1本の導体線が中心に配置され、該導体線の周囲を該導体線よりも細い複数本の導線を撚り合わせた撚り線で取り囲んだものであってもよい。 In the first linear sensor,
The inner conductor may be one in which one conductor wire is disposed at the center, and the periphery of the conductor wire is surrounded by a plurality of stranded wires thinner than the conductor wire.
すなわち、前記導体線は撚り線構造ではない。
That is, the conductor wire does not have a stranded wire structure.
また、前記撚り線が、前記導体線と同じ太さのものであってもよいし、該導体線よりも細いものであってもよいし、該導体線よりも太いものであってもよい。
Further, the stranded wire may have the same thickness as the conductor wire, may be thinner than the conductor wire, or may be thicker than the conductor wire.
上記第一の線状センサにおいて、
前記導体線が、前記導線よりも機械的強度が高いものであり、
前記導線が、前記導体線よりも電気抵抗が低いものである態様であってもよい。 In the first linear sensor,
The conductor wire is higher in mechanical strength than the conductor wire,
The conductive wire may have a lower electrical resistance than the conductive wire.
前記導体線が、前記導線よりも機械的強度が高いものであり、
前記導線が、前記導体線よりも電気抵抗が低いものである態様であってもよい。 In the first linear sensor,
The conductor wire is higher in mechanical strength than the conductor wire,
The conductive wire may have a lower electrical resistance than the conductive wire.
この態様によれば、中心の導体線(例えば、ステンレス製の導体線)で機械的強度を確保し、周囲の撚り線(例えば、銅線を撚り合わせた撚り線)で導電性を確保することができる。また、撚り線にすることで、撚りの方向とは逆方向の緩みを許容し、この緩みが柔軟性を与えることができる。
According to this aspect, mechanical strength is ensured by the central conductor wire (for example, a stainless steel conductor wire), and conductivity is ensured by the surrounding stranded wire (for example, a stranded wire obtained by twisting copper wires). Can. Also, by forming a stranded wire, loosening in the direction opposite to the direction of twisting is permitted, and this loosening can provide flexibility.
上記第一の線状センサにおいて、
前記内部導体は、複数本のステンレスワイヤを撚り合わせた撚り線が配置されたものであってもよい。 In the first linear sensor,
The inner conductor may be a stranded wire obtained by twisting a plurality of stainless steel wires.
前記内部導体は、複数本のステンレスワイヤを撚り合わせた撚り線が配置されたものであってもよい。 In the first linear sensor,
The inner conductor may be a stranded wire obtained by twisting a plurality of stainless steel wires.
同じ太さであれば、ステンレスワイヤは銅線よりも機械的強度が高い反面、柔軟性に劣るが、複数本のステンレスワイヤを撚り合わせた撚り線にしておくことで、撚りの方向とは逆方向の緩みを許容し、この緩みが柔軟性を与えることができ、機械的強度と柔軟性のバランスをとることができる。
If the thickness is the same, stainless steel wire has higher mechanical strength than copper wire, but it is less flexible, but it is opposite to the direction of twisting by using multiple stainless steel wires as stranded wire. It allows for loosening of the direction, which can provide flexibility and balance mechanical strength and flexibility.
なお、ステンレスワイヤの撚り線は1本しか配置されていなくてもよいし、複数本配置されていてもよい。
In addition, only one strand of the stainless steel wire may be disposed, or a plurality of strands may be disposed.
上記第一の線状センサにおいて、
前記内部導体は、ステンレスワイヤを撚り合わせたステンレス撚り線と、銅線を撚り合わせた銅撚り線とが配置されたものであってもよい。 In the first linear sensor,
The inner conductor may be a stainless steel stranded wire obtained by twisting stainless steel wires and a copper stranded wire obtained by twisting copper wires.
前記内部導体は、ステンレスワイヤを撚り合わせたステンレス撚り線と、銅線を撚り合わせた銅撚り線とが配置されたものであってもよい。 In the first linear sensor,
The inner conductor may be a stainless steel stranded wire obtained by twisting stainless steel wires and a copper stranded wire obtained by twisting copper wires.
上記第一の線状センサにおいて、
前記内部導体が、前記ステンレス撚り線の周囲を前記銅撚り線で取り囲んだものであってもよい。 In the first linear sensor,
The inner conductor may surround the stainless steel stranded wire with the copper stranded wire.
前記内部導体が、前記ステンレス撚り線の周囲を前記銅撚り線で取り囲んだものであってもよい。 In the first linear sensor,
The inner conductor may surround the stainless steel stranded wire with the copper stranded wire.
上記第一の線状センサにおいて、
前記内部導体が、自身も全体として撚られたものであってもよい。 In the first linear sensor,
The inner conductor may itself be twisted as a whole.
前記内部導体が、自身も全体として撚られたものであってもよい。 In the first linear sensor,
The inner conductor may itself be twisted as a whole.
こうすることで、前記内部導体が、1次撚り線を複数本有し、該内部導体自身が2次撚り線になる。1次撚り線と2次撚り線といったように2段階に分けて撚っておくことで、柔軟性がさらに向上する。
By doing this, the inner conductor has a plurality of primary stranded wires, and the inner conductor itself becomes a secondary stranded wire. The flexibility is further improved by dividing and twisting in two steps such as a primary stranded wire and a secondary stranded wire.
2次撚り線の撚り方向は、1次撚り線の撚り方向と同じ方向である。ただし、内部導体の柔軟性をさらに高めたい場合には、2次撚り線の撚り方向と1次撚り線の撚り方向とを逆方向にしてもよい。
The twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire. However, in order to further increase the flexibility of the inner conductor, the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed.
上記目的を解決する第二の線状センサは、
複数本の導線を撚り合わせた撚り線を複数本配置した内部導体と、
前記内部導体の外周面に担持されたピエゾ材料と、
前記ピエゾ材料の外周面に配置された外部導体とを有し、
前記内部導体が、自身も全体として撚られたものであることを特徴とする。 A second linear sensor that solves the above purpose is
An internal conductor in which a plurality of stranded wires in which a plurality of conductive wires are twisted are arranged;
A piezo material carried on the outer peripheral surface of the inner conductor;
And an external conductor disposed on the outer peripheral surface of the piezoelectric material,
It is characterized in that the inner conductor is itself twisted as a whole.
複数本の導線を撚り合わせた撚り線を複数本配置した内部導体と、
前記内部導体の外周面に担持されたピエゾ材料と、
前記ピエゾ材料の外周面に配置された外部導体とを有し、
前記内部導体が、自身も全体として撚られたものであることを特徴とする。 A second linear sensor that solves the above purpose is
An internal conductor in which a plurality of stranded wires in which a plurality of conductive wires are twisted are arranged;
A piezo material carried on the outer peripheral surface of the inner conductor;
And an external conductor disposed on the outer peripheral surface of the piezoelectric material,
It is characterized in that the inner conductor is itself twisted as a whole.
この第二の線状センサでは、ピエゾ材料は、前記内部導体の外周面に塗布されたものであってもよいし、溶着されたものであってもよい。あるいは、帯状のピエゾフィルムを、前記内部導体の延在方向に隣り合う幅方向の一端側と他端側どうしを重ね合わせた状態で前記内部導体の外周面に巻き付けたものであってもよい。
In the second linear sensor, the piezoelectric material may be applied to the outer peripheral surface of the inner conductor or may be welded. Alternatively, the strip-shaped piezoelectric film may be wound around the outer peripheral surface of the inner conductor in a state in which one end side and the other end side in the width direction adjacent to the extending direction of the inner conductor are overlapped.
上記第二の線状センサによれば、前記内部導体が、1次撚り線を複数本有し、該内部導体自身が2次撚り線になる。1次撚り線と2次撚り線といったように2段階に分けて撚っておくことで、柔軟性がさらに向上する。
According to the second linear sensor, the inner conductor has a plurality of primary stranded wires, and the inner conductor itself becomes a secondary stranded wire. The flexibility is further improved by dividing and twisting in two steps such as a primary stranded wire and a secondary stranded wire.
2次撚り線の撚り方向は、1次撚り線の撚り方向と同じ方向である。ただし、内部導体の柔軟性をさらに高めたい場合には、2次撚り線の撚り方向と1次撚り線の撚り方向とを逆方向にしてもよい。
The twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire. However, in order to further increase the flexibility of the inner conductor, the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed.
上記目的を解決する帯状センサは、
上記第1又は第2の線状センサと、
前記線状センサの延在方向と同じ方向に延びた金属製の縦線状体と、
前記線状センサの幅方向に延び、該線状センサと前記縦線状体を綴る横線状体とを有することを特徴とする。 The strip sensor which solves the above-mentioned purpose is
The first or second linear sensor;
A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor;
It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
上記第1又は第2の線状センサと、
前記線状センサの延在方向と同じ方向に延びた金属製の縦線状体と、
前記線状センサの幅方向に延び、該線状センサと前記縦線状体を綴る横線状体とを有することを特徴とする。 The strip sensor which solves the above-mentioned purpose is
The first or second linear sensor;
A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor;
It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
上記目的を解決する面状センサは、
面状体と、
上記第1又は第2の線状センサからなる複数の第1線状センサと、
上記第1又は第2の線状センサからなる複数の第2線状センサとを備え、
前記複数の第1線状センサが、該第1線状センサの幅方向に間隔をあけて前記面状体になみ縫いされたものであり、
前記複数の第2線状センサが、前記第1線状センサの延在方向に間隔をあけて前記面状体になみ縫いされたものであることを特徴とする。 A planar sensor that solves the above purpose is
A sheet and
A plurality of first linear sensors comprising the first or second linear sensors;
A plurality of second linear sensors consisting of the first or second linear sensors;
The plurality of first linear sensors are seam-stitched on the planar body at an interval in the width direction of the first linear sensors,
The plurality of second linear sensors are characterized by being seam-stitched on the planar body at intervals in the extending direction of the first linear sensors.
面状体と、
上記第1又は第2の線状センサからなる複数の第1線状センサと、
上記第1又は第2の線状センサからなる複数の第2線状センサとを備え、
前記複数の第1線状センサが、該第1線状センサの幅方向に間隔をあけて前記面状体になみ縫いされたものであり、
前記複数の第2線状センサが、前記第1線状センサの延在方向に間隔をあけて前記面状体になみ縫いされたものであることを特徴とする。 A planar sensor that solves the above purpose is
A sheet and
A plurality of first linear sensors comprising the first or second linear sensors;
A plurality of second linear sensors consisting of the first or second linear sensors;
The plurality of first linear sensors are seam-stitched on the planar body at an interval in the width direction of the first linear sensors,
The plurality of second linear sensors are characterized by being seam-stitched on the planar body at intervals in the extending direction of the first linear sensors.
前記面状体は、織布であってもよいし、不織布であってもよい。より具体的には、メッシュ生地であってもよいし、綿布であってもよいし、サテン生地であってもよいし、フェルトであってもよい。
The planar body may be a woven fabric or a non-woven fabric. More specifically, it may be mesh cloth, cotton cloth, satin cloth, or felt.
また、上記面状センサにおいて、前記第1線状センサがなみ縫いされるとともに前記第2線状センサがなみ縫いされた前記面状体を表側から覆う表側シート体と、該面状体を裏側から覆う裏側シート体とを備えた態様であってもよい。これら表側シート体にしても裏側シート体にしても、前記面状体と同じ材質のものであってもよいし、異なる材質のものであってもよい。
Further, in the planar sensor, a front side sheet body covering from the front side the planar body in which the first linear sensor is seam-stitched and the second linear sensor is seam-stitched, and the planar body is backside It may be an aspect provided with the back side sheet body covered from the above. These front side sheet members and back side sheet members may be made of the same material as that of the planar body, or may be made of different materials.
本発明によれば、高品質な線状センサと、その線状センサを用いた、帯状センサおよび面状センサを提供することができる。
According to the present invention, it is possible to provide a high quality linear sensor and a strip sensor and a planar sensor using the linear sensor.
以下、図面を参照して本発明の実施の形態を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、線状センサの一実施形態に相当する電線センサの断面図である。
FIG. 1 is a cross-sectional view of a wire sensor corresponding to one embodiment of a linear sensor.
図1に示す電線センサA1は、内部導体A11と、圧電体A12と、外部導体A13と、シースA14から構成されている。
An electric wire sensor A1 shown in FIG. 1 includes an inner conductor A11, a piezoelectric body A12, an outer conductor A13, and a sheath A14.
内部導体A11は、直径が30μmのステンレスワイヤAsyを7本撚り合わせた撚り線A111を、正六角形の各頂点およびその正六角形の中心に配置した状態で、さらにこれらの撚り線A111を撚り合わせたものである。すなわち、7本の撚り線A111を1次撚り線として最密構造に配置し、これら7本の1次撚り線をさらに撚り合わせた2次撚り線になる。複数本の線状体を甘撚、あるいは中撚程度に撚っておくことで、撚りの方向とは逆方向の緩みを許容し、この緩みが柔軟性を与えることができる。特に、1次撚り線と2次撚り線といったように2段階に分けて撚っておくことで、柔軟性がさらに向上する。なお、2次撚り線を複数本用意してさらに撚り合わせて3次撚り線・・・といったように3段階以上の複数段階に分けて撚ってもよい。また、2次撚り線の撚り方向は、1次撚り線の撚り方向と同じ方向である。ただし、内部導体A11の柔軟性をさらに高めたい場合には、2次撚り線の撚り方向と1次撚り線の撚り方向とを逆方向にしてもよい。図1に示す内部導体A11全体の直径は、0.27mmであり、その内部導体A11の切断荷重は0.058kNになる。
The inner conductor A11 is obtained by further twisting these strands A111 in a state in which a strand A111 obtained by twisting seven stainless steel wires Asy having a diameter of 30 μm is disposed at each vertex of the regular hexagon and at the center of the regular hexagon. It is a thing. That is, seven stranded wires A111 are arranged as a primary stranded wire in a close-packed structure, and these seven primary stranded wires are further twisted to form a secondary stranded wire. By twisting a plurality of linear bodies into a sweet-twisted or medium-twisted degree, loosening in the direction opposite to the direction of twisting is permitted, and this loosening can provide flexibility. In particular, flexibility is further improved by dividing into two steps such as a primary stranded wire and a secondary stranded wire and twisting. In addition, a plurality of secondary stranded wires may be prepared, and may be further twisted and divided into a plurality of three or more stages such as a third stranded wire and so on and twisted. The twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire. However, in order to further increase the flexibility of the internal conductor A11, the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed. The diameter of the entire internal conductor A11 shown in FIG. 1 is 0.27 mm, and the cutting load of the internal conductor A11 is 0.058 kN.
1次撚り線を構成するステンレスワイヤAsyの本数は、7本に限らない。また、ステンレスワイヤAsy1本の直径は、10μm以上40μm以下であればよく、20μm以上30μm以下であることが好ましい。ステンレスワイヤは、細ければ細いほど柔軟性は高められるが強度が低下し、太ければ太いほど柔軟性は低下するが強度が高められる。直径が20μmのステンレスワイヤAsyを用いた場合には、内部導体A11の切断荷重は0.025kNになり、直径が40μmのステンレスワイヤAsyを用いた場合には、内部導体A11の切断荷重は0.107kNになる。また、内部導体全体の直径としては、0.15mm以上0.8mm以下であればよく、0.18mm以上0.5mm以下であることが好ましい。
The number of stainless steel wires Asy constituting the primary stranded wire is not limited to seven. The diameter of one stainless steel wire Asy may be 10 μm or more and 40 μm or less, and preferably 20 μm or more and 30 μm or less. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength. When the stainless steel wire Asy having a diameter of 20 μm is used, the cutting load of the inner conductor A11 is 0.025 kN, and when the stainless steel wire Asy having a diameter of 40 μm is used, the cutting load of the inner conductor A11 is 0. It will be 107kN. Further, the diameter of the entire internal conductor may be 0.15 mm or more and 0.8 mm or less, and preferably 0.18 mm or more and 0.5 mm or less.
なお、1次撚り線の直径を異ならせてもよい。例えば、内部導体A11を構成する中央に位置する撚り線A111の直径を、その周囲に位置する撚り線A111よりも太くしてもよいし、あるいは反対に細くしてもよい。また、撚り線A111を構成するステンレスワイヤAsyの直径も、撚り線A111ごとに異ならせてもよい。例えば、太い撚り線A111を得るために、相対的に太いステンレスワイヤAsyを用いてもよいし、細い撚り線A111を得るために、相対的に細いステンレスワイヤAsyを用いてもよい。さらには、撚り線A111を構成するステンレスワイヤAsyの本数を、撚り線A111ごとに異ならせてもよい。例えば、太い撚り線A111を得るために、相対的に多数本のステンレスワイヤAsyを用いてもよいし、細い撚り線A111を得るために、相対的の少数本のステンレスワイヤAsyを用いてもよい。また、撚り線A111は、ステンレスワイヤAsyのみからなるものの他に、他の導電性材料の線とステンレスワイヤAsyを撚り合わせたものであってもよい。ここにいう導電性材料としては、ステンレスと、電気抵抗値が異なる材料であったり機械的強度が異なる材料であったりする。例えば、銅、チタン、マグネシウム等の一種類であってもよいし、これらの材料の組み合わせであってもよい。
The diameter of the primary stranded wire may be made different. For example, the diameter of the stranded wire A111 located at the center of the inner conductor A11 may be thicker than that of the stranded wire A111 located therearound, or may be made smaller. In addition, the diameter of the stainless steel wire Asy forming the stranded wire A111 may be different for each of the stranded wire A111. For example, relatively thick stainless steel wire Asy may be used to obtain thick stranded wire A111, and relatively thin stainless steel wire Asy may be used to obtain thin stranded wire A111. Furthermore, the number of stainless steel wires Asy that constitute the stranded wire A111 may be different for each of the stranded wire A111. For example, a relatively large number of stainless steel wires Asy may be used to obtain thick stranded wire A111, or a relatively small number of stainless steel wires Asy may be used to obtain thin stranded wire A111. . Further, the stranded wire A111 may be a wire made of other conductive material and a wire made of stainless steel wire Asy in addition to the wire made of only the stainless steel wire Asy. The conductive material referred to here is a material different from stainless steel or a material different in mechanical strength from stainless steel. For example, copper, titanium, magnesium or the like may be used alone, or a combination of these materials may be used.
さらに、内部導体A11は、撚り線A111のみから構成されたものであってもよいし、撚り線A111と他の金属線から構成されたものであってもよい。例えば、他の金属線として、ステンレスよりも電気抵抗が低い金属線を用いてもよいし、ステンレスよりも柔らかい金属線を用いてもよい。例えば、ステンレスよりも電気抵抗が低く、かつ柔らかい銅の金属線を用いてもよい。より具体的には、他の金属線として1本の銅線を用い、撚り線A111が正六角形の各頂点に配置されその正六角形の中心に1本の銅線が配置された状態で全体が撚られたものであってもよいし、撚り線A111が正六角形の頂点のうち一つおきに配置され残りの頂点には銅線が配置され、その正六角形の中心には銅線又は撚り線A111が配置された状態で全体が撚られたものであってもよい。あるいは、1本の銅線に代えて、複数の細い銅線を撚り合わせたものを用いてもよいし、細い銅線とステンレスワイヤAsyを撚り合わせたものを用いてもよい。さらには、銅に代えてチタンやマグネシウムを用いてもよいし、銅とチタン、銅とマグネシウム、チタンとマグネシウム、銅とチタンとマグネシウムといった異種金属の組み合わせであってもよく、以下の説明で、銅を例示した場合にも同じである。
Furthermore, the internal conductor A11 may be configured of only the stranded wire A111, or may be configured of the stranded wire A111 and another metal wire. For example, as another metal wire, a metal wire having lower electrical resistance than stainless steel may be used, or a metal wire softer than stainless steel may be used. For example, a copper metal wire having a lower electrical resistance than stainless steel and softer may be used. More specifically, one copper wire is used as another metal wire, and the whole is obtained in a state in which the stranded wire A111 is arranged at each vertex of the regular hexagon and one copper wire is arranged at the center of the regular hexagon. The twisted wire A111 may be disposed at every other vertex of the regular hexagon, and the copper wire may be disposed at the remaining vertices, and the copper wire or the stranded wire may be disposed at the center of the regular hexagon. The whole may be twisted in the state where A111 is arranged. Alternatively, instead of one copper wire, one obtained by twisting a plurality of thin copper wires may be used, or one obtained by twisting a thin copper wire and a stainless steel wire Asy may be used. Furthermore, instead of copper, titanium or magnesium may be used, or a combination of dissimilar metals such as copper and titanium, copper and magnesium, titanium and magnesium, copper and titanium and magnesium may be used. The same is true when copper is exemplified.
また、内部導体A11を構成する中央に位置する線状体(図1では撚り線A111)と、その周囲に位置する線状体(図1では6本の撚り線A111)との隙間AS1に、線状体を配置してもよい。この隙間AS1に配置される線状体としては、1本の銅線であってもよいし、ステンレスワイヤAsyの撚り線であってもよいし、複数の細い銅線を撚り合わせた撚り線であってもよい。さらに、上記周囲に位置する線状体(図1では6本の撚り線A111)どうしの外側の隙間AS2にも、線状体を配置してもよい。この外側の隙間AS2に配置される線状体も、1本の銅線であってもよいし、ステンレスワイヤAsyの撚り線であってもよいし、複数の細い銅線を撚り合わせた撚り線であってもよい。ここで説明したように、内部導体A11を構成する線状体どうしの隙間に、さらに線状体を追加してもよい。
In addition, in a gap AS1 between a linear body (strand A111 in FIG. 1) located at the center of the internal conductor A11 and a linear body (6 strands A111 in FIG. 1) located around the linear body A linear body may be arranged. The linear body disposed in the gap AS1 may be a single copper wire, a stranded wire of a stainless steel wire Asy, or a stranded wire obtained by twisting a plurality of thin copper wires. It may be. Furthermore, the linear bodies may be arranged in the gap AS2 outside the linear bodies (six stranded wires A111 in FIG. 1) located in the periphery. The linear body disposed in the outer gap AS2 may also be a single copper wire, a stranded wire of a stainless steel wire Asy, or a stranded wire obtained by twisting a plurality of thin copper wires. It may be As described above, linear bodies may be further added to the gaps between the linear bodies constituting the internal conductor A11.
また、内部導体A11は、上記最密構造に限らず、1本の銅線を中心に、その周囲を、中心の銅線よりも細い撚り線A111で囲んだ構成であってもよいし、20μm以上30μm以下の1本のステンレスワイヤを中心に、その周囲を、中心のステンレスワイヤよりも細い銅線で囲んだ構成であってもよい。これらの例でも、内部導体A11を構成する線状体の太さを異ならせている。なお、ここで説明した1本の銅線は、複数の細い銅線を撚り合わせたものであってもよい。
Further, the internal conductor A11 is not limited to the close-packed structure described above, and may have a configuration in which a single stranded copper wire is surrounded by a stranded wire A111 thinner than the central copper wire, or 20 μm The configuration may be such that a single stainless steel wire having a diameter of 30 μm or less is surrounded by a copper wire thinner than the central stainless steel wire. Also in these examples, the thickness of the linear body constituting the internal conductor A11 is made different. The single copper wire described here may be a plurality of thin copper wires twisted together.
圧電体A12は、幅3mmの帯状のピエゾフィルムから構成されたものである。このピエゾフィルムは、ポリフッ化ビニリデン(PVDF)からなる。ポリフッ化ビニリデンは、高い電圧が付与されて分極すると圧電効果が発生する軽量の高分子材料であり、これに外力を加えると電圧が発生し、電圧を加えると歪が発生する特性を備えている。圧電体A12には分極処理が施されており、圧電体A12に外部から力が加わったときに内部導体A11と外部導体A13の間に電圧が誘起される。なお、内部導体A11と外部導体A13の間に電圧をかけると、圧電体A12に変形(歪み)が生じる。内部導体A11の外周面には、このピエゾフィルムが螺旋状に隙間なく巻き付けられている。すなわち、このピエゾフィルムを内部導体A11の外周面に螺旋状に巻き付ける際に、内部導体A11の延在方向に隣り合うピエゾフィルムの幅方向の一端と他端どうしを重ね合わせた状態で巻き付けていく。こうすることで、ピエゾフィルムの面積をなるべく大きくとることができ、センサ感度の向上につながる。帯状のピエゾフィルムの幅は、3mmに限られず、2mm以上5mm以下であればよく、3mm以上4mm以下が好ましい。ピエゾフィルムの幅が狭すぎると内部導体A11の外周面に螺旋状に巻き付ける際に内部導体A11の延在方向に隣り合うピエゾフィルムの間に隙間が生じやすくなってしまう。隙間が生じた箇所は、センシングできない箇所になってしまう。一方、ピエゾフィルムの幅が広すぎると内部導体A11の外周面に螺旋状に巻き付ける際に弛みが生じやすくなってしまう。
The piezoelectric body A12 is formed of a strip-shaped piezoelectric film having a width of 3 mm. This piezo film is made of polyvinylidene fluoride (PVDF). Polyvinylidene fluoride is a lightweight polymer material that generates a piezoelectric effect when a high voltage is applied and is polarized. When an external force is applied to this, a voltage is generated, and a distortion is generated when a voltage is applied. . The piezoelectric body A12 is subjected to polarization processing, and when a force is applied to the piezoelectric body A12 from the outside, a voltage is induced between the inner conductor A11 and the outer conductor A13. When a voltage is applied between the inner conductor A11 and the outer conductor A13, deformation (distortion) occurs in the piezoelectric body A12. The piezoelectric film is spirally wound around the outer peripheral surface of the internal conductor A11 without any gap. That is, when the piezoelectric film is spirally wound around the outer peripheral surface of the inner conductor A11, winding is performed in a state where one end and the other end of the width direction of the piezoelectric film adjacent in the extension direction of the inner conductor A11 overlap each other. . By so doing, the area of the piezo film can be made as large as possible, leading to an improvement in sensor sensitivity. The width of the strip-shaped piezoelectric film is not limited to 3 mm, and may be 2 mm or more and 5 mm or less, preferably 3 mm or more and 4 mm or less. When the width of the piezoelectric film is too narrow, when spirally wound around the outer peripheral surface of the inner conductor A11, a gap is easily generated between the piezoelectric films adjacent in the extending direction of the inner conductor A11. The place where the gap is generated is the place where the sensing can not be made. On the other hand, when the width of the piezo film is too wide, slack tends to be generated when spirally wound around the outer peripheral surface of the internal conductor A11.
図1に示す圧電体A12を構成するピエゾフィルムの厚さは、28μmであるが、20μm以上100μm以下であればよく、25μm以上80μm以下であることが好ましい。ピエゾフィルムの厚さが薄すぎるとセンサとしての感度が不十分になってしまい、反対に厚すぎると電線センサA1が硬くなりすぎてしまい柔軟性に欠けてしまう。
The thickness of the piezoelectric film constituting the piezoelectric body A12 shown in FIG. 1 is 28 μm, but may be 20 μm or more and 100 μm or less, and preferably 25 μm or more and 80 μm or less. If the thickness of the piezo film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the electric wire sensor A1 will be too hard and the flexibility will be lost.
さらに、圧電体A12に採用するピエゾフィルムは、ピエゾ特性が、長手方向(伸び方向)にしか対応していないものよりも、結晶の配向性により複数方向(伸び方向及び曲げ方向)に対応したものである方が好ましい。
Furthermore, the piezoelectric film employed for the piezoelectric body A12 corresponds to a plurality of directions (elongation direction and bending direction) depending on the orientation of the crystal than the piezoelectric characteristic corresponding to only the longitudinal direction (elongation direction). Is preferable.
外部導体A13は、圧電体A12の外周面に、1本の銅線を1列に螺旋状に巻き付けたものである。すなわち、横巻きシールドの構成である。銅線としては、直径50μmのスズメッキ軟銅線を用いる。なお、外部導体A13は、銅線に限らず、ステンレスワイヤの撚り線であってもよく、例えば、内部導体A11を構成する1次撚り線(撚り線A111)と同じものであってもよい。また、外部導体A13の厚さは、10μm以上120μm以下であればよく、25μm以上90μm以下であることが好ましい。すなわち、内部導体A11の直径よりも薄い。さらに、この外部導体A13は、圧電体A12の外周面に、導線をクロスして編み上げた編組シールドであってもよいし、テープ状の導体を螺旋状に巻き付けていったテープシールドであってもよい。ただし、横巻きシールドが最も柔軟性が高い。またさらに、外部導体A13は、複数本の導線を螺旋状に巻き付けていったものであってもよいし、複数本のテープ状の導体を螺旋状に巻き付けていったものであってもよい。
The outer conductor A13 is formed by spirally winding one copper wire in one row around the outer peripheral surface of the piezoelectric body A12. That is, it is the structure of a side winding shield. As a copper wire, a tin-plated soft copper wire with a diameter of 50 μm is used. The outer conductor A13 is not limited to a copper wire, but may be a stranded wire of stainless steel wire, and may be, for example, the same as a primary stranded wire (stranded wire A111) constituting the inner conductor A11. The thickness of the outer conductor A13 may be 10 μm or more and 120 μm or less, and preferably 25 μm or more and 90 μm or less. That is, it is thinner than the diameter of the internal conductor A11. Furthermore, the outer conductor A13 may be a braided shield in which a conducting wire is crossed and braided around the outer peripheral surface of the piezoelectric body A12, or a tape shield in which a tape-shaped conductor is spirally wound. Good. However, the side shield is the most flexible. Furthermore, the outer conductor A13 may be one in which a plurality of conducting wires are spirally wound, or may be one in which a plurality of tape-like conductors are spirally wound.
ここで、内部導体A11は、外部導体A13よりも機械的強度が高いものである。
Here, the internal conductor A11 is higher in mechanical strength than the external conductor A13.
シースA14は、外部導体A13を覆うものであり、耐摩耗性、耐薬品性、防錆性を高めるためのものである。シースA14は、ポリエステルテープであってもよく、その厚みは、20μm以上40μm以下であればよい。なお、耐摩耗性、耐薬品性、防錆性を高める必要がなければ、シースA14を設けなくてもよい。
The sheath A14 is for covering the outer conductor A13, and is for enhancing the abrasion resistance, the chemical resistance, and the rust prevention. The sheath A 14 may be a polyester tape, and its thickness may be 20 μm or more and 40 μm or less. In addition, if it is not necessary to improve the abrasion resistance, the chemical resistance, and the rustproofness, the sheath A 14 may not be provided.
図1に示すシースA14は厚さが30μmの単層構造であるが、複層構造であってもよい。例えば、内層と外層とからなる2層構造であってもよく、内層は、外装に比べて柔らかい材質(例えば、ポリアミド合成樹脂やポリ塩化ビニル樹脂)で形成されており、外層は、内層に比べて耐摩耗性が高い材質(例えば、ポリテトラフルオロエチレン)で形成されている。また、外層は、内層よりも厚くてもよい。さらに、内層は、可燃性材料で形成されていてもよいが、外層は、難燃性材料、不燃性材料、耐炎性材料で形成されていることが好ましい。
The sheath A14 shown in FIG. 1 has a single-layer structure with a thickness of 30 μm, but may have a multi-layer structure. For example, it may have a two-layer structure consisting of an inner layer and an outer layer, and the inner layer is formed of a softer material (for example, a polyamide synthetic resin or polyvinyl chloride resin) than the outer layer, and the outer layer is compared with the inner layer. It is made of a material having high abrasion resistance (for example, polytetrafluoroethylene). Also, the outer layer may be thicker than the inner layer. Furthermore, the inner layer may be formed of a flammable material, but the outer layer is preferably formed of a flame retardant material, a non-combustible material, and a flame resistant material.
図1に示す電線センサA1は、全体の直径(太さ)が、0.378mmであり、十分に細いにもかかわらず、内部導体A11の切断荷重は0.058kNであるため、内部導体A11をピンと張った状態で、帯状のピエゾフィルムを巻き付けることができ、内部導体A11の外周面とピエゾフィルムとの間に隙間が生じてしまうことが抑えられ、電線センサA1を用いた正確な計測や検知が可能になる。
Although the wire sensor A1 shown in FIG. 1 has an overall diameter (thickness) of 0.378 mm and is sufficiently thin, the cutting load of the inner conductor A11 is 0.058 kN. A band-shaped piezo film can be wound in a stretched state, and a gap can be prevented from being generated between the outer peripheral surface of the internal conductor A11 and the piezo film, and accurate measurement or detection using the electric wire sensor A1 Becomes possible.
