WO2019039392A1 - Polymer thin film, film-form laminate, and method for producing polymer thin film - Google Patents
Polymer thin film, film-form laminate, and method for producing polymer thin film Download PDFInfo
- Publication number
- WO2019039392A1 WO2019039392A1 PCT/JP2018/030476 JP2018030476W WO2019039392A1 WO 2019039392 A1 WO2019039392 A1 WO 2019039392A1 JP 2018030476 W JP2018030476 W JP 2018030476W WO 2019039392 A1 WO2019039392 A1 WO 2019039392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- polymer thin
- film
- polymer
- norbornene
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 237
- 239000010409 thin film Substances 0.000 title claims abstract description 184
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims abstract description 45
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 5
- 125000005843 halogen group Chemical group 0.000 claims abstract description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 72
- 238000001035 drying Methods 0.000 claims description 16
- 230000009477 glass transition Effects 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 7
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 125000003342 alkenyl group Chemical group 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 239000000470 constituent Substances 0.000 abstract description 3
- 125000005017 substituted alkenyl group Chemical group 0.000 abstract description 2
- 125000005415 substituted alkoxy group Chemical group 0.000 abstract 1
- 125000000547 substituted alkyl group Chemical group 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000010410 layer Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 14
- -1 methacryloyl group Chemical group 0.000 description 14
- 229920000098 polyolefin Polymers 0.000 description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 9
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 8
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000000123 paper Substances 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229920000180 alkyd Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 229920003180 amino resin Polymers 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000002848 norbornenes Chemical class 0.000 description 2
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- DLKQHBOKULLWDQ-UHFFFAOYSA-N 1-bromonaphthalene Chemical compound C1=CC=C2C(Br)=CC=CC2=C1 DLKQHBOKULLWDQ-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- 125000003118 aryl group Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011086 glassine Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/02—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C41/12—Spreading-out the material on a substrate, e.g. on the surface of a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F232/00—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
- C08F232/02—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
- C08F232/04—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L45/00—Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2345/00—Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers
Definitions
- the present invention relates to a polymer thin film, a film-like laminate, and a method for producing a polymer thin film.
- Patent Document 1 describes a highly insulating film containing a resin as a main component.
- the resin is an amorphous resin.
- the minimum value of the refractive index in the surface direction of the high insulating film is Ny
- the refractive index in the direction orthogonal to the Ny in the surface direction of the high insulating film is Nx
- the thickness of the high insulating film When d is d, the retardation (R) represented by the following formula 1 is 10 nm or less.
- R (Nx-Ny) ⁇ d (Equation 1)
- the resin film When the thickness of the resin film is in the range of several tens to several hundreds of nm, due to electrostatic force and wettability, the resin film may be in close contact with the adherend without using an adhesive or the like. However, the highly insulating film described in Patent Document 1 could not be adhered to an adherend. Further, Patent Document 1 describes that the average thickness is preferably 0.5 ⁇ m or more and 7.0 ⁇ m or less, but in the method for producing a high insulation film described in Patent Document 1, the thickness of the film is reduced to It was not possible to place an order. Moreover, although the extending
- An object of the present invention is to provide a polymer thin film having high water repellency, a film-like laminate, and a method for producing a polymer thin film, which can be adhered to an adherend without using an adhesive or the like. It is.
- the self-supporting polymer is a self-supporting polymer comprising a norbornene-based polymer (A) containing 10 mol% or more of a constitutional unit represented by the following general formula (1) and having a thickness of 10 nm to 1000 nm.
- a polymer thin film characterized by having a property is provided.
- X 1 and X 2 are the same or different, and respectively a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted group Or X represents an unsubstituted alkenyl group, a hydroxy group or a carboxy group, and X 1 and X 2 may combine with each other to form a ring.
- the norbornene-based polymer (A) is preferably a norbornene-based copolymer.
- the polymer thin film preferably contains 50% by mass or more of the norbornene-based polymer (A).
- the glass transition point of the norbornene-based polymer (A) is preferably 140 ° C. or less.
- the melt flow rate at a temperature of 260 ° C. and a load of 2.16 kgf of the norbornene-based polymer (A) is preferably 20 g / 10 min or more.
- the surface carbon concentration of the polymer thin film is preferably 90 atomic% or more.
- a film-like laminate comprising a process film and the polymer thin film according to the above-mentioned one aspect of the invention formed on the process film.
- the surface free energy of the process film is preferably 40 mJ / m 2 or less.
- the arithmetic mean roughness of the surface of the step film is preferably 40 nm or less.
- a method of producing a polymer thin film for producing a polymer thin film according to one aspect of the present invention described above, wherein the polymer comprising the norbornene-based polymer (A) on a process film A method for producing a polymer thin film, comprising the steps of applying a solution for forming a thin film and drying to form the polymer thin film, and peeling the polymer thin film from the step film.
- the surface free energy of the process film is preferably 40 mJ / m 2 or less.
- the arithmetic mean roughness of the surface of the step film is preferably 40 nm or less.
- a polymer thin film, a film-like laminate, and a method for producing a polymer thin film having high water repellency can be provided, which can be adhered to an adherend without using an adhesive or the like.
- the polymer thin film 1 according to the present embodiment is a thin film having a self-supporting property, as shown in FIG.
- self-supporting property refers to the property that the polymer thin film 1 can form a film alone when the polymer thin film 1 is not laminated on another support, and more specifically In fact, it means that the film strength is 5 mN / 1 mm ⁇ or more.
- the film strength is preferably 10 mN / 1 mm ⁇ or more, more preferably 20 mN / 1 mm ⁇ or more.
- the film strength can be measured with a creep meter (for example, trade name “cree meter RE2-3305 CYAMADEN” manufactured by Yamaden Co., Ltd.). Specifically, it can be measured by the method described in the examples described later.
- the thickness of the polymer thin film 1 needs to be 10 nm or more and 1000 nm or less. When the thickness of the polymer thin film 1 is 10 nm or more and 1000 nm or less, it is possible to bond to a desired adherend such as skin without using an adhesive or the like.
- the thickness of the polymer thin film 1 is described in J.I. A. It can be measured by a spectral ellipsometer (product name "M-2000”) manufactured by Woollam.
- the thickness of the polymer thin film 1 is preferably 30 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, and particularly preferably 150 nm or more.
- the thickness of the polymer thin film 1 is preferably 900 nm or less, more preferably 700 nm or less, still more preferably 550 nm or less, and particularly preferably 400 nm or less.
- the surface carbon concentration of the polymer thin film 1 is preferably 90 atomic% or more, more preferably 95 atomic% or more, and particularly preferably 99 atomic% or more from the viewpoint of water repellency.
- the surface carbon concentration can be measured by X-ray photoelectron spectroscopy (XPS).
- the polymer thin film 1 needs to contain a norbornene-based polymer (A) containing 10 mol% or more of a structural unit represented by the following general formula (1).
- a norbornene-based polymer (A) does not contain 10 mol% or more of a constitutional unit represented by the following general formula (1), a polymer thin film having a desired thickness and having a self-supporting property and high water repellency Can not be obtained.
- the content of the constituent unit represented by the following general formula (1) in the polymer thin film 1 is preferably 20 mol% or more, and more preferably 50 mol% or more.
- X 1 and X 2 are the same or different, and each is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted group X 1 represents a substituted alkenyl group, a hydroxy group or a carboxy group, and X 1 and X 2 may combine with each other to form a ring.
- Examples of the substituent of the alkyl group, the alkoxy group and the alkenyl group include a halogen atom, a hydroxy group, a carboxy group, an acryloyl group, a methacryloyl group and an epoxy group.
- the carbon number of the alkyl group is preferably 1 to 5, and more preferably 1 to 3.
- the carbon number of the alkoxy group is preferably 1 to 5, and more preferably 1 to 3.
- the carbon number of the alkenyl group is preferably 2 to 5, and more preferably 2 to 3.
- the norbornene polymer (A) may contain 10 mol% of the constituent unit represented by the general formula (1), and may be a norbornene homopolymer or a norbornene copolymer.
- the norbornene-based polymer (A) is a polymer having a norbornene-based compound as at least one monomer.
- norbornene compounds include norbornene (bicyclo [2.2.1] hept-2-ene), compounds having a cyclic structure containing a bicyclo ring related to norbornene (for example, dicyclopentadiene), and derivatives thereof. One of these may be used alone, or two or more may be mixed and used. Examples of monomers other than norbornene compounds include cyclopentadiene and tetracyclododecene. One of these may be used alone, or two or more may be mixed and used.
- a polymer (homopolymer or copolymer) obtained by polymerizing a monomer by using a norbornene-based compound as at least one of the monomers has a structural unit represented by the general formula (1).
- norbornene-based polymer (A) a ring-opening metathesis polymer hydrogenated polymer of a norbornene-based monomer (specifically, available as Nippon Zeon Co., Ltd. as ZEONEX (registered trademark) series), norbornene and ethylene Copolymer (specifically, available as Polyplastics Co., Ltd.
- the norbornene-based polymer (A) may have a crosslinked structure.
- the kind of crosslinking agent which brings about a crosslinked structure is arbitrary.
- the crosslinking agent include organic peroxides (eg, dicumyl peroxide etc.), compounds having an epoxy group, and the like. One of these may be used alone, or two or more may be mixed and used.
- the crosslinking agent may crosslink between one kind of polymers constituting the norbornene-based polymer (A), or may crosslink between different kinds of polymers.
- the binding site of the crosslinker is also optional.
- the polymer may be crosslinked with an atom constituting the main chain of the polymer constituting the norbornene-based polymer (A), or may be crosslinked with an atom constituting other than the main chain such as a side chain or a functional group.
- the degree of crosslinking is also optional, but if the degree of crosslinking progresses excessively, the processability (particularly the formability) of the polymer thin film 1 containing the norbornene-based polymer (A) may be excessively reduced. There is a concern that the surface properties may be excessively deteriorated or the brittleness of the polymer thin film 1 may be reduced, and therefore, such problems should not occur.
- the norbornene-based polymer (A) has thermoplasticity.
- the degree of thermoplasticity can be expressed as a melt flow rate (MFR) indicating the viscosity upon melting.
- MFR melt flow rate
- the melt flow rate (MFR) at a temperature of 260 ° C. and a load of 2.16 kgf of the norbornene polymer (A) is preferably 20 g / 10 min or more, more preferably 20 g / 10 min or more and 150 g / 10 min or less It is particularly preferable to be 25 g / 10 min or more and 50 g / 10 min or less. If MFR is in the said range, thermoplasticity can be made high enough and processability, such as shaping
- the glass transition point of the norbornene-based polymer (A) is preferably 140 ° C. or less, more preferably 30 ° C. or more and 120 ° C. or less, from the viewpoint of the coatability of the solution for forming a polymer thin film. If the glass transition point is 140 ° C. or less, the solvent solubility can be further improved, and on the other hand, if the glass transition point is 30 ° C. or more, it has a self-supporting film forming ability even at room temperature.
- the glass transition temperature can be measured using a differential scanning calorimeter. For example, using a differential scanning calorimeter (“DSC (Q2000)” manufactured by TA Instruments), measurement is performed in a temperature range of ⁇ 40 ° C. to 200 ° C. at a heating rate of 10 ° C./min to create a graph The inflection point can be confirmed from the graph to determine the glass transition point.
- DSC differential scanning calorimeter
- the polymer thin film 1 may contain an olefin-based polymer (B) other than the norbornene-based polymer (A) (hereinafter, sometimes referred to as “non-NB olefin-based polymer (B)”).
- non-NB olefin-based polymer (B) the content of the norbornene polymer (A) is preferably 50% by mass or more on the basis of the total amount of polymers, from the viewpoint of self-supporting property and water repellency. It is more preferable that it is mass% or more, and it is especially preferable that it is 90 mass% or more.
- the non-NB olefin polymer (B) may be linear or have a side chain. Also, the non-NB olefin polymer (B) may have any functional group as long as it does not contain a norbornene ring, and the type and substitution density are arbitrary. It may be a less reactive functional group such as an alkyl group, or may be a highly reactive functional group such as a carboxylic acid group.
- the non-NB olefin-based polymer (B) is an olefin-based polymer having an olefin as at least one monomer, and is an olefin-based polymer having no norbornene-based compound as a monomer.
- the non-NB olefin polymer (B) is not particularly limited as long as it does not contain a norbornene ring in the polymer, and may be either an aromatic cyclic polyolefin or an acyclic polyolefin.
- the aromatic cyclic polyolefin includes polyolefins having an olefin having a cyclic structure of an aromatic ring as at least one of monomers.
- the non-NB olefin polymer (B) may be a homopolymer or a copolymer.
- the polymer thin film 1 can be adhered to an adherend without using an adhesive or the like.
- the adherend include, but are not limited to, stainless steel, polyethylene, polypropylene, polycarbonate, glass, PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), and a semiconductor circuit board.
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- a semiconductor circuit board By making these into adherends, water repellency can be easily given to arbitrary adherends.
- examples of the adherend other than the above include humans, animals, clothes, hats, shoes, and decorations.
- the polymer thin film 1 is preferable because it is very thin, so the site of application is inconspicuous and lightweight.
- the polymer thin film 1 has high water repellency, it is also resistant to sweat or rain. Therefore, the polymer thin film 1 can be particularly suitably used as a film for bringing a wearable terminal or the like into
- the method for producing a polymer thin film according to the present embodiment is a method for producing a polymer thin film for producing the polymer thin film 1. And the manufacturing method of the polymer thin film which concerns on this embodiment apply
- FIG. 2 is a schematic cross-sectional view showing a step film 2 used in the method for producing a polymer thin film according to the present embodiment.
- the process film 2 has a first surface 2A and a second surface 2B.
- a polymer containing the norbornene-based polymer (A) on the first surface 2A of the first surface 2A and the second surface 2B of the process film as shown in FIG. 2 The solution for forming a thin film is applied and dried to form a polymer thin film 1 to obtain a film-like laminate 100 as shown in FIG.
- the process film and the solution for forming a polymer thin film used in the polymer thin film forming process will be described.
- the process film 2 is not particularly limited.
- the process film 2 preferably includes the release substrate 21 and the release agent layer 22 formed on at least one surface of the release substrate 21.
- the surface of the release agent layer 22 corresponds to the first surface 2A
- the surface of the release substrate 21 opposite to the surface on which the release agent layer 22 is formed corresponds to the second surface 2B.
- the release substrate 21 include a paper substrate, a laminated paper obtained by laminating a thermoplastic resin such as polyethylene on the paper substrate, and a plastic film.
- Paper substrates include glassine paper, wood free paper, coated paper, and cast coated paper.
- Plastic films include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. These may be used singly or in combination of two or more.
- the release agent layer 22 may be formed by applying a release agent.
- the release agent include olefin resins, rubber elastomers (for example, butadiene resins, isoprene resins, etc.), long chain alkyl resins, alkyd resins, fluorine resins, and silicone resins.
- the release agent any one selected from the group consisting of an olefin resin, a rubber elastomer (for example, a butadiene resin, an isoprene resin, etc.), a long chain alkyl resin, an alkyd resin, and a fluorine resin It is preferable that it is a release agent. These may be used singly or in combination of two or more.
- the release agent layer may further contain an antistatic agent or may not contain an antistatic agent.
- the surface free energy and the arithmetic mean roughness of the first surface 2A be adjusted by the release agent layer 22.
- the first surface free energy of the surface 2A of the casting film 2 is preferably 40 mJ / m 2 or less, more preferably 20 mJ / m 2 or more 40 mJ / m 2 or less. If the surface free energy is 20 mJ / m 2 or more, the solution for forming a polymer thin film can be favorably coated on the process film 2, and if the surface free energy is 40 mJ / m 2 or less, the process film 2 is high. The molecular thin film 1 can be easily peeled off, and the productivity can be improved.
- the surface free energy can be determined by Kitazaki-Hata theory based on the measured contact angles (measurement temperature: 25 ° C.) of various droplets.
- the arithmetic mean roughness (Ra) of the surface of the first surface 2A of the process film 2 is preferably 40 nm or less, more preferably 0.1 nm to 30 nm, and still more preferably 0.5 nm to 25 nm Is particularly preferred. If the arithmetic mean roughness of the surface is within the above range, the unevenness formed on the polymer thin film 1 can be sufficiently suppressed, and the film strength of the polymer thin film 1 can be improved. Arithmetic mean roughness can be measured using, for example, an optical interference microscope NT1100 manufactured by Veeco Instruments.
- the thickness of the process film 2 is not particularly limited.
- the thickness of the process film 2 is usually 20 ⁇ m or more and 200 ⁇ m or less, and preferably 25 ⁇ m or more and 150 ⁇ m or less.
- the thickness of the release agent layer 22 is not particularly limited.
- the thickness of the release agent layer 22 is preferably 0.01 ⁇ m to 2.0 ⁇ m, and 0.03 ⁇ m. It is more preferable that the thickness is not less than 1.0 ⁇ m.
- the thickness of the plastic film is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 90 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 40 ⁇ m or less .
- a material for forming a polymer thin film as a solute in a solution for forming a polymer thin film is a norbornene-based polymer (A).
- a non-NB olefin polymer (B) may be further used as this material.
- the norbornene-based polymer (A) and the non-NB olefin-based polymer (B) are omitted because they have already been described.
- the type of the solvent in the solution for forming a polymer thin film is not particularly limited as long as it can dissolve or uniformly disperse the material for forming a polymer thin film, and evaporates by heating.
- the solvent ethanol, propanol, isopropyl alcohol, acetone, toluene, cyclohexanone, ethyl acetate, butyl acetate, tetrahydrofuran, methyl ethyl ketone, dichloromethane, chloroform and the like are preferable. These may be used singly or in combination of two or more.
- the boiling point of the solvent is preferably in the range of 30 ° C. to 160 ° C., and more preferably in the range of 35 ° C. to 120 ° C.
- concentration of the material substance in the solution for polymer thin film formation into the value within the range of 0.1 mass% or more and 20 mass% or less. If the concentration of the material in the solution for forming a polymer thin film is 0.1% by mass or more, the problem that the required thickness may not be obtained and the problem that the viscosity of the solution is not optimum are suppressed it can. On the other hand, when the concentration of the material in the solution for forming a polymer thin film is 20% by mass or less, it is possible to suppress a problem that a uniform coating film may not be obtained.
- the concentration of the material in the solution for forming a polymer thin film it is more preferable to set the concentration of the material in the solution for forming a polymer thin film to a value within the range of 0.3% by mass to 15% by mass, and 0.5% by mass to 10% by mass It is further preferable to set the value within the following range.
- the viscosity (measurement temperature: 25 degreeC) of the solution for polymer thin film formation into the value within the range of 1 mPa * s or more and 500 mPa * s or less. If the viscosity of the solution for forming a polymer thin film is 1 mPa ⁇ s or more, it is possible to suppress the problem that repelling of the coating film occurs. On the other hand, when the viscosity of the solution for forming a polymer thin film is 500 mPa ⁇ s or less, it is possible to suppress the problem that a uniform coating film can not be obtained.
- the viscosity (measurement temperature: 25 ° C.) of the solution for forming a polymer thin film it is more preferable to set the viscosity (measurement temperature: 25 ° C.) of the solution for forming a polymer thin film to a value within the range of 1.5 mPa ⁇ s to 400 mPa ⁇ s, and 2 mPa ⁇ s to 300 mPa ⁇ s. More preferably, the value is in the range of s or less.
- the viscosity of the solution for forming a polymer thin film is measured in accordance with JIS K 7117-1 4.1 (Brookfield type rotational viscometer).
- the drying conditions for forming the polymer thin film 1 on the coated layer of the solution for forming a polymer thin film formed on the step film 2 are not particularly limited.
- the drying of the coating layer is preferably performed at a temperature of 40 ° C. to 120 ° C. and a drying time of 6 seconds to 300 seconds. If the drying temperature is 40 ° C. or more, it is possible to suppress the problem that the drying takes time or the drying becomes insufficient. On the other hand, if the drying temperature is 120 ° C. or less, it is possible to suppress a defect that wrinkles or curls occur. In addition, if the drying time is 6 seconds or more, it is possible to prevent the problem of insufficient drying.
