+

WO2019111470A1 - Communication module, capsule endoscope and reception unit - Google Patents

Communication module, capsule endoscope and reception unit Download PDF

Info

Publication number
WO2019111470A1
WO2019111470A1 PCT/JP2018/033149 JP2018033149W WO2019111470A1 WO 2019111470 A1 WO2019111470 A1 WO 2019111470A1 JP 2018033149 W JP2018033149 W JP 2018033149W WO 2019111470 A1 WO2019111470 A1 WO 2019111470A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
characteristic impedance
signal
matching
communication module
Prior art date
Application number
PCT/JP2018/033149
Other languages
French (fr)
Japanese (ja)
Inventor
友佳子 加藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019111470A1 publication Critical patent/WO2019111470A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Definitions

  • the present invention relates to a communication module, a capsule endoscope and a receiving unit.
  • Endoscopes have been widely used as medical observation apparatuses that are introduced into the body of a subject such as a patient and observe the inside of the subject.
  • a swallowable capsule endoscope has been developed which includes an imaging device inside the capsule casing and a communication device for wirelessly transmitting an image captured by the imaging device to the outside of the body.
  • the capsule endoscope is swallowed from the patient's mouth for observation in the subject, and until it is naturally excreted from the subject, for example, peristalsis inside the organ such as esophagus, stomach, small intestine, etc. It has a function to move according to and to image sequentially.
  • image data captured by the capsule endoscope is sequentially transmitted to the outside via wireless communication and stored in a memory provided inside or outside the receiving apparatus via the outside antenna unit. Or displayed on a display provided in the receiver.
  • a user such as a doctor or a nurse takes in the image stored in the memory into the information processing apparatus via the cradle into which the receiving apparatus is inserted, and displays the image displayed on the display of the information processing apparatus or the image
  • the observation and diagnosis are performed based on the position of the capsule endoscope at the time of imaging.
  • the capsule endoscope and the antenna unit each have an antenna which is a device for wirelessly transmitting or receiving image data and the like, and a circuit connected to the antenna.
  • an antenna which is a device for wirelessly transmitting or receiving image data and the like
  • a circuit connected to the antenna.
  • the capsule endoscope introduced into the subject, the antenna unit attached to the subject, the environment in which each is present, the distance between the surface of the subject and the antenna unit, and the tissue in the subject The characteristic impedance changes depending on the distance from the capsule endoscope. If the characteristic impedance changes, stable wireless communication may not be possible.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a communication module, a capsule endoscope and a receiving unit capable of performing stable wireless communication between devices that transmit and receive data. Do.
  • a communication module comprises a device having a first characteristic impedance, a circuit unit having a second characteristic impedance, the device, and the circuit unit.
  • a matching unit connected between the first and second characteristic impedances for matching the first characteristic impedance and the second characteristic impedance, wherein the circuit unit serially connects a plurality of elements each having a preset delay amount.
  • a signal generating unit connected to the delay unit, the matching unit, and the delay unit and outputting a signal transmitted toward the delay unit; and the signal generating unit directly transmitting the signal to the delay unit
  • a phase detection unit that detects a phase difference between one signal and a second signal that is reflected by the matching unit and transmitted to the delay unit; and a voltage of the second signal is detected.
  • a calculation unit that calculates a third characteristic impedance on the device side based on the connection portion between the matching unit and the circuit unit based on the voltage detection unit, the phase difference, and the voltage of the second signal.
  • the matching unit matches the first characteristic impedance with the second characteristic impedance by changing its own characteristic impedance based on the third characteristic impedance. It features.
  • the device is a receiving side transmission path end element
  • the circuit unit amplifies the reception signal received by the receiving side transmission path end element
  • the matching unit is configured to include the first characteristic impedance and the second characteristic impedance within a range determined based on a constant noise index circle calculated from the minimum noise index in the first amplification unit. It is characterized by matching with the characteristic impedance.
  • the device is a transmission side transmission path end element
  • the circuit unit amplifies a transmission signal transmitted by the transmission side transmission path end element.
  • a second amplification unit wherein the matching unit includes the first characteristic impedance and the second characteristic impedance within a range determined based on a constant power gain circle calculated from a maximum available power gain in the second amplification unit. It is characterized by matching with 2 characteristic impedances.
  • the matching unit may be configured to receive the first characteristic impedance and the second characteristic impedance at timing when the receiving-side transmission path end element does not receive the reception signal. It is characterized by matching with the characteristic impedance.
  • the matching unit may be configured to transmit the first characteristic impedance and the second characteristic impedance at timing when the transmission-side transmission path end element does not transmit the transmission signal. It is characterized by matching with the characteristic impedance.
  • the element is an inverter.
  • the receiving side transmission path end element is a receiving antenna attached to the body surface of the subject and receiving a wireless signal transmitted from the capsule endoscope. It is characterized by
  • the transmission side transmission path end element is a transmitting antenna which is provided in the capsule endoscope and transmits a radio signal.
  • a capsule endoscope according to the present invention includes the communication module according to the above invention.
  • a receiving unit according to the present invention is characterized by comprising the communication module according to the above invention.
  • FIG. 1 is a schematic view showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the configuration of the receiving unit of the receiving apparatus provided in the capsule endoscope system according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a characteristic impedance adjustment and calculation process performed by the capsule endoscope system according to the embodiment of the present invention by a Smith chart suitable for visualizing impedance change of a high frequency circuit.
  • FIG. 5 is a view for explaining the configuration of the wireless communication unit of the capsule endoscope provided in the capsule endoscope system according to the embodiment of the present invention.
  • FIG. 1 is a schematic view showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of a capsule endoscope system according to
  • FIG. 6 is a flowchart showing characteristic impedance adjustment processing performed by the capsule endoscope system according to the embodiment of the present invention.
  • FIG. 7 is a view for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the first modification of the embodiment of the present invention.
  • FIG. 8 is a diagram for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the second modification of the embodiment of the present invention.
  • FIG. 1 is a schematic view showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention.
  • the capsule endoscope system 1 according to the first embodiment generates image data by being introduced into a subject H and imaging the inside of the subject H, and superimposing it on a carrier wave.
  • a capsule endoscope 2 which is a medical device for transmitting a radio signal on radio waves and a plurality of receiving antennas 3a to 3h mounted on a subject H, the radio signal transmitted from the capsule endoscope 2 Image data generated by the capsule endoscope 2 is received from the receiving device 4 via the cradle 5a, and the image data is processed to be received.
  • a processing device 5 for generating an image in the sample H.
  • the image generated by the processing device 5 is displayed and output from the display device 6, for example.
  • image data an image in a state of being converted to a transmission format for transmission from the capsule endoscope 2 to the processing device 5 is referred to as image data.
  • the capsule endoscope 2 After being swallowed by the subject H, the capsule endoscope 2 moves in the digestive tract of the subject H by peristaltic movement of an organ or the like, and in advance the living body site (esophagus, stomach, small intestine, large intestine, etc.) Images are sequentially taken at a set reference cycle (for example, 0.5 second cycle). Then, the image data and the related information acquired by this imaging operation are sequentially wirelessly transmitted to the receiving device 4.
  • a set reference cycle for example, 0.5 second cycle
  • FIG. 2 is a block diagram showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention.
  • the capsule endoscope 2 includes an imaging unit 21, an illumination unit 22, a control unit 23, a wireless communication unit 24, a transmission antenna 25, a memory 26, and a power supply unit 27.
  • the capsule endoscope 2 is a device in which the above-described components are incorporated in a capsule-shaped casing of a size that allows the subject H to swallow.
  • the imaging unit 21 generates, for example, image data obtained by imaging the inside of the subject H from an optical image formed on a light receiving surface and outputs the image data, and an objective lens disposed on the light receiving surface side of the image pickup device And optical systems.
  • the imaging device a plurality of pixels that receive light from the subject H are arranged in a matrix, and photoelectric conversion is performed on the light received by the pixels to generate image data.
  • the imaging unit 21 reads out pixel values for each horizontal line with respect to a plurality of pixels arranged in a matrix, and generates image data including a plurality of line data to which a synchronization signal is added for each horizontal line.
  • the imaging unit 21 is configured by a charge coupled device (CCD) imaging device or a complementary metal oxide semiconductor (CMOS) imaging device.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the illumination unit 22 is configured of a white light emitting diode (LED) or the like that generates white light that is illumination light.
  • white light may be generated by multiplexing light from a plurality of LEDs having different emission wavelength bands or laser light sources, etc.
  • a xenon lamp, a halogen lamp, or the like may be used. You may do so.
  • the control unit 23 controls operation processing of each component of the capsule endoscope 2. For example, when the imaging unit 21 performs imaging processing, the imaging unit 21 is controlled to execute exposure and readout processing on the imaging device, and illumination of the illumination unit 22 according to the exposure timing of the imaging unit 21 is performed. Control to emit light. Further, the control unit 23 determines the light emission time of the illumination unit 22 at the next imaging time from the pixel value (luminance value) of the image data captured by the imaging unit 21 and emits the illumination light with the determined light emission time. The illumination unit 22 is controlled to do this. As described above, the light emission time by the illumination unit 22 is controlled based on the image data captured by the control unit 23, and the light emission time may change each time imaging is performed.
  • the control unit 23 is configured using a general purpose processor such as a central processing unit (CPU) or a dedicated processor such as various arithmetic circuits that execute a specific function such as an application specific integrated circuit (ASIC).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the wireless communication unit 24 performs modulation processing on the image data output from the imaging unit 21 and transmits the image data to the outside.
  • the wireless communication unit 24 performs A / D conversion and predetermined signal processing on the image data output from the imaging unit 21 to obtain digital format image data, superimposes it on a carrier together with related information, and transmits the transmission antenna. Radio transmission from 25 to the outside.
  • the related information includes identification information (for example, a serial number) assigned to identify the individual of the capsule endoscope 2 and the like.
  • the detailed configuration of the wireless communication unit 24 will be described later.
  • the transmitting antenna 25 is an element at the end of the wireless signal transmission side in the wireless signal transmission path in which the capsule endoscope 2 and the receiving antenna unit 3 wirelessly communicate (transmission side transmission path end element) It becomes.
  • the memory 26 stores an execution program and a control program for the control unit 23 to execute various operations, and parameters such as a threshold. In addition, the memory 26 may temporarily store image data and the like subjected to signal processing in the wireless communication unit 24.
  • the memory 26 is configured by a random access memory (RAM), a read only memory (ROM), and the like.
  • the power supply unit 27 includes a battery formed of a button battery or the like, a power supply circuit for supplying power to each unit, and a power supply switch for switching the on / off state of the power supply unit 27. Power is supplied to each part in the endoscope 2.
  • the power switch is, for example, a reed switch whose on / off state is switched by an external magnetic force, and is external to the capsule endoscope 2 before using the capsule endoscope 2 (before the subject H swallows). Can be switched on by applying a magnetic force.
  • the receiving antenna unit 3 has a plurality of (eight in FIG. 1) receiving antennas 3a to 3h.
  • the receiving antennas 3a to 3h are realized using, for example, a loop antenna or a dipole antenna, and are disposed at predetermined positions on the external surface of the subject H.
  • the receiving antennas 3a to 3h are elements of the end portion on the wireless signal receiving side in the wireless signal transmission path through which the capsule endoscope 2 and the receiving antenna unit 3 wirelessly communicate (receiving side transmission path end element) It becomes.
  • the receiving device 4 includes a receiving unit 41, an operation unit 42, a data transmitting / receiving unit 43, an output unit 44, a control unit 45, a storage unit 46, and a power supply unit 47.
  • the receiving unit 41 receives the radio signal wirelessly transmitted by the capsule endoscope 2. Specifically, image data and related information wirelessly transmitted from the capsule endoscope 2 are received via the receiving antenna unit 3. For example, the receiving unit 41 performs predetermined signal processing such as demodulation processing and A / D conversion on the received image data. The detailed configuration of the receiving unit 41 will be described later.
  • the operation unit 42 is an input device used when the user inputs various setting information and instruction information to the reception device 4.
  • the operation unit 42 is, for example, a switch, a button, or the like provided on the operation panel of the reception device 4.
  • the data transmitting / receiving unit 43 transmits the image data and the related information stored in the storage unit 46 to the processing device 5 when connected in a communicable state with the processing device 5.
  • the data transmission / reception unit 43 is configured by a communication interface such as a LAN.
  • the output unit 44 displays an image, outputs sound or light, and generates vibration.
  • the output unit 44 displays an image or emits sound, light, or vibration.
  • the output unit 44 is configured by at least one of a display such as a liquid crystal display and an organic EL display, a speaker, a light source such as an LED, and a vibration generator such as a vibration motor.
  • the control unit 45 controls each component of the receiving device 4.
  • the control unit 45 is configured using a general purpose processor such as a CPU or a dedicated processor such as various arithmetic circuits that execute a specific function such as an ASIC.
  • the storage unit 46 stores a program for operating the receiving device 4 to execute various functions, image data acquired by the capsule endoscope 2, and the like.
  • the storage unit 46 is configured by a RAM, a ROM, and the like.
  • the storage unit 46 stores a characteristic impedance adjustment information storage unit 461 that stores information for adjusting the characteristic impedance between the receiving antenna (the receiving antennas 3a to 3h) and the circuit of the receiving unit 41 in the receiving device 4. Have.
  • the power supply unit 47 supplies power to each unit of the receiving device 4.
  • the power supply unit 47 is configured using a battery made of a battery or the like.
  • Such an imaging device 4 is ejected while passing through the digestive tract, for example, after the capsule endoscope 2 is swallowed by the subject H while imaging is performed by the capsule endoscope 2 Until then, the subject H is worn and carried. During this time, the reception device 4 stores the image data received via the reception antenna unit 3 in the storage unit 46.
  • the receiving device 4 is removed from the subject H and set in a cradle 5 a (see FIG. 1) connected to the processing device 5. As a result, the receiving device 4 is connected in a communicable state with the processing device 5, and transfers (downloads) the image data and the related information stored in the storage unit 46 to the processing device 5.
  • the processing device 5 is configured using, for example, a workstation provided with a display device 6 such as a liquid crystal display.
  • the processing device 5 includes a data transmission / reception unit 51, an image processing unit 52, a control unit 53 that integrally controls the respective units, a display control unit 54, an input unit 55, and a storage unit 56.
  • the data transmission / reception unit 51 is connected to the reception device 4 via the cradle 5 a and transmits / receives data to / from the reception device 4.
  • the data transmission / reception unit 51 is configured by a communication interface such as USB or LAN.
  • the image processing unit 52 reads a predetermined program stored in a storage unit 56 described later to generate information useful for observation or diagnosis of the image data input from the data transmitting / receiving unit 51. Perform image processing.
  • the image processing unit 52 is realized by a processor such as a CPU or an ASIC.
  • the control unit 53 configures the processing device 5 based on the signal input through the input unit 55 and the image data input from the data transmission / reception unit 51 by reading various programs stored in the storage unit 56. It instructs and transfers data to each unit to control the entire operation of the processing device 5 in a centralized manner.
  • the control unit 53 is realized by a processor such as a CPU or an ASIC.
  • the display control unit 54 causes the display device 6 to display the image after performing predetermined processing such as thinning out of data according to the display range of the image on the display device 6 and gradation processing.
  • the display control unit 54 is configured by, for example, a processor such as a CPU or an ASIC.
  • the input unit 55 receives an input of information or an instruction according to the user's operation.
  • the input unit 55 is realized by an input device such as a keyboard, a mouse, a touch panel, and various switches.
  • the storage unit 56 is a program for operating the processing device 5 to execute various functions, various information used during execution of the program, and image data and related information acquired via the receiving device 4
  • the in-vivo image etc. which were produced by the image processing part 52 are memorize
  • the storage unit 56 is realized by a semiconductor memory such as a flash memory, a RAM, and a ROM, a recording medium such as an HDD, an MO, a CD-R, and a DVD-R, and a drive device for driving the recording medium.
  • FIG. 3 is a view for explaining the configuration of the receiving unit of the receiving apparatus provided in the capsule endoscope system according to the embodiment of the present invention.
  • the receiving unit 41 includes a matching unit 411, a pulse generation unit 412, a voltage detection unit 413, a phase detection unit 414, inverters 415-1 to 415-n (n is a natural number), D-type flip flops 416-1 to 416-n, A calculation unit 417, an amplification unit 418, a mixer 419, and a filter 420 are included.
  • Matching unit 411 the device (in this embodiment, at least one receiving antennas 3a ⁇ 3h) and, connected are between the configured circuit C 1 except matching unit 411 in the receiver 41 .
  • matching units 411 are individually provided for the receiving antennas 3a to 3h.
  • Matching unit 411 is capable of changing its characteristic impedance, the characteristic impedance of the device by changing its characteristic impedance based on the calculation result of the calculator 417, the characteristic impedance of the circuit C 1 Matching.
  • the matching unit 411 includes, for example, a characteristic impedance conversion circuit and a control unit that changes the circuit multiplier of the characteristic impedance conversion circuit.
  • the control unit included in the matching unit 411 is configured by, for example, a microcontroller.
  • Pulse generating unit 412 generates the characteristic impedance of the calculated reception antenna side, a pulse signal S A to be used for matching the characteristic impedance of the circuit C 1. Pulse generator 412, a pulse signal S A generated is output to the voltage detection unit 413 and the inverter 415-1 ⁇ 415-n.
  • the pulse generation unit 412 is configured using an oscillation circuit such as crystal.
  • the voltage detection unit 413 detects the voltage of the reflected signal S B (second signal) in which the pulse signal S A is reflected by the matching unit 411. In this case, although the pulse signal S A is transmitted directly to the voltage detection unit 413, the voltage detecting unit 413, detection may not be performed in the voltage of the direct transmission pulse signal S A (first signal).
  • the voltage detection unit 413 is configured by, for example, a microcontroller having a voltage sensor, a microcomputer, an analog digital converter, or the like.
  • Phase detector 414 determines a reflective signal S B is inputted to the inverter 415-1 timing, the inverter pulse signal S A is input (either of the inverters 415-1 ⁇ 415-n), the inverter from the delay time between, for detecting a phase difference between the pulse signals S a and the reflected signal S B.
  • the phase detection unit 414 is configured of, for example, a microcontroller or a microcomputer.
  • the inverters 415-1 to 415-n each have the same delay amount. Pulse signal S A or reflected signal S B is an inverter 415-1,415-2, ..., are input in the order of 415-n.
  • the inverters 415-1 to 415-n are connected in series, and the inputted signals are output to the adjacent inverters, and any of the D-type flip flops (D-type flip flops 416-1 to 416-n) connected Output to The inverters 415-1 to 415-n constitute a delay unit.
  • the D-type flip flops 416-1 to 416-n invert the signal in a predetermined D-type flip flop among the input signals, and output the inverted signal to the phase detection unit 414.
