+

WO2019115539A1 - Composant semi-conducteur optoélectronique - Google Patents

Composant semi-conducteur optoélectronique Download PDF

Info

Publication number
WO2019115539A1
WO2019115539A1 PCT/EP2018/084383 EP2018084383W WO2019115539A1 WO 2019115539 A1 WO2019115539 A1 WO 2019115539A1 EP 2018084383 W EP2018084383 W EP 2018084383W WO 2019115539 A1 WO2019115539 A1 WO 2019115539A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic radiation
conversion element
optoelectronic semiconductor
wavelength conversion
semiconductor component
Prior art date
Application number
PCT/EP2018/084383
Other languages
German (de)
English (en)
Inventor
David O'brien
Britta GÖÖTZ
Rainer Butendeich
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of WO2019115539A1 publication Critical patent/WO2019115539A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • H10H20/8513Wavelength conversion materials having two or more wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8515Wavelength conversion means not being in contact with the bodies

Definitions

  • the optoelectronic semiconductor component may in particular be a radiation-emitting optoelectronic semiconductor component which emits electromagnetic radiation, for example light, in an activated state.
  • An object to be solved is to provide an optoelectronic semiconductor device with a wavelength conversion element, which in a switched-off state
  • the optoelectronic component comprises
  • Semiconductor device has a semiconductor chip with an active region in an on state
  • Spectrum refers to a spectral distribution of electromagnetic radiation having at least one spectral component with one or a plurality of spectral components having a plurality of wavelengths and / or ranges of wavelengths.
  • the optoelectronic component comprises
  • a wavelength conversion element the semiconductor chip in the beam path of the electromagnetic Radiation is arranged downstream of the first spectrum and at least partially converts electromagnetic radiation with the first spectrum into electromagnetic radiation with a second spectrum.
  • Wavelength conversion element can be excited, for example with a blue emitting light source and convert a portion of the blue light into yellow light.
  • the additive mixture of these colors results in one
  • the wavelength conversion element comprises at least one wavelength conversion substance.
  • Wavelength conversion substance can be, for example
  • TbYAG: Ce cerium-doped gadolinium-yttrium aluminum granule
  • GdTbYAG cerium-doped gadolinium-terbium-yttrium aluminum garnet
  • Wavelength conversion materials can be, for example, the following:
  • wavelength conversion element also suitable mixtures and combinations of the above
  • Wavelength conversion substances include.
  • the optoelectronic component comprises
  • Reflected electromagnetic radiation is not only a reflection in the sense of a reflection or diffuse scattering, but in particular also electromagnetic radiation which is first converted by a converter and subsequently emitted.
  • the color locus below is the dot on the standard color chart CIE 1931 2 °, which corresponds to the color impression of the respective emitted electromagnetic radiation.
  • Wavelength conversion element as well as the
  • Color matching layers reflect externally incident electromagnetic radiation that forms a
  • Additive color mixing creates radiation with a second color locus for the viewer.
  • the second color locus is closer to a white point than the first color locus. This means that there is a white shift due to the mixture of the two radiations. Thus, for the viewer, the color impression of
  • Wavelength conversion element in conjunction with the reflected radiation of the color matching layer shifted to a white color impression. Under a white point is in doubt the white point for the standard illuminant D65 to understand.
  • the optoelectronic comprises
  • Semiconductor device has a semiconductor chip with an active region in an on state emitting electromagnetic radiation having a first spectrum
  • a wavelength conversion element which is arranged downstream of the semiconductor chip in the beam path of the electromagnetic radiation with the first spectrum and at least partially converts electromagnetic radiation with the first spectrum into electromagnetic radiation with a second spectrum
  • the second color location is closer to a white point than the first color location.
  • semiconductor components are based on the following considerations: By combining a semiconductor chip emitting with a blue spectrum with one emitting in a yellow spectrum Wavelength conversion element is obtained an efficient white-emitting optoelectronic semiconductor device.
  • the wavelength conversion element preferably has a high absorption for the blue spectral range of the emission of the semiconductor chip and re-emits the absorbed light with a yellow spectral range. Due to this high absorption of the wavelength conversion element in the blue spectral region is formed in an off state of the optoelectronic semiconductor device for from