内部導体A11の外周面にピエゾフィルムを螺旋状に巻き付けると、ピエゾフィルムは内部導体A11の外周形状に馴染み、圧電体A12は、厳密には図1に示す2点鎖線のように内側に入り込んだ形状になる。特に、本実施形態の電線センサA1では、内部導体A11の外周面にピエゾフィルムを強く巻き付けることができるため、ピエゾフィルムは図1に示す2点鎖線のように外側の隙間AS2に入り込んだ形状になりやすい。
When a piezo film is spirally wound around the outer peripheral surface of the inner conductor A11, the piezo film conforms to the outer peripheral shape of the inner conductor A11, and the piezoelectric body A12 strictly enters inside as shown by a two-dot chain line shown in FIG. It becomes a shape. In particular, in the electric wire sensor A1 of the present embodiment, since the piezo film can be strongly wound around the outer peripheral surface of the internal conductor A11, the piezo film has a shape in which it enters the outer gap AS2 as shown by a two-dot chain line shown in FIG. Prone.
図2は、図1に示す電線センサを用いた帯状センサを模式的に示す図である。
FIG. 2 is a view schematically showing a strip-like sensor using the electric wire sensor shown in FIG.
図2に示す帯状センサA2は、斜め横方向に延在したものであり、図の左側が帯状センサA2の先端になり、図の右側に向かって延在したものであるが、図2では、帯状センサA2の先端部分しか示されていない。以下、帯状センサA2の延在方向を縦方向と称し、帯状センサA2の幅方向を横方向と称する場合がある。この帯状センサA2は、図1に示す電線センサA1が幅方向に5本、間隔をあけて並べられている。すなわち、電線センサA1は、縦方向に延在したものである。横方向に間隔をあけて隣り合う電線センサA1の間には、縦方向に延びた縦ワイヤA21が複数本配置されている。図2に示す縦ワイヤA21は、図1に示す内部導体A11と同じものであり、縦線状体の一例に相当する。なお、縦ワイヤA21は、図1に示す電線センサA1よりも機械的強度が高いものであってもよい。例えば、図1に示すステンレスワイヤAsyよりも太いステンレスワイヤによる1次撚り線を撚って2次撚り線としたものであってもよい。
The strip sensor A2 shown in FIG. 2 extends diagonally in the lateral direction, and the left side of the figure is the tip of the strip sensor A2 and extends toward the right side of the figure. Only the tip of the strip sensor A2 is shown. Hereinafter, the extending direction of the strip sensor A2 may be referred to as the vertical direction, and the width direction of the strip sensor A2 may be referred to as the lateral direction. As for this strip | belt-shaped sensor A2, five electric wire sensors A1 shown in FIG. 1 are arranged in the width direction at intervals. That is, the wire sensor A1 extends in the longitudinal direction. A plurality of longitudinal wires A21 extending in the longitudinal direction are disposed between the wire sensors A1 adjacent to each other at intervals in the lateral direction. The longitudinal wire A21 shown in FIG. 2 is the same as the internal conductor A11 shown in FIG. 1 and corresponds to an example of a longitudinal linear body. The longitudinal wire A21 may have a mechanical strength higher than that of the electric wire sensor A1 shown in FIG. For example, a primary stranded wire made of a stainless steel wire thicker than the stainless steel wire Asy shown in FIG. 1 may be twisted to form a secondary stranded wire.
図2では、間隔をあけて隣り合う電線センサA1の間に4本の縦ワイヤA21しか示されていないが、実際には、その間隔を埋めるように5本以上(例えば、12本)の縦ワイヤA21が配置されている。なお、その間隔には、縦ワイヤA21の他に非金属の線状体(例えば、化学繊維や天然繊維)も配置されてもよい。あるいは、縦ワイヤA21は、ステンレスワイヤと非金属製の線状体(例えば、化学繊維や天然繊維)を撚り合わせたものであってもよい。
Although only four vertical wires A21 are shown between adjacent wire sensors A1 in FIG. 2 in a spaced manner, in practice, five or more (for example, 12) vertical wires may be provided to fill the gap. The wire A21 is disposed. In addition to the longitudinal wires A21, non-metallic linear bodies (for example, chemical fibers or natural fibers) may be arranged at the intervals. Alternatively, the longitudinal wire A21 may be formed by twisting a stainless steel wire and a non-metallic linear body (for example, chemical fiber or natural fiber).
また、横方向に延在する横撚糸A22が、縦方向に間隔をあけて複数本配置されている。この横撚糸A22は、ステンレスワイヤの撚り糸とポリテトラフルオロエチレンを撚り合わせたものであり、横線状体の一例に相当する。このステンレスワイヤの撚り糸は、図1に示す内部導体A11を構成する1次撚り線(撚り線A111)と同じものであり、帯状センサA2の機械的強度を出すためのものである。なお、ステンレスワイヤの撚り糸の他に、金属製の線状体を用いてもよい。また、ポリテトラフルオロエチレンは、帯状センサA2の柔軟性を出すためのものであり、ポリテトラフルオロエチレンに限らず、他の化学繊維であってもよいし、綿糸等の天然繊維であってもよい。図2では、帯状センサA2のおもて面が示されており、以下、帯状センサA2のおもて面側を単におもて面側と称し、帯状センサA2の裏面側を単に裏面側と称する。横撚糸A22は、電線センサA1と縦ワイヤA21を綴るものであり、おもて面側と裏面側を交互に通されている。すなわち、図2では、横撚糸A22が、1本の電線センサA1と左右に2本ずつ位置する縦ワイヤA21のおもて面側を通った後、その隣の、1本の電線センサA1と左右に2本ずつ位置する縦ワイヤA21の裏面側を通り、以降、これを繰り返すことで、電線センサA1と縦ワイヤA21を綴っている。
In addition, a plurality of transversely-twisted yarns A22 extending in the lateral direction are arranged at intervals in the longitudinal direction. The horizontal twisting yarn A22 is formed by twisting stainless steel wire yarn and polytetrafluoroethylene, and corresponds to an example of a horizontal linear body. The twisted yarn of this stainless steel wire is the same as the primary stranded wire (twisted wire A111) constituting the internal conductor A11 shown in FIG. 1, and is for providing mechanical strength of the strip sensor A2. In addition, you may use metal linear bodies other than the twist of a stainless steel wire. In addition, polytetrafluoroethylene is for producing flexibility of the belt-like sensor A2, and is not limited to polytetrafluoroethylene, and may be other chemical fibers or natural fibers such as cotton yarn Good. In FIG. 2, the front surface of the belt-shaped sensor A2 is shown. Hereinafter, the front surface of the belt-shaped sensor A2 is simply referred to as the front surface, and the back surface of the belt-shaped sensor A2 is simply referred to as the back surface. It is called. The horizontal twisting yarn A22 is for binding the electric wire sensor A1 and the vertical wire A21, and the front surface side and the back surface side are alternately passed. That is, in FIG. 2, after the horizontal twisting yarn A22 passes through the front surface side of one electric wire sensor A1 and the longitudinal wire A21 located two by two on the left and right, one electric wire sensor A1 next to it passes The electric wire sensor A1 and the longitudinal wire A21 are spelled by passing the back side of the longitudinal wire A21 positioned two by two on the left and right, and repeating this thereafter.
なお、帯状センサA2を製造した時点では、縦線状体である縦ワイヤA21と横線状体である横撚糸A22は直交関係にあるが、帯状センサA2の使用時には、帯状センサA2に様々な方向から張力がかかる場合があり、縦ワイヤA21と横撚糸A22は必ずしも直交関係にあるとは限らない。
At the time of manufacturing the strip sensor A2, the longitudinal wire A21, which is a longitudinal wire, and the horizontal twisted yarn A22, which is a horizontal wire, are orthogonal to each other. However, when using the strip sensor A2, various directions are applied to the strip sensor A2. Because of this, tension may be applied, and the longitudinal wire A21 and the weft yarn A22 are not always in an orthogonal relationship.
図2に示す帯状センサA2では、図1に示す電線センサA1を用いたことで、縦方向の機械的強度に優れるとともに、電線センサA1が細く柔軟性があることから縦方向の途中で曲げられ、湾曲度合いが変化する場合であってもスムーズに追従することができる。しかも、複数本の縦ワイヤA21によって縦方向の機械的強度がさらに高められており、横撚糸A22によって横方向の柔軟性が確保されていることから、縦方向の途中で折り返されて使用される振動センサ等に好適である。しかも、電線センサA1が横方向に複数本(図2では5本)配置されていることから、信号強度が高くなり、センサの信頼性が高まる。
The strip sensor A2 shown in FIG. 2 is excellent in mechanical strength in the vertical direction by using the wire sensor A1 shown in FIG. 1, and the wire sensor A1 is thin and flexible and is bent halfway in the longitudinal direction Even when the degree of curvature changes, it is possible to follow smoothly. Moreover, since the mechanical strength in the longitudinal direction is further enhanced by the plurality of longitudinal wires A21, and the flexibility in the transverse direction is ensured by the horizontal twisting yarn A22, it is used by being folded back in the longitudinal direction It is suitable for a vibration sensor etc. Moreover, since a plurality (five in FIG. 2) of the wire sensors A1 are arranged in the lateral direction, the signal strength is increased, and the reliability of the sensor is enhanced.
なお、ここでは図1に示す電線センサA1を用いたが、複数本の縦ワイヤA21によって縦方向の機械的強度が高められ、横撚糸A22によって横方向の柔軟性が確保されることに着目し、電線センサが太くなってもよい態様では、電線センサの内部導体を1本の太めの銅線等の金属導線に代えることでも対応することができる。
Here, although the electric wire sensor A1 shown in FIG. 1 is used, attention is focused on the fact that mechanical strength in the longitudinal direction is enhanced by the plurality of longitudinal wires A21 and flexibility in the transverse direction is ensured by the horizontal twisted yarn A22. In the aspect in which the wire sensor may be thick, it can be coped with by replacing the inner conductor of the wire sensor with a metal wire such as one thick copper wire.
図3は、図1に示す電線センサを用いた面状センサを模式的に示す図である。
FIG. 3 is a view schematically showing a planar sensor using the wire sensor shown in FIG.
図3に示す面状センサA3は、第1センサ体A31と第2センサ体A32とからなる二重構造のものである。第1センサ体A31は、図1に示す電線センサA1の径方向(Y軸方向)に間隔をあけて電線センサA1を複数本配置したものである。第1センサ体A31を構成する電線センサA1を、以下、第1電線センサA1aと称する。図3に示す第1センサ体A31では、隣り合う第1電線センサA1aの間に、その第1電線センサA1aの延在方向(X軸方向)と同じ方向に延びた第1繊維A311が複数本配置されている。この図3では、間隔をあけて隣り合う第1電線センサA1aの間に2本の第1繊維A311しか示されていないが、実際には、その間隔を埋めるように3本以上の第1繊維A311が配置されている。第1繊維A311は、第1電線センサA1aよりも柔らかなものであり、第1線状体の一例に相当する。
The planar sensor A3 shown in FIG. 3 has a double structure including a first sensor body A31 and a second sensor body A32. The first sensor body A31 has a plurality of wire sensors A1 arranged at intervals in the radial direction (Y-axis direction) of the wire sensor A1 shown in FIG. The wire sensor A1 constituting the first sensor body A31 is hereinafter referred to as a first wire sensor A1a. In the first sensor body A31 shown in FIG. 3, a plurality of first fibers A311 extending in the same direction as the extending direction (X axis direction) of the first electric wire sensor A1a is provided between the adjacent first electric wire sensors A1a. It is arranged. Although only two first fibers A311 are shown between the adjacent first electric wire sensors A1a in FIG. 3 in practice, three or more first fibers are filled so as to fill the distance. A311 is arranged. The first fiber A311 is softer than the first electric wire sensor A1a, and corresponds to an example of a first linear body.
一方、第2センサ体A32は、第1センサ体A31の下に設けられたものであり、第1センサ体A31に配置された第1電線センサA1aの延在方向に間隔をあけて、別途、電線センサA1を複数本配置したものになる。第2センサ体A32を構成する電線センサA1を、以下、第2電線センサA1bと称する。
On the other hand, the second sensor body A32 is provided below the first sensor body A31, and spaced apart in the extending direction of the first electric wire sensor A1a disposed on the first sensor body A31, separately. A plurality of wire sensors A1 are arranged. The wire sensor A1 constituting the second sensor body A32 is hereinafter referred to as a second wire sensor A1 b.
図4は、図3に示す面状センサA3の二重構造をわかりやすく示した拡大図である。この図4では、紙面の左右方向が、第1電線センサA1aの延在方向になる。
FIG. 4 is an enlarged view showing the double structure of the planar sensor A3 shown in FIG. 3 in an easily understandable manner. In FIG. 4, the left and right direction of the paper surface is the extending direction of the first electric wire sensor A1a.
第2電線センサA1bは、第1電線センサA1aと直交しており、図4では、左右方向(X軸方向)に延びる1本の第1電線センサA1aが示されているのに対して、第2電線センサA1bは、第1電線センサA1aの延在方向(X軸方向)に間隔をあけて3本示されている。なお、面状センサA3を製造した時点では、第1電線センサA1aと第2電線センサA1bは直交関係にあるが、面状センサA3の使用時には、面状センサA3に様々な方向から張力がかかる場合があり、第1電線センサA1aと第2電線センサA1bは必ずしも直交関係にあるとは限らない。第2センサ体A32では、隣り合う第2電線センサA1bの間に、その第2電線センサA1bの延在方向(Y軸方向)と同じ方向に延びた第2繊維A321が複数本配置されている。図3では、間隔をあけて隣り合う第2電線センサA1bの間に2本の第2繊維A321しか示されていないが、図4では、その間隔を埋めるように4本の第2繊維A321が配置されている。第2繊維A321は、第2電線センサA1bよりも柔らかなものであり、第2線状体の一例に相当する。なお、第2繊維A321は、上記間隔を埋めるように5本以上配置されてもよい。
The second electric wire sensor A1b is orthogonal to the first electric wire sensor A1a, and in FIG. 4, one first electric wire sensor A1a extending in the left-right direction (X-axis direction) is shown. Three two-wire sensors A1b are shown at intervals in the extending direction (X-axis direction) of the first wire sensor A1a. When the planar sensor A3 is manufactured, the first wire sensor A1a and the second wire sensor A1b are in an orthogonal relationship, but when the planar sensor A3 is used, tension is applied to the planar sensor A3 from various directions. In some cases, the first wire sensor A1a and the second wire sensor A1b are not necessarily in an orthogonal relationship. In the second sensor body A32, between the adjacent second electric wire sensors A1b, a plurality of second fibers A321 extending in the same direction as the extending direction (Y axis direction) of the second electric wire sensors A1b are arranged . Although only two second fibers A 321 are shown between the adjacent second electric wire sensors A1 b in FIG. 3, there are four second fibers A 321 in FIG. 4 so as to fill the gaps. It is arranged. The second fiber A 321 is softer than the second electric wire sensor A1 b, and corresponds to an example of a second linear body. In addition, 5 or more 2nd fiber A321 may be arrange | positioned so that the said space | interval may be filled.
第1繊維A311にしても第2繊維A321にしても、直径が0.3mm以上1.2mm以下の、ポリアミドやレーヨンといった合成繊維の撚糸であってもよいし、綿等の天然繊維の撚糸であってもよい。第1繊維A311も第2繊維A321も、電線センサA1よりも柔らかく、力がかかると、電線センサA1はつぶれにくいが、第1繊維A311や第2繊維A321はつぶれやすい。このため、第1繊維A311がつぶれて第1電線センサA1aのみが突出した状態になってしまったり、第2繊維A321がつぶれて第2電線センサA1bのみが突出した状態になってしまうと、肌触り(触感)が悪化してしまうことが考えられる。そこで、第1繊維A311は、第1電線センサA1aよりも直径が大きなものとし(例えば、直径0.5mm)、第1繊維A311が押しつぶされても、第1電線センサA1aの太さ未満までつぶされることがないようにして、第1電線センサA1aが突出しにくい構造となっている。また、第2繊維A321は、第2電線センサA1bよりも直径が大きなものとし(例えば、直径0.5mm)、第2繊維A321が押しつぶされても、第2電線センサA1bの太さ未満までつぶされることがないようにして、第2電線センサA1bが突出しにくい構造となっている。このため、本実施形態の面状センサA3は、肌触りが良好なものである。
The first fiber A311 or the second fiber A321 may be a twisted yarn of synthetic fibers such as polyamide and rayon having a diameter of 0.3 mm or more and 1.2 mm or less, or a twisted yarn of natural fibers such as cotton. It may be. Both the first fiber A311 and the second fiber A321 are softer than the electric wire sensor A1, and when a force is applied, the electric wire sensor A1 is unlikely to be crushed, but the first fiber A311 and the second fiber A321 are easily crushed. For this reason, if the first fiber A311 is crushed and only the first electric wire sensor A1a protrudes, or if the second fiber A321 is crushed and only the second electric wire sensor A1b is protruded, the touch feeling is felt. It is conceivable that (feeling) gets worse. Therefore, the first fiber A311 has a diameter larger than that of the first wire sensor A1a (for example, a diameter of 0.5 mm), and is crushed to less than the thickness of the first wire sensor A1a even if the first fiber A311 is crushed. The first electric wire sensor A1a has a structure that is difficult to protrude so as not to be damaged. In addition, the second fiber A321 has a diameter larger than that of the second electric wire sensor A1b (for example, a diameter of 0.5 mm), and is crushed to less than the thickness of the second electric wire sensor A1b even if the second fiber A321 is crushed. In order to prevent the second electric wire sensor A1b from protruding, the second electric wire sensor A1b is difficult to protrude. For this reason, the planar sensor A3 of the present embodiment has a good touch.
第1センサ体A31と第2センサ体A32は、分離不能に重ね合わされたものであり、本実施形態では、第1繊維A311とは別に、専用の第1結合繊維A331が設けられており、第2繊維A321とは別に、専用の第2結合繊維A332が設けられている。第1結合繊維A331にしても、第2結合繊維A332にしても、面状センサA3におけるおもて面(第1センサ体A31側の面)と、面状センサA3における裏面(第2センサ体A32側の面)とを交互に通ることで、第1結合繊維A331によって、第2電線センサA1bおよび第2繊維A321が綴られ、第2結合繊維A332によって、第1電線センサA1aおよび第1繊維A311が綴られている。第1結合繊維A331は第1電線センサA1aよりも細く、第1結合繊維A331の直径は、第1電線センサA1aの直径の1/5以上1/3以下であってもよい。また、第2結合繊維A332も第2電線センサA1bよりも細く、第2結合繊維A332の直径も、第2電線センサA1bの直径の1/5以上1/3以下であってもよい。第1結合繊維A331にしても第2結合繊維A332にしても、ポリアミド、ポリテトラフルオロエチレン、ポリエステル、レーヨンといった合成繊維や、綿等の天然繊維が用いられており、電線センサA1よりも柔軟である。
The first sensor body A31 and the second sensor body A32 are inseparably overlapped, and in the present embodiment, a dedicated first bonding fiber A331 is provided separately from the first fiber A311. A dedicated second bonding fiber A332 is provided separately from the two-fiber A321. Whether the first binding fiber A331 or the second binding fiber A332, the front surface (surface on the first sensor body A31 side) of the planar sensor A3 and the back surface (second sensor body) of the planar sensor A3 The second electric wire sensor A1b and the second fiber A321 are bound by the first bonding fiber A331 by alternately passing through the surface A32) and the first electric wire sensor A1a and the first fiber by the second bonding fiber A332. A311 is spelled. The first bonding fiber A331 may be thinner than the first electric wire sensor A1a, and the diameter of the first bonding fiber A331 may be 1⁄5 or more and 1⁄3 or less of the diameter of the first electric wire sensor A1a. In addition, the second bonding fiber A332 may be thinner than the second electric wire sensor A1b, and the diameter of the second bonding fiber A332 may be 1⁄5 or more and 1⁄3 or less of the diameter of the second electric wire sensor A1b. Synthetic fibers such as polyamide, polytetrafluoroethylene, polyester and rayon and natural fibers such as cotton are used for both the first bonding fiber A331 and the second bonding fiber A332, and they are softer than the wire sensor A1. is there.
X軸方向に延びる電線センサ(第1電線センサA1a)自身と、Y軸方向に延びる電線センサ(第2電線センサA1b)自身を直接編み込んだものでは、第1電線センサA1aに第2電線センサA1bが重なる箇所と、第2電線センサA1bに第1電線センサA1aが重なる箇所が交互に存在することになり、第1電線センサA1aに第2電線センサA1bが重なる箇所では一方側に突出し、第2電線センサA1bに第1電線センサA1aが重なる箇所では他方側に突出することで、凹凸感が出てしまい、肌触り(触感)が悪化してしまう。一方、本実施形態の面状センサA3は、第1センサ体A31と第2センサ体A32がZ軸方向に重ね合わされた構成であるため、第1電線センサA1aと第2電線センサA1bとのZ軸方向の位置関係は変化しない。また、第1センサ体A31と第2センサ体A32を結合する第1結合繊維A331にしても第2結合繊維A332にしても、電線センサA1よりも遥かに細く、また柔軟であるため、凹凸感が出にくく、この意味でも肌触りが良好である。
The wire sensor (first wire sensor A1a) itself extending in the X-axis direction and the wire sensor (second wire sensor A1b) itself extending in the Y-axis direction are directly woven into the first wire sensor A1a and the second wire sensor A1b. And the portion where the first wire sensor A1a overlaps with the second wire sensor A1b alternately exist, and the portion where the second wire sensor A1b overlaps with the first wire sensor A1a protrudes to one side, and the second wire sensor A1b By projecting to the other side where the first electric wire sensor A1a overlaps the electric wire sensor A1b, a sense of asperity appears and the touch (feel) is deteriorated. On the other hand, since planar sensor A3 of this embodiment is the composition where 1st sensor object A31 and 2nd sensor object A32 were piled up in the direction of the Z-axis, Z of 1st electric wire sensor A1a and 2nd electric wire sensor A1b The positional relationship in the axial direction does not change. In addition, since it is much thinner and more flexible than the electric wire sensor A1 in both the first bonding fiber A331 which connects the first sensor body A31 and the second sensor body A32 or the second bonding fiber A332, the uneven feeling is felt Is hard to come out and feels good in this sense as well.
なお、第1結合繊維A331や第2結合繊維A332を設けずに、複数本ある第1繊維A311の一部又は全部によって第2電線センサA1bおよび第2繊維A321を綴ることもでき、複数本ある第2繊維A321の一部又は全部によって、第1電線センサA1aおよび第1繊維A311を綴ることもできる。
In addition, the second electric wire sensor A1b and the second fiber A321 can be bound by part or all of the plurality of first fibers A311 without providing the first bonding fibers A331 and the second bonding fibers A332, and there are a plurality of them. The first electric wire sensor A1a and the first fiber A311 can also be spelled by part or all of the second fiber A321.
また、第1センサ体A31と第2センサ体A32の他に、図1に示す電線センサA1が配置された他のセンサ体が1又は複数さらに備えられていてもよい。
In addition to the first sensor body A31 and the second sensor body A32, one or more other sensor bodies in which the wire sensor A1 shown in FIG. 1 is disposed may be further provided.
図3に示す面状センサA3を、触感センサに利用する場合、制御部が備えられる。この制御部には、検出回路、A/D変換回路、CPU、CPUが実行するプログラムを記憶したROM、CPUの処理に使用されるデータなどを一時的に記憶するRAM等が設けられている。検出回路は、インピーダンス変換回路、増幅回路およびローパスフィルタを有する。この検出回路は、面状センサA3から送られる出力信号のレベルを所定のレベルに整合したのちに増幅するとともに、システム応答の限界である遮断周波数よりも高い周波数の成分を減衰させて遮断し遮断周波数よりも低い周波数の成分をA/D変換回路に送る。A/D変換回路は、検出回路から送られた信号をデジタル信号に変換してCPUに送る。CPUは、各種演算処理を行う。例えば、面状センサA3に圧力が加わったときに、第1電線センサA1aと第2電線センサA1bに発生するピエゾ電気から、電圧を生じた第1電線センサA1aと第2電線センサA1bそれぞれの位置と電圧の大きさを算出することで、面状センサA3のどの部分にどの程度の圧力が加わったのかを求める。
When the planar sensor A3 shown in FIG. 3 is used as a touch sensor, a control unit is provided. The control unit is provided with a detection circuit, an A / D conversion circuit, a CPU, a ROM storing a program executed by the CPU, a RAM temporarily storing data used for processing of the CPU, and the like. The detection circuit includes an impedance conversion circuit, an amplification circuit, and a low pass filter. This detection circuit amplifies the level of the output signal sent from the planar sensor A3 after matching it to a predetermined level, and attenuates and cuts off components of frequencies higher than the cut-off frequency which is the limit of system response. The component of the frequency lower than the frequency is sent to the A / D conversion circuit. The A / D conversion circuit converts the signal sent from the detection circuit into a digital signal and sends it to the CPU. The CPU performs various arithmetic processing. For example, when pressure is applied to the planar sensor A3, the positions of the first electric wire sensor A1a and the second electric wire sensor A1b that generate a voltage from the piezoelectric generated in the first electric wire sensor A1a and the second electric wire sensor A1b By calculating the magnitude of the voltage and the voltage, it can be determined which pressure is applied to which portion of the planar sensor A3.
また、制御部では、第1電線センサA1aと第2電線センサA1bの交点を検出点として取り扱う。この際、第1電線センサA1aからの出力信号の値(X)と、第2電線センサA1bからの出力信号の値(Y)を、単に乗算(X×Y)するのではなく、指数関数(ex+y)として扱う。こうすることで、ノイズとわずかな押圧力での接触とを区別することができるようになる。
Further, in the control unit, the intersection of the first electric wire sensor A1a and the second electric wire sensor A1b is handled as a detection point. At this time, the value (X) of the output signal from the first electric wire sensor A1a and the value (Y) of the output signal from the second electric wire sensor A1b are not simply multiplied (X × Y), but an exponential function ( Treat as e x + y ). This makes it possible to distinguish between noise and contact with a slight pressing force.
また、第1電線センサA1aと第2電線センサA1bを一定時間で走査したときに検出された信号を時間で積分することで、面状センサA3に接触したものの形状や圧力のピークの位置を判定することができる。
In addition, by integrating the signal detected when scanning the first electric wire sensor A1a and the second electric wire sensor A1b for a fixed time, the shape of the one in contact with the planar sensor A3 and the position of the pressure peak are determined can do.
また、電線センサA1は、圧力がかかって変形が生じたときに信号を発生するが、圧力がかかった同じ状態が続くと信号を発生しなくなる。面状センサA3では、圧力がかからず信号が発生されていない外側に位置する電線センサA1から測定し、圧力がかかった部分との臨界点を求めていくことが好ましい。すなわち、信号が発生していない外側の電線センサA1から走査して圧力がかかった部分の輪郭を求め、次に走査する際には、その部分に圧力がかかっているものとして、求めた輪郭の近傍に位置する電線センサA1を走査して圧力がかかった輪郭を求めていく。こうすることで、圧力がかかった範囲が変化しても対応することがきでる。また、最も外側の検出点の値を時間微分することで、圧力がかかった部分の形状を求めることができる。
Further, the electric wire sensor A1 generates a signal when pressure is applied and deformation occurs, but no signal is generated when the same state of applied pressure continues. In the planar sensor A3, it is preferable to measure from the electric wire sensor A1 located on the outside where no pressure is applied and no signal is generated, and the critical point with respect to the pressure applied portion is determined. That is, the contour of a portion subjected to pressure is determined by scanning from the electric wire sensor A1 on the outside where no signal is generated, and next time scanning is performed, it is determined that pressure is applied to that portion. The electric wire sensor A1 located in the vicinity is scanned to obtain a contour under pressure. By doing this, it is possible to cope with changes in the pressure applied range. Further, by time-differentiating the value of the outermost detection point, it is possible to obtain the shape of the portion to which pressure is applied.
また、1次判定では、出力信号が出ていないエリアを特定し、そのエリアの内側を、ものが接触している接触エリアとする。2次判定では、その接触エリアを詳細に判定することで、効率のよい検出が可能になる。例えば、面状センサA3を用いた検出では、1次判定で、n本(例えば、n=5)おきに第1電線センサA1aからの出力信号の有無を判定するとともに、第2電線センサA1bでもn本おきに出力信号の有無を判定することで接触エリアの絞り込みが可能になる。接触エリアが特定できた後は、その接触エリアを通過する全ての第1電線センサA1aからの出力信号の値(X)と、接触エリアを通過する全ての第2電線センサA1bからの出力信号の値(Y)を、指数関数として扱う。
Further, in the primary determination, an area where no output signal is output is specified, and the inside of the area is defined as a contact area where one comes into contact. In the secondary determination, it is possible to perform efficient detection by determining the contact area in detail. For example, in detection using the planar sensor A3, the primary determination determines whether there is an output signal from the first wire sensor A1a every n (for example, n = 5), and the second wire sensor A1b The contact area can be narrowed by determining the presence or absence of the output signal every n lines. After the contact area is identified, the values (X) of the output signals from all the first electric wire sensors A1a passing through the contact area and the output signals from all the second electric wire sensors A1b passing through the contact area Treat the value (Y) as an exponential function.
続いて、図1に示す電線センサA1の他の利用例について説明する。
Then, the other usage example of electric wire sensor A1 shown in FIG. 1 is demonstrated.
図1に示す電線センサA1は、従来のセンサよりも柔軟性が高いことから、溶解可能な基線の周囲に電線センサA1を螺旋状に巻き付けていき、基線を溶解させて消失させれば、最終的には螺旋状に周回した電線センサA1を得ることができる。この螺旋状に周回した電線センサA1は、周回部分が伸縮自在であり、伸縮することでセンシングするセンサとして機能する。また、溶解させる基線の太さをかえることで、伸縮の程度を調整することができる。また、溶解させる基線に対して、単位長当たりの巻き数を変えることで、センサ感度を調整することができる。すなわち、巻き数が多くなればなるほどセンサ感度は上がる。さらに、螺旋状に周回した電線センサA1を、帯状センサA2に利用したり、面状センサA3に利用することもできる。帯状センサA2に利用した場合には、横撚糸A22によって螺旋状の形状が維持されやすい。また、面状センサA3に利用した場合には、第1電線センサA1aとして利用した螺旋状に周回した電線センサA1は、第2繊維A321や第2結合繊維A332によって螺旋状の形状が維持されやすく、第2電線センサA1bとして利用した螺旋状に周回した電線センサA1は、第1繊維A311や第1結合繊維A331によって螺旋状の形状が維持されやすい。加えて、面状センサA3に利用した場合には、溶解させる基線の太さを異ならせた2種類の電線センサA1を用いることもできる。すなわち、一方の種類の電線センサA1で第1センサ体A31を構成させ、もう一方の種類の電線センサA1で第2センサ体A32を構成させることができる。あるいは、第1センサ体A31に、溶解させる基線に対する巻き数を異ならせた複数種類の電線センサA1を使用したり、基線の太さを異ならせた複数種類の電線センサA1を使用してもよいし、第2センサ体A32にも、基線に対する巻き数を異ならせた複数種類の電線センサA1を使用したり、基線の太さを異ならせた複数種類の電線センサA1を使用してもよい。
Since wire sensor A1 shown in FIG. 1 has higher flexibility than conventional sensors, wire sensor A1 is spirally wound around a soluble base line, and if the base line is dissolved and eliminated, the final In practice, it is possible to obtain the electric wire sensor A1 which is spirally wound. The spirally wound electric wire sensor A1 is stretchable at its winding portion, and functions as a sensor for sensing by expansion and contraction. Further, the degree of expansion and contraction can be adjusted by changing the thickness of the base line to be dissolved. Also, the sensor sensitivity can be adjusted by changing the number of turns per unit length with respect to the baseline to be dissolved. That is, the sensor sensitivity increases as the number of turns increases. Furthermore, the wire sensor A1 spirally wound can be used as the strip sensor A2, or can be used as the planar sensor A3. When it uses for belt-like sensor A2, spiral shape is easy to be maintained by weft twisting yarn A22. When the sheet sensor A3 is used as the first electric wire sensor A1a, the spirally wound electric wire sensor A1 is easily maintained by the second fiber A321 and the second bonding fiber A332. The electric wire sensor A1 which has been spirally wound and used as the second electric wire sensor A1b is likely to maintain a spiral shape by the first fiber A311 and the first bonding fiber A331. In addition, when it utilizes for planar sensor A3, two types of electric wire sensor A1 which varied the thickness of the base line to be dissolved can also be used. That is, it is possible to configure the first sensor body A31 with one type of wire sensor A1 and configure the second sensor body A32 with the other type of wire sensor A1. Alternatively, the first sensor body A31 may use a plurality of types of electric wire sensors A1 having different numbers of turns with respect to the base line to be dissolved, or may use a plurality of types of electric wire sensors A1 having different thicknesses of the base lines Also, as the second sensor body A32, plural kinds of electric wire sensors A1 in which the number of turns with respect to the base line is different may be used, or plural kinds of electric wire sensors A1 in which the thickness of the base line is different may be used.
