WO2019167269A1 - Motion state detection device - Google Patents
Motion state detection device Download PDFInfo
- Publication number
- WO2019167269A1 WO2019167269A1 PCT/JP2018/008091 JP2018008091W WO2019167269A1 WO 2019167269 A1 WO2019167269 A1 WO 2019167269A1 JP 2018008091 W JP2018008091 W JP 2018008091W WO 2019167269 A1 WO2019167269 A1 WO 2019167269A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- floor
- unit
- coordinate
- atmospheric pressure
- moving means
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims description 47
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 238000010586 diagram Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/005—Traffic control systems for road vehicles including pedestrian guidance indicator
Definitions
- the present invention relates to a dynamic detection device that detects the dynamics of a user who owns the device.
- a dynamic detection device that detects the dynamics of a user who owns the device is known (see, for example, Patent Document 1).
- the type of moving means used by the user is estimated by detecting the altitude and recognizing the user's walking motion, and detects the user's dynamics.
- the staircase or elevator etc. which were provided in buildings, such as a building, are mentioned, for example.
- the above apparatus has a problem that the moving means used by the user cannot be estimated. In this case, it is necessary to separately provide a means for giving rough position information to the above-mentioned device on the building side and narrow down the moving means used by the user.
- the present invention has been made to solve the above-described problems, and provides a dynamic detection device capable of detecting the dynamics of a user who owns his / her own device even when there are a plurality of moving means in a building. It is intended to provide.
- the movement detection device includes an inertial sensor that measures the movement of the own aircraft, and a pedestrian autonomous navigation that calculates relative coordinates with respect to the reference coordinates of the user who owns the own aircraft based on the movement measured by the inertial sensor.
- a moving means estimating section for estimating the type of moving means Used when a user moves between floors in a building based on the atmospheric pressure sensor that measures the atmospheric pressure around the unit, the movement measured by the inertial sensor, and the atmospheric pressure measured by the atmospheric pressure sensor
- a moving means estimating section for estimating the type of moving means a floor estimating section for estimating the floor on which the user is present based on the atmospheric pressure measured by the atmospheric pressure sensor, and an electronic compass for detecting the direction in which the user travels
- the user uses the type of moving means estimated by the moving means estimating unit, the floor estimated by the floor estimating unit, and the direction detected by the electronic compass.
- the absolute coordinates calculated by the pedestrian autonomous navigation unit are absolute And a coordinate conversion unit for converting into coordinates.
- the present invention since it is configured as described above, even when there are a plurality of moving means in a building, it is possible to detect the dynamics of the user who owns the device by itself.
- FIG. 5A is a diagram illustrating an example of a measurement result by an inertial sensor and an atmospheric pressure sensor when the user moves on a staircase
- FIG. 5B is an example of a measurement result by an inertial sensor and an atmospheric pressure sensor when the user moves by an elevator.
- FIG. 1 It is a figure which shows the process outline of the floor estimation by the floor estimation part in Embodiment 1 of this invention. It is a floor figure for demonstrating the reference coordinate estimation by the reference coordinate estimation part in Embodiment 1 of this invention. It is a figure which shows the information recorded on the coordinate information recording part in Embodiment 1 of this invention, and is a figure corresponding to the floor figure shown in FIG. It is a flowchart which shows the operation example of the reference
- FIG. 13A is a diagram illustrating a case where the user is moving on the landing stage of the stairs
- FIG. 13B is a diagram illustrating an example of a measurement result obtained by the atmospheric pressure sensor when the user is moving on the landing area.
- It is a flowchart which shows the operation example of the reference
- FIG. 1 is a block diagram showing a configuration example of a dynamic detection device 1 according to Embodiment 1 of the present invention.
- the dynamic detection device 1 detects the dynamics of the user who owns the own device (the dynamic detection device 1).
- the dynamic detection device 1 detects the dynamics of the user who owns the own device (the dynamic detection device 1).
- a user for example, a worker who performs a patrol inspection of each floor of a building such as a building can be cited.
- FIG. 1 is a block diagram showing a configuration example of a dynamic detection device 1 according to Embodiment 1 of the present invention.
- the dynamic detection device 1 detects the dynamics of the user who owns the own device (the dynamic detection device 1).
- a worker who performs a patrol inspection of each floor of a building such as a building can be cited.
- FIG. 1 is a block diagram showing a configuration example of a dynamic detection device 1 according to Embodiment 1 of the present invention.
- the dynamic detection device 1 detects
- the dynamic detection device 1 includes a coordinate information recording unit 101, an inertial sensor 102, a pedestrian autonomous navigation unit 103, an atmospheric pressure sensor 104, a moving means estimation unit 105, a floor estimation unit 106, an electronic compass 107, A reference coordinate estimation unit 108 and a coordinate conversion unit 109 are provided.
- the coordinate information recording unit 101 records, for each floor, information indicating the absolute coordinates of the elevator and the direction of the elevator that exist in the building.
- the direction of the lift is the direction of the doorway of the lift as seen from the center of the lift.
- Information recorded in the coordinate information recording unit 101 is read by the reference coordinate estimation unit 108.
- FIG. 1 shows the case where the coordinate information recording unit 101 is provided inside the movement detection device 1, the present invention is not limited to this, and the coordinate information recording unit 101 may be provided outside the movement detection device 1. .
- the inertial sensor 102 measures the movement of the own device (dynamic detection device 1). In addition, as a motion of an own machine, acceleration, rotation, etc. are mentioned, for example. Information indicating the movement measured by the inertial sensor 102 is output to the pedestrian autonomous navigation unit 103 and the moving means estimation unit 105.
- the pedestrian autonomous navigation unit 103 calculates relative coordinates with respect to the reference coordinates of the user based on the movement measured by the inertial sensor 102. Information indicating the relative coordinates calculated by the pedestrian autonomous navigation unit 103 is output to the coordinate conversion unit 109.
- the atmospheric pressure sensor 104 measures the atmospheric pressure around the own device (dynamic detection device 1). Information indicating the atmospheric pressure measured by the atmospheric pressure sensor 104 is output to the moving means estimating unit 105 and the floor estimating unit 106.
- the movement means estimation unit 105 estimates the type of movement means used by the user for movement between floors based on the movement measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104. Examples of the moving means include stairs or an elevator. Information indicating the type of moving means estimated by the moving means estimating unit 105 is output to the reference coordinate estimating unit 108.
- the floor estimation unit 106 estimates the floor on which the user is present based on the atmospheric pressure measured by the atmospheric pressure sensor 104. Information indicating the floor estimated by the floor estimation unit 106 is output to the reference coordinate estimation unit 108.
- the electronic compass 107 detects the azimuth in the traveling direction of the own device (dynamic detection device 1). Information indicating the orientation detected by the electronic compass 107 is output to the reference coordinate estimation unit 108.
- the reference coordinate estimating unit 108 is based on the coordinate information recording unit 101. From the recorded information, the absolute coordinates of the lift on the floor of the moving means used by the user are estimated as the reference coordinates. Information indicating the reference coordinates estimated by the reference coordinate estimation unit 108 is output to the coordinate conversion unit 109.
- the coordinate conversion unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using the reference coordinates estimated by the reference coordinate estimation unit 108. At this time, the coordinate conversion unit 109 obtains the absolute coordinates of the user by adding the reference coordinates to the relative coordinates. Information indicating the absolute coordinates obtained by the coordinate conversion unit 109 is output to the outside.
- FIG. 2 shows a hardware configuration example of a computer that realizes the dynamic detection device 1 according to the first embodiment of the present invention.
- the functions of the pedestrian autonomous navigation unit 103, the moving means estimation unit 105, the floor estimation unit 106, the reference coordinate estimation unit 108, and the coordinate conversion unit 109 are realized by a processing circuit.
- the processing circuit is a CPU (Central Processing Unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital) that executes a program stored in the system memory 202. Signal Processor) 201).
- the functions of the pedestrian autonomous navigation unit 103, the moving means estimation unit 105, the floor estimation unit 106, the reference coordinate estimation unit 108, and the coordinate conversion unit 109 are realized by software, firmware, or a combination of software and firmware.
- Software and firmware are described as programs and stored in the system memory 202.
- the processing circuit reads out and executes the program stored in the system memory 202, thereby realizing the function of each unit. That is, the behavior detection device 1 includes a system memory 202 for storing a program that, when executed by the processing circuit, for example, results in each step shown in FIG.
- system memory 202 for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), or the like.
- RAM Random Access Memory
- ROM Read Only Memory
- flash memory an EPROM (Erasable Programmable ROM)
- EEPROM Electrically EPROM
- Magnetic disk flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), and the like.
- the GUI for operating the program is displayed on the display device 208 via the GPU 204, the frame memory 205, and the RAMDAC (Random Access Memory Digital-to-Analog Converter) 206.
- the user operates the GUI with the operation device 207.
- the coordinate information recording unit 101 uses the storage 203 for recording information.
- the coordinate information recording unit 101 records in advance, for each floor, information indicating the absolute coordinates of the elevator of the moving means existing in the building and the direction of the elevator.
- the inertial sensor 102 measures the movement of the own device (step ST301).
- Information indicating the movement measured by the inertial sensor 102 is output to the pedestrian autonomous navigation unit 103 and the moving means estimation unit 105.
- the pedestrian autonomous navigation unit 103 calculates relative coordinates with respect to the reference coordinates of the user based on the detection result by the inertial sensor 102 (step ST302).
- Information indicating the relative coordinates calculated by the pedestrian autonomous navigation unit 103 is output to the coordinate conversion unit 109.
- the atmospheric pressure sensor 104 measures the atmospheric pressure around the own device (step ST303). Information indicating the atmospheric pressure measured by the atmospheric pressure sensor 104 is output to the moving means estimating unit 105 and the floor estimating unit 106.
- the movement means estimating unit 105 estimates the type of the moving means used by the user for movement between floors ( Step ST304). Details of the operation of the moving means estimating unit 105 will be described later. Information indicating the type of moving means estimated by the moving means estimating unit 105 is output to the reference coordinate estimating unit 108.
- the floor estimation unit 106 estimates the floor on which the user is present based on the atmospheric pressure measured by the atmospheric pressure sensor 104 (step ST305). Details of the operation of the floor estimation unit 106 will be described later. Information indicating the floor estimated by the floor estimation unit 106 is output to the reference coordinate estimation unit 108.
- the electronic compass 107 detects the direction of the traveling direction of the own device (step ST306). Information indicating the orientation detected by the electronic compass 107 is output to the reference coordinate estimation unit 108.
- the reference coordinate estimating unit 108 records coordinate information based on the type of moving means estimated by the moving means estimating unit 105, the floor estimated by the floor estimating unit 106, and the direction detected by the electronic compass 107. From the information recorded in the unit 101, the absolute coordinates of the lift on the floor of the moving means used by the user are estimated as the reference coordinates (step ST307). Details of the operation of the reference coordinate estimation unit 108 will be described later. Information indicating the reference coordinates estimated by the reference coordinate estimation unit 108 is output to the coordinate conversion unit 109.
- the coordinate conversion unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using the reference coordinates estimated by the reference coordinate estimation unit 108 (step ST308).
- Information indicating the absolute coordinates obtained by the coordinate conversion unit 109 is output to the outside. Note that if the type of moving means is not estimated by the moving means estimating unit 105 in step ST304, that is, if the user is not moving between floors, the processing in steps ST305 to 307 is skipped, and the coordinate converting unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using the reference coordinates previously estimated by the reference coordinate estimation unit 108.
- the moving means estimation unit 105 first determines from the movement measured by the inertial sensor 102 whether the frequency of the acceleration waveform in the vertical direction is equal to or higher than a preset threshold value ⁇ [Hz] (step ST401).
- the threshold value ⁇ is a value that can determine whether the user is walking or standing still.
- step ST401 when the moving means estimating unit 105 determines that the frequency of the acceleration waveform in the vertical direction is equal to or higher than the threshold value ⁇ , the magnitude of the change per hour of the atmospheric pressure measured by the atmospheric pressure sensor 104 is It is determined whether or not the threshold value ⁇ [Pa / sec] or more is set in advance (step ST402).
- the threshold value ⁇ is a value with which it is possible to determine whether the user has moved to another floor.
- step ST402 when the moving means estimating unit 105 determines that the magnitude of the change in atmospheric pressure per time is equal to or greater than the threshold value ⁇ , the moving means estimating unit 105 determines that the type of moving means is a staircase (step ST403).
- the type of moving means used by the user is staircase, the vertical acceleration waveform measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104 are as shown in FIG. 5A, for example.
- step ST402 when it is determined that the magnitude of the change in pressure per hour is less than the threshold ⁇ , the moving means estimating unit 105 determines that the user is walking on the floor (step ST404). ).
- the moving means estimating unit 105 determines in step ST401 that the frequency of the acceleration waveform in the vertical direction is less than the threshold value ⁇ , the magnitude of the change per hour in the atmospheric pressure measured by the atmospheric pressure sensor 104 is determined. Then, it is determined whether it is equal to or higher than a preset threshold value ⁇ [Pa / sec] (step ST405).
