WO2019176868A1 - ハニカムフィルタ及びハニカムフィルタの製造方法 - Google Patents
ハニカムフィルタ及びハニカムフィルタの製造方法 Download PDFInfo
- Publication number
- WO2019176868A1 WO2019176868A1 PCT/JP2019/009749 JP2019009749W WO2019176868A1 WO 2019176868 A1 WO2019176868 A1 WO 2019176868A1 JP 2019009749 W JP2019009749 W JP 2019009749W WO 2019176868 A1 WO2019176868 A1 WO 2019176868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- honeycomb
- volume
- fired body
- honeycomb filter
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/117—Composites
- C04B35/119—Composites with zirconium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
- C04B38/0009—Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2807—Metal other than sintered metal
- F01N3/281—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9205—Porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2425—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
- B01D46/2429—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2425—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
- B01D46/24491—Porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2425—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
- B01D46/24492—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
- B01D53/885—Devices in general for catalytic purification of waste gases
Definitions
- the present invention relates to a honeycomb filter and a method for manufacturing a honeycomb filter.
- Exhaust gas discharged from internal combustion engines such as automobiles contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), and particulate matter (PM).
- An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washing a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like.
- the filter is used in parallel with a honeycomb filter for removing PM.
- Patent Document 1 contains at least one co-catalyst selected from the group consisting of ceria, zirconia, and ceria-zirconia solid solution as a constituent component of the cell wall as a filter for simultaneously removing the harmful gas and PM. And the exhaust gas filter by which the pore which connects adjacent cell holes was formed in the cell wall is disclosed.
- Patent Document 1 does not disclose a specific method for forming a pore that communicates adjacent cell holes on the cell wall.
- the exhaust gas purification performance by the catalyst was sufficient, but it is required to further improve the PM collection efficiency and further reduce the pressure loss. It was.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a honeycomb filter having high PM collection efficiency and low pressure loss.
- the honeycomb filter of the present invention includes a porous cell partition wall that defines a plurality of cells serving as exhaust gas flow paths, an exhaust gas in which an end portion on the exhaust gas inlet side is opened and an end portion on the exhaust gas outlet side is plugged
- a honeycomb filter comprising a honeycomb fired body having an introduction cell and an exhaust gas exhaust cell having an end portion on the exhaust gas outlet side opened and an end portion on the exhaust gas inlet side plugged, wherein the honeycomb fired body comprises a ceria -
- the pore diameter of the cell partition of the honeycomb fired body was measured by a mercury intrusion method, and the measurement result is shown by the pore diameter ( ⁇ m) on the horizontal axis and the log on the vertical axis, which is composed of zirconia composite oxide particles and alumina particles.
- the proportion of the volume occupied by macropores with a pore size of 1 to 100 ⁇ m is 80% by volume or more of the total volume of pores, and the pore size is 1 1
- a value obtained by dividing the half width ( ⁇ m) of the maximum peak formed in the range of 00 ⁇ m by the mode diameter ( ⁇ m) is 0.5 or less.
- pores having a pore diameter of less than 1 ⁇ m are derived from the gap between secondary particles of ceria-zirconia composite oxide particles and alumina particles constituting the honeycomb fired body. It does not directly contribute to the gas passage through the cell partition wall.
- pores having a pore diameter of 1 to 100 ⁇ m are pores formed mainly by a pore former, and contribute to PM collection by allowing gas to pass therethrough.
- honeycomb filter of the present invention when the cell partition walls of the honeycomb fired body are measured by a mercury intrusion method, macropores contributing to PM collection account for 80% by volume or more of the total volume of the pores.
- the pores can be used for gas passage and PM collection, PM collection efficiency is high, and pressure loss can be reduced.
- the pore diameter in the pore diameter distribution curve [horizontal axis: pore diameter ( ⁇ m), vertical axis: log differential pore volume (mL / g)] measured by the mercury intrusion method is as follows.
- the value (hereinafter also referred to as sharpness) obtained by dividing the half width ( ⁇ m) of the maximum peak formed in the range of 1 to 100 ⁇ m by the mode diameter (pore diameter indicating the maximum peak) ( ⁇ m) is 0.5 or less . That is, since the pore size distribution of the macropores is sharp, the exhaust gas easily flows in the cell partition walls and the cells. Therefore, PM collection efficiency is high and pressure loss can be reduced.
- the porosity of the honeycomb fired body is preferably 65 to 85% by volume.
- the porosity of the honeycomb fired body is 65 to 85% by volume, both high mechanical strength and exhaust gas purification performance can be achieved.
- the alumina particles are desirably ⁇ -phase alumina particles.
- the heat resistance is high, and therefore, high exhaust gas purification performance can be exhibited even after a noble metal is supported and used for a long time.
- honeycomb filter of the present invention it is desirable that a noble metal is supported on the honeycomb fired body.
- a noble metal By supporting a noble metal on the honeycomb fired body, it can be used for exhaust gas purification.
- the method for manufacturing a honeycomb filter according to the present invention includes a porous cell partition wall that defines a plurality of cells that serve as exhaust gas flow paths, an end portion on the exhaust gas inlet side, and an end portion on the exhaust gas outlet side that is plugged.
- a method for producing a honeycomb filter comprising a honeycomb fired body having an exhaust gas introduction cell formed and an exhaust gas exhaust cell having an end portion on an exhaust gas outlet side open and an end portion on an exhaust gas inlet side plugged.
- D50 according to a volume cumulative distribution curve of the particle diameter of the spherical pore former used in preparing the raw material paste is 10 to 60 ⁇ m, and (D90-D10) / (D50) is 1.5.
- the ratio of the dry volume of the spherical pore former to the dry volume of the raw material paste is 45 to 70% by volume.
- D50 (hereinafter also simply referred to as D50) according to the volume cumulative distribution curve of the particle diameter of the spherical pore former used for preparing the raw material paste is 10 to 60 ⁇ m, and (D90 -D10) / (D50) is 1.5 or less, and the ratio of the dry volume of the spherical pore former to the dry volume of the raw material paste is 45 to 70% by volume. Since the particle diameter distribution of the granular pore former used for preparing the raw material paste is narrow, the pore diameter distribution of the obtained honeycomb fired body is also narrow.
- the honeycomb filter of the present invention can be obtained by setting the ratio of the dry volume of the spherical pore former to the dry volume of the raw material paste to 45 to 70% by volume.
- the dry volume of the raw material paste is the total volume of each component (excluding water) at the time of drying that does not contain water, and the solid content that does not contain water even for components added in the form of an aqueous solution.
- the volume of For the components (excluding aqueous solutions) mixed in a liquid state, the volume of the liquid not containing water is defined as the dry volume.
- the weight ratio of the ceria-zirconia composite oxide particles to the alumina particles used when preparing the raw material paste is: It is desirable to be 1.0 to 3.0.
- the weight ratio (ceria-zirconia composite oxide particles / alumina particles) is 1.0 to 3.0, the content of ceria-zirconia composite oxide particles is high. Since it is used as a cocatalyst, the exhaust gas purification performance is improved.
- a honeycomb filter of the present invention it is preferable to further include a supporting step of supporting a noble metal on the honeycomb fired body.
- a noble metal on the honeycomb fired body it can be used for exhaust gas purification.
- FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb filter of the present invention
- Fig. 1 (b) is a cross-sectional view taken along the line AA in Fig. 1 (a).
- FIG. 2 is a diagram illustrating pore size distributions of the honeycomb filter according to the example and the honeycomb filter according to the comparative example.
- the honeycomb filter of the present invention includes a porous cell partition wall that defines a plurality of cells serving as exhaust gas flow paths, an exhaust gas in which an end portion on the exhaust gas inlet side is opened and an end portion on the exhaust gas outlet side is plugged
- the honeycomb fired body includes an introduction cell and an exhaust gas discharge cell having an end portion on the exhaust gas outlet side opened and an end portion on the exhaust gas inlet side plugged.
- the plurality of cells are juxtaposed in the longitudinal direction of the honeycomb fired body with cell partition walls therebetween.
- the honeycomb fired body includes ceria-zirconia composite oxide particles (hereinafter referred to as CZ particles) and alumina particles.
- CZ particles ceria-zirconia composite oxide particles
- alumina particles alumina particles.
- the honeycomb fired body is manufactured by extruding and firing a raw material paste containing CZ particles, alumina particles, and an inorganic binder. Whether or not the honeycomb filter of the present invention has the above-described components can be confirmed by X-ray diffraction (XRD).
- XRD X-ray diffraction
- the honeycomb filter of the present invention may include a single honeycomb fired body, or may include a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies may be bonded with an adhesive. .
- an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
- FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb filter of the present invention
- Fig. 1 (b) is a cross-sectional view taken along the line AA in Fig. 1 (a).
- a honeycomb filter 10 shown in FIGS. 1A and 1B includes a porous cell partition wall 20 that partitions and forms a plurality of cells 12 and 13 that serve as exhaust gas flow paths, and an end portion 11a on the exhaust gas inlet side.