また、電線センサA1を織物のように織ることで帯状センサや面状センサを製作することもできるが、電線センサA1を編み物のように、伏せ止めしてもよいし、メリヤス編みしてもよい。
Also, although it is possible to manufacture a strip-like sensor or a sheet-like sensor by weaving the electric wire sensor A1 like a fabric, the electric wire sensor A1 may be folded down like a knit or may be knitted .
図5は、図1に示す電線センサA1の他の利用例等について説明するための図である。
FIG. 5 is a view for explaining another application example and the like of the electric wire sensor A1 shown in FIG.
本実施形態の電線センサA1は、従来のセンサよりも柔軟性が高いことから、図5(a)に示すように、電線センサA1によって、ループ部分Arを連続して複数形成しておき、ループ部分Arどうしを絡め合わせることで編物状のセンサになっている。この編物状のセンサでは、これらのループ部分Arを使って伸縮性を実現し、伸縮することでセンシングするセンサとして機能させることもできる。さらに、各電線センサA1は結び目を形成するように、曲がりくねっているため、変形しやすくなり、これによって検出感度が向上する。また、ループ部分Arにおける伸縮性により、半球状や球状の被検出物の表面に対しても沿えるようになり、処理できる被処理物の範囲が広がる。
Since the wire sensor A1 of the present embodiment has higher flexibility than a conventional sensor, as shown in FIG. 5A, a plurality of loop portions Ar are continuously formed by the wire sensor A1, and the loop is formed. By intertwining the partial Ar, it becomes a knitted sensor. In this knitted sensor, stretchability can be realized by using these loop portions Ar, and the stretch sensor can function as a sensor for sensing. Furthermore, since each wire sensor A1 is tortuous so as to form a knot, it becomes easy to deform and thereby the detection sensitivity is improved. In addition, the stretchability of the loop portion Ar makes it possible to follow the surface of a hemispherical or spherical object to be detected, and the range of the object to be treated is expanded.
また、センサ感度は、ピエゾフィルムの面積に比例し、面積が大きければ大きいほどセンサ感度は良くなる。本実施形態の電線センサA1は、可能な限り細くすることを目的としているが、センサ感動を高めたい場合には、細い電線センサA1に、太い内部導体を有する電線センサを混ぜて、センサ感動と柔軟性のバランスをとりながら、帯状センサや面状センサを製作すればよい。
The sensor sensitivity is proportional to the area of the piezo film, and the larger the area, the better the sensor sensitivity. The purpose of the wire sensor A1 of this embodiment is to make it as thin as possible. However, when it is desired to enhance the sensor impression, a thin wire sensor A1 is mixed with a wire sensor having a thick inner conductor to The belt-like sensor and the planar sensor may be manufactured while balancing the flexibility.
また、内部導体A11の外周面に帯状のピエゾフィルムを螺旋状に巻き付けるにあたり、図5(b)に示すように、内部導体A11を長手方向に引っ張りながら(図中の白抜きの矢印参照)、2枚の帯状のピエゾフィルムAF,AFを180度ずらしながら同じ方向に巻き付けていってもよい。帯状のピエゾフィルムAFを巻き付ける際に、弛みが生じないようにピエゾフィルムAFにも張力がかかっているため、一方向に引っ張られてバランスが狂ってしまうことが考えられるが、2枚の帯状のピエゾフィルムAF,AFを180度ずらしながら同じ方向に巻き付けていくことで、一方向と正反対の方向にも張力がかかり、バランスを丁度とることができる。さらに、内部導体A11は、複数本の1次撚り線をさらに撚り合わせた2次撚り線であるが、その2次撚り線の撚り方向と、ピエゾフィルムAFを巻き付けていく方向は同じ方向である。ただし、内部導体A11の柔軟性をさらに高めたい場合には、2次撚り線の撚り方向とピエゾフィルムAFを巻き付けていく方向とを逆方向にしてもよい。
Further, in winding the strip-shaped piezoelectric film in a spiral shape around the outer peripheral surface of the inner conductor A11, as shown in FIG. 5 (b), while pulling the inner conductor A11 in the longitudinal direction (see the white arrow in the figure) The two strip-shaped piezoelectric films AF, AF may be wound in the same direction while being shifted by 180 degrees. Since tension is applied to the piezoelectric film AF so as not to cause slack when winding the belt-shaped piezoelectric film AF, it is possible that the balance may be pulled by pulling in one direction. By winding the piezoelectric films AF and AF in the same direction while shifting them by 180 degrees, tension is applied in the direction opposite to one direction, and the balance can be taken just. Furthermore, although the internal conductor A11 is a secondary stranded wire obtained by further twisting a plurality of primary stranded wires, the twisting direction of the secondary stranded wire and the direction in which the piezoelectric film AF is wound are the same direction. . However, in order to further increase the flexibility of the internal conductor A11, the twisting direction of the secondary stranded wire and the direction in which the piezo film AF is wound may be reversed.
また、電線センサA1を、センサ部と、出力信号の送信線とに分けて使用することもできる。電線センサA1のうち、キュリー温度を超えるまで加熱された箇所はピエゾ特性が著しく低下するため、電線センサA1のうち、キュリー温度を超えるまで加熱された箇所が送信線として機能し、それ以外の箇所がセンサ部として機能する。例えば、電線センサA1を70°C以上150°C以下の加熱温度で10秒以上10分以下、好ましくは80°C以上120°C以下の加熱温度で10秒以上60秒以下の加熱処理を行えばよい。
Further, the wire sensor A1 can be divided into a sensor unit and a transmission line of an output signal. In the wire sensor A1, the portion heated to a temperature exceeding the Curie temperature is significantly reduced in piezoelectric characteristics, and therefore, in the wire sensor A1, a portion heated to a temperature above the Curie temperature functions as a transmission line. Functions as a sensor unit. For example, the electric wire sensor A1 is heated at a heating temperature of 70 ° C. to 150 ° C. for 10 seconds to 10 minutes, preferably at a heating temperature of 80 ° C. to 120 ° C. for 10 seconds to 60 seconds. It is good.
また、図3に示す面状センサA3は、X軸方向には伸縮することはなく、Y軸方向にも伸縮することはないが、対角線方向には伸縮可能であり、図5(c)に示すように90度回転させた状態で使用すれば、白抜きの矢印方向に伸縮可能な面状センサA3になる。さらに、第1電線センサA1aがX軸方向に延在し第2電線センサA1bがY軸方向に延在した面状センサと、図5(c)に示す面状センサを重ねて配置すれば、X軸方向にも、Y軸方向にも、対角線方向にも伸縮するセンサを実現することができる。
Further, the planar sensor A3 shown in FIG. 3 does not expand and contract in the X axis direction and does not expand and contract in the Y axis direction, but can expand and contract in the diagonal direction, as shown in FIG. As shown, when used in a state of being rotated by 90 degrees, it becomes a planar sensor A3 that can expand and contract in the direction of the white arrow. Furthermore, if the planar sensor shown in FIG. 5C overlaps the planar sensor shown in FIG. 5C, the planar sensor shown in FIG. 5C overlaps the planar sensor in which the first electrical wire sensor A1a extends in the X axis direction and the second electrical wire sensor A1b extends in the Y axis direction. It is possible to realize a sensor that can extend and contract both in the X axis direction, in the Y axis direction, and in the diagonal direction.
また、図2に示す帯状センサA2を、溶接された配管に巻き付け、溶接部の欠陥検査に利用することができる。帯状センサA2は、溶接部から漏れ出した流体による振動を検出したり、あるいは、気体の漏洩による空気振動を検出することもできる。
Further, the strip sensor A2 shown in FIG. 2 can be wound around a welded pipe and used for defect inspection of a welded portion. The strip sensor A2 can detect vibration due to the fluid leaking out of the weld or can also detect air vibration due to gas leakage.
また、風船や気球といった浮上体の表面に、図3に示す面状センサA3を配置し、手や工具が届かない高い場所(例えば、トンネルの天井)まで、その浮上体を浮上させ、浮上体の表面に配置されている面状センサA3を、検出対象の場所に押し付けることで、その場所における振動を検出することができるようになる。
In addition, the planar sensor A3 shown in FIG. 3 is disposed on the surface of a floating body such as a balloon or a balloon, and the floating body is floated up to a high place (for example, the ceiling of a tunnel) to which the hand or tool can not reach By pressing the sheet-like sensor A3 disposed on the surface of the above at a location to be detected, it is possible to detect vibration at that location.
さらに、車等のシートベルトやハンドルに、図2に示す帯状センサA2あるいは図3に示す面状センサA3を配置しておけば、運転者の心拍や呼吸を振動として検出することで、その運転者の健康状態を監視することができる。また、肌着や帽子に図3に示す面状センサA3を配置したり、あるいは肌着や帽子自体を図3に示す面状センサA3で縫製しておけば、その肌着を着ている人やその帽子を被っている人の心拍や呼吸を振動として検出することで健康状態を監視することができる。
Furthermore, if a belt-like sensor A2 shown in FIG. 2 or a sheet-like sensor A3 shown in FIG. 3 is disposed on a seat belt or steering wheel of a car etc., the driver's heartbeat or respiration is detected as vibration. People's health can be monitored. Also, if the flat sensor A3 shown in FIG. 3 is placed on the underwear or hat, or if the underwear or hat itself is sewn by the flat sensor A3 shown in FIG. The health condition can be monitored by detecting the heartbeat and respiration of the person who is wearing it as vibration.
また、図3に示す面状センサA3が、人の心拍や呼吸を振動として検出することができることを利用して、車等の座席の座面や背もたれにその面状センサA3を配置しておけば、その座席に位置するものが人なのか物体なのかを識別することができる。
Also, by utilizing the fact that planar sensor A3 shown in FIG. 3 can detect a person's heart beat and respiration as vibrations, the planar sensor A3 can be arranged on the seat or back of a seat such as a car. For example, it is possible to identify whether the person located in the seat is a person or an object.
また、ベッドシートや枕カバーの下に、図3に示す面状センサA3を入れておけば、その面状センサA3は非侵襲性の心拍または/および呼吸センサとして機能する。また、高齢者や病人の、存在確認用や動作確認用の見守りセンサとしても機能する。しかも、面状センサA3は柔軟性が高いため、寝ている人が痛い思いをすることがない。これらの点につき、さらに詳細に説明すると、面状センサA3は柔軟であって、織物であることから、通気性が良く、裁断や縫製が可能という特徴を持ち、更に低コストで大面積の生産も可能である。面状センサA3をベッドシーツの下に敷くことで、患者や要介護者の離床警報だけでなく、呼吸(無呼吸)の自動監視や寝返り、排泄等の自動監視や、寝返り補助ベッドなどの自動制御への応用が可能である。さらには、面状センサA3は、足裏応力センサーとして歩行バランスの監視に利用することもでき、車いすの座面に面状センサA3を敷けば座圧バランスの監視などへの応用も可能になる。
Also, if the sheet-like sensor A3 shown in FIG. 3 is placed under the bed sheet or pillow cover, the sheet-like sensor A3 functions as a non-invasive heart rate and / or respiration sensor. It also functions as a watching sensor for existence confirmation and operation confirmation of elderly people and sick people. Moreover, since the planar sensor A3 has high flexibility, the person sleeping does not feel painful. To explain these points in more detail, since the planar sensor A3 is flexible and is a woven fabric, it has features of good breathability, being able to cut and sew, and producing a large area at low cost. Is also possible. By placing the surface condition sensor A3 under the bed sheet, not only the patient and the care recipient's leaving alarm but also automatic monitoring and turning of breathing (apnea), automatic monitoring of excretion, etc., turning turn auxiliary bed etc. Application to control is possible. Furthermore, the planar sensor A3 can also be used to monitor the balance of walking as a foot sole stress sensor, and if the planar sensor A3 is placed on the seat surface of a wheelchair, application to monitoring of seat pressure balance etc. becomes possible. .
また、図2に示す帯状センサや図3に示す面状センサA3をペットの首輪に巻き付けたり、面状センサA3をペットの洋服に配置すれば、ペットの活動量のモニタや睡眠モニタとして利用することができる。さらに、インターネットサービスとスマートフォンを連携すれば、留守番中のペットの状態を出先から見守ることも可能になる。
Also, if the belt-like sensor shown in FIG. 2 or the sheet-like sensor A3 shown in FIG. 3 is wound around the pet's collar or the sheet-like sensor A3 is placed on the pet's clothes, it will be used as a pet activity monitor and sleep monitor. be able to. Furthermore, by linking the Internet service and the smartphone, it is possible to watch the state of the pet in the answering machine from the outside.
また、図3に示す面状センサA3を手袋に配置させてもよい。例えば、指先には高密度(例えば、1mm間隔)に図1に示す電線センサA1を配置した面状センサを配置し、指の第2関節から第3関節にかけては中密度(例えば、4mm以上6mm以下の間隔)に電線センサA1を配置した面状センサを配置し、手のひらには中低密度(例えば、5mm以上8mm以下)に電線センサA1を配置した面状センサを配置してもよい。特に、指先に高密度な面状センサを配置することによって、指先触感センサーを実現することができる。面状センサは、手袋繊維の上に縫い付けたり、接着剤で接着する。あるいは、手袋自体を面状センサで縫製してもよい。さらに、手袋の手の甲の部分に、マイコン等の制御基板を配置すればよい。
Further, the planar sensor A3 shown in FIG. 3 may be disposed on a glove. For example, a planar sensor in which the wire sensor A1 shown in FIG. 1 is disposed at a high density (for example, 1 mm intervals) is disposed at the fingertips, and a medium density (for example, 4 mm to 6 mm) is provided from the second joint to the third joint of the finger. A planar sensor in which the wire sensor A1 is disposed may be disposed at the following intervals), and a planar sensor in which the electrical wire sensor A1 is disposed at a low density (for example, 5 mm or more and 8 mm or less) may be disposed on the palm. In particular, the finger touch sensor can be realized by disposing a high-density planar sensor at the fingertip. The planar sensor is sewed on the glove fiber or bonded with an adhesive. Alternatively, the glove itself may be sewn with a planar sensor. Furthermore, a control board such as a microcomputer may be disposed on the back of the hand of the glove.
面状センサA3が配置された手袋は、人の手を模したロボットの手(ロボットハンド)に装着してもよい。この場合、ロボットの手が剛体であれば、手袋繊維には、柔軟物質を含浸したり、塗布しておき、手袋繊維が、面状センサの変形を許容できるように柔らかであることが好ましい。面状センサA3が配置された手袋を人の手を模したロボットの手に装着することで、ロボットの手の把持力を制御することができる。
The glove in which the planar sensor A3 is disposed may be worn on a robot hand imitating a human hand (robot hand). In this case, if the robot hand is a rigid body, it is preferable that the glove fibers be impregnated with or coated with a soft substance, and the glove fibers be soft so as to allow deformation of the planar sensor. By attaching the glove in which the planar sensor A3 is disposed to the hand of the robot imitating a human hand, the gripping force of the hand of the robot can be controlled.
また、面状センサA3が配置された手袋を、人に装着させて、各種作業等における把持力等のデータ取りに用いてもよい。こうして得られたデータは、データ取りした作業をロボットに行わせる際の、ロボットの手の動きのプログラミングに利用することができる。さらに、面状センサA3が配置された手袋を、手指のリハビリ用手袋として用い、例えば、把持動作を行ってもらうことで、手指の筋肉や関節の固さを計測することができたり、リハビリの効果や到達度を判断するためのデータ取りを行うこともできる。また、通話困難者の手文字の読み取り装置としても利用することができる。すなわち、手のひらに書いた文字の座標を読み取りテキストデータへ変換したり、このテキストデータを発話変換して、会話サポート機能デバイスとして利用することも可能である。
In addition, a glove on which the planar sensor A3 is disposed may be worn by a person and used for data acquisition such as gripping force in various operations. The data obtained in this way can be used to program the robot's hand movement when the robot performs the data acquisition operation. Furthermore, by using a glove on which the planar sensor A3 is disposed as a glove for rehabilitation of fingers, for example, by performing a gripping operation, it is possible to measure the stiffness of muscles and joints of fingers, or for rehabilitation It is also possible to collect data to determine the effect and degree of achievement. In addition, it can also be used as a reading device for the person who has difficulty in making a call. That is, it is also possible to read the coordinates of a character written on the palm and convert it into text data, or convert this text data into speech and use it as a conversation support function device.
また、手指の拘縮患者ためのリハビリ用のグリップにも応用することができる。片麻痺、廃用症候群などによって拘縮した手に、ピエゾ電線センサによる高感度感触センサを応用したグリップ状器具を握ってもらう。このグリップ状器具は、エア圧によって膨らむ膨張体の表面に、図3に示す面状センサA3を配置したものであり、膨張体を膨らませた状態で、患者が握ることで、手指の開き具合や関節の曲げ角度を面状センサA3で計測することができ、手指の筋肉や関節の固さを解析することに役立つ。また、過去のデータを記録しておくことで、回復状態を確認することができる。さらに、面状センサA3からの出力信号を監視しておくことで、手指の過度な運動を抑制させることができる。また、膨張体へのエア圧を調整することで、手指や手首を痛めることのない手指の開き方、強度によって、自然に安全に手指の開閉動作を行い、拘縮緩和を進められるリハビリを実現することができる。
In addition, it can be applied to grips for rehabilitation for hand contracture patients. Have the hand grasped by hemiplegia, disuse syndrome, etc. hold the grip-like instrument applying the high sensitivity touch sensor by the piezo electric wire sensor. This grip-like device has a sheet-like sensor A3 shown in FIG. 3 disposed on the surface of an inflatable body that is inflated by air pressure, and when the inflatable body is inflated, the degree of finger The bending angle of the joint can be measured by the planar sensor A3, which is useful for analyzing the firmness of the finger muscles and joints. Also, by recording past data, it is possible to confirm the recovery state. Furthermore, by monitoring the output signal from the planar sensor A3, excessive movement of the finger can be suppressed. In addition, by adjusting the air pressure to the inflatable body, depending on the opening and strength of the fingers without hurting the fingers and wrists naturally perform opening and closing of the fingers safely, achieving rehabilitation that can promote contracture relief can do.
図6は、ロボットハンドの指に図3に示す面状センサを適用した例を示す図である。
FIG. 6 is a view showing an example in which the planar sensor shown in FIG. 3 is applied to the finger of the robot hand.
図6(a)に示すロボットハンドの指A4は、骨部A41、弾性部A42、図3に示す面状センサA3、および外皮部A43の4つの構成要素からなる。骨部A41は剛体であり、これら4つの構成要素の中で最も硬いものである。外皮部A43は、面状センサA3の摩耗を防止する耐摩耗性に優れた材質(例えば、ポリウレタン)である一方、想定される接触物の柔らかさよりも柔らかい材質である。接触物に触れた場合に、外皮部A43が弾性変形することで、その内側にある面状センサA3が押される。また、外皮部A43が柔らかいと、人に触れた場合に痛くない。弾性部A42は、面状センサA3が押されて面状センサA3が変形することを許容する柔らかさをもったものである。ただし、弾性部A42の内側には骨部A41があるため、弾性部A42の弾性変形は一定の範囲で止まる。この結果、外皮部A43に接触物が触れた場合に、外皮部A43が弾性変形することで、その内側にある面状センサA3が押され、弾性部A42も骨部A41に内側から支持されながら弾性変形可能であることによって、面状センサA3が変形可能であり、接触物がどの位置でどれだけの接触圧で接触したかを検知することができる。図6(a)に示すロボットハンドの指A4の構造は、内側から剛体の骨部A41で支持した状態で、弾性変形可能な材料(外皮部A43,弾性部A42)で面状センサA3を挟み込んだ構造である。なお、外皮部A43を相対的に薄く、弾性部A42を相対的に厚くしておくことで、外皮部A43に接触したことが即座に面状センサA3に伝わりやすくなり、また、面状センサA3は内側(骨部A41側)へより変形しやすくなって検出感度が向上する。
The finger A4 of the robot hand shown in FIG. 6A includes four components of a bone portion A41, an elastic portion A42, a planar sensor A3 shown in FIG. 3, and an outer skin portion A43. The bone portion A41 is a rigid body and is the hardest of these four components. The outer skin part A43 is a material (for example, polyurethane) excellent in abrasion resistance that prevents the wear of the planar sensor A3, but is a material softer than the softness of the contact object assumed. When the contact object is touched, the skin portion A43 elastically deforms, thereby pressing the planar sensor A3 located inside. In addition, when the skin portion A43 is soft, it does not hurt when it touches a person. The elastic portion A42 has a softness that allows the sheet-like sensor A3 to be deformed by pressing the sheet-like sensor A3. However, since the bone portion A41 exists inside the elastic portion A42, the elastic deformation of the elastic portion A42 stops in a certain range. As a result, when the contact object touches the outer skin portion A43, the outer skin portion A43 elastically deforms, so that the sheet-like sensor A3 located inside thereof is pushed and the elastic portion A42 is also supported from the inner side by the bone portion A41. By being elastically deformable, the sheet-like sensor A3 can be deformed, and it can be detected at what position and at what contact pressure the contact object contacts. The structure of the finger A4 of the robot hand shown in FIG. 6A holds the sheet-like sensor A3 with an elastically deformable material (skin part A43, elastic part A42) while being supported by the rigid bone part A41 from the inside. It is a structure. Note that by making the skin part A43 relatively thin and making the elastic part A42 relatively thick, contact with the skin part A43 is readily transmitted to the planar sensor A3, and the planar sensor A3 Is more easily deformed to the inside (bone A41 side), and the detection sensitivity is improved.
また、外皮部A43を人の皮膚よりも柔らかくすると、人への接触がより安全になる。例えば、外皮部A43を、面状センサA3にシリコンゴムを塗布することで形成してもよい。この場合には、骨部A41を剛体ではなく、弾性変形可能なものとし、指A4全体が弾性変形可能なものとする。こうした場合でも、シリコンゴムの外皮部A43に接触物が触れると、面状センサA3も曲がり、接触物がどの位置でどれだけの接触圧で接触したかを検知することができる。
In addition, if the skin A43 is softer than human skin, human contact is more secure. For example, the outer skin portion A43 may be formed by applying a silicone rubber to the planar sensor A3. In this case, the bone portion A41 is not rigid but elastically deformable, and the entire finger A4 is elastically deformable. Even in such a case, when the contact object touches the silicone rubber skin portion A43, the planar sensor A3 also bends, and it is possible to detect at which position the contact object contacts with what contact pressure.
図6(b)に示すロボットハンドの指A4’は、骨部A41、弾性部A42、第1面状センサA3a、第2面状センサA3b、外皮部A43、および爪部A44からなる。すなわち、爪部A44を有する点が、図6(a)に示すロボットハンドの指A4とは異なっている。以下、図6(a)に示すロボットハンドの指A4との相違点を中心に説明し、重複する説明は省略する。
A finger A4 'of the robot hand shown in FIG. 6B includes a bone A41, an elastic part A42, a first planar sensor A3a, a second planar sensor A3b, an outer skin A43, and a claw A44. That is, the point having the claw portion A44 is different from the finger A4 of the robot hand shown in FIG. Hereinafter, differences from the finger A4 of the robot hand shown in FIG. 6A will be mainly described, and the overlapping description will be omitted.
爪部A44は、根本A441を回動支点にして回動可能なものであり、図6(b)では、実線で爪部A44の初期姿勢を示し、2点鎖線で爪部A44の回動姿勢を示している。第1面状センサA3aも第2面状センサA3bも、図3に示す面状センサA3であるが、第1面状センサA3aは、指の腹側に配置されたものであり、図6(a)に示す面状センサA3と同じ機能を有する。一方、第2面状センサA3bは、爪部A44の、回動支点になる根本A441の内側に配置されており、爪部A44が回動すると、根本A441に押されて出力信号を出力する。したがって、図6(b)に示すロボットハンドの指A4’では、爪部A44の動きも検知することができる。
The claw portion A44 is rotatable with the root A441 as a rotation fulcrum, and in FIG. 6B, the solid line indicates the initial posture of the claw portion A44, and the two-dot chain line indicates the rotational posture of the claw portion A44 Is shown. Although both the first planar sensor A3a and the second planar sensor A3b are the planar sensor A3 shown in FIG. 3, the first planar sensor A3a is disposed on the ventral side of the finger. It has the same function as the planar sensor A3 shown in a). On the other hand, the second planar sensor A3b is disposed inside the root A441 that is the pivot point of the claw A44, and when the claw A44 pivots, it is pushed by the root A441 and outputs an output signal. Therefore, with the finger A4 'of the robot hand shown in FIG. 6 (b), the movement of the claw portion A44 can also be detected.
なお、これまで説明した実施形態や、図1に示す電線センサA1の他の利用例は適宜組み合わせることが可能である。
In addition, it is possible to combine suitably the embodiment demonstrated so far and the other usage example of electric wire sensor A1 shown in FIG.
以下に、これまで説明したことを含めた技術的思想を記す。
Below are the technical ideas, including what has been described above.
これまで説明した第1の特徴的な線状センサは、
複数本のステンレスワイヤを撚り合わせた撚り線を複数本配置した内部導体と、
前記内部導体の外周面に螺旋状に巻き付けられた帯状のピエゾフィルムと、
前記ピエゾフィルムの外周面に配置された外部導体とを有することを特徴とする。 The first characteristic linear sensor described so far is
An internal conductor in which a plurality of stranded wires formed by twisting a plurality of stainless steel wires are arranged;
A band-shaped piezoelectric film spirally wound around the outer peripheral surface of the inner conductor;
And an outer conductor disposed on the outer peripheral surface of the piezoelectric film.
複数本のステンレスワイヤを撚り合わせた撚り線を複数本配置した内部導体と、
前記内部導体の外周面に螺旋状に巻き付けられた帯状のピエゾフィルムと、
前記ピエゾフィルムの外周面に配置された外部導体とを有することを特徴とする。 The first characteristic linear sensor described so far is
An internal conductor in which a plurality of stranded wires formed by twisting a plurality of stainless steel wires are arranged;
A band-shaped piezoelectric film spirally wound around the outer peripheral surface of the inner conductor;
And an outer conductor disposed on the outer peripheral surface of the piezoelectric film.
例えば、内部導体である銅線の外周面に、帯状のピエゾフィルムを螺旋状に巻き付ける際に弛みがあると、その弛みによって、芯線の外周面とピエゾフィルムとの間に隙間が生じてしまう。線状センサに力がかかるとその隙間がつぶれ、その際に振動が発生し、ノイズとして出力信号に重畳してしまう。帯状のピエゾフィルムの弛みをなくすには、銅線をある程度の張力で引っ張った状態でピエゾフィルムを巻き付けていくことが必要になる。
For example, when a strip-shaped piezoelectric film is helically wound around the outer peripheral surface of a copper wire which is an internal conductor, the slack causes a gap between the outer peripheral surface of the core wire and the piezoelectric film. When a force is applied to the linear sensor, the gap is crushed, vibration occurs at that time, and the noise is superimposed on the output signal. In order to eliminate the slack of the strip-shaped piezoelectric film, it is necessary to wind the piezoelectric film in a state where the copper wire is pulled with a certain degree of tension.
しかしながら、銅線では、引張強度が低く、十分にピンと張った状態を維持することが難しい傾向にある。特に、細い線状センサを得るために銅線の直径を小さなものにすると、引張強度が低下し、この傾向が強くなり、結局は、細い線状センサを得ることができない。
However, copper wire tends to have low tensile strength and it is difficult to maintain sufficient tension. In particular, if the diameter of the copper wire is made small to obtain a thin linear sensor, the tensile strength is lowered and this tendency becomes strong, and eventually, a thin linear sensor can not be obtained.
一方、上記第1の特徴的な線状センサは、内部導体としてステンレスワイヤが使用され、しかも撚り線が複数本配置されていることから、内部導体全体の直径を小さくしても十分な引張強度を得ることができる。この結果、内部導体をピンと張った状態で、帯状のピエゾフィルムを巻き付けることができ、線状センサを可能な限り細くすることが可能になる。
On the other hand, in the first characteristic linear sensor described above, a stainless steel wire is used as the inner conductor, and since a plurality of stranded wires are disposed, sufficient tensile strength is obtained even if the diameter of the entire inner conductor is reduced. You can get As a result, it is possible to wind a strip-shaped piezoelectric film in a state in which the inner conductor is stretched, and it is possible to make the linear sensor as thin as possible.
前記ステンレスワイヤ1本の直径は、10μm以上40μm以下であってもよく、20μm以上30μm以下であることが好ましい。ステンレスワイヤは、細ければ細いほど柔軟性は高められるが強度が低下し、太ければ太いほど柔軟性は低下するが強度が高められる。
The diameter of one stainless steel wire may be 10 μm or more and 40 μm or less, and preferably 20 μm or more and 30 μm or less. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength.
前記内部導体は、断面形状が、前記撚り線が正六角形の各頂点および該正六角形の中心に配置されたものであってもよい。すなわち、最密構造のものであってもよい。また、前記内部導体自体も撚り線構造であってもよい。すなわち、前記撚り線が正六角形の各頂点および該正六角形の中心に配置された状態で全体が撚られたものであってもよい。
The inner conductor may have a cross-sectional shape in which the stranded wire is disposed at each vertex of a regular hexagon and at the center of the regular hexagon. That is, it may be a close packed structure. In addition, the inner conductor itself may have a stranded wire structure. That is, the whole may be twisted in a state in which the stranded wire is disposed at each vertex of the regular hexagon and at the center of the regular hexagon.
さらに、前記内部導体は、前記撚り線のみから構成されたものであってもよいし、前記撚り線と他の金属線から構成されたものであってもよい。例えば、前記撚り線が正六角形の各頂点に配置され該正六角形の中心に銅線が配置された状態で全体が撚られたものであってもよいし、前記撚り線が正六角形の頂点のうち一つおきに配置され残りの頂点には銅線が配置され、該正六角形の中心には銅線又は前記撚り線が配置された状態で全体が撚られたものであってもよい。
Furthermore, the inner conductor may be constituted only by the stranded wire, or may be constituted by the stranded wire and another metal wire. For example, the whole may be twisted in a state in which the stranded wire is disposed at each vertex of a regular hexagon and a copper wire is disposed at the center of the regular hexagon, or the stranded wire may be a vertex of a regular hexagon Alternatively, copper wires may be disposed at every other apex, and copper wires or twisted wires may be disposed at the center of the regular hexagon, and the whole may be twisted.
前記内部導体の直径は、0.15mm以上0.8mm以下であってもよく、0.18mm以上0.5mm以下であることが好ましい。
The diameter of the internal conductor may be 0.15 mm or more and 0.8 mm or less, and preferably 0.18 mm or more and 0.5 mm or less.
前記ピエゾフィルムは、幅が2mm以上5mm以下のものであって、好ましくは3mm以上4mm以下のものである。前記ピエゾフィルムは、前記内部導体の外周面に螺旋状に巻き付ける際に該内部導体の延在方向に隣り合うピエゾフィルムの幅方向の一端と他端どうしを重ね合わせた状態で巻き付けていき、隙間が生じないようにする。ピエゾフィルムの幅が狭すぎると前記内部導体の外周面に螺旋状に巻き付ける際に該内部導体の延在方向に隣り合うピエゾフィルムの間に隙間が生じやすくなってしまう。隙間が生じた箇所は、センシングできない箇所になってしまう。一方、ピエゾフィルムの幅が広すぎると前記内部導体の外周面に螺旋状に巻き付ける際に弛みが生じやすくなってしまう。なお、ピエゾフィルムの幅方向の一端と他端どうしを重ね合わせることでピエゾフィルムの面積をなるべく大きくとることができ、センサ感度の向上につながる。
The piezoelectric film has a width of 2 mm or more and 5 mm or less, preferably 3 mm or more and 4 mm or less. When the piezoelectric film is spirally wound around the outer peripheral surface of the inner conductor, the piezoelectric film is wound in a state where one end and the other end of the width direction of the piezoelectric film adjacent in the extension direction of the inner conductor overlap each other Will not occur. If the width of the piezo film is too narrow, a gap is likely to be generated between the piezo films adjacent in the extending direction of the inner conductor when spirally wound around the outer peripheral surface of the inner conductor. The place where the gap is generated is the place where the sensing can not be made. On the other hand, when the width of the piezo film is too wide, slack is easily generated when it is spirally wound around the outer peripheral surface of the inner conductor. The area of the piezoelectric film can be made as large as possible by superposing one end and the other end in the width direction of the piezoelectric film, which leads to the improvement of the sensor sensitivity.
前記ピエゾフィルムの厚さは、20μm以上100μm以下であって、25μm以上80μm以下であることが好ましい。前記ピエゾフィルムの厚さが薄すぎるとセンサとしての感度が不十分になってしまい、反対に厚すぎると線状センサが硬くなりすぎてしまい柔軟性に欠けてしまう。
The thickness of the piezoelectric film is preferably 20 μm to 100 μm, and more preferably 25 μm to 80 μm. If the thickness of the piezoelectric film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the linear sensor will be too hard and the flexibility will be lost.
