WO2019176432A1 - Dispositif de réception d'énergie - Google Patents
Dispositif de réception d'énergie Download PDFInfo
- Publication number
- WO2019176432A1 WO2019176432A1 PCT/JP2019/005212 JP2019005212W WO2019176432A1 WO 2019176432 A1 WO2019176432 A1 WO 2019176432A1 JP 2019005212 W JP2019005212 W JP 2019005212W WO 2019176432 A1 WO2019176432 A1 WO 2019176432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- control unit
- power receiving
- receiving device
- drive control
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 230000008859 change Effects 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 abstract description 10
- 230000005540 biological transmission Effects 0.000 description 38
- 238000004891 communication Methods 0.000 description 37
- 238000000034 method Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 24
- 238000012545 processing Methods 0.000 description 22
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000012806 monitoring device Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 230000006698 induction Effects 0.000 description 5
- 238000009499 grossing Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003872 feeding technique Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the power transmission device 100 includes a power transmission control unit 110, a communication unit 120, an AC power source 130, a power conversion unit 140, and a primary coil L1.
- the power transmission control unit 110 controls the power transmission apparatus 100 as a whole by controlling the operations of the communication unit 120 and the power conversion unit 140.
- the power receiving apparatus 200 includes a power reception control unit 210, a communication unit 220, an alternating current detection unit 230, a drive control unit 240, a power conversion unit 250, a secondary coil L2, a resonance coil Lx, and a resonance capacitor Cx.
- the resonance coil Lx and the resonance capacitor Cx are connected to the secondary coil L2, and constitute a resonance circuit together with the secondary coil L2.
- the resonance frequency of the resonance circuit is determined according to the inductances of the secondary coil L2 and the resonance coil Lx and the capacitance value of the resonance capacitor Cx.
- the resonant coil Lx and the resonant capacitor Cx may each be composed of a plurality of elements. Further, part or all of the resonance coil Lx may be substituted by the inductance of the secondary coil L2.
- the alternating current detection unit 230 detects the alternating current flowing through the resonance circuit including the secondary coil L2 when the secondary coil L2 receives the alternating magnetic field emitted from the primary coil L1. Then, an AC voltage whose frequency and amplitude change according to the detected AC current is generated and output to the drive control unit 240.
- the drive control unit 240 can acquire the frequency and magnitude of the alternating current flowing through the resonance circuit based on the alternating voltage input from the alternating current detection unit 230.
- a load 400 is connected to the battery 300.
- the load 400 provides various functions related to the operation of the vehicle using the DC power charged in the battery 300.
- the load 400 includes, for example, an AC motor for driving a vehicle, an inverter that converts DC power of the battery 300 into AC power, and supplies the AC power to the AC motor.
- FIG. 2 is a diagram illustrating a configuration example of the power receiving device 200 according to the first embodiment of the present invention.
- the alternating current detection unit 230 is configured using, for example, a transformer Tr.
- a transformer Tr When the magnetic flux generated by the alternating magnetic field emitted from the primary coil L1 is linked to the secondary coil L2, an electromotive force is generated in the secondary coil L2, and an alternating current i flows through the resonance circuit including the secondary coil L2.
- this alternating current i flows through the primary coil of the transformer Tr, an alternating voltage Vg whose frequency and amplitude change according to the alternating current i is generated at both ends of the secondary coil of the transformer Tr.
- the alternating current detection part 230 can detect the alternating current i.
- the AC current detection unit 230 may be configured by using a device other than the transformer Tr as long as the AC current i flowing through the resonance circuit can be detected.
- step S20 the power receiving device 200 that has received the charge inquiry in step S10 notifies the power transmitting device 100 of the allowable current of the battery 300 during charging.
- the power receiving apparatus 200 determines the allowable current based on, for example, the charge state or deterioration state of the battery 300 measured in advance, and transmits information indicating the value of the allowable current from the communication unit 220 to the communication unit 120 of the power transmission apparatus 100. Send. Note that, when charging is unnecessary, the power receiving apparatus 200 may notify the power transmitting apparatus 100 to that effect. In this case, the process flow of FIG. 3 is complete
- step S40 the power receiving device 200 performs drive control processing of the power converter 250 according to the alternating current i that flows through the resonance circuit including the secondary coil L2 by receiving the alternating magnetic field emitted from the primary coil L1.