- the exhaust gas introduction cell 12 which is opened and the end portion 11b on the exhaust gas outlet side is plugged with the sealing material 14, and the end portion 11b on the exhaust gas outlet side is opened and the end portion 11a on the exhaust gas inlet side is the sealing material 14 It consists of the single honeycomb fired body 11 provided with the exhaust gas discharge cell 13 plugged by.
- the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 are arranged along the longitudinal direction of the honeycomb fired body (the direction indicated by the double arrow a in FIG. 1A) with the cell partition wall 20 therebetween.
- the exhaust gas (indicated by an arrow G in FIG. 1B) entered the exhaust gas introduction cell 12 opened at the end 11a on the exhaust gas inlet side and passed through the cell partition wall 20.
- the honeycomb filter 10 is composed of a single honeycomb fired body 11, the honeycomb fired body 11 is also the honeycomb filter itself.
- the pore diameters of the cell partition walls of the honeycomb fired body were measured by a mercury intrusion method, and the measurement results are shown by the pore diameter ( ⁇ m) on the horizontal axis and the log differential pore volume (mL / mL) on the vertical axis.
- the proportion of the volume occupied by macropores having a pore diameter of 1 to 100 ⁇ m is 80% by volume or more of the total volume of the pores, and the pore diameter is formed in the range of 1 to 100 ⁇ m.
- the value obtained by dividing the full width at half maximum ( ⁇ m) by the mode diameter ( ⁇ m) is 0.5 or less.
- the proportion of the volume occupied by macropores having a pore diameter of 1 to 100 ⁇ m is 80% by volume or more of the total volume of the pores, most of the pores can be used for gas passage and PM collection, and the PM collection efficiency is high. , Pressure loss can be lowered. Furthermore, when the value obtained by dividing the full width at half maximum ( ⁇ m) of the maximum peak formed in the range of 1 to 100 ⁇ m by the mode diameter ( ⁇ m) is 0.5 or less, the pore size distribution of the macropores is sharp. Therefore, the exhaust gas tends to flow uniformly in the cell partition and the cell.
- the above-mentioned total volume of pores is a total volume of pores measured by a mercury intrusion method.
- the honeycomb fired body is cut into cubes having a side of about 0.8 cm, ultrasonically washed with ion-exchanged water, sufficiently dried and used as a measurement sample.
- the pore diameter is measured by a mercury intrusion method (according to JIS R1655: 2003). That is, for example, the pore diameter of the obtained sample is measured using a micromeritics automatic porosimeter autopore III 9405 manufactured by Shimadzu Corporation.
- the measurement range is 0.006 to 500 ⁇ m, 100 to 500 ⁇ m is measured for each pressure of 0.1 psia, and 0.006 to 100 ⁇ m is measured for each pressure of 0.25 psia.
- the contact angle is 130 ° and the surface tension is 485 mN / m.
- the pore diameter of the cell partition walls of the honeycomb fired body was measured by a mercury intrusion method, and the measurement result was a pore diameter distribution curve in which the horizontal axis is the pore diameter ( ⁇ m) and the vertical axis is the log differential pore volume (mL / g).
- the half-value width of the maximum peak formed in the range of 1 to 100 ⁇ m in pore diameter is preferably 5 ⁇ m or less.
- the mode diameter is preferably 5 to 30 ⁇ m.
- the porosity of the honeycomb fired body is preferably 65 to 85% by volume.
- the porosity of the honeycomb fired body is 65 to 85% by volume, both high mechanical strength and exhaust gas purification performance can be achieved.
- the porosity of the honeycomb fired body When the porosity of the honeycomb fired body is less than 65% by volume, the proportion of pores that can contribute to gas passage in the cell partition walls decreases, and pressure loss may be improved. On the other hand, when the porosity of the honeycomb fired body exceeds 85% by volume, the porosity becomes too high, so that the mechanical properties of the honeycomb filter are deteriorated, and cracks and breakage are likely to occur while the honeycomb filter is used. .
- D50 of CZ particles constituting the honeycomb fired body is 1 to 10 ⁇ m.
- the average particle diameter of CZ particles and alumina particles constituting the honeycomb fired body is obtained by taking an SEM photograph of the honeycomb fired body using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800). Can do.
- the alumina particles constituting the honeycomb filter of the present invention are desirably ⁇ -phase alumina particles.
- the heat resistance is high, and therefore, high exhaust gas purification performance can be exhibited even after a noble metal is supported and used for a long time.
- the content of alumina particles is preferably 15 to 35% by weight.
- the content ratio of CZ particles is preferably 35 to 65% by weight.
- the honeycomb filter of the present invention desirably contains ⁇ -alumina used as a binder at the time of manufacture, and further desirably contains an alumina fiber. This is because when a honeycomb filter is manufactured, a binder is required. When boehmite is added as a binder, most of the boehmite becomes ⁇ -alumina after firing. Moreover, it is because the mechanical characteristic of a honey-comb filter can be improved when an alumina fiber is included.
- the binder content is desirably 0.1 to 10% by weight, and the alumina fiber content is desirably 10 to 40% by weight.
- the shape of the honeycomb filter of the present invention is not limited to a columnar shape, and examples thereof include a prismatic shape, an elliptical columnar shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
- the shape of the cells of the honeycomb fired body is not limited to the quadrangular prism shape, and examples thereof include a triangular prism shape and a hexagonal prism shape.
- the density of cells having a cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 cells / cm 2 .
- the thickness of the cell partition walls of the honeycomb fired body is preferably 0.05 to 0.50 mm, and more preferably 0.10 to 0.30 mm.
- the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
- the honeycomb filter of the present invention may include a single honeycomb fired body, or may include a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies may be bonded with an adhesive. .
- the honeycomb filter of the present invention it is desirable that a noble metal is supported on the honeycomb fired body.
- the honeycomb filter when a noble metal functioning as a catalyst is supported on the honeycomb fired body, the honeycomb filter can also be used as a honeycomb catalyst for exhaust gas purification.
- the noble metal include platinum, palladium, and rhodium.
- the loading amount of the noble metal is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
- the amount of noble metal supported refers to the weight of the noble metal per apparent volume of the honeycomb filter.
- the apparent volume of the honeycomb filter is a volume including the void volume, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
- the method for manufacturing a honeycomb filter according to the present invention includes a porous cell partition wall that defines a plurality of cells that serve as exhaust gas flow paths, an end portion on the exhaust gas inlet side, and an end portion on the exhaust gas outlet side that is plugged.
- a method for producing a honeycomb filter comprising a honeycomb fired body having an exhaust gas introduction cell formed and an exhaust gas exhaust cell having an end portion on an exhaust gas outlet side open and an end portion on an exhaust gas inlet side plugged.
- D50 according to a volume cumulative distribution curve of the particle diameter of the spherical pore former used in preparing the raw material paste is 10 to 60 ⁇ m, and (D90-D10) / (D50) is 1.5.
- the ratio of the dry volume of the spherical pore former to the dry volume of the raw material paste is 45 to 70% by volume.
- a honeycomb formed body in which a plurality of cells are arranged in parallel in the longitudinal direction with cell partition walls is formed by forming a raw material paste containing ceria-zirconia composite oxide particles, alumina particles, and a spherical pore former. To do.
- a raw material paste containing CZ particles, alumina particles, and a spherical pore former is prepared.
- the D50 according to the volume cumulative distribution curve of the particle diameter of the spherical pore former used for preparing the raw material paste is 10 to 60 ⁇ m, and (D90-D10) / (D50) is 1.5 or less. Furthermore, the ratio of the dry volume of the spherical pore former to the dry volume of the raw material paste is 45 to 70% by volume.
- the D50 and (D90-D10) / (D50) of the spherical pore former used for preparing the raw material paste are adjusted to the above ranges, the particle size distribution of the granular pore former used for preparing the raw material paste is narrow. Therefore, the pore size distribution of the obtained honeycomb fired body is also narrowed. Furthermore, when the ratio of the dry volume of the spherical pore former to the dry volume of the raw material paste is 45 to 70% by volume, the honeycomb filter of the present invention having a porosity of 65 to 85% by volume can be obtained.
- alumina particles having a D50 of 1 to 30 ⁇ m It is desirable to use alumina particles having a D50 of 1 to 30 ⁇ m. Further, it is desirable to use CZ particles having a D50 of 1 to 10 ⁇ m. Furthermore, it is desirable that the D50 of the alumina particles to be used is larger than the D50 of the CZ particles.
- the weight ratio of the ceria-zirconia composite oxide particles to the alumina particles used in preparing the raw material paste is 1.0 to 3.0. desirable.
- the weight ratio (ceria-zirconia composite oxide particles / alumina particles) is 1.0 to 3.0, the content of ceria-zirconia composite oxide particles is high. Since it is used as a cocatalyst, the exhaust gas purification performance is improved.
- D50 of alumina particles and CZ particles, and D10, D50, and D90 of spherical pore formers can be measured using a laser diffraction type particle size distribution measuring apparatus (MASTERSizer 2000 manufactured by MALVERN).
- D10 refers to the particle diameter corresponding to 10% by volume from the smaller particle diameter in the volume cumulative distribution curve of particle diameter
- D50 refers to the smaller particle diameter in the volume cumulative distribution curve of particle diameter
- the particle diameter corresponds to 50 volume%
- D90 refers to the particle diameter corresponding to 90 volume% from the smaller particle diameter in the volume distribution curve of particle diameter.