前記ピエゾフィルムは、ピエゾ特性が、長手方向(伸び方向)にしか対応していないものよりも、結晶の配向性により複数方向(伸び方向及び曲げ方向)に対応したものである方が好ましい。
The piezoelectric film preferably has a piezoelectric property corresponding to a plurality of directions (elongation direction and bending direction) due to crystal orientation, compared with a case where the piezoelectric characteristic corresponds only to the longitudinal direction (elongation direction).
前記外部導体は、銅線(例えば、スズメッキ銅線)であってもよいが、ステンレスワイヤであってもよい。例えば、前記撚り線であってもよい。前記外部導体の厚さは、10μm以上120μm以下であり、25μm以上90μm以下であることが好ましい。すなわち、前記内部導体の直径よりも細かったり薄かったりする。この外部導体は、前記ピエゾフィルムの外周面に、導線をクロスして編み上げた編組シールドであってもよいし、導線を1列に螺旋状に巻き付けていった横巻きシールドでもよい。また、外部導体は、前記ピエゾフィルムの外周面に、テープ状(帯状)の導体を螺旋状に巻き付けていったテープシールドであってもよい。ただし、横巻きシールドが最も柔軟性が高い。またさらに、外部導体は、複数本の導線を螺旋状に巻き付けていったものであってもよいし、複数本のテープ状(帯状)の導体を螺旋状に巻き付けていったものであってもよい。
The outer conductor may be a copper wire (for example, a tin-plated copper wire), but may be a stainless steel wire. For example, the stranded wire may be used. The thickness of the outer conductor is preferably 10 μm to 120 μm, and more preferably 25 μm to 90 μm. That is, it is smaller or thinner than the diameter of the inner conductor. The outer conductor may be a braided shield in which a conducting wire is crossed and braided around the outer peripheral surface of the piezoelectric film, or a laterally wound shield in which the conducting wire is spirally wound in one row. Further, the outer conductor may be a tape shield in which a tape-like (strip-like) conductor is spirally wound around the outer peripheral surface of the piezoelectric film. However, the side shield is the most flexible. Furthermore, the outer conductor may be one in which a plurality of conducting wires are spirally wound, or one in which a plurality of tape-like (band-like) conductors are spirally wound. Good.
前記内部導体は、前記外部導体よりも機械的強度が高いものであってもよい。
The inner conductor may have higher mechanical strength than the outer conductor.
前記外部導体を覆うシースが設けられたものであってもよい。このシースは、耐摩耗性、耐薬品性、防錆性を高めるためのものである。シースは複層構造であってもよい。シースを含めた線状センサの直径は0.6mm未満であり、0.5mm未満(例えば、0.4mm以上0.5mm未満)であることが好ましい。なお、シースの厚みは20μm以上40μm以下程度である。
A sheath covering the outer conductor may be provided. This sheath is for enhancing the abrasion resistance, the chemical resistance and the rust prevention. The sheath may have a multilayer structure. The diameter of the linear sensor including the sheath is less than 0.6 mm, and preferably less than 0.5 mm (e.g., 0.4 mm or more and less than 0.5 mm). The thickness of the sheath is about 20 μm to 40 μm.
これまで説明した第1の特徴的な帯状センサは、
上記第1の特徴的な線状センサと、
前記線状センサの延在方向と同じ方向に延びた金属製の縦線状体と、
前記線状センサの幅方向に延び、該線状センサと前記縦線状体を綴る横線状体とを有することを特徴とする。 The first characteristic strip sensor described so far is
The first characteristic linear sensor;
A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor;
It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
上記第1の特徴的な線状センサと、
前記線状センサの延在方向と同じ方向に延びた金属製の縦線状体と、
前記線状センサの幅方向に延び、該線状センサと前記縦線状体を綴る横線状体とを有することを特徴とする。 The first characteristic strip sensor described so far is
The first characteristic linear sensor;
A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor;
It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
金属製の縦線状体は、機械的強度を出すためのものであり、例えば、ステンレスワイヤを含んだものであってもよい。より具体的には、ステンレスワイヤの撚り線であってもよいし、ステンレスワイヤと非金属製の線状体を撚り合わせたものであってもよい。さらに、金属製の縦線状体は、第1の特徴的な帯状センサよりも機械的強度が高いものであってもよい。また、前記線状センサが1本ではなく、複数本、間隔をあけて配置され、該間隔に前記縦線状体が配置された構成であってもよい。この場合、前記間隔に、前記縦線状体のみが配置された態様であってもよいし、前記縦線状体と非金属性の線状体が配置された態様であってもよい。
The metal longitudinal wire is for providing mechanical strength, and may include, for example, a stainless steel wire. More specifically, it may be a stranded wire of a stainless steel wire, or may be a wire in which a stainless steel wire and a non-metallic linear body are twisted. Furthermore, the metallic longitudinal wire may have a mechanical strength higher than that of the first characteristic strip sensor. In addition, a plurality of linear sensors may be disposed at intervals rather than one, and the vertical linear bodies may be disposed at the intervals. In this case, only the vertical linear body may be disposed at the interval, or the vertical linear body and the nonmetallic linear body may be disposed.
また、前記横線状体が、ステンレスワイヤと非金属製の線状体を撚り合わせたものであってもよい。
Further, the horizontal linear body may be a strand of stainless steel wire and a non-metallic linear body.
ここで説明した非金属性の線状体は、樹脂製の線状体であってもよいし、綿糸等の天然繊維であってもよい。すなわち、前記非金属性の線状体は、化学繊維であってもよいし天然繊維であってもよい。
The non-metallic linear body described here may be a resin-made linear body, or may be a natural fiber such as cotton yarn. That is, the non-metallic linear body may be a chemical fiber or a natural fiber.
これまで説明した第1の特徴的な面状センサは、
上記第1の特徴的な線状センサを第1線状センサとし、該第1線状センサの径方向に間隔をあけて該第1線状センサを複数本配置した第1センサ体と、
隣り合う前記第1線状センサの間に配置され、該第1線状センサの延在方向と同じ方向に延びた、該第1線状センサよりも柔らかな第1線状体と、
上記第1の特徴的な線状センサを第2線状センサとし、前記第1線状センサの延在方向に間隔をあけて該第2線状センサを複数本配置した第2センサ体と、
隣り合う前記第2線状センサの間に配置され、該第2線状センサの延在方向と同じ方向に延びた、該第2線状センサよりも柔らかな第2線状体とを備え、
前記第1センサ体と前記第2センサ体は、分離不能に重ね合わされたものであることを特徴とする。 The first characteristic planar sensor described so far is
A first sensor body in which the first characteristic linear sensor is a first linear sensor, and a plurality of the first linear sensors are arranged at intervals in the radial direction of the first linear sensor;
A first linear body disposed between the adjacent first linear sensors and extending in the same direction as the extension direction of the first linear sensors, wherein the first linear body is softer than the first linear sensors;
A second sensor body in which the first characteristic linear sensor is a second linear sensor, and a plurality of the second linear sensors are arranged at intervals in the extending direction of the first linear sensor;
And a second linear body disposed between the adjacent second linear sensors and extending in the same direction as the extension direction of the second linear sensors, wherein the second linear body is softer than the second linear sensors.
The first sensor body and the second sensor body are inseparably overlapped.
上記第1の特徴的な線状センサを第1線状センサとし、該第1線状センサの径方向に間隔をあけて該第1線状センサを複数本配置した第1センサ体と、
隣り合う前記第1線状センサの間に配置され、該第1線状センサの延在方向と同じ方向に延びた、該第1線状センサよりも柔らかな第1線状体と、
上記第1の特徴的な線状センサを第2線状センサとし、前記第1線状センサの延在方向に間隔をあけて該第2線状センサを複数本配置した第2センサ体と、
隣り合う前記第2線状センサの間に配置され、該第2線状センサの延在方向と同じ方向に延びた、該第2線状センサよりも柔らかな第2線状体とを備え、
前記第1センサ体と前記第2センサ体は、分離不能に重ね合わされたものであることを特徴とする。 The first characteristic planar sensor described so far is
A first sensor body in which the first characteristic linear sensor is a first linear sensor, and a plurality of the first linear sensors are arranged at intervals in the radial direction of the first linear sensor;
A first linear body disposed between the adjacent first linear sensors and extending in the same direction as the extension direction of the first linear sensors, wherein the first linear body is softer than the first linear sensors;
A second sensor body in which the first characteristic linear sensor is a second linear sensor, and a plurality of the second linear sensors are arranged at intervals in the extending direction of the first linear sensor;
And a second linear body disposed between the adjacent second linear sensors and extending in the same direction as the extension direction of the second linear sensors, wherein the second linear body is softer than the second linear sensors.
The first sensor body and the second sensor body are inseparably overlapped.
前記第1センサ体と前記第2センサ体を結合する結合手段が備えられており、該結合手段は、前記第1線状体の一部又は全部であってもよいし、前記第2線状体の一部又は全部であってもよい。例えば、前記第1線状体によって、前記第2線状センサおよび前記第2線状体が綴られ、前記第2線状体によって、前記第1線状センサおよび前記第1線状体が綴られていてもよい。あるいは、前記第2線状センサおよび前記第2線状体を綴る第1結合用線状体と、前記第1線状センサおよび前記第1線状体を綴る第2結合用線状体を備えていてもよい。
Coupling means for coupling the first sensor body and the second sensor body may be provided, and the coupling means may be part or all of the first linear body, or the second linear body. It may be part or all of the body. For example, the second linear sensor and the second linear body are attached by the first linear object, and the first linear sensor and the first linear object are attached by the second linear object. It may be done. Alternatively, it comprises a first coupling linear body for binding the second linear sensor and the second linear body, and a second coupling linear body for binding the first linear sensor and the first linear body. It may be
この第1結合用線状体は上記第1の特徴的な線状センサよりも細く、第1結合用線状体の直径は、上記第1の特徴的な線状センサの直径の1/5以上1/3以下であってもよい。また、第2結合用線状体も上記第1の特徴的な線状センサよりも細く、第2結合用線状体の直径も、上記第1の特徴的な線状センサの直径の1/5以上1/3以下であってもよい。
The first coupling linear body is thinner than the first characteristic linear sensor, and the diameter of the first coupling linear body is 1⁄5 of the diameter of the first characteristic linear sensor. It may be 1/3 or less. In addition, the second coupling linear body is also thinner than the first characteristic linear sensor, and the diameter of the second coupling linear body is 1/1 of the diameter of the first characteristic linear sensor. It may be 5 or more and 1/3 or less.
前記第1線状体は、前記第1線状センサよりも直径が大きなものであり、前記第2線状体は、前記第2線状センサよりも直径が大きなものであってもよい。
The first linear body may be larger in diameter than the first linear sensor, and the second linear body may be larger in diameter than the second linear sensor.
前記第1センサ体と前記第2センサ体の他に、上記第1の特徴的な線状センサが配置されたセンサ体が1又は複数備えられていてもよい。
In addition to the first sensor body and the second sensor body, one or more sensor bodies may be provided in which the first characteristic linear sensor is disposed.
以上説明した技術的思想によれば、可能な限り細くすることができる線状センサと、その線状センサを用いた、帯状センサおよび面状センサを提供することができる。
According to the technical idea described above, it is possible to provide a linear sensor which can be made as thin as possible, and a strip-like sensor and a planar sensor using the linear sensor.
続いて、線状センサの別の実施形態について説明する。
Subsequently, another embodiment of the linear sensor will be described.
図7は、分散態様の電線センサの斜視図であり、図8(a)は、図7に示す電線センサの断面図を模式的に示す図である。
FIG. 7 is a perspective view of the wire sensor in the dispersion mode, and FIG. 8 (a) is a view schematically showing a cross-sectional view of the wire sensor shown in FIG.
図7に示す電線センサB1は、7本の導体線B111を撚り合わせた第1導体B11を有する。7本の導体線B111は、直径が20μmのステンレスワイヤの導体線B111Sが4本と、直径が20μmの銅の導体線B111Cが3本で構成されている。銅の導体線B111Cは、ステンレスワイヤの導体線B111Sに比べて、電気抵抗が低く、かつ柔らかい。反対に、ステンレスワイヤの導体線B111Sは、銅の導体線B111Cに比べて、電気抵抗は高くなるが、機械的強度(例えば、引張強度等)は高くなる。第1導体B11は、これらの導体線B111を、正六角形の各頂点およびその正六角形の中心に配置した状態で撚り合わせたものである。すなわち、第1導体B11は、7本の導体線B111を最密構造に配置した上で撚り合わせたものである。複数本の導体線B111を甘撚、あるいは中撚程度に撚っておくことで、撚りの方向とは逆方向の緩みを許容し、この緩みが柔軟性を与えることができる。以下、正六角形の各頂点に配置された6本の導体線B111と、正六角形の中心に配置された1本の導体線B111を区別して称する必要がある場合には、前者の6本の導体線B111を外側導体線B1111と称し、後者の1本の導体線B111を中心導体線B1112と称する。中心導体線B1112には、ステンレスワイヤの導体線B111Sが用いられている。一方、外側導体線B1111には、ステンレスワイヤの導体線B111Sと銅の導体線B111Cが用いられている。すなわち、中心導体線B1112の周囲には、ステンレスワイヤの導体線B111Sと銅の導体線B111Cが周方向に交互に配置されている。なお、図8(a)では、左下がりのハッチングを施した導体線がステンレスワイヤの導体線B111Sであり、右下がりのハッチングを施した導体線が銅の導体線B111Cである。
A wire sensor B1 shown in FIG. 7 has a first conductor B11 in which seven conductor wires B111 are twisted. The seven conductor lines B111 are constituted by four conductor lines B111S of stainless steel wires having a diameter of 20 μm and three conductor lines B111C of copper having a diameter of 20 μm. The copper conductor line B111C has lower electric resistance and is softer than the stainless steel conductor line B111S. On the contrary, the conductor wire B111S of the stainless steel wire has a higher electrical resistance but a higher mechanical strength (for example, a tensile strength or the like) than the conductor wire B111C of copper. The first conductor B <b> 11 is obtained by twisting the conductor lines B <b> 111 in the state of being disposed at each vertex of a regular hexagon and at the center of the regular hexagon. That is, the first conductor B11 is obtained by arranging seven conductor wires B111 in the close-packed structure and twisting them. By twisting the plurality of conductor wires B111 in a sweet-twisted or medium-twist manner, loosening in the direction opposite to the twisting direction is permitted, and the slack can provide flexibility. Hereinafter, in the case where it is necessary to distinguish six conductor lines B111 arranged at each vertex of a regular hexagon and one conductor line B111 arranged at the center of the regular hexagon, the former six conductors The line B111 is referred to as an outer conductor line B1111, and the latter one conductor line B111 is referred to as a central conductor line B1112. A conductor wire B111S of stainless steel wire is used for the central conductor wire B1112. On the other hand, for the outer conductor wire B1111, a conductor wire B111S of a stainless steel wire and a conductor wire B111C of copper are used. That is, around the center conductor line B1112, conductor lines B111S of stainless steel wires and conductor lines B111C of copper are alternately arranged in the circumferential direction. In FIG. 8A, the conductor wire hatched downward to the left is the conductor wire B111S of a stainless steel wire, and the conductor wire hatched downward to the right is the copper conductor wire B111C.
導体線B111は直径は20μmに限られず、10μm以上40μm以下であってもよく、20μm以上30μm以下であることが好ましい。導体線B111は、細ければ細いほど柔軟性は高められるが強度が低下し、太ければ太いほど柔軟性は低下するが強度が高められる。また、20μm以上であれば、低コストで製造することができたり製造が容易である。
The diameter of the conductor wire B111 is not limited to 20 μm, and may be 10 μm or more and 40 μm or less, and preferably 20 μm or more and 30 μm or less. The thinner the conductor wire B111, the higher the flexibility but the lower the strength, and the thicker the conductor wire B111, the lower the flexibility but the higher the strength. Moreover, if it is 20 micrometers or more, it can manufacture at low cost and manufacture is easy.
図7では、電線センサB1は、第1導体B11のみから構成されているように見えるが、図8(a)に模式的に示すように、7本の導体線B111のすべての導体線B111の全周面には圧電体であるピエゾコート層B12が形成されている。また、各導体線B111におけるピエゾコート層B12の上には、第2導体である第2導体層B13が設けられている。すなわち、ピエゾコート層B12の外側には第2導体が配置されており、ピエゾコート層B12は、導体線B111と第2導体層B13の間に設けられている。したがって、隣り合う導体線B111の間に、ピエゾコート層B12と第2導体層B13が介在しており、各導体線B111は分散配置されている。
In FIG. 7, the wire sensor B1 appears to be composed of only the first conductor B11. However, as schematically shown in FIG. 8A, all the conductor lines B111 of the seven conductor lines B111 are A piezo coat layer B12 which is a piezoelectric body is formed on the entire peripheral surface. A second conductor layer B13 which is a second conductor is provided on the piezo coat layer B12 in each conductor line B111. That is, the second conductor is disposed outside the piezo coat layer B12, and the piezo coat layer B12 is provided between the conductor wire B111 and the second conductor layer B13. Therefore, the piezo coat layer B12 and the second conductor layer B13 are interposed between the adjacent conductor lines B111, and the conductor lines B111 are distributed.
図8(a)に示すピエゾコート層B12は、ポリフッ化ビニリデン(PVDF)等のピエゾ材料が塗布されることで形成された層である。ポリフッ化ビニリデンは、高い電圧が付与されて分極すると圧電効果が発生する軽量の高分子材料であり、これに外力を加えると電圧が発生し、電圧を加えると歪が発生する特性を備えている。ピエゾコート層B12には分極処理が施されており、ピエゾコート層B12に外部から力が加わったときに導体線B111と第2導体層B13の間に電圧が誘起される。なお、導体線B111と第2導体層B13の間に電圧をかけると、ピエゾコート層B12に変形(歪み)が生じる。ピエゾ材料としては、ポリフッ化ビニリデンの他に、トリフルオロエチレン(TrEF)や、PVDFとTrEFの混晶材料や、ポリ乳酸、ポリ尿酸、ポリアミノ酸等の双極子モーメントをもつ高分子材料があげられる。また、ピエゾ材料を塗布する方式としては、浸漬(ドブ付け)塗装であってもよいしスプレー等による吹き付け塗装であってもよいし含浸塗装であってもよいしハケ塗りであってもよいし、コーター等による塗布装置による塗布であってもよい。ピエゾコート層B12の厚みは、導体線B111の直径以上であることが好ましく、図8(a)に示すピエゾコート層B12の厚さは、20μmであるが、10μm以上50μm以下であればよい。なお、ピエゾコート層B12の厚さは、厚ければ厚いほどセンサ感度が良好になるが、ピエゾコート層B12の厚さの限界値は、塗布するピエゾ材料の粘度や塗布方法によって決まってくる。また、ピエゾコート層B12の厚さが厚すぎると電線センサB1が硬くなりすぎてしまい柔軟性に欠けてしまうといった欠点もある。
The piezo coat layer B12 shown in FIG. 8A is a layer formed by applying a piezo material such as polyvinylidene fluoride (PVDF). Polyvinylidene fluoride is a lightweight polymer material that generates a piezoelectric effect when a high voltage is applied and is polarized. When an external force is applied to this, a voltage is generated, and a distortion is generated when a voltage is applied. . The piezoelectric coating layer B12 is subjected to polarization processing, and when a force is applied to the piezoelectric coating layer B12 from the outside, a voltage is induced between the conductor wire B111 and the second conductor layer B13. When a voltage is applied between the conductor line B111 and the second conductor layer B13, deformation (distortion) occurs in the piezo coat layer B12. Piezo materials include, in addition to polyvinylidene fluoride, trifluoroethylene (TrEF), mixed crystal materials of PVDF and TrEF, and polymer materials having a dipole moment such as polylactic acid, polyuric acid and polyamino acid. . Moreover, as a method of applying a piezo material, it may be immersion (dubbing) coating, spray coating by spray etc., it may be impregnation coating, and brush coating may be carried out. The coating may be performed by a coating device using a coater or the like. The thickness of the piezo coat layer B12 is preferably equal to or greater than the diameter of the conductor wire B111. The thickness of the piezo coat layer B12 shown in FIG. 8A is 20 μm, but may be 10 μm to 50 μm. The thicker the thickness of the piezo coat layer B12, the better the sensor sensitivity. However, the limit value of the thickness of the piezo coat layer B12 is determined by the viscosity of the piezo material to be applied and the coating method. In addition, when the thickness of the piezo coat layer B12 is too thick, there is a disadvantage that the wire sensor B1 becomes too hard and lacks flexibility.
図8(a)に示す第2導体層B13は、カーボンナノチューブ等のカーボンを含む高分子導電性材料が塗布されることで形成された層である。第2導体層B13を形成する導電性材料としては、銀の微粒子を含む高分子導電性材料や銀ペースト等であってもよい。また、この導電性材料を塗布する方式としては、浸漬(ドブ付け)塗装であってもよいしスプレー等による吹き付け塗装であってもよいし含浸塗装であってもよいしハケ塗りであってもよいし、コーター等による塗布装置による塗布であってもよい。第2導体層B13の厚さは、導体線B111の直径以下であることが好ましく、また、ピエゾコート層B12の厚さ以下であることも好ましい。図8(a)に示す第2導体層B13の厚さは、10μmであるが、5μm以上50μm以下であればよい。
The second conductor layer B13 shown in FIG. 8A is a layer formed by applying a polymer conductive material containing carbon such as carbon nanotubes. As a conductive material which forms 2nd conductor layer B13, the polymeric conductive material containing silver microparticles | fine-particles, silver paste, etc. may be sufficient. In addition, as a method of applying this conductive material, it may be immersion (dubbing) coating, spray coating by spray etc., may be impregnation coating, or may be brush coating. Alternatively, the coating may be performed by a coating device using a coater or the like. The thickness of the second conductor layer B13 is preferably equal to or less than the diameter of the conductor wire B111, and preferably equal to or less than the thickness of the piezo coat layer B12. Although the thickness of 2nd conductor layer B13 shown to Fig.8 (a) is 10 micrometers, it should just be 5 micrometers or more and 50 micrometers or less.
7本の導体線B111を撚り合わせる前に、各導体線B111の全周面に、ピエゾコート層B12を形成し、次いで第2導体層B13を形成し、最後に、7本の導体線B111を撚り合わせることで、図7に示す電線センサB1が完成する。
Before twisting the seven conductor wires B111, a piezo coat layer B12 is formed on the entire circumferential surface of each conductor wire B111, then a second conductor layer B13 is formed, and finally, seven conductor wires B111 are formed. By twisting together, the electric wire sensor B1 shown in FIG. 7 is completed.
以上の説明では、第1導体B11を構成する導体線B111として、機械的強度や電気抵抗が異なる複数種類の導体線が用いられているが、柔らかさや柔軟性をさらに高める場合や、電気抵抗をさらに低くする場合には、中心導体線B1112を、銅の導体線B111Cに代えてもよい。あるいは、7本の導体線B111を全て銅の導体線B111Cにしてもよい。反対に、機械的強度をさらに高める場合には、7本の導体線B111を全てステンレスワイヤの導体線B111Sにしてもよい。また、ステンレスワイヤの導体線B111Sに代えてタングステン、タングステン及びその合金等の高張力鋼材あるいは超高張力鋼からなる導体線を用いてもよいし、銅の導体線B111Cに代えて、チタンやチタン合金あるいはマグネシウムやマグネシウム合金等からなる導体線を用いてもよい。
In the above description, a plurality of types of conductor wires having different mechanical strengths and electrical resistances are used as the conductor wire B111 constituting the first conductor B11, but in the case of further enhancing softness or flexibility, or In the case of further lowering, the central conductor line B1112 may be replaced with a copper conductor line B111C. Alternatively, all seven conductor lines B111 may be made of copper conductor lines B111C. On the other hand, in order to further increase the mechanical strength, all the seven conductor lines B111 may be made of stainless steel conductor lines B111S. Also, instead of the conductor wire B111S of stainless steel wire, a conductor wire made of high tensile steel or ultrahigh tensile steel such as tungsten, tungsten and its alloy may be used, or titanium or titanium instead of copper conductor wire B111C. You may use the conductor wire which consists of an alloy or magnesium, a magnesium alloy, etc.
さらに、これまでの導体線B111は、一本の導線構造であったが、導体線B111自身も撚り線構造であってもよい。
Furthermore, although the conductor wire B111 thus far has a single wire structure, the conductor wire B111 itself may be a stranded wire structure.
図8(b)は、一本のステンレスワイヤの導体線B111Sを、7本のステンレスワイヤBsyの撚り線構造とした例を示す図である。
FIG. 8B is a view showing an example in which the conductor wire B111S of one stainless steel wire has a stranded wire structure of seven stainless steel wires Bsy.
図8(b)の右側に示す導体線は、直径が30μmのステンレスワイヤBsyを7本撚り合わせた撚り線であり、導体線が太くなる。図8(b)の右側に示す導体線を用いた第1導体では、7本の導体線それぞれを1次撚り線として、その1次撚り線の全周面に、ピエゾコート層B12を形成し、次いで第2導体層B13を形成した上で、これら1次撚り線を最密構造に配置する。第1導体は、ピエゾコート層B12と第2導体層B13がそれぞれに形成された7本の1次撚り線をさらに撚り合わせた2次撚り線になる。2次撚り線の撚り方向は、1次撚り線の撚り方向と同じ方向である。ただし、第1導体B11の柔軟性をさらに高めたい場合には、2次撚り線の撚り方向と1次撚り線の撚り方向とを逆方向にしてもよい。図8(b)に示すの右側に示す導体線B111sを7本用いた第1導体B11の切断荷重は0.058kNになる。
The conductor wire shown on the right side of FIG. 8B is a stranded wire obtained by twisting seven stainless steel wires Bsy each having a diameter of 30 μm, and the conductor wire becomes thick. In the first conductor using the conductor wire shown on the right side of FIG. 8 (b), a piezo-coated layer B12 is formed on the entire circumferential surface of the primary stranded wire with each of the seven conductor wires as the primary stranded wire. Then, after the second conductor layer B13 is formed, these primary stranded wires are arranged in the closest packing structure. The first conductor is a secondary stranded wire obtained by further twisting seven primary stranded wires on which the piezo coat layer B12 and the second conductor layer B13 are respectively formed. The twisting direction of the secondary stranded wire is the same as the twisting direction of the primary stranded wire. However, in order to further increase the flexibility of the first conductor B11, the twisting direction of the secondary stranded wire and the twisting direction of the primary stranded wire may be reversed. The cutting load of the first conductor B11 using seven conductor lines B111s shown on the right side of FIG. 8B is 0.058 kN.
なお、1次撚り線を構成するステンレスワイヤBsyの本数は、7本に限らない。また、ステンレスワイヤBsy1本の直径は、10μm以上40μm以下であればよく、20μm以上30μm以下であることが好ましい。ステンレスワイヤは、細ければ細いほど柔軟性は高められるが強度が低下し、太ければ太いほど柔軟性は低下するが強度が高められる。直径が20μmのステンレスワイヤBsyを用いた場合には、第1導体B11の切断荷重は0.025kNになり、直径が40μmのステンレスワイヤBsyを用いた場合には、第1導体B11の切断荷重は0.107kNになる。また、1次撚り線を構成するステンレスワイヤBsyの直径も、導体線B111ごとに異ならせてもよい。例えば、太い1次撚り線を得るために、相対的に太いステンレスワイヤBsyを用いてもよいし、細い1次撚り線を得るために、相対的に細いステンレスワイヤBsyを用いてもよい。さらには、1次撚り線を構成するステンレスワイヤBsyの本数を、導体線B111ごとに異ならせてもよい。例えば、太い1次撚り線を得るために、相対的に多数本のステンレスワイヤBsyを用いてもよいし、細い1次撚り線を得るために、相対的に少数本のステンレスワイヤBsyを用いてもよい。また、1次撚り線は、ステンレスワイヤBsyのみからなるものの他に、他の導電性材料の線とステンレスワイヤBsyを撚り合わせたものであってもよい。ここにいう導電性材料としては、ステンレスと、電気抵抗値が異なる材料であったり機械的強度が異なる材料であったりする。例えば、銅、チタン、マグネシウム等の一種類であってもよいし、これらの材料の組み合わせであってもよい。さらに、第1導体B11は、1次撚り線の導体線のみから構成されたものであってもよいし、1次撚り線の導体線と、図8(b)の左側に示す導体線B111のように、撚り線構造ではない1本の金属製の導体線とから構成されたものであってもよい。より具体的には、外側導体線B1111として1次撚り線の導体線を用い、中心導体線B1112として撚り線構造ではない導体線を用いてもよいし、あるいはその逆で、外側導体線B1111として撚り線構造ではない導体線を用い、中心導体線B1112として1次撚り線の導体線を用いてもよいし、外側導体線B1111として、1次撚り線の導体線と撚り線構造ではない導体線を周方向に交互に配置し、中心導体線B1112として1次撚り線の導体線あるいは撚り線構造ではない導体線を用いてもよい。
The number of stainless steel wires Bsy constituting the primary stranded wire is not limited to seven. The diameter of one stainless steel wire Bsy may be 10 μm or more and 40 μm or less, and preferably 20 μm or more and 30 μm or less. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength. When the stainless steel wire Bsy with a diameter of 20 μm is used, the cutting load of the first conductor B11 is 0.025 kN, and when the stainless steel wire Bsy with a diameter of 40 μm is used, the cutting load of the first conductor B11 is It becomes 0.107 kN. Moreover, the diameter of the stainless steel wire Bsy which comprises a primary strand wire may also be varied for every conductor wire B111. For example, a relatively thick stainless steel wire Bsy may be used to obtain a thick primary stranded wire, or a relatively thin stainless steel wire Bsy may be used to obtain a thin primary stranded wire. Furthermore, the number of stainless steel wires Bsy that constitute the primary stranded wire may be different for each conductor wire B111. For example, a relatively large number of stainless steel wires Bsy may be used to obtain a thick primary stranded wire, or a relatively small number of stainless steel wires Bsy may be used to obtain a thin primary stranded wire. It is also good. Further, the primary stranded wire may be a wire made of another conductive material and a stainless wire Bsy in addition to one made of only the stainless wire Bsy. The conductive material referred to here is a material different from stainless steel or a material different in mechanical strength from stainless steel. For example, copper, titanium, magnesium or the like may be used alone, or a combination of these materials may be used. Furthermore, the first conductor B11 may be formed of only the conductor wire of the primary stranded wire, or the conductor wire of the primary stranded wire and the conductor wire B111 shown on the left side of FIG. 8 (b). Thus, it may be composed of one metal conductor wire which is not a stranded wire structure. More specifically, a conductor wire of primary stranded wire may be used as the outer conductor wire B1111, and a conductor wire not having a stranded wire structure may be used as the central conductor wire B1112, or vice versa. A conductor wire not having a stranded wire structure may be used, and a conductor wire of a primary stranded wire may be used as the central conductor wire B1112, or a conductor wire not having a stranded wire structure and a conductor wire having a primary stranded wire as an outer conductor wire B1111. May be alternately arranged in the circumferential direction, and a conductor wire of primary stranded wire or a conductor wire not having a stranded wire structure may be used as the central conductor wire B1112.
また、図7及び図8を用いて説明した第1導体B11については、様々な変形が可能である。まず、中心導体線B1112にも、ピエゾコート層B12および第2導体層B13が形成されているが、中心導体線B1112には、ピエゾコート層B12および第2導体層B13が形成されていない導体線を用いてもよい。あるいは、中心導体線B1112は、ピエゾコート層B12は形成されているが第2導体層B13は形成されていない導体線であっても、外側導体線B1111の第2導体層B13を利用して中心導体線B1112におけるセンシングが可能になる。
In addition, various modifications can be made to the first conductor B11 described with reference to FIGS. 7 and 8. First, although the piezo coat layer B12 and the second conductor layer B13 are also formed on the center conductor line B1112, a conductor line on which the piezo coat layer B12 and the second conductor layer B13 are not formed on the center conductor line B1112 May be used. Alternatively, even if the central conductor line B1112 is a conductor line in which the piezo coat layer B12 is formed but the second conductor layer B13 is not formed, the center conductor line B1112 uses the second conductor layer B13 of the outer conductor line B1111 Sensing on the conductor line B1112 is enabled.
また、第1導体B11を構成する導体線B111の本数は、7本に限られず、さらには、最密構造の配置でなくてもよい。例えば、一本の中心導体線B1112に代えて内側導体線を複数本配置してもよい。あるいは、中心導体線B1112の周囲を、7本以上の外側導体線B1111で囲んだ構成であってもよいし、5本以下の外側導体線B1111で囲んだ構成であってもよい。
Further, the number of conductor lines B111 constituting the first conductor B11 is not limited to seven, and may not be arranged in the close-packed structure. For example, a plurality of inner conductor lines may be disposed instead of one central conductor line B1112. Alternatively, the center conductor line B1112 may be surrounded by seven or more outer conductor lines B1111, or may be surrounded by five or less outer conductor lines B1111.