- the drying conditions for forming the coating layer of the polymer thin film forming solution as the polymer thin film 1 are the temperature conditions of 50 ° C. or more and 110 ° C. or less, and the drying time of 12 seconds or more and 180 seconds or less. It is more preferable that the temperature condition be 60 ° C. or more and 100 ° C. or less and the drying time be 18 seconds or more and 120 seconds or less.
- the roll-to-roll method can form the polymer thin film 1 having a predetermined thickness more efficiently, so that the film-like laminate 100 can be mass-produced more efficiently. It is for.
- a bar coater, a gravure coater, or a die coater is preferable, and a reverse gravure coater or a slot die coater is more preferable. The reason is that, with these coating devices, the polymer thin film 1 having a predetermined thickness can be formed more efficiently.
- the polymer thin film 1 of nanometer order thickness can be formed with uniform thickness without generating wrinkles on the surface.
- the bar coater, the reverse gravure coater and the slot die coater are simple in their structure and excellent in economics.
- the peeling step the polymer thin film 1 in the film-like laminate 100 as shown in FIG. 3 is peeled from the process film 2 to obtain the polymer thin film 1 having a self-supporting property.
- the peeling force of the step film 2 from the polymer thin film 1 in the peeling step is preferably 5 mN / 20 mm or more and 100 mN / 20 mm or less, more preferably 10 mN / 20 mm or more and 50 mN / 20 mm or less, 15 mN / It is particularly preferable that the diameter is 20 mm or more and 30 mN / 20 mm or less.
- the peeling force is 5 mN / 20 mm or more, it is possible to suppress the problem that the process film and the polymer thin film are easily peeled off in the polymer thin film forming step.
- the above peeling force is 100 mN / 20 mm or less, in the peeling step, it becomes difficult to peel the step film from the polymer thin film, and it is possible to suppress the problem that the polymer thin film is broken.
- the above peeling force can be adjusted, for example, by changing the type of the release agent used for the process film 2.
- the film-like laminate 100 includes a polymer thin film 1 and a process film 2 as shown in FIG.
- the film-like laminate 100 is obtained by applying the solution for forming a polymer thin film on a process film 2 and drying the applied layer to form a polymer thin film 1. That is, the film-like laminate 100 is obtained by the polymer thin film forming step in the method of manufacturing a polymer thin film according to the above-described embodiment.
- a polymer thin film containing a norbornene-based polymer (A) containing 10 mol% or more of the constitutional unit represented by the general formula (1), having a thickness of 10 nm to 1000 nm, and having self-supporting properties 1 can be manufactured efficiently.
- a polymer thin film 1 containing 10 mol% or more of the constitutional unit represented by the general formula (1), having a thickness of 10 nm to 1000 nm, and having self-supporting properties 1 can be manufactured efficiently.
- It can be adhered to an adherend without using an adhesive or the like, and a polymer thin film 1 having high water repellency can be provided.
- the present embodiment is not limited to the above-described embodiment, but includes modifications, improvements, and the like as long as the object of the present embodiment can be achieved.
- the process film 2 provided with the peeling base material 21 and the release agent layer 22 was used, it is not limited to this.
- a single layer film composed of the release substrate 21 may be used as the process film 2.
- Test Example 1 Selection of Process Film (1) Production of Process Film
- the process film of Test Example 1 has a release substrate and a release agent layer provided on the release substrate.
- a coating solution having a concentration of 2% by mass was prepared.
- the obtained coating solution is coated on a 38 ⁇ m thick polyethylene terephthalate (PET) film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation) using a Meyer bar, and heated at 140 ° C for 60 seconds. It dried and the process film which formed the release agent layer of average thickness 0.1 micrometer was obtained. Then, the surface free energy on the surface of the release agent layer of the obtained process film and the arithmetic mean roughness are shown in Table 1.
- PET polyethylene terephthalate
- Measurement / Evaluation (1) Measurement of Surface Free Energy of Process Film
- the surface free energy (mJ / m 2 ) on the surface (contact surface with the polymer thin film) to which the solution for forming a polymer thin film in the process film is applied is various liquids.
- the contact angle of the drop (measurement temperature: 25 ° C.) was measured, and based on that value, it was determined by Kitazaki-Hata theory. That is, using diiodomethane as “dispersion component”, 1-bromonaphthalene as “dipolar component”, and distilled water as “hydrogen bond component” as droplets, DM-70 manufactured by Kyowa Interface Science Co., Ltd. is used.
- Test Example 2 a film-like laminate and a polymer are prepared in the same manner as in Test Example 1 except that a polyethylene terephthalate film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation, 38 ⁇ m thick) is used as the process film. Thin films were produced and evaluated. The obtained results are shown in Table 1. The surface free energy and the arithmetic mean roughness on the surface of the process film used in Test Example 2 are shown in Table 1.
- Test Example 3 In Test Example 3, a film-like laminate and a polymer thin film were produced and evaluated in the same manner as in Test Example 1 except that “SP-PET 381031” manufactured by Lintec Corporation was used as the process film. The obtained results are shown in Table 1. Further, the surface free energy on the surface of the release agent layer of the step film used in Test Example 3 and the arithmetic mean roughness are shown in Table 1.
- Test Example 4 a film-like laminate and a polymer thin film were produced and evaluated in the same manner as in Test Example 1 except that “SP-PET38T100X” manufactured by Lintec Corporation was used as the process film. The obtained results are shown in Table 1. Further, the surface free energy on the surface of the release agent layer of the step film used in Test Example 4 and the arithmetic mean roughness are shown in Table 1.
- Example 1 Production of Polymer Thin Film
- the process film of Example 1 has a substrate and a release agent layer provided on the substrate.
- a coating solution having a concentration of 2% by mass was prepared.
- the obtained coating solution is coated on a 38 ⁇ m thick polyethylene terephthalate (PET) film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation) using a Meyer bar, and heated at 140 ° C for 60 seconds. It dried and the process film which formed the release agent layer of average thickness 0.1 micrometer was obtained.
- PET polyethylene terephthalate
- the support and the polymer thin film were peeled off from the process film to transfer the polymer thin film to the surface of the support.
- the double-sided tape sticking part was cut off from the support body to which the polymer thin film transferred, and the laminated body of a polymer thin film and a support base material was produced.
- This laminate was placed on the adherend so that the polymer thin film side was in contact with the following adherend, and the polymer thin film and the adherend were pressed together by moving the 2 kg roller twice from the support base . The stickability at that time was evaluated.
- a cylindrical plunger with a diameter of 1 mm ⁇ was advanced to a location corresponding to the center of the hole of the polymer thin film jig.
- the penetration speed of the plunger was 0.5 mm / sec.
- the maximum stress (unit: mN / 1 mm ⁇ ) was measured when the plunger was advanced to a depth of 5 mm in the depth direction of the hole. The measurement was performed 10 times, and the average value was taken as the film strength of the polymer thin film. The obtained results are shown in Table 2.
- Example 2 to 4 Film-like laminates and polymer thin films were produced and evaluated in the same manner as in Example 1 except that the type of cyclic olefin copolymer and the thickness of the polymer thin film were changed as shown in Table 2. The obtained results are shown in Table 2. Further, the glass transition point (T g ), MFR and viscosity of the solution for forming a polymer thin film of the cyclic olefin copolymer used in Examples 2 to 4 are shown in Table 2.
- the polymer thin film (Examples 1 to 4) containing a norbornene-based polymer (A) and having a thickness of 10 nm or more and 1000 nm or less has good adhesion and a contact angle of water is It was confirmed that the sliding angle of water was small. From this, it was confirmed that the polymer thin films obtained in Examples 1 to 4 can be adhered to an adherend without using an adhesive or the like and have high water repellency. Also, it was confirmed that the polymer thin films obtained in Examples 1 to 4 have high film strength and have self-supporting properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
This polymer thin film is characterized by containing a norbornene polymer (A) containing at least 10 mol% of a constituent unit represented by general formula (1), having a thickness of 10 nm to 1000 nm, and having self-supporting properties. (In general formula (1), X1 and X2 may be the same or different, and may respectively represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkenyl group, a hydroxyl group, or a carboxyl group, and X1 and X2 may be bonded to one another to form a ring.)
Description
本発明は、高分子薄膜、フィルム状積層体、および、高分子薄膜の製造方法に関する。
The present invention relates to a polymer thin film, a film-like laminate, and a method for producing a polymer thin film.
環状オレフィン系樹脂からなるフィルムは、例えば、フィルムコンデンサ用の誘電体フィルムとして使用されている。
例えば、特許文献1には、樹脂を主成分とする高絶縁性フィルムが記載されている。この高絶縁性フィルムにおいて、前記樹脂が非晶性樹脂である。また、前記高絶縁性フィルムの面方向における屈折率の最小値をNyとし、前記高絶縁性フィルムの面方向において前記Nyに直交する方向の屈折率をNxとし、前記高絶縁性フィルムの厚さをdとしたとき、下記式1で表されるレターデーション(R)が、10nm以下である。
R=(Nx-Ny)・d(式1) Films made of cyclic olefin resins are used, for example, as dielectric films for film capacitors.
For example,Patent Document 1 describes a highly insulating film containing a resin as a main component. In this highly insulating film, the resin is an amorphous resin. Further, the minimum value of the refractive index in the surface direction of the high insulating film is Ny, the refractive index in the direction orthogonal to the Ny in the surface direction of the high insulating film is Nx, and the thickness of the high insulating film When d is d, the retardation (R) represented by the following formula 1 is 10 nm or less.
R = (Nx-Ny) · d (Equation 1)
例えば、特許文献1には、樹脂を主成分とする高絶縁性フィルムが記載されている。この高絶縁性フィルムにおいて、前記樹脂が非晶性樹脂である。また、前記高絶縁性フィルムの面方向における屈折率の最小値をNyとし、前記高絶縁性フィルムの面方向において前記Nyに直交する方向の屈折率をNxとし、前記高絶縁性フィルムの厚さをdとしたとき、下記式1で表されるレターデーション(R)が、10nm以下である。
R=(Nx-Ny)・d(式1) Films made of cyclic olefin resins are used, for example, as dielectric films for film capacitors.
For example,
R = (Nx-Ny) · d (Equation 1)
樹脂フィルムについては、厚さを数十から数百nmの範囲とすれば、静電気力および濡れ性により、接着剤などを用いずとも、被着物に対して密着できる場合がある。
しかしながら、特許文献1に記載の高絶縁性フィルムは、被着物に対して密着させることができなかった。また、特許文献1には、平均厚さは0.5μm以上7.0μm以下が好ましいとの記載があるが、特許文献1に記載の高絶縁性フィルムの製造方法では、フィルムの厚さをナノオーダーにすることはできなかった。また、特許文献1では、例えば、溶液キャスト法により作製したフィルムに延伸処理を施しているが、この方法によっても、フィルムの厚さをナノオーダーにすることはできなかった。 When the thickness of the resin film is in the range of several tens to several hundreds of nm, due to electrostatic force and wettability, the resin film may be in close contact with the adherend without using an adhesive or the like.
However, the highly insulating film described inPatent Document 1 could not be adhered to an adherend. Further, Patent Document 1 describes that the average thickness is preferably 0.5 μm or more and 7.0 μm or less, but in the method for producing a high insulation film described in Patent Document 1, the thickness of the film is reduced to It was not possible to place an order. Moreover, although the extending | stretching process is performed to the film produced by the solution casting method, for example in patent document 1, the thickness of a film was not able to be made into nano order also by this method.
しかしながら、特許文献1に記載の高絶縁性フィルムは、被着物に対して密着させることができなかった。また、特許文献1には、平均厚さは0.5μm以上7.0μm以下が好ましいとの記載があるが、特許文献1に記載の高絶縁性フィルムの製造方法では、フィルムの厚さをナノオーダーにすることはできなかった。また、特許文献1では、例えば、溶液キャスト法により作製したフィルムに延伸処理を施しているが、この方法によっても、フィルムの厚さをナノオーダーにすることはできなかった。 When the thickness of the resin film is in the range of several tens to several hundreds of nm, due to electrostatic force and wettability, the resin film may be in close contact with the adherend without using an adhesive or the like.
However, the highly insulating film described in
本発明の目的は、接着剤などを用いずとも、被着物に対して密着させることができ、高い撥水性を有する高分子薄膜、フィルム状積層体、並びに、高分子薄膜の製造方法を提供することである。
An object of the present invention is to provide a polymer thin film having high water repellency, a film-like laminate, and a method for producing a polymer thin film, which can be adhered to an adherend without using an adhesive or the like. It is.
本発明の一態様によれば、下記一般式(1)で表される構成単位を10mol%以上含有するノルボルネン系ポリマー(A)を含み、厚さが10nm以上1000nm以下であり、かつ、自己支持性を有することを特徴とする高分子薄膜が提供される。
なお、下記一般式(1)中、X1およびX2は、同一であるか、または異なり、それぞれ、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルケニル基、ヒドロキシ基、またはカルボキシ基を示し、X1およびX2は、互いに結合して環を形成してもよい。 According to one aspect of the present invention, the self-supporting polymer is a self-supporting polymer comprising a norbornene-based polymer (A) containing 10 mol% or more of a constitutional unit represented by the following general formula (1) and having a thickness of 10 nm to 1000 nm. A polymer thin film characterized by having a property is provided.
In the following general formula (1), X 1 and X 2 are the same or different, and respectively a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted group Or X represents an unsubstituted alkenyl group, a hydroxy group or a carboxy group, and X 1 and X 2 may combine with each other to form a ring.
なお、下記一般式(1)中、X1およびX2は、同一であるか、または異なり、それぞれ、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルケニル基、ヒドロキシ基、またはカルボキシ基を示し、X1およびX2は、互いに結合して環を形成してもよい。 According to one aspect of the present invention, the self-supporting polymer is a self-supporting polymer comprising a norbornene-based polymer (A) containing 10 mol% or more of a constitutional unit represented by the following general formula (1) and having a thickness of 10 nm to 1000 nm. A polymer thin film characterized by having a property is provided.
In the following general formula (1), X 1 and X 2 are the same or different, and respectively a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted group Or X represents an unsubstituted alkenyl group, a hydroxy group or a carboxy group, and X 1 and X 2 may combine with each other to form a ring.
前述の本発明の一態様において、前記ノルボルネン系ポリマー(A)が、ノルボルネン系コポリマーであることが好ましい。
前述の本発明の一態様において、前記高分子薄膜が、前記ノルボルネン系ポリマー(A)を50質量%以上含むことが好ましい。
前述の本発明の一態様において、前記ノルボルネン系ポリマー(A)のガラス転移点が、140℃以下であることが好ましい。
前述の本発明の一態様において、前記ノルボルネン系ポリマー(A)の温度260℃、荷重2.16kgfにおけるメルトフローレートが、20g/10min以上であることが好ましい。
前述の本発明の一態様において、前記高分子薄膜の表面炭素濃度が、90原子%以上であることが好ましい。 In the above-mentioned one aspect of the present invention, the norbornene-based polymer (A) is preferably a norbornene-based copolymer.
In one aspect of the present invention described above, the polymer thin film preferably contains 50% by mass or more of the norbornene-based polymer (A).
In the above-mentioned one aspect of the present invention, the glass transition point of the norbornene-based polymer (A) is preferably 140 ° C. or less.
In the above-mentioned one aspect of the present invention, the melt flow rate at a temperature of 260 ° C. and a load of 2.16 kgf of the norbornene-based polymer (A) is preferably 20 g / 10 min or more.
In the above-mentioned one aspect of the present invention, the surface carbon concentration of the polymer thin film is preferably 90 atomic% or more.
前述の本発明の一態様において、前記高分子薄膜が、前記ノルボルネン系ポリマー(A)を50質量%以上含むことが好ましい。
前述の本発明の一態様において、前記ノルボルネン系ポリマー(A)のガラス転移点が、140℃以下であることが好ましい。
前述の本発明の一態様において、前記ノルボルネン系ポリマー(A)の温度260℃、荷重2.16kgfにおけるメルトフローレートが、20g/10min以上であることが好ましい。
前述の本発明の一態様において、前記高分子薄膜の表面炭素濃度が、90原子%以上であることが好ましい。 In the above-mentioned one aspect of the present invention, the norbornene-based polymer (A) is preferably a norbornene-based copolymer.
In one aspect of the present invention described above, the polymer thin film preferably contains 50% by mass or more of the norbornene-based polymer (A).
In the above-mentioned one aspect of the present invention, the glass transition point of the norbornene-based polymer (A) is preferably 140 ° C. or less.
In the above-mentioned one aspect of the present invention, the melt flow rate at a temperature of 260 ° C. and a load of 2.16 kgf of the norbornene-based polymer (A) is preferably 20 g / 10 min or more.
In the above-mentioned one aspect of the present invention, the surface carbon concentration of the polymer thin film is preferably 90 atomic% or more.
本発明の一態様によれば、工程フィルムと、前記工程フィルム上に形成された、前述の本発明の一態様に係る高分子薄膜とを備えることを特徴とするフィルム状積層体が提供される。
前述の本発明の一態様において、前記工程フィルムの表面自由エネルギーが、40mJ/m2以下であることが好ましい。
前述の本発明の一態様において、前記工程フィルムの表面の算術平均粗さが、40nm以下であることが好ましい。 According to one aspect of the present invention, there is provided a film-like laminate comprising a process film and the polymer thin film according to the above-mentioned one aspect of the invention formed on the process film. .
In the above-mentioned one aspect of the present invention, the surface free energy of the process film is preferably 40 mJ / m 2 or less.
In the above-mentioned one aspect of the present invention, the arithmetic mean roughness of the surface of the step film is preferably 40 nm or less.
前述の本発明の一態様において、前記工程フィルムの表面自由エネルギーが、40mJ/m2以下であることが好ましい。
前述の本発明の一態様において、前記工程フィルムの表面の算術平均粗さが、40nm以下であることが好ましい。 According to one aspect of the present invention, there is provided a film-like laminate comprising a process film and the polymer thin film according to the above-mentioned one aspect of the invention formed on the process film. .
In the above-mentioned one aspect of the present invention, the surface free energy of the process film is preferably 40 mJ / m 2 or less.
In the above-mentioned one aspect of the present invention, the arithmetic mean roughness of the surface of the step film is preferably 40 nm or less.
本発明の一態様によれば、前述の本発明の一態様に係る高分子薄膜を製造する高分子薄膜の製造方法であって、工程フィルム上に、前記ノルボルネン系ポリマー(A)を含む高分子薄膜形成用溶液を塗布し、乾燥して、前記高分子薄膜を形成する工程と、前記高分子薄膜を、前記工程フィルムから剥離する工程と、を備えることを特徴とする高分子薄膜の製造方法が提供される。
前述の本発明の一態様において、前記工程フィルムの表面自由エネルギーが、40mJ/m2以下であることが好ましい。
前述の本発明の一態様において、前記工程フィルムの表面の算術平均粗さが、40nm以下であることが好ましい。 According to one aspect of the present invention, there is provided a method of producing a polymer thin film for producing a polymer thin film according to one aspect of the present invention described above, wherein the polymer comprising the norbornene-based polymer (A) on a process film A method for producing a polymer thin film, comprising the steps of applying a solution for forming a thin film and drying to form the polymer thin film, and peeling the polymer thin film from the step film. Is provided.
In the above-mentioned one aspect of the present invention, the surface free energy of the process film is preferably 40 mJ / m 2 or less.
In the above-mentioned one aspect of the present invention, the arithmetic mean roughness of the surface of the step film is preferably 40 nm or less.
前述の本発明の一態様において、前記工程フィルムの表面自由エネルギーが、40mJ/m2以下であることが好ましい。
前述の本発明の一態様において、前記工程フィルムの表面の算術平均粗さが、40nm以下であることが好ましい。 According to one aspect of the present invention, there is provided a method of producing a polymer thin film for producing a polymer thin film according to one aspect of the present invention described above, wherein the polymer comprising the norbornene-based polymer (A) on a process film A method for producing a polymer thin film, comprising the steps of applying a solution for forming a thin film and drying to form the polymer thin film, and peeling the polymer thin film from the step film. Is provided.
In the above-mentioned one aspect of the present invention, the surface free energy of the process film is preferably 40 mJ / m 2 or less.
In the above-mentioned one aspect of the present invention, the arithmetic mean roughness of the surface of the step film is preferably 40 nm or less.