- the drive control unit 240 performs the process shown in the process flow of FIG. 4, thereby performing drive control of the power conversion unit 250 according to the alternating current received from the power transmission device 100.
- the battery 300 is charged in the constant current (CC) mode. Note that the processing flow of FIG. 4 will be described later.
- step S180 the drive control unit 240 uses the gate drive circuit 244 to generate a gate drive signal according to the charge drive signal Sc input from the drive signal generation unit 243 in step S160 or S170, and the power conversion unit 250. Are respectively output to the gate terminals of the MOS transistors Q1 and Q2. As a result, the MOS transistors Q1 and Q2 are respectively switched according to the gate drive signal, and drive control of the power converter 250 is performed.
- the gate drive signal is output in step S180, the process flow in FIG. 4 is terminated, and the drive control process in step S40 or S70 in FIG. 3 is completed.
- FIG. 5 is an explanatory diagram of the switching operation of the MOS transistors Q1 and Q2 performed in accordance with the drive control process described in FIG.
- the power receiving device 200A is the same as the power receiving device 200 in the wireless power feeding system 1 described in the first embodiment, except that a drive control unit 240A is provided instead of the drive control unit 240.
- the drive control unit 240A is connected to the battery monitoring device 500, acquires the battery voltage Vb from the battery monitoring device 500, and controls the switching operations of the plurality of switching elements included in the power conversion unit 250.
- the battery monitoring apparatus 500 is connected to the battery 300 and acquires various information for monitoring the state of the battery 300 from the battery 300. For example, the battery monitoring device 500 detects the voltage of the battery 300 and outputs the detection result to the drive control unit 240A as the battery voltage Vb. In addition, it is determined whether or not the battery 300 is in an overcharged state. If it is determined that the battery 300 is in an overcharged state, a predetermined overcharge signal is output to the drive control unit 240A so that the battery 300 is in an overcharged state. Notify that there is.
- Step S110A the drive control unit 240A acquires the AC voltage Vg from the AC current detection unit 230 and also acquires the battery voltage Vb from the battery monitoring device 500.
- step S111 If the threshold voltage V ⁇ is set in step S111, the same processing as the processing flow of FIG. 4 described in the first embodiment is performed in subsequent steps S120 and subsequent steps. At this time, in step S120, the threshold voltage V ⁇ set in step S111 is used to compare with the absolute value of the AC voltage Vg. Thereby, the threshold voltage V ⁇ used in the comparison in step S120 is changed based on the battery voltage Vb.
- the following effect (4) is further achieved in addition to the effects (1) to (3) described in the first embodiment.
- FIG. 9 is a diagram showing a configuration of a wireless power feeding system 1B according to the third embodiment of the present invention.
- a wireless power feeding system 1B shown in FIG. 9 is used for wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side in the vicinity of the vehicle and a power receiving device respectively mounted on the vehicle side. 200B, battery 300, load 400, and battery monitoring device 500.
- the power transmission device 100, the battery 300, and the load 400 are the same as those of the wireless power supply system 1 described in the first embodiment, and the battery monitoring device 500 is the wireless power supply described in the second embodiment. Since it is the same as that of the system 1A, the power receiving apparatus 200B will be described below.
- the power receiving device 200B is the same as the power receiving device 200 in the wireless power feeding system 1 described in the first embodiment, except that a drive control unit 240B is provided instead of the drive control unit 240.
- the drive control unit 240B is connected to the battery monitoring apparatus 500, and when an overcharge signal is input from the battery monitoring apparatus 500, the power conversion unit 240B is different from the method described in the first embodiment.
- the switching operation of a plurality of switching elements 250 has is controlled.