さらに、第1導体B11を構成する導体線B111の直径を異ならせてもよい。例えば、中心導体線B1112の直径を外側導体線B1111の直径よりも大きくしてもよいし、あるいは反対に小さくしてもよい。
Furthermore, the diameter of the conductor wire B111 which comprises 1st conductor B11 may be varied. For example, the diameter of the central conductor line B1112 may be larger than or smaller than the diameter of the outer conductor line B1111.
また、図8に示す、中心導体線B1112と外側導体線B1111との隙間BS1(隣り合う外側導体線B1111どうしの間のうち内側の間)に、導線を配置してもよい。この隙間BS1に配置される導線としては、1本の銅線であってもよいし、ステンレスワイヤBsyの撚り線であってもよいし、複数の細い銅線を撚り合わせた撚り線であってもよい。さらに、隣り合う外側導体線B1111どうしの隙間のうち外側の隙間BS2にも、導線を配置してもよい。この外側の隙間BS2に配置される線状体も、1本の銅線であってもよいし、ステンレスワイヤBsyの撚り線であってもよいし、複数の細い銅線を撚り合わせた撚り線であってもよい。ここで説明したように、第1導体B11を構成する導体線B111どうしの隙間に、さらに導線を追加してもよい。
Alternatively, the conducting wire may be disposed in a gap BS1 (between the adjacent outer conductor wires B1111 between the central conductor wire B1112 and the outer conductor wire B1111 shown in FIG. 8). The conductor disposed in the gap BS1 may be a single copper wire, a stranded wire of a stainless steel wire Bsy, or a stranded wire obtained by twisting a plurality of thin copper wires. It is also good. Furthermore, the conductive wire may be disposed also in the gap BS2 outside the gaps between adjacent outer conductor wires B1111. The linear body disposed in the outer space BS2 may also be a single copper wire, or may be a stranded wire of a stainless steel wire Bsy, or a stranded wire obtained by twisting a plurality of thin copper wires. It may be As described here, a conducting wire may be further added to the gap between the conductor lines B111 that constitute the first conductor B11.
また、圧電体であるピエゾコート層B12に代えて、帯状のピエゾフィルムを螺旋状に巻き付けてもよい。例えば、幅0.07mmの帯状のポリフッ化ビニリデン(PVDF)からなるピエゾフィルムを導体線B111の周面に螺旋状に巻き付ける際に、導体線B111の延在方向に隣り合うピエゾフィルムの幅方向の一端と他端どうしを重ね合わせた状態で巻き付けてもよい。こうすることで、ピエゾフィルムの面積をなるべく大きくとることができ、センサ感度の向上につながる。帯状のピエゾフィルムの幅は、0.07mmに限られず、0.03mm以上2mm以下であればよく、0.05mm以上1.0mm以下が好ましい。ピエゾフィルムの幅が狭すぎると導体線B111の周面に螺旋状に巻き付ける際に導体線B111の延在方向に隣り合うピエゾフィルムの間に隙間が生じやすくなってしまう。隙間が生じた箇所は、センシングできない箇所になってしまうと同時に外側に配置された第2導体層B13とショートしてまうためセンサ信号が取れなくなってしまうといった不都合が生じる。一方、ピエゾフィルムの幅が広すぎると導体線B111の外周面に螺旋状に巻き付ける際に弛みが生じやすくなってしまう。また、ピエゾフィルムの厚さは、20μm以上100μm以下であって、25μm以上80μm以下であることが好ましい。ピエゾフィルムの厚さが薄すぎるとセンサとしての感度が不十分になってしまい、反対に厚すぎると線状センサが硬くなりすぎてしまい柔軟性に欠けてしまう。さらに、ピエゾフィルムは、ピエゾ特性が、長手方向(伸び方向)にしか対応していないものよりも、結晶の配向性により複数方向(伸び方向及び曲げ方向)に対応したものである方が好ましい。
Also, instead of the piezo coat layer B12 which is a piezoelectric body, a strip-shaped piezo film may be wound in a spiral shape. For example, when winding a piezo film made of band-like polyvinylidene fluoride (PVDF) having a width of 0.07 mm spirally on the circumferential surface of the conductor wire B111, the width direction of the piezo film adjacent in the extending direction of the conductor wire B111 You may wind in the state which overlap | superposed one end and the other end. By so doing, the area of the piezo film can be made as large as possible, leading to an improvement in sensor sensitivity. The width of the strip-shaped piezoelectric film is not limited to 0.07 mm, but may be 0.03 mm or more and 2 mm or less, preferably 0.05 mm or more and 1.0 mm or less. When the width of the piezoelectric film is too narrow, when spirally wound around the circumferential surface of the conductor wire B111, a gap is easily generated between the piezoelectric films adjacent in the extending direction of the conductor wire B111. The location where the gap is created becomes a location where sensing can not be performed, and at the same time, a short circuit occurs with the second conductor layer B13 disposed outside, which causes a problem that the sensor signal can not be obtained. On the other hand, when the width of the piezoelectric film is too wide, slack is easily generated when spirally wound around the outer peripheral surface of the conductor wire B111. The thickness of the piezoelectric film is preferably 20 μm to 100 μm and more preferably 25 μm to 80 μm. If the thickness of the piezoelectric film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the linear sensor will be too hard and the flexibility will be lost. Furthermore, it is more preferable that the piezoelectric film corresponds to a plurality of directions (elongation direction and bending direction) due to the orientation of crystals, than the piezoelectric characteristic corresponding to only the longitudinal direction (elongation direction).
以上、圧電体を、ピエゾコート層B12に代えて、帯状のピエゾフィルムを螺旋状に巻き付ける例を説明したが、フィルムを巻き付けるよりも塗布の方が、圧電体の厚さを薄くすることが容易であり、電線センサB1を細くすることができる。
As described above, an example has been described in which a strip-shaped piezoelectric film is spirally wound instead of the piezoelectric coating layer B12, but the thickness of the piezoelectric can be more easily reduced by coating than by winding a film. Thus, the wire sensor B1 can be made thinner.
また、ピエゾコート層B12あるいはピエゾフィルムの外側に、第2導体である第2導体層B13に代えて1本の導線を1列に螺旋状に巻き付けたものであってもよい。すなわち、横巻きシールドの構成である。ここでの導線としては、直径50μmのスズメッキ軟銅線を用いてもよい。なお、銅線に限らず、ステンレスワイヤの撚り線であってもよい。さらに、ピエゾコート層B12あるいはピエゾフィルムの外側に、導線をクロスして編み上げた編組シールドであってもよいし、テープ状の導体を螺旋状に巻き付けていったテープシールドであってもよい。ただし、横巻きシールドが最も柔軟性が高い。またさらに、複数本の導線をピエゾコート層B12あるいはピエゾフィルムの外側に螺旋状に巻き付けていったものであってもよいし、複数本のテープ状の導体を螺旋状に巻き付けていったものであってもよい。ここで、導体線B111は、第2導体よりも機械的強度が高いものである。
In addition, instead of the second conductor layer B13 which is the second conductor, one lead may be spirally wound in one row on the outside of the piezo coat layer B12 or the piezo film. That is, it is the structure of a side winding shield. A tin-plated soft copper wire having a diameter of 50 μm may be used as the conducting wire here. In addition, not only a copper wire but a stranded wire of stainless steel wire may be used. Furthermore, it may be a braided shield in which a conducting wire is crossed and braided on the outside of the piezo coat layer B12 or the piezo film, or it may be a tape shield in which a tape-like conductor is spirally wound. However, the side shield is the most flexible. Furthermore, a plurality of conducting wires may be spirally wound around the piezoelectric coating layer B12 or the piezoelectric film, or a plurality of tape-shaped conductors may be spirally wound. It may be. Here, the conductor line B111 is higher in mechanical strength than the second conductor.
以上、第2導体を、第2導体層B13に代えて、導線を用いる例を説明したが、導線を用いるよりも導電性材料を塗布した方が、第2導体の厚さを薄くすることが容易であり、電線センサB1を細くすることができる。
As described above, although the example of using the conducting wire instead of the second conductor B13 has been described, the thickness of the second conductor may be reduced by applying the conductive material than using the conducting wire. It is easy and can make electric wire sensor B1 thin.
図7及び図8(a)に示す電線センサB1の直径は、0.24mmである。
The diameter of the wire sensor B1 shown in FIGS. 7 and 8A is 0.24 mm.
また、図7に示す電線センサB1は、第2導体のさらに外側にシースを設けてもよい。シースは、第2導体を覆うものであり、耐摩耗性、耐薬品性、防錆性を高めるためのものである。シースも、塗布によって形成されたシース層である。ここにいう塗布とは、浸漬(ドブ付け)塗装であってもよいし吹き付け塗装であってもよいしハケ塗りであってもよいし、コーター等による塗布装置による塗布であってもよい。また、ピンホールが発生することを考慮して複数回塗布することが好ましい。例えば、厚さが6μmのシース層を2回塗布してもよい。また、シース層は、単層構造であってもよいし、複層構造であってもよい。例えば、内層と外層とからなる2層構造であってもよく、内層は、外装に比べて柔らかい材料(例えば、ポリアミド合成樹脂やポリ塩化ビニル樹脂)を塗布することで形成し、外層は、内層に比べて耐摩耗性が高い材料(例えば、ポリテトラフルオロエチレン(PTFE)、4フッ化・6フッ化プロピレン フッ素樹脂(FEP)、4フッ化エチレンエチレン共重合(EPFE)、4フッ化エチレンパーフロロアルコキシエチレン共重合 フッ素樹脂(PFA))を塗布することで形成してもよい。また、外層は、内層よりも厚くてもよい。さらに、内層は、可燃性材料で形成されていてもよいが、外層は、難燃性材料、不燃性材料、耐炎性材料で形成されていることが好ましい。シース層全体の厚みは5μm以上50μm以下程度である。
Moreover, electric wire sensor B1 shown in FIG. 7 may provide a sheath in the further outer side of a 2nd conductor. The sheath is for covering the second conductor, and is for enhancing the abrasion resistance, the chemical resistance, and the corrosion resistance. The sheath is also a sheath layer formed by application. The application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like. Moreover, it is preferable to apply a plurality of times in consideration of the occurrence of pinholes. For example, a sheath layer having a thickness of 6 μm may be applied twice. The sheath layer may have a single layer structure or a multilayer structure. For example, it may have a two-layer structure consisting of an inner layer and an outer layer, and the inner layer is formed by applying a soft material (for example, a polyamide synthetic resin or polyvinyl chloride resin) compared to the outer layer, and the outer layer is an inner layer Materials with high abrasion resistance compared to (eg, polytetrafluoroethylene (PTFE), 4-fluoro- and 6-fluoro-propylene fluorocarbon resin (FEP), tetrafluoroethylene-ethylene copolymer (EPFE), tetrafluoroethylene perco It may form by apply | coating fluoro alkoxy ethylene copolymer fluorine resin (PFA). Also, the outer layer may be thicker than the inner layer. Furthermore, the inner layer may be formed of a flammable material, but the outer layer is preferably formed of a flame retardant material, a non-combustible material, and a flame resistant material. The total thickness of the sheath layer is about 5 μm to 50 μm.
なお、シースは、ポリエステルテープやチューブタイプのものであってもよく、その厚みは、20μm以上50μm以下であればよい。テープやチューブタイプであっても、単層構造にしてもよいし、複層構造にしてもよい。ただし、テープやチューブタイプよりも、シース層を塗布により形成した方が、シースの厚さを薄くすることが容易であり、電線センサB1を細くすることができる。また、耐摩耗性、耐薬品性、防錆性を高める必要がなければ、シースを設けなくてもよい。
The sheath may be a polyester tape or tube type, and its thickness may be 20 μm or more and 50 μm or less. It may be a tape or tube type, may have a single layer structure, or may have a multilayer structure. However, when the sheath layer is formed by coating, it is easier to make the thickness of the sheath thinner than the tape or tube type, and the wire sensor B1 can be made thinner. In addition, if it is not necessary to improve the abrasion resistance, the chemical resistance, and the rustproofness, the sheath may not be provided.
さらに、図7に示すように、第1導体B11は、7本の導体線B111を撚り合わせたものであったが、複数の導体線が直線状に束になったものであってもよい。このように複数の導体線が直線状に束になったものは、シースによって束ねることができる。
Furthermore, as shown in FIG. 7, the first conductor B <b> 11 is formed by twisting seven conductor wires B <b> 111, but a plurality of conductor wires may be linearly bundled. A bundle of a plurality of conductor wires in a straight line can be bundled by a sheath.
以上説明した、図7及び図8の第1導体B11についての様々な変形は、図9以降の図面を用いて説明する各種センサにも技術的矛盾が生じないない限り適用可能である。
Various modifications of the first conductor B11 of FIGS. 7 and 8 described above are applicable to various sensors described with reference to FIG. 9 and the subsequent drawings as long as no technical contradiction arises.
続いて、ここで説明する電線センサの作用効果について説明する。
Then, the effect of the electric wire sensor demonstrated here is demonstrated.
図9は、ここで説明する電線センサの作用効果を説明するための図である。
FIG. 9 is a figure for demonstrating the effect of the electric wire sensor demonstrated here.
図9(a)には、太目の第1導体B11fとその周囲を覆うピエゾ材料BPが示されている。図9(a)に示す第1導体B11fの半径を5とし、ピエゾ材料BPの厚さを1とする。図9(a)に示す第1導体B11fとその周囲を覆うピエゾ材料BP全体の太さは12になり、図9(a)に示すピエゾ材料BPの断面積は11πになる。
FIG. 9A shows a thick first conductor B11f and a piezoelectric material BP covering the periphery thereof. The radius of the first conductor B11f shown in FIG. 9A is five, and the thickness of the piezoelectric material BP is one. The thickness of the entire first conductor B11f shown in FIG. 9A and the piezo material BP covering the periphery thereof is 12 and the cross-sectional area of the piezo material BP shown in FIG. 9A is 11π.
ピエゾ材料を塗布する場合には、ピエゾ材料の厚さの限界値は、ピエゾ材料の粘度や塗布方法によって決まってくる。図9(b)に示す例では、ピエゾ材料BPの厚さを1に保つことができ、ピエゾ材料BPの厚さを同じにしたまま第1導体を細くした例が示されている。図9(b)に示す第1導体B11tの半径は4である。図9(b)に示す第1導体B11tとその周囲を覆うピエゾ材料BP全体の太さは10になり、図9(b)に示すピエゾ材料BPの断面積は9πになる。ピエゾ材料BPの厚さを同じに保ったまま第1導体を細くすると、ピエゾ材料BPの断面積が減少することがわかる。
When applying a piezo material, the limit value of the thickness of the piezo material is determined by the viscosity of the piezo material and the application method. In the example shown in FIG. 9B, the thickness of the piezoelectric material BP can be maintained at 1, and an example is shown in which the first conductor is thinned while the thickness of the piezoelectric material BP is the same. The radius of the first conductor B11t illustrated in FIG. 9B is four. The thickness of the whole of the first conductor B11t shown in FIG. 9B and the piezo material BP covering the periphery thereof is 10, and the cross-sectional area of the piezo material BP shown in FIG. 9B is 9π. It can be seen that if the first conductor is thinned while keeping the thickness of the piezoelectric material BP the same, the cross-sectional area of the piezoelectric material BP decreases.
図9(c)には、7本の導体線からなる第1導体が示されている。各導体線B111tの半径は2/3である。また、各導体線B111tの周囲を覆うピエゾ材料BPの厚さも1に保つことができ、図9(a)や同図(b)に示すピエゾ材料BPの厚さと同じである。図9(c)に示す全体の太さも10であるのに対して、図9(c)に示す、7本の導体線B111tそれぞれの周囲を覆うピエゾ材料BPの総断面積は、およそ16.3π(2.3π×7)になり、図9(a)の断面積である11πよりも大きい。このことから、1本の導体線を細くするよりも、複数本の導体線に分け、各導体線の周囲に、同じ厚さのピエゾ材料BPを担持させた方が、ピエゾ材料BPの断面積は合計では大きくなり、センサ感度が低下しないことがわかる。
FIG. 9C shows a first conductor consisting of seven conductor lines. The radius of each conductor line B111t is 2/3. Further, the thickness of the piezoelectric material BP covering the periphery of each conductor line B111t can be kept at 1, which is the same as the thickness of the piezoelectric material BP shown in FIG. 9A or FIG. While the total thickness shown in FIG. 9C is also 10, the total cross-sectional area of the piezoelectric material BP covering the periphery of each of the seven conductor lines B111t shown in FIG. It becomes 3π (2.3π × 7) and is larger than 11π which is the cross-sectional area of FIG. From this, it is better to divide the plurality of conductor wires and carry the piezoelectric material BP of the same thickness around each conductor wire rather than making one conductor wire thinner, the cross-sectional area of the piezoelectric material BP Is large in the sum, and it can be seen that the sensor sensitivity does not decrease.
図9(1)は、電線センサB1を上下方向にカットした断面斜視図である。なお、第2導体は図示省略されている。この図9(1)に示す電線センサB1に下側から上側に向かって力がかかり、電線センサB1は上側を凸にした湾曲形状に変形する。
FIG. 9A is a cross-sectional perspective view of the electric wire sensor B1 cut in the vertical direction. The second conductor is not shown. A force is applied to the electric wire sensor B1 shown in FIG. 9A from the lower side toward the upper side, and the electric wire sensor B1 is deformed into a curved shape with the upper side convex.
図9(2)は、上側を凸にした湾曲形状に変化した電線センサB1を、図9(1)に示す側面側とは反対の反側面側から見た図である。すなわち、図9(1)に示す矢印の方向に見た図である。
FIG. 9 (2) is a view of the electric wire sensor B1 having a curved shape in which the upper side is convex, viewed from the side opposite to the side shown in FIG. 9 (1). That is, it is the figure seen in the direction of the arrow shown in FIG. 9 (1).
図9(2)に示す電線センサB1では、導体線B111よりもピエゾ材料BPの方が柔らかいことから、上側のピエゾ材料BPは伸び、下側のピエゾ材料BPは縮む傾向にある。この伸縮関係によって、上側と下側とでは電荷の発生が相殺される場合があると考えられる。そうなったときでも、図9(1)に示す側面側(図9(2)では紙面奥側)と反側面側(図9(2)では紙面手前側)とで、電荷が発生し、センサ信号が出力されると考えられる。そのため、側面側と反側面側におけるピエゾ材料BPの厚さは重要になる。実際には、どの方向が側面側と反側面側になるか定まっていないため、ピエゾ材料BPの厚さをどの方向にもできるだけ厚くしておくことが必要になる。図9(c)に示す態様では、1本の導体線の太さに対するピエゾ材料BPの厚みの割合が、図9(a)や同図(b)に示す例よりも高い。すなわち、ピエゾ材料の厚さは導体線の直径以上であることが好ましい。
In the electric wire sensor B1 shown in FIG. 9 (2), since the piezoelectric material BP is softer than the conductor wire B111, the upper piezoelectric material BP tends to expand and the lower piezoelectric material BP tends to shrink. It is considered that the generation of charges may be offset between the upper side and the lower side due to this expansion / contraction relationship. Even when this happens, charges are generated on the side (the back of the paper in FIG. 9 (2)) and the opposite side (the front of the paper in FIG. 9 (2)) shown in FIG. It is considered that a signal is output. Therefore, the thickness of the piezoelectric material BP on the side and the opposite side becomes important. In practice, since it is not determined which direction will be the side surface and the opposite surface side, it is necessary to make the thickness of the piezoelectric material BP as thick as possible in any direction. In the embodiment shown in FIG. 9 (c), the ratio of the thickness of the piezoelectric material BP to the thickness of one conductor wire is higher than in the example shown in FIG. 9 (a) or FIG. 9 (b). That is, the thickness of the piezoelectric material is preferably equal to or greater than the diameter of the conductor wire.
図10は、7本の導体線B111を撚り合わせた後に、ピエゾコート層B12’を形成し、次いで第2導体層B13’を形成した集合態様の電線センサの例を示す図である。
FIG. 10 is a view showing an example of an electric wire sensor in a collective mode in which the piezo coat layer B12 'is formed after the seven conductor lines B111 are twisted and then the second conductor layer B13' is formed.
図10(a)は、最密構造に配置された7本の導体線B111が撚り合わせた後の様子を示す図である。図10(a)に示す第1導体B11には、ステンレスワイヤの導体線B111Sと銅の導体線B111Cが用いられている。すなわち、図10(a)に示す第1導体B11は、異なる種類の導体線を撚り合わせたものである。図10(a)に示す隣り合う導体線B111は互いに接している。図10(a)に示す導体線B111は、1本が直径10μmであり、第1導体B11の太さは30μmになる。図10(a)に示す第1導体B11は、内部導体の一例に相当する。
FIG. 10A is a view showing a state after seven conductor wires B111 arranged in the close-packed structure are twisted together. As a first conductor B11 shown in FIG. 10A, a conductor line B111S of a stainless steel wire and a conductor line B111C of copper are used. That is, the first conductor B11 shown in FIG. 10A is obtained by twisting different types of conductor wires. Adjacent conductor lines B111 shown in FIG. 10A are in contact with each other. One conductor wire B111 shown in FIG. 10A has a diameter of 10 μm, and the thickness of the first conductor B11 is 30 μm. The first conductor B11 shown in FIG. 10A corresponds to an example of the inner conductor.
図10(b)は、図10(a)に示す撚り合わされた7本の導体線B111にポリフッ化ビニリデン(PVDF)等のピエゾ材料を塗布した状態を示す図である。
FIG. 10 (b) is a view showing a state in which a piezoelectric material such as polyvinylidene fluoride (PVDF) is applied to the seven conductor wires B111 twisted together shown in FIG. 10 (a).
図10(b)に示す外側導体線B1111のうち外側に面する部分にピエゾ材料が担持されている。すなわち、外側導体線B1111のうち外側に面する部分のみにピエゾコート層B12’が形成されている。図10(b)に示すピエゾコート層B12’には、6か所に窪みBDが形成されている。この窪みBDは、撚り線構造ではなく1本の導体線からなる第1導体にピエゾ材料を塗布しても形成されないものである。この窪みBDによってピエゾ材料の厚さに変化が生じている。すなわち、窪みDが形成された部分のピエゾ材料の厚さtdは、窪みBDと窪みBDのちょうど中間の部分のピエゾ材料の厚さt2よりも厚くなっている。したがって、窪みBDが形成された部分では、ピエゾ材料の体積が大きいことからセンサ感度が他の部分よりも良好である。そして窪みBDは、周方向に均等に設けられており、どの方向に曲げられても高感度な電線センサとして機能する要因になる。
A piezo material is supported on the portion of the outer conductor wire B1111 shown in FIG. That is, the piezo coat layer B12 'is formed only on the portion of the outer conductor wire B1111 facing the outside. In the piezo coat layer B12 'shown in FIG. 10 (b), depressions BD are formed at six places. The depression BD is not formed even when the piezoelectric material is applied to the first conductor which is not a stranded wire structure but is formed of one conductor wire. The depression BD causes a change in the thickness of the piezo material. That is, the thickness td of the piezoelectric material in the portion in which the recess D is formed is larger than the thickness t2 of the piezoelectric material in the middle portion between the recess BD and the recess BD. Therefore, in the portion where the depression BD is formed, the sensor sensitivity is better than other portions because the volume of the piezoelectric material is large. The depressions BD are uniformly provided in the circumferential direction, and become a factor that functions as a highly sensitive electric wire sensor regardless of the direction in which the depressions are bent.
図10(b)に示すピエゾコート層B12’の厚さ(t2)は10μmである。また、図10(a)に示す隣り合う導体線B111は互いに接していたが、毛細管現象によりピエゾ材料が、中心導体線B1112と外側導体線B1111との隙間BS1(隣り合う外側導体線B1111どうしの間のうち内側の間)に浸透し、その隙間BS1はピエゾ材料によって埋められている。ただし、ピエゾ材料の粘度や塗布方法によっては、ピエゾ材料が上記隙間BS1に浸透せず、外側導体線B1111の周面のうち外側に面する部分のみにピエゾ材料が担持された形態になる場合もある。
The thickness (t2) of the piezo coat layer B12 'shown in FIG. 10 (b) is 10 .mu.m. Further, although adjacent conductor wires B111 shown in FIG. 10A are in contact with each other, the piezoelectric material is not in contact with each other due to capillary action, and the gap BS1 between the central conductor wire B1112 and the outer conductor wire B1111 (the adjacent outer conductor wires B1111 The gap BS1 is filled with the piezoelectric material. However, depending on the viscosity and application method of the piezo material, the piezo material does not penetrate into the above-mentioned gap BS1 and the piezo material is supported only on the part of the peripheral surface of the outer conductor wire B111 facing the outside. is there.
図10(c)は、図10(b)に示す、外側導体線B1111のうち外側に面する部分のみにピエゾコート層B12’が形成されたものに、カーボンナノチューブ等のカーボンを含む高分子導電性材料を塗布した状態を示す図である。
FIG. 10C shows polymer conduction including carbon such as carbon nanotubes in the case where the piezo coat layer B12 ′ is formed only on the portion facing the outside of the outer conductor wire B111 shown in FIG. 10B. FIG. 2 is a view showing a state in which an elastic material is applied.
図10(c)に示すピエゾコート層B12’の外側には第2導体層B13’が形成されており、ピエゾコート層B12’は第2導体層B13’によって覆われている。すなわち、第2導体層B13’からなる第2導体は、外側導体線B1111の周面に担持されたピエゾ材料のうち外側に面する部分のみに担持されている。図10(c)に示す第2導体層B13’からなる第2導体は、外部導体の一例に相当する。図10(c)に示す第2導体層B13’の厚さ(t3)は5μmである。なお、中心導体線B1112と外側導体線B1111との隙間BS1は、上述の如くピエゾ材料によって埋められているため、高分子導電性材料が入り込む余地はない。一方、上記隙間BS1がピエゾ材料によって埋められていない場合には、毛細管現象により高分子導電性材料がその隙間BS1に浸透し、その隙間BS1が高分子導電性材料によって埋められる場合もある。ただし、高分子導電性材料の粘度や塗布方法によっては、高分子導電性材料も上記隙間BS1に浸透せず、その隙間BS1が空間として残る場合もある。
A second conductor layer B13 'is formed outside the piezo coat layer B12' shown in FIG. 10C, and the piezo coat layer B12 'is covered by the second conductor layer B13'. That is, the second conductor formed of the second conductor layer B13 'is supported only on the portion facing the outer side of the piezo material carried on the peripheral surface of the outer conductor wire B111. The 2nd conductor which consists of 2nd conductor layer B13 'shown in FIG.10 (c) is corresponded to an example of an outer conductor. Thickness (t3) of 2nd conductor layer B13 'shown in FIG.10 (c) is 5 micrometers. Incidentally, since the gap BS1 between the central conductor line B1112 and the outer conductor line B1111 is filled with the piezo material as described above, there is no room for the polymer conductive material to enter. On the other hand, when the gap BS1 is not filled with the piezoelectric material, the polymer conductive material may permeate into the gap BS1 by capillary action, and the gap BS1 may be filled with the polymer conductive material. However, depending on the viscosity of the polymer conductive material and the coating method, the polymer conductive material may not penetrate into the space BS1, and the space BS1 may remain as a space.
こうして、図10(c)に示す電線センサB1が完成する。図10(c)に示す電線センサは、図8(a)に示す電線センサと同じものではないが、符号は共通して「1」を用いる。図10(c)に示す電線センサB1の構成は、最も細くすることができる構成であり、第2導体層B13’までの太さが60μmである。これに、シース層を二重構造で設けても0.1mmの電線センサB1を実現することができる。
Thus, the electric wire sensor B1 shown in FIG. 10C is completed. The electric wire sensor shown in FIG. 10 (c) is not the same as the electric wire sensor shown in FIG. 8 (a), but the reference numeral "1" is used in common. The configuration of the electric wire sensor B1 shown in FIG. 10C can be made the thinnest, and the thickness to the second conductor layer B13 'is 60 μm. Even if the sheath layer is provided in a double structure, a wire sensor B1 of 0.1 mm can be realized.
また、製造が容易で低コストに得ることができる電線センサB1としては、直径20μmの導体線B111を用い、太さが60μmの第1導体B11に、厚さが20μmのピエゾコート層B12’を形成し、さらに、厚さが10μmの第2導体層B13’を形成する。この構成では、第2導体層B13’までの太さが0.12mmである。これに、シース層を二重構造で設けても0.15mm以下の電線センサB1を実現することができる。
In addition, as the electric wire sensor B1 which can be easily manufactured and obtained at low cost, using the conductor wire B111 having a diameter of 20 μm, the piezo conductor layer B12 ′ having a thickness of 20 μm is applied to the first conductor B11 having a thickness of 60 μm. Then, a second conductor layer B13 'having a thickness of 10 μm is formed. In this configuration, the thickness to the second conductor layer B13 'is 0.12 mm. In this case, even if the sheath layer is provided in a double structure, the wire sensor B1 of 0.15 mm or less can be realized.
なお、図10(a)に示す第1導体B11は、7本の導体線B111を撚り合わせたものであったが、撚り合わせずに複数の導体線が直線状に束になったものであってもよい。この場合であっても、ピエゾ材料を塗布することや、導電性材料を塗布することで、複数の導体線どうしが互いに接着され、束ねられる。あるいは、シースによっても束ねられる。
The first conductor B11 shown in FIG. 10A is obtained by twisting seven conductor wires B111, but a plurality of conductor wires are bundled in a straight line without twisting. May be Even in this case, by applying a piezoelectric material or applying a conductive material, a plurality of conductor wires are bonded to one another and bundled. Alternatively, it can be bundled by a sheath.
図11は、それぞれピエゾコート層B12が形成されている7本の導体線B111を撚り合わせた後に、第2導体層B13’を形成した分散態様の電線センサの例を示す図である。
FIG. 11 is a view showing an example of the wire sensor in a dispersion mode in which the second conductor layer B13 'is formed after the seven conductor wires B111 on which the piezo coat layer B12 is formed are twisted.
図11(a)に示す7本の導体線B111それぞれの周面には、ピエゾコート層B12が形成されている。なお、中心導体線B1112には、ピエゾコート層B12が形成されていない導体線を用いてもよい。また、ピエゾコート層B12に代えて、帯状のピエゾフィルムが螺旋状に巻き付けられた導体線であってもよい。これら7本の導体線B111は、最密構造に配置された状態で撚り合わされており、図11(a)に示す隣り合う導体線B111の周面に形成されているピエゾコート層B12は互いに接している。図11(a)に示す隣り合う導体線B111の間に、ピエゾコート層B12が介在しており、各導体線B111は分散配置されている。また、図11(a)に示す導体線B111は、1本が直径10μmであり、ピエゾコート層B12の厚さも10μmである。
A piezo coat layer B12 is formed on the circumferential surface of each of the seven conductor wires B111 shown in FIG. In addition, you may use the conductor line in which piezo coat layer B12 is not formed for center conductor line B1112. Moreover, it may replace with piezo coat layer B12 and the strip | belt-shaped piezo film may be a conductor wire wound helically. These seven conductor wires B111 are twisted together in a state of being arranged in the close-packed structure, and the piezo coat layers B12 formed on the peripheral surfaces of the adjacent conductor wires B111 shown in FIG. ing. The piezo coat layer B12 is interposed between the adjacent conductor lines B111 shown in FIG. 11A, and the conductor lines B111 are distributed. Further, one conductor wire B111 shown in FIG. 11A has a diameter of 10 μm, and the thickness of the piezo coat layer B12 is also 10 μm.
図11(b)は、図11(a)に示す撚り合わされた7本の導体線B111にカーボンナノチューブ等のカーボンを含む高分子導電性材料を塗布した状態を示す図である。
FIG. 11B is a view showing a state in which a polymer conductive material containing carbon such as a carbon nanotube is applied to the seven conductor wires B111 twisted together shown in FIG. 11A.