- the threshold value ⁇ is a value that can determine whether the user has moved to another floor.
- step ST405 the moving means estimating unit 105 determines that the type of moving means is an elevator when the magnitude of the change in pressure per hour is equal to or greater than the threshold value ⁇ (step ST406).
- the type of moving means used by the user is an elevator
- the vertical acceleration waveform measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104 are as shown in FIG. 5B, for example.
- the moving means estimating unit 105 determines that the user is stationary on the floor when determining that the magnitude of the change in pressure per hour is less than the threshold value ⁇ (step ST407). ).
- the floor estimation unit 106 estimates that there is a linear relationship between the atmospheric pressure and the height, and estimates the floor where the user is present from the atmospheric pressure measured by the atmospheric pressure sensor 104.
- the floor estimation part 106 estimates the floor N in which the said user exists from the atmospheric
- N ⁇ (AC) / ⁇ P ⁇ +1 (2)
- the floor estimation unit 106 calculates the above-mentioned user from the atmospheric pressure change amount D per height 1 m according to the following equation (3).
- the floor N that is present may be estimated.
- the atmospheric pressure change amount D per 1 m height is usually about 11 to 12 pa / m.
- N ⁇ (AC) / (D ⁇ h) ⁇ + 1 (3)
- the floor diagram shown in FIG. 7 shows an arbitrary floor in the building and shows a case where four moving means are provided. Further, in FIG. 7, reference symbols a to d indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user. Further, the table shown in FIG. 8 is information that is recorded in the coordinate information recording unit 101 and indicates the absolute coordinates of the elevator doors of the moving means on the floor shown in FIG.
- the reference coordinate estimation unit 108 first determines, based on the floor estimated by the floor estimation unit 106, the absolute information of the elevators of all the moving means existing on the floor from the coordinate information recording unit 101. The coordinates and the direction of the elevator are acquired (step ST901). Hereinafter, it is assumed that the reference coordinate estimation unit 108 has acquired the information shown in FIG.
- the reference coordinate estimating unit 108 determines whether or not the type of moving means estimated by the moving means estimating unit 105 is a staircase (step ST902).
- step ST902 if the reference coordinate estimation unit 108 determines that the type of moving means is a staircase, the reference coordinate estimation unit 108 determines whether the direction detected by the electronic compass 107 is west (step ST903).
- step ST903 when the reference coordinate estimation unit 108 determines that the direction is westward, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position b as the reference coordinate from the information shown in FIG. 8 (step ST904).
- step ST903 when the reference coordinate estimation unit 108 determines that the azimuth is not westward, that is, when the azimuth is eastward, the absolute coordinate of the position d is obtained from the information shown in FIG. (Step ST905).
- step ST902 determines in step ST902 that the type of moving means is not a staircase, that is, if the type of moving means is an elevator, the direction detected by the electronic compass 107 is westward. Is determined (step ST906).
- step ST906 when the reference coordinate estimation unit 108 determines that the direction is westward, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position a as the reference coordinate from the information shown in FIG. 8 (step ST907).
- Step ST906 when the reference coordinate estimation unit 108 determines that the azimuth is not westward, that is, when it is determined that the azimuth is eastward, the absolute coordinate of the position c is determined from the information illustrated in FIG. To be the reference coordinates (step ST908).
- the motion detection device 1 includes the inertial sensor 102 that measures the movement of the own apparatus, and the user who owns the own apparatus based on the movement measured by the inertial sensor 102.
- Pedestrian autonomous navigation unit 103 that calculates relative coordinates with respect to the reference coordinates of the vehicle, an atmospheric pressure sensor 104 that measures atmospheric pressure around the aircraft, movement measured by the inertial sensor 102, and atmospheric pressure measured by the atmospheric pressure sensor 104
- the movement means estimation unit 105 for estimating the type of movement means used when the user moves between floors in the building, and the floor on which the user is based on the atmospheric pressure measured by the atmospheric pressure sensor 104
- the electronic compass 107 that detects the direction of the traveling direction of the own aircraft, Separately, based on the floor estimated by the floor estimation unit 106 and the direction detected by the electronic compass 107, the reference coordinates for estimating the absolute coordinates of the elevator door on
- FIG. FIG. 10 is a block diagram showing a configuration example of the dynamic detection device 1 according to the second embodiment of the present invention.
- a time counting unit 110 is added to the behavior detection device 1 according to the first embodiment shown in FIG.
- Other configurations are the same, and only the different parts are described with the same reference numerals.
- the coordinate information recording unit 101 sets a reference time (reference required time) required for the user to move from the entrance / exit of each moving unit to the first point. Record the information shown for each floor.
- the first point can be arbitrarily set for each floor. For example, when the user comes to the floor, the first point is always the first stop point.
- Information indicating the movement of the own device measured by the inertial sensor 102 and information indicating the atmospheric pressure measured by the atmospheric pressure sensor 104 are also output to the time counting unit 110, respectively.
- the time counting unit 110 is a time during which the user has a constant atmospheric pressure (including a substantially constant meaning) during walking. That is, the time when there is no change in the atmospheric pressure is counted. Information indicating the time counted by the time counting unit 110 is output to the reference coordinate estimating unit 108.
- the function of the time counting unit 110 is realized by a processing circuit.
- the reference coordinate estimating unit 108 is based on the floor estimated by the floor estimating unit 106 and the time counted by the time counting unit 110, and the coordinate information recording unit 101. From the information recorded in the above, there is also a function for estimating the absolute coordinates of the lift on the floor of the moving means used by the user as reference coordinates.
- FIG. 11 shows an arbitrary floor in the building, and shows a case where three moving means are provided.
- reference symbols a to c indicate the positions of the lift ports of the moving means
- reference symbol x indicates the position of the user.
- the first point is assumed to be the entrance of the management room.
- the table shown in FIG. 12 is recorded in the coordinate information recording unit 101.
- the movement detection device 1 estimates the moving means using the time counted by the time counting unit 110.
- the reference coordinate estimation unit 108 first raises / lowers all the moving means existing on the floor from the coordinate information recording unit 101 based on the floor estimated by the floor estimation unit 106.
- the absolute coordinates of the mouth and the reference required time from the elevator to the first point are acquired (step ST1401).
- the reference coordinate estimation unit 108 has acquired the information shown in FIG.
- step ST1402 determines whether or not the time counted by time counting section 110 is equal to or less than a preset threshold value ⁇ (step ST1402).
- the threshold value ⁇ is a time shorter than each reference required time to the first point on the floor, and is a time required for the user to move on a stair landing as shown in FIG. 13A, for example. is there.
- step ST1402 when the reference coordinate estimation unit 108 determines that the time is equal to or less than the threshold value ⁇ , the sequence returns to step ST1401. That is, when the time when the atmospheric pressure is constant while the user is walking is equal to or less than the threshold value ⁇ , it can be estimated that the user is not on the floor and the user is on the stair landing as shown in FIG. Therefore, in this case, the reference coordinate estimation unit 108 performs the reference coordinate estimation again.
- FIG. 13B shows an example of a measurement result by the atmospheric pressure sensor 104 when the user moves on the landing.
- step ST1403 determines whether or not the time is 100 seconds or less. This 100 seconds is the shortest time of the reference required time to the first point included in the information shown in FIG.
- step ST1404 when the reference coordinate estimation unit 108 determines that the time is 100 seconds or less, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position a as the reference coordinate from the information shown in FIG. 12 (step ST1404).
- the reference coordinate estimation unit 108 determines whether the time is 300 seconds or less (step ST1405). This 300 seconds is the second shortest time of the reference required time to the first point included in the information shown in FIG. In step ST1405, when the reference coordinate estimation unit 108 determines that the time is 300 seconds or less, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position b as the reference coordinate from the information shown in FIG. 12 (step ST1406).
- the reference coordinate estimation unit 108 estimates the absolute coordinate of the position c as the reference coordinate from the information shown in FIG. 12 (step ST1407). .
- the dynamic detection device 1 is configured to measure the atmospheric pressure while the user is walking based on the movement measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104.
- the absolute coordinates of the lift on the floor of the moving means used are estimated as reference coordinates.
- the dynamic detection apparatus 1 can estimate the reference coordinates even when the lift ports of the plurality of moving means are in the same direction.
- FIG. 15 is a block diagram showing a configuration example of the dynamic detection device 1 according to the third embodiment of the present invention.
- a reference coordinate determination unit 111 is added to the movement detection device 1 according to the first embodiment shown in FIG.
- Other configurations are the same, and only the different parts are described with the same reference numerals.
- the coordinate information recording unit 101 records information indicating the absolute coordinates of the obstacle present in the building for each floor. Examples of the obstacle include a wall. Information indicating the floor estimated by the floor estimation unit 106 is also output to the reference coordinate determination unit 111.
- the reference coordinate estimation unit 108 stores the coordinate information recording unit 101 based on the floor estimated by the floor estimation unit 106 and the determination result by the reference coordinate determination unit 111. From the recorded information, it also has a function of estimating, as a reference coordinate, the absolute coordinate of the lift on the floor of the moving means used by the user. At this time, based on the floor estimated by the floor estimation unit 106, the reference coordinate estimation unit 108 first determines, based on the information recorded in the coordinate information recording unit 101, the elevator openings of all the moving means existing on the floor. Absolute coordinates are estimated as reference coordinates. Thereafter, the reference coordinate estimation unit 108 excludes the reference coordinates detected by the reference coordinate determination unit 111 from the estimation target.
- the reference coordinate determination unit 111 uses the information recorded in the coordinate information recording unit 101 and the trajectory of the absolute coordinates obtained by the coordinate conversion unit 109 to the floor. A reference coordinate constituting an absolute coordinate that intersects an absolute coordinate of an existing obstacle is detected. Information indicating the reference coordinates detected by the reference coordinate determination unit 111 is output to the reference coordinate estimation unit 108.
- the function of the reference coordinate determination unit 111 is realized by a processing circuit.
- FIG. 16 shows an arbitrary floor in the building and shows a case where three moving means are provided. Further, in FIG. 16, reference symbols a to c indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user.
- the movement detection device 1 uses the reference coordinate determination unit 111 to estimate the moving means.
- the reference coordinate estimation unit 108 first determines, based on the floor estimated by the floor estimation unit 106, the information on the coordinate information recording unit 101 of all the moving means existing on the floor. Absolute coordinates are estimated as reference coordinates.
- the coordinate conversion unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using each reference coordinate estimated by the reference coordinate estimation unit 108.
- FIG. 16 shows the locus x1 to x3 of the absolute coordinates of the user when the absolute coordinates of the positions a to c of the lifting / lowering openings of each moving means are set as reference coordinates.
- the reference coordinate determination unit 111 performs a coordinate conversion unit on the absolute coordinates of the obstacle present on the floor from the information recorded in the coordinate information recording unit 101. Among the absolute coordinates obtained by 109, the reference coordinates constituting the absolute coordinates where the trajectories intersect are detected. Details of the operation by the reference coordinate determination unit 111 will be described below with reference to FIG.
- the reference coordinate determination unit 111 first obtains absolute coordinates of all obstacles existing on the floor from the coordinate information recording unit 101 based on the floor estimated by the floor estimation unit 106. (Step ST1701). Hereinafter, it is assumed that the reference coordinate determination unit 111 has acquired the absolute coordinates of all obstacles present on the floor shown in FIG. Further, reference coordinate determination section 111 acquires all absolute coordinates obtained by coordinate conversion section 109 (step ST1702).
- the reference coordinate determination unit 111 detects reference coordinates that constitute absolute coordinates whose trajectory intersects the absolute coordinates of the obstacle present on the floor among the acquired absolute coordinates (step ST1703).
- the reference coordinate determination unit 111 detects the absolute coordinates (reference coordinates) of the position b and the absolute coordinates (reference coordinates) of the position c. To do.
- Information indicating the reference coordinates detected by the reference coordinate determination unit 111 is output to the reference coordinate estimation unit 108.
- the reference coordinate estimation unit 108 excludes the reference coordinates detected by the reference coordinate determination unit 111 from the estimation target.
- the reference coordinate estimation unit 108 excludes the absolute coordinates of the position b and the absolute coordinates of the position c from the estimation target, and the coordinate conversion unit 109 uses only the absolute coordinates of the position a and uses pedestrian autonomous navigation.
- the relative coordinates calculated by the unit 103 are converted into absolute coordinates.
- the reference coordinate estimation unit 108 uses the floor estimated by the floor estimation unit 106 to calculate the absolute coordinates of the elevators of all the moving means existing on the floor. Based on the floor estimated by the floor estimation unit 106, the motion detection apparatus 1 estimates the reference coordinates, and the absolute coordinate obtained by the coordinate conversion unit 109 is the absolute coordinate of the obstacle whose trajectory exists on the floor.
- the reference coordinate determination unit 111 that detects the reference coordinates constituting the absolute coordinates intersecting with the reference coordinate determination unit 111 is excluded, and the reference coordinate estimation unit 108 excludes the reference coordinates detected by the reference coordinate determination unit 111 from the estimation target.