  • the D-type flip-flops 416-1 to 416-n are D-type flip-flops (for example, D-type flip-flops 416-2, 416-4,...) To which signals input to the odd-numbered inverters are input. ⁇ ) Outputs the signal as it is to the phase detection unit 414 without inverting, and the D type flip flop (for example, D type flip flop 416-1, 416-3) to which the signal input to the even-numbered inverter is input. ,...) Output the inverted signal to the phase detection unit 414.
  • the waveform of the signal input to the phase detection unit 414 is aligned by using a D-type flip flop.
  • the D-type flip flops 416-1 to 416-n output the input signal or its inverted signal to the phase detection unit 414 based on the clock input from the outside.
  • Calculation unit 417 the connection portion of the voltage which the voltage detecting unit 413 detects a phase difference the phase detector 414 detects, on the basis of the characteristic impedance of the matching portion 411, a matching unit 411 and the circuit portion C 1
  • the characteristic impedance on the receiving antenna side is calculated based on
  • the calculating unit 417 outputs the calculated characteristic impedance on the receiving antenna side to the matching unit 411.
  • the calculation unit 417 is configured by, for example, a microcontroller or a microcomputer.
  • the matching unit 411 acquires the characteristic impedance from the calculation unit 417, with reference to the change value of the characteristic impedance conversion circuit is determined based on the Smith chart, the characteristic impedance of the circuit C 1, the receiving antenna side characteristic impedance And changes its own characteristic impedance so as to match, and feeds back the changed characteristic impedance to the calculation unit 417.
  • the above-described change values are stored in advance in the characteristic impedance adjustment information storage unit 461, for example, as a table in which each change value is associated with the characteristic impedance.
  • FIG. 4 is a diagram showing a characteristic impedance adjustment and calculation process performed by the capsule endoscope system according to the embodiment of the present invention by a Smith chart suitable for visualizing impedance change of a high frequency circuit.
  • Matching unit 411 performs a characteristic impedance input from the calculation unit 417, a Smith chart 462 shown in FIG. 4, the characteristic impedance adjusted to the characteristic impedance is within acceptable region R 1.
  • the characteristic impedance of the calculated by the calculation unit 417 receiving antenna side to fall within the allowable region R 1, to adjust the characteristic impedance by the matching unit 411 and the circuit section C 1.
  • the allowable range R 1 is calculated based on, for example, a constant noise index circle calculated from the minimum noise index of the amplification unit 418.
  • the noise figure is the ratio of the input S / N to the output S / N at the amplifier 418. Further, the allowable region R 1 in the Smith chart 462, use conditions of the receiving apparatus 4 and the capsule endoscope 2, varies depending on the purpose or the like.
  • the matching unit 411 is not limited to the Smith chart described above, but may store in advance in the characteristic impedance adjustment information storage unit 461 a table in which the value fed back from the calculation unit 417 is associated with the matching method. Characteristic impedance adjustment may be performed with reference to this table.
  • the amplification unit 418 amplifies the radio signal (image data) input from the reception antenna via the matching unit 411 at a preset amplification factor.
  • the amplification unit 418 is configured using, for example, a low noise amplifier.
  • the mixer 419 converts the frequency of the signal amplified by the amplification unit 418 into a frequency suitable for the circuit in the subsequent stage.
  • the mixer 419 is configured using, for example, a diode.
  • the filter 420 passes only signals of a predetermined frequency band.
  • the signal that has passed through the filter 420 is output to the control unit 45.
  • the receiving unit 41 measures the received signal strength indicator (RSSI) of the wireless signals received by the receiving antennas 3a to 3h.
  • the receiving unit 41 measures the reception strength at the time of receiving the wireless signal for each of the receiving antennas 3a to 3h. At this time, all measured reception strengths and the image data received by the receiving unit 41 may be associated with each other and stored in the storage unit 46.
  • the receiving unit 41 selects the antenna with the highest reception strength among the reception antennas 3a to 3h based on the reception strength, and receives the radio signal received by the selected antenna.
  • the radio signal received at this time is a signal that has passed through the filter 420.
  • FIG. 5 is a view for explaining the configuration of the wireless communication unit of the capsule endoscope provided in the capsule endoscope system according to the embodiment of the present invention.
  • the wireless communication unit 24 includes a matching unit 241, a pulse generation unit 242, a voltage detection unit 243, a phase detection unit 244, inverters 245-1 to 245-m (m is a natural number), and D-type flip flops 246-1 to 246-m. , Calculation unit 247, and amplification unit 248.
  • Matching unit 241 includes a device (transmitting antenna 25 in this embodiment), is connected between the circuit portion C 2 configured except matching unit 241 in the wireless communication unit 24.
  • Matching unit 241 is capable of changing its characteristic impedance, the characteristic impedance of the transmission antenna 25 by changing its characteristic impedance based on the calculation result of the calculator 247, the characteristics of circuit portion C 2 Match the impedance.
  • the matching unit 241 includes, for example, a characteristic impedance conversion circuit and a control unit that changes the circuit multiplier of the characteristic impedance conversion circuit.
  • the control unit included in the matching unit 411 is configured by, for example, a microcontroller.
  • Pulse generating unit 242 generates the characteristic impedance of the transmission antenna 25, a pulse signal S C to be used for matching the characteristic impedance of the circuit C 2.
  • Pulse generator 242, a pulse signal S C generated is output to the voltage detection unit 243 and the inverter 245-1 ⁇ 245-m.
  • the pulse generation unit 242 is configured using an oscillation circuit such as crystal.
  • the voltage detection unit 243 detects the voltage of the reflected signal S D (second signal) in which the pulse signal S C is reflected by the matching unit 241. In this case, although the pulse signal S C is transmitted directly to the voltage detection unit 243, the voltage detecting unit 243, detection may not be performed in the voltage of the direct transmission pulse signal S C (first signal).
  • the voltage detection unit 243 is configured by, for example, a microcontroller having a voltage sensor, a microcomputer, an analog digital converter, or the like.
  • Phase detector 244 determines a reflective signal S D is input to the inverter 245-1 timing, the inverter pulse signal S C is inputted (either inverters 245-1 ⁇ 245-m), the inverter from the delay time between, for detecting a phase difference between the pulse signal S C and the reflected signal S D.
  • the phase detection unit 244 is configured of, for example, a microcontroller or a microcomputer.
  • the inverters 245-1 to 245-m each have the same delay amount. Pulse signal S C or reflected signal S D, the inverter 245-1,245-2, ..., it is input in the order of 245-m.
  • the inverters 245-1 to 245-m are connected in series, and output the input signal to the adjacent inverters, and at the same time, any of the D-type flip flops (D-type flip flops 246-1 to 246-m) connected.
  • Output to Inverters 245-1 to 245-m constitute a delay unit.
  • the D-type flip flops 246-1 to 246-m invert the signal in a predetermined D-type flip flop among the input signals, and output the inverted signal to the phase detection unit 244.
  • the D-type flip-flops 246-1 to 246-m receive D-type flip-flops (for example, D-type flip-flops 246-2, 246-4,...) To which signals input to the odd-numbered inverters are input. ⁇ ) Outputs the signal as it is to the phase detection unit 244 without inverting, and D-type flip-flops (eg, D-type flip-flops 246-1 and 246-3) to which signals input to the even-numbered inverters are input. ,...) Output the inverted signal to the phase detection unit 244.
  • the D-type flip flops 246-1 to 246-m output the input signal or its inverted signal to the phase detection unit 244 based on the clock input from the outside.
  • Calculation unit 247 the connection portion of the voltage which the voltage detecting unit 243 detects a phase difference the phase detector 244 detects, on the basis of the characteristic impedance of the matching portion 241, a matching unit 241 and the circuit portion C 2
  • the characteristic impedance of the transmitting antenna 25 is calculated based on the following equation.
  • the calculating unit 247 outputs the calculated characteristic impedance on the transmitting antenna 25 side to the matching unit 241.
  • the calculation unit 247 is configured of, for example, a microcontroller or a microcomputer.
  • the matching unit 241 when the calculation unit 247 obtains a characteristic impedance, with reference to the change value of the characteristic impedance conversion circuit is determined based on the procedure as described above, the characteristic impedance of the circuit C 2, transmitting antennas 25
  • the characteristic impedance of one's own is changed so as to match with the characteristic impedance of and the characteristic impedance after the change is fed back to the calculation unit 247.
  • the above-described change values are stored in advance in the memory 26 as a table in which each change value is associated with the characteristic impedance.
  • the matching unit 241 performs characteristic impedance adjustment so that the characteristic impedance input from the calculation unit 247 falls within the allowable range in the Smith chart as described above.
  • the characteristic impedance of the calculated by the calculation unit 247 transmitting antenna 25 side so as to fall in the allowable region, to adjust the characteristic impedance by the matching unit 241 and the circuit portion C 2.
  • the allowable range is calculated based on, for example, a constant power gain circle calculated from the maximum available power gain of the amplification unit 248.
  • the maximum available power gain is the maximum power gain obtained when the characteristic impedance is matching.
  • the allowable area in the Smith chart showing the characteristic impedance adjustment and calculation processing by the radio communication unit 24 also, use conditions of the receiving apparatus 4 and the capsule endoscope 2, varies depending on the purpose or the like. In some cases, there may an allowable region R 1 of the receiver 41 in the Smith chart, and the allowable area of the wireless communication unit 24 matches.
  • the amplification unit 248 amplifies the image data captured by the imaging unit 21 at a preset amplification factor, and outputs the amplified image data to the transmission antenna 25 via the matching unit 241.
  • the amplification unit 248 is configured using, for example, a power amplifier.
  • FIG. 6 is a flowchart showing characteristic impedance adjustment processing performed by the capsule endoscope system according to the embodiment of the present invention.
  • characteristic impedance adjustment processing by the wireless communication unit 24 which is executed when the capsule endoscope 2 is in operation will be described as an example.
  • the characteristic impedance adjustment process is similarly performed in the receiving unit 41 as well.
  • the pulse generation unit 242 determines whether it is a pulse transmission time (step S101). The pulse generation unit 242 determines whether a predetermined time has elapsed from the time when the pulse signal was generated last time. Here, when it is determined that the pulse generation unit 242 does not have a pulse transmission time (step S101: No), the determination of the pulse transmission time is repeated. On the other hand, when it is determined that it is the pulse transmission time (step S101: Yes), the pulse generation unit 242 generates (transmits) a pulse signal (step S102). In the present embodiment, a pulse of a predetermined voltage is generated once.
  • step S103 the voltage detecting unit 243, the pulse signal S C detects the voltage of the reflected signal S D reflected by the matching unit 241.
  • step S104 the phase detector 244, the reflected signal S D and inverter is input (inverter 245-1), the inverter (inverter 245-1 to 245 pulse signal S C is input at the timing from either) of -m, it detects the phase difference between the pulse signal S C and the reflected signal S D.
  • step S103 mentioned above and step S104 may be performed simultaneously.
  • step S105 the calculation unit 247 uses the voltage detected by the voltage detection unit 243 in step S103, the phase difference detected by the phase detection unit 244 in step S104, and the characteristic impedance of the matching unit 241. to, to calculate the characteristic impedance of the transmission antenna 25 side connection portion between the matching unit 241 and the circuit portion C 2 as a base point.
  • the calculating unit 247 outputs the calculated characteristic impedance on the transmitting antenna 25 side to the matching unit 241.
  • step S106 the matching unit 241 determines whether the characteristic impedance of the transmission antenna 25 matches the characteristic impedance of the circuit unit C 2 based on the characteristic impedance acquired from the calculation unit 247. Do. At this time, the matching unit 241, if the characteristic impedance of the transmission antenna 25 and the circuit portion C 2 is determined not to match (step S106: No), the process proceeds to step S107.
  • step S107 the matching unit 241 performs characteristic impedance matching. As described above, the matching unit 241 changes its characteristic impedance to match the characteristic impedance of the transmitting antenna 25 with the characteristic impedance of the circuit unit C 2 with reference to the table stored in the memory 26. Do. Also, the matching unit 241 feeds back the changed characteristic impedance to the calculation unit 247. Thereafter, the process returns to step S102, and the above-described process is repeated.
  • step S106 determines that the characteristic impedances of the transmission antenna 25 and the circuit of the wireless communication unit 24 match.
  • step S108 the wireless communication unit 24 wirelessly transmits the image data via the transmission antenna 25.
  • matching is performed at timing when the transmitting antenna 25 does not transmit image data.
  • matching is executed at timing when the receiving antennas 3a to 3h do not receive image data.
  • step S109 the wireless communication unit 24 determines whether to continue the above-described characteristic impedance adjustment process. For example, if the wireless communication unit 24 has not received an instruction to end the process via the receiving device 4, the wireless communication unit 24 determines to continue the process. If the wireless communication unit 24 determines that the characteristic impedance adjustment process is to be continued (Yes at Step S109), the process returns to Step S101, and the above-described process is repeated. On the other hand, when the wireless communication unit 24 determines that the characteristic impedance adjustment process is not to be continued (step S109: No), the above-described process ends.
  • the receiving unit 41 and the wireless communication unit 24 the phase difference between the pulse signal generated by the pulse generating unit and the reflection signal of the pulse signal reflected by the matching unit, and the voltage of the reflection signal.
  • the characteristic impedance of the antenna By calculating the characteristic impedance of the antenna on the basis of the connection portion between the matching unit and the circuit unit on the basis of the detected phase difference and voltage, and feeding back the calculation result.
  • the characteristic impedance of the circuit of the reception unit 41 or the wireless communication unit 24 and the antenna connected to each of the circuits is adjusted. According to the present embodiment, since the characteristic impedance between the circuit and the antenna is adjusted, stable wireless communication can be performed between devices that transmit and receive data.
  • an inverter is used as a configuration for detecting a phase difference.
  • an RC circuit configured using a resistor and a capacitor
  • an LC circuit configured using a coil and a capacitor Or may be a buffer.
  • the characteristic impedance is calculated for each receiving antenna in the receiving unit 41 and the characteristic impedance is matched for each receiving antenna individually (see, for example, FIG. 3).
  • one matching unit connected to a plurality of receiving antennas is provided as the receiving unit 41, the characteristic impedance of all the plurality of receiving antennas is calculated, and the characteristic impedance is matched to the entire receiving antenna. You may do so.
  • FIG. 7 is a view for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the first modification of the embodiment of the present invention.
  • the capsule endoscope system according to the first modification is the same as the capsule endoscope system 1 described above, and thus the description thereof is omitted.
  • processing different from that of the above-described embodiment will be described with reference to FIG.
  • the pulse generation unit 242 generates (transmits) a plurality of pulses having different input pulse voltages. Specifically, the pulse generator 242 generates a pulse signal three times while changing the output. At this time, the phase and pulse width of each pulse signal are adjusted to be the same.
  • the voltage detection unit 243 detects three sets of voltages in which the voltage of the pulse signal (input pulse voltage) and the voltage of the reflection signal (reflected wave voltage) are set (step S103).
  • the voltage detection unit 243 calculates an approximate straight line (approximated straight line L 1 shown in FIG. 7) indicating the relationship between the input pulse voltage and the reflected wave voltage from the three sets of detection results.
  • the voltage detection unit 243 reads the reflected wave voltage at the input pulse voltage set in advance from the approximate straight line and outputs it to the calculation unit 247. For example, as shown in FIG. 7, the reflected wave voltage V re at the input pulse voltage V in having an intermediate value among the three input pulse voltages is read.
  • the input pulse voltage may acquire the voltage of the pulse generated by the pulse generator 242, and the voltage detector 243 may detect only the voltage of the reflection signal.
  • phase detection unit 244 detects the phase difference between the pulse signal and the reflection signal three times (step S104).
  • the phase and the pulse width are adjusted to be the same, so the phase difference is almost the same.
  • phase detector 244 any of the three phase difference, for example, may output a phase difference calculation unit 247 in the same input pulse voltage V in the input pulse voltage, three phase The average value of these may be calculated and output to the calculation unit 247.
  • step S105 the calculation unit 247 calculates the characteristic impedance of the circuit of the wireless communication unit 24 based on the detection result of the voltage detection unit 243 and the detection result of the phase detection unit 244.
  • the subsequent steps are the same as in the above-described embodiment.
  • the voltage detection unit 243 detects a plurality of pulses whose input pulse voltages are different from each other, and the calculation unit 247 calculates the characteristic impedance based on the detection result.
  • the detection accuracy of the voltage to be detected is improved as compared with the above-described embodiment, and as a result, the calculation accuracy of the characteristic impedance can be improved.
  • FIG. 8 is a diagram for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the second modification of the embodiment of the present invention.
  • the capsule endoscope system according to the second modification is the same as the capsule endoscope system 1 described above, and thus the description thereof is omitted.
  • processing different from that of the above-described embodiment will be described with reference to FIG.
  • the pulse generation unit 242 generates (transmits) a plurality of pulses having different characteristic impedances of elements connected to the pulse generation unit. Specifically, the pulse generator 242 generates a pulse signal three times while changing the phase of the pulse signal. At this time, the input pulse voltage of each pulse signal is adjusted to be the same.
  • the phase detection unit 244 detects the phase difference between the pulse signal and the reflection signal three times (step S104).
  • the phase detection unit 244 calculates an approximate straight line (approximated straight line L 2 shown in FIG. 8) indicating the relationship between the input pulse phase and the reflected wave phase from the three sets of detection results.
  • the voltage detection unit 243 detects the voltage (reflected wave voltage) of the reflection signal of each pulse signal (step S103).
  • the input pulse voltages are adjusted to be the same, so that the reflected wave voltages to be detected are substantially the same. Therefore, the voltage detection unit 243 may output, to the calculation unit 247, a reflected wave voltage corresponding to any one of the three detection voltages, for example, the pulse signal generated for the second time, or the reflected wave.
  • An average of the voltages may be calculated, and the average value may be output to the calculation unit 247.
  • step S105 the calculation unit 247 calculates the characteristic impedance based on the detection result by the voltage detection unit 243 and the detection result by the phase detection unit 244.
  • the subsequent steps are the same as in the above-described embodiment.
  • the phase detection unit 244 detects a plurality of pulses having different characteristic impedances, and the calculation unit 247 calculates the characteristic impedance based on the detection result.
  • the detection accuracy of the phase difference to be detected can be improved as compared with the above-described embodiment, and as a result, the calculation accuracy of the characteristic impedance can be improved.
  • the pulse generation unit 242 generates pulse signals in which the input pulse voltage and the characteristic impedance are different from each other, and the calculation unit 247 performs the processing of modification 1 on the detected voltage, and the processing of modification 2 on the detected phase difference. To calculate the characteristic impedance.
  • the wireless communication unit 24 has been described as an example, but the present invention is also applicable to the receiving unit 41.
  • an executable program for each process executed by each component of the capsule endoscope, the receiving device, and the processing device of the capsule endoscope system according to the above-described embodiment can be installed or can be executed. It may be configured to be recorded in a computer readable recording medium such as a CD-ROM, a flexible disk (FD), a CD-R, a DVD and the like in the form of a file and provided, and is connected to a network such as the Internet It may be stored on a computer and configured to be provided by being downloaded via a network. Further, it may be configured to provide or distribute via a network such as the Internet.
  • a system in which a radio signal is generated and output by the capsule endoscope 2 which is a medical device has been described as an example, but a capsule type may be used if it generates and outputs a radio signal. It is not limited to the endoscope system. For example, it is also possible to apply to a system using a pacemaker or the like that is attached to a subject and can generate and output a wireless signal.
  • the communication module, the capsule endoscope, and the receiving unit according to the present invention are useful for performing stable wireless communication between devices that transmit and receive data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