- ⁇ -phase alumina particles are desirable.
- the spherical pore former may have a D50 of 10 to 60 ⁇ m and (D90-D10) / (D50) of 1.5 or less. Examples of satisfying these conditions include acrylic resin, starch, carbon and the like. Among these, it is desirable to use acrylic resin.
- the D50 of the spherical pore former may be 10 to 60 ⁇ m, but is preferably 15 to 50 ⁇ m, and more preferably 20 to 40 ⁇ m.
- the spherical pore former refers to a material having an aspect ratio of 3 or less among those used for forming pores in the fired body when the honeycomb fired body is manufactured. The aspect ratio of the spherical pore former can be measured by taking an SEM photograph of the spherical pore former using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800).
- raw materials used when preparing the raw material paste include inorganic fibers, inorganic binders, organic binders, molding aids, dispersion media, and the like.
- alumina a silica, silicon carbide, a silica alumina, glass, potassium titanate, an aluminum borate etc.
- the aspect ratio of the inorganic fiber is preferably 5 to 300, more preferably 10 to 200, and still more preferably 10 to 100.
- inorganic binder Solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite etc. is mentioned, These inorganic binders may be used together 2 or more types. Of these, boehmite is desirable.
- Boehmite is an alumina monohydrate represented by the composition of AlOOH, and is well dispersed in a medium such as water. Therefore, it is desirable to use boehmite as a binder in the method for manufacturing a honeycomb filter of the present invention.
- Methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, a phenol resin, an epoxy resin etc. are mentioned, You may use 2 or more types together.
- Alcohol such as water
- organic solvents such as benzene, methanol, etc.
- CZ particles, alumina particles, alumina fibers, and boehmite are used as the raw materials
- the blending ratio thereof is CZ particles: 40 to 60% by weight, alumina particles based on the total solid content remaining after the firing step in the raw materials. : 15-35% by weight, alumina fiber: 10-40% by weight, boehmite: 0.1-10% by weight are desirable.
- the ratio of the dry volume of the spherical pore former to the dry volume of the raw material paste is 45 to 70% by volume.
- the weight ratio of CZ particles to alumina particles (CZ particles / alumina particles) used in preparing the raw material paste is desirably 1.0 to 3.0.
- CZ particles / alumina particles When the weight ratio (CZ particles / alumina particles) is 1.0 to 3.0, the content of CZ particles is high, and these CZ particles are used as a co-catalyst.
- the catalytic action can be strengthened, and the performance as a honeycomb catalyst can be further enhanced.
- the raw material paste When preparing the raw material paste, it is desirable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
- a raw material paste prepared by the above method is formed to produce a honeycomb formed body in which a plurality of cells are arranged in parallel in the longitudinal direction with cell partition walls therebetween.
- a honeycomb formed body is manufactured by extrusion molding using the raw material paste. Specifically, by passing a die having a predetermined shape, a continuous body of honeycomb formed bodies having cells having a predetermined shape is formed, and cut into a predetermined length to obtain a honeycomb formed body.
- the formed body formed by the forming step is dried.
- a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, etc.
- the honeycomb formed body can be dried to produce a honeycomb dried body. desirable.
- honeycomb formed body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb formed body.
- a predetermined amount of the plug material paste is filled into any one end of the cells constituting the dried honeycomb molded body, and the cells are plugged.
- a cell sealing mask is applied to the end face of the honeycomb formed body (that is, the cut face after cutting both ends), and the sealing material is applied only to the cells that need to be sealed. Fill the paste and dry the encapsulant paste.
- the raw material paste can be used as the sealing material paste.
- the step of plugging the cells with the sealing material paste may be performed after the firing step described later.
- the honeycomb fired body is manufactured by firing the molded body dried in the drying process.
- this process performs degreasing and firing of the honeycomb formed body, it can also be referred to as a “degreasing / firing process”, but it is referred to as a “firing process” for convenience.
- the temperature of the firing step is desirably 800 to 1300 ° C., and more desirably 900 to 1200 ° C.
- the firing process time is desirably 1 to 24 hours, More desirably, it is 3 to 18 hours.
- the atmosphere of the firing step is not particularly limited, but it is desirable that the oxygen concentration is 1 to 20%.
- the honeycomb filter of the present invention can be manufactured.
- the method for manufacturing a honeycomb filter of the present invention may further include a supporting step of supporting a noble metal on the honeycomb fired body, if necessary.
- Examples of the method for supporting the noble metal on the honeycomb fired body include a method in which the honeycomb fired body or the honeycomb filter is immersed in a solution containing noble metal particles or a complex, and then heated up and heated.
- the honeycomb filter includes an outer peripheral coat layer
- the precious metal may be supported on the honeycomb fired body before forming the outer peripheral coat layer, or the precious metal may be supported on the honeycomb fired body or the honeycomb filter after forming the outer peripheral coat layer. May be.
- the amount of the precious metal supported in the supporting step is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
- the outer peripheral coat layer is applied after the outer peripheral coat layer paste is applied to the outer peripheral surface except for both end faces of the honeycomb fired body. It can be formed by drying and solidifying.
- the outer coat layer paste include the same composition as the raw material paste.
- Example 1 CZ particles (D50: 2 ⁇ m) 16.9 wt%, ⁇ alumina particles (D50: 20 ⁇ m) 8.5 wt%, boehmite 2.8 wt% as an inorganic binder, average fiber diameter 3 ⁇ m, average fiber length 100 ⁇ m alumina fiber 10.6% by weight, methyl cellulose 3.9% by weight as organic binder, and acrylic resin (aspect ratio: 1.0, D10: 17 ⁇ m, D50: 32 ⁇ m, D90: 51 ⁇ m) as a spherical pore former 28.1% by weight, 2.9% by weight of polyoxyethylene oleyl ether, which is a surfactant as a molding aid, and 26.2% by weight of ion-exchanged water were mixed and kneaded to prepare a raw material paste.
- the molding aid has a viscosity at 30 ° C. of 50 mPa ⁇ s.
- grains and D10, D50, D90 of spherical pore former were measured using the laser diffraction type particle size distribution measuring apparatus (MALVERN company make, MASTERSIZER2000).
- the raw material paste was extruded using an extruder, and a cylindrical honeycomb formed body was produced. Then, after the honeycomb formed body is dried at an output of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, a sealing material is formed at one end of each cell constituting the honeycomb formed body.
- a sealing material paste having the same composition as that of the raw material paste used for manufacturing the honeycomb molded body is filled in a predetermined cell of the honeycomb molded body so that the paste is filled, and further, 10 ° C. at 120 ° C. under atmospheric pressure. Let dry for minutes. Then, a honeycomb fired body (honeycomb filter) was produced by degreasing and firing at 1100 ° C.
- the honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 80 mm, a cell density of 77.5 cells / cm 2 (500 cpsi), and a cell partition wall thickness of 0.127 mm (5 mil).
- composition of the raw material paste is as follows: CZ particles (D50: 2 ⁇ m) 25.8 wt%, ⁇ alumina particles (D50: 2 ⁇ m) 12.9 wt%, boehmite 11.0 wt% as an inorganic binder, average fiber diameter 3 ⁇ m, 5.2% by weight of alumina fiber having an average fiber length of 30 ⁇ m, 7.6% by weight of methyl cellulose as an organic binder, acrylic resin as a spherical pore former (aspect ratio: 1.0, D10: 6.5 ⁇ m, D50: 17 ⁇ m D90: 33 ⁇ m) Example 1 except that 7.1% by weight, 4.1% by weight of polyoxyethylene oleyl ether which is a surfactant as a molding aid, and 26.4% by weight of ion-exchanged water were used.
- a honeycomb filter according to Comparative Example 1 was manufactured in the same procedure. Moreover, the ratio of the dry volume of the spherical pore
- Example 1 The measurement results are shown in FIG. In the graph shown in FIG. 2, the log differential pore volume (mL / g) is plotted on the vertical axis, and the pore diameter ( ⁇ m) is plotted on the horizontal axis.
- the solid line shows the result of Example 1, and the broken line shows the result of Comparative Example 1.
- the porosity is 81% by volume, and the proportion of the volume occupied by macropores having a pore diameter of 1 to 100 ⁇ m is 94% by volume out of the total volume of pores existing in the cell partition wall.
- the full width at half maximum of the peak was 3.8 ⁇ m and the mode diameter was 9.8 ⁇ m, and the value obtained by dividing the full width at half maximum by the mode diameter was 0.4.
- the porosity is 63% by volume, and the ratio of the volume occupied by the macropores having a pore diameter of 1 to 100 ⁇ m is 25% by volume out of the total volume of the pores existing in the cell partition wall. No peak could be confirmed in the 100 ⁇ m range. From FIG. 2, it can be seen that the honeycomb filter according to Example 1 has a sharper pore size distribution of the pores constituting the cell partition walls than the honeycomb filter according to Comparative Example 1.