- the dynamic detection apparatus 1 can estimate the reference coordinates even when the lift ports of the plurality of moving means are in the same direction. Moreover, in the dynamic detection device 1 according to the third embodiment, the reference coordinates can be estimated even when the reference required time to the first point shown in the second embodiment is not known.
- the movement detection device can detect the movement of a user who owns his / her own apparatus and detects the movement of the user who owns the apparatus even if there are a plurality of moving means in the building. Suitable for use in devices and the like.
- SYMBOLS 1 Dynamic detection apparatus 101 Coordinate information recording part, 102 Inertial sensor, 103 Pedestrian autonomous navigation part, 104 Barometric pressure sensor, 105 Moving means estimation part, 106 Floor estimation part, 107 Electronic compass, 108 Reference coordinate estimation part, 109 Coordinate conversion Part, 110 time counting part, 111 reference coordinate determination part, 201 CPU, 202 system memory, 203 storage, 204 GPU, 205 frame memory, 206 RAMDAC, 207 operation device, 208 display device.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
This device comprises: an inertial sensor (102) for measuring motion of said device; a pedestrian autonomous navigation unit (103) for calculating a relative coordinate of a user in possession of the device with respect to a reference coordinate; an atmospheric pressure sensor (104) for measuring the atmospheric pressure surrounding said device; a movement means estimation unit (105) for estimating a classification of a movement means used when the user moves between floors in a building on the basis of the measured motion and the measured atmospheric pressure; a floor estimation unit (106) for estimating the floor on which the user is present on the basis of the measured atmospheric pressure; an electronic compass (107) for detecting the azimuth of the travel direction of said device; a reference coordinate estimation unit (108) for estimating, as a reference coordinate, an absolute coordinate of an entrance, for the aforementioned floor, of the movement means used by the user on the basis of the estimated classification of the movement means, the estimated floor, and the detected azimuth; and a coordinate conversion unit (109) for converting the calculated relative coordinate to an absolute coordinate using the estimated reference coordinate.
Description
この発明は、自機を所持するユーザの動態を検出する動態検出装置に関する。
The present invention relates to a dynamic detection device that detects the dynamics of a user who owns the device.
従来から、自機を所持するユーザの動態を検出する動態検出装置が知られている(例えば特許文献1参照)。この特許文献1に開示された装置では、高度の検出及び上記ユーザの歩行動作の認識により、上記ユーザが使用した移動手段の種別を推定し、上記ユーザの動態を検出している。なお、移動手段の種別としては、例えば、ビル等の建物に設けられた階段又はエレベータ等が挙げられる。
Conventionally, a dynamic detection device that detects the dynamics of a user who owns the device is known (see, for example, Patent Document 1). In the apparatus disclosed in Patent Document 1, the type of moving means used by the user is estimated by detecting the altitude and recognizing the user's walking motion, and detects the user's dynamics. In addition, as a classification of a moving means, the staircase or elevator etc. which were provided in buildings, such as a building, are mentioned, for example.
しかしながら、建物内に複数の移動手段がある場合、上記の装置では、上記ユーザが使用した移動手段を推定できないという課題がある。この場合、上記の装置に対し、別途、大まかな位置情報を与える手段を建物側に設け、上記ユーザが使用した移動手段の絞り込みを行う必要がある。
However, when there are a plurality of moving means in a building, the above apparatus has a problem that the moving means used by the user cannot be estimated. In this case, it is necessary to separately provide a means for giving rough position information to the above-mentioned device on the building side and narrow down the moving means used by the user.
この発明は、上記のような課題を解決するためになされたもので、建物内に複数の移動手段がある場合でも、装置単体で、自機を所持するユーザの動態を検出できる動態検出装置を提供することを目的としている。
The present invention has been made to solve the above-described problems, and provides a dynamic detection device capable of detecting the dynamics of a user who owns his / her own device even when there are a plurality of moving means in a building. It is intended to provide.
この発明に係る動態検出装置は、自機の動きを測定する慣性センサと、慣性センサにより測定された動きに基づいて、自機を所持するユーザの基準座標に対する相対座標を計算する歩行者自律航法部と、自機の周囲の気圧を測定する気圧センサと、慣性センサにより測定された動き、及び、気圧センサにより測定された気圧に基づいて、ユーザが建物内のフロア間を移動する際に使用した移動手段の種別を推定する移動手段推定部と、気圧センサにより測定された気圧に基づいて、ユーザがいるフロアを推定するフロア推定部と、自機の進行方向の方位を検出する電子コンパスと、移動手段推定部により推定された移動手段の種別、フロア推定部により推定されたフロア、及び、電子コンパスにより検出された方位に基づいて、ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を基準座標として推定する基準座標推定部と、基準座標推定部により推定された基準座標を用い、歩行者自律航法部により計算された相対座標を絶対座標に変換する座標変換部とを備えたことを特徴とする。
The movement detection device according to the present invention includes an inertial sensor that measures the movement of the own aircraft, and a pedestrian autonomous navigation that calculates relative coordinates with respect to the reference coordinates of the user who owns the own aircraft based on the movement measured by the inertial sensor. Used when a user moves between floors in a building based on the atmospheric pressure sensor that measures the atmospheric pressure around the unit, the movement measured by the inertial sensor, and the atmospheric pressure measured by the atmospheric pressure sensor A moving means estimating section for estimating the type of moving means, a floor estimating section for estimating the floor on which the user is present based on the atmospheric pressure measured by the atmospheric pressure sensor, and an electronic compass for detecting the direction in which the user travels The user uses the type of moving means estimated by the moving means estimating unit, the floor estimated by the floor estimating unit, and the direction detected by the electronic compass. Using the reference coordinate estimation unit that estimates the absolute coordinates of the elevator door on the floor of the moving means as reference coordinates, and the reference coordinates estimated by the reference coordinate estimation unit, the absolute coordinates calculated by the pedestrian autonomous navigation unit are absolute And a coordinate conversion unit for converting into coordinates.
この発明によれば、上記のように構成したので、建物内に複数の移動手段がある場合でも、装置単体で、自機を所持するユーザの動態を検出できる。
According to the present invention, since it is configured as described above, even when there are a plurality of moving means in a building, it is possible to detect the dynamics of the user who owns the device by itself.
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1は、この発明の実施の形態1に係る動態検出装置1の構成例を示すブロック図である。
動態検出装置1は、自機(動態検出装置1)を所持するユーザの動態を検出する。ユーザとしては、例えば、ビル等の建物の各フロアを巡回点検する作業員が挙げられる。この動態検出装置1は、図1に示すように、座標情報記録部101、慣性センサ102、歩行者自律航法部103、気圧センサ104、移動手段推定部105、フロア推定部106、電子コンパス107、基準座標推定部108及び座標変換部109を備えている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration example of a dynamic detection device 1 according to Embodiment 1 of the present invention.
The dynamic detection device 1 detects the dynamics of the user who owns the own device (the dynamic detection device 1). As a user, for example, a worker who performs a patrol inspection of each floor of a building such as a building can be cited. As shown in FIG. 1, the dynamic detection device 1 includes a coordinateinformation recording unit 101, an inertial sensor 102, a pedestrian autonomous navigation unit 103, an atmospheric pressure sensor 104, a moving means estimation unit 105, a floor estimation unit 106, an electronic compass 107, A reference coordinate estimation unit 108 and a coordinate conversion unit 109 are provided.
実施の形態1.
図1は、この発明の実施の形態1に係る動態検出装置1の構成例を示すブロック図である。
動態検出装置1は、自機(動態検出装置1)を所持するユーザの動態を検出する。ユーザとしては、例えば、ビル等の建物の各フロアを巡回点検する作業員が挙げられる。この動態検出装置1は、図1に示すように、座標情報記録部101、慣性センサ102、歩行者自律航法部103、気圧センサ104、移動手段推定部105、フロア推定部106、電子コンパス107、基準座標推定部108及び座標変換部109を備えている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration example of a dynamic detection device 1 according to Embodiment 1 of the present invention.
The dynamic detection device 1 detects the dynamics of the user who owns the own device (the dynamic detection device 1). As a user, for example, a worker who performs a patrol inspection of each floor of a building such as a building can be cited. As shown in FIG. 1, the dynamic detection device 1 includes a coordinate
座標情報記録部101は、建物内に存在する移動手段の昇降口の絶対座標及び当該昇降口の方位を示す情報をフロア毎に記録している。なお、昇降口の方位とは、昇降口の中心から見た昇降口の出入り口の方位である。この座標情報記録部101に記録された情報は、基準座標推定部108により読み出される。
なお図1では、動態検出装置1の内部に座標情報記録部101が設けられた場合を示したが、これに限らず、動態検出装置1の外部に座標情報記録部101が設けられてもよい。 The coordinateinformation recording unit 101 records, for each floor, information indicating the absolute coordinates of the elevator and the direction of the elevator that exist in the building. In addition, the direction of the lift is the direction of the doorway of the lift as seen from the center of the lift. Information recorded in the coordinate information recording unit 101 is read by the reference coordinate estimation unit 108.
Although FIG. 1 shows the case where the coordinateinformation recording unit 101 is provided inside the movement detection device 1, the present invention is not limited to this, and the coordinate information recording unit 101 may be provided outside the movement detection device 1. .
なお図1では、動態検出装置1の内部に座標情報記録部101が設けられた場合を示したが、これに限らず、動態検出装置1の外部に座標情報記録部101が設けられてもよい。 The coordinate
Although FIG. 1 shows the case where the coordinate
慣性センサ102は、自機(動態検出装置1)の動きを測定する。なお、自機の動きとしては、例えば加速度及び回転等が挙げられる。この慣性センサ102により測定された動きを示す情報は、歩行者自律航法部103及び移動手段推定部105に出力される。
The inertial sensor 102 measures the movement of the own device (dynamic detection device 1). In addition, as a motion of an own machine, acceleration, rotation, etc. are mentioned, for example. Information indicating the movement measured by the inertial sensor 102 is output to the pedestrian autonomous navigation unit 103 and the moving means estimation unit 105.
歩行者自律航法部103は、慣性センサ102により測定された動きに基づいて、上記ユーザの基準座標に対する相対座標を計算する。この歩行者自律航法部103により計算された相対座標を示す情報は、座標変換部109に出力される。
The pedestrian autonomous navigation unit 103 calculates relative coordinates with respect to the reference coordinates of the user based on the movement measured by the inertial sensor 102. Information indicating the relative coordinates calculated by the pedestrian autonomous navigation unit 103 is output to the coordinate conversion unit 109.
気圧センサ104は、自機(動態検出装置1)の周囲の気圧を測定する。この気圧センサ104により測定された気圧を示す情報は、移動手段推定部105及びフロア推定部106に出力される。
The atmospheric pressure sensor 104 measures the atmospheric pressure around the own device (dynamic detection device 1). Information indicating the atmospheric pressure measured by the atmospheric pressure sensor 104 is output to the moving means estimating unit 105 and the floor estimating unit 106.
移動手段推定部105は、慣性センサ102により測定された動き、及び、気圧センサ104により測定された気圧に基づいて、上記ユーザがフロア間の移動に使用した移動手段の種別を推定する。移動手段の種別としては、例えば階段又はエレベータ等が挙げられる。この移動手段推定部105により推定された移動手段の種別を示す情報は、基準座標推定部108に出力される。
The movement means estimation unit 105 estimates the type of movement means used by the user for movement between floors based on the movement measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104. Examples of the moving means include stairs or an elevator. Information indicating the type of moving means estimated by the moving means estimating unit 105 is output to the reference coordinate estimating unit 108.
フロア推定部106は、気圧センサ104により測定された気圧に基づいて、上記ユーザがいるフロアを推定する。このフロア推定部106により推定されたフロアを示す情報は、基準座標推定部108に出力される。
The floor estimation unit 106 estimates the floor on which the user is present based on the atmospheric pressure measured by the atmospheric pressure sensor 104. Information indicating the floor estimated by the floor estimation unit 106 is output to the reference coordinate estimation unit 108.
電子コンパス107は、自機(動態検出装置1)の進行方向の方位を検出する。この電子コンパス107により検出された方位を示す情報は、基準座標推定部108に出力される。
The electronic compass 107 detects the azimuth in the traveling direction of the own device (dynamic detection device 1). Information indicating the orientation detected by the electronic compass 107 is output to the reference coordinate estimation unit 108.
基準座標推定部108は、移動手段推定部105により推定された移動手段の種別、フロア推定部106により推定されたフロア、及び、電子コンパス107により検出された方位に基づいて、座標情報記録部101に記録された情報から、上記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を上記基準座標として推定する。この基準座標推定部108により推定された基準座標を示す情報は、座標変換部109に出力される。
Based on the type of moving means estimated by the moving means estimating unit 105, the floor estimated by the floor estimating unit 106, and the orientation detected by the electronic compass 107, the reference coordinate estimating unit 108 is based on the coordinate information recording unit 101. From the recorded information, the absolute coordinates of the lift on the floor of the moving means used by the user are estimated as the reference coordinates. Information indicating the reference coordinates estimated by the reference coordinate estimation unit 108 is output to the coordinate conversion unit 109.