This communication module is provided with a device having a first characteristic impedance, a circuit unit having a second characteristic impedance, and a matching unit, wherein the circuit unit comprises a delay unit which is formed by series-connecting a plurality of elements each having a preset delay amount, a signal generation unit which generates a signal to be transmitted to the delay unit, a phase detection unit which detects a phase difference between a first signal obtained by the signal being directly transmitted to the delay unit and a second signal obtained by the signal being reflected by the matching unit, a voltage detection unit which detects the voltage of the second signal, and a calculation unit which, on the basis of the phase difference and the voltage of the second signal, calculates a third characteristic impedance on the device side with a connection portion of the matching unit and the circuit unit as a base point, and the matching unit matches the first and second characteristic impendances on the basis of the third characteristic impedance.

Description

通信モジュール、カプセル型内視鏡及び受信ユニットCommunication module, capsule endoscope and receiving unit
 本発明は、通信モジュール、カプセル型内視鏡及び受信ユニットに関するものである。 The present invention relates to a communication module, a capsule endoscope and a receiving unit.
 従来、患者等の被検体の体内に導入されて被検体内を観察する医用観察装置として、内視鏡が広く普及している。また、近年では、カプセル型の筐体内部に撮像装置やこの撮像装置によって撮像された画像を体外に無線送信する通信装置等を備えた飲み込み型のカプセル型内視鏡が開発されている。カプセル型内視鏡は、被検体内の観察のために患者の口から飲み込まれた後、被検体から自然排出されるまでの間、たとえば食道、胃、小腸などの臓器の内部をその蠕動運動にしたがって移動し、順次撮像する機能を有する。 2. Description of the Related Art Endoscopes have been widely used as medical observation apparatuses that are introduced into the body of a subject such as a patient and observe the inside of the subject. Also, in recent years, a swallowable capsule endoscope has been developed which includes an imaging device inside the capsule casing and a communication device for wirelessly transmitting an image captured by the imaging device to the outside of the body. The capsule endoscope is swallowed from the patient's mouth for observation in the subject, and until it is naturally excreted from the subject, for example, peristalsis inside the organ such as esophagus, stomach, small intestine, etc. It has a function to move according to and to image sequentially.
 被検体内を移動する間、カプセル型内視鏡によって撮像された画像データは、順次無線通信により体外に送信され、体外のアンテナユニットを介して受信装置の内部もしくは外部に設けられたメモリに蓄積されるか、又は受信装置に設けられたディスプレイに表示される。医師又は看護師等のユーザは、メモリに蓄積された画像を、受信装置を差し込んだクレードルを経由して情報処理装置に取り込んで、この情報処理装置のディスプレイに表示させた画像や、その画像が撮像されたときのカプセル型内視鏡の位置に基づいて観察や診断を行う。 While moving in the subject, image data captured by the capsule endoscope is sequentially transmitted to the outside via wireless communication and stored in a memory provided inside or outside the receiving apparatus via the outside antenna unit. Or displayed on a display provided in the receiver. A user such as a doctor or a nurse takes in the image stored in the memory into the information processing apparatus via the cradle into which the receiving apparatus is inserted, and displays the image displayed on the display of the information processing apparatus or the image The observation and diagnosis are performed based on the position of the capsule endoscope at the time of imaging.
 カプセル型内視鏡やアンテナユニットは、各々が、画像データ等を無線送信又は受信するためのデバイスであるアンテナと、アンテナに接続する回路とを有している。無線通信を安定化するため、アンテナと回路との特性インピーダンスを調整する技術が知られている(例えば、特許文献1を参照)。 The capsule endoscope and the antenna unit each have an antenna which is a device for wirelessly transmitting or receiving image data and the like, and a circuit connected to the antenna. There is known a technique for adjusting the characteristic impedance of an antenna and a circuit in order to stabilize wireless communication (see, for example, Patent Document 1).
特開2006-129358号公報Unexamined-Japanese-Patent No. 2006-129358
 被検体内に導入されたカプセル型内視鏡や、被検体に取り付けられるアンテナユニットは、それぞれが存在している環境や、被検体の表面とアンテナユニットとの距離や、被検体内の組織とカプセル型内視鏡との距離によって特性インピーダンスが変化する。特性インピーダンスが変化すると、安定した無線通信ができないおそれがあった。 The capsule endoscope introduced into the subject, the antenna unit attached to the subject, the environment in which each is present, the distance between the surface of the subject and the antenna unit, and the tissue in the subject The characteristic impedance changes depending on the distance from the capsule endoscope. If the characteristic impedance changes, stable wireless communication may not be possible.
 本発明は、上記に鑑みてなされたものであって、データの送受信を行う装置間で安定した無線通信を行うことができる通信モジュール、カプセル型内視鏡及び受信ユニットを提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a communication module, a capsule endoscope and a receiving unit capable of performing stable wireless communication between devices that transmit and receive data. Do.
 上述した課題を解決し、目的を達成するために、本発明に係る通信モジュールは、第1の特性インピーダンスを有するデバイスと、第2の特性インピーダンスを有する回路部と、前記デバイスと前記回路部との間に接続され、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングするマッチング部と、を備え、前記回路部は、予め設定されている遅延量を有する複数の素子を直列接続してなる遅延部と、前記マッチング部と前記遅延部とに接続され、前記遅延部に向けて伝送される信号を出力する信号発生部と、前記信号が前記遅延部に直接伝送される前記第1信号と、前記信号が前記マッチング部で反射されて前記遅延部に伝送される第2信号との位相差を検出する位相検出部と、前記第2信号の電圧を検出する電圧検出部と、前記位相差と、前記第2信号の電圧とに基づいて、前記マッチング部と前記回路部との接続部分を基点とする前記デバイス側の第3の特性インピーダンスを計算する計算部と、を有し、前記マッチング部は、前記第3の特性インピーダンスに基づいて、自身の特性インピーダンスを変更することにより、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングすることを特徴とする。 In order to solve the problems described above and achieve the object, a communication module according to the present invention comprises a device having a first characteristic impedance, a circuit unit having a second characteristic impedance, the device, and the circuit unit. A matching unit connected between the first and second characteristic impedances for matching the first characteristic impedance and the second characteristic impedance, wherein the circuit unit serially connects a plurality of elements each having a preset delay amount. A signal generating unit connected to the delay unit, the matching unit, and the delay unit and outputting a signal transmitted toward the delay unit; and the signal generating unit directly transmitting the signal to the delay unit A phase detection unit that detects a phase difference between one signal and a second signal that is reflected by the matching unit and transmitted to the delay unit; and a voltage of the second signal is detected. A calculation unit that calculates a third characteristic impedance on the device side based on the connection portion between the matching unit and the circuit unit based on the voltage detection unit, the phase difference, and the voltage of the second signal. And the matching unit matches the first characteristic impedance with the second characteristic impedance by changing its own characteristic impedance based on the third characteristic impedance. It features.
 また、本発明に係る通信モジュールは、上記発明において、前記デバイスは、受信側伝送路端部素子であり、前記回路部は、前記受信側伝送路端部素子が受信した受信信号を増幅する第1増幅部を有し、前記マッチング部は、前記第1増幅部における最小雑音指数から算出される定雑音指数円に基づいて決定される範囲内において、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングすることを特徴とする。 Further, in the communication module according to the present invention according to the above-mentioned invention, the device is a receiving side transmission path end element, and the circuit unit amplifies the reception signal received by the receiving side transmission path end element The matching unit is configured to include the first characteristic impedance and the second characteristic impedance within a range determined based on a constant noise index circle calculated from the minimum noise index in the first amplification unit. It is characterized by matching with the characteristic impedance.
 また、本発明に係る通信モジュールは、上記発明において、前記デバイスは、送信側伝送路端部素子であり、前記回路部は、前記送信側伝送路端部素子が送信する送信信号を増幅する第2増幅部を有し、前記マッチング部は、前記第2増幅部における最大有能電力利得から算出される定電力利得円に基づいて決定される範囲内において、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングすることを特徴とする。 In the communication module according to the present invention according to the above-mentioned invention, the device is a transmission side transmission path end element, and the circuit unit amplifies a transmission signal transmitted by the transmission side transmission path end element. A second amplification unit, wherein the matching unit includes the first characteristic impedance and the second characteristic impedance within a range determined based on a constant power gain circle calculated from a maximum available power gain in the second amplification unit. It is characterized by matching with 2 characteristic impedances.
 また、本発明に係る通信モジュールは、上記発明において、前記マッチング部は、前記受信側伝送路端部素子が前記受信信号を受信していないタイミングにおいて、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングすることを特徴とする。 Further, in the communication module according to the present invention according to the above-mentioned invention, the matching unit may be configured to receive the first characteristic impedance and the second characteristic impedance at timing when the receiving-side transmission path end element does not receive the reception signal. It is characterized by matching with the characteristic impedance.
 また、本発明に係る通信モジュールは、上記発明において、前記マッチング部は、前記送信側伝送路端部素子が前記送信信号を送信していないタイミングにおいて、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングすることを特徴とする。 Further, in the communication module according to the present invention according to the above-mentioned invention, the matching unit may be configured to transmit the first characteristic impedance and the second characteristic impedance at timing when the transmission-side transmission path end element does not transmit the transmission signal. It is characterized by matching with the characteristic impedance.
 また、本発明に係る通信モジュールは、上記発明において、前記素子は、インバータであることを特徴とする。 In the communication module according to the present invention as set forth in the above invention, the element is an inverter.
 また、本発明に係る通信モジュールは、上記発明において、前記受信側伝送路端部素子は、被検体の体表に取り付けられ、カプセル型内視鏡から送信された無線信号を受信する受信アンテナであることを特徴とする。 Further, in the communication module according to the present invention, in the above-mentioned invention, the receiving side transmission path end element is a receiving antenna attached to the body surface of the subject and receiving a wireless signal transmitted from the capsule endoscope. It is characterized by
 また、本発明に係る通信モジュールは、上記発明において、前記送信側伝送路端部素子は、カプセル型内視鏡に設けられ、無線信号を送信する送信アンテナであることを特徴とする。 In the communication module according to the present invention as set forth in the above invention, the transmission side transmission path end element is a transmitting antenna which is provided in the capsule endoscope and transmits a radio signal.
 また、本発明に係るカプセル型内視鏡は、上記発明に係る通信モジュール、を備えることを特徴とする。 A capsule endoscope according to the present invention includes the communication module according to the above invention.
 また、本発明に係る受信ユニットは、上記発明に係る通信モジュール、を備えることを特徴とする。 A receiving unit according to the present invention is characterized by comprising the communication module according to the above invention.
 本発明によれば、データの送受信を行う装置間で安定した無線通信を行うことができるという効果を奏する。 According to the present invention, there is an effect that stable wireless communication can be performed between devices that transmit and receive data.
図1は、本発明の一実施の形態に係るカプセル型内視鏡システムの概略構成を示す模式図である。FIG. 1 is a schematic view showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention. 図2は、本発明の一実施の形態に係るカプセル型内視鏡システムの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention. 図3は、本発明の一実施の形態に係るカプセル型内視鏡システムが備える受信装置の受信部の構成を説明する図である。FIG. 3 is a view for explaining the configuration of the receiving unit of the receiving apparatus provided in the capsule endoscope system according to the embodiment of the present invention. 図4は、本発明の一実施の形態に係るカプセル型内視鏡システムが行う特性インピーダンス調整及び計算処理を、高周波回路のインピーダンス変化の可視化に好適なスミスチャートで示した図である。FIG. 4 is a diagram showing a characteristic impedance adjustment and calculation process performed by the capsule endoscope system according to the embodiment of the present invention by a Smith chart suitable for visualizing impedance change of a high frequency circuit. 図5は、本発明の一実施の形態に係るカプセル型内視鏡システムが備えるカプセル型内視鏡の無線通信部の構成を説明する図である。FIG. 5 is a view for explaining the configuration of the wireless communication unit of the capsule endoscope provided in the capsule endoscope system according to the embodiment of the present invention. 図6は、本発明の一実施の形態に係るカプセル型内視鏡システムが行う特性インピーダンス調整処理を示すフローチャートである。FIG. 6 is a flowchart showing characteristic impedance adjustment processing performed by the capsule endoscope system according to the embodiment of the present invention. 図7は、本発明の実施の形態の変形例1に係るカプセル型内視鏡システムが行う特性インピーダンス調整処理を説明する図である。FIG. 7 is a view for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the first modification of the embodiment of the present invention. 図8は、本発明の実施の形態の変形例2に係るカプセル型内視鏡システムが行う特性インピーダンス調整処理を説明する図である。FIG. 8 is a diagram for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the second modification of the embodiment of the present invention.
 以下に、本発明に係る実施の形態として、通信モジュールを含み、医療用のカプセル型内視鏡を使用するカプセル型内視鏡システムについて説明する。なお、図面の記載において、同一部分には同一の符号を付している。また、図面は模式的なものであり、各部材の厚みと幅との関係、各部材の比率などは、現実と異なることに留意する必要がある。 Hereinafter, as an embodiment according to the present invention, a capsule endoscope system including a communication module and using a medical capsule endoscope will be described. In the description of the drawings, the same parts are denoted by the same reference numerals. The drawings are schematic, and it should be noted that the relationship between the thickness and the width of each member, the ratio of each member, and the like are different from reality.
(実施の形態)
 図1は、本発明の一実施の形態に係るカプセル型内視鏡システムの概略構成を示す模式図である。図1に示すように、実施の形態1に係るカプセル型内視鏡システム1は、被検体H内に導入されて該被検体H内を撮像することにより画像データを生成し、搬送波に重畳した無線信号を、電波にのせて送信する医療装置であるカプセル型内視鏡2と、カプセル型内視鏡2から送信された無線信号を、被検体Hに装着された複数の受信アンテナ3a~3hを備えた受信アンテナユニット3を介して受信する受信装置4と、カプセル型内視鏡2が生成した画像データを、クレードル5aを介して受信装置4から取り込み、該画像データを処理して、被検体H内の画像を生成する処理装置5と、を備える。処理装置5によって生成された画像は、例えば、表示装置6から表示出力される。本明細書では、カプセル型内視鏡2によって生成される画像において、カプセル型内視鏡2から処理装置5まで伝送するための伝送用の形式に変換されている状態の画像を画像データと呼ぶ。
Embodiment
FIG. 1 is a schematic view showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention. As shown in FIG. 1, the capsule endoscope system 1 according to the first embodiment generates image data by being introduced into a subject H and imaging the inside of the subject H, and superimposing it on a carrier wave. A capsule endoscope 2 which is a medical device for transmitting a radio signal on radio waves and a plurality of receiving antennas 3a to 3h mounted on a subject H, the radio signal transmitted from the capsule endoscope 2 Image data generated by the capsule endoscope 2 is received from the receiving device 4 via the cradle 5a, and the image data is processed to be received. And a processing device 5 for generating an image in the sample H. The image generated by the processing device 5 is displayed and output from the display device 6, for example. In this specification, in the image generated by the capsule endoscope 2, an image in a state of being converted to a transmission format for transmission from the capsule endoscope 2 to the processing device 5 is referred to as image data. .
 カプセル型内視鏡2は、被検体Hに嚥下された後、臓器の蠕動運動等によって被検体Hの消化管内を移動しつつ、生体部位(食道、胃、小腸、及び大腸等)を、予め設定されている基準の周期(例えば0.5秒周期)で順次撮像する。そして、この撮像動作により取得された画像データ及び関連情報を受信装置4に順次無線送信する。 After being swallowed by the subject H, the capsule endoscope 2 moves in the digestive tract of the subject H by peristaltic movement of an organ or the like, and in advance the living body site (esophagus, stomach, small intestine, large intestine, etc.) Images are sequentially taken at a set reference cycle (for example, 0.5 second cycle). Then, the image data and the related information acquired by this imaging operation are sequentially wirelessly transmitted to the receiving device 4.
 図2は、本発明の一実施の形態に係るカプセル型内視鏡システムの概略構成を示すブロック図である。カプセル型内視鏡2は、撮像部21、照明部22、制御部23、無線通信部24、送信アンテナ25、メモリ26、及び電源部27を備える。カプセル型内視鏡2は、被検体Hが嚥下可能な大きさのカプセル形状の筐体に上述した各構成部品を内蔵した装置である。 FIG. 2 is a block diagram showing a schematic configuration of a capsule endoscope system according to an embodiment of the present invention. The capsule endoscope 2 includes an imaging unit 21, an illumination unit 22, a control unit 23, a wireless communication unit 24, a transmission antenna 25, a memory 26, and a power supply unit 27. The capsule endoscope 2 is a device in which the above-described components are incorporated in a capsule-shaped casing of a size that allows the subject H to swallow.
 撮像部21は、例えば、受光面に結像された光学像から被検体H内を撮像した画像データを生成して出力する撮像素子と、該撮像素子の受光面側に配設された対物レンズ等の光学系とを含む。撮像素子は、被検体Hからの光を受光する複数の画素がマトリックス状に配列され、画素が受光した光に対して光電変換を行うことによって、画像データを生成する。撮像部21は、マトリックス状に配列されている複数の画素に対して、水平ラインごとに画素値を読み出して、該水平ラインごとに同期信号が付与された複数のラインデータを含む画像データを生成する。撮像部21は、CCD(Charge Coupled Device)撮像素子や、CMOS(Complementary Metal Oxide Semiconductor)撮像素子によって構成される。 The imaging unit 21 generates, for example, image data obtained by imaging the inside of the subject H from an optical image formed on a light receiving surface and outputs the image data, and an objective lens disposed on the light receiving surface side of the image pickup device And optical systems. In the imaging device, a plurality of pixels that receive light from the subject H are arranged in a matrix, and photoelectric conversion is performed on the light received by the pixels to generate image data. The imaging unit 21 reads out pixel values for each horizontal line with respect to a plurality of pixels arranged in a matrix, and generates image data including a plurality of line data to which a synchronization signal is added for each horizontal line. Do. The imaging unit 21 is configured by a charge coupled device (CCD) imaging device or a complementary metal oxide semiconductor (CMOS) imaging device.
 照明部22は、照明光である白色光を発生する白色LED(Light Emitting Diode)等によって構成される。なお、白色LEDのほか、出射波長帯域の異なる複数のLEDやレーザー光源等の光を合波することで白色光を生成する構成としてもよいし、キセノンランプや、ハロゲンランプ等を用いて構成するようにしてもよい。 The illumination unit 22 is configured of a white light emitting diode (LED) or the like that generates white light that is illumination light. In addition to white LEDs, white light may be generated by multiplexing light from a plurality of LEDs having different emission wavelength bands or laser light sources, etc. Alternatively, a xenon lamp, a halogen lamp, or the like may be used. You may do so.
 制御部23は、カプセル型内視鏡2の各構成部品の動作処理の制御を行う。例えば、撮像部21が撮像処理を行う場合には、撮像素子に対する露光及び読み出し処理を実行するように撮像部21を制御するとともに、照明部22に対し、撮像部21の露光タイミングに応じて照明光を照射するように制御する。また、制御部23は、撮像部21が撮像した画像データの画素値(輝度値)から、次に撮像する際の照明部22の発光時間を決定し、その決定した発光時間で照明光を出射するように照明部22を制御する。このように、制御部23によって撮像した画像データをもとに照明部22による発光時間が制御されており、撮像の都度、発光時間が変わる場合がある。制御部23は、CPU(Central Processing Unit)等の汎用プロセッサやASIC(Application Specific Integrated Circuit)等の特定の機能を実行する各種演算回路等の専用プロセッサを用いて構成される。 The control unit 23 controls operation processing of each component of the capsule endoscope 2. For example, when the imaging unit 21 performs imaging processing, the imaging unit 21 is controlled to execute exposure and readout processing on the imaging device, and illumination of the illumination unit 22 according to the exposure timing of the imaging unit 21 is performed. Control to emit light. Further, the control unit 23 determines the light emission time of the illumination unit 22 at the next imaging time from the pixel value (luminance value) of the image data captured by the imaging unit 21 and emits the illumination light with the determined light emission time. The illumination unit 22 is controlled to do this. As described above, the light emission time by the illumination unit 22 is controlled based on the image data captured by the control unit 23, and the light emission time may change each time imaging is performed. The control unit 23 is configured using a general purpose processor such as a central processing unit (CPU) or a dedicated processor such as various arithmetic circuits that execute a specific function such as an application specific integrated circuit (ASIC).