本発明によれば、接着剤などを用いずとも、被着物に対して密着させることができ、高い撥水性を有する高分子薄膜、フィルム状積層体、並びに、高分子薄膜の製造方法を提供できる。
According to the present invention, a polymer thin film, a film-like laminate, and a method for producing a polymer thin film having high water repellency can be provided, which can be adhered to an adherend without using an adhesive or the like. .
以下、本発明について実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大または縮小をして図示した部分がある。
Hereinafter, embodiments of the present invention will be described by way of example with reference to the drawings. The present invention is not limited to the contents of the embodiments. Note that, in the drawings, there are portions illustrated in an enlarged or reduced scale to facilitate the description.
[高分子薄膜]
本実施形態に係る高分子薄膜1は、図1に示すように、自己支持性を有する薄膜である。なお、本明細書において「自己支持性」とは、高分子薄膜1が他の支持体に積層されていない場合に、高分子薄膜1が単独で膜を形成できる性質のことをいい、より具体的には膜強度が5mN/1mmφ以上であることを言う。また、「自己支持性」を有する膜においては、膜強度が、10mN/1mmφ以上であることが好ましく、20mN/1mmφ以上であることがより好ましい。膜強度は、クリープメーター(例えば、株式会社山電製の商品名「クリープメーターRE2-3305CYAMADEN」)にて測定できる。具体的には、後述する実施例に記載の方法により測定できる。 [Polymer thin film]
The polymerthin film 1 according to the present embodiment is a thin film having a self-supporting property, as shown in FIG. In the present specification, "self-supporting property" refers to the property that the polymer thin film 1 can form a film alone when the polymer thin film 1 is not laminated on another support, and more specifically In fact, it means that the film strength is 5 mN / 1 mmφ or more. In the film having “self-supporting property”, the film strength is preferably 10 mN / 1 mmφ or more, more preferably 20 mN / 1 mmφ or more. The film strength can be measured with a creep meter (for example, trade name “cree meter RE2-3305 CYAMADEN” manufactured by Yamaden Co., Ltd.). Specifically, it can be measured by the method described in the examples described later.
本実施形態に係る高分子薄膜1は、図1に示すように、自己支持性を有する薄膜である。なお、本明細書において「自己支持性」とは、高分子薄膜1が他の支持体に積層されていない場合に、高分子薄膜1が単独で膜を形成できる性質のことをいい、より具体的には膜強度が5mN/1mmφ以上であることを言う。また、「自己支持性」を有する膜においては、膜強度が、10mN/1mmφ以上であることが好ましく、20mN/1mmφ以上であることがより好ましい。膜強度は、クリープメーター(例えば、株式会社山電製の商品名「クリープメーターRE2-3305CYAMADEN」)にて測定できる。具体的には、後述する実施例に記載の方法により測定できる。 [Polymer thin film]
The polymer
高分子薄膜1の厚さは、10nm以上1000nm以下であることが必要である。高分子薄膜1の厚さが10nm以上1000nm以下である場合、接着剤などを使用せずに、皮膚などの所望の被着物に貼り合わせることが可能となる。高分子薄膜1の厚さは、J.A.Woollam社製の分光エリプソメーター(製品名「M-2000」)にて測定できる。
高分子薄膜1の厚さは、好ましくは30nm以上であり、より好ましくは50nm以上であり、よりさらに好ましくは100nm以上であり、特に好ましくは150nm以上である。また、高分子薄膜1の厚さは、好ましくは900nm以下であり、より好ましくは700nm以下であり、よりさらに好ましくは550nm以下であり、特に好ましくは400nm以下である。 The thickness of the polymerthin film 1 needs to be 10 nm or more and 1000 nm or less. When the thickness of the polymer thin film 1 is 10 nm or more and 1000 nm or less, it is possible to bond to a desired adherend such as skin without using an adhesive or the like. The thickness of the polymer thin film 1 is described in J.I. A. It can be measured by a spectral ellipsometer (product name "M-2000") manufactured by Woollam.
The thickness of the polymerthin film 1 is preferably 30 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, and particularly preferably 150 nm or more. The thickness of the polymer thin film 1 is preferably 900 nm or less, more preferably 700 nm or less, still more preferably 550 nm or less, and particularly preferably 400 nm or less.
高分子薄膜1の厚さは、好ましくは30nm以上であり、より好ましくは50nm以上であり、よりさらに好ましくは100nm以上であり、特に好ましくは150nm以上である。また、高分子薄膜1の厚さは、好ましくは900nm以下であり、より好ましくは700nm以下であり、よりさらに好ましくは550nm以下であり、特に好ましくは400nm以下である。 The thickness of the polymer
The thickness of the polymer
高分子薄膜1の表面炭素濃度は、撥水性の観点から、90原子%以上であることが好ましく、95原子%以上であることがより好ましく、99原子%以上であることが特に好ましい。表面炭素濃度は、X線光電子分光分析法(XPS)により測定できる。
The surface carbon concentration of the polymer thin film 1 is preferably 90 atomic% or more, more preferably 95 atomic% or more, and particularly preferably 99 atomic% or more from the viewpoint of water repellency. The surface carbon concentration can be measured by X-ray photoelectron spectroscopy (XPS).
高分子薄膜1は、下記一般式(1)で表される構成単位を10mol%以上含有するノルボルネン系ポリマー(A)を含むことが必要である。ノルボルネン系ポリマー(A)が下記一般式(1)で表される構成単位を10mol%以上含有しない場合には、所望の厚さで自己支持性を有し、かつ高い撥水性を有する高分子薄膜が得られない。高分子薄膜1中に占める下記一般式(1)で表される構成単位の含有量は、20mol%以上であることが好ましく、50mol%以上であることがより好ましい。
The polymer thin film 1 needs to contain a norbornene-based polymer (A) containing 10 mol% or more of a structural unit represented by the following general formula (1). When the norbornene-based polymer (A) does not contain 10 mol% or more of a constitutional unit represented by the following general formula (1), a polymer thin film having a desired thickness and having a self-supporting property and high water repellency Can not be obtained. The content of the constituent unit represented by the following general formula (1) in the polymer thin film 1 is preferably 20 mol% or more, and more preferably 50 mol% or more.
前記一般式(1)において、X1およびX2は、同一であるか、または異なり、それぞれ、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルケニル基、ヒドロキシ基、またはカルボキシ基を示し、X1およびX2は、互いに結合して環を形成してもよい。
アルキル基、アルコキシ基およびアルケニル基の置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基、アクリロイル基、メタクリロイル基、およびエポキシ基などが挙げられる。
アルキル基の炭素数は、1から5であることが好ましく、1から3であることがより好ましい。アルコキシ基の炭素数は、1から5であることが好ましく、1から3であることがより好ましい。アルケニル基の炭素数は、2から5であることが好ましく、2から3であることがより好ましい。 In the general formula (1), X 1 and X 2 are the same or different, and each is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted group X 1 represents a substituted alkenyl group, a hydroxy group or a carboxy group, and X 1 and X 2 may combine with each other to form a ring.
Examples of the substituent of the alkyl group, the alkoxy group and the alkenyl group include a halogen atom, a hydroxy group, a carboxy group, an acryloyl group, a methacryloyl group and an epoxy group.
The carbon number of the alkyl group is preferably 1 to 5, and more preferably 1 to 3. The carbon number of the alkoxy group is preferably 1 to 5, and more preferably 1 to 3. The carbon number of the alkenyl group is preferably 2 to 5, and more preferably 2 to 3.
アルキル基、アルコキシ基およびアルケニル基の置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基、アクリロイル基、メタクリロイル基、およびエポキシ基などが挙げられる。
アルキル基の炭素数は、1から5であることが好ましく、1から3であることがより好ましい。アルコキシ基の炭素数は、1から5であることが好ましく、1から3であることがより好ましい。アルケニル基の炭素数は、2から5であることが好ましく、2から3であることがより好ましい。 In the general formula (1), X 1 and X 2 are the same or different, and each is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted group X 1 represents a substituted alkenyl group, a hydroxy group or a carboxy group, and X 1 and X 2 may combine with each other to form a ring.
Examples of the substituent of the alkyl group, the alkoxy group and the alkenyl group include a halogen atom, a hydroxy group, a carboxy group, an acryloyl group, a methacryloyl group and an epoxy group.
The carbon number of the alkyl group is preferably 1 to 5, and more preferably 1 to 3. The carbon number of the alkoxy group is preferably 1 to 5, and more preferably 1 to 3. The carbon number of the alkenyl group is preferably 2 to 5, and more preferably 2 to 3.
(ノルボルネン系ポリマー(A))
ノルボルネン系ポリマー(A)は、前記一般式(1)で表される構成単位を10mol%含有すればよく、ノルボルネン系ホモポリマーであってもよく、ノルボルネン系コポリマーであってもよい。
このノルボルネン系ポリマー(A)は、ノルボルネン系化合物を単量体の少なくとも一種とするポリマーである。 (Norbornene-based polymer (A))
The norbornene polymer (A) may contain 10 mol% of the constituent unit represented by the general formula (1), and may be a norbornene homopolymer or a norbornene copolymer.
The norbornene-based polymer (A) is a polymer having a norbornene-based compound as at least one monomer.
ノルボルネン系ポリマー(A)は、前記一般式(1)で表される構成単位を10mol%含有すればよく、ノルボルネン系ホモポリマーであってもよく、ノルボルネン系コポリマーであってもよい。
このノルボルネン系ポリマー(A)は、ノルボルネン系化合物を単量体の少なくとも一種とするポリマーである。 (Norbornene-based polymer (A))
The norbornene polymer (A) may contain 10 mol% of the constituent unit represented by the general formula (1), and may be a norbornene homopolymer or a norbornene copolymer.
The norbornene-based polymer (A) is a polymer having a norbornene-based compound as at least one monomer.
ノルボルネン系化合物としては、ノルボルネン(ビシクロ[2.2.1]ヘプタ-2-エン)、ノルボルネンに係るビシクロ環を含む環状構造を有する化合物(例えばジシクロペンタジエン)、およびこれらの誘導体が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
ノルボルネン系化合物以外の単量体としては、シクロペンタジエン、およびテトラシクロドデセンなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of norbornene compounds include norbornene (bicyclo [2.2.1] hept-2-ene), compounds having a cyclic structure containing a bicyclo ring related to norbornene (for example, dicyclopentadiene), and derivatives thereof. One of these may be used alone, or two or more may be mixed and used.
Examples of monomers other than norbornene compounds include cyclopentadiene and tetracyclododecene. One of these may be used alone, or two or more may be mixed and used.
ノルボルネン系化合物以外の単量体としては、シクロペンタジエン、およびテトラシクロドデセンなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of norbornene compounds include norbornene (bicyclo [2.2.1] hept-2-ene), compounds having a cyclic structure containing a bicyclo ring related to norbornene (for example, dicyclopentadiene), and derivatives thereof. One of these may be used alone, or two or more may be mixed and used.
Examples of monomers other than norbornene compounds include cyclopentadiene and tetracyclododecene. One of these may be used alone, or two or more may be mixed and used.
ノルボルネン系化合物を単量体の少なくとも一種とすることで、単量体を重合させて得られるポリマー(ホモポリマーまたはコポリマー)は、前記一般式(1)で表される構成単位を有する。
A polymer (homopolymer or copolymer) obtained by polymerizing a monomer by using a norbornene-based compound as at least one of the monomers has a structural unit represented by the general formula (1).
ノルボルネン系ポリマー(A)としては、ノルボルネン系モノマーの開環メタセシス重合体水素化ポリマー(具体的には日本ゼオン株式会社製ZEONEX(登録商標)シリーズとして入手可能である。)、ノルボルネンとエチレンとのコポリマー(具体的にはポリプラスチックス株式会社製TOPAS(登録商標)シリーズとして入手可能である。)、ジシクロペンタジエンとテトラシクロペンタドデセンとの開環重合に基づくコポリマー(具体的には日本ゼオン株式会社製ZEONOR(登録商標)シリーズとして入手可能である。)、エチレンとテトラシクロドデセンとのコポリマー(具体的には三井化学株式会社製アペル(登録商標)シリーズとして入手可能である。)、並びに、ジシクロペンタジエンおよびメタクリル酸エステルを原料とする極性基を含む環状オレフィン樹脂(具体的にはJSR株式会社製アートン(登録商標)シリーズとして入手可能である。)などが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
As the norbornene-based polymer (A), a ring-opening metathesis polymer hydrogenated polymer of a norbornene-based monomer (specifically, available as Nippon Zeon Co., Ltd. as ZEONEX (registered trademark) series), norbornene and ethylene Copolymer (specifically, available as Polyplastics Co., Ltd. TOPAS (registered trademark) series), copolymer based on ring-opening polymerization of dicyclopentadiene and tetracyclopentadodecene (specifically, Nippon Zeon Available as ZEONOR (registered trademark) series manufactured by ltd.), Copolymer of ethylene and tetracyclododecene (specifically, available as Mitsui (registered trademark) APEL (registered trademark) series), And dicyclopentadiene and methacrylic acid esters The cyclic olefin resin containing a polar group as a raw material (specifically available as JSR Corporation ARTON (registered trademark) series.), And the like. One of these may be used alone, or two or more may be mixed and used.
ノルボルネン系ポリマー(A)は、架橋構造を有していてもよい。ここで、架橋構造をもたらす架橋剤の種類は任意である。この架橋剤としては、有機過酸化物(例えば、ジクミルパーオキサイドなど)、およびエポキシ基を有する化合物などが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
架橋剤は、ノルボルネン系ポリマー(A)を構成する高分子の一種類同士の間で架橋してもよく、異なる種類の高分子間で架橋してもよい。架橋剤の結合部位も任意である。ノルボルネン系ポリマー(A)を構成する高分子における主鎖を構成する原子と架橋していてもよく、側鎖または官能基など主鎖以外を構成する原子と架橋していてもよい。架橋の程度も任意であるが、架橋の程度が過度に進行すると、ノルボルネン系ポリマー(A)を含む高分子薄膜1の加工性(特に成形性)が過度に低下したり、高分子薄膜1の表面性状が過度に劣化したり、高分子薄膜1の耐脆性が低下することが懸念されるため、このような問題が発生しない範囲に留めるべきである。 The norbornene-based polymer (A) may have a crosslinked structure. Here, the kind of crosslinking agent which brings about a crosslinked structure is arbitrary. Examples of the crosslinking agent include organic peroxides (eg, dicumyl peroxide etc.), compounds having an epoxy group, and the like. One of these may be used alone, or two or more may be mixed and used.
The crosslinking agent may crosslink between one kind of polymers constituting the norbornene-based polymer (A), or may crosslink between different kinds of polymers. The binding site of the crosslinker is also optional. The polymer may be crosslinked with an atom constituting the main chain of the polymer constituting the norbornene-based polymer (A), or may be crosslinked with an atom constituting other than the main chain such as a side chain or a functional group. The degree of crosslinking is also optional, but if the degree of crosslinking progresses excessively, the processability (particularly the formability) of the polymerthin film 1 containing the norbornene-based polymer (A) may be excessively reduced. There is a concern that the surface properties may be excessively deteriorated or the brittleness of the polymer thin film 1 may be reduced, and therefore, such problems should not occur.
架橋剤は、ノルボルネン系ポリマー(A)を構成する高分子の一種類同士の間で架橋してもよく、異なる種類の高分子間で架橋してもよい。架橋剤の結合部位も任意である。ノルボルネン系ポリマー(A)を構成する高分子における主鎖を構成する原子と架橋していてもよく、側鎖または官能基など主鎖以外を構成する原子と架橋していてもよい。架橋の程度も任意であるが、架橋の程度が過度に進行すると、ノルボルネン系ポリマー(A)を含む高分子薄膜1の加工性(特に成形性)が過度に低下したり、高分子薄膜1の表面性状が過度に劣化したり、高分子薄膜1の耐脆性が低下することが懸念されるため、このような問題が発生しない範囲に留めるべきである。 The norbornene-based polymer (A) may have a crosslinked structure. Here, the kind of crosslinking agent which brings about a crosslinked structure is arbitrary. Examples of the crosslinking agent include organic peroxides (eg, dicumyl peroxide etc.), compounds having an epoxy group, and the like. One of these may be used alone, or two or more may be mixed and used.
The crosslinking agent may crosslink between one kind of polymers constituting the norbornene-based polymer (A), or may crosslink between different kinds of polymers. The binding site of the crosslinker is also optional. The polymer may be crosslinked with an atom constituting the main chain of the polymer constituting the norbornene-based polymer (A), or may be crosslinked with an atom constituting other than the main chain such as a side chain or a functional group. The degree of crosslinking is also optional, but if the degree of crosslinking progresses excessively, the processability (particularly the formability) of the polymer
ノルボルネン系ポリマー(A)は、熱可塑性を備える。この熱可塑性の程度は溶融時の粘度を示すメルトフローレート(MFR)で表すことができる。
ノルボルネン系ポリマー(A)の温度260℃、荷重2.16kgfにおけるメルトフローレート(MFR)は、20g/10min以上であることが好ましく、20g/10min以上、150g/10min以下であることがより好ましく、25g/10min以上、50g/10min以下であることが特に好ましい。MFRが前記範囲内であれば、熱可塑性が十分に高くでき、成形などの加工性を向上できる。MFRは、ASTM D1238の記載に準じて測定できる。 The norbornene-based polymer (A) has thermoplasticity. The degree of thermoplasticity can be expressed as a melt flow rate (MFR) indicating the viscosity upon melting.
The melt flow rate (MFR) at a temperature of 260 ° C. and a load of 2.16 kgf of the norbornene polymer (A) is preferably 20 g / 10 min or more, more preferably 20 g / 10 min or more and 150 g / 10 min or less It is particularly preferable to be 25 g / 10 min or more and 50 g / 10 min or less. If MFR is in the said range, thermoplasticity can be made high enough and processability, such as shaping | molding, can be improved. MFR can be measured according to the description of ASTM D1238.
ノルボルネン系ポリマー(A)の温度260℃、荷重2.16kgfにおけるメルトフローレート(MFR)は、20g/10min以上であることが好ましく、20g/10min以上、150g/10min以下であることがより好ましく、25g/10min以上、50g/10min以下であることが特に好ましい。MFRが前記範囲内であれば、熱可塑性が十分に高くでき、成形などの加工性を向上できる。MFRは、ASTM D1238の記載に準じて測定できる。 The norbornene-based polymer (A) has thermoplasticity. The degree of thermoplasticity can be expressed as a melt flow rate (MFR) indicating the viscosity upon melting.
The melt flow rate (MFR) at a temperature of 260 ° C. and a load of 2.16 kgf of the norbornene polymer (A) is preferably 20 g / 10 min or more, more preferably 20 g / 10 min or more and 150 g / 10 min or less It is particularly preferable to be 25 g / 10 min or more and 50 g / 10 min or less. If MFR is in the said range, thermoplasticity can be made high enough and processability, such as shaping | molding, can be improved. MFR can be measured according to the description of ASTM D1238.
ノルボルネン系ポリマー(A)のガラス転移点は、高分子薄膜形成用溶液の塗布性の観点から、140℃以下であることが好ましく、30℃以上120℃以下であることがより好ましい。ガラス転移点が140℃以下であれば、溶剤可溶性を更に向上でき、他方、ガラス転移点が30℃以上であれば、室温でも自立膜形成能力を有する。ガラス転移点は、示差走査熱量計を用いて測定できる。例えば、示差走査熱量計(TA Instruments社製の「DSC(Q2000)」)を用い、昇温速度10℃/分で-40℃から200℃の温度範囲での測定を実施してグラフを作成し、そのグラフから変曲点を確認してガラス転移点を求めることができる。
The glass transition point of the norbornene-based polymer (A) is preferably 140 ° C. or less, more preferably 30 ° C. or more and 120 ° C. or less, from the viewpoint of the coatability of the solution for forming a polymer thin film. If the glass transition point is 140 ° C. or less, the solvent solubility can be further improved, and on the other hand, if the glass transition point is 30 ° C. or more, it has a self-supporting film forming ability even at room temperature. The glass transition temperature can be measured using a differential scanning calorimeter. For example, using a differential scanning calorimeter (“DSC (Q2000)” manufactured by TA Instruments), measurement is performed in a temperature range of −40 ° C. to 200 ° C. at a heating rate of 10 ° C./min to create a graph The inflection point can be confirmed from the graph to determine the glass transition point.