座標変換部109は、基準座標推定部108により推定された基準座標を用い、歩行者自律航法部103により計算された相対座標を絶対座標に変換する。この際、座標変換部109は、上記相対座標に上記基準座標を加算することで、上記ユーザの絶対座標を得る。この座標変換部109により得られた絶対座標を示す情報は、外部に出力される。
The coordinate conversion unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using the reference coordinates estimated by the reference coordinate estimation unit 108. At this time, the coordinate conversion unit 109 obtains the absolute coordinates of the user by adding the reference coordinates to the relative coordinates. Information indicating the absolute coordinates obtained by the coordinate conversion unit 109 is output to the outside.
図2は、この発明の実施の形態1に係る動態検出装置1を実現する計算機のハードウェア構成例を示している。
歩行者自律航法部103、移動手段推定部105、フロア推定部106、基準座標推定部108及び座標変換部109の各機能は、処理回路により実現される。図2に示すように、処理回路は、システムメモリ202に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、又はDSP(Digital Signal Processor)ともいう)201である。 FIG. 2 shows a hardware configuration example of a computer that realizes the dynamic detection device 1 according to the first embodiment of the present invention.
The functions of the pedestrianautonomous navigation unit 103, the moving means estimation unit 105, the floor estimation unit 106, the reference coordinate estimation unit 108, and the coordinate conversion unit 109 are realized by a processing circuit. As shown in FIG. 2, the processing circuit is a CPU (Central Processing Unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital) that executes a program stored in the system memory 202. Signal Processor) 201).
歩行者自律航法部103、移動手段推定部105、フロア推定部106、基準座標推定部108及び座標変換部109の各機能は、処理回路により実現される。図2に示すように、処理回路は、システムメモリ202に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、又はDSP(Digital Signal Processor)ともいう)201である。 FIG. 2 shows a hardware configuration example of a computer that realizes the dynamic detection device 1 according to the first embodiment of the present invention.
The functions of the pedestrian
歩行者自律航法部103、移動手段推定部105、フロア推定部106、基準座標推定部108及び座標変換部109の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、システムメモリ202に格納される。処理回路は、システムメモリ202に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、動態検出装置1は、処理回路により実行されるときに、例えば後述する図3に示す各ステップが結果的に実行されることになるプログラムを格納するためのシステムメモリ202を備える。また、これらのプログラムは、歩行者自律航法部103、移動手段推定部105、フロア推定部106、基準座標推定部108及び座標変換部109の手順及び方法をコンピュータに実行させるものであるともいえる。ここで、システムメモリ202としては、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)等が該当する。
The functions of the pedestrian autonomous navigation unit 103, the moving means estimation unit 105, the floor estimation unit 106, the reference coordinate estimation unit 108, and the coordinate conversion unit 109 are realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in the system memory 202. The processing circuit reads out and executes the program stored in the system memory 202, thereby realizing the function of each unit. That is, the behavior detection device 1 includes a system memory 202 for storing a program that, when executed by the processing circuit, for example, results in each step shown in FIG. These programs can also be said to cause the computer to execute the procedures and methods of the pedestrian autonomous navigation unit 103, the moving means estimation unit 105, the floor estimation unit 106, the reference coordinate estimation unit 108, and the coordinate conversion unit 109. Here, as the system memory 202, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), or the like. Magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), and the like.
また、上記プログラムの操作用のGUIは、GPU204、フレームメモリ205及びRAMDAC(Random Access Memory Digital-to-Analog Converter)206を介して表示デバイス208に表示される。上記ユーザは、同GUIを操作デバイス207で操作する。
また、座標情報記録部101は、情報の記録にストレジ203を使用する。 The GUI for operating the program is displayed on thedisplay device 208 via the GPU 204, the frame memory 205, and the RAMDAC (Random Access Memory Digital-to-Analog Converter) 206. The user operates the GUI with the operation device 207.
The coordinateinformation recording unit 101 uses the storage 203 for recording information.
また、座標情報記録部101は、情報の記録にストレジ203を使用する。 The GUI for operating the program is displayed on the
The coordinate
次に、図3を参照しながら、実施の形態1に係る動態検出装置1の動作例を説明する。なお、座標情報記録部101は、事前に、建物内に存在する移動手段の昇降口の絶対座標及び当該昇降口の方位を示す情報をフロア毎に記録している。
動態検出装置1の動作例では、図3に示すように、まず、慣性センサ102は、自機の動きを測定する(ステップST301)。この慣性センサ102により測定された動きを示す情報は、歩行者自律航法部103及び移動手段推定部105に出力される。 Next, an operation example of the behavior detection apparatus 1 according to the first embodiment will be described with reference to FIG. Note that the coordinateinformation recording unit 101 records in advance, for each floor, information indicating the absolute coordinates of the elevator of the moving means existing in the building and the direction of the elevator.
In the operation example of the movement detection device 1, as shown in FIG. 3, first, theinertial sensor 102 measures the movement of the own device (step ST301). Information indicating the movement measured by the inertial sensor 102 is output to the pedestrian autonomous navigation unit 103 and the moving means estimation unit 105.
動態検出装置1の動作例では、図3に示すように、まず、慣性センサ102は、自機の動きを測定する(ステップST301)。この慣性センサ102により測定された動きを示す情報は、歩行者自律航法部103及び移動手段推定部105に出力される。 Next, an operation example of the behavior detection apparatus 1 according to the first embodiment will be described with reference to FIG. Note that the coordinate
In the operation example of the movement detection device 1, as shown in FIG. 3, first, the
次いで、歩行者自律航法部103は、慣性センサ102による検出結果に基づいて、上記ユーザの基準座標に対する相対座標を計算する(ステップST302)。この歩行者自律航法部103により計算された相対座標を示す情報は、座標変換部109に出力される。
Next, the pedestrian autonomous navigation unit 103 calculates relative coordinates with respect to the reference coordinates of the user based on the detection result by the inertial sensor 102 (step ST302). Information indicating the relative coordinates calculated by the pedestrian autonomous navigation unit 103 is output to the coordinate conversion unit 109.
また、気圧センサ104は、自機の周囲の気圧を測定する(ステップST303)。この気圧センサ104により測定された気圧を示す情報は、移動手段推定部105及びフロア推定部106に出力される。
Further, the atmospheric pressure sensor 104 measures the atmospheric pressure around the own device (step ST303). Information indicating the atmospheric pressure measured by the atmospheric pressure sensor 104 is output to the moving means estimating unit 105 and the floor estimating unit 106.
次いで、移動手段推定部105は、慣性センサ102により測定された動き、及び、気圧センサ104により測定された気圧に基づいて、上記ユーザがフロア間の移動に使用した移動手段の種別を推定する(ステップST304)。移動手段推定部105の動作の詳細については後述する。この移動手段推定部105により推定された移動手段の種別を示す情報は、基準座標推定部108に出力される。
Next, based on the movement measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104, the movement means estimating unit 105 estimates the type of the moving means used by the user for movement between floors ( Step ST304). Details of the operation of the moving means estimating unit 105 will be described later. Information indicating the type of moving means estimated by the moving means estimating unit 105 is output to the reference coordinate estimating unit 108.
また、フロア推定部106は、気圧センサ104により測定された気圧に基づいて、上記ユーザがいるフロアを推定する(ステップST305)。フロア推定部106の動作の詳細については後述する。このフロア推定部106により推定されたフロアを示す情報は、基準座標推定部108に出力される。
Further, the floor estimation unit 106 estimates the floor on which the user is present based on the atmospheric pressure measured by the atmospheric pressure sensor 104 (step ST305). Details of the operation of the floor estimation unit 106 will be described later. Information indicating the floor estimated by the floor estimation unit 106 is output to the reference coordinate estimation unit 108.
また、電子コンパス107は、自機の進行方向の方位を検出する(ステップST306)。この電子コンパス107により検出された方位を示す情報は、基準座標推定部108に出力される。
Moreover, the electronic compass 107 detects the direction of the traveling direction of the own device (step ST306). Information indicating the orientation detected by the electronic compass 107 is output to the reference coordinate estimation unit 108.
次いで、基準座標推定部108は、移動手段推定部105により推定された移動手段の種別、フロア推定部106により推定されたフロア、及び、電子コンパス107により検出された方位に基づいて、座標情報記録部101に記録された情報から、上記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を上記基準座標として推定する(ステップST307)。基準座標推定部108の動作の詳細については後述する。この基準座標推定部108により推定された基準座標を示す情報は、座標変換部109に出力される。
Next, the reference coordinate estimating unit 108 records coordinate information based on the type of moving means estimated by the moving means estimating unit 105, the floor estimated by the floor estimating unit 106, and the direction detected by the electronic compass 107. From the information recorded in the unit 101, the absolute coordinates of the lift on the floor of the moving means used by the user are estimated as the reference coordinates (step ST307). Details of the operation of the reference coordinate estimation unit 108 will be described later. Information indicating the reference coordinates estimated by the reference coordinate estimation unit 108 is output to the coordinate conversion unit 109.
次いで、座標変換部109は、基準座標推定部108により推定された基準座標を用い、歩行者自律航法部103により計算された相対座標を絶対座標に変換する(ステップST308)。この座標変換部109により得られた絶対座標を示す情報は、外部に出力される。
なお、ステップST304において移動手段推定部105により移動手段の種別が推定されない場合、すなわち、上記ユーザがフロア間の移動を行っていない場合には、ステップST305~307の処理はスキップされ、座標変換部109は、基準座標推定部108により前回推定された基準座標を用い、歩行者自律航法部103により計算された相対座標を絶対座標に変換する。 Next, the coordinateconversion unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using the reference coordinates estimated by the reference coordinate estimation unit 108 (step ST308). Information indicating the absolute coordinates obtained by the coordinate conversion unit 109 is output to the outside.
Note that if the type of moving means is not estimated by the movingmeans estimating unit 105 in step ST304, that is, if the user is not moving between floors, the processing in steps ST305 to 307 is skipped, and the coordinate converting unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using the reference coordinates previously estimated by the reference coordinate estimation unit 108.
なお、ステップST304において移動手段推定部105により移動手段の種別が推定されない場合、すなわち、上記ユーザがフロア間の移動を行っていない場合には、ステップST305~307の処理はスキップされ、座標変換部109は、基準座標推定部108により前回推定された基準座標を用い、歩行者自律航法部103により計算された相対座標を絶対座標に変換する。 Next, the coordinate
Note that if the type of moving means is not estimated by the moving
次に、移動手段推定部105の動作例について、図4を参照しながら説明する。なお以下では、移動手段の種別が階段とエレベータであり、また、慣性センサ102により測定される動きが鉛直方向(z軸方向)の加速度である場合を示す。
移動手段推定部105は、まず、慣性センサ102により測定された動きから、鉛直方向の加速度波形の周波数が、予め設定された閾値α[Hz]以上であるかを判定する(ステップST401)。閾値αは、上記ユーザが歩行しているか又は静止しているかを判別可能な値である。 Next, an operation example of the moving meansestimation unit 105 will be described with reference to FIG. In the following, the case where the type of moving means is staircase and elevator and the movement measured by the inertial sensor 102 is acceleration in the vertical direction (z-axis direction) is shown.
The moving meansestimation unit 105 first determines from the movement measured by the inertial sensor 102 whether the frequency of the acceleration waveform in the vertical direction is equal to or higher than a preset threshold value α [Hz] (step ST401). The threshold value α is a value that can determine whether the user is walking or standing still.
移動手段推定部105は、まず、慣性センサ102により測定された動きから、鉛直方向の加速度波形の周波数が、予め設定された閾値α[Hz]以上であるかを判定する(ステップST401)。閾値αは、上記ユーザが歩行しているか又は静止しているかを判別可能な値である。 Next, an operation example of the moving means
The moving means
このステップST401において、移動手段推定部105は、鉛直方向の加速度波形の周波数が閾値α以上であると判定した場合には、気圧センサ104により測定された気圧の時間当たりの変化の大きさが、予め設定された閾値γ[Pa/秒]以上であるかを判定する(ステップST402)。閾値γは、上記ユーザが別のフロアへ移動したかを判別可能な値である。
In step ST401, when the moving means estimating unit 105 determines that the frequency of the acceleration waveform in the vertical direction is equal to or higher than the threshold value α, the magnitude of the change per hour of the atmospheric pressure measured by the atmospheric pressure sensor 104 is It is determined whether or not the threshold value γ [Pa / sec] or more is set in advance (step ST402). The threshold value γ is a value with which it is possible to determine whether the user has moved to another floor.
このステップST402において、移動手段推定部105は、気圧の時間当たりの変化の大きさが閾値γ以上であると判定した場合には、移動手段の種別は階段であると判定する(ステップST403)。なお、上記ユーザが使用した移動手段の種別が階段である場合には、慣性センサ102により測定された鉛直方向の加速度波形及び気圧センサ104により測定された気圧は、例えば図5Aのようになる。
一方、ステップST402において、移動手段推定部105は、気圧の時間当たりの変化の大きさが閾値γ未満であると判定した場合には、上記ユーザがフロアを歩行していると判定する(ステップST404)。 In step ST402, when the movingmeans estimating unit 105 determines that the magnitude of the change in atmospheric pressure per time is equal to or greater than the threshold value γ, the moving means estimating unit 105 determines that the type of moving means is a staircase (step ST403). When the type of moving means used by the user is staircase, the vertical acceleration waveform measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104 are as shown in FIG. 5A, for example.
