WO2019115539A1 - Composant semi-conducteur optoélectronique - Google Patents
Composant semi-conducteur optoélectronique Download PDFInfo
- Publication number
- WO2019115539A1 WO2019115539A1 PCT/EP2018/084383 EP2018084383W WO2019115539A1 WO 2019115539 A1 WO2019115539 A1 WO 2019115539A1 EP 2018084383 W EP2018084383 W EP 2018084383W WO 2019115539 A1 WO2019115539 A1 WO 2019115539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic radiation
- conversion element
- optoelectronic semiconductor
- wavelength conversion
- semiconductor component
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 120
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 68
- 238000006243 chemical reaction Methods 0.000 claims abstract description 70
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 57
- 230000005855 radiation Effects 0.000 claims abstract description 36
- 238000001228 spectrum Methods 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims description 9
- 239000002096 quantum dot Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 abstract 3
- 238000002310 reflectometry Methods 0.000 description 18
- 230000003595 spectral effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- -1 terbium-yttrium aluminum Chemical compound 0.000 description 3
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052605 nesosilicate Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
- H10H20/8513—Wavelength conversion materials having two or more wavelength conversion materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8515—Wavelength conversion means not being in contact with the bodies
Definitions
- the optoelectronic semiconductor component may in particular be a radiation-emitting optoelectronic semiconductor component which emits electromagnetic radiation, for example light, in an activated state.
- An object to be solved is to provide an optoelectronic semiconductor device with a wavelength conversion element, which in a switched-off state
- the optoelectronic component comprises
- Semiconductor device has a semiconductor chip with an active region in an on state
- Spectrum refers to a spectral distribution of electromagnetic radiation having at least one spectral component with one or a plurality of spectral components having a plurality of wavelengths and / or ranges of wavelengths.
- the optoelectronic component comprises
- a wavelength conversion element the semiconductor chip in the beam path of the electromagnetic Radiation is arranged downstream of the first spectrum and at least partially converts electromagnetic radiation with the first spectrum into electromagnetic radiation with a second spectrum.
- Wavelength conversion element can be excited, for example with a blue emitting light source and convert a portion of the blue light into yellow light.
- the additive mixture of these colors results in one
- the wavelength conversion element comprises at least one wavelength conversion substance.
- Wavelength conversion substance can be, for example
- TbYAG: Ce cerium-doped gadolinium-yttrium aluminum granule
- GdTbYAG cerium-doped gadolinium-terbium-yttrium aluminum garnet
- Wavelength conversion materials can be, for example, the following:
- wavelength conversion element also suitable mixtures and combinations of the above
- Wavelength conversion substances include.
- the optoelectronic component comprises
- Reflected electromagnetic radiation is not only a reflection in the sense of a reflection or diffuse scattering, but in particular also electromagnetic radiation which is first converted by a converter and subsequently emitted.
- the color locus below is the dot on the standard color chart CIE 1931 2 °, which corresponds to the color impression of the respective emitted electromagnetic radiation.
- Wavelength conversion element as well as the
- Color matching layers reflect externally incident electromagnetic radiation that forms a
- Additive color mixing creates radiation with a second color locus for the viewer.
- the second color locus is closer to a white point than the first color locus. This means that there is a white shift due to the mixture of the two radiations. Thus, for the viewer, the color impression of
- Wavelength conversion element in conjunction with the reflected radiation of the color matching layer shifted to a white color impression. Under a white point is in doubt the white point for the standard illuminant D65 to understand.
- the optoelectronic comprises
- Semiconductor device has a semiconductor chip with an active region in an on state emitting electromagnetic radiation having a first spectrum
- a wavelength conversion element which is arranged downstream of the semiconductor chip in the beam path of the electromagnetic radiation with the first spectrum and at least partially converts electromagnetic radiation with the first spectrum into electromagnetic radiation with a second spectrum
- the second color location is closer to a white point than the first color location.
- semiconductor components are based on the following considerations: By combining a semiconductor chip emitting with a blue spectrum with one emitting in a yellow spectrum Wavelength conversion element is obtained an efficient white-emitting optoelectronic semiconductor device.
- the wavelength conversion element preferably has a high absorption for the blue spectral range of the emission of the semiconductor chip and re-emits the absorbed light with a yellow spectral range. Due to this high absorption of the wavelength conversion element in the blue spectral region is formed in an off state of the optoelectronic semiconductor device for from
- Wavelength conversion element reflected radiation a yellow color impression.