(ノルボルネン系ポリマー(A)以外のオレフィン系ポリマー(B))
高分子薄膜1は、ノルボルネン系ポリマー(A)以外のオレフィン系ポリマー(B)(以下、場合により「非NBオレフィン系ポリマー(B)」と称する)を含んでいてもよい。
非NBオレフィン系ポリマー(B)を使用する場合、自己支持性および撥水性の観点から、ノルボルネン系ポリマー(A)の含有量は、ポリマー全量基準で、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。 (Olefin-based polymer (B) other than norbornene-based polymer (A))
The polymerthin film 1 may contain an olefin-based polymer (B) other than the norbornene-based polymer (A) (hereinafter, sometimes referred to as “non-NB olefin-based polymer (B)”).
When the non-NB olefin polymer (B) is used, the content of the norbornene polymer (A) is preferably 50% by mass or more on the basis of the total amount of polymers, from the viewpoint of self-supporting property and water repellency. It is more preferable that it is mass% or more, and it is especially preferable that it is 90 mass% or more.
高分子薄膜1は、ノルボルネン系ポリマー(A)以外のオレフィン系ポリマー(B)(以下、場合により「非NBオレフィン系ポリマー(B)」と称する)を含んでいてもよい。
非NBオレフィン系ポリマー(B)を使用する場合、自己支持性および撥水性の観点から、ノルボルネン系ポリマー(A)の含有量は、ポリマー全量基準で、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。 (Olefin-based polymer (B) other than norbornene-based polymer (A))
The polymer
When the non-NB olefin polymer (B) is used, the content of the norbornene polymer (A) is preferably 50% by mass or more on the basis of the total amount of polymers, from the viewpoint of self-supporting property and water repellency. It is more preferable that it is mass% or more, and it is especially preferable that it is 90 mass% or more.
非NBオレフィン系ポリマー(B)は、直鎖状であってもよく、側鎖を有していてもよい。また、非NBオレフィン系ポリマー(B)は、ノルボルネン環を含まない限りいかなる官能基を有していてもよく、その種類および置換密度は任意である。アルキル基のように反応性の低い官能基であってもよく、カルボン酸基のように反応性が高い官能基であってもよい。
非NBオレフィン系ポリマー(B)は、オレフィンを単量体の少なくとも一種とするオレフィン系ポリマーであって、ノルボルネン系化合物を単量体として有さないオレフィン系ポリマーである。したがって、非NBオレフィン系ポリマー(B)は、高分子中にノルボルネン環を含まない限り、特に限定されず、芳香族環式ポリオレフィンであっても、非環式ポリオレフィンあってもよい。芳香族環式ポリオレフィンとしては、芳香族環の環状構造を有するオレフィンを単量体の少なくとも一種とするポリオレフィンが挙げられる。非NBオレフィン系ポリマー(B)は、ホモポリマーであってもよく、コポリマーであってもよい。 The non-NB olefin polymer (B) may be linear or have a side chain. Also, the non-NB olefin polymer (B) may have any functional group as long as it does not contain a norbornene ring, and the type and substitution density are arbitrary. It may be a less reactive functional group such as an alkyl group, or may be a highly reactive functional group such as a carboxylic acid group.
The non-NB olefin-based polymer (B) is an olefin-based polymer having an olefin as at least one monomer, and is an olefin-based polymer having no norbornene-based compound as a monomer. Therefore, the non-NB olefin polymer (B) is not particularly limited as long as it does not contain a norbornene ring in the polymer, and may be either an aromatic cyclic polyolefin or an acyclic polyolefin. The aromatic cyclic polyolefin includes polyolefins having an olefin having a cyclic structure of an aromatic ring as at least one of monomers. The non-NB olefin polymer (B) may be a homopolymer or a copolymer.
非NBオレフィン系ポリマー(B)は、オレフィンを単量体の少なくとも一種とするオレフィン系ポリマーであって、ノルボルネン系化合物を単量体として有さないオレフィン系ポリマーである。したがって、非NBオレフィン系ポリマー(B)は、高分子中にノルボルネン環を含まない限り、特に限定されず、芳香族環式ポリオレフィンであっても、非環式ポリオレフィンあってもよい。芳香族環式ポリオレフィンとしては、芳香族環の環状構造を有するオレフィンを単量体の少なくとも一種とするポリオレフィンが挙げられる。非NBオレフィン系ポリマー(B)は、ホモポリマーであってもよく、コポリマーであってもよい。 The non-NB olefin polymer (B) may be linear or have a side chain. Also, the non-NB olefin polymer (B) may have any functional group as long as it does not contain a norbornene ring, and the type and substitution density are arbitrary. It may be a less reactive functional group such as an alkyl group, or may be a highly reactive functional group such as a carboxylic acid group.
The non-NB olefin-based polymer (B) is an olefin-based polymer having an olefin as at least one monomer, and is an olefin-based polymer having no norbornene-based compound as a monomer. Therefore, the non-NB olefin polymer (B) is not particularly limited as long as it does not contain a norbornene ring in the polymer, and may be either an aromatic cyclic polyolefin or an acyclic polyolefin. The aromatic cyclic polyolefin includes polyolefins having an olefin having a cyclic structure of an aromatic ring as at least one of monomers. The non-NB olefin polymer (B) may be a homopolymer or a copolymer.
(被着物)
高分子薄膜1は、接着剤などを用いずとも、被着物に対して密着させることができる。ここで、被着物としては、特に限定されないが、ステンレス、ポリエチレン、ポリプロピレン、ポリカーボネート、ガラス、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)、および半導体回路基板などが挙げられる。これらを被着物とすることで、任意の被着物に対して簡便に撥水性を付与することができる。また、上記以外の被着物としては、人、動物、衣類、帽子、靴および装飾品などが挙げられる。これらを被着物とすると、高分子薄膜1は、非常に薄いために、貼付部位が目立たず、また軽量であるために好ましい。
また、高分子薄膜1は、高い撥水性を有するので、汗または雨などへの耐性もある。そのため、高分子薄膜1は、ウェアラブル端末などを皮膚に密着させるためのフィルムとして特に好適に用いることができる。 (Attachment)
The polymerthin film 1 can be adhered to an adherend without using an adhesive or the like. Here, examples of the adherend include, but are not limited to, stainless steel, polyethylene, polypropylene, polycarbonate, glass, PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), and a semiconductor circuit board. By making these into adherends, water repellency can be easily given to arbitrary adherends. In addition, examples of the adherend other than the above include humans, animals, clothes, hats, shoes, and decorations. When these are used as the adherend, the polymer thin film 1 is preferable because it is very thin, so the site of application is inconspicuous and lightweight.
In addition, since the polymerthin film 1 has high water repellency, it is also resistant to sweat or rain. Therefore, the polymer thin film 1 can be particularly suitably used as a film for bringing a wearable terminal or the like into close contact with the skin.
高分子薄膜1は、接着剤などを用いずとも、被着物に対して密着させることができる。ここで、被着物としては、特に限定されないが、ステンレス、ポリエチレン、ポリプロピレン、ポリカーボネート、ガラス、PTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)、および半導体回路基板などが挙げられる。これらを被着物とすることで、任意の被着物に対して簡便に撥水性を付与することができる。また、上記以外の被着物としては、人、動物、衣類、帽子、靴および装飾品などが挙げられる。これらを被着物とすると、高分子薄膜1は、非常に薄いために、貼付部位が目立たず、また軽量であるために好ましい。
また、高分子薄膜1は、高い撥水性を有するので、汗または雨などへの耐性もある。そのため、高分子薄膜1は、ウェアラブル端末などを皮膚に密着させるためのフィルムとして特に好適に用いることができる。 (Attachment)
The polymer
In addition, since the polymer
[高分子薄膜の製造方法]
本実施形態に係る高分子薄膜の製造方法は、高分子薄膜1を製造する高分子薄膜の製造方法である。そして、本実施形態に係る高分子薄膜の製造方法は、工程フィルム上に、前記ノルボルネン系ポリマー(A)を含む高分子薄膜形成用溶液を塗布し、乾燥して、前記高分子薄膜を形成する工程(高分子薄膜形成工程)と、前記高分子薄膜を、前記工程フィルムから剥離する工程(剥離工程)と、を備える方法である。 [Method for producing polymer thin film]
The method for producing a polymer thin film according to the present embodiment is a method for producing a polymer thin film for producing the polymerthin film 1. And the manufacturing method of the polymer thin film which concerns on this embodiment apply | coats the solution for polymer thin film formation containing the said norbornene-type polymer (A) on a process film, it dries, and forms the said polymer thin film. It is a method comprising: a step (polymer thin film forming step); and a step of peeling the polymer thin film from the step film (peeling step).
本実施形態に係る高分子薄膜の製造方法は、高分子薄膜1を製造する高分子薄膜の製造方法である。そして、本実施形態に係る高分子薄膜の製造方法は、工程フィルム上に、前記ノルボルネン系ポリマー(A)を含む高分子薄膜形成用溶液を塗布し、乾燥して、前記高分子薄膜を形成する工程(高分子薄膜形成工程)と、前記高分子薄膜を、前記工程フィルムから剥離する工程(剥離工程)と、を備える方法である。 [Method for producing polymer thin film]
The method for producing a polymer thin film according to the present embodiment is a method for producing a polymer thin film for producing the polymer
(高分子薄膜形成工程)
図2は、本実施形態に係る高分子薄膜の製造方法で用いる工程フィルム2を示す断面概略図である。工程フィルム2は、第一の面2Aおよび第二の面2Bを有する。
高分子薄膜形成工程においては、図2に示すような工程フィルムの第一の面2Aおよび第二の面2Bのうち、第一の面2A上に、前記ノルボルネン系ポリマー(A)を含む高分子薄膜形成用溶液を塗布し、乾燥して、高分子薄膜1を形成して、図3に示すようなフィルム状積層体100を得る。
ここで、高分子薄膜形成工程で用いる工程フィルムおよび高分子薄膜形成用溶液について説明する。 (Polymer thin film formation process)
FIG. 2 is a schematic cross-sectional view showing astep film 2 used in the method for producing a polymer thin film according to the present embodiment. The process film 2 has a first surface 2A and a second surface 2B.
In the polymer thin film forming step, a polymer containing the norbornene-based polymer (A) on thefirst surface 2A of the first surface 2A and the second surface 2B of the process film as shown in FIG. 2 The solution for forming a thin film is applied and dried to form a polymer thin film 1 to obtain a film-like laminate 100 as shown in FIG.
Here, the process film and the solution for forming a polymer thin film used in the polymer thin film forming process will be described.
図2は、本実施形態に係る高分子薄膜の製造方法で用いる工程フィルム2を示す断面概略図である。工程フィルム2は、第一の面2Aおよび第二の面2Bを有する。
高分子薄膜形成工程においては、図2に示すような工程フィルムの第一の面2Aおよび第二の面2Bのうち、第一の面2A上に、前記ノルボルネン系ポリマー(A)を含む高分子薄膜形成用溶液を塗布し、乾燥して、高分子薄膜1を形成して、図3に示すようなフィルム状積層体100を得る。
ここで、高分子薄膜形成工程で用いる工程フィルムおよび高分子薄膜形成用溶液について説明する。 (Polymer thin film formation process)
FIG. 2 is a schematic cross-sectional view showing a
In the polymer thin film forming step, a polymer containing the norbornene-based polymer (A) on the
Here, the process film and the solution for forming a polymer thin film used in the polymer thin film forming process will be described.
(工程フィルム)
工程フィルム2としては、特に限定されない。例えば、取り扱い易さの観点から、工程フィルム2は、剥離基材21と、剥離基材21の少なくとも一方の面上に形成された剥離剤層22とを備えることが好ましい。本実施形態では、剥離剤層22の表面が第一の面2Aに相当し、剥離基材21の剥離剤層22が形成された面とは反対側の面が第二の面2Bに相当する。
剥離基材21としては、例えば、紙基材、この紙基材にポリエチレンなどの熱可塑性樹脂をラミネートしたラミネート紙、並びにプラスチックフィルムなどが挙げられる。
紙基材としては、グラシン紙、上質紙、コート紙、およびキャストコート紙などが挙げられる。プラスチックフィルムとしては、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、およびポリエチレンナフタレートなど)、並びにポリオレフィンフィルムなど(例えば、ポリプロピレンおよびポリエチレンなど)が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
剥離剤層22は、剥離剤が塗布されて形成されてもよい。剥離剤としては、例えば、オレフィン系樹脂、ゴム系エラストマー(例えば、ブタジエン系樹脂、イソプレン系樹脂など)、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂、およびシリコーン系樹脂が挙げられる。これらの中でも剥離剤としては、オレフィン系樹脂、ゴム系エラストマー(例えば、ブタジエン系樹脂、イソプレン系樹脂など)、長鎖アルキル系樹脂、アルキド系樹脂、およびフッ素系樹脂からなる群から選択されるいずれかの剥離剤であることが好ましい。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。剥離剤層は、帯電防止剤をさらに含有してもよく、帯電防止剤を含有していなくてもよい。 (Process film)
Theprocess film 2 is not particularly limited. For example, from the viewpoint of easy handling, the process film 2 preferably includes the release substrate 21 and the release agent layer 22 formed on at least one surface of the release substrate 21. In the present embodiment, the surface of the release agent layer 22 corresponds to the first surface 2A, and the surface of the release substrate 21 opposite to the surface on which the release agent layer 22 is formed corresponds to the second surface 2B. .
Examples of therelease substrate 21 include a paper substrate, a laminated paper obtained by laminating a thermoplastic resin such as polyethylene on the paper substrate, and a plastic film.
Paper substrates include glassine paper, wood free paper, coated paper, and cast coated paper. Plastic films include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. These may be used singly or in combination of two or more.
Therelease agent layer 22 may be formed by applying a release agent. Examples of the release agent include olefin resins, rubber elastomers (for example, butadiene resins, isoprene resins, etc.), long chain alkyl resins, alkyd resins, fluorine resins, and silicone resins. Among these, as the release agent, any one selected from the group consisting of an olefin resin, a rubber elastomer (for example, a butadiene resin, an isoprene resin, etc.), a long chain alkyl resin, an alkyd resin, and a fluorine resin It is preferable that it is a release agent. These may be used singly or in combination of two or more. The release agent layer may further contain an antistatic agent or may not contain an antistatic agent.
工程フィルム2としては、特に限定されない。例えば、取り扱い易さの観点から、工程フィルム2は、剥離基材21と、剥離基材21の少なくとも一方の面上に形成された剥離剤層22とを備えることが好ましい。本実施形態では、剥離剤層22の表面が第一の面2Aに相当し、剥離基材21の剥離剤層22が形成された面とは反対側の面が第二の面2Bに相当する。
剥離基材21としては、例えば、紙基材、この紙基材にポリエチレンなどの熱可塑性樹脂をラミネートしたラミネート紙、並びにプラスチックフィルムなどが挙げられる。
紙基材としては、グラシン紙、上質紙、コート紙、およびキャストコート紙などが挙げられる。プラスチックフィルムとしては、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、およびポリエチレンナフタレートなど)、並びにポリオレフィンフィルムなど(例えば、ポリプロピレンおよびポリエチレンなど)が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
剥離剤層22は、剥離剤が塗布されて形成されてもよい。剥離剤としては、例えば、オレフィン系樹脂、ゴム系エラストマー(例えば、ブタジエン系樹脂、イソプレン系樹脂など)、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂、およびシリコーン系樹脂が挙げられる。これらの中でも剥離剤としては、オレフィン系樹脂、ゴム系エラストマー(例えば、ブタジエン系樹脂、イソプレン系樹脂など)、長鎖アルキル系樹脂、アルキド系樹脂、およびフッ素系樹脂からなる群から選択されるいずれかの剥離剤であることが好ましい。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。剥離剤層は、帯電防止剤をさらに含有してもよく、帯電防止剤を含有していなくてもよい。 (Process film)
The
Examples of the
Paper substrates include glassine paper, wood free paper, coated paper, and cast coated paper. Plastic films include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. These may be used singly or in combination of two or more.
The
工程フィルム2は、剥離剤層22により、第一の面2Aの表面自由エネルギーおよび算術平均粗さが調整されていることが好ましい。
工程フィルム2の第一の面2Aの表面自由エネルギーは、40mJ/m2以下であることが好ましく、20mJ/m2以上40mJ/m2以下であることがより好ましい。表面自由エネルギーが20mJ/m2以上であれば、工程フィルム2上に高分子薄膜形成用溶液を良好に塗布でき、また、表面自由エネルギーが40mJ/m2以下であれば、工程フィルム2から高分子薄膜1を容易に剥離でき、生産性を向上できる。表面自由エネルギーは、各種液滴の接触角(測定温度:25℃)を測定し、その値をもとに北崎・畑理論により求めることができる。
工程フィルム2の第一の面2Aの表面の算術平均粗さ(Ra)は、40nm以下であることが好ましく、0.1nm以上30nm以下であることがより好ましく、0.5nm以上25nm以下であることが特に好ましい。表面の算術平均粗さが前記範囲内であれば、高分子薄膜1に形成される凹凸を十分に抑制でき、高分子薄膜1の膜強度を向上できる。算術平均粗さは、例えば、Veeco Instruments社製、光干渉顕微鏡 NT1100を用いて測定できる。 In theprocess film 2, it is preferable that the surface free energy and the arithmetic mean roughness of the first surface 2A be adjusted by the release agent layer 22.
The first surface free energy of thesurface 2A of the casting film 2 is preferably 40 mJ / m 2 or less, more preferably 20 mJ / m 2 or more 40 mJ / m 2 or less. If the surface free energy is 20 mJ / m 2 or more, the solution for forming a polymer thin film can be favorably coated on the process film 2, and if the surface free energy is 40 mJ / m 2 or less, the process film 2 is high. The molecular thin film 1 can be easily peeled off, and the productivity can be improved. The surface free energy can be determined by Kitazaki-Hata theory based on the measured contact angles (measurement temperature: 25 ° C.) of various droplets.
The arithmetic mean roughness (Ra) of the surface of thefirst surface 2A of the process film 2 is preferably 40 nm or less, more preferably 0.1 nm to 30 nm, and still more preferably 0.5 nm to 25 nm Is particularly preferred. If the arithmetic mean roughness of the surface is within the above range, the unevenness formed on the polymer thin film 1 can be sufficiently suppressed, and the film strength of the polymer thin film 1 can be improved. Arithmetic mean roughness can be measured using, for example, an optical interference microscope NT1100 manufactured by Veeco Instruments.
工程フィルム2の第一の面2Aの表面自由エネルギーは、40mJ/m2以下であることが好ましく、20mJ/m2以上40mJ/m2以下であることがより好ましい。表面自由エネルギーが20mJ/m2以上であれば、工程フィルム2上に高分子薄膜形成用溶液を良好に塗布でき、また、表面自由エネルギーが40mJ/m2以下であれば、工程フィルム2から高分子薄膜1を容易に剥離でき、生産性を向上できる。表面自由エネルギーは、各種液滴の接触角(測定温度:25℃)を測定し、その値をもとに北崎・畑理論により求めることができる。
工程フィルム2の第一の面2Aの表面の算術平均粗さ(Ra)は、40nm以下であることが好ましく、0.1nm以上30nm以下であることがより好ましく、0.5nm以上25nm以下であることが特に好ましい。表面の算術平均粗さが前記範囲内であれば、高分子薄膜1に形成される凹凸を十分に抑制でき、高分子薄膜1の膜強度を向上できる。算術平均粗さは、例えば、Veeco Instruments社製、光干渉顕微鏡 NT1100を用いて測定できる。 In the
The first surface free energy of the
The arithmetic mean roughness (Ra) of the surface of the
工程フィルム2の厚さは、特に限定されない。工程フィルム2の厚さは、通常、20μm以上200μm以下であり、25μm以上150μm以下であることが好ましい。
剥離剤層22の厚さは、特に限定されない。剥離剤を含む溶液を剥離基材の上に塗布して剥離剤層22を形成する場合、剥離剤層22の厚さは、0.01μm以上2.0μm以下であることが好ましく、0.03μm以上1.0μm以下であることがより好ましい。
剥離基材21としてプラスチックフィルムを用いる場合、当該プラスチックフィルムの厚さは、3μm以上50μm以下であることが好ましく、5μm以上90μm以下であることがより好ましく、10μm以上40μm以下であることが特に好ましい。 The thickness of theprocess film 2 is not particularly limited. The thickness of the process film 2 is usually 20 μm or more and 200 μm or less, and preferably 25 μm or more and 150 μm or less.
The thickness of therelease agent layer 22 is not particularly limited. When the release agent layer 22 is formed by applying a solution containing a release agent on the release substrate, the thickness of the release agent layer 22 is preferably 0.01 μm to 2.0 μm, and 0.03 μm. It is more preferable that the thickness is not less than 1.0 μm.
When a plastic film is used as the peelingsubstrate 21, the thickness of the plastic film is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 90 μm or less, and particularly preferably 10 μm or more and 40 μm or less .
剥離剤層22の厚さは、特に限定されない。剥離剤を含む溶液を剥離基材の上に塗布して剥離剤層22を形成する場合、剥離剤層22の厚さは、0.01μm以上2.0μm以下であることが好ましく、0.03μm以上1.0μm以下であることがより好ましい。
剥離基材21としてプラスチックフィルムを用いる場合、当該プラスチックフィルムの厚さは、3μm以上50μm以下であることが好ましく、5μm以上90μm以下であることがより好ましく、10μm以上40μm以下であることが特に好ましい。 The thickness of the
The thickness of the
When a plastic film is used as the peeling
(高分子薄膜形成用溶液)
高分子薄膜形成用溶液における溶質としての高分子薄膜形成用の材料物質は、ノルボルネン系ポリマー(A)である。なお、この材料物質としては、非NBオレフィン系ポリマー(B)をさらに用いてもよい。ノルボルネン系ポリマー(A)および非NBオレフィン系ポリマー(B)は、既に説明したため、省略する。 (Solution for forming polymer thin film)
A material for forming a polymer thin film as a solute in a solution for forming a polymer thin film is a norbornene-based polymer (A). A non-NB olefin polymer (B) may be further used as this material. The norbornene-based polymer (A) and the non-NB olefin-based polymer (B) are omitted because they have already been described.
高分子薄膜形成用溶液における溶質としての高分子薄膜形成用の材料物質は、ノルボルネン系ポリマー(A)である。なお、この材料物質としては、非NBオレフィン系ポリマー(B)をさらに用いてもよい。ノルボルネン系ポリマー(A)および非NBオレフィン系ポリマー(B)は、既に説明したため、省略する。 (Solution for forming polymer thin film)
A material for forming a polymer thin film as a solute in a solution for forming a polymer thin film is a norbornene-based polymer (A). A non-NB olefin polymer (B) may be further used as this material. The norbornene-based polymer (A) and the non-NB olefin-based polymer (B) are omitted because they have already been described.
高分子薄膜形成用溶液における溶剤の種類としては、高分子薄膜形成用の材料物質を溶解、または均一に分散でき、加熱により蒸発する溶剤であれば、特に限定されない。例えば、溶剤としては、エタノール、プロパノール、イソプロピルアルコール、アセトン、トルエン、シクロヘキサノン、酢酸エチル、酢酸ブチル、テトラヒドロフラン、メチルエチルケトン、ジクロロメタン、およびクロロホルムなどが好ましい。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
また、溶剤の沸点としては、30℃以上160℃以下の範囲内の値とすることが好ましく、35℃以上120℃以下の範囲内の値とすることがより好ましい。 The type of the solvent in the solution for forming a polymer thin film is not particularly limited as long as it can dissolve or uniformly disperse the material for forming a polymer thin film, and evaporates by heating. For example, as the solvent, ethanol, propanol, isopropyl alcohol, acetone, toluene, cyclohexanone, ethyl acetate, butyl acetate, tetrahydrofuran, methyl ethyl ketone, dichloromethane, chloroform and the like are preferable. These may be used singly or in combination of two or more.
The boiling point of the solvent is preferably in the range of 30 ° C. to 160 ° C., and more preferably in the range of 35 ° C. to 120 ° C.
また、溶剤の沸点としては、30℃以上160℃以下の範囲内の値とすることが好ましく、35℃以上120℃以下の範囲内の値とすることがより好ましい。 The type of the solvent in the solution for forming a polymer thin film is not particularly limited as long as it can dissolve or uniformly disperse the material for forming a polymer thin film, and evaporates by heating. For example, as the solvent, ethanol, propanol, isopropyl alcohol, acetone, toluene, cyclohexanone, ethyl acetate, butyl acetate, tetrahydrofuran, methyl ethyl ketone, dichloromethane, chloroform and the like are preferable. These may be used singly or in combination of two or more.
The boiling point of the solvent is preferably in the range of 30 ° C. to 160 ° C., and more preferably in the range of 35 ° C. to 120 ° C.
また、高分子薄膜形成用溶液中の材料物質の濃度を0.1質量%以上20質量%以下の範囲内の値とすることが好ましい。
高分子薄膜形成用溶液中の材料物質の濃度が0.1質量%以上であれば、必要な厚さが得られなくなる場合があるという不具合、および、溶液の粘度が最適にならないという不具合を抑制できる。一方、高分子薄膜形成用溶液中の材料物質の濃度が20質量%以下であれば、均一な塗膜が得られなくなる場合があるという不具合を抑制できる。
また、上記観点より、高分子薄膜形成用溶液中の材料物質の濃度を0.3質量%以上15質量%以下の範囲内の値とすることがより好ましく、0.5質量%以上10質量%以下の範囲内の値とすることがさらに好ましい。 Moreover, it is preferable to make the density | concentration of the material substance in the solution for polymer thin film formation into the value within the range of 0.1 mass% or more and 20 mass% or less.
If the concentration of the material in the solution for forming a polymer thin film is 0.1% by mass or more, the problem that the required thickness may not be obtained and the problem that the viscosity of the solution is not optimum are suppressed it can. On the other hand, when the concentration of the material in the solution for forming a polymer thin film is 20% by mass or less, it is possible to suppress a problem that a uniform coating film may not be obtained.
Further, from the above viewpoint, it is more preferable to set the concentration of the material in the solution for forming a polymer thin film to a value within the range of 0.3% by mass to 15% by mass, and 0.5% by mass to 10% by mass It is further preferable to set the value within the following range.
高分子薄膜形成用溶液中の材料物質の濃度が0.1質量%以上であれば、必要な厚さが得られなくなる場合があるという不具合、および、溶液の粘度が最適にならないという不具合を抑制できる。一方、高分子薄膜形成用溶液中の材料物質の濃度が20質量%以下であれば、均一な塗膜が得られなくなる場合があるという不具合を抑制できる。
また、上記観点より、高分子薄膜形成用溶液中の材料物質の濃度を0.3質量%以上15質量%以下の範囲内の値とすることがより好ましく、0.5質量%以上10質量%以下の範囲内の値とすることがさらに好ましい。 Moreover, it is preferable to make the density | concentration of the material substance in the solution for polymer thin film formation into the value within the range of 0.1 mass% or more and 20 mass% or less.
If the concentration of the material in the solution for forming a polymer thin film is 0.1% by mass or more, the problem that the required thickness may not be obtained and the problem that the viscosity of the solution is not optimum are suppressed it can. On the other hand, when the concentration of the material in the solution for forming a polymer thin film is 20% by mass or less, it is possible to suppress a problem that a uniform coating film may not be obtained.
Further, from the above viewpoint, it is more preferable to set the concentration of the material in the solution for forming a polymer thin film to a value within the range of 0.3% by mass to 15% by mass, and 0.5% by mass to 10% by mass It is further preferable to set the value within the following range.
また、高分子薄膜形成用溶液の粘度(測定温度:25℃)を1mPa・s以上500mPa・s以下の範囲内の値とすることが好ましい。
高分子薄膜形成用溶液の粘度が1mPa・s以上であれば、塗膜のハジキが発生するという不具合を抑制できる。一方、高分子薄膜形成用溶液の粘度が500mPa・s以下であれば、均一な塗膜が得られなくなるという不具合を抑制できる。
また、上記観点より、高分子薄膜形成用溶液の粘度(測定温度:25℃)を1.5mPa・s以上400mPa・s以下の範囲内の値とすることがより好ましく、2mPa・s以上300mPa・s以下の範囲内の値とすることがさらに好ましい。
なお、高分子薄膜形成用溶液の粘度は、JIS K7117-1の4.1(ブルックフィールド型回転粘度計)に準拠して測定されたものである。 Moreover, it is preferable to make the viscosity (measurement temperature: 25 degreeC) of the solution for polymer thin film formation into the value within the range of 1 mPa * s or more and 500 mPa * s or less.
If the viscosity of the solution for forming a polymer thin film is 1 mPa · s or more, it is possible to suppress the problem that repelling of the coating film occurs. On the other hand, when the viscosity of the solution for forming a polymer thin film is 500 mPa · s or less, it is possible to suppress the problem that a uniform coating film can not be obtained.
Further, from the above viewpoint, it is more preferable to set the viscosity (measurement temperature: 25 ° C.) of the solution for forming a polymer thin film to a value within the range of 1.5 mPa · s to 400 mPa · s, and 2 mPa · s to 300 mPa · s. More preferably, the value is in the range of s or less.
The viscosity of the solution for forming a polymer thin film is measured in accordance with JIS K 7117-1 4.1 (Brookfield type rotational viscometer).
高分子薄膜形成用溶液の粘度が1mPa・s以上であれば、塗膜のハジキが発生するという不具合を抑制できる。一方、高分子薄膜形成用溶液の粘度が500mPa・s以下であれば、均一な塗膜が得られなくなるという不具合を抑制できる。
また、上記観点より、高分子薄膜形成用溶液の粘度(測定温度:25℃)を1.5mPa・s以上400mPa・s以下の範囲内の値とすることがより好ましく、2mPa・s以上300mPa・s以下の範囲内の値とすることがさらに好ましい。
なお、高分子薄膜形成用溶液の粘度は、JIS K7117-1の4.1(ブルックフィールド型回転粘度計)に準拠して測定されたものである。 Moreover, it is preferable to make the viscosity (measurement temperature: 25 degreeC) of the solution for polymer thin film formation into the value within the range of 1 mPa * s or more and 500 mPa * s or less.
If the viscosity of the solution for forming a polymer thin film is 1 mPa · s or more, it is possible to suppress the problem that repelling of the coating film occurs. On the other hand, when the viscosity of the solution for forming a polymer thin film is 500 mPa · s or less, it is possible to suppress the problem that a uniform coating film can not be obtained.
Further, from the above viewpoint, it is more preferable to set the viscosity (measurement temperature: 25 ° C.) of the solution for forming a polymer thin film to a value within the range of 1.5 mPa · s to 400 mPa · s, and 2 mPa · s to 300 mPa · s. More preferably, the value is in the range of s or less.
The viscosity of the solution for forming a polymer thin film is measured in accordance with JIS K 7117-1 4.1 (Brookfield type rotational viscometer).
また、工程フィルム2上に形成された高分子薄膜形成用溶液の塗布層を、高分子薄膜1とするための乾燥条件としては、特に限定されない。塗布層の乾燥は、40℃以上120℃以下の温度条件で、かつ6秒間以上300秒間以下の乾燥時間で行うことが好ましい。
乾燥温度が40℃以上であれば、乾燥に時間がかかり過ぎたり乾燥不足になったりする不具合を抑制できる。一方、乾燥温度が120℃以下であれば、皺またはカールが生じたりする不具合を抑制できる。
また、乾燥時間が6秒以上であれば、乾燥不足になるという不具合を防止できる。一方、乾燥時間が300秒以下であれば、皺またはカールが生じたりする不具合を抑制できる。
また、上記観点より、高分子薄膜形成用溶液の塗布層を高分子薄膜1とするための乾燥条件を、50℃以上110℃以下の温度条件、かつ12秒間以上180秒間以下の乾燥時間とすることがより好ましく、60℃以上100℃以下の温度条件、かつ18秒間以上120秒間以下の乾燥時間とすることがさらに好ましい。 The drying conditions for forming the polymerthin film 1 on the coated layer of the solution for forming a polymer thin film formed on the step film 2 are not particularly limited. The drying of the coating layer is preferably performed at a temperature of 40 ° C. to 120 ° C. and a drying time of 6 seconds to 300 seconds.
If the drying temperature is 40 ° C. or more, it is possible to suppress the problem that the drying takes time or the drying becomes insufficient. On the other hand, if the drying temperature is 120 ° C. or less, it is possible to suppress a defect that wrinkles or curls occur.
In addition, if the drying time is 6 seconds or more, it is possible to prevent the problem of insufficient drying. On the other hand, if the drying time is 300 seconds or less, problems such as wrinkles or curling can be suppressed.
Further, from the above viewpoint, the drying conditions for forming the coating layer of the polymer thin film forming solution as the polymerthin film 1 are the temperature conditions of 50 ° C. or more and 110 ° C. or less, and the drying time of 12 seconds or more and 180 seconds or less. It is more preferable that the temperature condition be 60 ° C. or more and 100 ° C. or less and the drying time be 18 seconds or more and 120 seconds or less.
乾燥温度が40℃以上であれば、乾燥に時間がかかり過ぎたり乾燥不足になったりする不具合を抑制できる。一方、乾燥温度が120℃以下であれば、皺またはカールが生じたりする不具合を抑制できる。
また、乾燥時間が6秒以上であれば、乾燥不足になるという不具合を防止できる。一方、乾燥時間が300秒以下であれば、皺またはカールが生じたりする不具合を抑制できる。
また、上記観点より、高分子薄膜形成用溶液の塗布層を高分子薄膜1とするための乾燥条件を、50℃以上110℃以下の温度条件、かつ12秒間以上180秒間以下の乾燥時間とすることがより好ましく、60℃以上100℃以下の温度条件、かつ18秒間以上120秒間以下の乾燥時間とすることがさらに好ましい。 The drying conditions for forming the polymer
If the drying temperature is 40 ° C. or more, it is possible to suppress the problem that the drying takes time or the drying becomes insufficient. On the other hand, if the drying temperature is 120 ° C. or less, it is possible to suppress a defect that wrinkles or curls occur.
In addition, if the drying time is 6 seconds or more, it is possible to prevent the problem of insufficient drying. On the other hand, if the drying time is 300 seconds or less, problems such as wrinkles or curling can be suppressed.
Further, from the above viewpoint, the drying conditions for forming the coating layer of the polymer thin film forming solution as the polymer
また、高分子薄膜形成用溶液の塗布を、ロールツーロール(Roll to Roll)法にて行うことが好ましい。
この理由は、ロールツーロール法であれば、所定の厚さを有する高分子薄膜1を、より効率的に形成することができることから、フィルム状積層体100をより効率よく大量生産することができるためである。
また、ロールツーロール法を実施するにあたり、塗布装置として、バーコータ、グラビアコータまたはダイコータが好ましく、リバースグラビアコータまたはスロットダイコータがより好ましい。
この理由は、これらの塗布装置であれば、所定の厚さを有する高分子薄膜1を、さらに効率的に形成することができるためである。
すなわち、バーコータ、リバースグラビアコータおよびスロットダイコータであれば、ナノメートルオーダーの厚さの高分子薄膜1を、その表面に皺を発生させることなく、かつ、均一な厚さで形成できる。しかも、バーコータ、リバースグラビアコータおよびスロットダイコータは、その構造が簡単である上、経済性にも優れる。 Moreover, it is preferable to perform application | coating of the solution for polymer thin film formation by the roll-to-roll (Roll to Roll) method.
The reason is that the roll-to-roll method can form the polymerthin film 1 having a predetermined thickness more efficiently, so that the film-like laminate 100 can be mass-produced more efficiently. It is for.
Moreover, when implementing a roll-to-roll method, as a coating apparatus, a bar coater, a gravure coater, or a die coater is preferable, and a reverse gravure coater or a slot die coater is more preferable.
The reason is that, with these coating devices, the polymerthin film 1 having a predetermined thickness can be formed more efficiently.
That is, if it is a bar coater, a reverse gravure coater, and a slot die coater, the polymerthin film 1 of nanometer order thickness can be formed with uniform thickness without generating wrinkles on the surface. Moreover, the bar coater, the reverse gravure coater and the slot die coater are simple in their structure and excellent in economics.
この理由は、ロールツーロール法であれば、所定の厚さを有する高分子薄膜1を、より効率的に形成することができることから、フィルム状積層体100をより効率よく大量生産することができるためである。
また、ロールツーロール法を実施するにあたり、塗布装置として、バーコータ、グラビアコータまたはダイコータが好ましく、リバースグラビアコータまたはスロットダイコータがより好ましい。
この理由は、これらの塗布装置であれば、所定の厚さを有する高分子薄膜1を、さらに効率的に形成することができるためである。
すなわち、バーコータ、リバースグラビアコータおよびスロットダイコータであれば、ナノメートルオーダーの厚さの高分子薄膜1を、その表面に皺を発生させることなく、かつ、均一な厚さで形成できる。しかも、バーコータ、リバースグラビアコータおよびスロットダイコータは、その構造が簡単である上、経済性にも優れる。 Moreover, it is preferable to perform application | coating of the solution for polymer thin film formation by the roll-to-roll (Roll to Roll) method.
The reason is that the roll-to-roll method can form the polymer
Moreover, when implementing a roll-to-roll method, as a coating apparatus, a bar coater, a gravure coater, or a die coater is preferable, and a reverse gravure coater or a slot die coater is more preferable.
The reason is that, with these coating devices, the polymer
That is, if it is a bar coater, a reverse gravure coater, and a slot die coater, the polymer
(剥離工程)
剥離工程においては、図3に示すようなフィルム状積層体100における高分子薄膜1を、工程フィルム2から剥離して、自己支持性を有する高分子薄膜1を得る。
剥離工程における工程フィルム2の高分子薄膜1からの剥離力は、5mN/20mm以上、100mN/20mm以下であることが好ましく、10mN/20mm以上、50mN/20mm以下であることがより好ましく、15mN/20mm以上、30mN/20mm以下であることが特に好ましい。
上記の剥離力が5mN/20mm以上であれば、高分子薄膜形成工程において、工程フィルムと高分子薄膜とが剥がれやすくなるという不具合を抑制できる。また、上記の剥離力が100mN/20mm以下であれば、剥離工程において、高分子薄膜から工程フィルムが剥離しにくくなり、高分子薄膜が破断するという不具合を抑制できる。
上記の剥離力は、例えば、工程フィルム2に用いる剥離剤の種類を変更することで調整できる。 (Peeling process)
In the peeling step, the polymerthin film 1 in the film-like laminate 100 as shown in FIG. 3 is peeled from the process film 2 to obtain the polymer thin film 1 having a self-supporting property.
The peeling force of thestep film 2 from the polymer thin film 1 in the peeling step is preferably 5 mN / 20 mm or more and 100 mN / 20 mm or less, more preferably 10 mN / 20 mm or more and 50 mN / 20 mm or less, 15 mN / It is particularly preferable that the diameter is 20 mm or more and 30 mN / 20 mm or less.
If the peeling force is 5 mN / 20 mm or more, it is possible to suppress the problem that the process film and the polymer thin film are easily peeled off in the polymer thin film forming step. In addition, when the above peeling force is 100 mN / 20 mm or less, in the peeling step, it becomes difficult to peel the step film from the polymer thin film, and it is possible to suppress the problem that the polymer thin film is broken.
The above peeling force can be adjusted, for example, by changing the type of the release agent used for theprocess film 2.
剥離工程においては、図3に示すようなフィルム状積層体100における高分子薄膜1を、工程フィルム2から剥離して、自己支持性を有する高分子薄膜1を得る。
剥離工程における工程フィルム2の高分子薄膜1からの剥離力は、5mN/20mm以上、100mN/20mm以下であることが好ましく、10mN/20mm以上、50mN/20mm以下であることがより好ましく、15mN/20mm以上、30mN/20mm以下であることが特に好ましい。
上記の剥離力が5mN/20mm以上であれば、高分子薄膜形成工程において、工程フィルムと高分子薄膜とが剥がれやすくなるという不具合を抑制できる。また、上記の剥離力が100mN/20mm以下であれば、剥離工程において、高分子薄膜から工程フィルムが剥離しにくくなり、高分子薄膜が破断するという不具合を抑制できる。
上記の剥離力は、例えば、工程フィルム2に用いる剥離剤の種類を変更することで調整できる。 (Peeling process)
In the peeling step, the polymer
The peeling force of the
If the peeling force is 5 mN / 20 mm or more, it is possible to suppress the problem that the process film and the polymer thin film are easily peeled off in the polymer thin film forming step. In addition, when the above peeling force is 100 mN / 20 mm or less, in the peeling step, it becomes difficult to peel the step film from the polymer thin film, and it is possible to suppress the problem that the polymer thin film is broken.
The above peeling force can be adjusted, for example, by changing the type of the release agent used for the
[フィルム状積層体]
本実施形態に係るフィルム状積層体100は、図3に示すように、高分子薄膜1と、工程フィルム2とを備えている。このフィルム状積層体100は、工程フィルム2上に前記高分子薄膜形成用溶液を塗布し、塗布層を乾燥して、高分子薄膜1を形成することによって得られる。すなわち、このフィルム状積層体100は、前述の本実施形態に係る高分子薄膜の製造方法における高分子薄膜形成工程により得られる。 [Film-like laminate]
The film-like laminate 100 according to the present embodiment includes a polymer thin film 1 and a process film 2 as shown in FIG. The film-like laminate 100 is obtained by applying the solution for forming a polymer thin film on a process film 2 and drying the applied layer to form a polymer thin film 1. That is, the film-like laminate 100 is obtained by the polymer thin film forming step in the method of manufacturing a polymer thin film according to the above-described embodiment.
本実施形態に係るフィルム状積層体100は、図3に示すように、高分子薄膜1と、工程フィルム2とを備えている。このフィルム状積層体100は、工程フィルム2上に前記高分子薄膜形成用溶液を塗布し、塗布層を乾燥して、高分子薄膜1を形成することによって得られる。すなわち、このフィルム状積層体100は、前述の本実施形態に係る高分子薄膜の製造方法における高分子薄膜形成工程により得られる。 [Film-like laminate]
The film-
(本実施形態の作用効果)
本実施形態によれば、次のような作用効果を奏することができる。
(1)前記一般式(1)で表される構成単位を10mol%以上含有するノルボルネン系ポリマー(A)を含み、厚さが10nm以上1000nm以下であり、かつ、自己支持性を有する高分子薄膜1を効率よく製造できる。
(2)接着剤などを用いずとも、被着物に対して密着させることができ、高い撥水性を有する高分子薄膜1を提供できる。 (Operation and effect of the present embodiment)
According to the present embodiment, the following effects can be achieved.
(1) A polymer thin film containing a norbornene-based polymer (A) containing 10 mol% or more of the constitutional unit represented by the general formula (1), having a thickness of 10 nm to 1000 nm, and having self-supportingproperties 1 can be manufactured efficiently.
(2) It can be adhered to an adherend without using an adhesive or the like, and a polymerthin film 1 having high water repellency can be provided.
本実施形態によれば、次のような作用効果を奏することができる。
(1)前記一般式(1)で表される構成単位を10mol%以上含有するノルボルネン系ポリマー(A)を含み、厚さが10nm以上1000nm以下であり、かつ、自己支持性を有する高分子薄膜1を効率よく製造できる。
(2)接着剤などを用いずとも、被着物に対して密着させることができ、高い撥水性を有する高分子薄膜1を提供できる。 (Operation and effect of the present embodiment)
According to the present embodiment, the following effects can be achieved.
(1) A polymer thin film containing a norbornene-based polymer (A) containing 10 mol% or more of the constitutional unit represented by the general formula (1), having a thickness of 10 nm to 1000 nm, and having self-supporting
(2) It can be adhered to an adherend without using an adhesive or the like, and a polymer
[実施形態の変形]
本実施形態は前述の実施形態に限定されず、本実施形態の目的を達成できる範囲での変形、改良などは本実施形態に含まれる。
例えば、前述の実施形態では、剥離基材21および剥離剤層22を備える工程フィルム2を用いたが、これに限定されない。例えば、剥離基材21の表面自由エネルギーおよび表面の算術平均粗さが、適当な範囲内にある場合には、剥離基材21からなる単層のフィルムを工程フィルム2として使用してもよい。 [Modification of the embodiment]
The present embodiment is not limited to the above-described embodiment, but includes modifications, improvements, and the like as long as the object of the present embodiment can be achieved.
For example, in above-mentioned embodiment, although theprocess film 2 provided with the peeling base material 21 and the release agent layer 22 was used, it is not limited to this. For example, when the surface free energy of the release substrate 21 and the arithmetic mean roughness of the surface are within appropriate ranges, a single layer film composed of the release substrate 21 may be used as the process film 2.
本実施形態は前述の実施形態に限定されず、本実施形態の目的を達成できる範囲での変形、改良などは本実施形態に含まれる。
例えば、前述の実施形態では、剥離基材21および剥離剤層22を備える工程フィルム2を用いたが、これに限定されない。例えば、剥離基材21の表面自由エネルギーおよび表面の算術平均粗さが、適当な範囲内にある場合には、剥離基材21からなる単層のフィルムを工程フィルム2として使用してもよい。 [Modification of the embodiment]
The present embodiment is not limited to the above-described embodiment, but includes modifications, improvements, and the like as long as the object of the present embodiment can be achieved.
For example, in above-mentioned embodiment, although the
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明は、これらの実施例に何ら限定されない。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
[試験例1]
1.工程フィルムの選定
(1) 工程フィルムの製造
試験例1の工程フィルムは、剥離基材と、剥離基材上に設けられた剥離剤層とを有する。
シリコーン変性アルキッド樹脂とアミノ樹脂の混合物(信越化学工業株式会社製:商品名「KS-882」)100重量部と、p-トルエンスルホン酸(硬化剤)1重量部とをトルエンで希釈し、固形分濃度2質量%の塗布液を調製した。
次いで、得られた塗布液を、厚さ38μmのポリエチレンテレフタレート(PET)フィルム(三菱ケミカル株式会社製の「ダイアホイルT100」)上に、マイヤーバーにて塗布し、140℃、60秒間加熱して乾燥させ、平均厚さ0.1μmの剥離剤層を形成した工程フィルムを得た。そして、得られた工程フィルムの剥離剤層の表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 1]
1. Selection of Process Film (1) Production of Process Film The process film of Test Example 1 has a release substrate and a release agent layer provided on the release substrate.
Dilute 100 parts by weight of a mixture of silicone-modified alkyd resin and amino resin (Shin-Etsu Chemical Co., Ltd .: trade name "KS-882") and 1 part by weight of p-toluenesulfonic acid (hardening agent) with toluene, and solidify it. A coating solution having a concentration of 2% by mass was prepared.
Next, the obtained coating solution is coated on a 38 μm thick polyethylene terephthalate (PET) film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation) using a Meyer bar, and heated at 140 ° C for 60 seconds. It dried and the process film which formed the release agent layer of average thickness 0.1 micrometer was obtained. Then, the surface free energy on the surface of the release agent layer of the obtained process film and the arithmetic mean roughness are shown in Table 1.
1.工程フィルムの選定
(1) 工程フィルムの製造
試験例1の工程フィルムは、剥離基材と、剥離基材上に設けられた剥離剤層とを有する。
シリコーン変性アルキッド樹脂とアミノ樹脂の混合物(信越化学工業株式会社製:商品名「KS-882」)100重量部と、p-トルエンスルホン酸(硬化剤)1重量部とをトルエンで希釈し、固形分濃度2質量%の塗布液を調製した。
次いで、得られた塗布液を、厚さ38μmのポリエチレンテレフタレート(PET)フィルム(三菱ケミカル株式会社製の「ダイアホイルT100」)上に、マイヤーバーにて塗布し、140℃、60秒間加熱して乾燥させ、平均厚さ0.1μmの剥離剤層を形成した工程フィルムを得た。そして、得られた工程フィルムの剥離剤層の表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 1]
1. Selection of Process Film (1) Production of Process Film The process film of Test Example 1 has a release substrate and a release agent layer provided on the release substrate.
Dilute 100 parts by weight of a mixture of silicone-modified alkyd resin and amino resin (Shin-Etsu Chemical Co., Ltd .: trade name "KS-882") and 1 part by weight of p-toluenesulfonic acid (hardening agent) with toluene, and solidify it. A coating solution having a concentration of 2% by mass was prepared.
Next, the obtained coating solution is coated on a 38 μm thick polyethylene terephthalate (PET) film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation) using a Meyer bar, and heated at 140 ° C for 60 seconds. It dried and the process film which formed the release agent layer of average thickness 0.1 micrometer was obtained. Then, the surface free energy on the surface of the release agent layer of the obtained process film and the arithmetic mean roughness are shown in Table 1.
(2) 高分子薄膜形成用溶液の調製
環状オレフィンコポリマー(三井化学株式会社製の「APEL6011T」、ガラス転移点105℃、MFR26g/10min)の溶液(固形分10質量%)をトルエンに溶解させ、固形分3質量%に希釈して高分子薄膜形成用溶液を作製した。 (2) Preparation of a solution for forming a polymer thin film A solution (solid content: 10% by mass) of a cyclic olefin copolymer (“APEL6011T” manufactured by Mitsui Chemicals, Inc., glass transition point 105 ° C., MFR 26 g / 10 min) is dissolved in toluene, It diluted to 3 mass% of solid content, and the solution for polymer thin film formation was produced.
環状オレフィンコポリマー(三井化学株式会社製の「APEL6011T」、ガラス転移点105℃、MFR26g/10min)の溶液(固形分10質量%)をトルエンに溶解させ、固形分3質量%に希釈して高分子薄膜形成用溶液を作製した。 (2) Preparation of a solution for forming a polymer thin film A solution (solid content: 10% by mass) of a cyclic olefin copolymer (“APEL6011T” manufactured by Mitsui Chemicals, Inc., glass transition point 105 ° C., MFR 26 g / 10 min) is dissolved in toluene, It diluted to 3 mass% of solid content, and the solution for polymer thin film formation was produced.
(3) フィルム状積層体の形成
次いで、リバースグラビアコータを用いて、準備した工程フィルム上に乾燥後の高分子薄膜の厚さが800nmとなるように、高分子薄膜形成用溶液を塗布した後、100℃で60秒間乾燥させフィルム状積層体を得た。 (3) Formation of film-like laminate Then, using a reverse gravure coater, after applying a solution for forming a polymer thin film on the prepared step film so that the thickness of the dried polymer thin film is 800 nm. And dried at 100 ° C. for 60 seconds to obtain a film-like laminate.
次いで、リバースグラビアコータを用いて、準備した工程フィルム上に乾燥後の高分子薄膜の厚さが800nmとなるように、高分子薄膜形成用溶液を塗布した後、100℃で60秒間乾燥させフィルム状積層体を得た。 (3) Formation of film-like laminate Then, using a reverse gravure coater, after applying a solution for forming a polymer thin film on the prepared step film so that the thickness of the dried polymer thin film is 800 nm. And dried at 100 ° C. for 60 seconds to obtain a film-like laminate.
2.測定・評価
(1)工程フィルムの表面自由エネルギーの測定
工程フィルムにおける高分子薄膜形成用溶液を塗布する面(高分子薄膜との接触面)における表面自由エネルギー(mJ/m2)は、各種液滴の接触角(測定温度:25℃)を測定し、その値をもとに北崎・畑理論により求めた。
すなわち、「分散成分」としてのジヨードメタン、「双極子成分」としての1-ブロモナフタレン、「水素結合成分」としての蒸留水を液滴として使用し、協和界面科学(株)製、DM-70を用いて、静滴法により、JIS R3257に準拠して接触角(測定温度:25℃)を測定し、その値をもとに北崎・畑理論により、表面自由エネルギー(mJ/m2)を求めた。
(2)工程フィルムの算術平均粗さRaの測定
剥離シートにおける高分子薄膜形成用溶液を塗布する面(高分子膜膜との接触面)における算術平均粗さRa(nm)は、Veeco Instruments社製、光干渉顕微鏡NT1100を用いて、250,000μm2(500μm×500μm)の領域について観察し、算術平均粗さ(Ra)を求めた。
(3)工程フィルムに対する高分子薄膜形成用溶液の塗布性
フィルム状積層体を形成する際の塗布性を評価した。工程フィルムに対して高分子薄膜形成用溶液が均一に塗布できた場合を「A」と判定し、工程フィルムにハジキなどが発生して均一に塗布できなかった場合を「B」と判定した。得られた結果を表1に示す。
(4)高分子薄膜の剥離性
フィルム状積層体における、工程フィルムから高分子薄膜を剥離する際の剥離性を評価した。工程フィルムから高分子薄膜を容易に剥離できた場合を「A」と判定し、高分子薄膜が破れたりして剥離できなかった場合を「B」と判定した。得られた結果を表1に示す。 2. Measurement / Evaluation (1) Measurement of Surface Free Energy of Process Film The surface free energy (mJ / m 2 ) on the surface (contact surface with the polymer thin film) to which the solution for forming a polymer thin film in the process film is applied is various liquids. The contact angle of the drop (measurement temperature: 25 ° C.) was measured, and based on that value, it was determined by Kitazaki-Hata theory.
That is, using diiodomethane as “dispersion component”, 1-bromonaphthalene as “dipolar component”, and distilled water as “hydrogen bond component” as droplets, DM-70 manufactured by Kyowa Interface Science Co., Ltd. is used. Using the static drop method, measure the contact angle (measurement temperature: 25 ° C) according to JIS R3257, and based on the value, determine the surface free energy (mJ / m 2 ) by Kitazaki-Hata theory. The
(2) Measurement of Arithmetic Average Roughness Ra of Process Film Arithmetic average roughness Ra (nm) of the surface on which the solution for forming a polymer thin film is applied (contact surface with the polymer film) in the release sheet is Veeco Instruments Inc. A region of 250,000 μm 2 (500 μm × 500 μm) was observed using a light interference microscope NT1100 manufactured by Shin-Etsu Chemical Co., Ltd., and the arithmetic mean roughness (Ra) was determined.
(3) Coatability of Solution for Forming Polymer Thin Film to Processed Film The coatability when forming a film-like laminate was evaluated. The case where the solution for polymer thin film formation could be uniformly applied to the process film was judged as "A", and the case where repelling etc. occurred on the process film and could not be uniformly applied was judged as "B". The obtained results are shown in Table 1.
(4) Peelability of Polymer Thin Film The peelability at the time of peeling the polymer thin film from the process film in the film-like laminate was evaluated. The case where the polymer thin film could be easily peeled from the process film was judged as "A", and the case where the polymer thin film was broken or could not be peeled was judged as "B". The obtained results are shown in Table 1.
(1)工程フィルムの表面自由エネルギーの測定
工程フィルムにおける高分子薄膜形成用溶液を塗布する面(高分子薄膜との接触面)における表面自由エネルギー(mJ/m2)は、各種液滴の接触角(測定温度:25℃)を測定し、その値をもとに北崎・畑理論により求めた。
すなわち、「分散成分」としてのジヨードメタン、「双極子成分」としての1-ブロモナフタレン、「水素結合成分」としての蒸留水を液滴として使用し、協和界面科学(株)製、DM-70を用いて、静滴法により、JIS R3257に準拠して接触角(測定温度:25℃)を測定し、その値をもとに北崎・畑理論により、表面自由エネルギー(mJ/m2)を求めた。
(2)工程フィルムの算術平均粗さRaの測定
剥離シートにおける高分子薄膜形成用溶液を塗布する面(高分子膜膜との接触面)における算術平均粗さRa(nm)は、Veeco Instruments社製、光干渉顕微鏡NT1100を用いて、250,000μm2(500μm×500μm)の領域について観察し、算術平均粗さ(Ra)を求めた。
(3)工程フィルムに対する高分子薄膜形成用溶液の塗布性
フィルム状積層体を形成する際の塗布性を評価した。工程フィルムに対して高分子薄膜形成用溶液が均一に塗布できた場合を「A」と判定し、工程フィルムにハジキなどが発生して均一に塗布できなかった場合を「B」と判定した。得られた結果を表1に示す。
(4)高分子薄膜の剥離性
フィルム状積層体における、工程フィルムから高分子薄膜を剥離する際の剥離性を評価した。工程フィルムから高分子薄膜を容易に剥離できた場合を「A」と判定し、高分子薄膜が破れたりして剥離できなかった場合を「B」と判定した。得られた結果を表1に示す。 2. Measurement / Evaluation (1) Measurement of Surface Free Energy of Process Film The surface free energy (mJ / m 2 ) on the surface (contact surface with the polymer thin film) to which the solution for forming a polymer thin film in the process film is applied is various liquids. The contact angle of the drop (measurement temperature: 25 ° C.) was measured, and based on that value, it was determined by Kitazaki-Hata theory.
That is, using diiodomethane as “dispersion component”, 1-bromonaphthalene as “dipolar component”, and distilled water as “hydrogen bond component” as droplets, DM-70 manufactured by Kyowa Interface Science Co., Ltd. is used. Using the static drop method, measure the contact angle (measurement temperature: 25 ° C) according to JIS R3257, and based on the value, determine the surface free energy (mJ / m 2 ) by Kitazaki-Hata theory. The
(2) Measurement of Arithmetic Average Roughness Ra of Process Film Arithmetic average roughness Ra (nm) of the surface on which the solution for forming a polymer thin film is applied (contact surface with the polymer film) in the release sheet is Veeco Instruments Inc. A region of 250,000 μm 2 (500 μm × 500 μm) was observed using a light interference microscope NT1100 manufactured by Shin-Etsu Chemical Co., Ltd., and the arithmetic mean roughness (Ra) was determined.
(3) Coatability of Solution for Forming Polymer Thin Film to Processed Film The coatability when forming a film-like laminate was evaluated. The case where the solution for polymer thin film formation could be uniformly applied to the process film was judged as "A", and the case where repelling etc. occurred on the process film and could not be uniformly applied was judged as "B". The obtained results are shown in Table 1.
(4) Peelability of Polymer Thin Film The peelability at the time of peeling the polymer thin film from the process film in the film-like laminate was evaluated. The case where the polymer thin film could be easily peeled from the process film was judged as "A", and the case where the polymer thin film was broken or could not be peeled was judged as "B". The obtained results are shown in Table 1.
[試験例2]
試験例2では、工程フィルムとしてポリエチレンテレフタレートフィルム(三菱ケミカル株式会社製の「ダイアホイルT100」、厚さ38μm)を用いた以外は、試験例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表1に示す。また、試験例2で用いた工程フィルムの表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 2]
In Test Example 2, a film-like laminate and a polymer are prepared in the same manner as in Test Example 1 except that a polyethylene terephthalate film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation, 38 μm thick) is used as the process film. Thin films were produced and evaluated. The obtained results are shown in Table 1. The surface free energy and the arithmetic mean roughness on the surface of the process film used in Test Example 2 are shown in Table 1.
試験例2では、工程フィルムとしてポリエチレンテレフタレートフィルム(三菱ケミカル株式会社製の「ダイアホイルT100」、厚さ38μm)を用いた以外は、試験例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表1に示す。また、試験例2で用いた工程フィルムの表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 2]
In Test Example 2, a film-like laminate and a polymer are prepared in the same manner as in Test Example 1 except that a polyethylene terephthalate film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation, 38 μm thick) is used as the process film. Thin films were produced and evaluated. The obtained results are shown in Table 1. The surface free energy and the arithmetic mean roughness on the surface of the process film used in Test Example 2 are shown in Table 1.
[試験例3]
試験例3では、工程フィルムとしてリンテック株式会社製の「SP-PET381031」を用いた以外は、試験例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表1に示す。また、試験例3で用いた工程フィルムの剥離剤層の表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 3]
In Test Example 3, a film-like laminate and a polymer thin film were produced and evaluated in the same manner as in Test Example 1 except that “SP-PET 381031” manufactured by Lintec Corporation was used as the process film. The obtained results are shown in Table 1. Further, the surface free energy on the surface of the release agent layer of the step film used in Test Example 3 and the arithmetic mean roughness are shown in Table 1.