On the other hand, in step ST402, when it is determined that the magnitude of the change in pressure per hour is less than the threshold γ, the movingmeans estimating unit 105 determines that the user is walking on the floor (step ST404). ).
一方、ステップST402において、移動手段推定部105は、気圧の時間当たりの変化の大きさが閾値γ未満であると判定した場合には、上記ユーザがフロアを歩行していると判定する(ステップST404)。 In step ST402, when the moving
On the other hand, in step ST402, when it is determined that the magnitude of the change in pressure per hour is less than the threshold γ, the moving
一方、ステップST401において、移動手段推定部105は、鉛直方向の加速度波形の周波数が閾値α未満であると判定した場合には、気圧センサ104により測定された気圧の時間当たりの変化の大きさが、予め設定された閾値β[Pa/秒]以上であるかを判定する(ステップST405)。閾値βは、上記ユーザが別のフロアへ移動したかを判別可能な値である。
On the other hand, when the moving means estimating unit 105 determines in step ST401 that the frequency of the acceleration waveform in the vertical direction is less than the threshold value α, the magnitude of the change per hour in the atmospheric pressure measured by the atmospheric pressure sensor 104 is determined. Then, it is determined whether it is equal to or higher than a preset threshold value β [Pa / sec] (step ST405). The threshold value β is a value that can determine whether the user has moved to another floor.
このステップST405において、移動手段推定部105は、気圧の時間当たりの変化の大きさが閾値β以上であると判定した場合には、移動手段の種別はエレベータであると判定する(ステップST406)。なお、上記ユーザが使用した移動手段の種別がエレベータである場合には、慣性センサ102により測定された鉛直方向の加速度波形及び気圧センサ104により測定された気圧は、例えば図5Bのようになる。
一方、ステップST405において、移動手段推定部105は、気圧の時間当たりの変化の大きさが閾値β未満であると判定した場合には、上記ユーザがフロアで静止していると判定する(ステップST407)。 In step ST405, the movingmeans estimating unit 105 determines that the type of moving means is an elevator when the magnitude of the change in pressure per hour is equal to or greater than the threshold value β (step ST406). When the type of moving means used by the user is an elevator, the vertical acceleration waveform measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104 are as shown in FIG. 5B, for example.
On the other hand, in step ST405, the movingmeans estimating unit 105 determines that the user is stationary on the floor when determining that the magnitude of the change in pressure per hour is less than the threshold value β (step ST407). ).
一方、ステップST405において、移動手段推定部105は、気圧の時間当たりの変化の大きさが閾値β未満であると判定した場合には、上記ユーザがフロアで静止していると判定する(ステップST407)。 In step ST405, the moving
On the other hand, in step ST405, the moving
次に、フロア推定部106の動作例について、図6を参照しながら説明する。
フロア推定部106では、気圧と高さに線形の関係があると推定し、気圧センサ104により測定された気圧から、上記ユーザがいるフロアの推定を行う。
ここで、図6に示すように、事前に、動態検出装置1は、1階のフロアでの気圧A及びM階のフロアでの気圧Bを測定し、フロア推定部106は、これらの測定結果から、1階層当たりの気圧差ΔPを下式(1)より得る。
ΔP=(A-B)/(M-1) (1) Next, an operation example of thefloor estimation unit 106 will be described with reference to FIG.
Thefloor estimation unit 106 estimates that there is a linear relationship between the atmospheric pressure and the height, and estimates the floor where the user is present from the atmospheric pressure measured by the atmospheric pressure sensor 104.
Here, as shown in FIG. 6, the motion detection device 1 measures the atmospheric pressure A on the first floor and the atmospheric pressure B on the M floor in advance, and thefloor estimation unit 106 determines these measurement results. From the following equation (1), the atmospheric pressure difference ΔP per layer is obtained.
ΔP = (A−B) / (M−1) (1)
フロア推定部106では、気圧と高さに線形の関係があると推定し、気圧センサ104により測定された気圧から、上記ユーザがいるフロアの推定を行う。
ここで、図6に示すように、事前に、動態検出装置1は、1階のフロアでの気圧A及びM階のフロアでの気圧Bを測定し、フロア推定部106は、これらの測定結果から、1階層当たりの気圧差ΔPを下式(1)より得る。
ΔP=(A-B)/(M-1) (1) Next, an operation example of the
The
Here, as shown in FIG. 6, the motion detection device 1 measures the atmospheric pressure A on the first floor and the atmospheric pressure B on the M floor in advance, and the
ΔP = (A−B) / (M−1) (1)
そして、フロア推定部106は、運用時に、気圧センサ104により測定された気圧Cから、下式(2)より、上記ユーザがいるフロアNの推定を行う。
N={(A-C)/ΔP}+1 (2) And thefloor estimation part 106 estimates the floor N in which the said user exists from the atmospheric | air pressure C measured by the atmospheric | air pressure sensor 104 at the time of operation | movement from the following Formula (2).
N = {(AC) / ΔP} +1 (2)
N={(A-C)/ΔP}+1 (2) And the
N = {(AC) / ΔP} +1 (2)
また、フロア推定部106は、対象となる建物の1階層当たりの高さhが既知である場合には、高さ1m当たりでの気圧変化量Dから、下式(3)より、上記ユーザがいるフロアNの推定を行ってもよい。なお、高さ1m当たりでの気圧変化量Dは、通常、11~12pa/m程度である。
N={(A-C)/(D×h)}+1 (3) Further, when the height h per floor of the target building is known, thefloor estimation unit 106 calculates the above-mentioned user from the atmospheric pressure change amount D per height 1 m according to the following equation (3). The floor N that is present may be estimated. The atmospheric pressure change amount D per 1 m height is usually about 11 to 12 pa / m.
N = {(AC) / (D × h)} + 1 (3)
N={(A-C)/(D×h)}+1 (3) Further, when the height h per floor of the target building is known, the
N = {(AC) / (D × h)} + 1 (3)
次に、基準座標推定部108の動作例について、図7~9を参照しながら説明する。
なお、図7に示すフロア図は、建物内の任意のフロアを示し、4つの移動手段が設けられている場合を示している。また図7において、符号a~dは移動手段の昇降口の位置を示し、符号xは上記ユーザの位置を示している。また、図8に示す表は、座標情報記録部101に記録された、図7に示すフロアにおける移動手段の昇降口の絶対座標及び当該昇降口の方位を示す情報である。 Next, an operation example of the reference coordinateestimation unit 108 will be described with reference to FIGS.
The floor diagram shown in FIG. 7 shows an arbitrary floor in the building and shows a case where four moving means are provided. Further, in FIG. 7, reference symbols a to d indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user. Further, the table shown in FIG. 8 is information that is recorded in the coordinateinformation recording unit 101 and indicates the absolute coordinates of the elevator doors of the moving means on the floor shown in FIG.
なお、図7に示すフロア図は、建物内の任意のフロアを示し、4つの移動手段が設けられている場合を示している。また図7において、符号a~dは移動手段の昇降口の位置を示し、符号xは上記ユーザの位置を示している。また、図8に示す表は、座標情報記録部101に記録された、図7に示すフロアにおける移動手段の昇降口の絶対座標及び当該昇降口の方位を示す情報である。 Next, an operation example of the reference coordinate
The floor diagram shown in FIG. 7 shows an arbitrary floor in the building and shows a case where four moving means are provided. Further, in FIG. 7, reference symbols a to d indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user. Further, the table shown in FIG. 8 is information that is recorded in the coordinate
基準座標推定部108は、図9に示すように、まず、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101から、当該フロアに存在する全ての移動手段の昇降口の絶対座標及び当該昇降口の方位を取得する(ステップST901)。以下では、基準座標推定部108は、図8に示す情報を取得したものとする。
As shown in FIG. 9, the reference coordinate estimation unit 108 first determines, based on the floor estimated by the floor estimation unit 106, the absolute information of the elevators of all the moving means existing on the floor from the coordinate information recording unit 101. The coordinates and the direction of the elevator are acquired (step ST901). Hereinafter, it is assumed that the reference coordinate estimation unit 108 has acquired the information shown in FIG.
次いで、基準座標推定部108は、移動手段推定部105により推定された移動手段の種別が階段であるかを判定する(ステップST902)。
Next, the reference coordinate estimating unit 108 determines whether or not the type of moving means estimated by the moving means estimating unit 105 is a staircase (step ST902).
このステップST902において、基準座標推定部108は、移動手段の種別が階段であると判定した場合には、電子コンパス107により検出された方位が西向きであるかを判定する(ステップST903)。
In step ST902, if the reference coordinate estimation unit 108 determines that the type of moving means is a staircase, the reference coordinate estimation unit 108 determines whether the direction detected by the electronic compass 107 is west (step ST903).
このステップST903において、基準座標推定部108は、方位が西向きであると判定した場合には、図8に示す情報から、位置bの絶対座標を基準座標として推定する(ステップST904)。
In step ST903, when the reference coordinate estimation unit 108 determines that the direction is westward, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position b as the reference coordinate from the information shown in FIG. 8 (step ST904).
一方、ステップST903において、基準座標推定部108は、方位が西向きではないと判定した場合、すなわち、方位が東向きである場合には、図8に示す情報から、位置dの絶対座標を基準座標として推定する(ステップST905)。
On the other hand, in step ST903, when the reference coordinate estimation unit 108 determines that the azimuth is not westward, that is, when the azimuth is eastward, the absolute coordinate of the position d is obtained from the information shown in FIG. (Step ST905).
一方、ステップST902において、基準座標推定部108は、移動手段の種別が階段ではないと判定した場合、すなわち、移動手段の種別がエレベータである場合には、電子コンパス107により検出された方位が西向きであるかを判定する(ステップST906)。
On the other hand, if the reference coordinate estimation unit 108 determines in step ST902 that the type of moving means is not a staircase, that is, if the type of moving means is an elevator, the direction detected by the electronic compass 107 is westward. Is determined (step ST906).
このステップST906において、基準座標推定部108は、方位が西向きであると判定した場合には、図8に示す情報から、位置aの絶対座標を基準座標として推定する(ステップST907)。
In step ST906, when the reference coordinate estimation unit 108 determines that the direction is westward, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position a as the reference coordinate from the information shown in FIG. 8 (step ST907).
一方、ステップST906において、基準座標推定部108は、方位が西向きではないと判定した場合、すなわち、方位が東向きであると判定した場合には、図8に示す情報から、位置cの絶対座標を基準座標として推定であると判定する(ステップST908)。
On the other hand, in Step ST906, when the reference coordinate estimation unit 108 determines that the azimuth is not westward, that is, when it is determined that the azimuth is eastward, the absolute coordinate of the position c is determined from the information illustrated in FIG. To be the reference coordinates (step ST908).
以上のように、この実施の形態1によれば、動態検出装置1は、自機の動きを測定する慣性センサ102と、慣性センサ102により測定された動きに基づいて、自機を所持するユーザの基準座標に対する相対座標を計算する歩行者自律航法部103と、自機の周囲の気圧を測定する気圧センサ104と、慣性センサ102により測定された動き、及び、気圧センサ104により測定された気圧に基づいて、上記ユーザが建物内のフロア間を移動する際に使用した移動手段の種別を推定する移動手段推定部105と、気圧センサ104により測定された気圧に基づいて、上記ユーザがいるフロアを推定するフロア推定部106と、自機の進行方向の方位を検出する電子コンパス107と、移動手段推定部105により推定された移動手段の種別、フロア推定部106により推定されたフロア、及び、電子コンパス107により検出された方位に基づいて、上記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を基準座標として推定する基準座標推定部108と、基準座標推定部108により推定された基準座標を用い、歩行者自律航法部103により計算された相対座標を絶対座標に変換する座標変換部109とを備えた。これにより、動態検出装置1は、建物内に複数の移動手段がある場合でも、装置単体で、上記ユーザの動態を検出できる。
As described above, according to the first embodiment, the motion detection device 1 includes the inertial sensor 102 that measures the movement of the own apparatus, and the user who owns the own apparatus based on the movement measured by the inertial sensor 102. Pedestrian autonomous navigation unit 103 that calculates relative coordinates with respect to the reference coordinates of the vehicle, an atmospheric pressure sensor 104 that measures atmospheric pressure around the aircraft, movement measured by the inertial sensor 102, and atmospheric pressure measured by the atmospheric pressure sensor 104 Based on the movement means estimation unit 105 for estimating the type of movement means used when the user moves between floors in the building, and the floor on which the user is based on the atmospheric pressure measured by the atmospheric pressure sensor 104 Of the moving means estimated by the floor estimating unit 106 that estimates the direction of travel, the electronic compass 107 that detects the direction of the traveling direction of the own aircraft, Separately, based on the floor estimated by the floor estimation unit 106 and the direction detected by the electronic compass 107, the reference coordinates for estimating the absolute coordinates of the elevator door on the floor of the moving means used by the user as the reference coordinates An estimation unit 108 and a coordinate conversion unit 109 that converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using the reference coordinates estimated by the reference coordinate estimation unit 108 are provided. Thereby, even if there exists a some moving means in a building, the dynamic detection apparatus 1 can detect the said user's dynamic with the apparatus single-piece | unit.