  • Wavelength conversion element reflected radiation a yellow color impression.
  • a yellow-orange or an orange-colored impression also applies as yellow or yellowish. This yellow color impression may, among other things due to
  • the optoelectronic semiconductor component described here makes use, inter alia, of the idea, a the
  • Wavelength conversion element in the beam path downstream color matching layer to install.
  • Color matching layer is suitable, incidental, for
  • Color matching layer reflected light is superimposed together with the reflected light from the wavelength conversion element to a mixed radiation. This results in a white or at least closer to a white point color impression for the viewer for the mixed radiation.
  • the color matching layer reflects one
  • Wavelength range that gives a blue color impression, but leaves the emitted from the semiconductor chip
  • the color matching layer comprises a filter that covers at least a part of the outside of the
  • the filter preferably extends completely over the color matching layer and may, for example, reflect outside incident blue light and at the same time be transmissive to the main emission wavelength of the light source
  • the main emission wavelength refers to the global intensity maximum of the emission over the entire wavelength range.
  • an interference filter also called Bragg filter or Bragg mirror.
  • the filter has a reflectivity of at least 60%, preferably of at least 80% in a bandwidth, and the bandwidth of the filter has a long-wave boundary which is at least 10 nm, preferably at least 20 nm and particularly preferably at least 30 nm from a main emission wavelength of the semiconductor chip
  • the bandwidth of the filter is the spectral bandwidth of the filter.
  • the bandwidth describes a wavelength range in which the filter has a high reflectivity.
  • the filter has a reflectance of at least 60% and preferably a reflectance of at least 80% over a wavelength range of 350 nm to 430 nm and preferably over a wavelength range of 350 nm to 440 nm.
  • Main emission wavelength of the semiconductor chip can pass through the filter largely unhindered.
  • the filter comprises a Bragg mirror.
  • a Bragg mirror is made up of a variety of
  • the bandwidth of the filter is not at the main emission wavelength of the semiconductor chip
  • the bandwidth of the filter has a minimum distance to the main emission wavelength of the semiconductor chip of at least 10 nm, preferably from
  • the long-wavelength end of the filter does not overlap with the main emission wavelength of the semiconductor chip.
  • the color matching layer comprises a converter, which converts the electromagnetic radiation incident from outside onto the semiconductor component into longer-wave electromagnetic radiation, so that the light beam from the Color matching layer reflected radiation in one
  • the converter preferably extends completely over the color matching layer and converts, for example, UV light incident from the outside to visible blue radiation and re-emits it. To absorb the emitted from the semiconductor chip
  • the re-emission wavelength of the converter is chosen so that it is different from the
  • the converter has a
  • Main emission wavelength in a range of 420 nm to 430 nm.
  • An emission in this wavelength range can cause a blue color impression in a viewer and the emission of the semiconductor chip in a
  • the converter comprises an arrangement of quantum dots.
  • Quantum dots are structures whose extent limits the mobility of charge carriers in all three spatial directions to such an extent that the
  • Charge carrier can take no more continuous energy states, but only discrete energy states are allowed. By changing the size and shape of these structures can be their optical and electrical
  • the necessary excitation wavelength as well as the
  • the converter has a
  • Main emission wavelength which is different from the main emission wavelength of the semiconductor chip.
  • the main emission wavelength of the converter is at a distance from the main emission wavelength of the semiconductor chip of at least 10 nm, preferably of at least 20 nm, and
  • An array of quantum dots is for conversion of
  • Main emission wavelength of the semiconductor chip are excited.
  • Wavelength conversion element a distance to the
  • Wavelength conversion element has.
  • the semiconductor chip heats up in an on state and releases this heat to its direct environment.
  • Wavelength conversion element used materials are sometimes temperature sensitive. A spatially close connection of the wavelength conversion substance to the semiconductor chip therefore limits the usability of the
  • Wavelength conversion substances The intensity of the electromagnetic radiation emitted by the semiconductor chip decreases with increasing distance from the semiconductor chip.
  • the optoelectronic component awakens
  • Planck's curve black body curve
  • the first spectrum comprises a blue wavelength range and the second spectrum comprises a yellow wavelength range.
  • the blue wavelength range includes electromagnetic radiation from 430 nm to 490 nm, while the yellow wavelength range comprises electromagnetic radiation from 560 nm to 590 nm.