- a yellow-orange or an orange-colored impression also applies as yellow or yellowish. This yellow color impression may, among other things due to
- the optoelectronic semiconductor component described here makes use, inter alia, of the idea, a the
- Wavelength conversion element in the beam path downstream color matching layer to install.
- Color matching layer is suitable, incidental, for
- Color matching layer reflected light is superimposed together with the reflected light from the wavelength conversion element to a mixed radiation. This results in a white or at least closer to a white point color impression for the viewer for the mixed radiation.
- the color matching layer reflects one
- Wavelength range that gives a blue color impression, but leaves the emitted from the semiconductor chip
- the color matching layer comprises a filter that covers at least a part of the outside of the
- the filter preferably extends completely over the color matching layer and may, for example, reflect outside incident blue light and at the same time be transmissive to the main emission wavelength of the light source
- the main emission wavelength refers to the global intensity maximum of the emission over the entire wavelength range.
- an interference filter also called Bragg filter or Bragg mirror.
- the filter has a reflectivity of at least 60%, preferably of at least 80% in a bandwidth, and the bandwidth of the filter has a long-wave boundary which is at least 10 nm, preferably at least 20 nm and particularly preferably at least 30 nm from a main emission wavelength of the semiconductor chip
- the bandwidth of the filter is the spectral bandwidth of the filter.
- the bandwidth describes a wavelength range in which the filter has a high reflectivity.
- the filter has a reflectance of at least 60% and preferably a reflectance of at least 80% over a wavelength range of 350 nm to 430 nm and preferably over a wavelength range of 350 nm to 440 nm.
- Main emission wavelength of the semiconductor chip can pass through the filter largely unhindered.
- the filter comprises a Bragg mirror.
- a Bragg mirror is made up of a variety of
- the bandwidth of the filter is not at the main emission wavelength of the semiconductor chip
- the bandwidth of the filter has a minimum distance to the main emission wavelength of the semiconductor chip of at least 10 nm, preferably from
- the long-wavelength end of the filter does not overlap with the main emission wavelength of the semiconductor chip.
- the color matching layer comprises a converter, which converts the electromagnetic radiation incident from outside onto the semiconductor component into longer-wave electromagnetic radiation, so that the light beam from the Color matching layer reflected radiation in one
- the converter preferably extends completely over the color matching layer and converts, for example, UV light incident from the outside to visible blue radiation and re-emits it. To absorb the emitted from the semiconductor chip
- the re-emission wavelength of the converter is chosen so that it is different from the
- the converter has a
- Main emission wavelength in a range of 420 nm to 430 nm.
- An emission in this wavelength range can cause a blue color impression in a viewer and the emission of the semiconductor chip in a
- the converter comprises an arrangement of quantum dots.
- Quantum dots are structures whose extent limits the mobility of charge carriers in all three spatial directions to such an extent that the
- Charge carrier can take no more continuous energy states, but only discrete energy states are allowed. By changing the size and shape of these structures can be their optical and electrical
- the necessary excitation wavelength as well as the
- the converter has a
- Main emission wavelength which is different from the main emission wavelength of the semiconductor chip.
- the main emission wavelength of the converter is at a distance from the main emission wavelength of the semiconductor chip of at least 10 nm, preferably of at least 20 nm, and
- An array of quantum dots is for conversion of
- Main emission wavelength of the semiconductor chip are excited.
- Wavelength conversion element a distance to the
- Wavelength conversion element has.
- the semiconductor chip heats up in an on state and releases this heat to its direct environment.
- Wavelength conversion element used materials are sometimes temperature sensitive. A spatially close connection of the wavelength conversion substance to the semiconductor chip therefore limits the usability of the
- Wavelength conversion substances The intensity of the electromagnetic radiation emitted by the semiconductor chip decreases with increasing distance from the semiconductor chip.
- the optoelectronic component awakens
- Planck's curve black body curve
- the first spectrum comprises a blue wavelength range and the second spectrum comprises a yellow wavelength range.
- the blue wavelength range includes electromagnetic radiation from 430 nm to 490 nm, while the yellow wavelength range comprises electromagnetic radiation from 560 nm to 590 nm.
- Wavelength conversion element and the color matching layer arranged a transparent substrate, the glass or
- Plastic includes.