- step S180 the drive control unit 240 uses the gate drive circuit 244 to generate a gate drive signal corresponding to the discharge drive signal Sd, and the MOS transistor Q1 in the power conversion unit 250 , Output to the gate terminals of Q2.
- the DC power of the battery 300 is converted into AC power and output to the resonance circuit including the secondary coil L2, and the AC field is emitted from the secondary coil L2 toward the primary coil L1, thereby discharging the battery 300.
- the power converter 250 is connected to a chargeable / dischargeable battery 300.
- the drive control unit 240B When the battery 300 is in an overcharged state (step S101: Yes), the drive control unit 240B generates a discharge drive signal Sd different from the charge drive signal Sc (step S102), and the MOS transistor Q1 using the discharge drive signal Sd. , Q2 is controlled (step S180). Since it did in this way, when the battery 300 is an overcharge state, the battery 300 can be discharged and an overcharge state can be eliminated.
- the wireless power feeding systems 1, 1 ⁇ / b> A, and 1 ⁇ / b> B used for wireless power feeding to a vehicle such as an electric vehicle have been described.
- the wireless power feeding system is not limited to the wireless power feeding to the vehicle, and is used for other purposes.
- the present invention may be applied to.
- Wireless power feeding system 100 Power transmission device 110 Power transmission control unit 120 Communication unit 130 AC power supply 140 Power conversion unit 200, 200A, 200B Power reception device 210 Power reception control unit 220 Communication unit 230 AC current detection unit 240, 240A, 240B Drive Control unit 241 Voltage acquisition unit 242, 242A Comparison unit 243, 243B Drive signal generation unit 244 Gate drive circuit 250 Power conversion unit 300 Battery 400 Load 500 Battery monitoring device L1 Primary coil L2 Secondary coil Lx Resonance coil Cx Resonance capacitor Tr Transformer Q1 , Q2 MOS transistor
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Dc-Dc Converters (AREA)
Abstract
Selon l'invention, afin de réaliser une opération de commutation appropriée en fonction de l'état de courant circulant à travers une bobine d'un dispositif de réception d'énergie, un dispositif de réception d'énergie (200) comprend : une bobine secondaire (L2) ; une bobine de résonance (Lx) et un condensateur de résonance (Cx) qui sont connectés à la bobine secondaire (L2) et qui constituent, conjointement avec la bobine secondaire (L2), un circuit de résonance présentant une fréquence de résonance prescrite ; une unité de détection de courant alternatif qui détecte un courant alternatif (i), qui circule vers le circuit de résonance lorsque la bobine secondaire (L2) reçoit un champ magnétique alternatif ; une unité de conversion d'énergie (250) qui commande le courant alternatif (i) en amenant des transistors MOS (Q1, Q2) à exécuter séparément des opérations de commutation ; et une unité de commande d'entraînement (240) qui commande les opérations de commutation des transistors MOS (Q1, Q2). L'unité de commande d'entraînement (240) modifie les synchronisations des opérations de commutation des transistors MOS (Q1, Q2) sur la base du courant alternatif (i) détecté par l'unité de détection de courant alternatif (230).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-046627 | 2018-03-14 | ||
JP2018046627A JP2021083139A (ja) | 2018-03-14 | 2018-03-14 | 受電装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176432A1 true WO2019176432A1 (fr) | 2019-09-19 |
Family