実施の形態2.
図10は、この発明の実施の形態2に係る動態検出装置1の構成例を示すブロック図である。この図10に示す実施の形態2に係る動態検出装置1では、図1に示す実施の形態1に係る動態検出装置1に対し、時間計数部110を追加している。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。Embodiment 2. FIG.
FIG. 10 is a block diagram showing a configuration example of the dynamic detection device 1 according to the second embodiment of the present invention. In the behavior detection device 1 according to the second embodiment shown in FIG. 10, atime counting unit 110 is added to the behavior detection device 1 according to the first embodiment shown in FIG. Other configurations are the same, and only the different parts are described with the same reference numerals.
図10は、この発明の実施の形態2に係る動態検出装置1の構成例を示すブロック図である。この図10に示す実施の形態2に係る動態検出装置1では、図1に示す実施の形態1に係る動態検出装置1に対し、時間計数部110を追加している。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
FIG. 10 is a block diagram showing a configuration example of the dynamic detection device 1 according to the second embodiment of the present invention. In the behavior detection device 1 according to the second embodiment shown in FIG. 10, a
なお、座標情報記録部101は、実施の形態1で示した情報に加え、各移動手段の昇降口から第一の地点まで上記ユーザが移動するのに要する基準となる時間(基準所要時間)を示す情報をフロア毎に記録する。なお、第一の地点は、フロア毎に任意に設定可能であり、例えば上記ユーザがフロアに来た際に最初に必ず立ち寄る地点とする。
また、慣性センサ102により測定された自機の動きを示す情報、及び、気圧センサ104により測定された気圧を示す情報は、それぞれ、時間計数部110にも出力される。 In addition to the information shown in the first embodiment, the coordinateinformation recording unit 101 sets a reference time (reference required time) required for the user to move from the entrance / exit of each moving unit to the first point. Record the information shown for each floor. The first point can be arbitrarily set for each floor. For example, when the user comes to the floor, the first point is always the first stop point.
Information indicating the movement of the own device measured by theinertial sensor 102 and information indicating the atmospheric pressure measured by the atmospheric pressure sensor 104 are also output to the time counting unit 110, respectively.
また、慣性センサ102により測定された自機の動きを示す情報、及び、気圧センサ104により測定された気圧を示す情報は、それぞれ、時間計数部110にも出力される。 In addition to the information shown in the first embodiment, the coordinate
Information indicating the movement of the own device measured by the
時間計数部110は、慣性センサ102により測定された動き、及び、気圧センサ104により測定された気圧に基づいて、上記ユーザが歩行中に気圧が一定(略一定の意味を含む)である時間、すなわち気圧に変化が無い時間を計数する。この時間計数部110により計数された時間を示す情報は、基準座標推定部108に出力される。なお、時間計数部110の機能は処理回路により実現される。
Based on the movement measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104, the time counting unit 110 is a time during which the user has a constant atmospheric pressure (including a substantially constant meaning) during walking. That is, the time when there is no change in the atmospheric pressure is counted. Information indicating the time counted by the time counting unit 110 is output to the reference coordinate estimating unit 108. The function of the time counting unit 110 is realized by a processing circuit.
また、基準座標推定部108は、実施の形態1で示した機能に加え、フロア推定部106により推定されたフロア、及び、時間計数部110により計数された時間に基づいて、座標情報記録部101に記録された情報から、上記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を基準座標として推定する機能も有する。
Further, in addition to the function shown in the first embodiment, the reference coordinate estimating unit 108 is based on the floor estimated by the floor estimating unit 106 and the time counted by the time counting unit 110, and the coordinate information recording unit 101. From the information recorded in the above, there is also a function for estimating the absolute coordinates of the lift on the floor of the moving means used by the user as reference coordinates.
次に、基準座標推定部108の動作例について、図11~14を参照しながら説明する。
なお、図11に示すフロア図は、建物内の任意のフロアを示し、3つの移動手段が設けられている場合を示している。また図11において、符号a~cは移動手段の昇降口の位置を示し、符号xは上記ユーザの位置を示している。また図11において、上記第一の地点は管理室の入口であるとする。また、図12に示す表は、座標情報記録部101に記録された、図11に示すフロアにおける移動手段の昇降口の絶対座標、当該昇降口の方位、及び、当該昇降口から第一の地点までの基準所要時間を示す情報である。 Next, an operation example of the reference coordinateestimation unit 108 will be described with reference to FIGS.
Note that the floor diagram shown in FIG. 11 shows an arbitrary floor in the building, and shows a case where three moving means are provided. Further, in FIG. 11, reference symbols a to c indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user. In FIG. 11, the first point is assumed to be the entrance of the management room. Further, the table shown in FIG. 12 is recorded in the coordinateinformation recording unit 101. The absolute coordinates of the elevator of the moving means on the floor shown in FIG. 11, the direction of the elevator, and the first point from the elevator. It is the information which shows the reference required time until.
なお、図11に示すフロア図は、建物内の任意のフロアを示し、3つの移動手段が設けられている場合を示している。また図11において、符号a~cは移動手段の昇降口の位置を示し、符号xは上記ユーザの位置を示している。また図11において、上記第一の地点は管理室の入口であるとする。また、図12に示す表は、座標情報記録部101に記録された、図11に示すフロアにおける移動手段の昇降口の絶対座標、当該昇降口の方位、及び、当該昇降口から第一の地点までの基準所要時間を示す情報である。 Next, an operation example of the reference coordinate
Note that the floor diagram shown in FIG. 11 shows an arbitrary floor in the building, and shows a case where three moving means are provided. Further, in FIG. 11, reference symbols a to c indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user. In FIG. 11, the first point is assumed to be the entrance of the management room. Further, the table shown in FIG. 12 is recorded in the coordinate
図11に示すフロア図では、全ての移動手段が同じ方位(図11では北向き)となっている。そのため、実施の形態1で示した手法では、上記ユーザが使用した移動手段を推定できない場合がある。そこで、この場合に、動態検出装置1は、時間計数部110により計数された時間を用いて移動手段の推定を行う。
In the floor diagram shown in FIG. 11, all moving means are in the same direction (north in FIG. 11). Therefore, in the method shown in the first embodiment, the moving means used by the user may not be estimated. Therefore, in this case, the movement detection device 1 estimates the moving means using the time counted by the time counting unit 110.
この場合、基準座標推定部108は、図14に示すように、まず、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101から、当該フロアに存在する全ての移動手段の昇降口の絶対座標及び当該昇降口から第一の地点までの基準所要時間を取得する(ステップST1401)。以下では、基準座標推定部108は、図12に示す情報を取得したものとする。
In this case, as shown in FIG. 14, the reference coordinate estimation unit 108 first raises / lowers all the moving means existing on the floor from the coordinate information recording unit 101 based on the floor estimated by the floor estimation unit 106. The absolute coordinates of the mouth and the reference required time from the elevator to the first point are acquired (step ST1401). Hereinafter, it is assumed that the reference coordinate estimation unit 108 has acquired the information shown in FIG.
次いで、基準座標推定部108は、時間計数部110により計数された時間が、予め設定された閾値θ以下であるかを判定する(ステップST1402)。閾値θは、上記フロアにおける第一の地点までの各基準所要時間よりも短い時間であって、例えば、図13Aに示すような階段の踊り場を上記ユーザが移動するのに要する基準となる時間である。
このステップST1402において、基準座標推定部108は、上記時間が閾値θ以下であると判定した場合には、シーケンスはステップST1401に戻る。すなわち、上記ユーザが歩行中に気圧が一定である時間が閾値θ以下である場合、上記ユーザはフロアにはおらず、例えば図13Aに示すように上記ユーザは階段の踊り場にいると推測できる。よって、この場合には、基準座標推定部108は基準座標の推定をやり直す。なお図13Bはユーザが踊り場を移動した場合での気圧センサ104による測定結果の一例を示している。 Next, reference coordinate estimatingsection 108 determines whether or not the time counted by time counting section 110 is equal to or less than a preset threshold value θ (step ST1402). The threshold value θ is a time shorter than each reference required time to the first point on the floor, and is a time required for the user to move on a stair landing as shown in FIG. 13A, for example. is there.
In step ST1402, when the reference coordinateestimation unit 108 determines that the time is equal to or less than the threshold value θ, the sequence returns to step ST1401. That is, when the time when the atmospheric pressure is constant while the user is walking is equal to or less than the threshold value θ, it can be estimated that the user is not on the floor and the user is on the stair landing as shown in FIG. Therefore, in this case, the reference coordinate estimation unit 108 performs the reference coordinate estimation again. FIG. 13B shows an example of a measurement result by the atmospheric pressure sensor 104 when the user moves on the landing.
このステップST1402において、基準座標推定部108は、上記時間が閾値θ以下であると判定した場合には、シーケンスはステップST1401に戻る。すなわち、上記ユーザが歩行中に気圧が一定である時間が閾値θ以下である場合、上記ユーザはフロアにはおらず、例えば図13Aに示すように上記ユーザは階段の踊り場にいると推測できる。よって、この場合には、基準座標推定部108は基準座標の推定をやり直す。なお図13Bはユーザが踊り場を移動した場合での気圧センサ104による測定結果の一例を示している。 Next, reference coordinate estimating
In step ST1402, when the reference coordinate
一方、ステップST1402において、基準座標推定部108は、上記時間が閾値θ以下ではないと判定した場合には、上記時間が100秒以下であるかを判定する(ステップST1403)。この100秒は、図12に示す情報に含まれる第一の地点までの基準所要時間のうちの最も短い時間である。
このステップST1403において、基準座標推定部108は、上記時間が100秒以下であると判定した場合には、図12に示す情報から、位置aの絶対座標を基準座標として推定する(ステップST1404)。 On the other hand, if it is determined in step ST1402 that the time is not less than or equal to the threshold θ, the reference coordinateestimation unit 108 determines whether or not the time is 100 seconds or less (step ST1403). This 100 seconds is the shortest time of the reference required time to the first point included in the information shown in FIG.
In step ST1403, when the reference coordinateestimation unit 108 determines that the time is 100 seconds or less, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position a as the reference coordinate from the information shown in FIG. 12 (step ST1404).
このステップST1403において、基準座標推定部108は、上記時間が100秒以下であると判定した場合には、図12に示す情報から、位置aの絶対座標を基準座標として推定する(ステップST1404)。 On the other hand, if it is determined in step ST1402 that the time is not less than or equal to the threshold θ, the reference coordinate
In step ST1403, when the reference coordinate
一方、ステップST1404において、基準座標推定部108は、上記時間が100秒以下ではないと判定した場合には、上記時間が300秒以下であるかを判定する(ステップST1405)。この300秒は、図12に示す情報に含まれる第一の地点までの基準所要時間のうちの2番目に短い時間である。
このステップST1405において、基準座標推定部108は、上記時間が300秒以下であると判定した場合には、図12に示す情報から、位置bの絶対座標を基準座標として推定する(ステップST1406)。 On the other hand, if it is determined in step ST1404 that the time is not 100 seconds or less, the reference coordinateestimation unit 108 determines whether the time is 300 seconds or less (step ST1405). This 300 seconds is the second shortest time of the reference required time to the first point included in the information shown in FIG.
In step ST1405, when the reference coordinateestimation unit 108 determines that the time is 300 seconds or less, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position b as the reference coordinate from the information shown in FIG. 12 (step ST1406).
このステップST1405において、基準座標推定部108は、上記時間が300秒以下であると判定した場合には、図12に示す情報から、位置bの絶対座標を基準座標として推定する(ステップST1406)。 On the other hand, if it is determined in step ST1404 that the time is not 100 seconds or less, the reference coordinate
In step ST1405, when the reference coordinate
一方、ステップST1406において、基準座標推定部108は、上記時間が300秒以下ではないと判定した場合には、図12に示す情報から、位置cの絶対座標を基準座標として推定する(ステップST1407)。
On the other hand, if it is determined in step ST1406 that the time is not 300 seconds or less, the reference coordinate estimation unit 108 estimates the absolute coordinate of the position c as the reference coordinate from the information shown in FIG. 12 (step ST1407). .
以上のように、この実施の形態2によれば、動態検出装置1は、慣性センサ102により測定された動き、及び、気圧センサ104により測定された気圧に基づいて、上記ユーザが歩行中に気圧が一定である時間を計数する時間計数部110を備え、基準座標推定部108は、フロア推定部106により推定されたフロア、及び、時間計数部110により計数された時間に基づいて、上記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を基準座標として推定する。これにより、動態検出装置1は、実施の形態1における効果に加え、複数の移動手段の昇降口が同じ方位であっても基準座標を推定できる。
As described above, according to the second embodiment, the dynamic detection device 1 is configured to measure the atmospheric pressure while the user is walking based on the movement measured by the inertial sensor 102 and the atmospheric pressure measured by the atmospheric pressure sensor 104. Is provided with a time counting unit 110 that counts a time during which the user is constant, and the reference coordinate estimation unit 108 determines whether the user is based on the floor estimated by the floor estimation unit 106 and the time counted by the time counting unit 110. The absolute coordinates of the lift on the floor of the moving means used are estimated as reference coordinates. Thereby, in addition to the effect in Embodiment 1, the dynamic detection apparatus 1 can estimate the reference coordinates even when the lift ports of the plurality of moving means are in the same direction.