 無線通信部24は、撮像部21から出力された画像データに変調処理を施して、外部に送信する。無線通信部24は、撮像部21から出力された画像データに対してA/D変換及び所定の信号処理を施し、デジタル形式の画像データを取得し、関連情報とともに搬送波に重畳して、送信アンテナ25から外部に無線送信する。関連情報には、カプセル型内視鏡2の個体を識別するために割り当てられた識別情報(例えばシリアル番号)等が含まれる。無線通信部24の詳細構成については、後述する。なお、送信アンテナ25は、カプセル型内視鏡2と受信アンテナユニット3とが無線通信する無線信号の伝送路において、無線信号を送信する側の端部の素子(送信側伝送路端部素子)となる。 The wireless communication unit 24 performs modulation processing on the image data output from the imaging unit 21 and transmits the image data to the outside. The wireless communication unit 24 performs A / D conversion and predetermined signal processing on the image data output from the imaging unit 21 to obtain digital format image data, superimposes it on a carrier together with related information, and transmits the transmission antenna. Radio transmission from 25 to the outside. The related information includes identification information (for example, a serial number) assigned to identify the individual of the capsule endoscope 2 and the like. The detailed configuration of the wireless communication unit 24 will be described later. The transmitting antenna 25 is an element at the end of the wireless signal transmission side in the wireless signal transmission path in which the capsule endoscope 2 and the receiving antenna unit 3 wirelessly communicate (transmission side transmission path end element) It becomes.
 メモリ26は、制御部23が各種動作を実行するための実行プログラム及び制御プログラム並びに閾値等のパラメータを記憶する。また、メモリ26は、無線通信部24において信号処理が施された画像データ等を一時的に記憶してもよい。メモリ26は、RAM(Random Access Memory)、ROM(Read Only Memory)等によって構成される。 The memory 26 stores an execution program and a control program for the control unit 23 to execute various operations, and parameters such as a threshold. In addition, the memory 26 may temporarily store image data and the like subjected to signal processing in the wireless communication unit 24. The memory 26 is configured by a random access memory (RAM), a read only memory (ROM), and the like.
 電源部27は、ボタン電池等からなるバッテリと、各部に電力を供給する電源回路と、当該電源部27のオンオフ状態を切り替える電源スイッチとを含み、電源スイッチがオンとなった後、カプセル型内視鏡2内の各部に電力を供給する。なお、電源スイッチは、例えば外部の磁力によってオンオフ状態が切り替えられるリードスイッチからなり、カプセル型内視鏡2の使用前(被検体Hが嚥下する前)に、該カプセル型内視鏡2に外部から磁力を印加することによってオン状態に切り替えられる。 The power supply unit 27 includes a battery formed of a button battery or the like, a power supply circuit for supplying power to each unit, and a power supply switch for switching the on / off state of the power supply unit 27. Power is supplied to each part in the endoscope 2. The power switch is, for example, a reed switch whose on / off state is switched by an external magnetic force, and is external to the capsule endoscope 2 before using the capsule endoscope 2 (before the subject H swallows). Can be switched on by applying a magnetic force.
 受信アンテナユニット3は、複数(図1においては8個)の受信アンテナ3a~3hを有する。受信アンテナ3a~3hは、例えばループアンテナ又はダイポールアンテナを用いて実現され、被検体Hの体外表面上の所定位置に配置される。受信アンテナ3a~3hは、カプセル型内視鏡2と受信アンテナユニット3とが無線通信する無線信号の伝送路において、無線信号を受信する側の端部の素子(受信側伝送路端部素子)となる。 The receiving antenna unit 3 has a plurality of (eight in FIG. 1) receiving antennas 3a to 3h. The receiving antennas 3a to 3h are realized using, for example, a loop antenna or a dipole antenna, and are disposed at predetermined positions on the external surface of the subject H. The receiving antennas 3a to 3h are elements of the end portion on the wireless signal receiving side in the wireless signal transmission path through which the capsule endoscope 2 and the receiving antenna unit 3 wirelessly communicate (receiving side transmission path end element) It becomes.
 受信装置4は、受信部41、操作部42、データ送受信部43、出力部44、制御部45、記憶部46、及び電源部47を備える。 The receiving device 4 includes a receiving unit 41, an operation unit 42, a data transmitting / receiving unit 43, an output unit 44, a control unit 45, a storage unit 46, and a power supply unit 47.
 受信部41は、カプセル型内視鏡2が無線送信した無線信号を受信する。具体的には、カプセル型内視鏡2から無線送信された画像データ及び関連情報を、受信アンテナユニット3を介して受信する。受信部41は、例えば、受信した画像データに対し、復調処理やA/D変換などの所定の信号処理を施す。受信部41の詳細な構成については後述する。 The receiving unit 41 receives the radio signal wirelessly transmitted by the capsule endoscope 2. Specifically, image data and related information wirelessly transmitted from the capsule endoscope 2 are received via the receiving antenna unit 3. For example, the receiving unit 41 performs predetermined signal processing such as demodulation processing and A / D conversion on the received image data. The detailed configuration of the receiving unit 41 will be described later.
 操作部42は、ユーザが当該受信装置4に対して各種設定情報や指示情報を入力する際に用いられる入力デバイスである。操作部42は、例えば受信装置4の操作パネルに設けられたスイッチ、ボタン等である。 The operation unit 42 is an input device used when the user inputs various setting information and instruction information to the reception device 4. The operation unit 42 is, for example, a switch, a button, or the like provided on the operation panel of the reception device 4.
 データ送受信部43は、処理装置5と通信可能な状態で接続された際に、記憶部46に記憶された画像データ及び関連情報を処理装置5に送信する。データ送受信部43は、LAN等の通信インタフェースで構成される。 The data transmitting / receiving unit 43 transmits the image data and the related information stored in the storage unit 46 to the processing device 5 when connected in a communicable state with the processing device 5. The data transmission / reception unit 43 is configured by a communication interface such as a LAN.
 出力部44は、画像の表示や、音又は光の出力、振動の発生を行う。出力部44は、画像を表示したり、音、光、振動を発したりする。出力部44は、液晶ディスプレイ、有機ELディスプレイ等のディスプレイと、スピーカーと、LED等の光源と、振動モータなどの振動発生器とのうちの少なくとも一つによって構成される。 The output unit 44 displays an image, outputs sound or light, and generates vibration. The output unit 44 displays an image or emits sound, light, or vibration. The output unit 44 is configured by at least one of a display such as a liquid crystal display and an organic EL display, a speaker, a light source such as an LED, and a vibration generator such as a vibration motor.
 制御部45は、受信装置4の各構成部を制御する。制御部45は、CPU等の汎用プロセッサやASIC等の特定の機能を実行する各種演算回路等の専用プロセッサを用いて構成される。 The control unit 45 controls each component of the receiving device 4. The control unit 45 is configured using a general purpose processor such as a CPU or a dedicated processor such as various arithmetic circuits that execute a specific function such as an ASIC.
 記憶部46は、受信装置4を動作させて種々の機能を実行させるためのプログラムや、カプセル型内視鏡2により取得された画像データ等を記憶する。記憶部46は、RAM、ROM等によって構成される。記憶部46は、受信装置4において、受信アンテナ(受信アンテナ3a~3h)と、受信部41が有する回路との間の特性インピーダンスを調整するための情報を記憶する特性インピーダンス調整情報記憶部461を有する。 The storage unit 46 stores a program for operating the receiving device 4 to execute various functions, image data acquired by the capsule endoscope 2, and the like. The storage unit 46 is configured by a RAM, a ROM, and the like. The storage unit 46 stores a characteristic impedance adjustment information storage unit 461 that stores information for adjusting the characteristic impedance between the receiving antenna (the receiving antennas 3a to 3h) and the circuit of the receiving unit 41 in the receiving device 4. Have.
 電源部47は、受信装置4の各部に電力を供給する。電源部47は、電池等からなるバッテリを用いて構成される。 The power supply unit 47 supplies power to each unit of the receiving device 4. The power supply unit 47 is configured using a battery made of a battery or the like.
 このような受信装置4は、カプセル型内視鏡2により撮像が行われている間、例えば、カプセル型内視鏡2が被検体Hに嚥下された後、消化管内を通過して排出されるまでの間、被検体Hに装着されて携帯される。受信装置4は、この間、受信アンテナユニット3を介して受信した画像データを記憶部46に記憶させる。 Such an imaging device 4 is ejected while passing through the digestive tract, for example, after the capsule endoscope 2 is swallowed by the subject H while imaging is performed by the capsule endoscope 2 Until then, the subject H is worn and carried. During this time, the reception device 4 stores the image data received via the reception antenna unit 3 in the storage unit 46.
 カプセル型内視鏡2による撮像の終了後、受信装置4は被検体Hから取り外され、処理装置5と接続されたクレードル5a(図1参照)にセットされる。これにより、受信装置4は、処理装置5と通信可能な状態で接続され、記憶部46に記憶された画像データ及び関連情報を処理装置5に転送(ダウンロード)する。 After the imaging by the capsule endoscope 2 is completed, the receiving device 4 is removed from the subject H and set in a cradle 5 a (see FIG. 1) connected to the processing device 5. As a result, the receiving device 4 is connected in a communicable state with the processing device 5, and transfers (downloads) the image data and the related information stored in the storage unit 46 to the processing device 5.
 処理装置5は、例えば、液晶ディスプレイ等の表示装置6を備えたワークステーションを用いて構成される。処理装置5は、データ送受信部51、画像処理部52、各部を統括して制御する制御部53、表示制御部54、入力部55及び記憶部56を備える。 The processing device 5 is configured using, for example, a workstation provided with a display device 6 such as a liquid crystal display. The processing device 5 includes a data transmission / reception unit 51, an image processing unit 52, a control unit 53 that integrally controls the respective units, a display control unit 54, an input unit 55, and a storage unit 56.
 データ送受信部51は、クレードル5aを介して受信装置4と接続され、受信装置4との間でデータの送受信を行う。データ送受信部51は、USBやLAN等の通信インタフェースで構成される。 The data transmission / reception unit 51 is connected to the reception device 4 via the cradle 5 a and transmits / receives data to / from the reception device 4. The data transmission / reception unit 51 is configured by a communication interface such as USB or LAN.
 画像処理部52は、後述の記憶部56に記憶された所定のプログラムを読み込むことにより、データ送受信部51から入力された画像データに対し、観察や診断に有用な情報を作成するための所定の画像処理を施す。画像処理部52は、CPUやASIC等のプロセッサによって実現される。 The image processing unit 52 reads a predetermined program stored in a storage unit 56 described later to generate information useful for observation or diagnosis of the image data input from the data transmitting / receiving unit 51. Perform image processing. The image processing unit 52 is realized by a processor such as a CPU or an ASIC.
 制御部53は、記憶部56に記憶された各種プログラムを読み込むことにより、入力部55を介して入力された信号や、データ送受信部51から入力された画像データに基づいて、処理装置5を構成する各部への指示やデータの転送等を行い、処理装置5全体の動作を統括的に制御する。制御部53は、CPUやASIC等のプロセッサによって実現される。 The control unit 53 configures the processing device 5 based on the signal input through the input unit 55 and the image data input from the data transmission / reception unit 51 by reading various programs stored in the storage unit 56. It instructs and transfers data to each unit to control the entire operation of the processing device 5 in a centralized manner. The control unit 53 is realized by a processor such as a CPU or an ASIC.
 表示制御部54は、画像に対して、表示装置6における画像の表示レンジに応じたデータの間引きや、階調処理などの所定の処理を施した後、表示装置6に表示させる。表示制御部54は、例えば、CPUやASIC等のプロセッサによって構成される。 The display control unit 54 causes the display device 6 to display the image after performing predetermined processing such as thinning out of data according to the display range of the image on the display device 6 and gradation processing. The display control unit 54 is configured by, for example, a processor such as a CPU or an ASIC.
 入力部55は、ユーザの操作に応じた情報や命令の入力を受け付ける。入力部55は、例えばキーボードやマウス、タッチパネル、各種スイッチ等の入力デバイスによって実現される。 The input unit 55 receives an input of information or an instruction according to the user's operation. The input unit 55 is realized by an input device such as a keyboard, a mouse, a touch panel, and various switches.
 記憶部56は、処理装置5を動作させて種々の機能を実行させるためのプログラム、該プログラムの実行中に使用される各種情報、並びに、受信装置4を介して取得した画像データ及び関連情報、画像処理部52によって作成された体内画像等を記憶する。記憶部56は、フラッシュメモリ、RAM、ROM等の半導体メモリや、HDD、MO、CD-R、DVD-R等の記録媒体及び該記録媒体を駆動する駆動装置等によって実現される。 The storage unit 56 is a program for operating the processing device 5 to execute various functions, various information used during execution of the program, and image data and related information acquired via the receiving device 4 The in-vivo image etc. which were produced by the image processing part 52 are memorize | stored. The storage unit 56 is realized by a semiconductor memory such as a flash memory, a RAM, and a ROM, a recording medium such as an HDD, an MO, a CD-R, and a DVD-R, and a drive device for driving the recording medium.
 続いて、受信部41の構成について、図3を参照して説明する。図3は、本発明の一実施の形態に係るカプセル型内視鏡システムが備える受信装置の受信部の構成を説明する図である。受信部41は、マッチング部411、パルス発生部412、電圧検出部413、位相検出部414、インバータ415-1~415-n(nは自然数)、D型フリップフロップ416-1~416-n、計算部417、増幅部418、ミキサ419、及びフィルタ420を有する。 Subsequently, the configuration of the receiving unit 41 will be described with reference to FIG. FIG. 3 is a view for explaining the configuration of the receiving unit of the receiving apparatus provided in the capsule endoscope system according to the embodiment of the present invention. The receiving unit 41 includes a matching unit 411, a pulse generation unit 412, a voltage detection unit 413, a phase detection unit 414, inverters 415-1 to 415-n (n is a natural number), D-type flip flops 416-1 to 416-n, A calculation unit 417, an amplification unit 418, a mixer 419, and a filter 420 are included.
 マッチング部411は、デバイス(本実施の形態においては、受信アンテナ3a~3hの少なくとも1つ)と、受信部41においてマッチング部411を除いて構成される回路部C1との間に接続される。本実施の形態では、受信アンテナ3a~3hに対し、それぞれ個別にマッチング部411が設けられている。マッチング部411は、自身の特性インピーダンスを変更することが可能であり、計算部417の計算結果に基づいて自身の特性インピーダンスを変更することによってデバイスの特性インピーダンスと、回路部C1の特性インピーダンスとをマッチング(整合)する。マッチング部411は、例えば、特性インピーダンス変換回路と、特性インピーダンス変換回路の回路乗数を変更する制御部とによって構成される。マッチング部411が備える制御部は、例えば、マイクロコントローラによって構成される。 Matching unit 411, the device (in this embodiment, at least one receiving antennas 3a ~ 3h) and, connected are between the configured circuit C 1 except matching unit 411 in the receiver 41 . In the present embodiment, matching units 411 are individually provided for the receiving antennas 3a to 3h. Matching unit 411 is capable of changing its characteristic impedance, the characteristic impedance of the device by changing its characteristic impedance based on the calculation result of the calculator 417, the characteristic impedance of the circuit C 1 Matching. The matching unit 411 includes, for example, a characteristic impedance conversion circuit and a control unit that changes the circuit multiplier of the characteristic impedance conversion circuit. The control unit included in the matching unit 411 is configured by, for example, a microcontroller.
 パルス発生部412は、計算された受信アンテナ側の特性インピーダンスと、回路部C1の特性インピーダンスとをマッチングするために用いるパルス信号SAを発生する。パルス発生部412は、発生したパルス信号SAを、電圧検出部413及びインバータ415-1~415-nに出力する。パルス発生部412は、水晶等の発振回路を用いて構成される。 Pulse generating unit 412 generates the characteristic impedance of the calculated reception antenna side, a pulse signal S A to be used for matching the characteristic impedance of the circuit C 1. Pulse generator 412, a pulse signal S A generated is output to the voltage detection unit 413 and the inverter 415-1 ~ 415-n. The pulse generation unit 412 is configured using an oscillation circuit such as crystal.
 電圧検出部413は、パルス信号SAがマッチング部411で反射された反射信号SB(第2信号)の電圧を検出する。この際、パルス信号SAは電圧検出部413に直接伝送されるが、電圧検出部413は、この直接伝送されたパルス信号SA(第1信号)の電圧の検出は行わなくてもよい。電圧検出部413は、例えば、電圧センサを有するマイクロコントローラやマイクロコンピュータ、またはアナログデジタルコンバータ等によって構成される。 The voltage detection unit 413 detects the voltage of the reflected signal S B (second signal) in which the pulse signal S A is reflected by the matching unit 411. In this case, although the pulse signal S A is transmitted directly to the voltage detection unit 413, the voltage detecting unit 413, detection may not be performed in the voltage of the direct transmission pulse signal S A (first signal). The voltage detection unit 413 is configured by, for example, a microcontroller having a voltage sensor, a microcomputer, an analog digital converter, or the like.
 位相検出部414は、反射信号SBがインバータ415-1に入力されたタイミングで、パルス信号SAが入力されたインバータ(インバータ415-1~415-nのいずれか)を判断し、そのインバータ間の遅延時間から、パルス信号SAと反射信号SBとの位相差を検出する。位相検出部414は、例えば、マイクロコントローラやマイクロコンピュータ等によって構成される。 Phase detector 414 determines a reflective signal S B is inputted to the inverter 415-1 timing, the inverter pulse signal S A is input (either of the inverters 415-1 ~ 415-n), the inverter from the delay time between, for detecting a phase difference between the pulse signals S a and the reflected signal S B. The phase detection unit 414 is configured of, for example, a microcontroller or a microcomputer.
 インバータ415-1~415-nは、それぞれが同一の遅延量を有する。パルス信号SA又は反射信号SBは、インバータ415-1、415-2、・・・、415-nの順に入力される。インバータ415-1~415-nは、直列接続され、入力された信号を、隣り合うインバータに出力するとともに、接続されているD型フリップフロップ(D型フリップフロップ416-1~416-nのいずれか)に出力する。インバータ415-1~415-nによって遅延部を構成する。 The inverters 415-1 to 415-n each have the same delay amount. Pulse signal S A or reflected signal S B is an inverter 415-1,415-2, ..., are input in the order of 415-n. The inverters 415-1 to 415-n are connected in series, and the inputted signals are output to the adjacent inverters, and any of the D-type flip flops (D-type flip flops 416-1 to 416-n) connected Output to The inverters 415-1 to 415-n constitute a delay unit.
 D型フリップフロップ416-1~416-nは、入力される信号のうち、所定のD型フリップフロップにおいて信号を反転して、その反転信号を位相検出部414に出力する。具体的に、D型フリップフロップ416-1~416-nは、奇数段のインバータに入力する信号が入力されるD型フリップフロップ(例えば、D型フリップフロップ416-2、416-4、・・・)は、反転せずにそのままの信号を位相検出部414に出力し、偶数段のインバータに入力する信号が入力されるD型フリップフロップ(例えば、D型フリップフロップ416-1、416-3、・・・)は、反転した反転信号を位相検出部414に出力する。インバータを通過した信号は反転されるため、D型フリップフロップを用いることによって位相検出部414に入力する信号の波形を揃えている。D型フリップフロップ416-1~416-nは、外部から入力されるクロックに基づいて、入力された信号又はその反転信号を位相検出部414に出力する。 The D-type flip flops 416-1 to 416-n invert the signal in a predetermined D-type flip flop among the input signals, and output the inverted signal to the phase detection unit 414. Specifically, the D-type flip-flops 416-1 to 416-n are D-type flip-flops (for example, D-type flip-flops 416-2, 416-4,...) To which signals input to the odd-numbered inverters are input.・) Outputs the signal as it is to the phase detection unit 414 without inverting, and the D type flip flop (for example, D type flip flop 416-1, 416-3) to which the signal input to the even-numbered inverter is input. ,...) Output the inverted signal to the phase detection unit 414. Since the signal passed through the inverter is inverted, the waveform of the signal input to the phase detection unit 414 is aligned by using a D-type flip flop. The D-type flip flops 416-1 to 416-n output the input signal or its inverted signal to the phase detection unit 414 based on the clock input from the outside.
 計算部417は、電圧検出部413が検出した電圧と、位相検出部414が検出した位相差と、マッチング部411の特性インピーダンスとをもとに、マッチング部411と回路部C1との接続部分を基点として受信アンテナ側の特性インピーダンスを計算する。計算部417は、計算した受信アンテナ側の特性インピーダンスを、マッチング部411に出力する。計算部417は、例えば、マイクロコントローラやマイクロコンピュータ等によって構成される。 Calculation unit 417, the connection portion of the voltage which the voltage detecting unit 413 detects a phase difference the phase detector 414 detects, on the basis of the characteristic impedance of the matching portion 411, a matching unit 411 and the circuit portion C 1 The characteristic impedance on the receiving antenna side is calculated based on The calculating unit 417 outputs the calculated characteristic impedance on the receiving antenna side to the matching unit 411. The calculation unit 417 is configured by, for example, a microcontroller or a microcomputer.