試験例3では、工程フィルムとしてリンテック株式会社製の「SP-PET381031」を用いた以外は、試験例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表1に示す。また、試験例3で用いた工程フィルムの剥離剤層の表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 3]
In Test Example 3, a film-like laminate and a polymer thin film were produced and evaluated in the same manner as in Test Example 1 except that “SP-PET 381031” manufactured by Lintec Corporation was used as the process film. The obtained results are shown in Table 1. Further, the surface free energy on the surface of the release agent layer of the step film used in Test Example 3 and the arithmetic mean roughness are shown in Table 1.
[試験例4]
試験例4では、工程フィルムとしてリンテック株式会社製の「SP-PET38T100X」を用いた以外は、試験例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表1に示す。また、試験例4で用いた工程フィルムの剥離剤層の表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 4]
In Test Example 4, a film-like laminate and a polymer thin film were produced and evaluated in the same manner as in Test Example 1 except that “SP-PET38T100X” manufactured by Lintec Corporation was used as the process film. The obtained results are shown in Table 1. Further, the surface free energy on the surface of the release agent layer of the step film used in Test Example 4 and the arithmetic mean roughness are shown in Table 1.
試験例4では、工程フィルムとしてリンテック株式会社製の「SP-PET38T100X」を用いた以外は、試験例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表1に示す。また、試験例4で用いた工程フィルムの剥離剤層の表面における表面自由エネルギー、および、算術平均粗さを表1に示す。 [Test Example 4]
In Test Example 4, a film-like laminate and a polymer thin film were produced and evaluated in the same manner as in Test Example 1 except that “SP-PET38T100X” manufactured by Lintec Corporation was used as the process film. The obtained results are shown in Table 1. Further, the surface free energy on the surface of the release agent layer of the step film used in Test Example 4 and the arithmetic mean roughness are shown in Table 1.
表1に示す結果からも明らかな通り、環状オレフィンコポリマーを含有する高分子薄膜形成用溶液を用いる場合、試験例1で用いる工程フィルムを使用することが好ましいことが分かった。そこで、以下の実施例および比較例では、試験例1で用いる工程フィルムを使用した。
As apparent from the results shown in Table 1, it was found that when using a solution for forming a polymer thin film containing a cyclic olefin copolymer, it is preferable to use the process film used in Test Example 1. Therefore, in the following examples and comparative examples, the process film used in Test Example 1 was used.
[実施例1]
1.高分子薄膜の製造
(1) 工程フィルムの製造
実施例1の工程フィルムは、基材と、基材上に設けられた剥離剤層とを有する。
シリコーン変性アルキッド樹脂とアミノ樹脂の混合物(信越化学工業株式会社製:商品名「KS-882」)100重量部と、p-トルエンスルホン酸(硬化剤)1重量部とをトルエンで希釈し、固形分濃度2質量%の塗布液を調製した。
次いで、得られた塗布液を、厚さ38μmのポリエチレンテレフタレート(PET)フィルム(三菱ケミカル株式会社製の「ダイアホイルT100」)上に、マイヤーバーにて塗布し、140℃、60秒間加熱して乾燥させ、平均厚さ0.1μmの剥離剤層を形成した工程フィルムを得た。 Example 1
1. Production of Polymer Thin Film (1) Production of Process Film The process film of Example 1 has a substrate and a release agent layer provided on the substrate.
Dilute 100 parts by weight of a mixture of silicone-modified alkyd resin and amino resin (Shin-Etsu Chemical Co., Ltd .: trade name "KS-882") and 1 part by weight of p-toluenesulfonic acid (hardening agent) with toluene, and solidify it. A coating solution having a concentration of 2% by mass was prepared.
Next, the obtained coating solution is coated on a 38 μm thick polyethylene terephthalate (PET) film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation) using a Meyer bar, and heated at 140 ° C for 60 seconds. It dried and the process film which formed the release agent layer of average thickness 0.1 micrometer was obtained.
1.高分子薄膜の製造
(1) 工程フィルムの製造
実施例1の工程フィルムは、基材と、基材上に設けられた剥離剤層とを有する。
シリコーン変性アルキッド樹脂とアミノ樹脂の混合物(信越化学工業株式会社製:商品名「KS-882」)100重量部と、p-トルエンスルホン酸(硬化剤)1重量部とをトルエンで希釈し、固形分濃度2質量%の塗布液を調製した。
次いで、得られた塗布液を、厚さ38μmのポリエチレンテレフタレート(PET)フィルム(三菱ケミカル株式会社製の「ダイアホイルT100」)上に、マイヤーバーにて塗布し、140℃、60秒間加熱して乾燥させ、平均厚さ0.1μmの剥離剤層を形成した工程フィルムを得た。 Example 1
1. Production of Polymer Thin Film (1) Production of Process Film The process film of Example 1 has a substrate and a release agent layer provided on the substrate.
Dilute 100 parts by weight of a mixture of silicone-modified alkyd resin and amino resin (Shin-Etsu Chemical Co., Ltd .: trade name "KS-882") and 1 part by weight of p-toluenesulfonic acid (hardening agent) with toluene, and solidify it. A coating solution having a concentration of 2% by mass was prepared.
Next, the obtained coating solution is coated on a 38 μm thick polyethylene terephthalate (PET) film ("Diafoil T100" manufactured by Mitsubishi Chemical Corporation) using a Meyer bar, and heated at 140 ° C for 60 seconds. It dried and the process film which formed the release agent layer of average thickness 0.1 micrometer was obtained.
(2) 高分子薄膜形成用溶液の調製
環状オレフィンコポリマー(三井化学株式会社製の「APEL6011T」、ガラス転移点105℃、MFR26g/10min)の溶液(固形分10質量%)をトルエンに溶解させ、固形分3質量%に希釈して高分子薄膜形成用溶液(粘度2.4mPa・s)を作製した。そして、実施例1で用いた環状オレフィンコポリマーのガラス転移点(Tg)およびMFRを表2に示す。 (2) Preparation of a solution for forming a polymer thin film A solution (solid content: 10% by mass) of a cyclic olefin copolymer (“APEL6011T” manufactured by Mitsui Chemicals, Inc., glass transition point 105 ° C., MFR 26 g / 10 min) is dissolved in toluene, The solid content was diluted to 3% by mass to prepare a solution for forming a polymer thin film (viscosity: 2.4 mPa · s). And, the glass transition point (T g ) and MFR of the cyclic olefin copolymer used in Example 1 are shown in Table 2.
環状オレフィンコポリマー(三井化学株式会社製の「APEL6011T」、ガラス転移点105℃、MFR26g/10min)の溶液(固形分10質量%)をトルエンに溶解させ、固形分3質量%に希釈して高分子薄膜形成用溶液(粘度2.4mPa・s)を作製した。そして、実施例1で用いた環状オレフィンコポリマーのガラス転移点(Tg)およびMFRを表2に示す。 (2) Preparation of a solution for forming a polymer thin film A solution (solid content: 10% by mass) of a cyclic olefin copolymer (“APEL6011T” manufactured by Mitsui Chemicals, Inc., glass transition point 105 ° C., MFR 26 g / 10 min) is dissolved in toluene, The solid content was diluted to 3% by mass to prepare a solution for forming a polymer thin film (viscosity: 2.4 mPa · s). And, the glass transition point (T g ) and MFR of the cyclic olefin copolymer used in Example 1 are shown in Table 2.
(3) フィルム状積層体の形成
次いで、リバースグラビアコータを用いて、準備した工程フィルム上に乾燥後の高分子薄膜の厚さが800nmとなるように、高分子薄膜形成用溶液を塗布した後、100℃で60秒間乾燥させフィルム状積層体を得た。 (3) Formation of film-like laminate Then, using a reverse gravure coater, after applying a solution for forming a polymer thin film on the prepared step film so that the thickness of the dried polymer thin film is 800 nm. And dried at 100 ° C. for 60 seconds to obtain a film-like laminate.
次いで、リバースグラビアコータを用いて、準備した工程フィルム上に乾燥後の高分子薄膜の厚さが800nmとなるように、高分子薄膜形成用溶液を塗布した後、100℃で60秒間乾燥させフィルム状積層体を得た。 (3) Formation of film-like laminate Then, using a reverse gravure coater, after applying a solution for forming a polymer thin film on the prepared step film so that the thickness of the dried polymer thin film is 800 nm. And dried at 100 ° C. for 60 seconds to obtain a film-like laminate.
(4) 高分子薄膜の製造
次いで、フィルム状積層体の工程フィルムを剥離することによって、高分子薄膜を得た。 (4) Production of Polymer Thin Film Subsequently, the step film of the film-like laminate was peeled off to obtain a polymer thin film.
次いで、フィルム状積層体の工程フィルムを剥離することによって、高分子薄膜を得た。 (4) Production of Polymer Thin Film Subsequently, the step film of the film-like laminate was peeled off to obtain a polymer thin film.
2.測定・評価
(1)高分子薄膜の表面炭素濃度
高分子薄膜の表面炭素濃度を求めるため、高分子薄膜の表面のXPS測定を行った。測定には、PHI Quantera SXM(アルバック・ファイ株式会社製)を使用した。X線源に単色化Al・Kαを用い光電子取り出し角度45°にて測定を行い、表面に存在する炭素の元素濃度(単位:原子%)を算出した。得られた結果を表2に示す。
(2)高分子薄膜の剥離力
得られたフィルム状積層体における、工程フィルムから高分子薄膜を剥離する際の剥離力を測定した。
すなわち、フィルム状積層体における高分子薄膜に対して粘着テープ(日東電工株式会社製、No.31B)を貼合した後、粘着テープが貼合された状態の高分子薄膜を工程フィルムから180°剥離する際の剥離力(mN/20mm)を測定した。得られた結果を表2に示す。
(3)高分子薄膜の貼付性
先ず、支持基材(東洋紡株式会社製の「クリスパー75K2323」)の四方の端部に両面テープを貼付して、両面テープ貼付部を有する支持体を作製した。次に、この支持体の両面テープ貼付部を、フィルム状積層体の高分子薄膜上に貼付した。そして、支持体および高分子薄膜を、工程フィルムから剥離して、高分子薄膜を、支持体の表面に転移させた。次いで、高分子薄膜が転移した支持体から両面テープ貼付部を切り落とし、高分子薄膜と支持基材との積層体を作製した。この積層体を、高分子薄膜側が下記の被着物と接するように、被着物上に配置し、支持基材の上から2kgローラーを2往復して、高分子薄膜と被着物とを圧着させた。その際の貼付性を評価した。圧着後、高分子薄膜全面が被着物に貼り付いたまま、剥離しない場合を「A」と判定し、圧着後、高分子薄膜が被着物に貼り付かない、浮き、または剥がれがある場合を「B」と判定した。得られた結果を表2に示す。
PP:ポリプロピレン板(日立化成株式会社製の「PP-N-BN」、大きさ2mm×70mm×150mm)
ガラス:フロート板ガラス(旭硝子株式会社製の「フロート板ガラス R3202 糸面加工」、大きさ2mm×70mm×150mm) 2. Measurement / Evaluation (1) Surface Carbon Concentration of Polymer Thin Film In order to obtain the surface carbon concentration of the polymer thin film, XPS measurement of the surface of the polymer thin film was performed. For the measurement, PHI Quantera SXM (manufactured by ULVAC-PHI, Inc.) was used. The measurement was carried out at a photoelectron extraction angle of 45 ° using monochromatized Al · Kα as the X-ray source, and the elemental concentration (unit: atomic%) of carbon present on the surface was calculated. The obtained results are shown in Table 2.
(2) Peeling force of polymer thin film The peeling force at the time of peeling a polymer thin film from the process film in the obtained film-like laminate was measured.
That is, after bonding an adhesive tape (No. 31B, manufactured by Nitto Denko Corporation) to a polymer thin film in a film-like laminate, the polymer thin film in a state where the adhesive tape is bonded is 180 ° from the process film The peeling force (mN / 20 mm) at the time of peeling was measured. The obtained results are shown in Table 2.
(3) Sticking Property of Polymer Thin Film First, a double-sided tape was stuck to the square end of a support base (“Crisper 75K2323” manufactured by Toyobo Co., Ltd.) to prepare a support having a double-sided tape-sticked part. Next, the double-sided tape sticking part of this support was stuck on the polymer thin film of the film-like laminate. Then, the support and the polymer thin film were peeled off from the process film to transfer the polymer thin film to the surface of the support. Subsequently, the double-sided tape sticking part was cut off from the support body to which the polymer thin film transferred, and the laminated body of a polymer thin film and a support base material was produced. This laminate was placed on the adherend so that the polymer thin film side was in contact with the following adherend, and the polymer thin film and the adherend were pressed together by moving the 2 kg roller twice from the support base . The stickability at that time was evaluated. If the polymer thin film is not peeled off with the entire surface of the polymer thin film stuck to the adherend after pressure bonding, it is judged as “A”, and if the polymer thin film does not stick to the adherend after pressure bonding, the case where there is floating or peeling It was determined that "B". The obtained results are shown in Table 2.
PP: Polypropylene board ("PP-N-BN" manufactured by Hitachi Chemical Co., Ltd.,size 2 mm x 70 mm x 150 mm)
Glass: float plate glass ("float plate glass R3202 thread surface processing" manufactured by Asahi Glass Co., Ltd.,size 2 mm x 70 mm x 150 mm)
(1)高分子薄膜の表面炭素濃度
高分子薄膜の表面炭素濃度を求めるため、高分子薄膜の表面のXPS測定を行った。測定には、PHI Quantera SXM(アルバック・ファイ株式会社製)を使用した。X線源に単色化Al・Kαを用い光電子取り出し角度45°にて測定を行い、表面に存在する炭素の元素濃度(単位:原子%)を算出した。得られた結果を表2に示す。
(2)高分子薄膜の剥離力
得られたフィルム状積層体における、工程フィルムから高分子薄膜を剥離する際の剥離力を測定した。
すなわち、フィルム状積層体における高分子薄膜に対して粘着テープ(日東電工株式会社製、No.31B)を貼合した後、粘着テープが貼合された状態の高分子薄膜を工程フィルムから180°剥離する際の剥離力(mN/20mm)を測定した。得られた結果を表2に示す。
(3)高分子薄膜の貼付性
先ず、支持基材(東洋紡株式会社製の「クリスパー75K2323」)の四方の端部に両面テープを貼付して、両面テープ貼付部を有する支持体を作製した。次に、この支持体の両面テープ貼付部を、フィルム状積層体の高分子薄膜上に貼付した。そして、支持体および高分子薄膜を、工程フィルムから剥離して、高分子薄膜を、支持体の表面に転移させた。次いで、高分子薄膜が転移した支持体から両面テープ貼付部を切り落とし、高分子薄膜と支持基材との積層体を作製した。この積層体を、高分子薄膜側が下記の被着物と接するように、被着物上に配置し、支持基材の上から2kgローラーを2往復して、高分子薄膜と被着物とを圧着させた。その際の貼付性を評価した。圧着後、高分子薄膜全面が被着物に貼り付いたまま、剥離しない場合を「A」と判定し、圧着後、高分子薄膜が被着物に貼り付かない、浮き、または剥がれがある場合を「B」と判定した。得られた結果を表2に示す。
PP:ポリプロピレン板(日立化成株式会社製の「PP-N-BN」、大きさ2mm×70mm×150mm)
ガラス:フロート板ガラス(旭硝子株式会社製の「フロート板ガラス R3202 糸面加工」、大きさ2mm×70mm×150mm) 2. Measurement / Evaluation (1) Surface Carbon Concentration of Polymer Thin Film In order to obtain the surface carbon concentration of the polymer thin film, XPS measurement of the surface of the polymer thin film was performed. For the measurement, PHI Quantera SXM (manufactured by ULVAC-PHI, Inc.) was used. The measurement was carried out at a photoelectron extraction angle of 45 ° using monochromatized Al · Kα as the X-ray source, and the elemental concentration (unit: atomic%) of carbon present on the surface was calculated. The obtained results are shown in Table 2.
(2) Peeling force of polymer thin film The peeling force at the time of peeling a polymer thin film from the process film in the obtained film-like laminate was measured.
That is, after bonding an adhesive tape (No. 31B, manufactured by Nitto Denko Corporation) to a polymer thin film in a film-like laminate, the polymer thin film in a state where the adhesive tape is bonded is 180 ° from the process film The peeling force (mN / 20 mm) at the time of peeling was measured. The obtained results are shown in Table 2.
(3) Sticking Property of Polymer Thin Film First, a double-sided tape was stuck to the square end of a support base (“Crisper 75K2323” manufactured by Toyobo Co., Ltd.) to prepare a support having a double-sided tape-sticked part. Next, the double-sided tape sticking part of this support was stuck on the polymer thin film of the film-like laminate. Then, the support and the polymer thin film were peeled off from the process film to transfer the polymer thin film to the surface of the support. Subsequently, the double-sided tape sticking part was cut off from the support body to which the polymer thin film transferred, and the laminated body of a polymer thin film and a support base material was produced. This laminate was placed on the adherend so that the polymer thin film side was in contact with the following adherend, and the polymer thin film and the adherend were pressed together by moving the 2 kg roller twice from the support base . The stickability at that time was evaluated. If the polymer thin film is not peeled off with the entire surface of the polymer thin film stuck to the adherend after pressure bonding, it is judged as “A”, and if the polymer thin film does not stick to the adherend after pressure bonding, the case where there is floating or peeling It was determined that "B". The obtained results are shown in Table 2.
PP: Polypropylene board ("PP-N-BN" manufactured by Hitachi Chemical Co., Ltd.,
Glass: float plate glass ("float plate glass R3202 thread surface processing" manufactured by Asahi Glass Co., Ltd.,
(4)高分子薄膜上の水の接触角
高分子薄膜の水に対する濡れ性を評価するため、高分子薄膜上の水の接触角の測定を行った。測定には、接触角計(協和界面科学株式会社製、DM-701)を用いた。水に対する接触角を測定した(23℃、50%RH)。得られた結果を表2に示す。
(5)高分子薄膜上の水の滑落角
高分子薄膜の水に対する撥水性を評価するため、高分子薄膜上の水の滑落角の測定を行った。水平に設置された高分子薄膜上に、水滴を置き、高分子薄膜を徐々に傾けたときに水滴が流れ始める高分子薄膜の角度を滑落角として測定した。得られた結果を表2に示す。
(6)膜強度
膜強度は、クリープメーター(株式会社山電製の商品名「クリープメーターRE2-3305CYAMADEN」)にて測定した。具体的には、温度23℃、湿度50%RHの環境下にて24時間静置したフィルム状積層体の高分子薄膜面を直径1cmの穴の開いた冶具に貼り付け、工程フィルムを剥離した。直径1mmφの円柱型プランジャーを、高分子薄膜の治具の穴の中心部に対応する箇所に進入させた。なお、プランジャーの進入速度は、0.5mm/秒とした。プランジャーを穴の深さ方向に深度5mmまで進入させたときの最大応力(単位:mN/1mmφ)を測定した。なお、測定は10回行い、平均値を高分子薄膜の膜強度とした。得られた結果を表2に示す。 (4) Contact Angle of Water on Polymer Thin Film In order to evaluate the wettability of the polymer thin film to water, the contact angle of water on the polymer thin film was measured. For the measurement, a contact angle meter (DM-701, manufactured by Kyowa Interface Science Co., Ltd.) was used. The contact angle to water was measured (23 ° C., 50% RH). The obtained results are shown in Table 2.
(5) Sliding Angle of Water on Polymer Film In order to evaluate the water repellency of the polymer film to water, the sliding angle of water on the polymer film was measured. A drop of water was placed on a polymer thin film placed horizontally, and when the polymer thin film was gradually inclined, the angle of the polymer thin film from which the drop of water began to flow was measured as the sliding angle. The obtained results are shown in Table 2.
(6) Film Strength The film strength was measured with a creep meter (trade name “cree meter RE2-3305 CYAMADEN” manufactured by Yamaden Co., Ltd.). Specifically, the polymer thin film surface of the film-like laminate, which was allowed to stand for 24 hours in an environment of temperature 23 ° C. and humidity 50% RH, was attached to a jig with a hole of 1 cm in diameter, and the process film was peeled off . A cylindrical plunger with a diameter of 1 mmφ was advanced to a location corresponding to the center of the hole of the polymer thin film jig. The penetration speed of the plunger was 0.5 mm / sec. The maximum stress (unit: mN / 1 mmφ) was measured when the plunger was advanced to a depth of 5 mm in the depth direction of the hole. The measurement was performed 10 times, and the average value was taken as the film strength of the polymer thin film. The obtained results are shown in Table 2.