ID=67907839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005212 WO2019176432A1 (fr) | 2018-03-14 | 2019-02-14 | Dispositif de réception d'énergie |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021083139A (fr) |
WO (1) | WO2019176432A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115149666A (zh) * | 2021-03-31 | 2022-10-04 | 欧姆龙株式会社 | 无线充电系统、发射侧充电装置和接收侧充电装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017208069B2 (en) | 2016-01-15 | 2021-11-25 | Tva Medical, Inc. | Devices and methods for forming a fistula |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012125138A (ja) * | 2010-11-18 | 2012-06-28 | Fuji Electric Co Ltd | 非接触給電装置及びその制御方法 |
JP2014527793A (ja) * | 2011-08-04 | 2014-10-16 | ワイトリシティ コーポレーションWitricity Corporation | 整調可能無線電力アーキテクチャ |
JP2015208150A (ja) * | 2014-04-22 | 2015-11-19 | 株式会社日本自動車部品総合研究所 | 非接触送受電システム |
JP2016036225A (ja) * | 2014-08-04 | 2016-03-17 | 株式会社日本自動車部品総合研究所 | 非接触電力伝送システム |
JP2016226242A (ja) * | 2015-06-03 | 2016-12-28 | 株式会社日本自動車部品総合研究所 | 非接触給電装置 |
-
2018
- 2018-03-14 JP JP2018046627A patent/JP2021083139A/ja active Pending
-
2019
- 2019-02-14 WO PCT/JP2019/005212 patent/WO2019176432A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012125138A (ja) * | 2010-11-18 | 2012-06-28 | Fuji Electric Co Ltd | 非接触給電装置及びその制御方法 |
JP2014527793A (ja) * | 2011-08-04 | 2014-10-16 | ワイトリシティ コーポレーションWitricity Corporation | 整調可能無線電力アーキテクチャ |
JP2015208150A (ja) * | 2014-04-22 | 2015-11-19 | 株式会社日本自動車部品総合研究所 | 非接触送受電システム |
JP2016036225A (ja) * | 2014-08-04 | 2016-03-17 | 株式会社日本自動車部品総合研究所 | 非接触電力伝送システム |
JP2016226242A (ja) * | 2015-06-03 | 2016-12-28 | 株式会社日本自動車部品総合研究所 | 非接触給電装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115149666A (zh) * | 2021-03-31 | 2022-10-04 | 欧姆龙株式会社 | 无线充电系统、发射侧充电装置和接收侧充电装置 |
JP2022158970A (ja) * | 2021-03-31 | 2022-10-17 | オムロン株式会社 | 無線充電システム、送信側充電装置及び受信側充電装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2021083139A (ja) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10069340B2 (en) | Wireless power receiver for adjusting magnitude of wireless power | |
JP5419857B2 (ja) | 非接触給電設備の2次側受電回路 | |
WO2014010518A1 (fr) | Dispositif de réception de puissance et système de transfert de puissance | |
US11322985B2 (en) | Wireless power transfer system, power transmission apparatus, and power reception apparatus | |
WO2011065255A1 (fr) | Appareil de transmission électrique sans contact | |
CN112448484B (zh) | 非接触供电装置 | |
JP2014079107A (ja) | 非接触受電装置および非接触電力伝送システム | |
JP2012070463A (ja) | 非接触給電装置 | |
JP2013169081A (ja) | 充電装置 | |
JP6176547B2 (ja) | 非接触給電装置及び非接触給電装置の始動方法 | |
WO2011142440A1 (fr) | Système inductif d'alimentation électrique, dispositif récepteur de puissance et procédé de régulation | |
WO2019176432A1 (fr) | Dispositif de réception d'énergie | |
US20220052558A1 (en) | Non-contact power supply device and power transmission device | |
JP6675094B2 (ja) | 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム | |
WO2019176359A1 (fr) | Dispositif de réception d'énergie | |
JP2021083140A (ja) | 受電装置 | |
JP2016092959A (ja) | 送電機器及び非接触電力伝送装置 | |
WO2019176375A1 (fr) | Dispositif de transmission d'énergie, dispositif de réception d'énergie et système d'alimentation en énergie sans fil | |
CN112448482B (zh) | 非接触供电装置及送电装置 | |
WO2020049853A1 (fr) | Système d'alimentation électrique sans contact et dispositif de transmission d'énergie | |
WO2020116033A1 (fr) | Dispositif de fourniture d'énergie sans contact | |
JP2017005841A (ja) | 送電機器 | |
JP6685016B2 (ja) | 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム | |
JP2021035077A (ja) | 無線給電装置 | |
JP6183671B2 (ja) | 非接触給電装置の制御方法及び非接触給電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19768068 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19768068 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |