+

WO2019030475A1 - Spectromètre de masse à multipassage - Google Patents

Spectromètre de masse à multipassage Download PDF

Info

Publication number
WO2019030475A1
WO2019030475A1 PCT/GB2018/052103 GB2018052103W WO2019030475A1 WO 2019030475 A1 WO2019030475 A1 WO 2019030475A1 GB 2018052103 W GB2018052103 W GB 2018052103W WO 2019030475 A1 WO2019030475 A1 WO 2019030475A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
dimension
ions
accelerator
pulsed
Prior art date
Application number
PCT/GB2018/052103
Other languages
English (en)
Inventor
Anatoly Verenchikov
Original Assignee
Anatoly Verenchikov
Micromass Uk Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1712617.8A external-priority patent/GB201712617D0/en
Priority claimed from GBGB1712616.0A external-priority patent/GB201712616D0/en
Priority claimed from GBGB1712613.7A external-priority patent/GB201712613D0/en
Priority claimed from GBGB1712619.4A external-priority patent/GB201712619D0/en
Priority claimed from GBGB1712618.6A external-priority patent/GB201712618D0/en
Priority claimed from GBGB1712612.9A external-priority patent/GB201712612D0/en
Priority claimed from GBGB1712614.5A external-priority patent/GB201712614D0/en
Priority to PCT/GB2018/052103 priority Critical patent/WO2019030475A1/fr
Priority to US16/636,946 priority patent/US11211238B2/en
Application filed by Anatoly Verenchikov, Micromass Uk Limited filed Critical Anatoly Verenchikov
Publication of WO2019030475A1 publication Critical patent/WO2019030475A1/fr
Priority to US17/539,599 priority patent/US11705320B2/en
Priority to US18/324,421 priority patent/US20230386818A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/406Time-of-flight spectrometers with multiple reflections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/403Time-of-flight spectrometers characterised by the acceleration optics and/or the extraction fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • H01J49/4225Multipole linear ion traps, e.g. quadrupoles, hexapoles

Definitions

  • the invention relates to the area of time of flight mass spectrometers, multi-turn and multi-reflecting time-of-flight mass spectrometers, and embodiments are particularly concerned with improved sensitivity and space charge capacity of pulsed converters.
  • Time-of-flight mass spectrometers are widely used in combination with continuous ion sources, like Electron Impact (EI), Electrospray (ESI), Inductively coupled Plasma (ICP) and gaseous Matrix Assisted Laser Desorption and Ionization (MALDI).
  • EI Electron Impact
  • ESI Electrospray
  • ICP Inductively coupled Plasma
  • MALDI gaseous Matrix Assisted Laser Desorption and Ionization
  • OA orthogonal acceleration
  • RF radiofrequency
  • OA orthogonal accelerator
  • radio-frequency ion traps with either axial ion ejection as in US6020586 and US6872938, or radial ion ejection as in US6545268, US8373120, and US8017909.
  • Ions are admitted into a radio-frequency ion guide, typically quadrupolar, and are transverse confined by an RF field. Ions are locked axially by various types of DC plugs, get dampened in gas collisions at gas pressures of about 1 to lOmTorr, and are ejected by pulsed electric field, either axially or radially.
  • MP TOF instruments may either have ion mirrors for multiple ion reflections (i.e. may be a multi-reflecting TOF (MRTOF) such as that described in SU1725289, US6107625, US6570152, GB2403063, US6717132), or may have electrostatic sectors for multiple ion turns (i.e. may be a multi-turn TOF (MTTOF) such as that as described in US7504620, US7755036, and M.
  • MTOF multi-reflecting TOF
  • the duty cycle of MP-TOF having an OA is limited to under DC ⁇ 1/N for heaviest ions, and realistically DC ⁇ 1/2N, accounting for spatial rims of the OA and detector, and drops further as the square root of specific ion mass for lighter ions (see eq.3 below).
  • OA from the central path of MR-TOF and arranging ion oscillations around the symmetry plane of isochronous trajectory.
  • operation off the isochronous plane may affect the resolution and the spatial ion focusing of the MRTOF analyzer.
  • the present invention provides a time-of-flight mass analyser comprising: at least one ion mirror and/or sector for reflecting or turning ions in a first dimension (X-dimension); an ion accelerator for pulsing ion packets into the ion mirror or sector; an ion detector; and focusing electrodes arranged and configured to control the motion of ions in a second dimension (Z-dimension) orthogonal to the first dimension so as to spatially focus each of the ion packets so that it is smaller, in the second dimension, at the detector than when pulsed out of the ion accelerator.
  • embodiments of the invention ensure that the ions are received at the active area of the detector with high efficiency. Focusing the ions also prevents different ions from undergoing significantly different flight path lengths (e.g. performing different numbers of reflections or turns in MPTOF embodiments) before being detected.
  • the length of the ion accelerator from which ions are pulsed may be longer, in the second dimension, than the region of the detector over which ions are capable of being detected (i.e. the active area of the detector).
  • the focusing electrodes may be configured to isochronously focus the ions in the second dimension to the ion detector; and/or the focusing electrodes may be configured to focus the ions onto the detector such that the times of flight of the ions from the ion accelerator to the detector are independent of the positions of the ions, in the second dimension, within the ion packet.
  • the focusing electrodes may compensate time aberrations across the ion packet width.
  • the focusing electrodes may be configured to impart ions located at different positions, in the second dimension, within the ion packet with different velocities in the second dimension so as to perform the spatial focusing.
  • the focusing electrodes may comprise a plurality of electrodes configured to generate an electric field region through which ions travel in use that has equipotential field lines that curve (and/or diverge) as a function of position along the second dimension (Z- direction) so as to focus ions in the second dimension.
  • the equipotential field lines may curve (and/or diverge) in a plane defined by the first and second dimensions (X-Z plane).
  • the mass analyser may comprise focusing electrodes that are spaced apart from each other in the first dimension by a gap, wherein the gap is elongated in the second dimension and the longitudinal axis of the gap curves in a plane defined by the first and second dimensions (X-Z plane).
  • Such focusing electrodes may perform their focusing function whilst being relatively thin in a third dimension (Y-dimension) orthogonal to both the first and second dimensions. This is useful in embodiments where the ions are displaced in the third dimension so as to avoid ions impacting on ion-optical components.
  • the ion accelerator may comprise a puller electrode configured to pull ions in the first dimension when pulsing ion packets in the first dimension; wherein the puller electrode is curved in the plane defined by the first and second dimensions (X-Z plane) and in the opposite direction to the curvature of the focusing electrodes.
  • a curved puller electrode allows reverting the sign of the overall T
  • the focusing electrodes may comprise a plurality of ion deflectors arranged such that different portions of an ion packet pass through different ones of the ion deflectors, and the ion deflectors may be configured to deflect the mean trajectories of the different portions of the ion packet by different amounts so as to focus the ion packet in the second dimension.
  • the deflectors may operate as a Fresnel lens.
  • Each ion deflector may comprise a pair of deflection electrodes that are spaced apart in the second dimension, and through which a portion of the ion packet passes in use.
  • the ion deflectors may be arranged in an array along the second dimension.
  • the adjacent deflection electrodes of adjacent deflectors, in the second dimension, may be maintained at substantially equal and opposite potentials for minimising long term fields.
  • the focusing electrodes may be arranged within the ion accelerator or downstream of the ion accelerator, e.g. immediately downstream of the ion accelerator.
  • the focusing electrodes may comprise a plurality of electrodes configured to control the velocities of the ions such that ions within the ion accelerator have velocities, in the second dimension, that decrease as a function of distance in the second dimension towards the detector.
  • the plurality of electrodes may comprise an ion guide or ion trap upstream of the ion accelerator and one or more electrodes configured to pulse ions out of the ion guide or ion trap such that the ions arrive at the ion accelerator at different times and with velocities in the second dimension that increase as a function of the time at which they arrive at the accelerator.
  • the ion guide or ion trap may be an RF ion guide or RF ion trap.
  • Voltages may be applied to one or more electrodes of the ion guide or ion trap (or radially surrounding electrodes) so as to pulse the ions out of the ion guide or ion trap.
  • the ion guide or ion trap may be formed from a segmented multipole (e.g.
  • quadrupole or ion tunnel (i.e. a series of apertured electrodes) and voltages may be applied to electrodes of these devices so as to pulse ions out of the ion guide or ion trap.
  • ion tunnel i.e. a series of apertured electrodes
  • a gate electrode may be provided between the ion guide or ion trap and the ion accelerator, and a pulsed voltage may be applied to the gate electrode for pulsing ions out of the ion guide or ion trap.
  • the floating voltages of the ion guide or ion trap and an ion optical component arranged between the ion accelerator and the ion guide or ion trap may be controlled with time so as to pulse the ions out of the ion guide or ion trap (i.e. a field free elevator).
  • the mass analyser may comprise a controller that synchronises the pulsing of ions out of the ion guide or ion trap with the pulsing of ion packets out of the ion accelerator, wherein the controller is configured to provide a time delay between the pulsing of ions out of the ion guide or ion trap and the pulsing of ion packets out of the ion accelerator, wherein the time delay is set based on a predetermined range of mass to charge ratios of interest to be mass analysed.
  • the predetermined range may be a range input into a user interface of the spectrometer. These embodiments are attractive for target mass analysis, where a narrow mass range may be selected intentionally selected.
  • the first direction may be tilted in the plane defined by the first and second dimensions (X-Y plane).
  • the curvature (and/or divergence) of the field lines may be arranged to back-steer the average ion trajectory of the ions.
  • the ion deflectors may be arranged to back-steer the average ion trajectory of the ions.
  • the ion accelerator may have electrodes arranged to receive ions travelling along a first direction, wherein said first direction is parallel to the second dimension.
  • the ion accelerator comprises a pulsed voltage supply configured to apply a pulsed voltage to at least one electrode of the ion accelerator for pulsing ions out of the ion accelerator in the first dimension.
  • the ion accelerator may comprise an ion guide portion having electrodes arranged to receive ions, and one or more voltage supplies configured to apply potentials to these electrodes for confining ions in at least one dimension (X- or Y-dimension) orthogonal to the second dimension.
  • the ion accelerator may comprises: an ion guide portion having electrodes arranged to receive ions travelling along a first direction (Z-dimension), including a plurality of DC electrodes spaced along the first direction; and DC voltage supplies configured to apply different DC potentials to different ones of said DC electrodes such that when ions travel through the ion guide portion along the first direction they experience an ion confining force, generated by the DC potentials, in at least one dimension (X- or Y-dimension) orthogonal to the second dimension.
  • the DC electrodes and DC voltage supplies generate an electrostatic field that spatially varies along the second dimension.
  • the ions travelling along the second dimension experience different forces at different distances along the second dimension. This enables the ions to be confined by the DC potentials in an effective potential well that may be independent of the mass to charge ratios of the ions.
  • the ion confining force generated by the DC potentials desirably confines ions in the first dimension (X-dimension). This may improve the initial spatial distribution of the ions for pulsing in the first dimension (X-dimension).
  • the DC voltage supplies may be configured to apply different DC potentials to different ones of said DC electrodes such that when ions travel through the ion guide portion along the first direction they experience an ion confining force generated by the DC potentials in both dimensions (X- and Y-dimensions) orthogonal to the second dimension.
  • Embodiments of the ion guide portion enable the pulsed ion accelerator to be relatively long in the second dimension, whilst having relatively low ion losses, ion beam spreading and surface charging of the electrodes of the ion accelerator.
  • the ion confinement may be performed without the use of resonant RF circuits, and can be readily switched on and off. More specifically, the use of DC potentials to confine the ions in the ion guide portion enables embodiments to switch off the confining potentials relatively quickly (as opposed to RF confinement voltages), e.g. just before the pulsed ion ejection. Also, the pulsed voltage for ejecting ions does not excite the DC ion confinement electrodes in the detrimental manner that it would with RF confinement electrodes.
  • the provision of the DC electrodes spaced along the second dimension enables the strength and shape of the DC confining field to be set up to vary along the first direction of the ion guide portion, e.g. to provide an axial gradient, a slight wedge or curvature of the confining field, without constructing complex RF circuits.
  • the pulsed ion accelerator may be an orthogonal accelerator.
  • the ions may enter into the pulsed ion accelerator along the first direction.
  • the ion guide portion may comprise a first pair of opposing rows of said DC electrodes on opposing sides of the ion guide portion, wherein each row extends in the second dimension (Z-dimension), and wherein the DC voltage supplies are configured to maintain at least some of the adjacent DC electrodes in each row at potentials having opposite polarities.
  • Each electrode in a given row may be maintained at an opposite polarity to the opposing electrode in the other row, i.e. each electrode in a given row may be maintained at an opposite polarity to the electrode having the same location (in the second dimension) in the opposing row.
  • Ions may be received in the ion guide portion in the region radially inward of (and defined by) the first and second pairs of rows.
  • the DC voltage supplies may be configured to maintain the DC electrodes at potentials so as to form an electrostatic quadrupolar field in the plane orthogonal to the second dimension, wherein the polarity of the quadrupolar field alternates as a function of distance along the second dimension.
  • the DC electrodes may be arranged to form a quadrupole ion guide that is axially segmented in the second dimension, and wherein the DC voltage supplies are configured to maintain DC electrodes that are axially adjacent in the second dimension at opposite polarities, and DC electrodes that are adjacent in a direction orthogonal to the second dimension at opposite polarities.
  • the DC quadrupolar field may spatially oscillate in the second dimension.
  • the DC electrodes may have the same lengths in the second dimension and may be periodically spaced along the second dimension.
  • the DC electrodes may be arranged on one or more printed circuit board (PCB), insulating substrate, or insulating film.
  • PCB printed circuit board
  • each of the rows of DC electrodes may be arranged on a respective printed circuit board, insulating substrate, or insulating film.
  • two of the rows of DC electrodes may be arranged on two opposing sides of a PCB, insulating substrate, or insulating film.
  • two of the rows of DC electrodes may be arranged on different layers of a multi-layer PCB or insulating substrate.
  • the PCB(s), insulating substrate(s), or insulating film(s) may comprise a conductive coating (e.g. in the regions that the electrodes do not contact) to prevent charge build up due to ion strikes.
  • the DC voltage supplies may be configured to apply different DC voltages to the DC electrodes so as to form a voltage gradient in the second dimension that increases the ion confining force as a function of distance in the second dimension. This may be achieved by connecting the DC electrodes aligned in the first direction using resistive dividers.
  • said function of distance in the second dimension is the distance away from the ion entrance to the ion guide portion.
  • the DC electrodes may be arranged in rows that are spaced apart in at least one dimension orthogonal to the second dimension for confining the ions between the rows, and wherein the DC electrodes are spaced apart in said at least one dimension by an amount that decreases as a function of distance in the second dimension.
  • the spacing between the DC electrodes in said at least one dimension may decrease as a function of distance in the second dimension from the ion entrance at a first end of the ion guide portion to a downstream portion.
  • the spacing between the DC electrodes in said at least one dimension may be maintained constant from the downstream portion at least part of the distance to a second end of the ion guide portion.
  • the at least one dimension may be the dimension (Y-dimension) orthogonal to both the second dimension (Z-dimension) and the first dimension (X-dimension).
  • the ion accelerator may be configured to control the DC voltage supplies to switch off at least some of said DC potentials applied to the DC electrodes and then subsequently control the pulsed voltage supply to apply the pulsed voltage for pulsing ions out of the ion accelerator; and/or the pulsed ion accelerator may be configured to control the DC voltage supplies to progressively reduce the amplitudes of the DC potentials applied to the DC electrodes with time, and then subsequently control the pulsed voltage supply to apply the pulsed voltage for pulsing ions out of the ion accelerator.
  • the ion accelerator may repeatedly (and optionally periodically) pulse ions out, and prior to each pulse may progressively reduce the amplitudes of the DC potentials applied to the DC electrodes with time.
  • the above embodiments may reduce the micro-motion of the ions within the confined ion beam before pulsed ejection.
  • the ion accelerator may comprise pulsed electrodes spaced apart in the first dimension (X-dimension) on opposite sides of the ion guide portion, at least one of which is connected to the pulsed voltage supply for pulsing ions in the first dimension (X- dimension).
  • the ion accelerator may comprise electrodes spaced apart in the first dimension (X- dimension) on opposite sides of the ion guide portion; wherein these electrodes are spaced apart in said first dimension (X-dimension) by an amount that decreases as a function of distance in the first direction.
  • These electrodes may be the pulsed electrodes described above.
  • the spacing between the electrodes in said first dimension (X-dimension) may decrease as a function of distance in the first direction from the ion entrance at a first end of the ion guide portion to a downstream portion.
  • the spacing between the electrodes in said first dimension (X-dimension) may be maintained constant from the downstream portion at least part of the distance to a second end of the ion guide portion.
  • the ion accelerator may comprise electrodes spaced apart in the first dimension (X- dimension) on opposite sides of the ion guide portion; wherein the average DC potential of said DC potentials is negative relative to said electrodes spaced apart in the first dimension so as to form a quadrupolar field that compresses the ions in the first dimension (X- dimension).
  • Said electrodes spaced apart in the first dimension may be the pulsed electrodes described above.
  • the ion accelerator may comprise electrodes and voltage supplies forming a DC ion acceleration field arranged downstream of the ion guide portion, in the first dimension (X- dimension).
  • the mass analyser may be a multi-pass time-of-flight mass analyser having electrodes arranged and configured so as to provide an ion drift region that is elongated in the second dimension and to reflect or turn ions multiple times in the first dimension.
  • the mass analyser may be a multi-reflecting time of flight mass analyser having two ion mirrors that are elongated in the second dimension (z-dimension) and configured to reflect ions multiple times in the first dimension (x-dimension), wherein the ion accelerator is arranged to receive ions and accelerate them into one of the ion mirrors.
  • the mass analyser may be a multi-turn time of flight mass analyser having at least two electric sectors configured to turn ions multiple times in the first dimension (x-dimension), wherein the pulsed ion accelerator is arranged to receive ions and accelerate them into one of the sectors.
  • the mirrors may be gridless mirrors.
  • Each mirror may be elongated in the second dimension and may be parallel to the second dimension.
  • the multi-pass time-of-flight mass analyser may have one or more ion mirror and one or more sector arranged such that ions are reflected multiple times by the one or more ion mirror and turned multiple times by the one or more sector, in the first dimension.
  • the electrodes may be arranged and configured to reflect or turn ions multiple times between the ion mirrors or sectors in an oscillation plane defined by the first and second dimensions as the ions drift in the second dimension, wherein the ion accelerator is displaced from said oscillation plane in a third dimension (Y-dimension) orthogonal to the first and second dimensions, and may further comprise: either (i) a first ion deflector arranged and configured to deflect ions pulsed from the ion accelerator, in the third dimension, towards said oscillation plane; and a second ion deflector arranged and configured to deflect ions received from the first deflector so as that the ions travel in said oscillation plane; or (ii) one or more electric sector arranged and configured to guide ions pulsed from the ion accelerator, in the third dimension, towards and into said oscillation plane.
  • the first and/or second ion deflector may be a pulsed ion deflector connected to a pulsed voltage supply.
  • pulsed deflector(s) enables the mass to charge ratio range transmitted through the mass analyser to be selected based on the pulse duration of the deflector(s).
  • At least the first ion deflector may be connected to a voltage supply such that it is an electrostatic deflector.
  • the oscillation plane may be an isochronous surface of mean ion trajectory within the fields of the (isochronous electrostatic) mass analyser.
  • the length of the ion accelerator from which ions are pulsed (Lz) may be longer, in the second dimension, than half of the distance (Az) that the ion packet advances for each mirror reflection or sector turn.
  • the length of the ion accelerator from which ions are pulsed may be longer, in the second dimension, than x% of the distance in the second dimension between the entrance to the ion accelerator and the midpoint of the detector, wherein X is: > 10, > 15, >
  • the ion deflector may be configured to generate a substantially quadratic potential profile in the second dimension.
  • the ion accelerator and ion deflector may tilt the time front so that it is aligned with the ion receiving surface of the ion detector and/or to be parallel to the second dimension (z- dimension).
  • the mass analyser may be an isochronous and/or gridless mass analyser.
  • the mass analyser may be configured to form an electrostatic field in a plane defined by the first dimension and the dimension orthogonal to both the first and second dimensions (i.e. the XY-plane).
  • This two-dimensional field may have a zero or negligible electric field component in the second dimension (in the ion passage region).
  • This two- dimensional field may provide isochronous repetitive multi-pass ion motion along a mean ion trajectory within the XY plane.
  • the energy of the ions received at the ion accelerator and the average back steering angle of the ion deflector may be configured so as to direct ions to an ion detector after a pre-selected number of ion passes (i.e. reflections or turns).
  • the spectrometer disclosed herein may comprise an ion source.
  • the ion source may generate an substantially continuous ion beam or ion packets.
  • the ion accelerator may receive a substantially continuous ion beam or packets of ions, and may pulse out ion packets.
  • the ion accelerator may be a radio- frequency ion trap converter.
  • the pulsed ion accelerator may be a gridless orthogonal accelerator.
  • the second dimension may be linear or it may be curved, e.g. to form a cylindrical or elliptical drift region.
  • the mass analyser may have a size in the second dimension of: ⁇ 1 m; ⁇ 0.9 m; ⁇ 0.8 m; ⁇ 0.7 m; ⁇ 0.6 m; or ⁇ 0.5 m.
  • the mass analyser or trap may have the same or smaller size in the first dimension and/or the dimension orthogonal to the first and second dimensions.
  • the mass analyser may provide an ion flight path length of: between 5 and 15 m; between 6 and 14 m; between 7 and 13 m; or between 8 and 12 m.
  • the mass analyser may provide an ion flight path length of: ⁇ 20 m; ⁇ 15 m; ⁇ 14 m; ⁇ 13 m; ⁇ 12 m; or ⁇ 11 m.
  • the mass analyser may provide an ion flight path length of: > 5 ra; > 6 ra; > 7 ra; > 8 m; > 9 m; or > 10 m. Any ranges from the above two lists may be combined where not mutually exclusive.
  • the mass analyser may be configured to reflect or turn the ions N times in the oscillation dimension, wherein N is: > 5; > 6; > 7; > 8; > 9; > 10; > 11; > 12; > 13; > 14; > 15; > 16; > 17; > 18; > 19; or > 20.
  • the mass analyser may be configured to reflect or turn the ions N times in the oscillation dimension, wherein N is: ⁇ 20; ⁇ 19; ⁇ 18; ⁇ 17; ⁇ 16; ⁇ 15; ⁇ 14; ⁇ 13; ⁇ 12; or ⁇ 11. Any ranges from the above two lists may be combined where not mutually exclusive.
  • the mass analyser may have a resolution of: > 30,000; > 40,000; > 50,000; > 60,000; > 70,000; or > 80,000.
  • the mass analyser may be configured such that the pulsed ion accelerator receives ions having a kinetic energy of: > 20 eV; > 30 eV; > 40 eV; > 50 eV; > 60 eV; between 20 and 60 eV; or between 30 and 50 eV.
  • Such ion energies may reduce angular spread of the ions and cause the ions to bypass the rims of the orthogonal accelerator.
  • the ion detector may be an impact ion detector that detects ions impacting on a detector surface.
  • the detector surface may be parallel to the drift dimension.
  • the spectrometer may comprise an ion source and a lens system between the ion source and ion accelerator for telescopically expanding the ion beam from the ion source.
  • the lens system may form a substantially parallel ion beam along the second dimension (Z- direction).
  • the telescopic expansion may be used to optimise phase balancing of the ion beam within the ion guide portion, e.g. where the initial angular divergence and width of the ion beam provide for about equal impact onto the thickness of the confined ion beam.
  • the present invention also provides a time-of-flight mass spectrometer comprising a time-of-flight mass analyser as described herein.
  • the present invention also provides a method of mass spectrometry comprising: providing a mass analyser as claimed in any preceding claim; receiving ions in said ion accelerator; pulsing ions from said ion accelerator into said ion mirror or sector; and receiving ions at said detector; wherein the motion of ions in the second dimension (Z- dimension) is controlled using said focusing electrodes so as to spatially focus each of the ion packets so that it is smaller, in the second dimension, at the detector than when pulsed out of the ion accelerator.
  • An improved orthogonal accelerator is proposed for multi-pass time-of-flight mass spectrometers MPTOF, either multi-reflecting (MR) or multi-turn (MT) TOF.
  • the orthogonal accelerator is elongated in the drift Z-direction and is displaced from the MPTOF surface of isochronous ion motion in the orthogonal Y-direction. Long ion packets are pulsed deflected in the transverse Y-direction and brought onto said isochronous trajectory surface, this way bypassing said orthogonal accelerator. Ion packets are isochronously focused in the drift Z-direction within or immediately after the accelerator, either by isochronous trans-axial or Fresnel lens and wedge.
  • the accelerator is further improved by the ion beam confinement within an RF quadrupolar field or within spatially alternated DC quadrupolar field.
  • the accelerator improves the duty cycle by an order of magnitude, accepts wide mass range in Pulsar mode and provides for crude mass selection at frequent accelerator pulsing at target mass analyses.
  • RF traps are elongated for larger space charge capacity.
  • the trap is displaced from the plane of isochronous ion motion in MPTOF and ion packets are returned to the trajectory plane by pulsed displacement.
  • Ion packets are spatially focused by isochronous lens to fit the detector size after multiple passes in MPTOF.
  • Embodiments of the invention provide a multi-pass MPTOF (multi-reflecting or multi-turn) time-of-flight mass spectrometer comprising:
  • An electrostatic multi-pass (multi-reflecting or multi-turn) time-of-flight mass analyzer (MPTOF), built of ion mirrors or electrostatic sectors, substantially elongated in the Z- direction to form an electrostatic field in an orthogonal XY-plane; said two-dimensional field provides for a field-free ion drift in the Z-direction towards a detector, and for an isochronous repetitive multi-pass ion motion within an isochronous mean ion trajectory s-surface - either symmetry s-XY plane of said ion mirrors or curved s-surface of electrostatic sectors;
  • the energy of said ion beam is chosen for arranging a desired advance A z of the ion packets in the Z-direction per single pass - reflection or turn;
  • the pulsed gap of said orthogonal accelerator may further comprise at least one set of auxiliary electrodes, symmetrically surrounding said continuous beam; and wherein said auxiliary electrodes are at least one of the group: (i) side plates connected to radiofrequency (RF) signal; (ii) side plates connected to an attracting DC potential; (iii) segmented side plates connected to spatially alternated DC potentials; (iv) segmented DC dipoles connected to spatially alternated dipolar DC potentials; (v) segmented DC plates or DC dipoles with gradual rising of quadrupolar field in Z-axis and with gradual switch off in time, both arranged for spatial and temporal periods, corresponding to ions passing through at least two of said quadrupolar segments.
  • RF radiofrequency
  • said isochronous means for ion packet focusing in the Z-direction may comprise at least one means of the group: (i) a set of trans-axial lens and wedges; (ii) a Fresnel lens and wedge arranged in multi-segmented deflector.
  • said ion packet focusing in the Z-direction is arranged by spatial- temporal correlation of ion beam parameters within said orthogonal accelerator by at least one means of the group: (i) pulsed acceleration of continuous ion beam in the Z-direction either within electrostatic channel or within a radio frequency RF ion guide, located upstream of said orthogonal accelerator; (ii) a time-variable floated elevator within an electrostatic channel or an RF ion guide, located upstream of said pulsed converter; (iii) a Z- dependent deceleration of ion beam within said orthogonal accelerator.
  • the ratio L z /A z of said of ion packet length and of said ion advance per single pass (reflection or turn) may be one of the group: (i) 0.5 ⁇ L Z /A Z ⁇ ; (ii) ⁇ L Z /A Z ⁇ 2; (iii) 2 ⁇ L Z /A Z ⁇ 5; (iv) 5 ⁇ L Z /A Z ⁇ 10; (v) 10 ⁇ L Z /A Z ⁇ 20; and (vi) 20 ⁇ L Z /A Z ⁇ 50.
  • said step of deflecting ion packets in the Y-direction may comprise at least one step of the group: (i) a static or pulsed deflection in electrostatic field of deflector plates; (ii) a static or pulsed deflection in curved field of electrostatic sector; (iii) tilting of said pulsed converter in the XY-plane; and (iv) tilting of an ion mirror in the XY-plane.
  • said step of isochronous ion packet focusing in the Z-direction towards a detector may comprise at least one step of the group: (i) Z-focusing by fields of trans-axial lens and wedges for compensating of at least up to second order time per Z-length aberrations and for compensating spatial focusing of said trans-axial lens and wedge in the Y-direction (ii) deflection by segmented fields of a Freznel lens and wedge arranged with linear gradient of the deflection angle per the Z-coordinate.
  • said step of isochronous ion packet focusing in the Z-direction may be arranged to provide for spatial -temporal correlation of ion beam parameters within said pulsed converter by at least one method of the group: (i) pulsed acceleration of continuous ion beam in the Z-direction either within electrostatic channel or within a radio frequency RF ion guide, located upstream of said orthogonal accelerator; (ii) a time-variable adjustment of ion beam energy within an electrostatic channel or an RF ion guide; (iii) a Z- dependent deceleration of ion beam within said orthogonal accelerator.
  • said ion beam may be stored and pulsed released in and from a radiofrequency ion guide, synchronized with pulses of said orthogonal accelerator.
  • the timing and the duration of said pulsed ion packet displacement in the Y-direction may be arranged for reducing the mass range of the ion packet; and wherein the period of said pulsed acceleration may be arranged shorter compared to flight time of the heaviest ion species in said MP-TOF fields.
  • Embodiments of the invention provide a multi-pass MPTOF (multi-reflecting or multi-turn) time-of-flight mass spectrometer comprising:
  • An electrostatic multi-pass (multi-reflecting or multi-turn) time-of-flight mass analyzer (MPTOF), built of ion mirrors or electrostatic sectors, substantially elongated in said Z- direction to form an electrostatic field in an XY-plane orthogonal to said Z-direction; said two-dimensional field provides for a field-free ion drift in the Z-direction towards a detector, and for an isochronous repetitive multi-pass ion motion within an isochronous mean ion trajectory surface - either symmetry s-XY plane of said ion mirrors or curved s-surface of electrostatic sectors;
  • MPTOF time-of-flight mass analyzer
  • said pulsed converter may be tilted to the Z-axis for angle all and said means for Z-spatial focusing comprise means for ion ray steering, so that steering of ion trajectories at inclination angle a within said analyzer is arranged isochronously.
  • Fig.l shows prior art US6717132 planar multi-reflecting TOF with gridless orthogonal pulsed accelerator OA, illustrating geometrical limits on the OA duty cycle;
  • Fig.2 shows prior art US7504620 planar multi-turn TOF with OA; both analyzer geometry and laminated sectors limit the ion packet width and the OA duty cycle;
  • Fig.3 shows an OA-MRTOF embodiment of the present invention, improving the duty cycle of an orthogonal pulsed converter by steps of OA elongation, ion beam confinement within the OA, bypassing the OA by side packet deflection, and by spatial focusing of ion packets towards a TOF detector;
  • Fig.4 shows an OA-MTTOF embodiment of the present invention, improving the duty cycle of an orthogonal pulsed converter, similarly to Fig.3;
  • Fig.5 shows results of ion optical simulations of a double deflector embodiment, providing ion packet Y-displacement at minor effects on OA-MPTOF isochronicity
  • Fig.6 illustrates ion optical simulations of ion packet Z-focusing by isochronous trans-axial (TA) lens, compensated by TA pull electrode, suitable for isochronous focusing of long (up to 200mm) ion packets;
  • TA trans-axial
  • Fig.7 illustrates ion packet Z-focusing and Z-deflection by Freznel lens/wedge, estimated to produce minor time spreads of ion packet segments
  • Fig.8 illustrates the effect of axial energy spread dK z on ion packet divergence D2- Dl and illustrates a method of OA tilt for reducing the packet divergence at higher axial energies K z ;
  • Fig.9 shows examples of ion mirrors with retarding lens,; such ion mirrors allow increasing acceleration potential Ux for use of higher ion beam specific energies U ⁇ , producing lower ion packet divergence;
  • Fig.10 illustrates the method of ion packet spatial focusing by arranging spatial to temporal correlation within the propagating continuous beam
  • Fig.ll illustrates various methods of ion beam spatial confinement within the storage gap of the elongated orthogonal accelerator
  • Fig.12 shows an embodiment with ion beam confinement by novel electrostatic guide built of spatially alternated DC dipoles.
  • Fig.13 shows a trap-MRTOF embodiment of the present invention, improving the space charge capacity of RF ion trap with radial ejection by steps of trap elongation, bypassing the trap by side packet deflection, by ion steering at an inclination angle within the MPTOF, arranged isochronously at tilting the trap, and by spatial focusing of ion packets towards a TOF detector
  • a prior art multi-reflecting TOF instrument 10 having an orthogonal accelerator (i.e. an OA-MRTOF instrument).
  • the instrument 10 comprises: an ion source 11 with a lens system 12 to form a substantially parallel ion beam 13; an orthogonal accelerator (OA) 15 with a storage gap 14 to admit the beam 13; a pair of gridless ion mirrors 18, separated by field-free drift region, and a detector 19.
  • OA 15 and mirrors 18 are formed with plate electrodes having slit openings, oriented in the Z-direction, thus forming a two dimensional electrostatic field, characterized by symmetry about the XZ-symmetry plane, denoted as s-XZ. All the components (storage gap 14, plates of OA 15, ion mirrors 18 and detector 19) are aligned parallel to the drift axis Z.
  • ion source 11 In operation, ion source 11 generates ions in a range of specific mass
  • the exemplary ion source 11 may be a gaseous ion source like ESI, APCI, APPI, gaseous MALDI or ICP.
  • ion sources comprise gas-filled radio-frequency (RF) ion guides (not shown) for gaseous dampening of ion beams, followed by a lens 12 to form a substantially parallel continuous ion beam 13.
  • RF radio-frequency
  • Typical ion beam parameters are: 1mm diameter, 1 degree angular divergence at specific ion energy (energy per charge) U z from 10 to 50V at typical axial energy spread of leV, if using RF ion guides in the source 11.
  • the beam 13 propagates in the Z-direction through storage gap 14, here a field-free region between plate electrodes. Periodically, an electrical pulse is applied between plates of the storage gap 14. A portion of continuous ion beam 13, occurred in the storage gap 14, is accelerated in the X-direction by a pulsed field of the storage gap 14 and by DC electric fields of the OA 15, and is accelerated to specific energy UX, thus, forming a ribbon shaped ion packets 16, traveling along the mean ion trajectory 17. Since ion packets preserve the z- velocity of the continuous ion beam 13, the trajectories 17 are inclined at an angle a to the X-dimension, typically being several degrees:
  • Ion packets 16 are reflected by ion mirrors 18 in the X-direction, continue slow drifting in the Z-direction, and hit the detector 19 after multiple N reflections along a jigsaw ion trajectory 17.
  • D z may be the maximum distance in the Z-dimension between which ions are pulsed by OA 15 and detected on detector 19.
  • the ion packet length L z is under 30mm.
  • the packet length is yet about twice smaller, accounting OA and detector rims. This in turn limits the conversion efficiency of a continuous ion beam 13 into pulsed packets 16, denoted as the duty cycle DC of the orthogonal accelerator 15:
  • the duty cycle limit occurs due to the ion trajectory arrangement within the s-XZ symmetry plane of mirrors 18 and OA 15. It is relevant to embodiments of the present invention that the alignment of ion trajectory within the s-XZ plane is forced to keep the isochronous properties of ion mirrors and of gridless OA, reaching up to third order full isochronicity as described in WO2014142897.
  • the prior art MRTOF 10 has been designed with recognition of the symmetry requirements. The duty cycle is sacrificed in exchange for higher resolving power of OA-MRTOF.
  • the laminated sectors 28 provide three dimensional electrostatic fields for ion packet confinement in the drift Z-direction along the mean spiral trajectory 27.
  • the field of four electrostatic sectors 28 also provide for isochronous ion oscillation along the figure-of- eight shaped central curved ion trajectory 27 in the XY-plane, also denoted as s.
  • the prior art sector analyzers are known to provide for so-called triple focusing, i.e. first-order focusing with respect to energy spread around a mean ion energy and with respect to angular and spatial spread of ion packets around the mean ion trajectory.
  • the sector MTTOF isochronicity has been recently improved with electrostatic sectors of non equal radii, as described in WO2017042665.
  • Embodiments of the present invention propose a method and apparatus for improving the duty cycle of orthogonal accelerators (OA) for multi-pass MPTOF - both multi reflecting OA-MRTOF and multi turn OA-MTTOF.
  • OA orthogonal accelerators
  • Fig.3 shows an OA-MRTOF embodiment 30 of the present invention comprising: a continuous ion source 31; a lens system 32 to form a continuous and substantially parallel ion beam 33; an orthogonal accelerator 35, preferably having means for ion beam spatial confinement 34 (detailed in Fig.ll and Fig.12); an isochronous Z-focusing lens, exampled here by trans-axial lens 68 (detailed in Fig.7); a set of dual Y-deflectors 51 and 52 (detailed in Fig.5); a pair of parallel gridless ion mirrors 18, separated by a floated field-free drift space; and a TOF detector 39.
  • Electrodes of OA 35 and of ion mirrors 18 are substantially elongated in the drift Z-direction to provide a two-dimensional electrostatic field in the X-Y plane, symmetric around the s-XZ symmetry plane of isochronous trajectory surface and having zero field component in the Z-direction.
  • ion source 31 comprises an RF ion guide with pulsed exit gate, denoted by RF and by pulse symbol.
  • a continuous or quasi-continuous ion source 31 generates ions.
  • a substantially parallel ion beam 33 is formed by ion optics 32, enters OA 35 substantially along the Z-direction and, preferably, is spatially confined in at least the X-direction with confinement means 34 within the z-elongated storage gap of OA 35.
  • An L z long portion of continuous beam 34 is converted into pulsed ion packets 38 by an orthogonal pulsed acceleration field of OA 35.
  • Ejected ion packets 38 move at an inclination angle a to the X- dimension, controlled by the U ⁇ specific energy of the incoming ion beam 13 and acceleration voltage U x of the drift space (see eq.l).
  • the embodiment 30 employs the two- dimensional Z-extended MR-TOF and the OA oriented in the Z-direction. Distinctly from the prior art of Fig.l, the duty cycle of MRTOF 30 is improved by the combination of the following novel steps:
  • the ratio L z /A z may be one of the group: (i) 0.5 ⁇ L Z /A Z ⁇ 1; (ii) KL Z /A Z ⁇ 2; (iii) 2 ⁇ L Z /A Z ⁇ 5; (iv) 5 ⁇ L Z /A Z ⁇ 10; (v) 10 ⁇ J Z Z4 Z ⁇ 20; and (vi) 20 ⁇ L Z /A Z ⁇ 50.
  • ion mirrors are known to provide for up to third-order full isochronicity and up to fifth-order time per energy focusing, as described in prior art WO2013063587 and WO2014142897, incorporated herein by reference.
  • the exemplary side Y-deflection of ion packets 36 is arranged with static deflector 51 and with pulsed deflector 52.
  • (D) Spatial ion beam confinement in the OA Preferably, means 34 are arranged for spatial ion beam confinement to prevent the natural expansion of ion beam 13 within the OA 35 and to allow substantial (potentially indefinite) elongation of the OA without ionic losses and without the ion beam spread, as detailed below in Fig.ll and Fig.12.
  • the duty cycle DC of any OA drops for lighter (smaller ions.
  • the duty cycle for lighter ions can be further improved if using the RF ion guide of ion source 31 in so-called "Pulsar" mode, where ions are stored within the RF ion guide and are pulsed released synchronized with OA pulses by an exit gate, as indicated by pulse symbol connected to the exit aperture of the RF ion guide.
  • using a long OA 35 allows the analysis of a wide mass range at enhanced sensitivity.
  • OA-MRTOF 30 In target analyses, samples are separated with a gas or liquid chromatography device, and at any particular retention time RT, only one or few target mass species are analyzed. Both duty cycle and dynamic range of target analyses can be readily improved in OA-MRTOF 30 if: (a) selecting narrower m/z range at short pulse durations of the deflector 52, and (b) more frequent pulsing of the OA 35 (compared to normal operation, where pulse period matches TOF flight time of heavier ion species). Since a narrower mass range is selected (say, one tenth of full mass range), faster pulsing does not cause spectral overlaps. Faster pulsing at periods being shorter than ion propagation time in the OA improves the DC of the OA.
  • Faster pulsing improves the upper end of the dynamic range by spreading analyzed ions between larger number of pulses, thus, reducing space charge limits in the analyzer and reducing the detector load per pulse.
  • Mass selection reduces the detector load by eliminating unwanted mass species on the detector. Note that the target method does not require use of an upfront mass separator like a quadrupole mass filter. The method may be further improved with the "Pulsar" method for yet higher duty cycle (expected to gain at smaller ⁇ range).
  • the OA-MTTOF embodiment 40 of the present invention comprises: a continuous ion source 31 (optionally with an RF ion guide in a pulsar mode); a lens system 32 to form a substantially parallel ion beam 33; a Z-elongated gridless orthogonal accelerator 35 with optional means 34 for spatial ion confinement; an isochronous Z-focusing lens, exampled here by Fresnel lens 75 (detailed in Fig,7); a set of dual Y-deflector 51 and 52; a set of electrostatic sectors 41 and 42, separated by drift spaces; and a TOF detector 49.
  • orthogonal accelerator 35 accepts the ion beam 13 within a Z-elongated storage gap, wherein means 34 serves to confine the ion beam at least in the X-direction, as detailed in Fig.ll and Fig.12 below.
  • OA 35 accelerates a portion of ion beam by pulsed field and then by DC electrostatic field in the X-direction, thus forming ion packets 48.
  • Ion packets 48 move at a mean inclination angle a to the X-dimension, controlled by the specific energy of the ion beam 13, along the portion A of trajectory 46.
  • Fresnel lens 75 or some other Z-focusing means described herein, e.g.
  • ion packets 48 are arranged for spatial focusing of ion packets 48 in the Z-direction towards the detector 19.
  • the set of dual Y-deflectors 51 and 52 is arranged for displacing of ion packet 48 from the axis of gridless OA 35 to curved surface S of isochronous mean ion trajectory 47. Ion packets follow portions A, B of trajectory 46 and then trajectory C, also denoted as 47. As the z-energy of the continuous ion beam 13 is preserved, ion packets 48 follow a spiral ion trajectory 47 within the mean trajectory surface S to provide for at least first order full isochronicity.
  • sectors 41 and 42 have different radii, e.g. as described in
  • embodiment 40 employs similar ion optical methods and embodiments for: pulsed ion packet Y-displacement, described in Fig.5; Z-focusing of ion packets, described in Fig.6, Fig.8 and Fig.10; reducing the ion packets angular divergence, described in Fig.8 and Fig.10; so as methods of ion beam confinement in the OA, described in Fig.ll and Fig.12. Those embodiments are detailed below.
  • one embodiment 50 of Y-displacement means comprises a static (or pulsed) deflector 51 and a pulsed deflector 52.
  • OA 35 is aligned parallel and is displaced from the symmetry plane s-XZ of ion mirrors 18 as in Fig.3 (or from S-surface in Fig.4) to allow ion packets 38 bypassing the OA on the way back along the trajectory D, lying within the s-XZ plane.
  • Deflector 51 is aligned with OA 35, and deflector 52 is aligned with the s- XZ plane. Deflectors 51 and 52 steer ion packets at the same angle ⁇ (in the X-Y plane).
  • Figure 5 presents results of ion optical simulations and shows equipotential lines and ion trajectories for an exemplary OA 35, being 18mm wide in the Y-direction and 25mm long in the X-direction.
  • the axis of OA 35 is Y-displaced by 12mm from the s-XZ middle plane.
  • the double steering of Fig.5 compensates to the first order for tilting of the time front.
  • Inevitable spatial Y-focusing of deflectors 51 and 52 is compensated by an additional lens 35L, built into the OA 35. Retarding lens 35L, set at 7kV potential, also serves for terminating the acceleration field.
  • Graph 53 presents the simulated overall time spread of lOOOamu ions past deflector
  • the described method of pulsed ion displacement may limit the transmitted mass range.
  • the lighter ions of mass m are able to complete two paths C (i.e.
  • exemplary deflector plates may be replaced with a pair of deflecting sectors or by an S-shaped sector.
  • Sectors 41 and 42 may be arranged pulsed and optionally having side ports 44 for ion packet injection along alternative paths, exampled by paths F and E in Fig.4.
  • Trans-axial lens for isochronous Z-focusing there are shown two embodiments 60 and 61 of a gridless orthogonal accelerators having a trans-axial lens. Both embodiments comprise push plate 65, grounded slit electrode, pull slit electrode 66, slit electrodes 67 for DC acceleration, and a trans-axial lens 68 - a slit electrode split into two electrodes by a constant width gap being curved in the X-Z plane, e.g. at curvature radius R ⁇ lm.
  • the trans-axial lens 68 is chosen for being slim in the Y-direction, which is important for ion packet Y-displacement, shown in Fig.5.
  • Embodiment 61 differs from embodiment 60 by using trans-axial curved pull electrode 69.
  • Figure 6 presents ion optical simulations with iso-potential lines and ion trajectories shown for the XY and XZ-planes.
  • Curvatures 63 and 64 of the TA lens and TA pull electrode respectively show radius R values, used for exemplary simulations.
  • the graph shows the time spreads introduced by the spatial ion Z- focusing, simulated for lOOOamu ions.
  • curved pull electrode 69 in embodiment 61 allows reverting the sign of the overall ⁇ ] ⁇ aberration, i.e. the pull curvature radius or the focal distance of the transaxial lens can be optimized for complete mutual compensation of ⁇ ] ⁇ aberrations.
  • Fresnel lens for Z-focusing comprises an electrostatic Fresnel lens 75, set up downstream of an orthogonal accelerator 35.
  • Fresnel lens 75 is arranged with multiple segments of deflectors, where the angle of ion steering d, is linearly dependent on the segment number / ' .
  • linear dependence of the deflection potential may be arranged by a resistive divider.
  • the voltage bias (relative to floated drift potential of the field free region) on Fresnel electrodes is adjusted so that back-to-back electrodes have exactly opposite bias to minimize long term fields.
  • the time front of ion packet 74 is parallel to the axis Z, as illustrated by dashed line.
  • the Fresnel lens 75 splits ion packet 73 into multiple segments 78 and steers them to follow trajectories 76, with deflection angle d, (to the X-axis) being dependent on the segment number / ' .
  • the desired deflection angle can be found as dZ/L, where dZ is the Z-distance from the packet center and L is the flight path in the TOF analyzer 30 or 40.
  • maximal deflection angle is da ⁇ L z /2L.
  • Individual deflector segments are known to steer the time front 79 at the angle being equal to the steering angle d,.
  • the resolution limit of MPTOF (30 or 40), set by Fresnel lens is:
  • embodiment 71 illustrates the example of tilting OA 35 at angle ⁇ relative to the Z-axis.
  • the deflection angles d, of individual segments of the Fresnel lens 75 are adjusted to provide both back deflection of all ion packets 78 at angle ⁇ and the Fresnel focusing of embodiment 70.
  • Tilting of the OA and steering of the ion packets at the same angle ⁇ aligns the average time front 77 parallel to the Z-axis.
  • the next section describes the reason for tilting and steering.
  • embodiments 80 and 81 illustrate the improvement of ion packet spatial focusing in the Z-direction at elevated specific axial energies U z of continuous ion beam 33.
  • Both embodiments 80 and 81 comprise an orthogonal accelerator OA 35 and a multi-pass MPTOF, which may be using either ion mirrors 18 of Fig.3 or sectors 41 and 42 of Fig.4.