実施の形態3.
図15は、この発明の実施の形態3に係る動態検出装置1の構成例を示すブロック図である。この図15に示す実施の形態3に係る動態検出装置1では、図1に示す実施の形態1に係る動態検出装置1に対し、基準座標判定部111を追加している。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。Embodiment 3 FIG.
FIG. 15 is a block diagram showing a configuration example of the dynamic detection device 1 according to the third embodiment of the present invention. In the movement detection device 1 according to the third embodiment shown in FIG. 15, a reference coordinatedetermination unit 111 is added to the movement detection device 1 according to the first embodiment shown in FIG. Other configurations are the same, and only the different parts are described with the same reference numerals.
図15は、この発明の実施の形態3に係る動態検出装置1の構成例を示すブロック図である。この図15に示す実施の形態3に係る動態検出装置1では、図1に示す実施の形態1に係る動態検出装置1に対し、基準座標判定部111を追加している。その他の構成は同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
FIG. 15 is a block diagram showing a configuration example of the dynamic detection device 1 according to the third embodiment of the present invention. In the movement detection device 1 according to the third embodiment shown in FIG. 15, a reference coordinate
なお、座標情報記録部101は、実施の形態1で示した情報に加え、建物内に存在する障害物の絶対座標を示す情報をフロア毎に記録する。障害物としては、例えば壁が挙げられる。
また、フロア推定部106により推定されたフロアを示す情報は、基準座標判定部111にも出力される。 In addition to the information shown in the first embodiment, the coordinateinformation recording unit 101 records information indicating the absolute coordinates of the obstacle present in the building for each floor. Examples of the obstacle include a wall.
Information indicating the floor estimated by thefloor estimation unit 106 is also output to the reference coordinate determination unit 111.
また、フロア推定部106により推定されたフロアを示す情報は、基準座標判定部111にも出力される。 In addition to the information shown in the first embodiment, the coordinate
Information indicating the floor estimated by the
また、基準座標推定部108は、実施の形態1で示した機能に加え、フロア推定部106により推定されたフロア、及び、基準座標判定部111による判定結果に基づいて、座標情報記録部101に記録された情報から、上記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を基準座標として推定する機能も有する。
この際、基準座標推定部108は、まず、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101に記録された情報から、当該フロアに存在する全ての移動手段の昇降口の絶対座標を基準座標として推定する。その後、基準座標推定部108は、基準座標判定部111により検出された基準座標を推定対象から除外する。 In addition to the function shown in the first embodiment, the reference coordinateestimation unit 108 stores the coordinate information recording unit 101 based on the floor estimated by the floor estimation unit 106 and the determination result by the reference coordinate determination unit 111. From the recorded information, it also has a function of estimating, as a reference coordinate, the absolute coordinate of the lift on the floor of the moving means used by the user.
At this time, based on the floor estimated by thefloor estimation unit 106, the reference coordinate estimation unit 108 first determines, based on the information recorded in the coordinate information recording unit 101, the elevator openings of all the moving means existing on the floor. Absolute coordinates are estimated as reference coordinates. Thereafter, the reference coordinate estimation unit 108 excludes the reference coordinates detected by the reference coordinate determination unit 111 from the estimation target.
この際、基準座標推定部108は、まず、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101に記録された情報から、当該フロアに存在する全ての移動手段の昇降口の絶対座標を基準座標として推定する。その後、基準座標推定部108は、基準座標判定部111により検出された基準座標を推定対象から除外する。 In addition to the function shown in the first embodiment, the reference coordinate
At this time, based on the floor estimated by the
基準座標判定部111は、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101に記録された情報から、座標変換部109により得られた絶対座標のうち、軌跡が当該フロアに存在する障害物の絶対座標に交わる絶対座標を構成する基準座標を検出する。この基準座標判定部111により検出された基準座標を示す情報は、基準座標推定部108に出力される。なお、基準座標判定部111の機能は処理回路により実現される。
Based on the floor estimated by the floor estimation unit 106, the reference coordinate determination unit 111 uses the information recorded in the coordinate information recording unit 101 and the trajectory of the absolute coordinates obtained by the coordinate conversion unit 109 to the floor. A reference coordinate constituting an absolute coordinate that intersects an absolute coordinate of an existing obstacle is detected. Information indicating the reference coordinates detected by the reference coordinate determination unit 111 is output to the reference coordinate estimation unit 108. The function of the reference coordinate determination unit 111 is realized by a processing circuit.
次に、基準座標推定部108及び基準座標判定部111の動作例について、図16,17を参照しながら説明する。
なお、図16に示すフロア図は、建物内の任意のフロアを示し、3つの移動手段が設けられている場合を示している。また図16において、符号a~cは移動手段の昇降口の位置を示し、符号xは上記ユーザの位置を示している。 Next, operation examples of the reference coordinateestimation unit 108 and the reference coordinate determination unit 111 will be described with reference to FIGS.
The floor diagram shown in FIG. 16 shows an arbitrary floor in the building and shows a case where three moving means are provided. Further, in FIG. 16, reference symbols a to c indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user.
なお、図16に示すフロア図は、建物内の任意のフロアを示し、3つの移動手段が設けられている場合を示している。また図16において、符号a~cは移動手段の昇降口の位置を示し、符号xは上記ユーザの位置を示している。 Next, operation examples of the reference coordinate
The floor diagram shown in FIG. 16 shows an arbitrary floor in the building and shows a case where three moving means are provided. Further, in FIG. 16, reference symbols a to c indicate the positions of the lift ports of the moving means, and reference symbol x indicates the position of the user.
図16に示すフロア図では、全ての移動手段が同じ方位(図16では北向き)となっている。そのため、実施の形態1で示した手法では、上記ユーザが使用した移動手段を推定できない場合がある。そこで、この場合に、動態検出装置1は、基準座標判定部111を用いて移動手段の推定を行う。
In the floor diagram shown in FIG. 16, all moving means are in the same direction (north in FIG. 16). Therefore, in the method shown in the first embodiment, the moving means used by the user may not be estimated. Therefore, in this case, the movement detection device 1 uses the reference coordinate determination unit 111 to estimate the moving means.
この場合、基準座標推定部108は、まず、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101に記録された情報から、当該フロアに存在する全ての移動手段の昇降口の絶対座標を基準座標として推定する。次いで、座標変換部109は、基準座標推定部108により推定された各基準座標を用い、歩行者自律航法部103により計算された相対座標を絶対座標に変換する。図16では、各移動手段の昇降口の位置a~cの絶対座標をそれぞれ基準座標とした場合での、上記ユーザの絶対座標の軌跡x1~x3が示されている。
In this case, the reference coordinate estimation unit 108 first determines, based on the floor estimated by the floor estimation unit 106, the information on the coordinate information recording unit 101 of all the moving means existing on the floor. Absolute coordinates are estimated as reference coordinates. Next, the coordinate conversion unit 109 converts the relative coordinates calculated by the pedestrian autonomous navigation unit 103 into absolute coordinates using each reference coordinate estimated by the reference coordinate estimation unit 108. FIG. 16 shows the locus x1 to x3 of the absolute coordinates of the user when the absolute coordinates of the positions a to c of the lifting / lowering openings of each moving means are set as reference coordinates.
次いで、基準座標判定部111は、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101に記録された情報から、当該フロアに存在する障害物の絶対座標に対し、座標変換部109により得られた絶対座標のうち、軌跡が交わる絶対座標を構成する基準座標を検出する。以下、基準座標判定部111による動作の詳細について、図17を参照しながら説明する。
Next, based on the floor estimated by the floor estimation unit 106, the reference coordinate determination unit 111 performs a coordinate conversion unit on the absolute coordinates of the obstacle present on the floor from the information recorded in the coordinate information recording unit 101. Among the absolute coordinates obtained by 109, the reference coordinates constituting the absolute coordinates where the trajectories intersect are detected. Details of the operation by the reference coordinate determination unit 111 will be described below with reference to FIG.
基準座標判定部111は、図17に示すように、まず、フロア推定部106により推定されたフロアに基づいて、座標情報記録部101から、当該フロアに存在する全ての障害物の絶対座標を取得する(ステップST1701)。以下では、基準座標判定部111は、図16に示すフロアに存在する全ての障害物の絶対座標を取得したものとする。
また、基準座標判定部111は、座標変換部109により得られた全ての絶対座標を取得する(ステップST1702)。 As shown in FIG. 17, the reference coordinatedetermination unit 111 first obtains absolute coordinates of all obstacles existing on the floor from the coordinate information recording unit 101 based on the floor estimated by the floor estimation unit 106. (Step ST1701). Hereinafter, it is assumed that the reference coordinate determination unit 111 has acquired the absolute coordinates of all obstacles present on the floor shown in FIG.
Further, reference coordinatedetermination section 111 acquires all absolute coordinates obtained by coordinate conversion section 109 (step ST1702).
また、基準座標判定部111は、座標変換部109により得られた全ての絶対座標を取得する(ステップST1702)。 As shown in FIG. 17, the reference coordinate
Further, reference coordinate
次いで、基準座標判定部111は、取得した絶対座標のうち、軌跡が上記フロアに存在する障害物の絶対座標に交わる絶対座標を構成する基準座標を検出する(ステップST1703)。図16の例では、軌跡x2及び軌跡x3が障害物の絶対座標と交わっているため、基準座標判定部111は位置bの絶対座標(基準座標)及び位置cの絶対座標(基準座標)を検出する。この基準座標判定部111により検出された基準座標を示す情報は、基準座標推定部108に出力される。
Next, the reference coordinate determination unit 111 detects reference coordinates that constitute absolute coordinates whose trajectory intersects the absolute coordinates of the obstacle present on the floor among the acquired absolute coordinates (step ST1703). In the example of FIG. 16, since the trajectory x2 and the trajectory x3 intersect the absolute coordinates of the obstacle, the reference coordinate determination unit 111 detects the absolute coordinates (reference coordinates) of the position b and the absolute coordinates (reference coordinates) of the position c. To do. Information indicating the reference coordinates detected by the reference coordinate determination unit 111 is output to the reference coordinate estimation unit 108.
次いで、基準座標推定部108は、基準座標判定部111により検出された基準座標を推定対象から除外する。図16の例では、基準座標推定部108は、位置bの絶対座標及び位置cの絶対座標を推定対象から除外し、座標変換部109は、位置aの絶対座標のみを用い、歩行者自律航法部103により計算された相対座標を絶対座標に変換する。
Next, the reference coordinate estimation unit 108 excludes the reference coordinates detected by the reference coordinate determination unit 111 from the estimation target. In the example of FIG. 16, the reference coordinate estimation unit 108 excludes the absolute coordinates of the position b and the absolute coordinates of the position c from the estimation target, and the coordinate conversion unit 109 uses only the absolute coordinates of the position a and uses pedestrian autonomous navigation. The relative coordinates calculated by the unit 103 are converted into absolute coordinates.
以上のように、この実施の形態3によれば、基準座標推定部108は、フロア推定部106により推定されたフロアに基づいて、当該フロアに存在する全ての移動手段の昇降口の絶対座標を基準座標として推定し、動態検出装置1は、フロア推定部106により推定されたフロアに基づいて、座標変換部109により得られた絶対座標のうち、軌跡が当該フロアに存在する障害物の絶対座標に交わる絶対座標を構成する基準座標を検出する基準座標判定部111を備え、基準座標推定部108は、基準座標判定部111により検出された基準座標を推定対象から除外する。これにより、動態検出装置1は、実施の形態1における効果に加え、複数の移動手段の昇降口が同じ方位であっても基準座標を推定できる。
また、実施の形態3に係る動態検出装置1では、実施の形態2で示した第一の地点までの基準所要時間がわからない場合にも、基準座標を推定できる。 As described above, according to the third embodiment, the reference coordinateestimation unit 108 uses the floor estimated by the floor estimation unit 106 to calculate the absolute coordinates of the elevators of all the moving means existing on the floor. Based on the floor estimated by the floor estimation unit 106, the motion detection apparatus 1 estimates the reference coordinates, and the absolute coordinate obtained by the coordinate conversion unit 109 is the absolute coordinate of the obstacle whose trajectory exists on the floor. The reference coordinate determination unit 111 that detects the reference coordinates constituting the absolute coordinates intersecting with the reference coordinate determination unit 111 is excluded, and the reference coordinate estimation unit 108 excludes the reference coordinates detected by the reference coordinate determination unit 111 from the estimation target. Thereby, in addition to the effect in Embodiment 1, the dynamic detection apparatus 1 can estimate the reference coordinates even when the lift ports of the plurality of moving means are in the same direction.
Moreover, in the dynamic detection device 1 according to the third embodiment, the reference coordinates can be estimated even when the reference required time to the first point shown in the second embodiment is not known.