- the substrate is preferably for mechanical stabilization of the structure, and is for the electromagnetic radiation of the first and the second
- the semiconductor chip emits
- Figure 1 shows a schematic cross section through a
- Optoelectronic semiconductor component according to a first exemplary embodiment
- Wavelength conversion element in dependence of Wavelength as well as the resulting first
- Figure 3 shows the reflectivity of an optoelectronic
- FIG. 4 shows the reflectivity of an optoelectronic
- Figure 5 shows the reflectivity of an optoelectronic
- Semiconductor device as a function of the wavelength according to the first embodiment and the resulting shift of the first color location.
- FIG. 1 shows a schematic cross section through an optoelectronic semiconductor component according to a first exemplary embodiment.
- Semiconductor device 1 comprises a semiconductor chip 10 with an active area 100 and a
- Wavelength conversion element 20 a substrate 40 and a color matching layer 30 comprising a filter 301 and a converter 302.
- the substrate 40 is disposed between the filter 301 and the wavelength conversion element 20.
- the converter 302 is arranged downstream of the filter 301 in the beam path of the electromagnetic radiation emitted by the semiconductor chip 10 with the first spectrum.
- the substrate 40 comprises a transparent material
- the filter 301 is between the converter 302 and the
- Substrate 40 is arranged.
- Semiconductor chip 10 preferably emits visible light when in an on state
- Wavelength conversion element 20 preferably has an absorption maximum at 450 nm and converts at least a portion of that emitted from semiconductor chip 100
- Wavelength conversion element 20 re-emitted radiation with the main emission radiation of the semiconductor chip 10 produces a white color impression. In an off state, the color impression of the optoelectronic
- the wavelength conversion element 20 appears to be yellowish due to the position of its absorption maximum at a wavelength of 450 nm.
- the filter 301 mainly reflects blue Light in a wavelength range of 350 nm to 430 nm and appears blue in itself.
- the converter 302 converts UV light invisible to the eye to re-emit it at a wavelength of 440 nm.
- the light converted by the converter 302 mixes with the light reflected by the filter 301 and the light reflected by the wavelength conversion element 20 Mixed radiation whose color coordinates are opposite to the
- Color location of the reflected radiation from the wavelength conversion element 20 is shifted in the direction of a white point.
- Wavelength conversion element 20 in an off state of the optoelectronic semiconductor device 1 is thereby reduced or avoided.
- FIG. 2 shows the reflectivity of a
- Wavelength conversion element 20 as a function of
- the reflectivity of the wavelength conversion element 20 shows a local minimum at 450 nm.
- the resulting first color locus A thus lies in a yellow tone.
- Wavelength conversion element 20 calls a yellow
- the first color locus A is in a standard CIE 1931 2 °
- FIG. 3 shows the reflectivity of an optoelectronic semiconductor component 1.
- Semiconductor device comprises in this second
- Embodiment a wavelength conversion element 20 with an applied color matching layer 30.
- the diagram of reflectivity corresponds to that shown in FIG.
- the color matching layer 30 includes a filter 301 in this embodiment.
- the reflectivity of the filter 301 is almost 1 for a region below 430 nm. This results in a blue-acting reflected radiation. This blue-looking
- This mixed radiation has a second color locus B, which is illustrated by a circle in the standard valency system.
- Normvalenzsystem is a significant shift of the first color locus A from yellow to the second color B in the direction of a white point recognizable.
- FIG. 4 shows a third exemplary embodiment and corresponds essentially to the second one shown in FIG.
- the reflectivity of the filter 301 used as the color matching layer 30 extends up to a wavelength of 440 nm. This results in a further shift of the second color locus B towards a white point.
- FIG. 5 shows the reflectivity of an optoelectronic semiconductor component 1 as a function of the wavelength.
- the optoelectronic semiconductor component 1 comprises a
- Wavelength conversion element 20 a color matching layer 30 comprising a filter 301 and a converter 302 according to the first embodiment.
- the filter 301 has a high reflectivity in a range below 430 nm.
- the converter 302 converts UV light into a visible one Light at 440 nm. The conversion of this radiation is symbolized in Figure 5 by an arrow in the diagram of reflectivity.
- the radiation reflected by the filter 301 is added to the radiation re-emitted by the converter 302 with a main emission wavelength of 440 nm. This results in still another advantage
Landscapes
- Led Device Packages (AREA)
Abstract
L'invention concerne un composant semi-conducteur optoélectronique comprenant une puce semi-conductrice comprenant une zone active, qui émet, dans un état activé, un rayonnement électromagnétique d'un premier spectre, et un élément de conversion de longueur d'onde, qui est monté en aval de la puce semi-conductrice dans le trajet de faisceau du rayonnement électromagnétique du premier spectre et qui convertit au moins partiellement le rayonnement électromagnétique du premier spectre en un rayonnement électromagnétique d'un deuxième spectre. Le composant semi-conducteur optoélectronique comprend en outre une couche d'adaptation de couleur, qui est placée en aval de l'élément de conversion de longueur d'onde dans le trajet de faisceau du rayonnement électromagnétique du premier spectre et qui réfléchit au moins une partie du rayonnement électromagnétique arrivant de l'extérieur sur l'élément de conversion de longueur d'onde. Le rayonnement électromagnétique arrivant de l'extérieur sur l'élément de conversion de longueur d'onde et réfléchi par l'élément de conversion de longueur d'onde présentant des premières coordonnées de chromaticité, et un rayonnement mixte, contenant le rayonnement électromagnétique arrivant de l'extérieur sur l'élément de conversion de longueur d'onde et réfléchi par l'élément de conversion de longueur d'onde et le rayonnement électromagnétique arrivant de l'extérieur sur la couche d'adaptation de couleur et réfléchi par la couche d'adaptation de couleur, présentant des deuxièmes coordonnées de chromaticité, les deuxièmes coordonnées de chromaticité étant plus rapprochées d'un point blanc que les premières coordonnées de chromaticité.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017130136.4 | 2017-12-15 | ||
DE102017130136.4A DE102017130136A1 (de) | 2017-12-15 | 2017-12-15 | Optoelektronisches Halbleiterbauelement |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019115539A1 true WO2019115539A1 (fr) | 2019-06-20 |
Family
ID=64901491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/084383 WO2019115539A1 (fr) | 2017-12-15 | 2018-12-11 | Composant semi-conducteur optoélectronique |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102017130136A1 (fr) |
WO (1) | WO2019115539A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115152038A (zh) * | 2020-02-06 | 2022-10-04 | 艾迈斯-欧司朗国际有限责任公司 | 制造光电子器件的方法和光电子器件 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033390A1 (fr) | 1998-11-30 | 2000-06-08 | General Electric Company | Dispositif electroluminescent avec composition au phosphore |
DE10036940A1 (de) | 2000-07-28 | 2002-02-07 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Lumineszenz-Konversions-LED |
DE10147040A1 (de) | 2001-09-25 | 2003-04-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Beleuchtungseinheit mit mindestens einer LED als Lichtquelle |
US6616862B2 (en) | 2001-05-21 | 2003-09-09 | General Electric Company | Yellow light-emitting halophosphate phosphors and light sources incorporating the same |
US20040062699A1 (en) | 2002-09-25 | 2004-04-01 | Matsushita Electric Industrial Co. | Inorganic oxide and phosphor |
DE102006046199A1 (de) * | 2006-09-29 | 2008-04-03 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
WO2010106478A1 (fr) * | 2009-03-19 | 2010-09-23 | Koninklijke Philips Electronics N.V. | Système de réglage de couleur |
EP2339655A2 (fr) * | 2009-12-25 | 2011-06-29 | Industrial Technology Research Institute | DEL à empilement multiple |
WO2012153212A1 (fr) * | 2011-05-06 | 2012-11-15 | Koninklijke Philips Electronics N.V. | Dispositif d'éclairage enrichi en luminophore, ampoule de rattrapage et tube d'éclairage doté d'une apparence de couleur réduite |
DE102012111123A1 (de) * | 2012-09-26 | 2014-03-27 | Osram Opto Semiconductors Gmbh | Licht emittierendes Halbleiterbauelement |
US20170059129A1 (en) * | 2016-06-16 | 2017-03-02 | Hisense Electric Co., Ltd. | Quantum dot light emitting device, backlight module, and liquid crystal display device |