- the honeycomb filter obtained by the method for manufacturing a honeycomb filter of the present invention has many macropores having a pore diameter of 1 to 100 ⁇ m that contribute to gas passage and PM collection, and furthermore, the pore size distribution of the macropores is sharp. High collection efficiency and low pressure loss.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Composite Materials (AREA)
- Filtering Materials (AREA)
- Catalysts (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
本発明のハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタであって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とからなり、上記ハニカム焼成体の上記セル隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(mL/g)からなる気孔径分布曲線として表示した際、気孔径1~100μmのマクロ気孔が占める体積の割合が気孔の総体積の80体積%以上であり、気孔径が1~100μmの範囲に形成される最大ピークの半値幅(μm)をモード径(μm)で除した値が0.5以下であることを特徴とする。
Description
本発明は、ハニカムフィルタ及びハニカムフィルタの製造方法に関する。
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガス及び粒子状物質(PM)が含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的であり、PMを除去するためのハニカム状のフィルタと並列にして使用されている。
一方、特許文献1には、上記有害ガスおよびPMを同時に除去するフィルタとして、セル壁の構成成分に、セリア、ジルコニア、及びセリア-ジルコニア固溶体からなるグループより選ばれる少なくとも1種の助触媒を含有し、隣り合うセル孔を連通する細孔がセル壁に形成された排ガスフィルタが開示されている。
しかしながら、特許文献1は隣り合うセル孔を連通する細孔をセル壁に形成する方法について、具体的な方法を開示していない。
さらに、特許文献1に記載の製造方法により得られた排ガスフィルタでは、触媒による排ガス浄化性能は充分であったが、PM捕集効率をさらに向上させ、圧力損失をさらに低減させることが求められていた。
本発明は、上記課題を解決するためになされた発明であり、本発明の目的は、PM捕集効率が高く、圧力損失が低いハニカムフィルタを提供することである。
本発明のハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタであって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とからなり、上記ハニカム焼成体の上記セル隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(mL/g)からなる気孔径分布曲線として表示した際、気孔径1~100μmのマクロ気孔が占める体積の割合が気孔の総体積の80体積%以上であり、気孔径が1~100μmの範囲に形成される最大ピークの半値幅(μm)をモード径(μm)で除した値が0.5以下であることを特徴とする。
ハニカムフィルタにおいて、気孔径が1μm未満の気孔(以下、ミクロ気孔ともいう)は、ハニカム焼成体を構成するセリア-ジルコニア複合酸化物粒子とアルミナ粒子の二次粒子の隙間に由来するものであって、セル隔壁のガス通過に直接寄与するものではない。一方、気孔径1~100μmの気孔(以下、マクロ気孔ともいう)は、主に造孔材により形成される気孔であって、ガスを通過させPM捕集に寄与する。
本発明のハニカムフィルタでは、ハニカム焼成体のセル隔壁を水銀圧入法で測定した場合に、PM捕集に寄与するマクロ気孔が気孔の総体積の80体積%以上を占めているため、大部分の気孔をガス通過とPM捕集に用いることができ、PM捕集効率が高く、圧力損失を低くすることができる。
本発明のハニカムフィルタでは、ハニカム焼成体のセル隔壁を水銀圧入法で測定した場合に、PM捕集に寄与するマクロ気孔が気孔の総体積の80体積%以上を占めているため、大部分の気孔をガス通過とPM捕集に用いることができ、PM捕集効率が高く、圧力損失を低くすることができる。
さらに、本発明のハニカムフィルタでは、上記水銀圧入法により測定された気孔径分布曲線[横軸:気孔径(μm)、縦軸:log微分細孔容積(mL/g)]において、気孔径が1~100μmの範囲に形成される最大ピークの半値幅(μm)をモード径(最大ピークを示す気孔径)(μm)で除した値(以下、シャープ度ともいう)が0.5以下である。すなわち、マクロ気孔の気孔径分布がシャープであるため、セル隔壁内及びセル内を排ガスが均等に流れやすい。そのため、PM捕集効率が高く、圧力損失を低くすることができる。
本発明のハニカムフィルタでは、上記ハニカム焼成体の気孔率は、65~85体積%であることが望ましい。
ハニカム焼成体の気孔率が65~85体積%であると、高い機械的強度と排ガス浄化性能を両立させることができる。
ハニカム焼成体の気孔率が65~85体積%であると、高い機械的強度と排ガス浄化性能を両立させることができる。
本発明のハニカムフィルタでは、上記アルミナ粒子は、θ相のアルミナ粒子であることが望ましい。
アルミナ粒子がθ相のアルミナ粒子であると耐熱性が高いため、貴金属を担持させ、長時間使用した後であっても高い排ガス浄化性能を発揮することができる。
アルミナ粒子がθ相のアルミナ粒子であると耐熱性が高いため、貴金属を担持させ、長時間使用した後であっても高い排ガス浄化性能を発揮することができる。
本発明のハニカムフィルタでは、上記ハニカム焼成体に貴金属が担持されていることが望ましい。
ハニカム焼成体に貴金属を担持させることにより、排ガス浄化用途に使用することが可能となる。
ハニカム焼成体に貴金属を担持させることにより、排ガス浄化用途に使用することが可能となる。
本発明のハニカムフィルタの製造方法は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタの製造方法であって、セリア-ジルコニア複合酸化物粒子とアルミナ粒子と球状造孔材を含む原料ペーストを成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、上記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含み、上記原料ペーストを調製する際に使用する上記球状造孔材の粒子径の体積累積分布曲線によるD50が10~60μmであり、(D90-D10)/(D50)が1.5以下であり、上記原料ペーストの乾燥体積に占める上記球状造孔材の乾燥体積の割合が45~70体積%であることを特徴とする。
本発明のハニカムフィルタの製造方法では、原料ペーストを調製する際に使用する球状造孔材の粒子径の体積累積分布曲線によるD50(以下、単にD50ともいう)が10~60μmであり、(D90-D10)/(D50)が1.5以下であり、上記原料ペーストの乾燥体積に占める上記球状造孔材の乾燥体積の割合が45~70体積%である。原料ペーストの調製に使用される粒状造孔材の粒子径分布が狭いため、得られるハニカム焼成体の気孔径分布も狭くなる。さらに、原料ペーストの乾燥体積に占める球状造孔材の乾燥体積の割合を45~70体積%とすることで、本発明のハニカムフィルタを得ることができる。
原料ペーストの乾燥体積とは、原料ペーストを構成する各成分(水を除く)の水を含まない乾燥時の体積の合計であり、水溶液の状態で添加される成分についても水を含まない固形分の体積とする。液体の状態で混合される成分(水溶液を除く)についても、その液体の水を含まない体積を乾燥体積とする。
原料ペーストの乾燥体積とは、原料ペーストを構成する各成分(水を除く)の水を含まない乾燥時の体積の合計であり、水溶液の状態で添加される成分についても水を含まない固形分の体積とする。液体の状態で混合される成分(水溶液を除く)についても、その液体の水を含まない体積を乾燥体積とする。
本発明のハニカムフィルタの製造方法においては、上記原料ペーストを調製する際に使用する上記アルミナ粒子に対する上記セリア-ジルコニア複合酸化物粒子の重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)は、1.0~3.0であることが望ましい。
上記重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)が1.0~3.0であると、セリア-ジルコニア複合酸化物粒子の含有率が高く、このセリア-ジルコニア複合酸化物粒子は、助触媒として使用されるものであるので、排ガスの浄化性能が向上する。
上記重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)が1.0~3.0であると、セリア-ジルコニア複合酸化物粒子の含有率が高く、このセリア-ジルコニア複合酸化物粒子は、助触媒として使用されるものであるので、排ガスの浄化性能が向上する。
本発明のハニカムフィルタの製造方法においては、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含むことが望ましい。
ハニカム焼成体に貴金属を担持させることにより、排ガス浄化用途に使用することが可能となる。
ハニカム焼成体に貴金属を担持させることにより、排ガス浄化用途に使用することが可能となる。
(発明の詳細な説明)
[ハニカムフィルタ]
まず、本発明のハニカムフィルタについて説明する。
[ハニカムフィルタ]
まず、本発明のハニカムフィルタについて説明する。
本発明のハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなる。
上記ハニカム焼成体において、複数のセルはセル隔壁を隔ててハニカム焼成体の長手方向に並設されている。
上記ハニカム焼成体において、複数のセルはセル隔壁を隔ててハニカム焼成体の長手方向に並設されている。
本発明のハニカムフィルタにおいて、ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子(以下、CZ粒子という)とアルミナ粒子からなる。
後述するように、ハニカム焼成体は、CZ粒子とアルミナ粒子と無機バインダとを含む原料ペーストを押出成形した後、焼成することにより作製されている。
本発明のハニカムフィルタが上記した成分を有しているか否かについては、X線回折(XRD)にて確認できる。
後述するように、ハニカム焼成体は、CZ粒子とアルミナ粒子と無機バインダとを含む原料ペーストを押出成形した後、焼成することにより作製されている。
本発明のハニカムフィルタが上記した成分を有しているか否かについては、X線回折(XRD)にて確認できる。
本発明のハニカムフィルタは、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤により結合されていてもよい。
本発明のハニカムフィルタにおいて、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。