 マッチング部411では、計算部417から特性インピーダンスを取得すると、スミスチャートに基づいて決定される特性インピーダンス変換回路の変更値を参照して、回路部C1の特性インピーダンスと、受信アンテナ側の特性インピーダンスとがマッチングするように自身の特性インピーダンスを変更し、変更後の特性インピーダンスを計算部417にフィードバックする。上述した変更値は、例えば、各変更値と特性インピーダンスとを対応付けたテーブルとして特性インピーダンス調整情報記憶部461に予め記憶されている。 The matching unit 411 acquires the characteristic impedance from the calculation unit 417, with reference to the change value of the characteristic impedance conversion circuit is determined based on the Smith chart, the characteristic impedance of the circuit C 1, the receiving antenna side characteristic impedance And changes its own characteristic impedance so as to match, and feeds back the changed characteristic impedance to the calculation unit 417. The above-described change values are stored in advance in the characteristic impedance adjustment information storage unit 461, for example, as a table in which each change value is associated with the characteristic impedance.
 図4は、本発明の一実施の形態に係るカプセル型内視鏡システムが行う特性インピーダンス調整及び計算処理を、高周波回路のインピーダンス変化の可視化に好適なスミスチャートで示した図である。マッチング部411は、計算部417から入力された特性インピーダンスと、図4に示すスミスチャート462から、特性インピーダンスが許容領域R1内に入るように特性インピーダンス調整を行う。本明細書では、計算部417により計算された受信アンテナ側の特性インピーダンスが、許容領域R1内に入るように、マッチング部411と回路部C1とによる特性インピーダンスを調整する。なお、許容領域R1は、例えば、増幅部418の最小雑音指数から算出される定雑音指数円に基づいて計算される。雑音指数は、増幅部418における、入力のS/Nと、出力のS/Nとの比である。また、スミスチャート462における許容領域R1は、受信装置4やカプセル型内視鏡2の使用条件、目的等によって変わる。 FIG. 4 is a diagram showing a characteristic impedance adjustment and calculation process performed by the capsule endoscope system according to the embodiment of the present invention by a Smith chart suitable for visualizing impedance change of a high frequency circuit. Matching unit 411 performs a characteristic impedance input from the calculation unit 417, a Smith chart 462 shown in FIG. 4, the characteristic impedance adjusted to the characteristic impedance is within acceptable region R 1. In this specification, the characteristic impedance of the calculated by the calculation unit 417 receiving antenna side, to fall within the allowable region R 1, to adjust the characteristic impedance by the matching unit 411 and the circuit section C 1. The allowable range R 1 is calculated based on, for example, a constant noise index circle calculated from the minimum noise index of the amplification unit 418. The noise figure is the ratio of the input S / N to the output S / N at the amplifier 418. Further, the allowable region R 1 in the Smith chart 462, use conditions of the receiving apparatus 4 and the capsule endoscope 2, varies depending on the purpose or the like.
 なお、マッチング部411は、上述したスミスチャートに限らず、計算部417からフィードバックされる値と、マッチング方法とを対応付けたテーブルを、特性インピーダンス調整情報記憶部461に予め記憶させておいて、このテーブルを参照して特性インピーダンス調整を行ってもよい。 The matching unit 411 is not limited to the Smith chart described above, but may store in advance in the characteristic impedance adjustment information storage unit 461 a table in which the value fed back from the calculation unit 417 is associated with the matching method. Characteristic impedance adjustment may be performed with reference to this table.
 増幅部418は、マッチング部411を介して受信アンテナから入力された無線信号(画像データ)を、予め設定されている増幅率で増幅する。増幅部418は、例えば、低ノイズアンプ(Low Noise Amplifier)を用いて構成される。 The amplification unit 418 amplifies the radio signal (image data) input from the reception antenna via the matching unit 411 at a preset amplification factor. The amplification unit 418 is configured using, for example, a low noise amplifier.
 ミキサ419は、増幅部418で増幅された信号の周波数を、後段の回路に適した周波数に変換する。ミキサ419は、例えば、ダイオードを用いて構成される。 The mixer 419 converts the frequency of the signal amplified by the amplification unit 418 into a frequency suitable for the circuit in the subsequent stage. The mixer 419 is configured using, for example, a diode.
 フィルタ420は、所定の周波数帯域の信号のみを通過させる。フィルタ420を通過した信号は、制御部45に出力される。 The filter 420 passes only signals of a predetermined frequency band. The signal that has passed through the filter 420 is output to the control unit 45.
 ここで、受信部41は、受信アンテナ3a~3hが受信した無線信号の受信強度(RSSI:Received Signal Strength Indicator)を測定する。受信部41は、無線信号を受信した際の受信強度を受信アンテナ3a~3hのそれぞれについて測定する。このとき、測定したすべての受信強度と、受信部41が受信した画像データとを関連付けて記憶部46に記憶させてもよい。受信部41は、受信強度に基づいて、受信アンテナ3a~3hのうち、最も受信強度の高いアンテナを選択し、選択したアンテナが受信した無線信号を受信する。この際に受信する無線信号は、フィルタ420を通過した信号である。 Here, the receiving unit 41 measures the received signal strength indicator (RSSI) of the wireless signals received by the receiving antennas 3a to 3h. The receiving unit 41 measures the reception strength at the time of receiving the wireless signal for each of the receiving antennas 3a to 3h. At this time, all measured reception strengths and the image data received by the receiving unit 41 may be associated with each other and stored in the storage unit 46. The receiving unit 41 selects the antenna with the highest reception strength among the reception antennas 3a to 3h based on the reception strength, and receives the radio signal received by the selected antenna. The radio signal received at this time is a signal that has passed through the filter 420.
 続いて、無線通信部24の構成について、図5を参照して説明する。図5は、本発明の一実施の形態に係るカプセル型内視鏡システムが備えるカプセル型内視鏡の無線通信部の構成を説明する図である。無線通信部24は、マッチング部241、パルス発生部242、電圧検出部243、位相検出部244、インバータ245-1~245-m(mは自然数)、D型フリップフロップ246-1~246-m、計算部247、増幅部248を有する。 Subsequently, the configuration of the wireless communication unit 24 will be described with reference to FIG. FIG. 5 is a view for explaining the configuration of the wireless communication unit of the capsule endoscope provided in the capsule endoscope system according to the embodiment of the present invention. The wireless communication unit 24 includes a matching unit 241, a pulse generation unit 242, a voltage detection unit 243, a phase detection unit 244, inverters 245-1 to 245-m (m is a natural number), and D-type flip flops 246-1 to 246-m. , Calculation unit 247, and amplification unit 248.
 マッチング部241は、デバイス(本実施の形態においては送信アンテナ25)と、無線通信部24においてマッチング部241を除いて構成される回路部C2との間に接続される。マッチング部241は、自身の特性インピーダンスを変更することが可能であり、計算部247の計算結果に基づいて自身の特性インピーダンスを変更することによって送信アンテナ25の特性インピーダンスと、回路部C2の特性インピーダンスとをマッチングする。マッチング部241は、例えば、特性インピーダンス変換回路と、特性インピーダンス変換回路の回路乗数を変更する制御部とによって構成される。マッチング部411が備える制御部は、例えば、マイクロコントローラによって構成される。 Matching unit 241 includes a device (transmitting antenna 25 in this embodiment), is connected between the circuit portion C 2 configured except matching unit 241 in the wireless communication unit 24. Matching unit 241 is capable of changing its characteristic impedance, the characteristic impedance of the transmission antenna 25 by changing its characteristic impedance based on the calculation result of the calculator 247, the characteristics of circuit portion C 2 Match the impedance. The matching unit 241 includes, for example, a characteristic impedance conversion circuit and a control unit that changes the circuit multiplier of the characteristic impedance conversion circuit. The control unit included in the matching unit 411 is configured by, for example, a microcontroller.
 パルス発生部242は、送信アンテナ25の特性インピーダンスと、回路部C2の特性インピーダンスとをマッチングするために用いるパルス信号SCを発生する。パルス発生部242は、発生したパルス信号SCを、電圧検出部243及びインバータ245-1~245-mに出力する。パルス発生部242は、水晶等の発振回路を用いて構成される。 Pulse generating unit 242 generates the characteristic impedance of the transmission antenna 25, a pulse signal S C to be used for matching the characteristic impedance of the circuit C 2. Pulse generator 242, a pulse signal S C generated is output to the voltage detection unit 243 and the inverter 245-1 ~ 245-m. The pulse generation unit 242 is configured using an oscillation circuit such as crystal.
 電圧検出部243は、パルス信号SCがマッチング部241で反射された反射信号SD(第2信号)の電圧を検出する。この際、パルス信号SCは電圧検出部243に直接伝送されるが、電圧検出部243は、この直接伝送されたパルス信号SC(第1信号)の電圧の検出は行わなくてもよい。電圧検出部243は、例えば、電圧センサを有するマイクロコントローラやマイクロコンピュータ、またはアナログデジタルコンバータ等によって構成される。 The voltage detection unit 243 detects the voltage of the reflected signal S D (second signal) in which the pulse signal S C is reflected by the matching unit 241. In this case, although the pulse signal S C is transmitted directly to the voltage detection unit 243, the voltage detecting unit 243, detection may not be performed in the voltage of the direct transmission pulse signal S C (first signal). The voltage detection unit 243 is configured by, for example, a microcontroller having a voltage sensor, a microcomputer, an analog digital converter, or the like.
 位相検出部244は、反射信号SDがインバータ245-1に入力されたタイミングで、パルス信号SCが入力されたインバータ(インバータ245-1~245-mのいずれか)を判断し、そのインバータ間の遅延時間から、パルス信号SCと反射信号SDとの位相差を検出する。位相検出部244は、例えば、マイクロコントローラやマイクロコンピュータ等によって構成される。 Phase detector 244 determines a reflective signal S D is input to the inverter 245-1 timing, the inverter pulse signal S C is inputted (either inverters 245-1 ~ 245-m), the inverter from the delay time between, for detecting a phase difference between the pulse signal S C and the reflected signal S D. The phase detection unit 244 is configured of, for example, a microcontroller or a microcomputer.
 インバータ245-1~245-mは、それぞれが同一の遅延量を有する。パルス信号SC又は反射信号SDは、インバータ245-1、245-2、・・・、245-mの順に入力される。インバータ245-1~245-mは、直列接続され、入力された信号を、隣り合うインバータに出力するとともに、接続されているD型フリップフロップ(D型フリップフロップ246-1~246-mのいずれか)に出力する。インバータ245-1~245-mによって遅延部を構成する。 The inverters 245-1 to 245-m each have the same delay amount. Pulse signal S C or reflected signal S D, the inverter 245-1,245-2, ..., it is input in the order of 245-m. The inverters 245-1 to 245-m are connected in series, and output the input signal to the adjacent inverters, and at the same time, any of the D-type flip flops (D-type flip flops 246-1 to 246-m) connected. Output to Inverters 245-1 to 245-m constitute a delay unit.
 D型フリップフロップ246-1~246-mは、入力される信号のうち、所定のD型フリップフロップにおいて信号を反転して、その反転信号を位相検出部244に出力する。具体的に、D型フリップフロップ246-1~246-mは、奇数段のインバータに入力する信号が入力されるD型フリップフロップ(例えば、D型フリップフロップ246-2、246-4、・・・)は、反転せずにそのままの信号を位相検出部244に出力し、偶数段のインバータに入力する信号が入力されるD型フリップフロップ(例えば、D型フリップフロップ246-1、246-3、・・・)は、反転した反転信号を位相検出部244に出力する。D型フリップフロップ246-1~246-mは、外部から入力されるクロックに基づいて、入力された信号又はその反転信号を位相検出部244に出力する。 The D-type flip flops 246-1 to 246-m invert the signal in a predetermined D-type flip flop among the input signals, and output the inverted signal to the phase detection unit 244. Specifically, the D-type flip-flops 246-1 to 246-m receive D-type flip-flops (for example, D-type flip-flops 246-2, 246-4,...) To which signals input to the odd-numbered inverters are input.・) Outputs the signal as it is to the phase detection unit 244 without inverting, and D-type flip-flops (eg, D-type flip-flops 246-1 and 246-3) to which signals input to the even-numbered inverters are input. ,...) Output the inverted signal to the phase detection unit 244. The D-type flip flops 246-1 to 246-m output the input signal or its inverted signal to the phase detection unit 244 based on the clock input from the outside.
 計算部247は、電圧検出部243が検出した電圧と、位相検出部244が検出した位相差と、マッチング部241の特性インピーダンスとをもとに、マッチング部241と回路部C2との接続部分を基点として送信アンテナ25側の特性インピーダンスを計算する。計算部247は、計算した送信アンテナ25側の特性インピーダンスを、マッチング部241に出力する。計算部247は、例えば、マイクロコントローラやマイクロコンピュータ等によって構成される。 Calculation unit 247, the connection portion of the voltage which the voltage detecting unit 243 detects a phase difference the phase detector 244 detects, on the basis of the characteristic impedance of the matching portion 241, a matching unit 241 and the circuit portion C 2 The characteristic impedance of the transmitting antenna 25 is calculated based on the following equation. The calculating unit 247 outputs the calculated characteristic impedance on the transmitting antenna 25 side to the matching unit 241. The calculation unit 247 is configured of, for example, a microcontroller or a microcomputer.
 マッチング部241では、計算部247から特性インピーダンスを取得すると、上述したような手順に基づいて決定される特性インピーダンス変換回路の変更値を参照して、回路部C2の特性インピーダンスと、送信アンテナ25の特性インピーダンスとがマッチングするように自身の特性インピーダンスを変更し、変更後の特性インピーダンスを計算部247にフィードバックする。上述した変更値は、各変更値と特性インピーダンスとを対応付けたテーブルとしてメモリ26に予め記憶されている。 The matching unit 241, when the calculation unit 247 obtains a characteristic impedance, with reference to the change value of the characteristic impedance conversion circuit is determined based on the procedure as described above, the characteristic impedance of the circuit C 2, transmitting antennas 25 The characteristic impedance of one's own is changed so as to match with the characteristic impedance of and the characteristic impedance after the change is fed back to the calculation unit 247. The above-described change values are stored in advance in the memory 26 as a table in which each change value is associated with the characteristic impedance.
 マッチング部241は、計算部247から入力された特性インピーダンスが、上述したようなスミスチャートにおいて特性インピーダンスが許容領域内に入るように特性インピーダンス調整を行う。本明細書では、計算部247により計算された送信アンテナ25側の特性インピーダンスが、許容領域内に入るように、マッチング部241と回路部C2とによる特性インピーダンスを調整する。なお、許容領域は、例えば、増幅部248の最大有能電力利得から算出される定電力利得円に基づいて計算される。最大有能電力利得は、特性インピーダンスがマッチングしている場合に得られる最大の電力利得である。また、許容領域R1と同様に、無線通信部24による特性インピーダンス調整及び計算処理を示すスミスチャートにおける許容領域も、受信装置4やカプセル型内視鏡2の使用条件、目的等によって変わる。なお、場合によっては、スミスチャートにおける受信部41の許容領域R1と、無線通信部24の許容領域とが一致することがある。 The matching unit 241 performs characteristic impedance adjustment so that the characteristic impedance input from the calculation unit 247 falls within the allowable range in the Smith chart as described above. In this specification, the characteristic impedance of the calculated by the calculation unit 247 transmitting antenna 25 side, so as to fall in the allowable region, to adjust the characteristic impedance by the matching unit 241 and the circuit portion C 2. The allowable range is calculated based on, for example, a constant power gain circle calculated from the maximum available power gain of the amplification unit 248. The maximum available power gain is the maximum power gain obtained when the characteristic impedance is matching. Further, similarly to the permissible region R 1, the allowable area in the Smith chart showing the characteristic impedance adjustment and calculation processing by the radio communication unit 24 also, use conditions of the receiving apparatus 4 and the capsule endoscope 2, varies depending on the purpose or the like. In some cases, there may an allowable region R 1 of the receiver 41 in the Smith chart, and the allowable area of the wireless communication unit 24 matches.
 増幅部248は、撮像部21が撮像した画像データを、予め設定されている増幅率で増幅し、マッチング部241を介して送信アンテナ25に出力する。増幅部248は、例えば、パワーアンプ(Power Amplifier)を用いて構成される。 The amplification unit 248 amplifies the image data captured by the imaging unit 21 at a preset amplification factor, and outputs the amplified image data to the transmission antenna 25 via the matching unit 241. The amplification unit 248 is configured using, for example, a power amplifier.
 次に、無線通信部24及び受信部41が実行する特性インピーダンス調整処理について、図6を参照して説明する。図6は、本発明の一実施の形態に係るカプセル型内視鏡システムが行う特性インピーダンス調整処理を示すフローチャートである。以下、カプセル型内視鏡2が動作している際に実行される、無線通信部24による特性インピーダンス調整処理を例に説明する。受信部41においても同様にして特性インピーダンス調整処理が実行される。 Next, characteristic impedance adjustment processing performed by the wireless communication unit 24 and the reception unit 41 will be described with reference to FIG. FIG. 6 is a flowchart showing characteristic impedance adjustment processing performed by the capsule endoscope system according to the embodiment of the present invention. Hereinafter, characteristic impedance adjustment processing by the wireless communication unit 24 which is executed when the capsule endoscope 2 is in operation will be described as an example. The characteristic impedance adjustment process is similarly performed in the receiving unit 41 as well.
 パルス発生部242は、パルス送信時間であるか否かを判断する(ステップS101)。パルス発生部242は、前回パルス信号を発生した時間から所定時間経過しているか否かを判断する。ここで、パルス発生部242は、パルス送信時間ではないと判断した場合(ステップS101:No)、パルス送信時間の判断を繰り返す。これに対し、パルス発生部242は、パルス送信時間であると判断した場合(ステップS101:Yes)、パルス信号を発生(送信)する(ステップS102)。本実施の形態では、所定の電圧のパルスを一回発生する。 The pulse generation unit 242 determines whether it is a pulse transmission time (step S101). The pulse generation unit 242 determines whether a predetermined time has elapsed from the time when the pulse signal was generated last time. Here, when it is determined that the pulse generation unit 242 does not have a pulse transmission time (step S101: No), the determination of the pulse transmission time is repeated. On the other hand, when it is determined that it is the pulse transmission time (step S101: Yes), the pulse generation unit 242 generates (transmits) a pulse signal (step S102). In the present embodiment, a pulse of a predetermined voltage is generated once.
 ステップS102に続くステップS103において、電圧検出部243は、パルス信号SCがマッチング部241で反射した反射信号SDの電圧を検出する。 In step S103 following step S102, the voltage detecting unit 243, the pulse signal S C detects the voltage of the reflected signal S D reflected by the matching unit 241.
 ステップS103に続くステップS104において、位相検出部244は、反射信号SDが入力されたインバータ(インバータ245-1)と、そのタイミングでパルス信号SCが入力されたインバータ(インバータ245-1~245-mのいずれか)から、パルス信号SCと反射信号SDとの位相差を検出する。 In step S104 following step S103, the phase detector 244, the reflected signal S D and inverter is input (inverter 245-1), the inverter (inverter 245-1 to 245 pulse signal S C is input at the timing from either) of -m, it detects the phase difference between the pulse signal S C and the reflected signal S D.
 なお、上述したステップS103及びステップS104は、順序が逆であってもよいし、同時に実行されてもよい。 In addition, order may be reverse and step S103 mentioned above and step S104 may be performed simultaneously.
 ステップS104に続くステップS105において、計算部247は、ステップS103で電圧検出部243が検出した電圧と、ステップS104で位相検出部244が検出した位相差と、マッチング部241の特性インピーダンスとをもとに、マッチング部241と回路部C2との接続部分を基点として送信アンテナ25側の特性インピーダンスを計算する。計算部247は、計算した送信アンテナ25側の特性インピーダンスを、マッチング部241に出力する。 In step S105 subsequent to step S104, the calculation unit 247 uses the voltage detected by the voltage detection unit 243 in step S103, the phase difference detected by the phase detection unit 244 in step S104, and the characteristic impedance of the matching unit 241. to, to calculate the characteristic impedance of the transmission antenna 25 side connection portion between the matching unit 241 and the circuit portion C 2 as a base point. The calculating unit 247 outputs the calculated characteristic impedance on the transmitting antenna 25 side to the matching unit 241.
 ステップS105に続くステップS106において、マッチング部241は、計算部247から取得した特性インピーダンスに基づいて、送信アンテナ25側の特性インピーダンスと回路部C2との特性インピーダンスがマッチングしているか否かを判断する。この際、マッチング部241は、送信アンテナ25と回路部C2との特性インピーダンスがマッチングしていないと判断した場合(ステップS106:No)、ステップS107に移行する。 In step S106 following step S105, the matching unit 241 determines whether the characteristic impedance of the transmission antenna 25 matches the characteristic impedance of the circuit unit C 2 based on the characteristic impedance acquired from the calculation unit 247. Do. At this time, the matching unit 241, if the characteristic impedance of the transmission antenna 25 and the circuit portion C 2 is determined not to match (step S106: No), the process proceeds to step S107.
 ステップS107において、マッチング部241は、特性インピーダンスマッチングを行う。マッチング部241は、上述したように、メモリ26に記憶されているテーブルを参照して、自身の特性インピーダンスを、送信アンテナ25側の特性インピーダンスと回路部C2の特性インピーダンスとマッチングするように変更する。また、マッチング部241は、変更後の特性インピーダンスを計算部247にフィードバックする。その後、ステップS102に戻り、上述した処理を繰り返す。 In step S107, the matching unit 241 performs characteristic impedance matching. As described above, the matching unit 241 changes its characteristic impedance to match the characteristic impedance of the transmitting antenna 25 with the characteristic impedance of the circuit unit C 2 with reference to the table stored in the memory 26. Do. Also, the matching unit 241 feeds back the changed characteristic impedance to the calculation unit 247. Thereafter, the process returns to step S102, and the above-described process is repeated.