-
2017
- 2017-12-15 DE DE102017130136.4A patent/DE102017130136A1/de not_active Withdrawn
-
2018
- 2018-12-11 WO PCT/EP2018/084383 patent/WO2019115539A1/fr active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033390A1 (fr) | 1998-11-30 | 2000-06-08 | General Electric Company | Dispositif electroluminescent avec composition au phosphore |
DE10036940A1 (de) | 2000-07-28 | 2002-02-07 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Lumineszenz-Konversions-LED |
US6616862B2 (en) | 2001-05-21 | 2003-09-09 | General Electric Company | Yellow light-emitting halophosphate phosphors and light sources incorporating the same |
DE10147040A1 (de) | 2001-09-25 | 2003-04-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Beleuchtungseinheit mit mindestens einer LED als Lichtquelle |
US20040062699A1 (en) | 2002-09-25 | 2004-04-01 | Matsushita Electric Industrial Co. | Inorganic oxide and phosphor |
DE102006046199A1 (de) * | 2006-09-29 | 2008-04-03 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
WO2010106478A1 (fr) * | 2009-03-19 | 2010-09-23 | Koninklijke Philips Electronics N.V. | Système de réglage de couleur |
EP2339655A2 (fr) * | 2009-12-25 | 2011-06-29 | Industrial Technology Research Institute | DEL à empilement multiple |
WO2012153212A1 (fr) * | 2011-05-06 | 2012-11-15 | Koninklijke Philips Electronics N.V. | Dispositif d'éclairage enrichi en luminophore, ampoule de rattrapage et tube d'éclairage doté d'une apparence de couleur réduite |
DE102012111123A1 (de) * | 2012-09-26 | 2014-03-27 | Osram Opto Semiconductors Gmbh | Licht emittierendes Halbleiterbauelement |
US20170059129A1 (en) * | 2016-06-16 | 2017-03-02 | Hisense Electric Co., Ltd. | Quantum dot light emitting device, backlight module, and liquid crystal display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115152038A (zh) * | 2020-02-06 | 2022-10-04 | 艾迈斯-欧司朗国际有限责任公司 | 制造光电子器件的方法和光电子器件 |
Also Published As
Publication number | Publication date |
---|---|
DE102017130136A1 (de) | 2019-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2149163B9 (fr) | Puce de diode électroluminescente avec élément d'angle filtrant | |
EP1644990B1 (fr) | Composant emettant de la lumiere, pourvu d'un element de conversion de luminescence | |
WO2009079990A1 (fr) | Appareil d'éclairage | |
EP2912688B1 (fr) | Module del | |
DE102006046199A1 (de) | Optoelektronisches Bauelement | |
DE102010012423A1 (de) | Lumineszenzdiodenanordnung, Hinterleuchtungsvorrichtung und Anzeigevorrichtung | |
DE102014112681A1 (de) | Optoelektronisches Halbleiterbauteil und Blitzlicht | |
WO2019233731A1 (fr) | Composant optoélectronique et procédé de fabrication d'un composant optoélectronique | |
WO2016180930A1 (fr) | Composant optoélectronique émetteur de rayonnement | |
EP2067177B1 (fr) | Composant opto-électronique | |
DE102016104616A1 (de) | Halbleiterlichtquelle | |
WO2009036718A1 (fr) | Composant optoélectronique | |
WO2015189281A1 (fr) | Composant semi-conducteur optoélectronique | |
DE102012217643A1 (de) | Optoelektronisches Bauelement | |
DE102018103604A1 (de) | Optoelektronisches Bauteil, Optoelektronische Vorrichtung, Blitzlicht und Scheinwerfer | |
DE102010042619A1 (de) | Leuchtvorrichtung zur flächigen Lichtabstrahlung | |
WO2019115539A1 (fr) | Composant semi-conducteur optoélectronique | |
DE102018115041A1 (de) | Lichtemitter und Licht emittierende Vorrichtung | |
DE102012205461A1 (de) | Led-chip mit temperaturabhängiger wellenlänge | |
DE10142009B4 (de) | LED - Lichtquelle mit einem Konversionsmittel und mit einer UV-absorbierenden Schicht | |
DE102012204408B4 (de) | Led-chip mit temperaturabhängiger wellenlänge und leuchtvorrichtung mit solchem led-chip | |
DE102011079721A1 (de) | Led-lichtquelle | |
EP2764554B1 (fr) | Dispositif semiconducteur optoelectronique et module ayant plusieurs de ces dispositifs | |
WO2018104389A1 (fr) | Composant optoélectronique | |
WO2018162420A1 (fr) | Composant à semi-conducteur optoélectronique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18826982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18826982 Country of ref document: EP Kind code of ref document: A1 |