図1(a)は、本発明のハニカムフィルタの一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図である。
図1(a)及び図1(b)に示すハニカムフィルタ10は、排ガスの流路となる複数のセル12、13を区画形成する多孔質のセル隔壁20と、排ガス入口側の端部11aが開口され且つ排ガス出口側の端部11bが封止材14により目封止された排ガス導入セル12と、排ガス出口側の端部11bが開口され且つ排ガス入口側の端部11aが封止材14により目封止された排ガス排出セル13とを備える単一のハニカム焼成体11からなる。
排ガス導入セル12及び排ガス排出セル13はセル隔壁20を隔ててハニカム焼成体の長手方向(図1(a)中、両矢印aで示す方向)に沿って配設されている。
図1(b)に示すように、排ガス(図1(b)中、矢印Gで示す)は排ガス入口側の端部11aに開口する排ガス導入セル12に侵入し、セル隔壁20内を通過した後、排ガス出口側の端部11bに開口する排ガス排出セル13から排出される。
図1(a)及び図1(b)に示すように、ハニカムフィルタ10が単一のハニカム焼成体11からなる場合、ハニカム焼成体11はハニカムフィルタそのものでもある。
図1(a)及び図1(b)に示すハニカムフィルタ10は、排ガスの流路となる複数のセル12、13を区画形成する多孔質のセル隔壁20と、排ガス入口側の端部11aが開口され且つ排ガス出口側の端部11bが封止材14により目封止された排ガス導入セル12と、排ガス出口側の端部11bが開口され且つ排ガス入口側の端部11aが封止材14により目封止された排ガス排出セル13とを備える単一のハニカム焼成体11からなる。
排ガス導入セル12及び排ガス排出セル13はセル隔壁20を隔ててハニカム焼成体の長手方向(図1(a)中、両矢印aで示す方向)に沿って配設されている。
図1(b)に示すように、排ガス(図1(b)中、矢印Gで示す)は排ガス入口側の端部11aに開口する排ガス導入セル12に侵入し、セル隔壁20内を通過した後、排ガス出口側の端部11bに開口する排ガス排出セル13から排出される。
図1(a)及び図1(b)に示すように、ハニカムフィルタ10が単一のハニカム焼成体11からなる場合、ハニカム焼成体11はハニカムフィルタそのものでもある。
本発明のハニカムフィルタにおいては、ハニカム焼成体のセル隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(mL/g)からなる気孔径分布曲線として表示した際、気孔径1~100μmのマクロ気孔が占める体積の割合が気孔の総体積の80体積%以上であり、気孔径が1~100μmの範囲に形成される最大ピークの半値幅(μm)をモード径(μm)で除した値が0.5以下である。
気孔径1~100μmのマクロ気孔が占める体積の割合が気孔の総体積の80体積%以上であると、大部分の気孔をガス通過とPM捕集に用いることができ、PM捕集効率が高く、圧力損失を低くすることができる。
さらに、気孔径が1~100μmの範囲に形成される最大ピークの半値幅(μm)をモード径(μm)で除した値が0.5以下であると、マクロ気孔の気孔径分布がシャープであるため、セル隔壁内及びセル内を排ガスが均一に流れやすい。
なお、上述の気孔の総体積とは、水銀圧入法により測定される気孔の総体積である。
気孔径1~100μmのマクロ気孔が占める体積の割合が気孔の総体積の80体積%以上であると、大部分の気孔をガス通過とPM捕集に用いることができ、PM捕集効率が高く、圧力損失を低くすることができる。
さらに、気孔径が1~100μmの範囲に形成される最大ピークの半値幅(μm)をモード径(μm)で除した値が0.5以下であると、マクロ気孔の気孔径分布がシャープであるため、セル隔壁内及びセル内を排ガスが均一に流れやすい。
なお、上述の気孔の総体積とは、水銀圧入法により測定される気孔の総体積である。
水銀圧入法による具体的な測定手順としては、ハニカム焼成体を一辺0.8cm程度の立方体に切断し、イオン交換水で超音波洗浄し、充分乾燥して測定用サンプルとして、測定用サンプルの気孔径を水銀圧入法(JISR1655:2003に準じる)によって測定する。すなわち、例えば、得られたサンプルを、(株)島津製作所製、マイクロメリティックス自動ポロシメータオートポアIII9405を用いて気孔径の測定を行う。測定範囲は、0.006~500μmとし、100~500μmでは、0.1psiaの圧力毎に測定し、0.006~100μmでは、0.25psiaの圧力毎に測定する。その際、接触角を130°、表面張力を485mN/mとする。
ハニカム焼成体のセル隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(mL/g)からなる気孔径分布曲線として表示した際の、気孔径が1~100μmの範囲形成される最大ピークの半値幅は、5μm以下であることが望ましい。また、モード径は5~30μmであることが望ましい。
本発明のハニカムフィルタにおいて、上記ハニカム焼成体の気孔率は、65~85体積%であることが望ましい。
ハニカム焼成体の気孔率が65~85体積%であると、高い機械的強度と排ガス浄化性能を両立させることができる。
ハニカム焼成体の気孔率が65~85体積%であると、高い機械的強度と排ガス浄化性能を両立させることができる。
上記ハニカム焼成体の気孔率が65体積%未満であると、セル隔壁のうちガス通過に寄与することができる気孔の割合が少なくなり、圧力損失が向上してしまうことがある。一方、上記ハニカム焼成体の気孔率が85体積%を超えると、気孔率が高くなりすぎるため、ハニカムフィルタの機械的特性が劣化し、ハニカムフィルタを使用中、クラックや破壊等が発生し易くなる。
本発明のハニカムフィルタにおいて、ハニカム焼成体を構成するCZ粒子のD50は、1~10μmであることが望ましい。
ハニカム焼成体を構成するCZ粒子及びアルミナ粒子の平均粒子径は、走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、ハニカム焼成体のSEM写真を撮影することにより求めることができる。
本発明のハニカムフィルタを構成するアルミナ粒子は、θ相のアルミナ粒子であることが望ましい。
アルミナ粒子がθ相のアルミナ粒子であると耐熱性が高いため、貴金属を担持させ、長時間使用した後であっても高い排ガス浄化性能を発揮することができる。
アルミナ粒子がθ相のアルミナ粒子であると耐熱性が高いため、貴金属を担持させ、長時間使用した後であっても高い排ガス浄化性能を発揮することができる。
本発明のハニカムフィルタにおいて、アルミナ粒子の含有割合は、15~35重量%であることが望ましい。
また、本発明のハニカムフィルタにおいて、CZ粒子の含有割合は、35~65重量%であることが望ましい。
また、本発明のハニカムフィルタにおいて、CZ粒子の含有割合は、35~65重量%であることが望ましい。
本発明のハニカムフィルタには、製造時にバインダとして用いられたγアルミナを含んでいることが望ましく、さらに、アルミナファイバを含んでいることが望ましい。
ハニカムフィルタの製造時には、バインダが必要となるが、バインダとして、ベーマイトを添加すると、焼成後は、ベーマイトの大部分がγアルミナとなるからである。また、アルミナファイバを含んでいると、ハニカムフィルタの機械的特性を改善することができるからである。
ハニカムフィルタの製造時には、バインダが必要となるが、バインダとして、ベーマイトを添加すると、焼成後は、ベーマイトの大部分がγアルミナとなるからである。また、アルミナファイバを含んでいると、ハニカムフィルタの機械的特性を改善することができるからである。
バインダの含有割合は、0.1~10重量%であること望ましく、アルミナファイバの含有割合は、10~40重量%であることが望ましい。
本発明のハニカムフィルタの形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカムフィルタにおいて、ハニカム焼成体のセルの形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
本発明のハニカムフィルタにおいて、ハニカム焼成体の長手方向に垂直な断面のセルの密度は、31~155個/cm2であることが望ましい。
本発明のハニカムフィルタにおいて、ハニカム焼成体のセル隔壁の厚さは、0.05~0.50mmであることが望ましく、0.10~0.30mmであることがより望ましい。
本発明のハニカムフィルタにおいて、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。
本発明のハニカムフィルタは、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤により結合されていてもよい。
本発明のハニカムフィルタにおいて、上記ハニカム焼成体に貴金属が担持されていることが望ましい。
上記ハニカムフィルタにおいて、上記ハニカム焼成体に触媒として機能する貴金属が担持されていると、排ガス浄化用のハニカム触媒としても使用することができる。
貴金属としては、例えば、白金、パラジウム、ロジウム等が挙げられる。
上記ハニカムフィルタにおいて、上記ハニカム焼成体に触媒として機能する貴金属が担持されていると、排ガス浄化用のハニカム触媒としても使用することができる。
貴金属としては、例えば、白金、パラジウム、ロジウム等が挙げられる。
本発明のハニカムフィルタにおいて、貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカムフィルタの見掛けの体積当たりの貴金属の重量をいう。なお、ハニカムフィルタの見掛けの体積とは、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
本明細書において、貴金属の担持量とは、ハニカムフィルタの見掛けの体積当たりの貴金属の重量をいう。なお、ハニカムフィルタの見掛けの体積とは、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
[ハニカムフィルタの製造方法]
次に、本発明のハニカムフィルタの製造方法について説明する。
本発明のハニカムフィルタの製造方法は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタの製造方法であって、セリア-ジルコニア複合酸化物粒子とアルミナ粒子と球状造孔材を含む原料ペーストを成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、上記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含み、上記原料ペーストを調製する際に使用する上記球状造孔材の粒子径の体積累積分布曲線によるD50が10~60μmであり、(D90-D10)/(D50)が1.5以下であり、上記原料ペーストの乾燥体積に占める上記球状造孔材の乾燥体積の割合が45~70体積%であることを特徴とする。
次に、本発明のハニカムフィルタの製造方法について説明する。
本発明のハニカムフィルタの製造方法は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタの製造方法であって、セリア-ジルコニア複合酸化物粒子とアルミナ粒子と球状造孔材を含む原料ペーストを成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、上記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含み、上記原料ペーストを調製する際に使用する上記球状造孔材の粒子径の体積累積分布曲線によるD50が10~60μmであり、(D90-D10)/(D50)が1.5以下であり、上記原料ペーストの乾燥体積に占める上記球状造孔材の乾燥体積の割合が45~70体積%であることを特徴とする。