 一方、マッチング部241は、送信アンテナ25と無線通信部24の回路との特性インピーダンスがマッチングしていると判断した場合(ステップS106:Yes)、ステップS108に移行する。 On the other hand, when the matching unit 241 determines that the characteristic impedances of the transmission antenna 25 and the circuit of the wireless communication unit 24 match (step S106: Yes), the process proceeds to step S108.
 ステップS108において、無線通信部24は、送信アンテナ25を介して画像データを無線送信する。本フローチャートでは、送信アンテナ25が画像データを送信していないタイミングにおいて、マッチングが実行される。受信アンテナユニット3においても同様に、受信アンテナ3a~3hが画像データを受信していないタイミングにおいて、マッチングが実行される。 In step S108, the wireless communication unit 24 wirelessly transmits the image data via the transmission antenna 25. In this flowchart, matching is performed at timing when the transmitting antenna 25 does not transmit image data. Similarly, in the receiving antenna unit 3, matching is executed at timing when the receiving antennas 3a to 3h do not receive image data.
 ステップS108に続くステップS109において、無線通信部24は、上述した特性インピーダンス調整処理を継続するか否かを判断する。例えば、無線通信部24は、受信装置4を介して、処理を終了する旨の指示を受信していなければ、処理を継続すると判断する。無線通信部24は、特性インピーダンス調整処理を継続すると判断した場合(ステップS109:Yes)、ステップS101に戻り、上述した処理を繰り返す。これに対し、無線通信部24は、特性インピーダンス調整処理を継続しないと判断した場合(ステップS109:No)、上述した処理を終了する。 In step S109 following step S108, the wireless communication unit 24 determines whether to continue the above-described characteristic impedance adjustment process. For example, if the wireless communication unit 24 has not received an instruction to end the process via the receiving device 4, the wireless communication unit 24 determines to continue the process. If the wireless communication unit 24 determines that the characteristic impedance adjustment process is to be continued (Yes at Step S109), the process returns to Step S101, and the above-described process is repeated. On the other hand, when the wireless communication unit 24 determines that the characteristic impedance adjustment process is not to be continued (step S109: No), the above-described process ends.
 以上説明した本実施の形態では、受信部41及び無線通信部24において、パルス発生部が発生したパルス信号と、このパルス信号がマッチング部で反射した反射信号との位相差、及び反射信号の電圧を検出し、計算部が、検出した位相差と電圧とをもとに、マッチング部と回路部との接続部分を基点としてアンテナ側の特性インピーダンスを計算して、その計算結果をフィードバックすることによって、受信部41又は無線通信部24の回路と、それぞれに接続するアンテナとの特性インピーダンスを調整する。本実施の形態によれば、回路とアンテナとの特性インピーダンスを調整するため、データの送受信を行う装置間で安定した無線通信を行うことができる。 In the present embodiment described above, in the receiving unit 41 and the wireless communication unit 24, the phase difference between the pulse signal generated by the pulse generating unit and the reflection signal of the pulse signal reflected by the matching unit, and the voltage of the reflection signal. By calculating the characteristic impedance of the antenna on the basis of the connection portion between the matching unit and the circuit unit on the basis of the detected phase difference and voltage, and feeding back the calculation result. The characteristic impedance of the circuit of the reception unit 41 or the wireless communication unit 24 and the antenna connected to each of the circuits is adjusted. According to the present embodiment, since the characteristic impedance between the circuit and the antenna is adjusted, stable wireless communication can be performed between devices that transmit and receive data.
 なお、上述した実施の形態では、位相差を検出するための構成としてインバータを用いる例を説明したが、抵抗器及びコンデンサを用いて構成されるRC回路や、コイル及びコンデンサで構成されるLC回路、又はバッファであってもよい。 In the embodiment described above, an example in which an inverter is used as a configuration for detecting a phase difference has been described. However, an RC circuit configured using a resistor and a capacitor, an LC circuit configured using a coil and a capacitor Or may be a buffer.
 また、上述した実施の形態では、受信部41において、各受信アンテナについて特性インピーダンスを計算して、受信アンテナ個別に特性インピーダンスをマッチングさせる例(例えば図3参照)、すなわち、各受信アンテナにマッチング部がそれぞれ設けられる例を説明したが、受信部41として複数の受信アンテナに接続する一つのマッチング部を備え、複数の受信アンテナ全体に係る特性インピーダンスを計算し、受信アンテナ全体に特性インピーダンスをマッチングさせるようにしてもよい。 Further, in the embodiment described above, an example in which the characteristic impedance is calculated for each receiving antenna in the receiving unit 41 and the characteristic impedance is matched for each receiving antenna individually (see, for example, FIG. 3). In the example described above, one matching unit connected to a plurality of receiving antennas is provided as the receiving unit 41, the characteristic impedance of all the plurality of receiving antennas is calculated, and the characteristic impedance is matched to the entire receiving antenna. You may do so.
(実施の形態の変形例1)
 続いて、本発明の実施の形態の変形例1について説明する。図7は、本発明の実施の形態の変形例1に係るカプセル型内視鏡システムが行う特性インピーダンス調整処理を説明する図である。本変形例1に係るカプセル型内視鏡システムは、上述したカプセル型内視鏡システム1と同様であるため説明を省略する。以下、上述した実施の形態とは異なる処理について、図7を参照して説明する。
(Modification 1 of Embodiment)
Then, the modification 1 of embodiment of this invention is demonstrated. FIG. 7 is a view for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the first modification of the embodiment of the present invention. The capsule endoscope system according to the first modification is the same as the capsule endoscope system 1 described above, and thus the description thereof is omitted. Hereinafter, processing different from that of the above-described embodiment will be described with reference to FIG.
 本変形例1では、図6に示すステップS102において、パルス発生部242は、入力パルス電圧が互いに異なる複数のパルスを発生(送信)する。具体的に、パルス発生部242は、出力を変えながら三回、パルス信号を発生させる。この際、各パルス信号の位相やパルス幅は同じとなるように調整されている。 In the first modification, in step S102 shown in FIG. 6, the pulse generation unit 242 generates (transmits) a plurality of pulses having different input pulse voltages. Specifically, the pulse generator 242 generates a pulse signal three times while changing the output. At this time, the phase and pulse width of each pulse signal are adjusted to be the same.
 電圧検出部243は、パルス信号の電圧(入力パルス電圧)と反射信号の電圧(反射波電圧)とを組とする三組の電圧を検出する(ステップS103)。電圧検出部243は、三組の検出結果から、入力パルス電圧と反射波電圧との関係を示す近似直線(図7に示す近似直線L1)を算出する。電圧検出部243は、近似直線から、予め設定されている入力パルス電圧における反射波電圧を読み取って計算部247に出力する。例えば、図7に示すように、三つの入力パルス電圧のうち中間の値を有する入力パルス電圧Vinにおける反射波電圧Vreを読み取る。なお、入力パルス電圧は、パルス発生部242が発生させたパルスの電圧を取得するものとし、電圧検出部243が、反射信号の電圧のみを検出してもよい。 The voltage detection unit 243 detects three sets of voltages in which the voltage of the pulse signal (input pulse voltage) and the voltage of the reflection signal (reflected wave voltage) are set (step S103). The voltage detection unit 243 calculates an approximate straight line (approximated straight line L 1 shown in FIG. 7) indicating the relationship between the input pulse voltage and the reflected wave voltage from the three sets of detection results. The voltage detection unit 243 reads the reflected wave voltage at the input pulse voltage set in advance from the approximate straight line and outputs it to the calculation unit 247. For example, as shown in FIG. 7, the reflected wave voltage V re at the input pulse voltage V in having an intermediate value among the three input pulse voltages is read. The input pulse voltage may acquire the voltage of the pulse generated by the pulse generator 242, and the voltage detector 243 may detect only the voltage of the reflection signal.
 また、位相検出部244は、パルス信号と反射信号との位相差を三回検出する(ステップS104)。なお、本変形例1では、位相やパルス幅は同じとなるように調整されているため、位相差はほぼ同じとなる。このため、位相検出部244は、三つの位相差のうちのいずれか、例えば、入力パルス電圧と同じ入力パルス電圧Vinにおける位相差を計算部247に出力してもよいし、三つの位相差の平均を算出し、この平均値を計算部247に出力してもよい。 Further, the phase detection unit 244 detects the phase difference between the pulse signal and the reflection signal three times (step S104). In the first modification, the phase and the pulse width are adjusted to be the same, so the phase difference is almost the same. Thus, phase detector 244, any of the three phase difference, for example, may output a phase difference calculation unit 247 in the same input pulse voltage V in the input pulse voltage, three phase The average value of these may be calculated and output to the calculation unit 247.
 ステップS105において、計算部247は、電圧検出部243による検出結果と、位相検出部244による検出結果とをもとに、無線通信部24が有する回路の特性インピーダンスを算出する。その後のステップ(ステップS106~S109)については、上述した実施の形態と同様である。 In step S105, the calculation unit 247 calculates the characteristic impedance of the circuit of the wireless communication unit 24 based on the detection result of the voltage detection unit 243 and the detection result of the phase detection unit 244. The subsequent steps (steps S106 to S109) are the same as in the above-described embodiment.
 以上説明した本変形例1によれば、入力パルス電圧が互いに異なる複数のパルスを電圧検出部243が検出し、計算部247が、その検出結果をもとに特性インピーダンスを計算するようにしたので、上述した実施の形態と比して検出する電圧の検出精度が向上し、その結果、特性インピーダンスの計算精度を向上することができる。 According to the first modification described above, the voltage detection unit 243 detects a plurality of pulses whose input pulse voltages are different from each other, and the calculation unit 247 calculates the characteristic impedance based on the detection result. The detection accuracy of the voltage to be detected is improved as compared with the above-described embodiment, and as a result, the calculation accuracy of the characteristic impedance can be improved.
(実施の形態の変形例2)
 続いて、本発明の実施の形態の変形例2について説明する。図8は、本発明の実施の形態の変形例2に係るカプセル型内視鏡システムが行う特性インピーダンス調整処理を説明する図である。本変形例2に係るカプセル型内視鏡システムは、上述したカプセル型内視鏡システム1と同様であるため説明を省略する。以下、上述した実施の形態とは異なる処理について、図8を参照して説明する。
(Modification 2 of the embodiment)
Subsequently, a second modification of the embodiment of the present invention will be described. FIG. 8 is a diagram for explaining characteristic impedance adjustment processing performed by the capsule endoscope system according to the second modification of the embodiment of the present invention. The capsule endoscope system according to the second modification is the same as the capsule endoscope system 1 described above, and thus the description thereof is omitted. Hereinafter, processing different from that of the above-described embodiment will be described with reference to FIG.
 本変形例2では、図6に示すステップS102において、パルス発生部242は、パルス発生部に接続される素子の特性インピーダンスが互いに異なる複数のパルスを発生(送信)する。具体的に、パルス発生部242は、パルス信号の位相を変えながら三回、パルス信号を発生させる。この際、各パルス信号の入力パルス電圧は同じとなるように調整されている。 In the second modification, in step S102 shown in FIG. 6, the pulse generation unit 242 generates (transmits) a plurality of pulses having different characteristic impedances of elements connected to the pulse generation unit. Specifically, the pulse generator 242 generates a pulse signal three times while changing the phase of the pulse signal. At this time, the input pulse voltage of each pulse signal is adjusted to be the same.
 位相検出部244は、パルス信号と反射信号との位相差を三回検出する(ステップS104)。位相検出部244は、三組の検出結果から、入力パルス位相と反射波位相との関係を示す近似直線(図8示す近似直線L2)を算出する。位相検出部244は、近似直線L2から、予め設定されている入力パルス位相における反射波位相を読み取って位相差を算出し、算出した位相差を計算部247に出力する。例えば、図8に示すように、三つの入力パルス位相のうち二回目に発生したパルス信号に対応する入力パルス位相Pinにおける反射波位相Preを読み取って、入力パルス位相Pinと反射波位相Preとの位相差を算出する。 The phase detection unit 244 detects the phase difference between the pulse signal and the reflection signal three times (step S104). The phase detection unit 244 calculates an approximate straight line (approximated straight line L 2 shown in FIG. 8) indicating the relationship between the input pulse phase and the reflected wave phase from the three sets of detection results. Phase detecting unit 244, from the approximate straight line L 2, and calculates the phase difference by reading the reflected wave phase at the input pulse phase which is set in advance, and outputs the calculated phase difference calculation unit 247. For example, as shown in FIG. 8, reads the reflected wave phase P re in the input pulse phase P in corresponding to the pulse signal generated in the second time of the three input pulse phase, the input pulse phase P in the phase of the reflected wave to calculate the phase difference between the P re.
 ここで、電圧検出部243は、各パルス信号の反射信号の電圧(反射波電圧)を検出する(ステップS103)。なお、本変形例2では、入力パルス電圧は同じとなるように調整されているため、検出される反射波電圧はほぼ同じとなる。このため、電圧検出部243は、三つの検出電圧のうちのいずれか一つ、例えば、二回目に発生したパルス信号に対応する反射波電圧を計算部247に出力してもよいし、反射波電圧の平均を算出し、この平均値を計算部247に出力してもよい。 Here, the voltage detection unit 243 detects the voltage (reflected wave voltage) of the reflection signal of each pulse signal (step S103). In the second modification, the input pulse voltages are adjusted to be the same, so that the reflected wave voltages to be detected are substantially the same. Therefore, the voltage detection unit 243 may output, to the calculation unit 247, a reflected wave voltage corresponding to any one of the three detection voltages, for example, the pulse signal generated for the second time, or the reflected wave. An average of the voltages may be calculated, and the average value may be output to the calculation unit 247.
 ステップS105において、計算部247は、電圧検出部243による検出結果と、位相検出部244による検出結果とをもとに、特性インピーダンスを算出する。その後のステップ(ステップS106~S109)については、上述した実施の形態と同様である。 In step S105, the calculation unit 247 calculates the characteristic impedance based on the detection result by the voltage detection unit 243 and the detection result by the phase detection unit 244. The subsequent steps (steps S106 to S109) are the same as in the above-described embodiment.
 以上説明した本変形例2によれば、特性インピーダンスが互いに異なる複数のパルスを位相検出部244が検出し、計算部247が、その検出結果をもとに特性インピーダンスを計算するので、上述した実施の形態と比して検出する位相差の検出精度が向上し、その結果、特性インピーダンスの計算精度を向上することができる。 According to the second modification described above, the phase detection unit 244 detects a plurality of pulses having different characteristic impedances, and the calculation unit 247 calculates the characteristic impedance based on the detection result. The detection accuracy of the phase difference to be detected can be improved as compared with the above-described embodiment, and as a result, the calculation accuracy of the characteristic impedance can be improved.
 なお、上述した変形例2では、パルス信号の位相が異なる例を説明したが、パルス幅が異なるパルス信号を用いても、上述した変形例2と同様の効果を得ることができる。 In the second modification described above, an example in which the phases of the pulse signals are different has been described. However, even if pulse signals having different pulse widths are used, the same effect as the second modification described above can be obtained.
 なお、上述した変形例1及び変形例2を組み合わせてもよい。例えば、パルス発生部242が、入力パルス電圧及び特性インピーダンスが互いに異なるパルス信号を発生し、計算部247が、検出した電圧について変形例1の処理を施し、検出した位相差について変形例2の処理を施して、特性インピーダンスを計算する。 In addition, you may combine the modification 1 and the modification 2 which were mentioned above. For example, the pulse generation unit 242 generates pulse signals in which the input pulse voltage and the characteristic impedance are different from each other, and the calculation unit 247 performs the processing of modification 1 on the detected voltage, and the processing of modification 2 on the detected phase difference. To calculate the characteristic impedance.
 また、上述した変形例1及び変形例2では、無線通信部24を例に説明したが、受信部41にも適用可能である。 Further, in the first and second modified examples described above, the wireless communication unit 24 has been described as an example, but the present invention is also applicable to the receiving unit 41.
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態及び変形例によってのみ限定されるべきものではない。本発明は、以上説明した実施の形態及び変形例には限定されず、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。また、実施の形態及び変形例の構成を適宜組み合わせてもよい。 Although the embodiments for carrying out the present invention have been described above, the present invention should not be limited only by the above-described embodiments and modifications. The present invention is not limited to the embodiments and modifications described above, and may include various embodiments without departing from the technical concept described in the claims. Further, the configurations of the embodiment and the modification may be combined as appropriate.
 なお、上述した実施の形態では、カプセル型内視鏡2及び受信装置4の各々に特性インピーダンスをマッチングするための構成を設けた例を説明したが、カプセル型内視鏡2及び受信装置4のうち一方に設けられていれば、上述した効果を得ることができる。また、位相検出部側において、反転信号を処理できれば、D型フリップフロップを有しない構成であってもよい。 In the embodiment described above, an example in which the configuration for matching the characteristic impedance is provided to each of the capsule endoscope 2 and the receiving device 4 has been described. However, in the capsule endoscope 2 and the receiving device 4 If provided in one of them, the above-mentioned effect can be obtained. In addition, as long as the inverted signal can be processed on the phase detection unit side, the configuration without the D-type flip flop may be employed.
 また、上述した実施の形態に係るカプセル型内視鏡システムのカプセル型内視鏡、受信装置、処理装置の各構成部で実行される各処理に対する実行プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよく、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、インターネット等のネットワーク経由で提供又は配布するように構成してもよい。 In addition, an executable program for each process executed by each component of the capsule endoscope, the receiving device, and the processing device of the capsule endoscope system according to the above-described embodiment can be installed or can be executed. It may be configured to be recorded in a computer readable recording medium such as a CD-ROM, a flexible disk (FD), a CD-R, a DVD and the like in the form of a file and provided, and is connected to a network such as the Internet It may be stored on a computer and configured to be provided by being downloaded via a network. Further, it may be configured to provide or distribute via a network such as the Internet.
 また、上述した実施の形態では、医療装置であるカプセル型内視鏡2により無線信号が生成、出力されるシステムを例に説明したが、無線信号を生成して出力するものであればカプセル型内視鏡システムに限らない。例えば、被検体に取り付けられ、無線信号を生成、出力することが可能なペースメーカー等を用いたシステムに適用することも可能である。 In the above embodiment, a system in which a radio signal is generated and output by the capsule endoscope 2 which is a medical device has been described as an example, but a capsule type may be used if it generates and outputs a radio signal. It is not limited to the endoscope system. For example, it is also possible to apply to a system using a pacemaker or the like that is attached to a subject and can generate and output a wireless signal.
 以上のように、本発明に係る通信モジュール、カプセル型内視鏡及び受信ユニットは、データの送受信を行う装置間で安定した無線通信を行うのに有用である。 As described above, the communication module, the capsule endoscope, and the receiving unit according to the present invention are useful for performing stable wireless communication between devices that transmit and receive data.
 1 カプセル型内視鏡システム
 2 カプセル型内視鏡
 3 受信アンテナユニット
 3a~3h 受信アンテナ
 4 受信装置
 5 処理装置
 5a クレードル
 6 表示装置
 21 撮像部
 22 照明部
 23、45、53 制御部
 24 無線通信部
 25 送信アンテナ
 26 メモリ
 27、47 電源部
 41 受信部
 42 操作部
 43、51 データ送受信部
 44 出力部
 46、56 記憶部
 52 画像処理部
 54 表示制御部
 55 入力部
 241、411 マッチング部
 242、412 パルス発生部
 243、413 電圧検出部
 244、414 位相検出部
 245-1~245-m、415-1~415-n インバータ
 246-1~246-m、416-1~416-n D型フリップフロップ
 247、417 計算部
 248、418 増幅部
 419 ミキサ
 420 フィルタ
DESCRIPTION OF SYMBOLS 1 capsule-type endoscope system 2 capsule-type endoscope 3 receiving antenna unit 3a-3h receiving antenna 4 receiving apparatus 5 processing apparatus 5a cradle 6 display apparatus 21 imaging part 22 illumination part 23, 45, 53 control part 24 wireless communication part Reference Signs List 25 transmission antenna 26 memory 27, 47 power supply unit 41 reception unit 42 operation unit 43, 51 data transmission / reception unit 44 output unit 46, 56 storage unit 52 image processing unit 54 display control unit 55 input unit 241, 411 matching unit 242, 412 pulse Generation unit 243, 413 Voltage detection unit 244, 414 Phase detection unit 245-1 to 245-m, 415-1 to 415-n Inverter 246-1 to 246-m, 416-1 to 416-n D-type flip flop 247 , 417 calculation unit 248, 418 amplification unit 419 mixer 420 Data