  • Wavelength conversion element and the color matching layer arranged a transparent substrate, the glass or
  • Plastic includes.
  • the substrate is preferably for mechanical stabilization of the structure, and is for the electromagnetic radiation of the first and the second
  • the semiconductor chip emits
  • Figure 1 shows a schematic cross section through a
  • Optoelectronic semiconductor component according to a first exemplary embodiment
  • Wavelength conversion element in dependence of Wavelength as well as the resulting first
  • Figure 3 shows the reflectivity of an optoelectronic
  • FIG. 4 shows the reflectivity of an optoelectronic
  • Figure 5 shows the reflectivity of an optoelectronic
  • Semiconductor device as a function of the wavelength according to the first embodiment and the resulting shift of the first color location.
  • FIG. 1 shows a schematic cross section through an optoelectronic semiconductor component according to a first exemplary embodiment.
  • Semiconductor device 1 comprises a semiconductor chip 10 with an active area 100 and a
  • Wavelength conversion element 20 a substrate 40 and a color matching layer 30 comprising a filter 301 and a converter 302.
  • the substrate 40 is disposed between the filter 301 and the wavelength conversion element 20.
  • the converter 302 is arranged downstream of the filter 301 in the beam path of the electromagnetic radiation emitted by the semiconductor chip 10 with the first spectrum.
  • the substrate 40 comprises a transparent material
  • the filter 301 is between the converter 302 and the
  • Substrate 40 is arranged.
  • Semiconductor chip 10 preferably emits visible light when in an on state
  • Wavelength conversion element 20 preferably has an absorption maximum at 450 nm and converts at least a portion of that emitted from semiconductor chip 100
  • Wavelength conversion element 20 re-emitted radiation with the main emission radiation of the semiconductor chip 10 produces a white color impression. In an off state, the color impression of the optoelectronic
  • the wavelength conversion element 20 appears to be yellowish due to the position of its absorption maximum at a wavelength of 450 nm.
  • the filter 301 mainly reflects blue Light in a wavelength range of 350 nm to 430 nm and appears blue in itself.
  • the converter 302 converts UV light invisible to the eye to re-emit it at a wavelength of 440 nm.
  • the light converted by the converter 302 mixes with the light reflected by the filter 301 and the light reflected by the wavelength conversion element 20 Mixed radiation whose color coordinates are opposite to the
  • Color location of the reflected radiation from the wavelength conversion element 20 is shifted in the direction of a white point.
  • Wavelength conversion element 20 in an off state of the optoelectronic semiconductor device 1 is thereby reduced or avoided.
  • FIG. 2 shows the reflectivity of a
  • Wavelength conversion element 20 as a function of
  • the reflectivity of the wavelength conversion element 20 shows a local minimum at 450 nm.
  • the resulting first color locus A thus lies in a yellow tone.
  • Wavelength conversion element 20 calls a yellow
  • the first color locus A is in a standard CIE 1931 2 °
  • FIG. 3 shows the reflectivity of an optoelectronic semiconductor component 1.
  • Semiconductor device comprises in this second
  • Embodiment a wavelength conversion element 20 with an applied color matching layer 30.
  • the diagram of reflectivity corresponds to that shown in FIG.
  • the color matching layer 30 includes a filter 301 in this embodiment.
  • the reflectivity of the filter 301 is almost 1 for a region below 430 nm. This results in a blue-acting reflected radiation. This blue-looking
  • This mixed radiation has a second color locus B, which is illustrated by a circle in the standard valency system.
  • Normvalenzsystem is a significant shift of the first color locus A from yellow to the second color B in the direction of a white point recognizable.
  • FIG. 4 shows a third exemplary embodiment and corresponds essentially to the second one shown in FIG.
  • the reflectivity of the filter 301 used as the color matching layer 30 extends up to a wavelength of 440 nm. This results in a further shift of the second color locus B towards a white point.
  • FIG. 5 shows the reflectivity of an optoelectronic semiconductor component 1 as a function of the wavelength.
  • the optoelectronic semiconductor component 1 comprises a
  • Wavelength conversion element 20 a color matching layer 30 comprising a filter 301 and a converter 302 according to the first embodiment.
  • the filter 301 has a high reflectivity in a range below 430 nm.
  • the converter 302 converts UV light into a visible one Light at 440 nm. The conversion of this radiation is symbolized in Figure 5 by an arrow in the diagram of reflectivity.
  • the radiation reflected by the filter 301 is added to the radiation re-emitted by the converter 302 with a main emission wavelength of 440 nm. This results in still another advantage