(成形工程)
成形工程では、セリア-ジルコニア複合酸化物粒子とアルミナ粒子と球状造孔材を含む原料ペーストを成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
成形工程では、セリア-ジルコニア複合酸化物粒子とアルミナ粒子と球状造孔材を含む原料ペーストを成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
上記成形工程では、まず、最初にCZ粒子とアルミナ粒子と球状造孔材を含む原料ペーストを調製する。
原料ペーストを調整する際に使用する上記球状造孔材の粒子径の体積累積分布曲線によるD50は、10~60μmであり、(D90-D10)/(D50)は1.5以下である。
さらに、原料ペーストの乾燥体積に占める球状造孔材の乾燥体積の割合を45~70体積%とする。
原料ペーストを調整する際に使用する球状造孔材のD50及び(D90-D10)/(D50)を上記範囲に調整すると、原料ペーストの調製に使用される粒状造孔材の粒子径分布が狭いため、得られるハニカム焼成体の気孔径分布も狭くなる。さらに、原料ペーストの乾燥体積に占める球状造孔材の乾燥体積の割合を45~70体積%とすることで、気孔率が65~85体積%である本発明のハニカムフィルタを得ることができる。
原料ペーストを調整する際に使用する上記球状造孔材の粒子径の体積累積分布曲線によるD50は、10~60μmであり、(D90-D10)/(D50)は1.5以下である。
さらに、原料ペーストの乾燥体積に占める球状造孔材の乾燥体積の割合を45~70体積%とする。
原料ペーストを調整する際に使用する球状造孔材のD50及び(D90-D10)/(D50)を上記範囲に調整すると、原料ペーストの調製に使用される粒状造孔材の粒子径分布が狭いため、得られるハニカム焼成体の気孔径分布も狭くなる。さらに、原料ペーストの乾燥体積に占める球状造孔材の乾燥体積の割合を45~70体積%とすることで、気孔率が65~85体積%である本発明のハニカムフィルタを得ることができる。
アルミナ粒子として、そのD50が1~30μmのものを使用することが望ましい。
また、CZ粒子として、そのD50が1~10μmのものを使用することが望ましい。
さらに、使用するアルミナ粒子のD50は、CZ粒子のD50よりも大きいことが望ましい。
また、CZ粒子として、そのD50が1~10μmのものを使用することが望ましい。
さらに、使用するアルミナ粒子のD50は、CZ粒子のD50よりも大きいことが望ましい。
上記原料ペーストを調製する際に使用する上記アルミナ粒子に対する上記セリア-ジルコニア複合酸化物粒子の重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)は、1.0~3.0であることが望ましい。
上記重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)が1.0~3.0であると、セリア-ジルコニア複合酸化物粒子の含有率が高く、このセリア-ジルコニア複合酸化物粒子は、助触媒として使用されるものであるので、排ガスの浄化性能が向上する。
上記重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)が1.0~3.0であると、セリア-ジルコニア複合酸化物粒子の含有率が高く、このセリア-ジルコニア複合酸化物粒子は、助触媒として使用されるものであるので、排ガスの浄化性能が向上する。
アルミナ粒子及びCZ粒子のD50、並びに、球状造孔材のD10、D50、D90は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)を用いて測定することができる。
ここで、D10とは、粒子径の体積累積分布曲線において粒子径の小さい方から累積体積が10体積%にあたる粒子径をいい、D50とは、粒子径の体積累積分布曲線において粒子径の小さい方から累積体積が50体積%にあたる粒子径をいい、D90とは、粒子径の体積累積分布曲線において粒子径の小さい方から累積体積が90体積%にあたる粒子径をいう。
原料ペーストを調製する際に用いるアルミナ粒子としては、θ相のアルミナ粒子が望ましい。
上記球状造孔材は、D50が10~60μmであり、(D90-D10)/(D50)が1.5以下であればよい。これらの条件を満たすものとしては、例えば、アクリル樹脂、でんぷん、カーボン等が挙げられる、これらのなかでは、アクリル樹脂を用いることが望ましい。
球状造孔材のD50は10~60μmであればよいが、15~50μmであることが望ましく、20~40μmであることがより望ましい。
球状造孔材とは、ハニカム焼成体を製造する際、焼成体の内部に気孔を形成するために用いられるもののうちアスペクト比が3以下のものをいう。
球状造孔材のアスペクト比は、走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、球状造孔材のSEM写真を撮影することにより測定することができる。
球状造孔材のD50は10~60μmであればよいが、15~50μmであることが望ましく、20~40μmであることがより望ましい。
球状造孔材とは、ハニカム焼成体を製造する際、焼成体の内部に気孔を形成するために用いられるもののうちアスペクト比が3以下のものをいう。
球状造孔材のアスペクト比は、走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、球状造孔材のSEM写真を撮影することにより測定することができる。
原料ペーストを調製する際に用いる他の原料としては、無機ファイバ、無機バインダ、有機バインダ、成形助剤、分散媒等が挙げられる。
上記無機ファイバを構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらのなかでは、アルミナファイバが望ましい。
上記無機ファイバのアスペクト比は、5~300であることが望ましく、10~200であることがより望ましく、10~100であることがさらに望ましい。
上記無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられ、これらの無機バインダは、二種以上併用してもよい。これらのなかでは、ベーマイトが望ましい。
ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、本発明のハニカムフィルタの製造方法では、ベーマイトをバインダとして用いることが望ましい。
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。
上記した原料としてCZ粒子、アルミナ粒子、アルミナファイバ及びベーマイトを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:40~60重量%、アルミナ粒子:15~35重量%、アルミナファイバ:10~40重量%、ベーマイト:0.1~10重量%が望ましい。
上述した原料ペーストの乾燥体積に占める球状造孔材の乾燥体積の割合は45~70体積%とする。
また、原料ペーストを調製する際に使用するアルミナ粒子に対するCZ粒子の重量比(CZ粒子/アルミナ粒子)は、1.0~3.0であることが望ましい。
重量比(CZ粒子/アルミナ粒子)が1.0~3.0であると、CZ粒子の含有率が高く、このCZ粒子は、助触媒として使用されるものであるので、担持される触媒の触媒作用を強化することができ、ハニカム触媒としての性能をより高めることができる。
原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。
本発明のハニカムフィルタの製造方法において、上記方法により調製した原料ペーストを成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。上記原料ペーストを用いて押出成形することにより、ハニカム成形体を作製する。
具体的には、所定の形状の金型を通過させることにより、所定の形状のセルを有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体とする。
具体的には、所定の形状の金型を通過させることにより、所定の形状のセルを有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体とする。
(乾燥工程)
本発明のハニカムフィルタの製造方法では、上記成形工程により成形された成形体を乾燥する。
この際、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥し、ハニカム乾燥体を作製することが望ましい。
本発明のハニカムフィルタの製造方法では、上記成形工程により成形された成形体を乾燥する。
この際、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥し、ハニカム乾燥体を作製することが望ましい。
本明細書においては、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。
次いで、ハニカム成形体の乾燥体を構成するセルのいずれかの端部に、封止材ペーストを所定量充填し、セルを目封止する。セルを目封止する際には、例えば、ハニカム成形体の端面(すなわち両端を切断した後の切断面)にセル封止用のマスクを当てて、封止の必要なセルにのみ封止材ペーストを充填し、封止材ペーストを乾燥させる。このような工程を経て、セルの一端部が目封止されたハニカム乾燥体を作製する。
封止材ペーストとしては、上記原料ペーストを用いることができる。
ただし、封止材ペーストを用いてセルを目封止する工程は、後述する焼成工程の後に行ってもよい。
封止材ペーストとしては、上記原料ペーストを用いることができる。
ただし、封止材ペーストを用いてセルを目封止する工程は、後述する焼成工程の後に行ってもよい。
(焼成工程)
焼成工程では、乾燥工程により乾燥された成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程では、乾燥工程により乾燥された成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、
3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20%であることが望ましい。
3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20%であることが望ましい。
以上の工程により、本発明のハニカムフィルタを製造することができる。
(その他の工程)
本発明のハニカムフィルタの製造方法は、必要に応じて、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含んでいてもよい。
ハニカム焼成体に貴金属を担持する方法としては、例えば、貴金属粒子もしくは錯体を含む溶液にハニカム焼成体又はハニカムフィルタを浸漬した後、引き上げて加熱する方法等が挙げられる。
ハニカムフィルタが外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカムフィルタに貴金属を担持してもよい。
本発明のハニカムフィルタの製造方法は、必要に応じて、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含んでいてもよい。
ハニカム焼成体に貴金属を担持する方法としては、例えば、貴金属粒子もしくは錯体を含む溶液にハニカム焼成体又はハニカムフィルタを浸漬した後、引き上げて加熱する方法等が挙げられる。