Claims (10)

  1.  第1の特性インピーダンスを有するデバイスと、
     第2の特性インピーダンスを有する回路部と、
     前記デバイスと前記回路部との間に接続され、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングするマッチング部と、
     を備え、
     前記回路部は、
     予め設定されている遅延量を有する複数の素子を直列接続してなる遅延部と、
     前記マッチング部と前記遅延部とに接続され、前記遅延部に向けて伝送される信号を出力する信号発生部と、
     前記信号が遅延部に直接伝送される第1信号と、前記信号が前記マッチング部で反射されて前記遅延部に伝送される第2信号との位相差を検出する位相検出部と、
     前記第2信号の電圧を検出する電圧検出部と、
     前記位相差と前記第2信号の電圧とに基づいて、前記マッチング部と前記回路部との接続部分を基点として前記デバイス側の第3の特性インピーダンスを計算する計算部と、
     を有し、
     前記マッチング部は、前記第3の特性インピーダンスに基づいて、自身の特性インピーダンスを変更することにより、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングする
     ことを特徴とする通信モジュール。
    A device having a first characteristic impedance,
    A circuit unit having a second characteristic impedance;
    A matching unit connected between the device and the circuit unit for matching the first characteristic impedance and the second characteristic impedance;
    Equipped with
    The circuit unit is
    A delay unit formed by connecting in series a plurality of elements having a delay amount set in advance;
    A signal generation unit connected to the matching unit and the delay unit and outputting a signal transmitted toward the delay unit;
    A phase detection unit that detects a phase difference between a first signal whose signal is directly transmitted to a delay unit, and a second signal whose signal is reflected by the matching unit and transmitted to the delay unit;
    A voltage detection unit that detects a voltage of the second signal;
    A calculation unit that calculates a third characteristic impedance on the device side based on the phase difference and the voltage of the second signal, using a connection portion between the matching unit and the circuit unit as a base point;
    Have
    A communication module, wherein the matching unit matches the first characteristic impedance with the second characteristic impedance by changing its own characteristic impedance based on the third characteristic impedance.
  2.  前記デバイスは、受信側伝送路端部素子であり、
     前記回路部は、前記受信側伝送路端部素子が受信した受信信号を増幅する第1増幅部を有し、
     前記マッチング部は、前記第1増幅部における最小雑音指数から算出される定雑音指数円に基づいて決定される範囲内において、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングする
     ことを特徴とする請求項1に記載の通信モジュール。
    The device is a receiving side transmission line end element,
    The circuit unit includes a first amplification unit that amplifies a reception signal received by the reception side transmission line end element.
    The matching unit matches the first characteristic impedance with the second characteristic impedance within a range determined based on a constant noise figure circle calculated from a minimum noise figure in the first amplification unit. The communication module according to claim 1, characterized in that
  3.  前記デバイスは、送信側伝送路端部素子であり、
     前記回路は、前記送信側伝送路端部素子が送信する送信信号を増幅する第2増幅部を有し、
     前記マッチング部は、前記第2増幅部における最大有能電力利得から算出される定電力利得円に基づいて決定される範囲内において、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングする
     ことを特徴とする請求項1に記載の通信モジュール。
    The device is a transmission side transmission line end element,
    The circuit includes a second amplification unit that amplifies a transmission signal transmitted by the transmission side transmission path end element.
    The matching unit matches the first characteristic impedance and the second characteristic impedance within a range determined based on a constant power gain circle calculated from a maximum available power gain in the second amplification unit. The communication module according to claim 1.
  4.  前記マッチング部は、前記受信側伝送路端部素子が前記受信信号を受信していないタイミングにおいて、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングする
     ことを特徴とする請求項2に記載の通信モジュール。
    The matching unit may match the first characteristic impedance with the second characteristic impedance at timing when the reception side transmission line end element does not receive the reception signal. Communication module described in.
  5.  前記マッチング部は、前記送信側伝送路端部素子が前記送信信号を送信していないタイミングにおいて、前記第1の特性インピーダンスと前記第2の特性インピーダンスとをマッチングする
     ことを特徴とする請求項3に記載の通信モジュール。
    4. The device according to claim 3, wherein the matching unit matches the first characteristic impedance with the second characteristic impedance at timing when the transmission side transmission line end element does not transmit the transmission signal. Communication module described in.
  6.  前記素子は、インバータである
     ことを特徴とする請求項1に記載の通信モジュール。
    The communication module according to claim 1, wherein the element is an inverter.
  7.  前記受信側伝送路端部素子は、被検体の体表に取り付けられ、カプセル型内視鏡から送信された無線信号を受信する受信アンテナである
     ことを特徴とする請求項2に記載の通信モジュール。
    The communication module according to claim 2, wherein the receiving side transmission path end element is a receiving antenna attached to the body surface of the subject and receiving a radio signal transmitted from the capsule endoscope. .
  8.  前記送信側伝送路端部素子は、カプセル型内視鏡に設けられ、無線信号を送信する送信アンテナである
     ことを特徴とする請求項3に記載の通信モジュール。
    The communication module according to claim 3, wherein the transmission side transmission path end element is a transmission antenna which is provided in the capsule endoscope and transmits a radio signal.
  9.  請求項2に記載の通信モジュール、
     を備えることを特徴とするカプセル型内視鏡。
    A communication module according to claim 2,
    A capsule endoscope comprising:
  10.  請求項3に記載の通信モジュール、
     を備えることを特徴とする受信ユニット。
    The communication module according to claim 3,
    A receiving unit characterized by comprising:
PCT/JP2018/033149 2017-12-07 2018-09-07 Communication module, capsule endoscope and reception unit WO2019111470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235465 2017-12-07
JP2017-235465 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019111470A1 true WO2019111470A1 (en) 2019-06-13