図11(b)に示す外側導体線B1111の周面に形成されたピエゾコート層B12のうち、外側に面する部分にのみ第2導体層B13’が形成されている。図11(b)に示す第2導体層B13’の厚さ(t3)は5μmである。また、図11(a)に示す隣り合う導体線B111の周面に形成されているピエゾコート層B12は互いに接していたが、毛細管現象により高分子導電性材料が、中心導体線B1112と外側導体線B1111との隙間BS1(隣り合う外側導体線B1111どうしの間のうち内側の間)に浸透し、その隙間BS1は高分子導電性材料によって埋められている。ただしここでも、高分子導電性材料の粘度や塗布方法によっては、高分子導電性材料が上記隙間BS1に浸透しない場合もある。また、外側導体線B1111どうしの隙間のうち外側の隙間BS2は、厳密には図11(b)に2点鎖線で示すように高分子導電性材料で埋められる場合がある。こうして、図11(b)に示す電線センサB1が完成する。なお、図11(b)に示す電線センサは、図8(a)に示す電線センサと同じものではないが、ここでも符号は共通して「1」を用いる。図11(b)に示す電線センサB1では、第2導体層B13’までの太さが0.1mmである。
The second conductor layer B13 'is formed only on the portion facing the outer side of the piezo coat layer B12 formed on the circumferential surface of the outer conductor wire B1111 shown in FIG. 11 (b). Thickness (t3) of 2nd conductor layer B13 'shown in FIG.11 (b) is 5 micrometers. Further, although the piezo coat layers B12 formed on the peripheral surfaces of the adjacent conductor wires B111 shown in FIG. 11A are in contact with each other, the polymer conductive material is formed by the capillary phenomenon, the central conductor wire B1112 and the outer conductor It penetrates into the space BS1 with the line B1111 (between the adjacent outer conductor lines B1111, the inner side), and the space BS1 is filled with the polymer conductive material. However, the polymer conductive material may not penetrate into the gap BS1 depending on the viscosity of the polymer conductive material and the coating method. In addition, the outer space BS2 out of the gaps between the outer conductor wires B1111 may be filled with a polymer conductive material, as strictly shown by a two-dot chain line in FIG. Thus, the wire sensor B1 shown in FIG. 11B is completed. The electric wire sensor shown in FIG. 11 (b) is not the same as the electric wire sensor shown in FIG. 8 (a), but the same reference numeral is used here as "1". In the wire sensor B1 shown in FIG. 11 (b), the thickness to the second conductor layer B13 'is 0.1 mm.
また、製造が容易で低コストに得ることができる電線センサB1としては、直径20μmの導体線B111を用い、厚さが20μmのピエゾコート層B12を形成し、さらに、厚さが10μmの第2導体層B13’を形成する。この構成では、第2導体層B13’までの太さが0.2mmである。
Further, as the electric wire sensor B1 which can be easily manufactured and obtained at low cost, the 20 μm thick piezo-coated layer B12 is formed using the conductor wire B111 of 20 μm in diameter, and the second 10 μm thick Conductor layer B13 'is formed. In this configuration, the thickness to the second conductor layer B13 'is 0.2 mm.
なお、ここでの例でも、それぞれピエゾコート層B12が形成されている7本の導体線B111を撚り合わせているが、撚り合わせずに、複数の導体線が直線状に束になったものであってもよい。この場合であっても、導電性材料を塗布することで、複数の導体線どうしが互いに接着され、束ねられる。あるいは、シースを設ければ、そのシースによっても束ねられる。
Also in this example, the seven conductor wires B111 on which the piezo coat layer B12 is formed are twisted together, but a plurality of conductor wires are bundled in a straight line without twisting. It may be. Even in this case, by applying the conductive material, the plurality of conductor wires are bonded to one another and bundled. Alternatively, if a sheath is provided, it can be bundled by the sheath.
図7から図11を用いて説明した電線センサB1は、十分に細いため、血管の中に通すことができる。電線センサB1の先端に接触子を設け、接触子から血管内に挿入し、臓器の壁面に接触子を接触させてその壁面の硬さを測定することができる。臓器の壁面の硬さを測定することができれば、癌細胞の発見につなげることができる。
Since the electric wire sensor B1 described with reference to FIGS. 7 to 11 is sufficiently thin, it can be passed through a blood vessel. A contact can be provided at the tip of the electric wire sensor B1, inserted into the blood vessel from the contact, and the contact can be brought into contact with the wall surface of the organ to measure the hardness of the wall surface. If the hardness of the organ wall can be measured, it can lead to the discovery of cancer cells.
また、シースを設けた図7から図11の電線センサB1を複数本用意し、それら複数本の電線センサB1をシースでさらに被覆して線状センサとしてもよい。例えば、シースを設けた電線センサB1を7本用意し、それら7本の電線センサB1を最密構造に配置した状態で撚り合わせた上で、シースでさらに被覆してもよい。1本1本の電線センサB1では、シースが破れてしまうと、水等が侵入して腐食してしまったり、電流がリークしてしまう場合があるが、シースを設けた電線センサB1が複数本あり、それらがシースでさらに被覆されていると、1本の電線センサB1のシースが破れても、他の電線センサB1のセンサ信号を得ることができ、耐久性や信頼性が向上する。図7から図11を用いて説明した電線センサB1は十分に細くすることができるものであるため、このように複数本の電線センサB1をシースでさらに被覆しても従来よりも全体の太さを抑えた線状センサを得ることができる。
Alternatively, a plurality of wire sensors B1 in FIGS. 7 to 11 provided with a sheath may be prepared, and the plurality of wire sensors B1 may be further covered with a sheath to form a linear sensor. For example, seven electric wire sensors B1 provided with a sheath may be prepared, and the seven electric wire sensors B1 may be twisted in a close-packed state and further covered with a sheath. With one wire sensor B1, if the sheath is torn, water etc. may enter and corrode, or the current may leak, but multiple wire sensors B1 provided with a sheath may be used. If they are further covered by a sheath, even if the sheath of one electric wire sensor B1 is broken, the sensor signal of the other electric wire sensor B1 can be obtained, and the durability and reliability are improved. Since the wire sensor B1 described with reference to FIGS. 7 to 11 can be made sufficiently thin, even if a plurality of wire sensors B1 are further covered with a sheath in this manner, the overall thickness is greater than in the prior art Can be obtained.
また、図2に示す帯状センサA2では、電線センサA1に代えて、図7から図11を用いて説明した電線センサB1を用いてもよい。なお、図2に示す縦ワイヤA21を、ステンレスワイヤを7本撚り合わせた1次撚り線を最密構造に配置した状態でさらに撚り合わせた2次撚り線にしてもよい。この縦ワイヤA21は、縦線状体の一例に相当する。
Further, in the strip sensor A2 shown in FIG. 2, the wire sensor B1 described using FIGS. 7 to 11 may be used instead of the wire sensor A1. In addition, you may make it the secondary strand wire further twisted together in the state which arrange | positioned the primary strand wire which seven stainless wires were twisted together and arrange | positioned the longitudinal wire A21 shown in FIG. 2 in the close-packed structure. The vertical wire A21 corresponds to an example of a vertical linear body.
また、図3に示す面状センサA3でも、電線センサA1に代えて、図7から図11を用いて説明した電線センサB1を用いてもよい。
Further, in the planar sensor A3 shown in FIG. 3, the electric wire sensor B1 described with reference to FIGS. 7 to 11 may be used instead of the electric wire sensor A1.
なお、電線センサB1が細くて柔らかくなると(例えば、太さが2mm以下になると)、他の繊維と一緒に一般的な織り方(例えば、平織りや綾織等)で織ることができる。
When the wire sensor B1 is thin and soft (for example, when the thickness is 2 mm or less), it can be woven with other fibers in a general weave (for example, plain weave, twill weave, etc.).
また、図3に示す面状センサA3の電線センサA1に代えて、図7から図11を用いて説明した電線センサB1を用い、触感センサに利用する場合においても、制御部が備えられる。ここでの制御部も、図3に示す面状センサA3を触感センサに利用した場合に備えられる制御部と同じであり、先に説明した制御部に関する説明や判定の説明と同じであるため説明を省略する。
Also, in the case of using the electric wire sensor B1 described with reference to FIGS. 7 to 11 in place of the electric wire sensor A1 of the planar sensor A3 shown in FIG. The control unit here is also the same as the control unit provided when the planar sensor A3 shown in FIG. 3 is used for the tactile sensor, and is the same as the explanation on the control unit described above and the explanation of the determination. Omit.
また、図7から図11を用いて説明した電線センサB1は、図5および図6等を用いて説明した電線センサA1の他の利用例にも利用することができる。すなわち、螺旋状に周回した電線センサB1として利用することもできるし、電線センサB1を織物のように織ることで帯状センサや面状センサを製作することもできるが、電線センサB1を編み物のように、伏せ止めしてもよいし、メリヤス編みしてもよい。
In addition, the wire sensor B1 described with reference to FIGS. 7 to 11 can be used in other application examples of the wire sensor A1 described with reference to FIGS. 5 and 6 and the like. That is, the wire sensor B1 can be used as a spirally wound electric wire sensor B1, and a belt-like sensor or a sheet shape sensor can be manufactured by weaving the electric wire sensor B1 like a woven fabric. In addition, you may hold down and you may knit.
また、電線センサB1は、従来のセンサよりも細くすることで柔軟性を高めることができることから、図5(a)を用いて説明した編物状のセンサとしても利用することができる。
In addition, since the electric wire sensor B1 can increase the flexibility by making the electric wire sensor B1 thinner than a conventional sensor, the electric wire sensor B1 can also be used as the knitted sensor described with reference to FIG. 5 (a).
また、圧電体であるピエゾコート層B12に代えて、帯状のピエゾフィルムを螺旋状に巻き付けるにあたり、図5(b)を用いて説明したようにして、導体線B111にピエゾフィルムを巻き付けていけばよい。
Further, in place of the piezoelectric coating layer B12 which is a piezoelectric body, when winding a strip-shaped piezoelectric film in a spiral shape, as described with reference to FIG. 5B, the piezoelectric film is wound around the conductor wire B111. Good.
また、電線センサB1も、キュリー温度を超えるまで部分的に加熱することで、センサ部と、出力信号の送信線とに分けて使用することができる。
Moreover, the electric wire sensor B1 can also be divided and used for a sensor part and the transmission line of an output signal by heating partially until it exceeds Curie temperature.
さらに、電線センサB1を用いた面状センサも、図3に示す面状センサと同じく、X軸方向には伸縮することはなく、Y軸方向にも伸縮することはないが、対角線方向には伸縮可能であり、図5(c)に示すように90度回転させた状態で使用すれば、白抜きの矢印方向に伸縮可能な面状センサになる。さらに、第1電線センサがX軸方向に延在し第2電線センサがY軸方向に延在した面状センサと、電線センサB1を用いて図5(c)に示す面状センサに適用したものを重ねて配置すれば、X軸方向にも、Y軸方向にも、対角線方向にも伸縮するセンサを実現することができる。
Furthermore, as with the planar sensor shown in FIG. 3, the planar sensor using the electric wire sensor B1 does not expand and contract in the X-axis direction and does not expand and contract in the Y-axis direction, but in the diagonal direction When used in a state of being rotated 90 degrees as shown in FIG. 5C, it becomes a planar sensor that can expand and contract in the direction of the white arrow. Furthermore, the first electric wire sensor extends in the X axis direction, and the second electric wire sensor extends to the Y axis direction, and is applied to the planar sensor shown in FIG. 5C using the electric wire sensor B1. If the objects are stacked, it is possible to realize a sensor that expands and contracts in the X-axis direction, the Y-axis direction, and the diagonal direction.
また、電線センサB1を用いた帯状センサも、溶接された配管に巻き付け、溶接部の欠陥検査に利用することができる。
Moreover, the strip | belt-shaped sensor using electric wire sensor B1 can also be wound around welded piping, and can be utilized for the defect inspection of a welding part.
さらに、電線センサB1を用いた面状センサも、高所において振動を検出するものや、人の心拍や呼吸を振動として検出するものや、介護等の各種の監視や、ペットの監視に利用することもできる。
Furthermore, the planar sensor using the electric wire sensor B1 is also used to detect vibrations at high places, to detect heartbeats and respirations of people as vibrations, and to monitor various types of care such as nursing care and pets. It can also be done.
また、電線センサB1を用いた面状センサを配置した手袋を、ロボットハンドに装着してもよいし、人に装着させて、各種作業等における把持力等のデータ取りに用いてもよい。
Also, a glove having a planar sensor using the electric wire sensor B1 may be attached to a robot hand, or may be attached to a person and used for data acquisition such as gripping force in various operations.
また、電線センサB1を用いた面状センサも、手指の拘縮患者ためのリハビリ用のグリップに応用することができる。
Moreover, the planar sensor using electric wire sensor B1 is also applicable to the grip for rehabilitation for the contracture patient of a finger.
さらに、電線センサB1を用いた面状センサも、図6を用いて説明したようにロボットハンドに適用させることができる。
Furthermore, a planar sensor using the wire sensor B1 can also be applied to the robot hand as described with reference to FIG.
なお、これまで説明した実施形態や、図7から図11を用いて説明した電線センサB1の他の利用例は適宜組み合わせることが可能である。
In addition, it is possible to combine suitably the embodiment mentioned so far and the other usage example of electric wire sensor B1 demonstrated using FIGS. 7-11.
以下に、図7から図11を用いて説明したことを含めた技術的思想を記す。
Hereinafter, technical ideas including what has been described using FIGS. 7 to 11 will be described.
図7から図11を用いて説明した第2の特徴的な線状センサは、
複数の導体線を有する第1導体と、
第2導体とを備え、
前記複数の導体線のうち、少なくとも前記第1導体の外周面を構成する外側導体線が、周面にピエゾ材料を担持したものであり、
前記第2導体が、少なくとも、前記外側導体線の周面に担持されたピエゾ材料の外側に配置されたものであることを特徴とする。 The second characteristic linear sensor described with reference to FIGS. 7 to 11 is
A first conductor having a plurality of conductor lines;
And a second conductor,
Among the plurality of conductor wires, an outer conductor wire constituting at least an outer peripheral surface of the first conductor carries a piezoelectric material on the peripheral surface,
The second conductor may be disposed at least on the outer side of a piezo material carried on the circumferential surface of the outer conductor wire.
複数の導体線を有する第1導体と、
第2導体とを備え、
前記複数の導体線のうち、少なくとも前記第1導体の外周面を構成する外側導体線が、周面にピエゾ材料を担持したものであり、
前記第2導体が、少なくとも、前記外側導体線の周面に担持されたピエゾ材料の外側に配置されたものであることを特徴とする。 The second characteristic linear sensor described with reference to FIGS. 7 to 11 is
A first conductor having a plurality of conductor lines;
And a second conductor,
Among the plurality of conductor wires, an outer conductor wire constituting at least an outer peripheral surface of the first conductor carries a piezoelectric material on the peripheral surface,
The second conductor may be disposed at least on the outer side of a piezo material carried on the circumferential surface of the outer conductor wire.
従来より、第1導体の外周面にピエゾ材料(圧電材料)が配置された線状センサが知られている(例えば、特開2008-151638号公報等参照)。この線状センサは、触覚センサや振動センサ等に利用することができる。触覚センサは、人が触れる態様で使用されることがあり、センサ自身に柔らかい触感が求められる場合がある。また、振動センサとして利用する場合にも、センサを対象物に巻き付けたり、センサ自身が曲げられた状態で使用されることもあり、柔軟性が求められる場合がある。柔らかい触感や柔軟性を得るためには、第1導体を細くすることが考えられる。また、これまでは太すぎて線状センサを挿入して検査することができなかった箇所でも、線状センサを細くすることができれば検査が可能となる場合もある。
Conventionally, a linear sensor in which a piezoelectric material (piezoelectric material) is disposed on the outer peripheral surface of the first conductor is known (see, for example, Japanese Patent Application Laid-Open No. 2008-151638). This linear sensor can be used as a tactile sensor or a vibration sensor. A tactile sensor may be used in a manner in which a human touches it, and the sensor itself may be required to have a soft touch. Also, when using as a vibration sensor, the sensor may be wound around an object, or the sensor may be used in a bent state, and flexibility may be required. In order to obtain a soft touch and flexibility, it is conceivable to make the first conductor thinner. Moreover, even if it is too thick and it has not been possible to insert and inspect a linear sensor, if a linear sensor can be made thin, an inspection may become possible.
しかしながら、ピエゾ材料の厚みを同じにしたまま第1導体を細くしようとすると、ピエゾ材料の単位長さ当りの体積が減少してしまう。センサ感度は、ピエゾ材料の体積に比例し、体積が小さくなればなるほどセンサ感度は低下してしまう。
However, if it is attempted to make the first conductor thin while keeping the thickness of the piezoelectric material the same, the volume per unit length of the piezoelectric material is reduced. The sensor sensitivity is proportional to the volume of the piezoelectric material, and the smaller the volume, the lower the sensor sensitivity.
一方、上記第2の特徴的な線状センサによれば、前記第1導体を構成する複数の導体線ごとにピエゾ材料が担持されているため、ピエゾ材料の厚みを同じにしたまま該第1導体を細くしても、ピエゾ材料の単位長さ当りの体積が減少してしまうことがないか、体積の減少が抑えられる。したがって、前記第1導体を細くしてもセンサ感度が低下しない、あるいはセンサ感度の低下が抑えられた線状センサを実現することができる。
On the other hand, according to the second characteristic linear sensor described above, since the piezoelectric material is supported for each of the plurality of conductor wires that constitute the first conductor, the first material can be made to have the same thickness. Even if the conductor is made thinner, the volume per unit length of the piezoelectric material does not decrease, or the decrease in volume is suppressed. Therefore, it is possible to realize a linear sensor in which the sensor sensitivity does not decrease even if the first conductor is thinned, or the decrease in sensor sensitivity is suppressed.
前記第1導体は、前記複数の導体線が一つにまとまった集合態様であってもよいし、該複数の導体線が分散配置された分散態様であってもよい。
The first conductor may be in the form of an assembly in which the plurality of conductor wires are integrated into one, or may be in the form of dispersion in which the plurality of conductor wires are distributed.
集合態様では、前記複数の導体線が直線状に束になったものであってもよいし、前記複数の導体線が撚られたものであってもよい。
In the assembly mode, the plurality of conductor wires may be linearly bundled, or the plurality of conductor wires may be twisted.
前記複数の導体線が撚られたものである場合には、ステンレスワイヤを撚り合わせた撚り線であってもよい。このステンレスワイヤ1本の直径は、10μm以上40μm以下であってもよく、20μm以上30μm以下であることが好ましい。ステンレスワイヤは、細ければ細いほど柔軟性は高められるが強度が低下し、太ければ太いほど柔軟性は低下するが強度が高められる。
When the plurality of conductor wires are twisted, it may be a stranded wire obtained by twisting stainless steel wires. The diameter of one stainless steel wire may be 10 μm to 40 μm, preferably 20 μm to 30 μm. The thinner the stainless steel wire, the higher the flexibility but the lower the strength, and the thicker the wire, the lower the flexibility but the higher the strength.
前記第1導体は、断面形状が、前記撚り線が正六角形の各頂点および該正六角形の中心に配置された状態で全体が撚られたものであってもよい。すなわち、最密構造のものであってもよい。
The cross-sectional shape of the first conductor may be entirely twisted in a state in which the stranded wire is disposed at each vertex of the regular hexagon and at the center of the regular hexagon. That is, it may be a close packed structure.
さらに、前記第1導体は、前記撚り線のみから構成されたものであってもよいし、前記撚り線と他の金属線から構成されたものであってもよい。例えば、前記撚り線が正六角形の各頂点に配置され該正六角形の中心に銅線が配置された状態で全体が撚られたものであってもよいし、前記撚り線が正六角形の頂点のうち一つおきに配置され残りの頂点には銅線が配置され、該正六角形の中心には銅線又は前記撚り線が配置された状態で全体が撚られたものであってもよい。
Furthermore, the first conductor may be configured of only the stranded wire, or may be configured of the stranded wire and another metal wire. For example, the whole may be twisted in a state in which the stranded wire is disposed at each vertex of a regular hexagon and a copper wire is disposed at the center of the regular hexagon, or the stranded wire may be a vertex of a regular hexagon Alternatively, copper wires may be disposed at every other apex, and copper wires or twisted wires may be disposed at the center of the regular hexagon, and the whole may be twisted.
前記第1導体の直径は、0.03mm以上0.8mm以下であってもよく、0.06mm以上であることが低コストで製造することができたり製造が容易であり、0.5mm以下であることが細さの面では好ましい。
The diameter of the first conductor may be 0.03 mm or more and 0.8 mm or less, and being 0.06 mm or more can be manufactured at low cost or is easy to manufacture, and is 0.5 mm or less It is preferable in terms of fineness.
前記第1導体は、中心に位置する中心導体線の周囲に前記外側導体線が配置されたものを撚った構造のものであってもよい。前記中心導体線も、周面にピエゾ材料を担持したものであってもよく、この場合には第1導体は分散態様になる。一方、前記中心導体線は、周面にピエゾ材料を担持していないものであってもよく、この場合には第1導体は集合態様になる。第1導体が分散態様であっても集合態様であっても、前記中心導体線は、ステンレスワイヤやタングステン等の高張力鋼材、超高張力鋼、タングステン及びその合金、チタン及びその合金、Mg及びその合金等の材料等の導線からなるものであってもよいし、前記外側導体線よりも機械的強度が高いものであってもよい。また、前記外側導体線は、銅からなるものであってもよく、前記中心導体線よりも電気抵抗が低く、かつ柔らかいものであってもよい。あるいは、前記外側導体線は、相対的に電気抵抗が低くかつ柔らかいものと、相対的に電気抵抗が高くかつ機械的強度が高いものの2種類を用意し、これら2種類の外側導体線を周方向に交互に配置したものであってもよい。
The first conductor may have a twisted structure in which the outer conductor wire is disposed around a central conductor wire located at the center. The central conductor line may also be one carrying a piezo material on its peripheral surface, in which case the first conductor is in a dispersed state. On the other hand, the central conductor line may not carry the piezoelectric material on the circumferential surface, and in this case, the first conductors are in a collective mode. Whether the first conductor is in the dispersion mode or in the assembly mode, the central conductor wire is made of a high tensile steel such as stainless steel wire or tungsten, ultrahigh tensile steel, tungsten and its alloy, titanium and its alloy, Mg and It may consist of conducting wires, such as materials, such as the alloy, and mechanical strength may be higher than the said outer side conductor wire. In addition, the outer conductor wire may be made of copper, and may have a lower electrical resistance than the central conductor wire and be softer. Alternatively, two types of outer conductor wires, one with relatively low electrical resistance and softness, and one with relatively high electrical resistance and high mechanical strength, are provided, and these two types of outer conductor wires are circumferentially distributed. May be alternately arranged.
前記外側導体線が、全周面にピエゾ材料を担持したものであってもよいし、周面のうち外側に面する部分のみにピエゾ材料を担持したものであってもよい。
The outer conductor wire may carry the piezo material on the entire circumferential surface, or may carry the piezo material only on the part of the circumferential surface facing the outside.
前記ピエゾ材料は、帯状のピエゾフィルムであってもよい。すなわち、前記複数の導体線を撚り合わせる前に、各導体線の周面に帯状のピエゾフィルムを螺旋状に巻き付けておき、各導体線の周面にピエゾ材料を担持させた構造としてもよい。この構造の場合には、第1導体は分散態様になる。前記ピエゾフィルムは、幅が0.03mm以上2mm以下のものであって、好ましくは0.05mm以上1.0mm以下のものである。前記ピエゾフィルムは、前記導体線の周面に螺旋状に巻き付ける際に該導体線の延在方向に隣り合うピエゾフィルムの幅方向の一端と他端どうしを重ね合わせた状態で巻き付けていき、隙間が生じないようにする。ピエゾフィルムの幅が狭すぎると前記導体線の外周面に螺旋状に巻き付ける際に該導体線の延在方向に隣り合うピエゾフィルムの間に隙間が生じやすくなってしまう。隙間が生じた箇所は、センシングできない箇所になってしまうと同時に外側に配置された前記第2導体とショートしてまうためセンサ信号が取れなくなってしまうという不都合が生じる。一方、ピエゾフィルムの幅が広すぎると前記導体線の周面に螺旋状に巻き付ける際に弛みが生じやすくなってしまう。なお、ピエゾフィルムの幅方向の一端と他端どうしを重ね合わせることでピエゾフィルムの面積をなるべく大きくとることができ、センサ感度の向上につながる。前記ピエゾフィルムの厚さは、20μm以上100μm以下であって、25μm以上80μm以下であることが好ましい。前記ピエゾフィルムの厚さが薄すぎるとセンサとしての感度が不十分になってしまい、反対に厚すぎると線状センサが硬くなりすぎてしまい柔軟性に欠けてしまう。前記ピエゾフィルムは、ピエゾ特性が、長手方向(伸び方向)にしか対応していないものよりも、結晶の配向性により複数方向(伸び方向及び曲げ方向)に対応したものである方が好ましい。
The piezoelectric material may be a strip-shaped piezoelectric film. That is, before twisting together the plurality of conductor wires, a belt-like piezoelectric film may be spirally wound around the peripheral surface of each conductor wire, and the piezoelectric material may be supported on the peripheral surface of each conductor wire. In this structure, the first conductor is in a distributed manner. The piezoelectric film has a width of 0.03 mm or more and 2 mm or less, preferably 0.05 mm or more and 1.0 mm or less. When the piezoelectric film is spirally wound around the circumferential surface of the conductor wire, the piezoelectric film is wound in a state where one end and the other end of the width direction of the piezoelectric film adjacent in the extending direction of the conductor wire overlap each other Will not occur. When the width of the piezoelectric film is too narrow, when spirally wound around the outer peripheral surface of the conductor wire, a gap is likely to be generated between the piezoelectric films adjacent in the extending direction of the conductor wire. A location where a gap is formed becomes a location where sensing can not be performed, and at the same time, there is a disadvantage that the sensor signal can not be obtained because it is short-circuited with the second conductor disposed outside. On the other hand, when the width of the piezo film is too wide, slack is easily generated when wound around the circumferential surface of the conductor wire. The area of the piezoelectric film can be made as large as possible by superposing one end and the other end in the width direction of the piezoelectric film, which leads to the improvement of the sensor sensitivity. The thickness of the piezoelectric film is preferably 20 μm to 100 μm, and more preferably 25 μm to 80 μm. If the thickness of the piezoelectric film is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the linear sensor will be too hard and the flexibility will be lost. The piezoelectric film preferably has a piezoelectric property corresponding to a plurality of directions (elongation direction and bending direction) due to crystal orientation, compared with a case where the piezoelectric characteristic corresponds only to the longitudinal direction (elongation direction).
あるいは、前記複数の導体線を撚り合わせる前に、該導体線の周面にピエゾ材料を塗布しておき、該導体線の周面にピエゾ材料を担持させた構造としてもよい。ここにいう塗布とは、浸漬(ドブ付け)塗装であってもよいし吹き付け塗装であってもよいしハケ塗りであってもよいし、コーター等による塗布装置による塗布であってもよい。さらには、前記外側導体線自身も、撚り線構造である場合には、ピエゾ材料を含浸させ、毛細管現象で該外側導体線内部までピエゾ材料が浸透したものであってもよい。この場合にも、第1導体は分散態様になる。
Alternatively, before twisting together the plurality of conductor wires, a piezo material may be applied to the peripheral surface of the conductor wire and the piezoelectric material may be supported on the peripheral surface of the conductor wire. The application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like. Furthermore, when the outer conductor wire itself is also a stranded wire structure, it may be impregnated with a piezo material, and the piezo material may penetrate into the outer conductor wire by capillary action. Also in this case, the first conductor is in the dispersed mode.
また、前記複数の導体線を撚り合わせた後に、前記第1導体の外周面にピエゾ材料を塗布することで、前記外側導体線の周面にピエゾ材料を担持させた構造としてもよい。ここにいう塗布とは、浸漬(ドブ付け)塗装であってもよいし吹き付け塗装であってもよいしハケ塗りであってもよいし、コーター等による塗布装置による塗布であってもよい。さらには、前記第1導体にピエゾ材料を含浸させ、毛細管現象で該第1導体の内部までピエゾ材料が浸透したものであってもよい。この場合には、第1導体は集合態様になる。
The piezoelectric material may be supported on the peripheral surface of the outer conductor wire by applying the piezoelectric material to the outer peripheral surface of the first conductor after twisting the plurality of conductor wires. The application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like. Furthermore, the first conductor may be impregnated with a piezo material, and the piezo material may penetrate into the interior of the first conductor by capillary action. In this case, the first conductors are in a collective manner.
塗布されたピエゾ材料の厚さは前記導体線の直径以上であることが好ましく、例えば、0.01mm以上0.05mm以下である。
The thickness of the applied piezoelectric material is preferably equal to or greater than the diameter of the conductor wire, and is, for example, 0.01 mm or more and 0.05 mm or less.
前記第2導体を覆うシースが設けられたものであってもよい。このシースは、耐摩耗性、耐薬品性、防錆性を高めるためのものである。シースも、塗布によって形成されたものであってもよく、さらには、複層構造であってもよい。ここにいう塗布とは、浸漬(ドブ付け)塗装であってもよいし吹き付け塗装であってもよいしハケ塗りであってもよいし、コーター等による塗布装置による塗布であってもよい。また、ピンホールが発生することを考慮して複数回塗りすることが好ましい。なお、シースの厚みは5μm以上50μm以下程度である。シースを含めた線状センサの直径は0.1mmにすることも可能である。
A sheath covering the second conductor may be provided. This sheath is for enhancing the abrasion resistance, the chemical resistance and the rust prevention. The sheath may also be formed by application, and further may have a multilayer structure. The application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like. Moreover, it is preferable to apply a plurality of times in consideration of the occurrence of pinholes. The thickness of the sheath is about 5 μm to 50 μm. The diameter of the linear sensor including the sheath may be 0.1 mm.
また、
前記第1導体は、前記複数の導体線を撚り合わせたものであってもよい。 Also,
The first conductor may be formed by twisting the plurality of conductor wires.
前記第1導体は、前記複数の導体線を撚り合わせたものであってもよい。 Also,
The first conductor may be formed by twisting the plurality of conductor wires.
前記複数の導体線を甘撚、あるいは中撚程度に撚っておくことで、撚りの方向とは逆方向の緩みを許容し、この緩みが柔軟性を与えることができる。
By twisting the plurality of conductor wires into a sweet-twisted or medium-twisted degree, it is possible to allow slack in the direction opposite to the twisting direction, and to provide flexibility.
また、
隣り合う前記外側導体線どうしの間に、ピエゾ材料が充填されていることを特徴とする態様であってもよい。 Also,
The piezoelectric material may be filled between the adjacent outer conductor wires.
隣り合う前記外側導体線どうしの間に、ピエゾ材料が充填されていることを特徴とする態様であってもよい。 Also,
The piezoelectric material may be filled between the adjacent outer conductor wires.
この態様は、前記複数の導体線を撚り合わせた後に、前記第1導体の外周面にピエゾ材料を塗布することで実現することができる態様である。
This aspect is an aspect that can be realized by applying a piezoelectric material to the outer peripheral surface of the first conductor after twisting the plurality of conductor wires.
なお、隣り合う前記外側導体線どうしの間のうち、外側の間にのみピエゾ材料が充填されていてもよいし、内側の間にのみピエゾ材料が充填されていてもよいし、外側の間と内側の間の両方にピエゾ材料が充填されていてもよい。隣り合う前記外側導体線どうしの間のうち内側の間に充填されたピエゾ材料は、毛細管現象で浸透したピエゾ材料である。
Among adjacent outer conductor wires, the piezoelectric material may be filled only between the outer side, the piezoelectric material may be filled only between the inner side, or between the outer side Both between the inside may be filled with piezo material. The piezo material filled in between the adjacent outer conductor wires is a piezo material penetrated by capillary action.
また、
前記第2導体が、前記外側導体線の周面に担持されたピエゾ材料のうち、少なくとも外側に面する部分に担持されたものであってもよい。 Also,
The second conductor may be carried on at least a portion facing the outer side of the piezoelectric material carried on the circumferential surface of the outer conductor wire.
前記第2導体が、前記外側導体線の周面に担持されたピエゾ材料のうち、少なくとも外側に面する部分に担持されたものであってもよい。 Also,
The second conductor may be carried on at least a portion facing the outer side of the piezoelectric material carried on the circumferential surface of the outer conductor wire.
前記第2導体が、前記外側導体線の周面に担持されたピエゾ材料のうち外側に面する部分のみに担持されたものであってもよいし、前記外側導体線の全周面に担持されたピエゾ材料全体に担持されたものであってもよい。
The second conductor may be carried only on the portion facing the outside of the piezo material carried on the circumferential surface of the outer conductor wire, or may be carried on the entire circumferential surface of the outer conductor wire It may be carried on the entire piezo material.
また、前記第2導体は、導電性材料を塗布することで形成されたものであってもよい。ここにいう塗布とは、浸漬(ドブ付け)塗装であってもよいし吹き付け塗装であってもよいしハケ塗りであってもよいし、コーター等による塗布装置による塗布であってもよい。
The second conductor may be formed by applying a conductive material. The application referred to here may be immersion (dubbing) coating, spray coating, brush coating, or coating by a coating device using a coater or the like.