ハニカムフィルタが外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカムフィルタに貴金属を担持してもよい。
本発明のハニカムフィルタの製造方法において、上記担持工程で担持した貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本発明のハニカムフィルタの製造方法において、ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。外周コート層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
[評価用サンプルの作製]
(実施例1)
CZ粒子(D50:2μm)を16.9重量%、γアルミナ粒子(D50:20μm)を8.5重量%、無機バインダとしてベーマイトを2.8重量%、平均繊維径が3μm、平均繊維長が100μmのアルミナファイバを10.6重量%、有機バインダとしてメチルセルロースを3.9重量%、球状造孔材として、アクリル樹脂(アスペクト比:1.0、D10:17μm、D50:32μm、D90:51μm)を28.1重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを2.9重量%及びイオン交換水を26.2重量%を混合混練して、原料ペーストを調製した。なお、上記成形助剤は、30℃における粘度が50mPa・sである。また、原料ペーストの乾燥体積に占める球状造孔剤の乾燥体積の割合は55.0体積%であった。
(実施例1)
CZ粒子(D50:2μm)を16.9重量%、γアルミナ粒子(D50:20μm)を8.5重量%、無機バインダとしてベーマイトを2.8重量%、平均繊維径が3μm、平均繊維長が100μmのアルミナファイバを10.6重量%、有機バインダとしてメチルセルロースを3.9重量%、球状造孔材として、アクリル樹脂(アスペクト比:1.0、D10:17μm、D50:32μm、D90:51μm)を28.1重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを2.9重量%及びイオン交換水を26.2重量%を混合混練して、原料ペーストを調製した。なお、上記成形助剤は、30℃における粘度が50mPa・sである。また、原料ペーストの乾燥体積に占める球状造孔剤の乾燥体積の割合は55.0体積%であった。
なお、アルミナ粒子及びCZ粒子のD50並びに球状造孔材のD10、D50、D90は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)を用いて測定した。
押出成形機を用いて、原料ペーストを押出成形して、円柱状のハニカム成形体を作製した。そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、ハニカム成形体を構成するセルのいずれか一方の端部に封止材ペーストが充填されるように、ハニカム成形体を作製するのに用いられた原料ペーストと同様の組成の封止材ペーストをハニカム成形体の所定のセルに充填し、さらに大気圧下120℃で10分間乾燥させた。その後、1100℃で10時間脱脂・焼成することにより、ハニカム焼成体(ハニカムフィルタ)を作製した。ハニカム焼成体は、直径が103mm、長さが80mmの円柱状であり、セルの密度が77.5個/cm2(500cpsi)、セル隔壁の厚さが0.127mm(5mil)であった。
(比較例1)
原料ペーストの組成を、CZ粒子(D50:2μm)25.8重量%、γアルミナ粒子(D50:2μm)12.9重量%、無機バインダとしてのベーマイト11.0重量%、平均繊維径が3μm、平均繊維長が30μmのアルミナファイバ5.2重量%、有機バインダとしてのメチルセルロース7.6重量%、球状造孔材としてのアクリル樹脂(アスペクト比:1.0、D10:6.5μm、D50:17μm、D90:33μm)7.1重量%、成形助剤としての界面活性剤であるポリオキシエチレンオレイルエーテル4.1重量%及びイオン交換水26.4重量%に変更したほかは、実施例1と同様の手順で比較例1に係るハニカムフィルタを製造した。また、原料ペーストの乾燥体積に占める球状造孔剤の乾燥体積の割合は15.7体積%であった。
原料ペーストの組成を、CZ粒子(D50:2μm)25.8重量%、γアルミナ粒子(D50:2μm)12.9重量%、無機バインダとしてのベーマイト11.0重量%、平均繊維径が3μm、平均繊維長が30μmのアルミナファイバ5.2重量%、有機バインダとしてのメチルセルロース7.6重量%、球状造孔材としてのアクリル樹脂(アスペクト比:1.0、D10:6.5μm、D50:17μm、D90:33μm)7.1重量%、成形助剤としての界面活性剤であるポリオキシエチレンオレイルエーテル4.1重量%及びイオン交換水26.4重量%に変更したほかは、実施例1と同様の手順で比較例1に係るハニカムフィルタを製造した。また、原料ペーストの乾燥体積に占める球状造孔剤の乾燥体積の割合は15.7体積%であった。
[気孔率及び気孔径分布の測定]
実施例1及び比較例1で作製したハニカムフィルタについて、水銀圧入法によって気孔径分布曲線、気孔率及び気孔の総体積を求め、気孔の総体積に対する気孔径0.1~100μmのマクロ気孔が占める体積の割合を算出した。
実施例1及び比較例1で作製したハニカムフィルタについて、水銀圧入法によって気孔径分布曲線、気孔率及び気孔の総体積を求め、気孔の総体積に対する気孔径0.1~100μmのマクロ気孔が占める体積の割合を算出した。
これらの測定結果を図2に示す。図2に示すグラフでは、縦軸にlog微分細孔容積(mL/g)を、横軸に気孔径(μm)をとっている。なお、実線は実施例1の結果、破線は比較例1の結果を示している。
実施例1では、気孔率が81体積%であり、セル隔壁に存在する気孔の総体積のうち、気孔径1~100μmのマクロ気孔が占める体積の割合が94体積%であり、気孔径1~100μmの範囲において最大ピークの半値幅が3.8μm、モード径が9.8μmとなっており、最大ピークの半値幅をモード径で除した値は、0.4であった。比較例1では、気孔率が63体積%であり、セル隔壁に存在する気孔の総体積のうち、気孔径1~100μmのマクロ気孔が占める体積の割合が25体積%であり、気孔径1~100μmの範囲においてピークは確認できなかった。
図2から、実施例1に係るハニカムフィルタは、セル隔壁を構成する気孔の気孔径分布が比較例1に係るハニカムフィルタよりもシャープであることがわかる。
実施例1では、気孔率が81体積%であり、セル隔壁に存在する気孔の総体積のうち、気孔径1~100μmのマクロ気孔が占める体積の割合が94体積%であり、気孔径1~100μmの範囲において最大ピークの半値幅が3.8μm、モード径が9.8μmとなっており、最大ピークの半値幅をモード径で除した値は、0.4であった。比較例1では、気孔率が63体積%であり、セル隔壁に存在する気孔の総体積のうち、気孔径1~100μmのマクロ気孔が占める体積の割合が25体積%であり、気孔径1~100μmの範囲においてピークは確認できなかった。
図2から、実施例1に係るハニカムフィルタは、セル隔壁を構成する気孔の気孔径分布が比較例1に係るハニカムフィルタよりもシャープであることがわかる。
本発明のハニカムフィルタの製造方法により得られるハニカムフィルタは、ガス通過及びPM捕集に寄与する気孔径1~100μmのマクロ気孔が多く、さらにマクロ気孔の気孔径分布がシャープであるため、PM捕集効率が高く、圧力損失を低くすることができる。
10 ハニカムフィルタ
11 ハニカム焼成体
12 排ガス導入セル
13 排ガス排出セル
14 封止部
20 セル隔壁
11 ハニカム焼成体
12 排ガス導入セル
13 排ガス排出セル
14 封止部
20 セル隔壁
Claims (7)
- 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタであって、
前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とからなり、
前記ハニカム焼成体の前記セル隔壁の気孔径を水銀圧入法により測定し、その測定結果を、横軸が気孔径(μm)、縦軸がlog微分細孔容積(mL/g)からなる気孔径分布曲線として表示した際、
気孔径1~100μmのマクロ気孔が占める体積の割合が気孔の総体積の80体積%以上であり、
気孔径が1~100μmの範囲に形成される最大ピークの半値幅(μm)をモード径(μm)で除した値が0.5以下であることを特徴とするハニカムフィルタ。 - 前記ハニカム焼成体の気孔率は、65~85体積%である請求項1に記載のハニカムフィルタ。
- 前記アルミナ粒子は、θ相のアルミナ粒子である請求項1又は2に記載のハニカムフィルタ。
- 前記ハニカム焼成体に貴金属が担持されている請求項1~3のいずれかに記載のハニカムフィルタ。
- 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルを備えたハニカム焼成体からなるハニカムフィルタの製造方法であって、
セリア-ジルコニア複合酸化物粒子とアルミナ粒子と球状造孔材を含む原料ペーストを成形することにより、複数のセルがセル隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、
前記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、
前記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含み、
前記原料ペーストを調製する際に使用する前記球状造孔材の粒子径の体積累積分布曲線によるD50が10~60μmであり、(D90-D10)/(D50)が1.5以下であり、前記原料ペーストの乾燥体積に占める前記球状造孔材の乾燥体積の割合が45~70体積%であることを特徴とするハニカムフィルタの製造方法。 - 前記原料ペーストを調製する際に使用する前記アルミナ粒子に対する前記セリア-ジルコニア複合酸化物粒子の重量比(セリア-ジルコニア複合酸化物粒子/アルミナ粒子)は、1.0~3.0である請求項5に記載のハニカムフィルタの製造方法。
- 前記ハニカム焼成体に貴金属を担持させる担持工程をさらに含む請求項5又は6に記載のハニカムフィルタの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980015685.8A CN111818984A (zh) | 2018-03-13 | 2019-03-11 | 蜂窝过滤器和蜂窝过滤器的制造方法 |
EP19768319.6A EP3766566A4 (en) | 2018-03-13 | 2019-03-11 | HONEYCOMB FILTER AND PROCESS FOR MANUFACTURING HONEYCOMB FILTERS |
US17/009,781 US11433382B2 (en) | 2018-03-13 | 2020-09-02 | Honeycomb filter and method for manufacturing honeycomb filters |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-045518 | 2018-03-13 | ||
JP2018045518A JP2019155276A (ja) | 2018-03-13 | 2018-03-13 | ハニカムフィルタ及びハニカムフィルタの製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/009,781 Continuation US11433382B2 (en) | 2018-03-13 | 2020-09-02 | Honeycomb filter and method for manufacturing honeycomb filters |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176868A1 true WO2019176868A1 (ja) | 2019-09-19 |