Family

ID=66750154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033149 WO2019111470A1 (en) 2017-12-07 2018-09-07 Communication module, capsule endoscope and reception unit

Country Status (1)

Country Link
WO (1) WO2019111470A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210922A (en) * 1988-06-28 1990-01-16 Fujitsu Ltd Digital phase difference detection circuit and phase difference detection method
JP2006246322A (en) * 2005-03-07 2006-09-14 Hitachi Kokusai Electric Inc Matcher
JP2009050541A (en) * 2007-08-28 2009-03-12 Olympus Corp In-subject position detection system
JP2009516963A (en) * 2005-11-18 2009-04-23 クゥアルコム・インコーポレイテッド Digital transmitter for wireless communication
WO2017164228A1 (en) * 2016-03-24 2017-09-28 デクセリアルズ株式会社 Transmission device, antenna drive device, tuning method, and program for realizing tuning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210922A (en) * 1988-06-28 1990-01-16 Fujitsu Ltd Digital phase difference detection circuit and phase difference detection method
JP2006246322A (en) * 2005-03-07 2006-09-14 Hitachi Kokusai Electric Inc Matcher
JP2009516963A (en) * 2005-11-18 2009-04-23 クゥアルコム・インコーポレイテッド Digital transmitter for wireless communication
JP2009050541A (en) * 2007-08-28 2009-03-12 Olympus Corp In-subject position detection system
WO2017164228A1 (en) * 2016-03-24 2017-09-28 デクセリアルズ株式会社 Transmission device, antenna drive device, tuning method, and program for realizing tuning method

Similar Documents

Publication Publication Date Title
KR100889093B1 (en) Radio-type in-subject information acquisition system, device for introduction into subject, and outside-subject device
KR100741217B1 (en) Radio-type in-subject information acquisition system and outside-subject device
KR100739913B1 (en) Radio-type in-subject information acquisition system and device for introduction into subject
JP4422679B2 (en) Capsule endoscope and capsule endoscope system
JPWO2004096029A1 (en) Capsule endoscope and capsule endoscope system
JP6084339B2 (en) Capsule type endoscope system and method for operating capsule type endoscope system
US11234578B2 (en) Receiving apparatus and radio wave interference determination method
JP2004328941A (en) Radio type system for acquiring information inside inspected body
US10777881B2 (en) Receiving antenna, receiving antenna unit, and receiving system
US7860471B2 (en) Body-insertable apparatus
WO2021176708A1 (en) Antenna system, capsule endoscope system, and operating method of antenna system
WO2019111470A1 (en) Communication module, capsule endoscope and reception unit
JP4526315B2 (en) Intra-subject introduction apparatus and intra-subject information acquisition system
JP6230511B2 (en) Endoscope device
US20200373955A1 (en) Receiving device and receiving method
US20200196845A1 (en) Capsule endoscope system, capsule endoscope, and receiving device
JP2005334080A (en) Apparatus introduced into subject and medical instrument
JP2006149686A (en) Position detector and introduction system into subject
WO2021064882A1 (en) Reception system
JP4025766B2 (en) Receiver and transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载