高分子薄膜の水に対する濡れ性を評価するため、高分子薄膜上の水の接触角の測定を行った。測定には、接触角計(協和界面科学株式会社製、DM-701)を用いた。水に対する接触角を測定した(23℃、50%RH)。得られた結果を表2に示す。
(5)高分子薄膜上の水の滑落角
高分子薄膜の水に対する撥水性を評価するため、高分子薄膜上の水の滑落角の測定を行った。水平に設置された高分子薄膜上に、水滴を置き、高分子薄膜を徐々に傾けたときに水滴が流れ始める高分子薄膜の角度を滑落角として測定した。得られた結果を表2に示す。
(6)膜強度
膜強度は、クリープメーター(株式会社山電製の商品名「クリープメーターRE2-3305CYAMADEN」)にて測定した。具体的には、温度23℃、湿度50%RHの環境下にて24時間静置したフィルム状積層体の高分子薄膜面を直径1cmの穴の開いた冶具に貼り付け、工程フィルムを剥離した。直径1mmφの円柱型プランジャーを、高分子薄膜の治具の穴の中心部に対応する箇所に進入させた。なお、プランジャーの進入速度は、0.5mm/秒とした。プランジャーを穴の深さ方向に深度5mmまで進入させたときの最大応力(単位:mN/1mmφ)を測定した。なお、測定は10回行い、平均値を高分子薄膜の膜強度とした。得られた結果を表2に示す。 (4) Contact Angle of Water on Polymer Thin Film In order to evaluate the wettability of the polymer thin film to water, the contact angle of water on the polymer thin film was measured. For the measurement, a contact angle meter (DM-701, manufactured by Kyowa Interface Science Co., Ltd.) was used. The contact angle to water was measured (23 ° C., 50% RH). The obtained results are shown in Table 2.
(5) Sliding Angle of Water on Polymer Film In order to evaluate the water repellency of the polymer film to water, the sliding angle of water on the polymer film was measured. A drop of water was placed on a polymer thin film placed horizontally, and when the polymer thin film was gradually inclined, the angle of the polymer thin film from which the drop of water began to flow was measured as the sliding angle. The obtained results are shown in Table 2.
(6) Film Strength The film strength was measured with a creep meter (trade name “cree meter RE2-3305 CYAMADEN” manufactured by Yamaden Co., Ltd.). Specifically, the polymer thin film surface of the film-like laminate, which was allowed to stand for 24 hours in an environment of temperature 23 ° C. and humidity 50% RH, was attached to a jig with a hole of 1 cm in diameter, and the process film was peeled off . A cylindrical plunger with a diameter of 1 mmφ was advanced to a location corresponding to the center of the hole of the polymer thin film jig. The penetration speed of the plunger was 0.5 mm / sec. The maximum stress (unit: mN / 1 mmφ) was measured when the plunger was advanced to a depth of 5 mm in the depth direction of the hole. The measurement was performed 10 times, and the average value was taken as the film strength of the polymer thin film. The obtained results are shown in Table 2.
[実施例2~4]
環状オレフィンコポリマーの種類およびの高分子薄膜の厚さを表2に示すように変更した以外は、実施例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表2に示す。また、実施例2~4で用いた環状オレフィンコポリマーのガラス転移点(Tg)、MFRおよび高分子薄膜形成用溶液の粘度を表2に示す。 [Examples 2 to 4]
Film-like laminates and polymer thin films were produced and evaluated in the same manner as in Example 1 except that the type of cyclic olefin copolymer and the thickness of the polymer thin film were changed as shown in Table 2. The obtained results are shown in Table 2. Further, the glass transition point (T g ), MFR and viscosity of the solution for forming a polymer thin film of the cyclic olefin copolymer used in Examples 2 to 4 are shown in Table 2.
環状オレフィンコポリマーの種類およびの高分子薄膜の厚さを表2に示すように変更した以外は、実施例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表2に示す。また、実施例2~4で用いた環状オレフィンコポリマーのガラス転移点(Tg)、MFRおよび高分子薄膜形成用溶液の粘度を表2に示す。 [Examples 2 to 4]
Film-like laminates and polymer thin films were produced and evaluated in the same manner as in Example 1 except that the type of cyclic olefin copolymer and the thickness of the polymer thin film were changed as shown in Table 2. The obtained results are shown in Table 2. Further, the glass transition point (T g ), MFR and viscosity of the solution for forming a polymer thin film of the cyclic olefin copolymer used in Examples 2 to 4 are shown in Table 2.
[比較例1および2]
環状オレフィンコポリマーの種類およびの高分子薄膜の厚さを表2に示すように変更した以外は、実施例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表2に示す。また、比較例1および2で用いた環状オレフィンコポリマーのガラス転移点(Tg)、MFRおよび高分子薄膜形成用溶液の粘度を表2に示す。なお、比較例1では、ポリマーを所望の濃度に溶解させることができず、実施例1と同様の方法でフィルム状積層体および高分子薄膜を製造することはできなかった。 [Comparative Examples 1 and 2]
Film-like laminates and polymer thin films were produced and evaluated in the same manner as in Example 1 except that the type of cyclic olefin copolymer and the thickness of the polymer thin film were changed as shown in Table 2. The obtained results are shown in Table 2. Further, the glass transition point (T g ), the MFR and the viscosity of the solution for forming a polymer thin film of the cyclic olefin copolymer used in Comparative Examples 1 and 2 are shown in Table 2. In Comparative Example 1, the polymer could not be dissolved to a desired concentration, and it was not possible to produce a film-like laminate and a polymer thin film in the same manner as in Example 1.
環状オレフィンコポリマーの種類およびの高分子薄膜の厚さを表2に示すように変更した以外は、実施例1と同様の方法で、フィルム状積層体および高分子薄膜を製造し、評価した。得られた結果を表2に示す。また、比較例1および2で用いた環状オレフィンコポリマーのガラス転移点(Tg)、MFRおよび高分子薄膜形成用溶液の粘度を表2に示す。なお、比較例1では、ポリマーを所望の濃度に溶解させることができず、実施例1と同様の方法でフィルム状積層体および高分子薄膜を製造することはできなかった。 [Comparative Examples 1 and 2]
Film-like laminates and polymer thin films were produced and evaluated in the same manner as in Example 1 except that the type of cyclic olefin copolymer and the thickness of the polymer thin film were changed as shown in Table 2. The obtained results are shown in Table 2. Further, the glass transition point (T g ), the MFR and the viscosity of the solution for forming a polymer thin film of the cyclic olefin copolymer used in Comparative Examples 1 and 2 are shown in Table 2. In Comparative Example 1, the polymer could not be dissolved to a desired concentration, and it was not possible to produce a film-like laminate and a polymer thin film in the same manner as in Example 1.
表2に示す結果のように、ノルボルネン系ポリマー(A)を含み、厚さが10nm以上1000nm以下である高分子薄膜(実施例1~4)は、貼付性が良好で、水の接触角が大きく、水の滑落角が小さいことが確認された。このことから、実施例1~4で得られた高分子薄膜は、接着剤などを用いずとも、被着物に対して密着させることができ、高い撥水性を有することが確認された。また、実施例1~4で得られた高分子薄膜は、膜強度が高く、自己支持性を有することが確認された。
As shown in Table 2, the polymer thin film (Examples 1 to 4) containing a norbornene-based polymer (A) and having a thickness of 10 nm or more and 1000 nm or less has good adhesion and a contact angle of water is It was confirmed that the sliding angle of water was small. From this, it was confirmed that the polymer thin films obtained in Examples 1 to 4 can be adhered to an adherend without using an adhesive or the like and have high water repellency. Also, it was confirmed that the polymer thin films obtained in Examples 1 to 4 have high film strength and have self-supporting properties.
1…高分子薄膜、2…工程フィルム、2A…第一の面、2B…第二の面、100…フィルム状積層体。
DESCRIPTION OF SYMBOLS 1 ... Polymer thin film, 2 ... Process film, 2A ... 1st surface, 2B ... 2nd surface, 100 ... film-like laminated body.
Claims (12)
- 下記一般式(1)で表される構成単位を10mol%以上含有するノルボルネン系ポリマー(A)を含み、厚さが10nm以上1000nm以下であり、かつ、自己支持性を有することを特徴とする高分子薄膜。
(前記一般式(1)中、X1およびX2は、同一であるか、または異なり、それぞれ、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルケニル基、ヒドロキシ基、またはカルボキシ基を示し、X1およびX2は、互いに結合して環を形成してもよい。) A polymer comprising a norbornene-based polymer (A) containing 10 mol% or more of a constitutional unit represented by the following general formula (1), having a thickness of 10 nm or more and 1000 nm or less, and having self-supporting properties. Molecular thin film.
(In the above general formula (1), X 1 and X 2 are the same or different and each is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted group X represents an unsubstituted alkenyl group, a hydroxy group or a carboxy group, and X 1 and X 2 may be combined with each other to form a ring) - 請求項1に記載の高分子薄膜において、
前記ノルボルネン系ポリマー(A)が、ノルボルネン系コポリマーである
ことを特徴とする高分子薄膜。 In the polymer thin film according to claim 1,
The polymer thin film characterized in that the norbornene-based polymer (A) is a norbornene-based copolymer. - 請求項1または請求項2に記載の高分子薄膜において、
前記高分子薄膜が、前記ノルボルネン系ポリマー(A)を50質量%以上含む
ことを特徴とする高分子薄膜。 In the polymer thin film according to claim 1 or 2,
The polymer thin film, wherein the polymer thin film contains 50% by mass or more of the norbornene-based polymer (A). - 請求項1から請求項3のいずれか一項に記載の高分子薄膜において、
前記ノルボルネン系ポリマー(A)のガラス転移点が、140℃以下である
ことを特徴とする高分子薄膜。 The polymer thin film according to any one of claims 1 to 3
The glass transition point of the norbornene-based polymer (A) is 140 ° C. or less. - 請求項1から請求項4のいずれか一項に記載の高分子薄膜において、
前記ノルボルネン系ポリマー(A)の温度260℃、荷重2.16kgfにおけるメルトフローレートが、20g/10min以上である
ことを特徴とする高分子薄膜。 The polymer thin film according to any one of claims 1 to 4
The polymer thin film characterized in that the melt flow rate at a temperature of 260 ° C. and a load of 2.16 kgf of the norbornene-based polymer (A) is 20 g / 10 min or more. - 請求項1から請求項5のいずれか一項に記載の高分子薄膜において、
前記高分子薄膜の表面炭素濃度が、90原子%以上である
ことを特徴とする高分子薄膜。 In the polymer thin film according to any one of claims 1 to 5,
The surface carbon concentration of the said polymer thin film is 90 atomic% or more. The polymer thin film characterized by the above-mentioned. - 工程フィルムと、前記工程フィルム上に形成された、請求項1から請求項6のいずれか一項に記載の高分子薄膜とを備える
ことを特徴とするフィルム状積層体。 A film-like laminate comprising a process film and the polymer thin film according to any one of claims 1 to 6 formed on the process film. - 請求項7に記載のフィルム状積層体において、
前記工程フィルムの表面自由エネルギーが、40mJ/m2以下である
ことを特徴とするフィルム状積層体。 In the film-like laminate according to claim 7,
The film-like laminate, wherein the surface free energy of the process film is 40 mJ / m 2 or less. - 請求項7または請求項8に記載のフィルム状積層体において、
前記工程フィルムの表面の算術平均粗さが、40nm以下である
ことを特徴とするフィルム状積層体。 In the film-like laminate according to claim 7 or 8,
The film-like laminate, wherein the arithmetic mean roughness of the surface of the process film is 40 nm or less. - 請求項1から請求項6のいずれか一項に記載の高分子薄膜を製造する高分子薄膜の製造方法であって、
工程フィルム上に、前記ノルボルネン系ポリマー(A)を含む高分子薄膜形成用溶液を塗布し、乾燥して、前記高分子薄膜を形成する工程と、
前記高分子薄膜を、前記工程フィルムから剥離する工程と、を備える
ことを特徴とする高分子薄膜の製造方法。 A method of producing a polymer thin film for producing the polymer thin film according to any one of claims 1 to 6,
Coating a solution for forming a polymer thin film containing the norbornene-based polymer (A) on a process film, and drying the solution to form the polymer thin film;
And exfoliating the polymer thin film from the step film. - 請求項10に記載の高分子薄膜の製造方法において、
前記工程フィルムの表面自由エネルギーが、40mJ/m2以下である
ことを特徴とする高分子薄膜の製造方法。 In the method of producing a polymer thin film according to claim 10,
The surface free energy of the process film is 40 mJ / m 2 or less. - 請求項10または請求項11に記載の高分子薄膜の製造方法において、
前記工程フィルムの表面の算術平均粗さが、40nm以下である
ことを特徴とする高分子薄膜の製造方法。 In the method for producing a polymer thin film according to claim 10 or 11,
The method for producing a polymer thin film, wherein the arithmetic mean roughness of the surface of the step film is 40 nm or less.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880052493.XA CN111032752A (en) | 2017-08-23 | 2018-08-17 | Polymer film, film-like laminate, and method for producing polymer film |
KR1020207000857A KR102548028B1 (en) | 2017-08-23 | 2018-08-17 | Film-like laminate and manufacturing method of polymer thin film |
JP2019529655A JP6586545B2 (en) | 2017-08-23 | 2018-08-17 | Film-like laminate and method for producing polymer thin film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-160644 | 2017-08-23 | ||
JP2017160644 | 2017-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019039392A1 true WO2019039392A1 (en) | 2019-02-28 |
Family
ID=65438726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030476 WO2019039392A1 (en) | 2017-08-23 | 2018-08-17 | Polymer thin film, film-form laminate, and method for producing polymer thin film |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6586545B2 (en) |
KR (1) | KR102548028B1 (en) |
CN (1) | CN111032752A (en) |
TW (1) | TWI784041B (en) |
WO (1) | WO2019039392A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113059730A (en) * | 2021-03-29 | 2021-07-02 | 中金液压胶管股份有限公司 | Multilayer vulcanization support for hydraulic rubber tube production |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130402A (en) * | 1996-10-29 | 1998-05-19 | Nippon Zeon Co Ltd | Polymer film and preparation thereof |
WO2015045414A1 (en) * | 2013-09-30 | 2015-04-02 | 三井化学株式会社 | Pellicle film, pellicle using same, exposure original plate and exposure device, and method for manufacturing semiconductor device |
JP2016169349A (en) * | 2015-03-16 | 2016-09-23 | 昭和電工株式会社 | Method fo producing cast film of addition polymer of norbornene compound |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200416253A (en) * | 2002-10-03 | 2004-09-01 | Sekisui Chemical Co Ltd | Thermoplastic saturated norbornene based resin film, and method for producing the same |
JP2008031319A (en) * | 2006-07-28 | 2008-02-14 | Fujifilm Corp | Norbornene polymer, film, polarizing plate and liquid crystal display |
CN102272658B (en) * | 2009-02-03 | 2014-11-05 | 株式会社Lg化学 | Preparation method of optical filter for stereoscopic image display device |
JP5566040B2 (en) * | 2009-03-30 | 2014-08-06 | 日本ゴア株式会社 | Laminated body and method for producing the same |
JP6085185B2 (en) * | 2013-02-06 | 2017-02-22 | 株式会社ダイセル | Release film and laminate for manufacturing fuel cell, and method for manufacturing fuel cell |
JP2015183181A (en) | 2014-03-26 | 2015-10-22 | 京セラ株式会社 | High insulation film and film capacitor using the same |
JP6424033B2 (en) * | 2014-07-15 | 2018-11-14 | デクセリアルズ株式会社 | Cyclic olefin resin composition film |
JP6539431B2 (en) * | 2014-07-17 | 2019-07-03 | リンテック株式会社 | Sheet-like laminate and method of manufacturing sheet-like laminate |
-
2018
- 2018-08-17 KR KR1020207000857A patent/KR102548028B1/en active Active
- 2018-08-17 WO PCT/JP2018/030476 patent/WO2019039392A1/en active Application Filing
- 2018-08-17 JP JP2019529655A patent/JP6586545B2/en active Active
- 2018-08-17 CN CN201880052493.XA patent/CN111032752A/en active Pending
- 2018-08-21 TW TW107129075A patent/TWI784041B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130402A (en) * | 1996-10-29 | 1998-05-19 | Nippon Zeon Co Ltd | Polymer film and preparation thereof |
WO2015045414A1 (en) * | 2013-09-30 | 2015-04-02 | 三井化学株式会社 | Pellicle film, pellicle using same, exposure original plate and exposure device, and method for manufacturing semiconductor device |
JP2016169349A (en) * | 2015-03-16 | 2016-09-23 | 昭和電工株式会社 | Method fo producing cast film of addition polymer of norbornene compound |
Non-Patent Citations (1)
Title |
---|
APEL, 3 March 2015 (2015-03-03), Retrieved from the Internet <URL:https://www.mitsuichem.com/sites/default/files/media/docume nt/2018/apel_j.pdf> * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113059730A (en) * | 2021-03-29 | 2021-07-02 | 中金液压胶管股份有限公司 | Multilayer vulcanization support for hydraulic rubber tube production |
Also Published As
Publication number | Publication date |
---|---|
JP6586545B2 (en) | 2019-10-02 |
TWI784041B (en) | 2022-11-21 |
JPWO2019039392A1 (en) | 2019-11-07 |
CN111032752A (en) | 2020-04-17 |
TW201920390A (en) | 2019-06-01 |
KR102548028B1 (en) | 2023-06-26 |
KR20200043973A (en) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109689821A (en) | Rubber adhesive composition, rubber adhesive layer, bonding film, the optical film with rubber adhesive layer, optical component and image display device | |
JP2017203835A (en) | Optical film for organic el display devices, polarizing film for organic el display devices, polarizing film with adhesive layer for organic el display devices, and organic el display device | |
JP6081959B2 (en) | Resin film, laminate, method for producing the same, and method for producing fuel cell | |
WO2015152346A1 (en) | Adhesive sheet and method for producing adhesive sheet | |
TW202219221A (en) | Adhesive composition, sealing sheet and sealing body | |
TWI686454B (en) | Adhesive sheet, two-sided adhesive sheet and optical element | |
TWI837331B (en) | Peel-off sheet | |
JP2018119075A (en) | Transparent conductive film with tacky adhesive layer, laminate, and organic el display device | |
JP6076375B2 (en) | Release film and method for producing the same | |
JP6586545B2 (en) | Film-like laminate and method for producing polymer thin film | |
JP4944269B1 (en) | Resin film | |
JP6586546B2 (en) | Polymer thin film, film-like laminate, and method for producing polymer thin film | |
JPWO2022114000A5 (en) | ||
WO2016111286A1 (en) | Decorative article and laminate for decoration | |
JP6013398B2 (en) | Resin film, laminate, method for producing the same, and method for producing fuel cell | |
TWI829817B (en) | Stacked body and manufacturing method thereof, circular polarizing plate, display device and touch panel | |
JP2004190011A (en) | Release agent, adhesive laminate and adhesive laminate tape | |
TWI782064B (en) | Protective film laminate and functional film | |
TWI621515B (en) | Mold release film and method for manufacturing the same | |
TW202007715A (en) | Polyester film, protective film, protective film laminate, and method for producing protective film extending in a first direction and a second direction orthogonal to the first direction | |
JP2012212816A (en) | Dicing/die-bonding tape and production method therefor, and manufacturing method of semiconductor chip | |
TW201808632A (en) | Laminated body, component for electronic device, and electronic device | |
JP2016170381A (en) | Retardation film laminate, polarizing plate, and method for manufacturing retardation film laminate | |
JP2022142717A (en) | Coating agent and application thereof | |
JPWO2014192722A1 (en) | Decorative molding film and method for producing decorative molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18849280 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019529655 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18849280 Country of ref document: EP Kind code of ref document: A1 |