塗布された、前記第2導体を形成する導電性材料の厚さは、前記導体線の直径以下であることが好ましく、また、塗布されたピエゾ材料の厚さ以下であることも好ましい。この導電性材料の厚さは、例えば、5μm以上50μm以下である。
The thickness of the applied conductive material forming the second conductor is preferably equal to or less than the diameter of the conductor wire, and preferably equal to or less than the thickness of the applied piezoelectric material. The thickness of the conductive material is, for example, 5 μm or more and 50 μm or less.
なお、この第2導体は、前記ピエゾ材料の外側に、導線をクロスして編み上げた編組シールドであってもよいし、導線を1列に螺旋状に巻き付けていった横巻きシールドでもよい。また、第2導体は、前記ピエゾ材料の外側に、テープ状(帯状)の導体を螺旋状に巻き付けていったテープシールドであってもよい。ただし、横巻きシールドが最も柔軟性が高い。またさらに、第2導体は、複数本の導線を螺旋状に巻き付けていったものであってもよいし、複数本のテープ状(帯状)の導体を螺旋状に巻き付けていったものであってもよい。
The second conductor may be a braided shield in which a conducting wire is crossed and braided on the outside of the piezoelectric material, or a laterally wound shield in which the conducting wire is spirally wound in one row. The second conductor may be a tape shield in which a tape-like (strip-like) conductor is spirally wound on the outside of the piezoelectric material. However, the side shield is the most flexible. Furthermore, the second conductor may be one in which a plurality of conducting wires are spirally wound, or a plurality of tape-shaped (strip-like) conductors are spirally wound. It is also good.
これまで説明した第2の特徴的な帯状センサは、
上記第2の特徴的な線状センサと、
前記線状センサの延在方向と同じ方向に延びた金属製の縦線状体と、
前記線状センサの幅方向に延び、該線状センサと前記縦線状体を綴る横線状体とを有することを特徴とする。 The second characteristic strip sensor described so far is
The second characteristic linear sensor;
A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor;
It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
上記第2の特徴的な線状センサと、
前記線状センサの延在方向と同じ方向に延びた金属製の縦線状体と、
前記線状センサの幅方向に延び、該線状センサと前記縦線状体を綴る横線状体とを有することを特徴とする。 The second characteristic strip sensor described so far is
The second characteristic linear sensor;
A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor;
It is characterized by extending in the width direction of the linear sensor, and having the linear sensor and a horizontal linear body for binding the vertical linear body.
金属製の縦線状体は、機械的強度を出すためのものであり、例えば、ステンレスワイヤを含んだものであってもよい。より具体的には、ステンレスワイヤの撚り線であってもよいし、ステンレスワイヤと非金属製の線状体を撚り合わせたものであってもよい。さらに、金属製の縦線状体は、上記第2の特徴的な線状センサよりも機械的強度が高いものであってもよい。また、前記線状センサが1本ではなく、複数本、間隔をあけて配置され、該間隔に前記縦線状体が配置された構成であってもよい。この場合、前記間隔に、前記縦線状体のみが配置された態様であってもよいし、前記縦線状体と非金属性の線状体が配置された態様であってもよい。
The metal longitudinal wire is for providing mechanical strength, and may include, for example, a stainless steel wire. More specifically, it may be a stranded wire of a stainless steel wire, or may be a wire in which a stainless steel wire and a non-metallic linear body are twisted. Furthermore, the vertical wire-like body made of metal may have mechanical strength higher than that of the second characteristic linear sensor. In addition, a plurality of linear sensors may be disposed at intervals rather than one, and the vertical linear bodies may be disposed at the intervals. In this case, only the vertical linear body may be disposed at the interval, or the vertical linear body and the nonmetallic linear body may be disposed.
また、前記横線状体が、ステンレスワイヤと非金属製の線状体を撚り合わせたものであってもよい。
Further, the horizontal linear body may be a strand of stainless steel wire and a non-metallic linear body.
ここで説明した非金属性の線状体は、樹脂製の線状体であってもよいし、綿糸等の天然繊維であってもよい。すなわち、前記非金属性の線状体は、化学繊維であってもよいし天然繊維であってもよい。
The non-metallic linear body described here may be a resin-made linear body, or may be a natural fiber such as cotton yarn. That is, the non-metallic linear body may be a chemical fiber or a natural fiber.
これまで説明した第2の特徴的な面状センサは、
上記第2の特徴的な線状センサを第1線状センサとし、該第1線状センサの径方向に間隔をあけて該第1線状センサを複数本配置した第1センサ体と、
隣り合う前記第1線状センサの間に配置され、該第1線状センサの延在方向と同じ方向に延びた、該第1線状センサよりも柔らかな第1線状体と、
上記第2の特徴的な線状センサを第2線状センサとし、前記第1線状センサの延在方向に間隔をあけて該第2線状センサを複数本配置した第2センサ体と、
隣り合う前記第2線状センサの間に配置され、該第2線状センサの延在方向と同じ方向に延びた、該第2線状センサよりも柔らかな第2線状体とを備え、
前記第1センサ体と前記第2センサ体は、分離不能に重ね合わされたものであることを特徴とする。 The second characteristic planar sensor described so far is
A first sensor body in which the second characteristic linear sensor is a first linear sensor, and a plurality of the first linear sensors are arranged at intervals in the radial direction of the first linear sensor;
A first linear body disposed between the adjacent first linear sensors and extending in the same direction as the extension direction of the first linear sensors, wherein the first linear body is softer than the first linear sensors;
A second sensor body in which the second characteristic linear sensor is a second linear sensor, and a plurality of the second linear sensors are arranged at intervals in the extending direction of the first linear sensor;
And a second linear body disposed between the adjacent second linear sensors and extending in the same direction as the extension direction of the second linear sensors, wherein the second linear body is softer than the second linear sensors.
The first sensor body and the second sensor body are inseparably overlapped.
上記第2の特徴的な線状センサを第1線状センサとし、該第1線状センサの径方向に間隔をあけて該第1線状センサを複数本配置した第1センサ体と、
隣り合う前記第1線状センサの間に配置され、該第1線状センサの延在方向と同じ方向に延びた、該第1線状センサよりも柔らかな第1線状体と、
上記第2の特徴的な線状センサを第2線状センサとし、前記第1線状センサの延在方向に間隔をあけて該第2線状センサを複数本配置した第2センサ体と、
隣り合う前記第2線状センサの間に配置され、該第2線状センサの延在方向と同じ方向に延びた、該第2線状センサよりも柔らかな第2線状体とを備え、
前記第1センサ体と前記第2センサ体は、分離不能に重ね合わされたものであることを特徴とする。 The second characteristic planar sensor described so far is
A first sensor body in which the second characteristic linear sensor is a first linear sensor, and a plurality of the first linear sensors are arranged at intervals in the radial direction of the first linear sensor;
A first linear body disposed between the adjacent first linear sensors and extending in the same direction as the extension direction of the first linear sensors, wherein the first linear body is softer than the first linear sensors;
A second sensor body in which the second characteristic linear sensor is a second linear sensor, and a plurality of the second linear sensors are arranged at intervals in the extending direction of the first linear sensor;
And a second linear body disposed between the adjacent second linear sensors and extending in the same direction as the extension direction of the second linear sensors, wherein the second linear body is softer than the second linear sensors.
The first sensor body and the second sensor body are inseparably overlapped.
前記第1センサ体と前記第2センサ体を結合する結合手段が備えられており、該結合手段は、前記第1線状体の一部又は全部であってもよいし、前記第2線状体の一部又は全部であってもよい。例えば、前記第1線状体によって、前記第2線状センサおよび前記第2線状体が綴られ、前記第2線状体によって、前記第1線状センサおよび前記第1線状体が綴られていてもよい。あるいは、前記第2線状センサおよび前記第2線状体を綴る第1結合用線状体と、前記第1線状センサおよび前記第1線状体を綴る第2結合用線状体を備えていてもよい。
Coupling means for coupling the first sensor body and the second sensor body may be provided, and the coupling means may be part or all of the first linear body, or the second linear body. It may be part or all of the body. For example, the second linear sensor and the second linear body are attached by the first linear object, and the first linear sensor and the first linear object are attached by the second linear object. It may be done. Alternatively, it comprises a first coupling linear body for binding the second linear sensor and the second linear body, and a second coupling linear body for binding the first linear sensor and the first linear body. It may be
この第1結合用線状体は上記第2の特徴的な線状センサよりも細く、第1結合用線状体の直径は、上記第2の特徴的な線状センサの直径の1/5以上1/3以下であってもよい。また、第2結合用線状体も上記第2の特徴的な線状センサよりも細く、第2結合用線状体の直径も、上記第2の特徴的な線状センサの直径の1/5以上1/3以下であってもよい。
The first coupling linear body is thinner than the second characteristic linear sensor, and the diameter of the first coupling linear body is one fifth of the diameter of the second characteristic linear sensor. It may be 1/3 or less. In addition, the second coupling linear body is also thinner than the second characteristic linear sensor, and the diameter of the second coupling linear body is also 1/1 of the diameter of the second characteristic linear sensor. It may be 5 or more and 1/3 or less.
前記第1線状体は、前記第1線状センサよりも直径が大きなものであり、前記第2線状体は、前記第2線状センサよりも直径が大きなものであってもよい。
The first linear body may be larger in diameter than the first linear sensor, and the second linear body may be larger in diameter than the second linear sensor.
前記第1センサ体と前記第2センサ体の他に、上記第2の特徴的な線状センサが配置されたセンサ体が1又は複数備えられていてもよい。
In addition to the first sensor body and the second sensor body, one or more sensor bodies may be provided in which the second characteristic linear sensor is disposed.
以上説明した技術的思想によれば、第1導体を細くしてもセンサ感度が低下しない、あるいはセンサ感度の低下が抑えられた線状センサと、その線状センサを用いた、帯状センサおよび面状センサを提供することができる。
According to the technical idea described above, a linear sensor in which the sensor sensitivity does not decrease even if the first conductor is thinned, or a decrease in sensor sensitivity is suppressed, and a strip sensor and a surface using the linear sensor A shape sensor can be provided.
次いで、線状センサのさらに別の実施形態について説明する。
Next, still another embodiment of the linear sensor will be described.
図12は、2種類の電線センサの断面図である。
FIG. 12 is a cross-sectional view of two types of wire sensors.
この図12に示す2種類の電線センサC1はいずれも、内部導体C11と、圧電体C12と、外部導体C13と、シースC14から構成されている。
The two types of electric wire sensors C1 shown in FIG. 12 are each composed of an inner conductor C11, a piezoelectric body C12, an outer conductor C13, and a sheath C14.
内部導体C11は、中心を通る中心導体線C1112と、その中心導体線C1112を取り囲む外側導体線C1111を有する。
The inner conductor C11 has a central conductor line C1112 passing through the center and an outer conductor line C1111 surrounding the central conductor line C1112.
図12(a)に示す電線センサC1は、撚り線構造をもたない電線センサである。すなわち、中心導体線C1112にしても、外側導体線C1111にしても撚り線ではなく、1本の導体線である。図12(a)に示す中心導体線C1112は、ステンレンス製の導体線であり、図12(a)に示す外側導体線C1111は、銅製の導体線である。図12(a)に示す中心導体線C1112は、図12(a)に示す外側導体線C1111よりも太く、例えば、外側導体線C1111の2倍以上太い。なお、図12(a)に示す外側導体線C1111は、20μm弱程度の太さであり、図12(a)に示す中心導体線C1112は、その外側導体線C1111よりも5倍程度太い。中心導体線C1112の太さは、電線センサC1に要求される機械的強度によって決められる。図12(a)に示す電線センサC1では、外側導体線C1111が19本設けられている。なお、外側導体線C1111の本数は19本に限定されない。銅は、ステンレンスよりも電気抵抗値が低く、導電性に優れており、この例では、中心側で機械的強度を確保し、電流が流れやすい外側で導電性を確保している。中心導体線C1112は間隔をあけることなく、隣り合う中心導体線C1112どうしは接触した状態で配置されている。1本の中心導体線C1112と、19本の外側導体線C1111は、直線状に束になったものであり、図12(a)に示す内部導体C11は、撚り線構造ではない。
The wire sensor C1 shown in FIG. 12 (a) is a wire sensor not having a stranded wire structure. That is, the center conductor line C1112 and the outer conductor line C1111 are not stranded wires but one conductor line. The central conductor line C1112 shown in FIG. 12 (a) is a conductor line made of stainless steel, and the outer conductor line C1111 shown in FIG. 12 (a) is a copper conductor line. The center conductor line C1112 shown in FIG. 12A is thicker than the outer conductor line C1111 shown in FIG. 12A, for example, twice or more as thick as the outer conductor line C1111. The outer conductor line C1111 shown in FIG. 12A is about 20 μm thick, and the center conductor line C1112 shown in FIG. 12A is about five times thicker than the outer conductor line C1111. The thickness of the central conductor line C1112 is determined by the mechanical strength required of the wire sensor C1. In the electric wire sensor C1 shown in FIG. 12A, nineteen outer conductor lines C1111 are provided. The number of outer conductor lines C1111 is not limited to nineteen. Copper has a lower electrical resistance value than stainless steel and is excellent in conductivity, and in this example, mechanical strength is secured on the center side and conductivity is secured on the outside where current easily flows. The central conductor lines C1112 are arranged in a state where adjacent central conductor lines C1112 are in contact with each other without leaving a space. One central conductor line C1112 and nineteen outer conductor lines C1111 are bundled in a straight line, and the inner conductor C11 shown in FIG. 12A does not have a stranded wire structure.
なお、ステンレスの代わりに、タングステン、あるいはチタンを用いてもよく、さらには、金属に限らず、導電性を有する高張力繊維(例えば、ポリパラフェニレンテレフタルアミドや、アラミド繊維等)を用いてもよい。このことは、中心導体線C1112に限らず、ステンレス製のものであれば同じことであり、図1からこれまでの説明においても同じであり、以下の説明においても同じである。また、19本の外側導体線C1111は、中心導体線C1112と同じ方向を向いて束ねられていたが、中心導体線C1112に1本の外側導体線C1111を1列に螺旋状に巻き付けてもよい。すなわち、外側導体線C1111を横巻きに配置してもよい。外側導体線C1111を横巻きに配置する構造の場合、外側導体線C1111は15μm以上40μm以下(例えば、30μm)の太さのものを用い、中心導体線C1112は、その外側導体線C1111よりも2倍以上4倍以下(例えば、3倍)の太さのものを用いてもよい。また、外側導体線C1111を銅製のものから、チタン製、白金製、あるいは銀製のものに代えてもよいし、カーボンナノファイバーを含有した高分子材料のものに代えてもよいし、導電性高分子のものに代えてもよい。このことは、外側導体線C1111に限らず、銅製のものであれば同じことであり、図1からこれまでの説明においても同じであり、以下の説明においても同じである。また、図12(a)に示す電線センサC1では、内部導体C11は撚り線構造ではなかったが、中心導体線C1112を中心に外側導体線C1111を撚ってもよい。さらに、外側導体線C1111をなくし、中心導体線C1112の外周面に、窒素含有ダイヤモンドライクカーボン(DLC)の硬質膜を設けてもよい。窒素含有ダイヤモンドライクカーボン(DLC)は、導電性が良好であり、中心導体線C1112の外周面にプラズマ蒸着によって設けることができる。あるいは、外側導体線C1111をなくし、中心導体線C1112の外周面に、銅メッキや銅蒸着を施してもよいし、銅箔を担持させてもよい。
In addition, instead of stainless steel, tungsten or titanium may be used. Furthermore, not only metal but also high-tensile fiber having conductivity (for example, polyparaphenylene terephthalamide, aramid fiber, etc.) may be used. Good. This is not limited to the central conductor line C1112, and is the same as long as it is made of stainless steel, and is the same in the description from FIG. 1 to the above, and the same in the following description. In addition, although the 19 outer conductor lines C1111 are bundled in the same direction as the center conductor line C1112, one outer conductor line C1111 may be spirally wound in one row around the center conductor line C1112. . That is, the outer conductor wire C1111 may be arranged in a lateral winding. In the case of the structure in which the outer conductor wire C1111 is arranged in a lateral winding, the outer conductor wire C1111 has a thickness of 15 μm to 40 μm (for example, 30 μm), and the center conductor wire C1112 is 2 You may use the thing of thickness twice or more and 4 times or less (for example, 3 times). In addition, the outer conductor wire C1111 may be replaced by one made of copper, by one made of titanium, platinum or silver, or by a polymer material containing carbon nanofibers, or it may be made highly conductive. It may be replaced by a molecule. This is not limited to the outer conductor wire C1111, and is the same as long as it is made of copper, and is the same in the description from FIG. 1 to the above, and the same in the following description. Further, in the electric wire sensor C1 shown in FIG. 12A, the internal conductor C11 is not in a stranded wire structure, but the outer conductor C11 1 may be twisted around the center conductor C1 1 12. Furthermore, the outer conductor wire C1111 may be eliminated, and a hard film of nitrogen-containing diamond like carbon (DLC) may be provided on the outer peripheral surface of the center conductor wire C1112. The nitrogen-containing diamond like carbon (DLC) has good conductivity and can be provided on the outer peripheral surface of the central conductor line C1112 by plasma deposition. Alternatively, the outer conductor line C1111 may be eliminated, and copper plating or copper deposition may be performed on the outer peripheral surface of the center conductor line C1112, or copper foil may be supported.
また、図12(a)に示す中心導体線C1112を銅線にしてもよいし、図12(a)に示す外側導体線C1111をステンレス製の導体線にしてもよい。
Further, the central conductor line C1112 shown in FIG. 12 (a) may be a copper wire, and the outer conductor line C1111 shown in FIG. 12 (a) may be a stainless steel conductor line.
図12(b)に示す電線センサC1は、撚り線構造をもった電線センサである。すなわち、中心導体線C1112は、ステンレンス製の1本の導体線であるが、外側導体線C1111は、7本の銅製の導体線C1111cを撚り合わせたものである。1本の導体線C1111cは直径15μmである。7本の導体線C1111cは、正六角形の各頂点およびその正六角形の中心に配置した状態で撚り合わせたものである。すなわち、外側導体線C1111は、7本の導体線C1111cを最密構造に配置した上で撚り合わせたものである。複数本の導体線C1111cを甘撚、あるいは中撚程度に撚っておくことで、撚りの方向とは逆方向の緩みを許容し、この緩みが柔軟性を与えることができる。図12(b)に示す外側導体線C1111の直径は45μmになる。また、図12(b)に示す中心導体線C1112も、直径が45μmである。
The wire sensor C1 shown in FIG. 12 (b) is a wire sensor having a stranded wire structure. That is, although the central conductor line C1112 is a single conductor line made of stainless steel, the outer conductor line C1111 is formed by twisting seven copper conductor lines C1111c. One conductor line C1 111 c has a diameter of 15 μm. The seven conductor lines C1111c are twisted in a state of being arranged at the respective apexes of the regular hexagon and at the center of the regular hexagon. That is, the outer conductor line C1111 is obtained by arranging seven conductor lines C1111c in the close-packed structure and twisting them. By twisting the plurality of conductor wires C1 1 1 1 c to a sweet or medium twist degree, it is possible to allow loosening in the direction opposite to the twisting direction and to give flexibility. The diameter of the outer conductor wire C1111 shown in FIG. 12B is 45 μm. The diameter of central conductor line C1112 shown in FIG. 12B is also 45 μm.
図12(b)に示す1本の中心導体線C1112と、図12(b)に示す外側導体線C1111は、直線状に束になったものであり、撚り線構造ではない。ただし、図12(b)に示す中心導体線C1112を中心に図12(b)に示す外側導体線C1111を撚ってもよい。
One central conductor line C1112 shown in FIG. 12 (b) and the outer conductor line C1111 shown in FIG. 12 (b) are bundled in a straight line, and do not have a stranded wire structure. However, the outer conductor wire C1111 shown in FIG. 12 (b) may be twisted around the center conductor wire C1112 shown in FIG. 12 (b).
なお、外側導体線C1111を構成する導体線C1111cの本数は、7本に限らない。また、7本の銅製の導体線C1111cのうち、少なくとも外側の6本の導体線として、銅以外の材質、好ましくは、ステンレスよりも柔らかい材質の表面に、窒素含有ダイヤモンドライクカーボン(DLC)の硬質膜を設けたもの、あるいは、銅メッキや銅蒸着を施したものや銅箔を担持させたものを用いてもよい。また、少なくとも外側の6本の導体線として、カーボンナノファイバーを含有した高分子材料の導体線に代えてもよいし、導電性高分子の導体線に代えてもよい。
The number of conductor lines C1111c constituting the outer conductor line C1111 is not limited to seven. In addition, among the seven copper conductor lines C1111c, at least the six outer conductor lines are made of a material other than copper, preferably a surface of a material softer than stainless steel, such as nitrogen containing diamond like carbon (DLC) What provided the film | membrane, or what performed copper plating and copper vapor deposition, and what carry | supported copper foil may be used. In addition, as the at least six outer conductor wires, conductor wires of a polymer material containing carbon nanofibers may be replaced, or conductor wires of a conductive polymer may be replaced.
また、図12(b)に示す中心導体線C1112を銅線にしてもよいし、図12(b)に示す外側導体線C1111をステンレスワイヤの撚り線にしてもよい。
Further, the central conductor line C1112 shown in FIG. 12B may be a copper wire, and the outer conductor line C1111 shown in FIG. 12B may be a stranded wire of stainless steel wire.
以上説明したように、中心導体線C1112は撚り線ではなく、1本の導体線であってもよく、このことは、図1からこれまで説明した電線センサA1,B1でも言えることである。また、その1本の導体線は、ステンレス製のものであってもよいし、タングステン製のものであってもよいし、さらには、金属に限らず、導電性を有する高張力繊維(例えば、ポリパラフェニレンテレフタルアミドや、アラミド繊維等)製のものであってもよい。
As described above, the central conductor line C1112 may not be a stranded wire but may be a single conductor line, which also applies to the electric wire sensors A1 and B1 described so far from FIG. In addition, the single conductor wire may be made of stainless steel, may be made of tungsten, and is not limited to metal, and may be a high tension fiber having conductivity (for example, It may be made of poly (p-phenylene terephthalamide), aramid fibers and the like.
図12に示す2種類の内部導体のうち、同図(a)に示す内部導体C11は、ステンレスの占める割合が、銅の占める割合よりも高く、同図(b)に示す内部導体C11は、反対に、ステンレスの占める割合が、銅の占める割合よりも低い。ここにいう割合とは、断面積の割合になる。機械的強度の高さや、曲げ回数が多い場合には、ステンレスの占める割合を高くし、柔軟性や導電性を優先する場合には、銅の占める割合を高くする。
Of the two types of internal conductors shown in FIG. 12, the proportion of stainless steel in the internal conductor C11 shown in FIG. 12A is higher than the proportion of copper, and the internal conductor C11 shown in FIG. Conversely, the proportion of stainless steel is lower than that of copper. The ratio referred to here is the ratio of the cross-sectional area. If the mechanical strength is high or the number of bending is large, the proportion of stainless steel is increased, and if the priority is flexibility or conductivity, the proportion of copper is increased.
圧電体C12は、図1を用いて説明した圧電体A12と同じであり、幅3mmの帯状のピエゾフィルムから構成されたものである。
The piezoelectric body C12 is the same as the piezoelectric body A12 described with reference to FIG. 1, and is formed of a strip-shaped piezoelectric film having a width of 3 mm.
図13は、内部導体C11の外周面にピエゾフィルムを巻き付けていく様子を示す図である。
FIG. 13 is a view showing how a piezo film is wound around the outer peripheral surface of the internal conductor C11.
ピエゾフィルムCFは、ポリフッ化ビニリデン(PVDF)からなる。このピエゾフィルムCFを内部導体C11の外周面に螺旋状に巻き付ける際に、内部導体C11の延在方向に隣り合うピエゾフィルムCFの幅方向の一端と他端どうしを重ね合わせた状態で巻き付けていく。こうすることで、電線センサC1が曲げられた場合であっても、内部導体C11の延在方向に隣り合うピエゾフィルムCFの間に隙間が生じにくい。なお、隙間が生じた箇所は、センシングできない箇所になってしまう。また、ピエゾフィルムCFの面積をなるべく大きくとることができ、センサ感度の向上につながる。重ね合わせ幅は、ピエゾフィルムCFの幅の1/4以上3/4以下が好ましい。1/4未満であった場合には、電線センサC1の曲げ伸ばしが繰り返されると、隙間が生じる恐れがある。一方、3/4を超えると、ピエゾフィルムCFを使用する量が増えすぎてしまいコストアップにつながってしまう。さらに、重ね合わせ幅を、ピエゾフィルムCFの幅の1/2にすると、2重巻きになり、隙間がより生じにくくなる。
Piezo film CF is made of polyvinylidene fluoride (PVDF). When spirally winding this piezo film CF around the outer peripheral surface of the inner conductor C11, winding is performed in a state where one end and the other end of the piezo film CF adjacent in the extension direction of the inner conductor C11 overlap each other. . By doing this, even when the electric wire sensor C1 is bent, a gap does not easily occur between the piezo films CF adjacent in the extension direction of the internal conductor C11. In addition, the part which the clearance gap produced becomes a part which can not be sensed. Further, the area of the piezo film CF can be made as large as possible, which leads to the improvement of the sensor sensitivity. The overlapping width is preferably 1/4 or more and 3/4 or less of the width of the piezo film CF. If it is less than 1/4, if bending and stretching of the electric wire sensor C1 is repeated, a gap may occur. On the other hand, if it exceeds 3/4, the amount of using the piezo film CF will increase too much, leading to an increase in cost. Furthermore, when the overlapping width is set to a half of the width of the piezo film CF, double winding is performed, and a gap is less likely to occur.
ピエゾフィルムCFの幅は、2mm以上5mm以下であればよく、3mm以上4mm以下が好ましい。ピエゾフィルムCFの幅が狭すぎると内部導体C11の外周面に螺旋状に巻き付ける際に内部導体C11の延在方向に隣り合うピエゾフィルムCFの間に隙間が生じやすくなってしまう。一方、ピエゾフィルムCFの幅が広すぎると内部導体C11の外周面に螺旋状に巻き付ける際に弛みが生じやすくなってしまう。
The width of the piezoelectric film CF may be 2 mm or more and 5 mm or less, preferably 3 mm or more and 4 mm or less. If the width of the piezo film CF is too narrow, a gap is likely to be generated between the piezo films CF adjacent in the extending direction of the inner conductor C11 when spirally wound around the outer peripheral surface of the inner conductor C11. On the other hand, when the width of the piezo film CF is too wide, slack is easily generated when being spirally wound around the outer peripheral surface of the internal conductor C11.
内部導体C11の外周面にピエゾフィルムCFを螺旋状に巻き付けると、ピエゾフィルムは内部導体C11の外周形状に馴染み、図12(b)に示す圧電体C12は、厳密には2点鎖線のように内側に入り込んだ形状になる。
When the piezo film CF is spirally wound around the outer peripheral surface of the inner conductor C11, the piezo film conforms to the outer peripheral shape of the inner conductor C11, and the piezoelectric body C12 shown in FIG. It has a shape that gets inside.
また、ピエゾフィルムCFの厚さは、20μm以上100μm以下であればよく、25μm以上80μm以下であることが好ましい。ピエゾフィルムCFの厚さが薄すぎるとセンサとしての感度が不十分になってしまい、反対に厚すぎると電線センサC1が硬くなりすぎてしまい柔軟性に欠けてしまう。
The thickness of the piezoelectric film CF may be 20 μm or more and 100 μm or less, and preferably 25 μm or more and 80 μm or less. If the thickness of the piezo film CF is too thin, the sensitivity as a sensor will be insufficient. If the thickness is too thick, on the other hand, the electric wire sensor C1 will be too hard and the flexibility will be lost.
さらに、ピエゾフィルムCFの巻き付け角度θは、10°以上50°以下であることが好ましい。ピエゾフィルムCFを巻き付けていく場合に、すでに巻き付けが完了した側を上流側と称し、これから巻き付ける側を下流側と称した場合、ここにいう巻き付け角度θとは、内部導体C11と、ピエゾフィルムCFの下流側の縁CF1との角度になる。50°を超えると、ピエゾフィルムCFを使用する量が増えすぎてしまいコストアップにつながってしまう。一方、10°未満であると、ピエゾフィルムCFの重なりがなくなる方向に、巻き付けたピエゾフィルムCFがズレやすくなってしまう。
Furthermore, the winding angle θ of the piezoelectric film CF is preferably 10 ° or more and 50 ° or less. When winding the piezo film CF, when the winding completion side is referred to as the upstream side and the winding side is referred to as the downstream side, the winding angle θ referred to here is the inner conductor C11, the piezo film CF And the angle with the downstream edge CF1. If it exceeds 50 °, the amount of using the piezo film CF will increase too much, leading to an increase in cost. On the other hand, when the angle is less than 10 °, the wound piezo film CF is easily displaced in the direction in which the overlap of the piezo films CF is eliminated.
さらに、圧電体C12に採用するピエゾフィルムCFは、ピエゾ特性が、長手方向(伸び方向)にしか対応していないものよりも、結晶の配向性により複数方向(伸び方向及び曲げ方向)に対応したものである方が好ましい。
Furthermore, the piezoelectric film CF employed for the piezoelectric body C12 corresponds to a plurality of directions (elongation direction and bending direction) according to the orientation of the crystal than the piezoelectric characteristic corresponding to only the longitudinal direction (elongation direction). It is preferable to be one.
このように、圧電体C12としてピエゾフィルムCFを採用することで熱をかける必要がなくなり、キュリー温度を超えるまで加熱される恐れがなく、ピエゾ特性に影響が及ぼされない。ただし、圧電材料を内部導体C11の外周面に溶着することも可能である。例えば、フッ化ビニリデン(VDF)と三フッ化エチレン(TrFE)の共重合体P(VDF/TrFE)を熱で溶融させておき、そこに内部導体C11を通せば、内部導体C11の外周面に圧電材料が担持される。この場合には、後から高電場を印加し、分極処理を行う。また、圧電材料を内部導体C11の外周面に塗布することも可能である。上述のごとく、ピエゾフィルムCFを螺旋状に巻き付けた場合であっても、ピエゾフィルムCFは内部導体C11の外周形状に馴染み、図12(b)に示す2点鎖線のように内側に入り込んだ形状になるが、圧電材料を溶着させた場合、あるいは塗布した場合には、周方向に隣り合う外側導体線C1111と外側導体線C1111との間に圧電材料が入り込み、その間が圧電材料で埋められ、圧電材料の内部導体C11との密着性が向上する。密着性が向上すると、内部導体C11の表面、すなわち外側導体線C1111の外側表面に誘起される電荷が発生しやすくなって、信号強度が高まり、センサとしての性能向上が期待できる。
As described above, by adopting the piezo film CF as the piezoelectric body C12, it is not necessary to apply heat, there is no possibility of heating up to the Curie temperature, and the piezo characteristics are not affected. However, it is also possible to weld a piezoelectric material to the outer peripheral surface of the inner conductor C11. For example, if a copolymer P (VDF / TrFE) of vinylidene fluoride (VDF) and ethylene trifluoride (TrFE) is melted by heat, and the inner conductor C11 is passed there, the outer peripheral surface of the inner conductor C11 is A piezoelectric material is carried. In this case, a high electric field is applied later to perform polarization processing. Further, it is also possible to apply a piezoelectric material to the outer peripheral surface of the inner conductor C11. As described above, even when the piezo film CF is spirally wound, the piezo film CF conforms to the outer peripheral shape of the inner conductor C11, and the shape which enters inside as shown by a two-dot chain line shown in FIG. However, when the piezoelectric material is welded or applied, the piezoelectric material gets in between the outer conductor wire C1111 and the outer conductor wire C1111 adjacent in the circumferential direction, and the space is filled with the piezoelectric material, The adhesion between the piezoelectric material and the inner conductor C11 is improved. When the adhesion is improved, charges induced on the surface of the inner conductor C11, that is, the outer surface of the outer conductor C11 1 are easily generated, the signal strength is increased, and the performance improvement as a sensor can be expected.
外部導体C13は、図1を用いて説明した外部導体A13と同じであり、圧電体C12の外周面に、1本の銅線を1列に螺旋状に巻き付けたものである。すなわち、横巻きシールドの構成である。銅線としては、直径50μmのスズメッキ軟銅線を用いる。なお、外部導体C13は、銅線に限らず、ステンレスワイヤの撚り線であってもよい。また、外部導体C13の厚さは、10μm以上120μm以下であればよく、25μm以上90μm以下であることが好ましい。すなわち、内部導体C11の直径よりも薄い。さらに、この外部導体C13は、圧電体C12の外周面に、導線をクロスして編み上げた編組シールドであってもよいし、テープ状の導体を螺旋状に巻き付けていったテープシールドであってもよい。またさらに、外部導体C13は、複数本の導線を螺旋状に巻き付けていったものであってもよいし、複数本のテープ状の導体を螺旋状に巻き付けていったものであってもよい。
The outer conductor C13 is the same as the outer conductor A13 described with reference to FIG. 1, and one copper wire is spirally wound in one row around the outer peripheral surface of the piezoelectric body C12. That is, it is the structure of a side winding shield. As a copper wire, a tin-plated soft copper wire with a diameter of 50 μm is used. The outer conductor C13 is not limited to a copper wire, but may be a stranded wire of a stainless steel wire. The thickness of the outer conductor C13 may be 10 μm or more and 120 μm or less, and preferably 25 μm or more and 90 μm or less. That is, it is thinner than the diameter of the internal conductor C11. Furthermore, the outer conductor C13 may be a braided shield in which a conducting wire is crossed and braided around the outer peripheral surface of the piezoelectric body C12, or a tape shield in which a tape-shaped conductor is spirally wound. Good. Furthermore, the outer conductor C13 may be formed by spirally winding a plurality of conducting wires, or may be formed by spirally winding a plurality of tape-shaped conductors.