Landscapes

  • Led Device Packages (AREA)

Abstract

L'invention concerne un composant semi-conducteur optoélectronique comprenant une puce semi-conductrice comprenant une zone active, qui émet, dans un état activé, un rayonnement électromagnétique d'un premier spectre, et un élément de conversion de longueur d'onde, qui est monté en aval de la puce semi-conductrice dans le trajet de faisceau du rayonnement électromagnétique du premier spectre et qui convertit au moins partiellement le rayonnement électromagnétique du premier spectre en un rayonnement électromagnétique d'un deuxième spectre. Le composant semi-conducteur optoélectronique comprend en outre une couche d'adaptation de couleur, qui est placée en aval de l'élément de conversion de longueur d'onde dans le trajet de faisceau du rayonnement électromagnétique du premier spectre et qui réfléchit au moins une partie du rayonnement électromagnétique arrivant de l'extérieur sur l'élément de conversion de longueur d'onde. Le rayonnement électromagnétique arrivant de l'extérieur sur l'élément de conversion de longueur d'onde et réfléchi par l'élément de conversion de longueur d'onde présentant des premières coordonnées de chromaticité, et un rayonnement mixte, contenant le rayonnement électromagnétique arrivant de l'extérieur sur l'élément de conversion de longueur d'onde et réfléchi par l'élément de conversion de longueur d'onde et le rayonnement électromagnétique arrivant de l'extérieur sur la couche d'adaptation de couleur et réfléchi par la couche d'adaptation de couleur, présentant des deuxièmes coordonnées de chromaticité, les deuxièmes coordonnées de chromaticité étant plus rapprochées d'un point blanc que les premières coordonnées de chromaticité.
PCT/EP2018/084383 2017-12-15 2018-12-11 Composant semi-conducteur optoélectronique WO2019115539A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017130136.4 2017-12-15
DE102017130136.4A DE102017130136A1 (de) 2017-12-15 2017-12-15 Optoelektronisches Halbleiterbauelement

Publications (1)

Publication Number Publication Date
WO2019115539A1 true WO2019115539A1 (fr) 2019-06-20

Family

ID=64901491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/084383 WO2019115539A1 (fr) 2017-12-15 2018-12-11 Composant semi-conducteur optoélectronique

Country Status (2)