Family
ID=67907119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009749 WO2019176868A1 (ja) | 2018-03-13 | 2019-03-11 | ハニカムフィルタ及びハニカムフィルタの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11433382B2 (ja) |
EP (1) | EP3766566A4 (ja) |
JP (1) | JP2019155276A (ja) |
CN (1) | CN111818984A (ja) |
WO (1) | WO2019176868A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6617181B1 (ja) * | 2018-08-09 | 2019-12-11 | エヌ・イーケムキャット株式会社 | 排ガス浄化触媒 |
US20210197105A1 (en) * | 2018-08-31 | 2021-07-01 | Corning Incorporated | Methods of making honeycomb bodies having inorganic filtration deposits |
CN112996763A (zh) | 2018-08-31 | 2021-06-18 | 康宁股份有限公司 | 制造具有无机过滤沉积物的蜂窝体的方法 |
CN117177813A (zh) * | 2021-06-10 | 2023-12-05 | 庄信万丰股份有限公司 | 使用铑/铂和鞣酸作为络合和还原剂的改进的twc活性 |
EP4101533A1 (en) * | 2021-06-10 | 2022-12-14 | Johnson Matthey Public Limited Company | Palladium fixing and low fresh oxygen storage capacity using tannic acid as a complexing and reducing agent |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007290951A (ja) * | 2006-03-31 | 2007-11-08 | Ibiden Co Ltd | ハニカム構造体およびその製造方法 |
JP2007296514A (ja) * | 2006-04-07 | 2007-11-15 | Ngk Insulators Ltd | 触媒体とその製造方法 |
WO2012023617A1 (ja) * | 2010-08-19 | 2012-02-23 | 日立金属株式会社 | セラミックハニカム構造体の製造方法 |
WO2015046012A1 (ja) * | 2013-09-24 | 2015-04-02 | 日立金属株式会社 | セラミックハニカム構造体及びその製造方法 |
JP2016055233A (ja) * | 2014-09-08 | 2016-04-21 | 株式会社デンソー | ハニカム構造体及びその製造方法 |
JP2017115786A (ja) | 2015-12-25 | 2017-06-29 | 株式会社デンソー | 排ガスフィルタ |
WO2018012566A1 (ja) * | 2016-07-14 | 2018-01-18 | イビデン株式会社 | ハニカム構造体及び該ハニカム構造体の製造方法 |
JP2018143955A (ja) * | 2017-03-06 | 2018-09-20 | イビデン株式会社 | ハニカムフィルタ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5372494B2 (ja) * | 2006-03-17 | 2013-12-18 | 日本碍子株式会社 | ハニカム構造体の製造方法 |
CN100540507C (zh) * | 2006-03-31 | 2009-09-16 | 揖斐电株式会社 | 蜂窝结构体及其制造方法 |
US7648550B2 (en) | 2006-08-25 | 2010-01-19 | Corning Incorporated | Narrow pore size distribution cordierite ceramic honeycomb articles and methods for manufacturing same |
JP5208897B2 (ja) * | 2008-10-09 | 2013-06-12 | 日本碍子株式会社 | ハニカムフィルタ |
WO2010074161A1 (ja) * | 2008-12-25 | 2010-07-01 | 京セラ株式会社 | ハニカム構造体およびこれを用いたフィルタならびに排気ガス処理装置 |
JP6208540B2 (ja) * | 2013-10-29 | 2017-10-04 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
CN114699860B (zh) * | 2015-12-09 | 2024-07-09 | 康宁股份有限公司 | 多孔陶瓷组合物、过滤器和制品 |
JP6998870B2 (ja) | 2016-07-14 | 2022-02-04 | イビデン株式会社 | ハニカム構造体及び該ハニカム構造体の製造方法 |
-
2018
- 2018-03-13 JP JP2018045518A patent/JP2019155276A/ja active Pending
-
2019
- 2019-03-11 EP EP19768319.6A patent/EP3766566A4/en not_active Withdrawn
- 2019-03-11 CN CN201980015685.8A patent/CN111818984A/zh active Pending
- 2019-03-11 WO PCT/JP2019/009749 patent/WO2019176868A1/ja unknown
-
2020
- 2020-09-02 US US17/009,781 patent/US11433382B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007290951A (ja) * | 2006-03-31 | 2007-11-08 | Ibiden Co Ltd | ハニカム構造体およびその製造方法 |
JP2007296514A (ja) * | 2006-04-07 | 2007-11-15 | Ngk Insulators Ltd | 触媒体とその製造方法 |
WO2012023617A1 (ja) * | 2010-08-19 | 2012-02-23 | 日立金属株式会社 | セラミックハニカム構造体の製造方法 |
WO2015046012A1 (ja) * | 2013-09-24 | 2015-04-02 | 日立金属株式会社 | セラミックハニカム構造体及びその製造方法 |
JP2016055233A (ja) * | 2014-09-08 | 2016-04-21 | 株式会社デンソー | ハニカム構造体及びその製造方法 |
JP2017115786A (ja) | 2015-12-25 | 2017-06-29 | 株式会社デンソー | 排ガスフィルタ |
WO2018012566A1 (ja) * | 2016-07-14 | 2018-01-18 | イビデン株式会社 | ハニカム構造体及び該ハニカム構造体の製造方法 |
JP2018143955A (ja) * | 2017-03-06 | 2018-09-20 | イビデン株式会社 | ハニカムフィルタ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3766566A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3766566A4 (en) | 2021-11-17 |
US11433382B2 (en) | 2022-09-06 |
JP2019155276A (ja) | 2019-09-19 |
CN111818984A (zh) | 2020-10-23 |
US20200398263A1 (en) | 2020-12-24 |
EP3766566A1 (en) | 2021-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10472290B2 (en) | Honeycomb structure and production method for said honeycomb structure | |
US11033885B2 (en) | Ceramic honeycomb structure and its production method | |
WO2019176868A1 (ja) | ハニカムフィルタ及びハニカムフィルタの製造方法 | |
JP6998871B2 (ja) | ハニカム構造体及び該ハニカム構造体の製造方法 | |
US10603658B1 (en) | Honeycomb structured body | |
JP6081831B2 (ja) | ハニカム構造体およびこれを用いたハニカム触媒体、ならびにハニカム構造体の製造方法 | |
JP2018122261A (ja) | 目封止ハニカム構造体 | |
US20130236687A1 (en) | Honeycomb structure and honeycomb catalyst | |
EP2735368B1 (en) | Honeycomb catalyst body | |
JP6726148B2 (ja) | 排ガス浄化用ハニカム触媒 | |
JP6949019B2 (ja) | ハニカム構造体及び該ハニカム構造体の製造方法 | |
JP2012213755A (ja) | ハニカム構造体及びハニカム触媒体 | |
JP7011951B2 (ja) | 排ガス浄化システム | |
WO2021044875A1 (ja) | ハニカムフィルタの製造方法 | |
JP2012197186A (ja) | ハニカム構造体の製造方法 | |
WO2021044874A1 (ja) | ハニカムフィルタ及びハニカムフィルタの製造方法 | |
JP2019155277A (ja) | ハニカムフィルタ | |
JP2021038122A (ja) | ハニカム構造体の製造方法 | |
JP2021037488A (ja) | ハニカムフィルタの製造方法 | |
JP2021037486A (ja) | ハニカムフィルタ | |
JP2021037484A (ja) | ハニカム構造体 | |
JP2021037489A (ja) | ハニカム構造体及びハニカム構造体の製造方法 | |
CN114950029A (zh) | 多孔质蜂窝结构体及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19768319 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019768319 Country of ref document: EP Effective date: 20201013 |