また、実施の形態3に係る動態検出装置1では、実施の形態2で示した第一の地点までの基準所要時間がわからない場合にも、基準座標を推定できる。 As described above, according to the third embodiment, the reference coordinate
Moreover, in the dynamic detection device 1 according to the third embodiment, the reference coordinates can be estimated even when the reference required time to the first point shown in the second embodiment is not known.
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
この発明に係る動態検出装置は、建物内に複数の移動手段がある場合でも、装置単体で、自機を所持するユーザの動態を検出でき、自機を所持するユーザの動態を検出する動態検出装置等に用いるのに適している。
The movement detection device according to the present invention can detect the movement of a user who owns his / her own apparatus and detects the movement of the user who owns the apparatus even if there are a plurality of moving means in the building. Suitable for use in devices and the like.
1 動態検出装置、101 座標情報記録部、102 慣性センサ、103 歩行者自律航法部、104 気圧センサ、105 移動手段推定部、106 フロア推定部、107 電子コンパス、108 基準座標推定部、109 座標変換部、110 時間計数部、111 基準座標判定部、201 CPU、202 システムメモリ、203 ストレジ、204 GPU、205 フレームメモリ、206 RAMDAC、207 操作デバイス、208 表示デバイス。
DESCRIPTION OF SYMBOLS 1 Dynamic detection apparatus, 101 Coordinate information recording part, 102 Inertial sensor, 103 Pedestrian autonomous navigation part, 104 Barometric pressure sensor, 105 Moving means estimation part, 106 Floor estimation part, 107 Electronic compass, 108 Reference coordinate estimation part, 109 Coordinate conversion Part, 110 time counting part, 111 reference coordinate determination part, 201 CPU, 202 system memory, 203 storage, 204 GPU, 205 frame memory, 206 RAMDAC, 207 operation device, 208 display device.
Claims (4)
- 自機の動きを測定する慣性センサと、
前記慣性センサにより測定された動きに基づいて、自機を所持するユーザの基準座標に対する相対座標を計算する歩行者自律航法部と、
自機の周囲の気圧を測定する気圧センサと、
前記慣性センサにより測定された動き、及び、前記気圧センサにより測定された気圧に基づいて、前記ユーザが建物内のフロア間を移動する際に使用した移動手段の種別を推定する移動手段推定部と、
前記気圧センサにより測定された気圧に基づいて、前記ユーザがいるフロアを推定するフロア推定部と、
自機の進行方向の方位を検出する電子コンパスと、
前記移動手段推定部により推定された移動手段の種別、前記フロア推定部により推定されたフロア、及び、前記電子コンパスにより検出された方位に基づいて、前記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を前記基準座標として推定する基準座標推定部と、
前記基準座標推定部により推定された基準座標を用い、前記歩行者自律航法部により計算された相対座標を絶対座標に変換する座標変換部と
を備えた動態検出装置。 An inertial sensor that measures the movement of the aircraft,
Based on the movement measured by the inertial sensor, a pedestrian autonomous navigation unit that calculates relative coordinates with respect to the reference coordinates of the user who owns the aircraft,
An atmospheric pressure sensor that measures the atmospheric pressure around the aircraft,
A moving means estimating unit for estimating the type of moving means used when the user moves between floors in a building based on the movement measured by the inertial sensor and the atmospheric pressure measured by the atmospheric pressure sensor; ,
Based on the atmospheric pressure measured by the atmospheric pressure sensor, a floor estimation unit that estimates the floor where the user is,
An electronic compass that detects the direction of travel of the aircraft,
Based on the type of moving means estimated by the moving means estimating unit, the floor estimated by the floor estimating unit, and the direction detected by the electronic compass, the moving means used by the user on the floor A reference coordinate estimation unit that estimates the absolute coordinates of the mouth as the reference coordinates;
A motion detection apparatus comprising: a coordinate conversion unit that converts relative coordinates calculated by the pedestrian autonomous navigation unit into absolute coordinates using the reference coordinates estimated by the reference coordinate estimation unit. - 前記慣性センサにより測定された動き、及び、前記気圧センサにより測定された気圧に基づいて、前記ユーザが歩行中に気圧が一定である時間を計数する時間計数部を備え、
前記基準座標推定部は、前記フロア推定部により推定されたフロア、及び、前記時間計数部により計数された時間に基づいて、前記ユーザが使用した移動手段の当該フロアにおける昇降口の絶対座標を前記基準座標として推定する
ことを特徴とする請求項1記載の動態検出装置。 Based on the movement measured by the inertial sensor and the atmospheric pressure measured by the atmospheric pressure sensor, the time counting unit that counts the time during which the user has a constant atmospheric pressure while walking,
The reference coordinate estimation unit calculates the absolute coordinates of the lift on the floor of the moving means used by the user based on the floor estimated by the floor estimation unit and the time counted by the time counting unit. The motion detection device according to claim 1, wherein the motion detection device is estimated as a reference coordinate. - 前記基準座標推定部は、前記時間計数部により計数された時間が、前記フロア推定部により推定されたフロアに存在する移動手段の昇降口から第一の地点までの基準所要時間よりも短い時間である閾値以下である場合に、前記基準座標の推定をやり直す
ことを特徴とする請求項2記載の動態検出装置。 The reference coordinate estimator is a time shorter than the reference required time from the elevator door of the moving means existing on the floor estimated by the floor estimator to the first point, as counted by the time counter. The dynamic detection device according to claim 2, wherein the reference coordinate is re-estimated when the value is equal to or less than a certain threshold value. - 前記基準座標推定部は、前記フロア推定部により推定されたフロアに基づいて、当該フロアに存在する全ての移動手段の昇降口の絶対座標を前記基準座標として推定し、
前記フロア推定部により推定されたフロアに基づいて、前記座標変換部により得られた絶対座標のうち、軌跡が当該フロアに存在する障害物の絶対座標に交わる絶対座標を構成する基準座標を検出する基準座標判定部を備え、
前記基準座標推定部は、前記基準座標判定部により検出された基準座標を推定対象から除外する
ことを特徴とする請求項1記載の動態検出装置。 Based on the floor estimated by the floor estimation unit, the reference coordinate estimation unit estimates the absolute coordinates of the lifts of all moving means existing on the floor as the reference coordinates,
Based on the floor estimated by the floor estimator, a reference coordinate constituting an absolute coordinate intersecting with an absolute coordinate of an obstacle existing on the floor among the absolute coordinates obtained by the coordinate converter is detected. A reference coordinate determination unit is provided.
The dynamic detection device according to claim 1, wherein the reference coordinate estimation unit excludes the reference coordinates detected by the reference coordinate determination unit from an estimation target.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/008091 WO2019167269A1 (en) | 2018-03-02 | 2018-03-02 | Motion state detection device |
JP2018543260A JP6415796B1 (en) | 2018-03-02 | 2018-03-02 | Dynamic detection device and dynamic detection method |
CN201880090037.4A CN111758015B (en) | 2018-03-02 | 2018-03-02 | Dynamic detection device and dynamic detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/008091 WO2019167269A1 (en) | 2018-03-02 | 2018-03-02 | Motion state detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167269A1 true WO2019167269A1 (en) | 2019-09-06 |
Family
ID=64017111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008091 WO2019167269A1 (en) | 2018-03-02 | 2018-03-02 | Motion state detection device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6415796B1 (en) |
CN (1) | CN111758015B (en) |
WO (1) | WO2019167269A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022224402A1 (en) * | 2021-04-22 | 2022-10-27 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109974717B (en) * | 2019-03-13 | 2021-05-25 | 浙江吉利汽车研究院有限公司 | Method, device and terminal for repositioning target point on map |
KR102667341B1 (en) * | 2022-04-05 | 2024-05-21 | 숭실대학교 산학협력단 | System for multi-layer tracking based on learning model and method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212146A (en) * | 2002-12-27 | 2004-07-29 | Sumitomo Precision Prod Co Ltd | Dead reckoning navigation system and dead reckoning navigation for walker |
JP2012237719A (en) * | 2011-05-13 | 2012-12-06 | Kddi Corp | Portable device for estimating ascending/descending movement state by using atmospheric pressure sensor, program, and method |
JP2017181179A (en) * | 2016-03-29 | 2017-10-05 | Kddi株式会社 | Device, program and method for position estimation capable of correction of position based on transition between floors |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5938760B2 (en) * | 2012-03-13 | 2016-06-22 | 株式会社日立製作所 | Travel amount estimation system, travel amount estimation method, mobile terminal |
US9374678B2 (en) * | 2014-02-28 | 2016-06-21 | Texas Instruments Incorporated | Kalman filter iteratively performing time/measurement update of user/relative floor locations |
CN104569909B (en) * | 2014-12-31 | 2018-07-06 | 深圳市鼎泰富科技有限公司 | A kind of indoor alignment system and method |
CN104977003A (en) * | 2015-06-29 | 2015-10-14 | 中国人民解放军国防科学技术大学 | Indoor people search method, cloud server, and system based on shared track |
US10206068B2 (en) * | 2015-07-09 | 2019-02-12 | OneMarket Network LLC | Systems and methods to determine a location of a mobile device |
JP2017049168A (en) * | 2015-09-03 | 2017-03-09 | 住友電気工業株式会社 | Location estimation device, location estimation system, location estimation method and location estimation program |
CN106918334A (en) * | 2015-12-25 | 2017-07-04 | 高德信息技术有限公司 | Indoor navigation method and device |
JP6841617B2 (en) * | 2016-08-18 | 2021-03-10 | 株式会社ゼンリンデータコム | Information processing equipment, information processing methods and programs |
-
2018
- 2018-03-02 WO PCT/JP2018/008091 patent/WO2019167269A1/en active Application Filing
- 2018-03-02 CN CN201880090037.4A patent/CN111758015B/en active Active
- 2018-03-02 JP JP2018543260A patent/JP6415796B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212146A (en) * | 2002-12-27 | 2004-07-29 | Sumitomo Precision Prod Co Ltd | Dead reckoning navigation system and dead reckoning navigation for walker |
JP2012237719A (en) * | 2011-05-13 | 2012-12-06 | Kddi Corp | Portable device for estimating ascending/descending movement state by using atmospheric pressure sensor, program, and method |
JP2017181179A (en) * | 2016-03-29 | 2017-10-05 | Kddi株式会社 | Device, program and method for position estimation capable of correction of position based on transition between floors |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022224402A1 (en) * | 2021-04-22 | 2022-10-27 | ||
WO2022224402A1 (en) * | 2021-04-22 | 2022-10-27 | 三菱電機株式会社 | Position detection device, position detection method, and position detection program |
JP7309097B2 (en) | 2021-04-22 | 2023-07-14 | 三菱電機株式会社 | POSITION DETECTION DEVICE, POSITION DETECTION METHOD, AND POSITION DETECTION PROGRAM |
Also Published As
Publication number | Publication date |
---|---|
JP6415796B1 (en) | 2018-10-31 |
CN111758015A (en) | 2020-10-09 |
CN111758015B (en) | 2024-02-09 |
JPWO2019167269A1 (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102196937B1 (en) | Method and Apparatus For Estimating Position of User in Building | |
JP6415796B1 (en) | Dynamic detection device and dynamic detection method | |
US9872149B2 (en) | Method of estimating position of a device using geographical descriptive data | |
Vanini et al. | Adaptive context-agnostic floor transition detection on smart mobile devices | |
WO2014192271A1 (en) | Device for identifying changes in vertical direction using pressure measurement values | |
JP2017505433A (en) | Method and apparatus for positioning with an always-on barometer | |
KR102452504B1 (en) | A terminal for measuring a position and method thereof | |
KR101396877B1 (en) | Method and system for wifi-based indoor positioning compensation | |
WO2015079260A1 (en) | Location finding apparatus and associated methods | |
JPWO2019131299A1 (en) | Positioning equipment, methods and programs | |
Boim et al. | Height difference determination using smartphones based accelerometers | |
KR102269074B1 (en) | Method and apparatus for determining positions in indoor | |
Kronenwett et al. | Elevator and escalator classification for precise indoor localization | |
CN115367580B (en) | Elevator car floor detection method, device and computer readable medium | |
Song et al. | Finding 9-1-1 callers in tall buildings | |
US10976466B2 (en) | Locating a device that is moved in a three-dimensional space | |
Kaji et al. | Estimating 3D pedestrian trajectories using stability of sensing signal | |
US20150247918A1 (en) | Method and apparatus for tracking objects with location and motion correlation | |
JP6289791B1 (en) | Information processing apparatus and information processing system | |
KR102081521B1 (en) | Method for precessing i/o of virtual machine | |
WO2020085135A1 (en) | Information processing device, information processing method, and program | |
US20150369598A1 (en) | Method for locating a device which is moved in a three-dimensional space | |
KR20180081187A (en) | Method and apparatus for tracking a gait | |
JP2005257644A (en) | Device, method, and program for detecting position | |
US20150369599A1 (en) | Method for locating a device which is moved in a three-dimensional space |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018543260 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18907648 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18907648 Country of ref document: EP Kind code of ref document: A1 |