ここで、内部導体C11は、外部導体C13よりも機械的強度が高いものである。
Here, the internal conductor C11 is higher in mechanical strength than the external conductor C13.
なお、外部導体C13を銅線から、カーボンナノファイバーを含有した高分子材料のものに代えてもよいし、導電性高分子のものに代えてもよい。また、圧電体C12の外周面に、窒素含有ダイヤモンドライクカーボン(DLC)の硬質膜を設けて外部導体C13としてもよいし、銅メッキや銅蒸着を施して外部導体C13としてもよいし、銅箔を担持させて外部導体C13としてもよい。
The outer conductor C13 may be replaced by a copper wire with a polymeric material containing carbon nanofibers or a conductive polymer. Further, a hard film of nitrogen-containing diamond like carbon (DLC) may be provided on the outer peripheral surface of the piezoelectric body C12 to form the external conductor C13, or copper plating or vapor deposition may be performed to form the external conductor C13, or copper foil May be carried as the outer conductor C13.
シースC14は、図1を用いて説明したシースA14と同じであり、外部導体C13を覆うものであり、耐摩耗性、耐薬品性、防錆性を高めるためのものである。シースC14は、ポリエステルテープであってもよく、その厚みは、20μm以上40μm以下であればよい。なお、耐摩耗性、耐薬品性、防錆性を高める必要がなければ、シースC14を設けなくてもよい。
The sheath C14 is the same as the sheath A14 described with reference to FIG. 1, covers the outer conductor C13, and is for enhancing the abrasion resistance, the chemical resistance, and the rust prevention. The sheath C14 may be a polyester tape, and the thickness thereof may be 20 μm or more and 40 μm or less. The sheath C 14 may not be provided if it is not necessary to enhance the abrasion resistance, the chemical resistance, and the rust prevention.
図12に示すシースC14は厚さが30μmの単層構造であるが、複層構造であってもよい。例えば、内層と外層とからなる2層構造であってもよく、内層は、外装に比べて柔らかい材質(例えば、ポリアミド合成樹脂やポリ塩化ビニル樹脂)で形成されており、外層は、内層に比べて耐摩耗性が高い材質(例えば、ポリテトラフルオロエチレン)で形成されている。また、外層は、内層よりも厚くてもよい。さらに、内層は、可燃性材料で形成されていてもよいが、外層は、難燃性材料、不燃性材料、耐炎性材料で形成されていることが好ましい。
The sheath C14 shown in FIG. 12 has a single-layer structure with a thickness of 30 μm, but may have a multi-layer structure. For example, it may have a two-layer structure consisting of an inner layer and an outer layer, and the inner layer is formed of a softer material (for example, a polyamide synthetic resin or polyvinyl chloride resin) than the outer layer, and the outer layer is compared with the inner layer. It is made of a material having high abrasion resistance (for example, polytetrafluoroethylene). Also, the outer layer may be thicker than the inner layer. Furthermore, the inner layer may be formed of a flammable material, but the outer layer is preferably formed of a flame retardant material, a non-combustible material, and a flame resistant material.
またさらに、導電材料を担持した材料と耐摩耗性、耐薬品性、防錆性を高める材料との2層構造であってもよい。例えば、銅メッキや銅蒸着を施した帯状のPETフィルムを外部導体C13の外周面に、上述したピエゾフィルムCFと同じように重ね合わせながら巻き付けていき、さらにその上から帯状のポリエステルテープを同じく重ね合わせながら巻き付けていってもよい。銅を担持したフィルムによってシールド効果が得られる。
Furthermore, it may have a two-layer structure of a material supporting a conductive material and a material that improves the abrasion resistance, the chemical resistance, and the rust prevention. For example, a strip-like PET film subjected to copper plating or copper deposition is wound on the outer circumferential surface of the outer conductor C13 in the same manner as the above-described piezo film CF, and a strip-like polyester tape is similarly overlaid thereon. It may be wound while fitting. The copper-loaded film provides a shielding effect.
図14は、図12に示す電線センサC1を用いた面状センサの分解斜視図である。
FIG. 14 is an exploded perspective view of a planar sensor using the electric wire sensor C1 shown in FIG.
この面状センサC3は、メッシュ生地C30を基材として有する。このメッシュ生地C30は、面状体の一例に相当する。図12に示す電線センサC1は、その電線センサC1の幅方向(Y軸方向)に間隔をあけてメッシュ生地C30になみ縫いされている。図14では、7本の電線センサC1がなみ縫いされており、灰色で示されている。以下、灰色で示されたこれら7本の電線センサC1を第1電線センサC31と称する。また、メッシュ生地C30には、これらの第1電線センサC31の延在方向(X軸方向)に間隔をあけて図12に示す電線センサC1がなみ縫いされている。図14では、9本の電線センサC1がなみ縫いされており、黒色で示されている。以下、黒色で示されたこれら9本の電線センサC1を第2電線センサC32と称する。メッシュ生地は、網の目が粗く、第1電線センサC31および第2電線センサC32を網の目に通しやすく縫いやすい。第1電線センサC31と第2電線センサC32の関係は、メッシュ生地C30の、第1電線センサC31がメッシュ生地C30の裏側を通っている部分では、第2電線センサC32がメッシュ生地C30の表側を通っており、メッシュ生地C30の、第2電線センサC32がメッシュ生地C30の裏側を通っている部分では、第1電線センサC31がメッシュ生地C30の表側を通っている。また、第1電線センサC31の、メッシュ生地C30の表側を通っている部分と、その第1電線センサC31に隣り合う第1電線センサC31の、メッシュ生地C30の表側を通っている部分との間では、第2電線センサC32がメッシュ生地C30の表側を通っており、第2電線センサC32の、メッシュ生地C30の表側を通っている部分と、その第2電線センサC32に隣り合う第2電線センサC32の、メッシュ生地C30の表側を通っている部分との間では、第1電線センサC31がメッシュ生地C30の表側を通っている。これの関係によって、メッシュ生地C30を挟んで、第1電線センサC31と第2電線センサC32が重なっている点が形成されている。
The planar sensor C3 has a mesh cloth C30 as a base material. The mesh cloth C30 corresponds to an example of a sheet. The electric wire sensor C1 shown in FIG. 12 is similarly stitched to the mesh cloth C30 at an interval in the width direction (Y-axis direction) of the electric wire sensor C1. In FIG. 14, seven electric wire sensors C <b> 1 are seamed and shown in gray. Hereinafter, these seven electric wire sensors C1 shown in gray are referred to as a first electric wire sensor C31. Further, in the mesh cloth C30, the wire sensor C1 shown in FIG. 12 is seam-stitched at intervals in the extending direction (X-axis direction) of the first wire sensors C31. In FIG. 14, nine electric wire sensors C1 are seam-stitched and shown in black. Hereinafter, these nine electric wire sensors C1 shown in black are referred to as a second electric wire sensor C32. The mesh fabric has a coarse mesh, and the first electric wire sensor C31 and the second electric wire sensor C32 can be easily stitched through the mesh. The relationship between the first electric wire sensor C31 and the second electric wire sensor C32 is that, in the part of the mesh cloth C30 where the first electric wire sensor C31 passes through the back side of the mesh cloth C30, the second electric wire sensor C32 is the front side of the mesh cloth C30. The first electric wire sensor C31 passes through the front side of the mesh fabric C30 at a portion of the mesh fabric C30 where the second electric wire sensor C32 passes through the back side of the mesh fabric C30. Also, between a portion of the first electric wire sensor C31 passing through the front side of the mesh cloth C30 and a portion of the first electric wire sensor C31 adjacent to the first electric wire sensor C31 passing through the front side of the mesh cloth C30. Then, the second electric wire sensor C32 passes through the front side of the mesh cloth C30, and a portion of the second electric wire sensor C32 passing through the front side of the mesh cloth C30 and a second electric wire sensor adjacent to the second electric wire sensor C32 The first electric wire sensor C31 passes through the front side of the mesh fabric C30 between the portion of C32 that passes through the front side of the mesh fabric C30. According to this relationship, a point in which the first wire sensor C31 and the second wire sensor C32 overlap with each other with the mesh cloth C30 interposed therebetween is formed.
第1電線センサC31が変形することで、変形した第1電線センサC31から信号が出力され、同じく、第2電線センサC32が変形することで、変形した第2電線センサC32から信号が出力される。図14に示す面状センサC3では、信号が送られてきた第1電線センサC31と、同じく変形することで信号が送られてきた第2電線センサC32とによって、変形した領域を検出することができる。
As the first electric wire sensor C31 is deformed, a signal is output from the deformed first electric wire sensor C31, and similarly, as the second electric wire sensor C32 is deformed, a signal is output from the deformed second electric wire sensor C32 . In the planar sensor C3 shown in FIG. 14, a deformed area can be detected by the first electric wire sensor C31 to which a signal is sent and the second electric wire sensor C32 to which a signal is sent by similarly deforming. it can.
さらに、図14に示す面状センサC3は、メッシュ生地C30を表側から覆う表側シート体C33と、メッシュ生地C30を裏側から覆う裏側シート体C34を有する。表側シート体C33も裏側シート体C34も、綿布であり、メッシュ生地C30とは異なる材質である。綿布はメッシュ生地よりも肌触りが良い材質であるのに対して、メッシュ生地は綿布より目が粗い材質である。ただし、表側シート体C33も裏側シート体C34もメッシュ生地であってもよい。
Furthermore, the planar sensor C3 shown in FIG. 14 has a front side sheet C33 that covers the mesh cloth C30 from the front side, and a back sheet C34 that covers the mesh cloth C30 from the back. Both the front side sheet body C33 and the back side sheet body C34 are cotton cloths, and are materials different from the mesh cloth C30. Cotton fabric is a material that feels better than mesh fabric, while mesh fabric is a coarser material than cotton fabric. However, both the front sheet body C33 and the back sheet body C34 may be mesh fabrics.
図14では、メッシュ生地C30と、表側シート体C33と、裏側シート体C34とをバラバラに示しているが、完成した面状センサC3では、表側シート体C33と裏側シート体C34の間にメッシュ生地C30が挟み込まれ、これら3つ(C30,C33,C34)が一体になっている。例えば、表側シート体C33と裏側シート体C34の方が、メッシュ生地C30よりも大きく、表側シート体C33の外周部分と裏側シート体C34の外周部分を縫い合わせてもよい。さらに、表側シート体C33と裏側シート体C34の間でメッシュ生地C30がズレないように、表側シート体C33とメッシュ生地C30と裏側シート体C34を中央部分で綴じてもよい。
In FIG. 14, the mesh cloth C30, the front side sheet C33, and the back side sheet C34 are shown separately, but in the completed planar sensor C3, the mesh cloth is between the front side sheet C33 and the back side sheet C34. C30 is sandwiched, and these three (C30, C33, C34) are integrated. For example, the front sheet body C33 and the back sheet body C34 may be larger than the mesh cloth C30, and the outer peripheral portion of the front sheet body C33 and the outer peripheral portion of the back sheet body C34 may be sewn together. Furthermore, the front side sheet C33, the mesh cloth C30, and the back side sheet C34 may be stapled at the central portion so that the mesh cloth C30 does not shift between the front side sheet C33 and the back side sheet C34.
なお、メッシュ生地C30に代えて、綿布、サテン生地、あるいは不織布であるフェルトを基材として用いてもよい。また、ここでは、電線センサとして図12に示す電線センサC1を用いているが、この電線センサC1に代えて、図1に示す電線センサA1や、図7から図11それぞれに示す電線センサB1を用いてもよい。
In addition, it may replace with mesh cloth C30, and you may use felt which is cotton cloth, a satin cloth, or a nonwoven fabric as a base material. Here, although the electric wire sensor C1 shown in FIG. 12 is used as an electric wire sensor, the electric wire sensor A1 shown in FIG. 1 and the electric wire sensor B1 shown in each of FIGS. You may use.
さらに、電線センサC1を用いた面状センサC3も、図3に示す面状センサA3と同じく、X軸方向には伸縮することはなく、Y軸方向にも伸縮することはないが、対角線方向には伸縮可能であり、図5(c)に示すように90度回転させた状態で使用すれば、白抜きの矢印方向に伸縮可能な面状センサになる。さらに、第1電線センサC31がX軸方向に延在し第2電線センサC32がY軸方向に延在した面状センサと、電線センサC1を用いて図5(c)に示す面状センサに適用したものを重ねて配置すれば、X軸方向にも、Y軸方向にも、対角線方向にも伸縮するセンサを実現することができる。
Furthermore, like the planar sensor A3 shown in FIG. 3, the planar sensor C3 using the electric wire sensor C1 does not expand and contract in the X-axis direction and does not expand and contract in the Y-axis direction. If it is used after being rotated 90 degrees as shown in FIG. 5C, it becomes a planar sensor that can expand and contract in the direction of the white arrow. Furthermore, to the planar sensor shown in FIG. 5C using the planar sensor where the first electrical wire sensor C31 extends in the X-axis direction and the second electrical wire sensor C32 extends in the Y-axis direction, and the electrical wire sensor C1. By arranging the applied ones in an overlapping manner, it is possible to realize a sensor that expands and contracts both in the X axis direction, in the Y axis direction, and in the diagonal direction.
さらに、電線センサC1を用いた面状センサC3も、高所において振動を検出するものや、人の心拍や呼吸を振動として検出するものや、介護等の各種の監視や、ペットの監視に利用することもできる。
Furthermore, the planar sensor C3 using the electric wire sensor C1 is also used for detecting vibrations at high places, detecting heartbeats and respirations of people as vibrations, and monitoring various things such as nursing care and monitoring of pets. You can also
また、電線センサC1を用いた面状センサC3を配置した手袋を、ロボットハンドに装着してもよいし、人に装着させて、各種作業等における把持力等のデータ取りに用いてもよい。
Further, a glove in which a sheet-like sensor C3 using the electric wire sensor C1 is disposed may be attached to a robot hand or may be attached to a person and used for data acquisition such as gripping force in various operations.
また、電線センサC1を用いた面状センサC3も、手指の拘縮患者ためのリハビリ用のグリップに応用することができる。
Further, the planar sensor C3 using the electric wire sensor C1 can also be applied to a grip for rehabilitation for contracture patients with fingers.
さらに、電線センサC1を用いた面状センサC3も、図6を用いて説明したようにロボットハンドに適用させることができる。
Furthermore, the planar sensor C3 using the wire sensor C1 can also be applied to the robot hand as described with reference to FIG.
また、図2に示す帯状センサA2では、電線センサA1に代えて、図12を用いて説明した電線センサC1を用いてもよい。電線センサC1を用いた帯状センサも、溶接された配管に巻き付け、溶接部の欠陥検査に利用することができる。
Further, in the strip sensor A2 shown in FIG. 2, the wire sensor C1 described using FIG. 12 may be used instead of the wire sensor A1. A band-shaped sensor using the electric wire sensor C1 can also be wound around a welded pipe and used for defect inspection of a welded portion.
また、図12を用いて説明した電線センサC1は、図5および図6等を用いて説明した電線センサA1の他の利用例にも利用することができる。すなわち、螺旋状に周回した電線センサC1として利用することもできるし、電線センサC1を織物のように織ることで帯状センサや面状センサを製作することもできるが、電線センサC1を編み物のように、伏せ止めしてもよいし、メリヤス編みしてもよい。
Further, the wire sensor C1 described with reference to FIG. 12 can also be used in another application example of the wire sensor A1 described with reference to FIGS. 5 and 6 or the like. That is, the wire sensor C1 can be used as a spirally wound wire sensor, and a belt-like sensor or a planar sensor can be manufactured by weaving the wire sensor C1 like a fabric, but the wire sensor C1 can be knitted like In addition, you may hold down and you may knit.
また、電線センサC1は、従来のセンサよりも細くすることで柔軟性を高めることができる。このことから、図5(a)を用いて説明した編物状のセンサとしても利用することができる。
In addition, the wire sensor C1 can be made more flexible by making it thinner than a conventional sensor. Because of this, it can be used also as a knitted fabric sensor described using FIG. 5 (a).
また、図12を用いて説明した電線センサC1も、キュリー温度を超えるまで部分的に加熱することで、センサ部と、出力信号の送信線とに分けて使用することができる。あるいは、出力信号の送信線となる部分には、圧電体C12となるピエゾフィルムCFに代えて、絶縁フィルムを設けてもよい。絶縁フィルムを設けた部分でも、内部導体C11と外部導体C13の構成は、ピエゾフィルムCFを設けた部分の内部導体C11と外部導体C13の構成と同じにする。すなわち、ピエゾフィルムCFが巻き付けられた内部導体C11は延在し、絶縁フィルムが巻き付けられ、ピエゾフィルムCFの外周面に設けられた外部導体C13も延在し、絶縁フィルムの外周面にも設けられている。こうすることで、センサ部におけるインピーダンスと、出力信号の送信線におけるインピーダンスが同じになり好ましい。なお、圧電材料を塗布したり溶着する場合にも、内部導体C11と外部導体C13は同じにしたまま、絶縁材料を塗布したり溶着すればよい。
Moreover, the electric wire sensor C1 demonstrated using FIG. 12 can also be divided and used for a sensor part and the transmission line of an output signal by heating partially until it exceeds Curie temperature. Alternatively, an insulating film may be provided in place of the piezoelectric film CF, which is the piezoelectric body C12, in the portion that becomes the transmission line of the output signal. Even in the portion where the insulating film is provided, the configurations of the inner conductor C11 and the outer conductor C13 are the same as the configurations of the inner conductor C11 and the outer conductor C13 in the portion where the piezo film CF is provided. That is, the inner conductor C11 around which the piezoelectric film CF is wound extends, the insulating film is wound around, the outer conductor C13 provided on the outer peripheral surface of the piezoelectric film CF also extends, and the inner conductor C11 is provided also on the outer peripheral surface of the insulating film ing. By doing this, the impedance in the sensor unit and the impedance in the transmission line of the output signal become equal, which is preferable. Also in the case of applying or welding a piezoelectric material, an insulating material may be applied or welded while keeping the inner conductor C11 and the outer conductor C13 the same.
なお、図12~図14を用いて説明した事項は、図1~図11を用いて説明した実施形態にも適用することができる。
The items described with reference to FIGS. 12 to 14 can also be applied to the embodiments described with reference to FIGS. 1 to 11.
A1,B1,C1 電線センサ
A11,C11 内部導体
A111 撚り線
Asy,Bsy ステンレスワイヤ
B11 第1導体
B111 導体線
B12 ピエゾコート層
B13 第2導体層
B1111,C1111 外側導体線
B1112,C1112 中心導体線
A12,C12 圧電体
A13,C13 外部導体
A14,C14 シース
A2 帯状センサ
A21 縦ワイヤ
A22 横撚糸
A3,C3 面状センサ
A1a,C31 第1電線センサ
A1b,C32 第2電線センサ
AF,CF ピエゾフィルム
C30 メッシュ生地
C33 表側シート体
C34 裏側シート体 A1, B1, C1 Electric wire sensor A11, C11 Internal conductor A111 Stranded wire Asy, Bsy Stainless wire B11 First conductor B111 Conductor wire B12 Piezo coat layer B13 Second conductor layer B1111, C1111 Outer conductor wire B1112, C1112 Central conductor wire A12, C12 Piezoelectric body A13, C13 Outer conductor A14, C14 Sheath A2 Band-shaped sensor A21 Vertical wire A22 Horizontal twisted yarn A3, C3 Sheet-like sensor A1a, C31 First wire sensor A1b, C32 Second wire sensor AF, CF Piezoelectric film C30 Mesh fabric C33 Front side sheet C34 Back side sheet
A11,C11 内部導体
A111 撚り線
Asy,Bsy ステンレスワイヤ
B11 第1導体
B111 導体線
B12 ピエゾコート層
B13 第2導体層
B1111,C1111 外側導体線
B1112,C1112 中心導体線
A12,C12 圧電体
A13,C13 外部導体
A14,C14 シース
A2 帯状センサ
A21 縦ワイヤ
A22 横撚糸
A3,C3 面状センサ
A1a,C31 第1電線センサ
A1b,C32 第2電線センサ
AF,CF ピエゾフィルム
C30 メッシュ生地
C33 表側シート体
C34 裏側シート体 A1, B1, C1 Electric wire sensor A11, C11 Internal conductor A111 Stranded wire Asy, Bsy Stainless wire B11 First conductor B111 Conductor wire B12 Piezo coat layer B13 Second conductor layer B1111, C1111 Outer conductor wire B1112, C1112 Central conductor wire A12, C12 Piezoelectric body A13, C13 Outer conductor A14, C14 Sheath A2 Band-shaped sensor A21 Vertical wire A22 Horizontal twisted yarn A3, C3 Sheet-like sensor A1a, C31 First wire sensor A1b, C32 Second wire sensor AF, CF Piezoelectric film C30 Mesh fabric C33 Front side sheet C34 Back side sheet
Claims (10)
- 内部導体と、
前記内部導体の外周面に螺旋状に巻き付けられた帯状のピエゾフィルムと、
前記ピエゾフィルムの外周面に配置された外部導体とを有し、
前記ピエゾフィルムが、前記内部導体の延在方向に隣り合う幅方向の一端側と他端側どうしを重ね合わせた状態で前記内部導体の外周面に巻き付けられたものであることを特徴とする線状センサ。 Internal conductor,
A band-shaped piezoelectric film spirally wound around the outer peripheral surface of the inner conductor;
And an outer conductor disposed on the outer peripheral surface of the piezoelectric film,
A line characterized in that the piezoelectric film is wound around the outer peripheral surface of the inner conductor in a state where one end side and the other end side in the width direction adjacent to the extending direction of the inner conductor are overlapped. Shape sensor. - 前記内部導体は、1本の導体線が中心に配置され、該導体線の周囲を該導体線よりも細い複数本の導線を撚り合わせた撚り線で取り囲んだものであることを特徴とする請求項1記載の線状センサ。 The inner conductor is characterized in that one conductor wire is disposed at the center, and the periphery of the conductor wire is surrounded by a plurality of conductor wires thinner than the conductor wire. The linear sensor according to Item 1.
- 前記導体線が、前記導線よりも機械的強度が高いものであり、
前記導線が、前記導体線よりも電気抵抗が低いものであることを特徴とする請求項2記載の線状センサ。 The conductor wire is higher in mechanical strength than the conductor wire,
The linear sensor according to claim 2, wherein the conductive wire has a lower electrical resistance than the conductive wire. - 前記内部導体は、複数本のステンレスワイヤを撚り合わせた撚り線が配置されたものであることを特徴とする請求項1記載の線状センサ。 The linear sensor according to claim 1, wherein the inner conductor is a stranded wire obtained by twisting a plurality of stainless steel wires.
- 前記内部導体は、ステンレスワイヤを撚り合わせたステンレス撚り線と、銅線を撚り合わせた銅撚り線とが配置されたものであることを特徴とする請求項1記載の線状センサ。 The linear sensor according to claim 1, wherein the inner conductor comprises a stainless steel stranded wire obtained by twisting stainless steel wires and a copper stranded wire obtained by twisting copper wires.
- 前記内部導体が、前記ステンレス撚り線の周囲を前記銅撚り線で取り囲んだものであることを特徴とする請求項5記載の線状センサ。 The linear sensor according to claim 5, wherein the inner conductor is one in which the stranded copper wire surrounds the periphery of the stranded stainless steel wire.
- 前記内部導体が、自身も全体として撚られたものであることを特徴とする請求項2から6のうちいずれか1項記載の線状センサ。 The linear sensor according to any one of claims 2 to 6, wherein the inner conductor is itself also as a whole.
- 複数本の導線を撚り合わせた撚り線を複数本配置した内部導体と、
前記内部導体の外周面に担持されたピエゾ材料と、
前記ピエゾ材料の外周面に配置された外部導体とを有し、
前記内部導体が、自身も全体として撚られたものであることを特徴とする線状センサ。 An internal conductor in which a plurality of stranded wires in which a plurality of conductive wires are twisted are arranged;
A piezo material carried on the outer peripheral surface of the inner conductor;
And an external conductor disposed on the outer peripheral surface of the piezoelectric material,
A linear sensor characterized in that the inner conductor is itself as a whole. - 請求項1から8のうちいずれか1項記載の線状センサと、
前記線状センサの延在方向と同じ方向に延びた金属製の縦線状体と、
前記線状センサの幅方向に延び、該線状センサと前記縦線状体を綴る横線状体とを有することを特徴とする帯状センサ。 A linear sensor according to any one of claims 1 to 8;
A longitudinal wire made of metal extending in the same direction as the extending direction of the linear sensor;
A strip-shaped sensor comprising: a linear sensor extending in the width direction of the linear sensor; and a horizontal linear body for binding the vertical linear body. - 面状体と、
請求項1から8のうちいずれか1項記載の線状センサからなる複数の第1線状センサと、
請求項1から8のうちいずれか1項記載の線状センサからなる複数の第2線状センサとを備え、
前記複数の第1線状センサが、該第1線状センサの幅方向に間隔をあけて前記面状体になみ縫いされたものであり、
前記複数の第2線状センサが、前記第1線状センサの延在方向に間隔をあけて前記面状体になみ縫いされたものであることを特徴とする面状センサ。 A sheet and
A plurality of first linear sensors comprising the linear sensor according to any one of claims 1 to 8;
A plurality of second linear sensors comprising the linear sensor according to any one of claims 1 to 8;
The plurality of first linear sensors are seam-stitched on the planar body at an interval in the width direction of the first linear sensors,
A planar sensor according to claim 1, wherein said plurality of second linear sensors are seam-stitched on said planar body at intervals in the extending direction of said first linear sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019559603A JP6924516B2 (en) | 2017-12-11 | 2018-12-07 | Linear sensor, strip sensor, and planar sensor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017236693 | 2017-12-11 | ||
JP2017-236693 | 2017-12-11 | ||
JP2017255283 | 2017-12-30 | ||
JP2017-255283 | 2017-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019117037A1 true WO2019117037A1 (en) | 2019-06-20 |
Family
ID=66819196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045125 WO2019117037A1 (en) | 2017-12-11 | 2018-12-07 | Linear sensor, belt-like sensor, and planar sensor |
Country Status (2)
Country | Link |
---|---|
JP (3) | JP6924516B2 (en) |
WO (1) | WO2019117037A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021182208A1 (en) * | 2020-03-09 | 2021-09-16 | 株式会社フジクラ | Piezoelectric coaxial sensor and method for manufacturing piezoelectric coaxial sensor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273478A (en) * | 1994-09-13 | 2007-10-18 | W L Gore & Assoc Inc | Jacket material for protection of electrical conductor |
WO2017111108A1 (en) * | 2015-12-25 | 2017-06-29 | 三井化学株式会社 | Piezoelectric substrate, piezoelectric woven fabric, piezoelectric knitted fabric, piezoelectric device, force sensor, actuator, and biological information acquisition device |
JP2017120861A (en) * | 2015-12-28 | 2017-07-06 | 帝人株式会社 | Device with braided piezoelectric elements fixed |
JP2017183570A (en) * | 2016-03-31 | 2017-10-05 | 東邦化成株式会社 | Piezoelectric wire, manufacturing method thereof, and piezoelectric device including the piezoelectric wire |
US20170331027A1 (en) * | 2014-12-02 | 2017-11-16 | Industry-University Cooperation Foundation Hanyang University | Piezoelectric fiber having excellent flexibility and elasticity, and method for manufacturing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2353120A1 (en) * | 1976-05-25 | 1977-12-23 | Cables De Lyon Geoffroy Delore | UNDERWATER TELEPHONE CABLE |
JPH10154424A (en) * | 1996-11-22 | 1998-06-09 | Sumitomo Wiring Syst Ltd | Tape-mounting implement |
JP4488820B2 (en) * | 2004-07-23 | 2010-06-23 | パナソニック株式会社 | Cable pressure sensor |
JP2007208592A (en) | 2006-02-01 | 2007-08-16 | Sanyo Electric Co Ltd | Speaker unit |
JP5141105B2 (en) * | 2006-12-06 | 2013-02-13 | 住友電気工業株式会社 | Multi-core cable harness and multi-core cable harness with connector |
CN106104240B (en) | 2014-03-18 | 2020-02-07 | 日立金属株式会社 | Conductive resin composition and pressure sensor |
-
2018
- 2018-12-07 WO PCT/JP2018/045125 patent/WO2019117037A1/en active Application Filing
- 2018-12-07 JP JP2019559603A patent/JP6924516B2/en not_active Expired - Fee Related
-
2021
- 2021-07-26 JP JP2021121330A patent/JP7144088B2/en active Active
-
2022
- 2022-09-08 JP JP2022142997A patent/JP2022172341A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273478A (en) * | 1994-09-13 | 2007-10-18 | W L Gore & Assoc Inc | Jacket material for protection of electrical conductor |
US20170331027A1 (en) * | 2014-12-02 | 2017-11-16 | Industry-University Cooperation Foundation Hanyang University | Piezoelectric fiber having excellent flexibility and elasticity, and method for manufacturing the same |
WO2017111108A1 (en) * | 2015-12-25 | 2017-06-29 | 三井化学株式会社 | Piezoelectric substrate, piezoelectric woven fabric, piezoelectric knitted fabric, piezoelectric device, force sensor, actuator, and biological information acquisition device |
JP2017120861A (en) * | 2015-12-28 | 2017-07-06 | 帝人株式会社 | Device with braided piezoelectric elements fixed |
JP2017183570A (en) * | 2016-03-31 | 2017-10-05 | 東邦化成株式会社 | Piezoelectric wire, manufacturing method thereof, and piezoelectric device including the piezoelectric wire |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021182208A1 (en) * | 2020-03-09 | 2021-09-16 | 株式会社フジクラ | Piezoelectric coaxial sensor and method for manufacturing piezoelectric coaxial sensor |
JPWO2021182208A1 (en) * | 2020-03-09 | 2021-09-16 | ||
JP7350155B2 (en) | 2020-03-09 | 2023-09-25 | 株式会社フジクラ | Piezoelectric coaxial sensor and piezoelectric coaxial sensor manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2022172341A (en) | 2022-11-15 |
JP7144088B2 (en) | 2022-09-29 |
JP2021170032A (en) | 2021-10-28 |
JP6924516B2 (en) | 2021-08-25 |
JPWO2019117037A1 (en) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6986667B2 (en) | Wearing device for detecting human body movement | |
JP6912919B2 (en) | Tactile sensor | |
JP5413561B2 (en) | Pressure-sensitive conductive yarn and biological information measurement clothing | |
JP6524663B2 (en) | Data glove | |
US20070285868A1 (en) | Sensor arrangement | |
US20180271285A1 (en) | Pressure-sensing chair | |
US20150038881A1 (en) | Posture monitoring system | |
CN105377122B (en) | The attachment structure and method of fabric sensor and digital line | |
US12086313B2 (en) | Motion detection system | |
WO2019167744A1 (en) | Sensor electrode and planar sensor using same | |
JP7144088B2 (en) | linear sensor | |
JP2005351781A (en) | Vibration detector and human body detector, and bed system mounting them | |
JP6969883B2 (en) | Bag-shaped tactile sensor | |
KR20170054088A (en) | Insol of sensing pressure | |
JP2018141668A (en) | Cable-like pressure sensor and tactile sensor using the same | |
JP2022547943A (en) | Stretch sensors and wearable articles containing stretch sensors | |
WO2020073947A1 (en) | Wearable sensor, forming method therefor, and sensor module | |
WO2018012142A1 (en) | Biosignal detector | |
JP7162858B2 (en) | Planar sensors and how to use them | |
US12270641B2 (en) | Motion detection member | |
JP6970372B2 (en) | Bedclothes and behavior judgment protection system | |
KR20170040985A (en) | Chair of sensing pressure | |
JP7392123B2 (en) | Conductive thread and worn articles containing the thread | |
JP2018115884A (en) | Sensor unit | |
WO2021095345A1 (en) | Layered bending sensor and mechano-electrical transduction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18889415 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019559603 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18889415 Country of ref document: EP Kind code of ref document: A1 |