  • Both embodiments employ Z- elongated OA 35, displaced from the s-XZ symmetry plane of Fig.3 or from s-surface of Fig.4, double Y-deflectors 51 and 52 for returning ion packets onto the s-XZ plane or s- surface, and Z-focusing means, either Fresnel lens 75 or trans-axial lens 68.
  • Embodiment 80 illustrates the problem of ion packets natural expansion due to axial velocity spread V2-V1 of continuous ion beam 33, as presented by solid 82 and dashed 84 ion trajectories. Ions originating from the same Z-point in the OA will spread between D2 and Dl displacements when reaching the detector. Since spatial focusing of Z-lens 75 or 68 depends on the ion initial Z-position, the Z-lens does not compensate for the V2-V1 spread. The relative spatial spread on the detector equals to relative axial velocity spread:
  • the embodiment 81 differs from 80 by tilting of OA 35 at angle ⁇ to the Z-axis and by arranging back deflector of ion packets at the same angle ⁇ , either within Fresnel wedge/lens in embodiment 71 or with a trans-axial wedge 86.
  • TA trans-axial
  • the effect of a fixed trans-axial (TA) wedge can be achieved by tilting the trans-axial (TA) lens 68.
  • separating functions between TA-lens and TA-wedge may be preferable for flexible and independent control of ion beam energy and of spatial Z-focusing.
  • U x in MRTOF or MTTOF is another alternative to OA tilt.
  • absolute voltages near or under 15kV For stability against electrical breakdown it is preferable to use absolute voltages near or under 15kV.
  • the strategy is readily available for the sector multi-turn MTTOF 40 of Fig.4, since potentials of sectors 41 and 42 are only a few kV higher than the drift voltage.
  • a group of Z-focusing means 100 is based on arranging a negative correlation between ion spatial Z-position z and of axial ion velocity V z (z) within the storage gap 34 of the OA 35:
  • an embodiment 100 with Z-focusing comprising an exemplary OA-MRT 30 with ion mirrors 18 and detector 19, and an orthogonal accelerator OA 35 with z-length L z comparable to D z analyzer Z-width (say, L Z ID Z is from 1/4 to 1/2).
  • Substantially elongated ion beam 33 is retained within long OA 35 by spatial confinement means 34, e.g. as detailed in below Fig.ll or Fig.12.
  • At least one pulse signal 109 is applied across the ion storage gap of OA.
  • OA 35 is followed by a dual Y-deflector 51 and 52 for the side bypassing of the OA.
  • the embodiment 100 further comprises at least one of the following means: an RF ion guide 103 with optional auxiliary electrodes 104 and an exit gate 105; a pulse generator 106; a time dependent lift) signal generator 107; a symbolically shown resistive divider U(z) 108 for arranging Z-dependent deceleration 102 within confining means 34.
  • Signals 106, 107 and 108 may be applied to any combination of electrodes: RF guide 103, and/or auxiliary electrodes 104, and/or exit gate 105, and/or ion optics 32.
  • continuous ion beam 33 is accelerated to specific energy U z by floating of the ion source 31 and of RF ion guide 103. For some target ions of interest this corresponds to velocity V Z o in condition 101.
  • the beam enters the OA 35 along the Z-axis and travels in the storage gap 34, being spatially confined by the below described confinement means 34.
  • An L z long portion of ion beam 33 is pulsed accelerated in the X direction and gets steered by the dual Y-deflector 51 and 52.
  • formed ion packets 38 are reflected by a set of parallel ion mirrors 18, while slowly drifting in the Z-direction to the detector 19. Note that embodiment 100 does not use a Z-focusing lens.
  • the orthogonal ion X-motion in the MPTOF does not affect ion Z-motion, defined by the axial ion velocity within the OA, and, hence, the correlations of eq. 7 and eq.8 control ion packet Z-focusing towards the detector.
  • an acceleration pulse 106 is applied to RF ion guide 103 (for example, a segmented quadrupole or an ion tunnel) or to auxiliary electrodes 104 (e.g. segmented or wedge electrodes) such as surrounding multipole rods, thus forming a pulsed axial Z-field.
  • RF ion guide 103 for example, a segmented quadrupole or an ion tunnel
  • auxiliary electrodes 104 e.g. segmented or wedge electrodes
  • a negative pulse 106 is applied to gate 105, to follow the known Pulsar method.
  • the pulse 106 amplitude and the length of axial Z-field within the guide 103 are arranged for time-of-flight compression of ion packets at detector 19, located at distance D z .
  • the potential of a field free elevator is controlled by the time variable floating Oft) 107 of either ion guide 103, or of ion optics 32.
  • the effect of the time variable elevator is very similar to the above described bunching effect, though the elevator exit is set closer to the OA entrance and allows a somewhat wider m/z range.
  • the beam 33 is slowed down within the confinement means 34 by arranging a Z-dependent axial potential distribution U(z) 108, e.g. by a resistive divider. Then the desired z-focusing of ion packets is achieved for the entire ionic mass range, i.e. occurs for ions of all ⁇ .
  • the method 102 is particularly attractive when using the RF ion guide in the Pulsar mode, i.e. accumulating and pulse releasing ion packets from the guide 103, synchronized with pulses 109 of the OA.
  • Embodiment 110 presents a gridless orthogonal accelerator (OA, previously denoted as 35) with generalized means 34 for spatial confinement of the ion beam 33.
  • Embodiment 100 comprises the typical slit electrodes of a gridless OA: positively pulsed push P electrode, a grounded electrode, negatively pulsed pull N electrodes, a slit S between two pull electrodes for trimming excessively wide ion packets, a DC acceleration stage DC and a lens L for terminating the DC field at nearly zero ion packet divergence in the XY-plane. Electrical pulses P and N are used to convert continuous ion beam 33 into pulsed packets 38.
  • Generalized means 34 are shown as symbolic electrodes within the OA storage gap between push P electrode and grounded electrode. Means 34 are energized by either RF and/or DC signals. Details of means 34 vary between the embodiments of Fig.ll and Fig.12.
  • Another known embodiment 114 employs a rectilinear electrostatic quadrupolar lens, formed by applying a negative DC potential to electrodes 105, as proposed in RU2013149761.
  • a weak electrostatic quadrupolar field 116 focuses and confine the ion beam in the critical TOF X-direction, while defocusing the ion beam in the non-critical transverse Y-direction.
  • the DC potential on electrodes 115 can be switched off or adjusted for better spatial focusing and for time-of-flight focusing of ion packets 38.
  • the method allows lossless ion packets elongation up to Jz ⁇ 50mm. Though method 114 is still considered as useful at L z up to 100mm, the ion packet elongation above 50mm would produce ion losses on the slit S.
  • an embodiment 107 of the present invention employs the spatially alternated electrostatic DC quadrupolar field 119 along the Z-axis by alternating the polarity on DC electrodes 118.
  • the embodiment provides for indefinite ion beam confinement in both the X and Y directions, though at variable central potential along the Z- axis, which is expected to produce a negative effect on ion beam packet focusing in the Z- direction.
  • Novel DC quadrupolar confinement Referring to Fig.12, novel and further improved embodiment 120 of the present invention provides for ion beam spatial confinement by spatial alternation of electrostatic quadrupolar field 122, now achieved without spatial modulation of the center-line potential U(z).
  • the field is formed by an array of alternated DC dipoles, composed of electrodes 123 and 124, for example, connected to a double-sided PCB 121.
  • Two DC potentials DC1 and DC2 are connected through displaced PCB vias.
  • the average potential (DCl+DC2)/2 is slightly negative to form a combination of the alternated quadrupolar field 122 with a weak static quadrupolar field, thus providing somewhat stronger compression of the ion beam 33 in the X-direction Vs Y- direction.
  • the novel electrostatic quadrupolar ion guide 120 provides for indefinite ion beam confinement, so far being achieved only in prior art RF confinement, shown in the embodiment 121.
  • the novel electrostatic confinement provides multiple advantages: it is mass independent; it does not require resonant RF circuits and can be readily switched; the strength and shape of the transverse confining field can be readily varied along the guide length; it can provide axial gradient of the guide potential without constructing complex RF circuits.
  • the embodiment 120 is further improved by arranging so-called "adiabatic entrance” 125 and "adiabatic exit” 128 conditions for ion beam 33.
  • adiabatic entrance 125 there is arranged a smooth rise of quadrupolar DC field, spread for at least 2-3 spatial periods of DC field alternation.
  • the smooth rise of quadrupolar field may be arranged either by the illustrated Y-spreading of the PCB board 121, or by narrowing of the storage gap between electrodes N and P in the X-direction, or by arranging a spatial gradient of DC voltages on the PCB board 121, say with resistive divider.
  • Electrostatic quadrupolar guide 120 may be further improved: the guide 120 may be seamless extending beyond the ion OA ion storage gap of electrodes N and P to serve as an intermediate ion optics for guiding ions from gaseous RF ion guides or past ion optics, already forming nearly parallel ion beam.
  • the external portion of guide 120 may be gently curved at radiuses much larger than the distance between pair of PCB 121, or may pass through a wall, separating differentially pumped stages.
  • Embodiment 120 presents an example of non compromised confining means 34, which now allow substantial (potentially indefinite) extension of OA length L z and also allows varying axial potential U(z) as in Fig.10 to achieve full advantage of the present invention.
  • Using RF ion guides in Pulsar mode now allows reaching nearly unity duty cycle for wide mass range.
  • RF trap converters Most of the proposed solutions are also applicable to pulsed converters based on radiofrequency (RF) ion trap with radial pulsed ejection. The converters are then improved by their substantial elongation, which improves the space charge capacity of the converters. Elongation of ion packets within MPTOF helps improving space charge capacity of MPTOF analyzers.
  • RF radiofrequency
  • the OA-MRTOF embodiment 130 of the present invention comprises: a continuous ion source 31; an RF ion guide 139 to transfer a continuous ion beam 33; a radially ejecting (in the X-direction) ion trap 134 with transverse radio- frequency (RF) ion confinement; an DC accelerating stage 135; an isochronous trans-axial lens 68, preferably tilted to form a trans-axial wedge; a set of dual Y-deflectors 51 and 52 (detailed in Fig.5); a pair of parallel gridless ion mirrors 18, separated by a floated field-free drift space; and a TOF detector 39.
  • Electrodes of OA 35 and of ion mirrors 18 are substantially elongated in the drift Z-direction to provide a two-dimensional electrostatic field in the X-Y plane, symmetric around s-XZ symmetry plane of isochronous trajectory surface and having zero field component in the Z-direction.
  • ion source 31 comprises an RF ion guide with pulsed exit gate, denoted by RF and by pulse symbol.
  • a continuous or quasi-continuous ion source 31 generates ions.
  • RF ion guide 139 transfers ions between differentially pumped stages and delivers ions into the radially ejecting trap 134.
  • Trap 134 forms a rectilinear RF ion guide with electrodes 131, 132 and 133, where RF signal is applied to middle electrodes 132.
  • the trap is substantially elongated in the drift Z-direction for extending the space charge capacity. Ions enter the trap 134 and are confined by RF signal. Ions are axially confined by electrostatic plugs, either separate electrodes, or DC bias segments, extending electrodes 131, 132 and 133.
  • ions energy is dampened in gas collisions at gas pressures of lmTorr pressure range and ions are stored in trap 134 for several ms time, sufficient for dampening.
  • ion flow is passing through the trap 134 (in the Z-direction) at low energies of about leV range.
  • Isochronous Z-focusing of ion packets To avoid ion losses on the detector 19, so as to avoid spectral overlaps and spectral confusion (contrary to prior art open traps, described in WO2011107836), the ion packets 138 are spatially focused in the Z-direction by a trans- axial lens 68 in Fig.6, or by Fresnel lens 75 in Fig.7, or by spatial space-velocity correlation within the trap in case of passing through ion beam, as described in Fig.10. It is of importance that the Z-focusing is arranged isochronous, i.e.
  • time front of the ions described herein may be considered to be a leading edge/area of ions in the ion packet having the same mass to charge ratio (and which may have the mean average energy).
  • X Y, Z - directions denoted as: X for time-of-flight, Z for drift, Y for transverse;
  • D x and D z - used height e.g. cap-cap