Country Link
DE (1) DE102017130136A1 (fr)
WO (1) WO2019115539A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115152038A (zh) * 2020-02-06 2022-10-04 艾迈斯-欧司朗国际有限责任公司 制造光电子器件的方法和光电子器件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033390A1 (fr) 1998-11-30 2000-06-08 General Electric Company Dispositif electroluminescent avec composition au phosphore
DE10036940A1 (de) 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lumineszenz-Konversions-LED
DE10147040A1 (de) 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
US6616862B2 (en) 2001-05-21 2003-09-09 General Electric Company Yellow light-emitting halophosphate phosphors and light sources incorporating the same
US20040062699A1 (en) 2002-09-25 2004-04-01 Matsushita Electric Industrial Co. Inorganic oxide and phosphor
DE102006046199A1 (de) * 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
WO2010106478A1 (fr) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Système de réglage de couleur
EP2339655A2 (fr) * 2009-12-25 2011-06-29 Industrial Technology Research Institute DEL à empilement multiple
WO2012153212A1 (fr) * 2011-05-06 2012-11-15 Koninklijke Philips Electronics N.V. Dispositif d'éclairage enrichi en luminophore, ampoule de rattrapage et tube d'éclairage doté d'une apparence de couleur réduite
DE102012111123A1 (de) * 2012-09-26 2014-03-27 Osram Opto Semiconductors Gmbh Licht emittierendes Halbleiterbauelement
US20170059129A1 (en) * 2016-06-16 2017-03-02 Hisense Electric Co., Ltd. Quantum dot light emitting device, backlight module, and liquid crystal display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033390A1 (fr) 1998-11-30 2000-06-08 General Electric Company Dispositif electroluminescent avec composition au phosphore
DE10036940A1 (de) 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lumineszenz-Konversions-LED
US6616862B2 (en) 2001-05-21 2003-09-09 General Electric Company Yellow light-emitting halophosphate phosphors and light sources incorporating the same
DE10147040A1 (de) 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
US20040062699A1 (en) 2002-09-25 2004-04-01 Matsushita Electric Industrial Co. Inorganic oxide and phosphor
DE102006046199A1 (de) * 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
WO2010106478A1 (fr) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Système de réglage de couleur
EP2339655A2 (fr) * 2009-12-25 2011-06-29 Industrial Technology Research Institute DEL à empilement multiple
WO2012153212A1 (fr) * 2011-05-06 2012-11-15 Koninklijke Philips Electronics N.V. Dispositif d'éclairage enrichi en luminophore, ampoule de rattrapage et tube d'éclairage doté d'une apparence de couleur réduite
DE102012111123A1 (de) * 2012-09-26 2014-03-27 Osram Opto Semiconductors Gmbh Licht emittierendes Halbleiterbauelement
US20170059129A1 (en) * 2016-06-16 2017-03-02 Hisense Electric Co., Ltd. Quantum dot light emitting device, backlight module, and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115152038A (zh) * 2020-02-06 2022-10-04 艾迈斯-欧司朗国际有限责任公司 制造光电子器件的方法和光电子器件

Also Published As

Publication number Publication date
DE102017130136A1 (de) 2019-06-19

Similar Documents

Publication Publication Date Title
EP2149163B9 (fr) Puce de diode électroluminescente avec élément d'angle filtrant
EP1644990B1 (fr) Composant emettant de la lumiere, pourvu d'un element de conversion de luminescence
WO2009079990A1 (fr) Appareil d'éclairage
EP2912688B1 (fr) Module del
DE102006046199A1 (de) Optoelektronisches Bauelement
DE102010012423A1 (de) Lumineszenzdiodenanordnung, Hinterleuchtungsvorrichtung und Anzeigevorrichtung
DE102014112681A1 (de) Optoelektronisches Halbleiterbauteil und Blitzlicht
WO2019233731A1 (fr) Composant optoélectronique et procédé de fabrication d'un composant optoélectronique
WO2016180930A1 (fr) Composant optoélectronique émetteur de rayonnement
EP2067177B1 (fr) Composant opto-électronique
DE102016104616A1 (de) Halbleiterlichtquelle
WO2009036718A1 (fr) Composant optoélectronique
WO2015189281A1 (fr) Composant semi-conducteur optoélectronique
DE102012217643A1 (de) Optoelektronisches Bauelement
DE102018103604A1 (de) Optoelektronisches Bauteil, Optoelektronische Vorrichtung, Blitzlicht und Scheinwerfer
DE102010042619A1 (de) Leuchtvorrichtung zur flächigen Lichtabstrahlung
WO2019115539A1 (fr) Composant semi-conducteur optoélectronique
DE102018115041A1 (de) Lichtemitter und Licht emittierende Vorrichtung
DE102012205461A1 (de) Led-chip mit temperaturabhängiger wellenlänge
DE10142009B4 (de) LED - Lichtquelle mit einem Konversionsmittel und mit einer UV-absorbierenden Schicht
DE102012204408B4 (de) Led-chip mit temperaturabhängiger wellenlänge und leuchtvorrichtung mit solchem led-chip
DE102011079721A1 (de) Led-lichtquelle
EP2764554B1 (fr) Dispositif semiconducteur optoelectronique et module ayant plusieurs de ces dispositifs
WO2018104389A1 (fr) Composant optoélectronique
WO2018162420A1 (fr) Composant à semi-conducteur optoélectronique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18826982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18826982

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载