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

L'invention concerne des spectromètres de masse à temps de vol à multipassage (MPTOF) améliorés, des TOF soit multiréfléchissants (MR), soit multitours (MT), pourvus de convertisseurs pulsés allongés — soit un accélérateur orthogonal, soit un piège à ions à éjection radiale. Le convertisseur (35) est déplacé de la surface s de MPTOF de mouvement d'ions isochrones dans la direction Y orthogonale. Des paquets d'ions longs (38) sont pulsés et déviés dans la direction Y transversale et amenés sur ladite surface s de trajectoire isochrone, contournant ainsi ledit convertisseur. Des paquets d'ions sont concentrés de manière isochrone dans la direction Z de dérive dans ou immédiatement après l'accélérateur, soit par une lentille transaxiale/un coin transaxial (68) isochrone, soit par une lentille de Fresnel. L'accélérateur est amélioré par le confinement de faisceau d'ions dans un champ à RF quadripolaire ou dans un champ en CC quadripolaire alterné spatialement. L'accélérateur améliore le cycle de service et/ou la capacité de charge dans l'espace de MPTOF d'un ordre d'amplitude.
PCT/GB2018/052103 2017-08-06 2018-07-26 Spectromètre de masse à multipassage WO2019030475A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/GB2018/052103 WO2019030475A1 (fr) 2017-08-06 2018-07-26 Spectromètre de masse à multipassage
US16/636,946 US11211238B2 (en) 2017-08-06 2018-07-26 Multi-pass mass spectrometer
US17/539,599 US11705320B2 (en) 2017-08-06 2021-12-01 Multi-pass mass spectrometer
US18/324,421 US20230386818A1 (en) 2017-08-06 2023-05-26 Multi-pass mass spectrometer

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
GBGB1712616.0A GB201712616D0 (en) 2017-08-06 2017-08-06 Printed circuit ION mirror with compensation
GB1712618.6 2017-08-06
GBGB1712613.7A GB201712613D0 (en) 2017-08-06 2017-08-06 Improved accelerator for multi-pass mass spectrometers
GB1712613.7 2017-08-06
GB1712617.8 2017-08-06
GBGB1712619.4A GB201712619D0 (en) 2017-08-06 2017-08-06 Improved fields for multi - reflecting TOF MS
GBGB1712617.8A GB201712617D0 (en) 2017-08-06 2017-08-06 Multi-pass mass spectrometer with improved sensitivity
GB1712619.4 2017-08-06
GBGB1712618.6A GB201712618D0 (en) 2017-08-06 2017-08-06 Ion guide within pulsed converters
GB1712616.0 2017-08-06
GBGB1712612.9A GB201712612D0 (en) 2017-08-06 2017-08-06 Improved ion injection into multi-pass mass spectrometers
GB1712612.9 2017-08-06
GBGB1712614.5A GB201712614D0 (en) 2017-08-06 2017-08-06 Improved ion mirror for multi-reflecting mass spectrometers
GB1712614.5 2017-08-06
PCT/GB2018/052103 WO2019030475A1 (fr) 2017-08-06 2018-07-26 Spectromètre de masse à multipassage

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/636,946 A-371-Of-International US11211238B2 (en) 2017-08-06 2018-07-26 Multi-pass mass spectrometer
US17/539,599 Continuation US11705320B2 (en) 2017-08-06 2021-12-01 Multi-pass mass spectrometer

Publications (1)

Publication Number Publication Date
WO2019030475A1 true WO2019030475A1 (fr) 2019-02-14

Family

ID=65686640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2018/052103 WO2019030475A1 (fr) 2017-08-06 2018-07-26 Spectromètre de masse à multipassage

Country Status (2)

Country Link
US (3) US11211238B2 (fr)
WO (1) WO2019030475A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020002940A1 (fr) 2018-06-28 2020-01-02 Micromass Uk Limited Spectromètre de masse à plusieurs passages avec cycle de service élevé
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
WO2021219621A1 (fr) * 2020-04-30 2021-11-04 Friedrich-Alexander-Universität Erlangen-Nürnberg Structure d'électrode conçue pour guider un faisceau de particules chargées
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11309175B2 (en) 2017-05-05 2022-04-19 Micromass Uk Limited Multi-reflecting time-of-flight mass spectrometers
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11342175B2 (en) 2018-05-10 2022-05-24 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11367608B2 (en) 2018-04-20 2022-06-21 Micromass Uk Limited Gridless ion mirrors with smooth fields
US11621156B2 (en) 2018-05-10 2023-04-04 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
US11848185B2 (en) 2019-02-01 2023-12-19 Micromass Uk Limited Electrode assembly for mass spectrometer
US11881387B2 (en) 2018-05-24 2024-01-23 Micromass Uk Limited TOF MS detection system with improved dynamic range
US12100584B2 (en) 2019-07-12 2024-09-24 Leco Corporation Methods and systems for multi-pass encoded frequency pushing
US12205813B2 (en) 2019-03-20 2025-01-21 Micromass Uk Limited Multiplexed time of flight mass spectrometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7616649B2 (ja) 2021-05-18 2025-01-17 国立大学法人東北大学 電子分光器

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003071A1 (fr) 1989-08-25 1991-03-07 Institut Energeticheskikh Problem Khimicheskoi Fiziki Akademii Nauk Sssr Procede et dispositif d'analyse spectrometrique de masse a temps de vol de faisceau d'ions a onde continue
SU1681340A1 (ru) 1987-02-25 1991-09-30 Филиал Института энергетических проблем химической физики АН СССР Способ масс-спектрометрического анализа по времени пролета непрерывного пучка ионов
SU1725289A1 (ru) 1989-07-20 1992-04-07 Институт Ядерной Физики Ан Казсср Врем пролетный масс-спектрометр с многократным отражением
US5763878A (en) 1995-03-28 1998-06-09 Bruker-Franzen Analytik Gmbh Method and device for orthogonal ion injection into a time-of-flight mass spectrometer
US6020586A (en) 1995-08-10 2000-02-01 Analytica Of Branford, Inc. Ion storage time-of-flight mass spectrometer
US6107625A (en) 1997-05-30 2000-08-22 Bruker Daltonics, Inc. Coaxial multiple reflection time-of-flight mass spectrometer
US6545268B1 (en) 2000-04-10 2003-04-08 Perseptive Biosystems Preparation of ion pulse for time-of-flight and for tandem time-of-flight mass analysis
US6570152B1 (en) 2000-03-03 2003-05-27 Micromass Limited Time of flight mass spectrometer with selectable drift length
US6717132B2 (en) 2000-02-09 2004-04-06 Bruker Daltonik Gmbh Gridless time-of-flight mass spectrometer for orthogonal ion injection
GB2403063A (en) 2003-06-21 2004-12-22 Anatoli Nicolai Verentchikov Time of flight mass spectrometer employing a plurality of lenses focussing an ion beam in shift direction
US6872938B2 (en) 2001-03-23 2005-03-29 Thermo Finnigan Llc Mass spectrometry method and apparatus
US7504620B2 (en) 2004-05-21 2009-03-17 Jeol Ltd Method and apparatus for time-of-flight mass spectrometry
US7755036B2 (en) 2007-01-10 2010-07-13 Jeol Ltd. Instrument and method for tandem time-of-flight mass spectrometry
JP4649234B2 (ja) * 2004-07-07 2011-03-09 日本電子株式会社 垂直加速型飛行時間型質量分析計
WO2011107836A1 (fr) 2010-03-02 2011-09-09 Anatoly Verenchikov Spectromètre de masse à piège ouvert
US8017909B2 (en) 2006-12-29 2011-09-13 Thermo Fisher Scientific (Bremen) Gmbh Ion trap
US8373120B2 (en) 2008-07-28 2013-02-12 Leco Corporation Method and apparatus for ion manipulation using mesh in a radio frequency field
WO2013063587A2 (fr) 2011-10-28 2013-05-02 Leco Corporation Miroirs à ions électrostatiques
WO2014142897A1 (fr) 2013-03-14 2014-09-18 Leco Corporation Spectromètre de masse multi-réfléchissant
RU2013149761A (ru) 2013-11-06 2015-05-20 Общество с ограниченной ответственностью "Биотехнологические аналитические приборы" (ООО "БиАП") Устройство ортогонального ввода ионов во времяпролетный масс-спектрометр
WO2016064398A1 (fr) * 2014-10-23 2016-04-28 Leco Corporation Analyseur à temps de vol multiréfléchissant
WO2016174462A1 (fr) 2015-04-30 2016-11-03 Micromass Uk Limited Spectromètre de masse à temps de vol à réflexion multiple
WO2017042665A1 (fr) 2015-09-10 2017-03-16 Q-Tek D.O.O. Séparateur de masse par résonance

Family Cites Families (315)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898452A (en) 1974-08-15 1975-08-05 Itt Electron multiplier gain stabilization
US4390784A (en) 1979-10-01 1983-06-28 The Bendix Corporation One piece ion accelerator for ion mobility detector cells
DE3025764C2 (de) 1980-07-08 1984-04-19 Hermann Prof. Dr. 6301 Fernwald Wollnik Laufzeit-Massenspektrometer
JPS60121657A (ja) 1983-11-11 1985-06-29 Anelva Corp 測定装置
DE3524536A1 (de) 1985-07-10 1987-01-22 Bruker Analytische Messtechnik Flugzeit-massenspektrometer mit einem ionenreflektor
JPS6229049A (ja) 1985-07-31 1987-02-07 Hitachi Ltd 質量分析計
EP0237259A3 (fr) 1986-03-07 1989-04-05 Finnigan Corporation Spectromètre de masse
US5107109A (en) 1986-03-07 1992-04-21 Finnigan Corporation Method of increasing the dynamic range and sensitivity of a quadrupole ion trap mass spectrometer
US4855595A (en) 1986-07-03 1989-08-08 Allied-Signal Inc. Electric field control in ion mobility spectrometry
JP2523781B2 (ja) 1988-04-28 1996-08-14 日本電子株式会社 飛行時間型/偏向二重収束型切換質量分析装置
US5017780A (en) 1989-09-20 1991-05-21 Roland Kutscher Ion reflector
US5128543A (en) 1989-10-23 1992-07-07 Charles Evans & Associates Particle analyzer apparatus and method
US5202563A (en) 1991-05-16 1993-04-13 The Johns Hopkins University Tandem time-of-flight mass spectrometer
US5331158A (en) 1992-12-07 1994-07-19 Hewlett-Packard Company Method and arrangement for time of flight spectrometry
DE4310106C1 (de) 1993-03-27 1994-10-06 Bruker Saxonia Analytik Gmbh Herstellungsverfahren für Schaltgitter eines Ionen-Mobilitäts-Spektrometers und nach dem Verfahren hergestellte Schaltgitter
US5367162A (en) 1993-06-23 1994-11-22 Meridian Instruments, Inc. Integrating transient recorder apparatus for time array detection in time-of-flight mass spectrometry
US5435309A (en) 1993-08-10 1995-07-25 Thomas; Edward V. Systematic wavelength selection for improved multivariate spectral analysis
US5464985A (en) 1993-10-01 1995-11-07 The Johns Hopkins University Non-linear field reflectron
US5396065A (en) 1993-12-21 1995-03-07 Hewlett-Packard Company Sequencing ion packets for ion time-of-flight mass spectrometry
US7019285B2 (en) 1995-08-10 2006-03-28 Analytica Of Branford, Inc. Ion storage time-of-flight mass spectrometer
KR0156602B1 (ko) 1994-07-08 1998-12-01 황해웅 이온이동도 분석기
DE19515270C2 (de) 1995-04-26 2000-05-11 Bruker Saxonia Analytik Gmbh Verfahren zur Messung von Ionenmobilitätsspektren
US5654544A (en) 1995-08-10 1997-08-05 Analytica Of Branford Mass resolution by angular alignment of the ion detector conversion surface in time-of-flight mass spectrometers with electrostatic steering deflectors
US5619034A (en) 1995-11-15 1997-04-08 Reed; David A. Differentiating mass spectrometer
US5696375A (en) * 1995-11-17 1997-12-09 Bruker Analytical Instruments, Inc. Multideflector
JPH11513176A (ja) * 1996-07-03 1999-11-09 アナリチカ オブ ブランフォード,インコーポレーテッド 一次および二次の縦集束を有する飛行時間質量スペクトロメータ
US5814813A (en) 1996-07-08 1998-09-29 The Johns Hopkins University End cap reflection for a time-of-flight mass spectrometer and method of using the same
GB9617312D0 (en) 1996-08-17 1996-09-25 Millbrook Instr Limited Charged particle velocity analyser
US6591121B1 (en) 1996-09-10 2003-07-08 Xoetronics Llc Measurement, data acquisition, and signal processing
US5777326A (en) 1996-11-15 1998-07-07 Sensor Corporation Multi-anode time to digital converter
US6316768B1 (en) 1997-03-14 2001-11-13 Leco Corporation Printed circuit boards as insulated components for a time of flight mass spectrometer
AUPO557797A0 (en) 1997-03-12 1997-04-10 Gbc Scientific Equipment Pty Ltd A time of flight analysis device
US6469295B1 (en) 1997-05-30 2002-10-22 Bruker Daltonics Inc. Multiple reflection time-of-flight mass spectrometer
US5955730A (en) 1997-06-26 1999-09-21 Comstock, Inc. Reflection time-of-flight mass spectrometer
JP3535352B2 (ja) 1997-08-08 2004-06-07 日本電子株式会社 飛行時間型質量分析装置
US6080985A (en) 1997-09-30 2000-06-27 The Perkin-Elmer Corporation Ion source and accelerator for improved dynamic range and mass selection in a time of flight mass spectrometer
US5896829A (en) * 1997-10-08 1999-04-27 Genzyme Transgenics Corporation Head-only animal exposure chambers
US6002122A (en) 1998-01-23 1999-12-14 Transient Dynamics High-speed logarithmic photo-detector
DE69909683T2 (de) 1998-01-23 2004-01-29 Micromass Ltd Flugzeitmassenspektrometer und detektor dafür und spektrometrieverfahren
GB9802115D0 (en) 1998-01-30 1998-04-01 Shimadzu Res Lab Europe Ltd Time-of-flight mass spectrometer
US6348688B1 (en) 1998-02-06 2002-02-19 Perseptive Biosystems Tandem time-of-flight mass spectrometer with delayed extraction and method for use
US6013913A (en) 1998-02-06 2000-01-11 The University Of Northern Iowa Multi-pass reflectron time-of-flight mass spectrometer
US5994695A (en) 1998-05-29 1999-11-30 Hewlett-Packard Company Optical path devices for mass spectrometry
US6646252B1 (en) 1998-06-22 2003-11-11 Marc Gonin Multi-anode detector with increased dynamic range for time-of-flight mass spectrometers with counting data acquisition
US6271917B1 (en) 1998-06-26 2001-08-07 Thomas W. Hagler Method and apparatus for spectrum analysis and encoder
JP2000036285A (ja) 1998-07-17 2000-02-02 Jeol Ltd 飛行時間型質量分析計のスペクトル処理方法
JP2000048764A (ja) 1998-07-24 2000-02-18 Jeol Ltd 飛行時間型質量分析計
US6300626B1 (en) 1998-08-17 2001-10-09 Board Of Trustees Of The Leland Stanford Junior University Time-of-flight mass spectrometer and ion analysis
GB9820210D0 (en) 1998-09-16 1998-11-11 Vg Elemental Limited Means for removing unwanted ions from an ion transport system and mass spectrometer
WO2000018496A1 (fr) 1998-09-25 2000-04-06 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Spectrometre de masse temps de vol fonctionnant en mode tandem
JP3571546B2 (ja) 1998-10-07 2004-09-29 日本電子株式会社 大気圧イオン化質量分析装置
CA2255188C (fr) 1998-12-02 2008-11-18 University Of British Columbia Methode et appareil pour la spectrometrie de masse en plusieurs etapes
US6198096B1 (en) 1998-12-22 2001-03-06 Agilent Technologies, Inc. High duty cycle pseudo-noise modulated time-of-flight mass spectrometry
US6804003B1 (en) 1999-02-09 2004-10-12 Kla-Tencor Corporation System for analyzing surface characteristics with self-calibrating capability
US6184984B1 (en) 1999-02-09 2001-02-06 Kla-Tencor Corporation System for measuring polarimetric spectrum and other properties of a sample
US6437325B1 (en) 1999-05-18 2002-08-20 Advanced Research And Technology Institute, Inc. System and method for calibrating time-of-flight mass spectra
US6507019B2 (en) * 1999-05-21 2003-01-14 Mds Inc. MS/MS scan methods for a quadrupole/time of flight tandem mass spectrometer
US6504148B1 (en) 1999-05-27 2003-01-07 Mds Inc. Quadrupole mass spectrometer with ION traps to enhance sensitivity
JP4564696B2 (ja) 1999-06-11 2010-10-20 アプライド バイオシステムズ, エルエルシー 不安定な分子の分子量を決定するための方法および装置
WO2000077823A2 (fr) 1999-06-11 2000-12-21 Perseptive Biosystems, Inc. Spectrometre de masse en tandem a temps de vol comprenant une cellule d'amortissement de collision et son utilisation
GB9920711D0 (en) 1999-09-03 1999-11-03 Hd Technologies Limited High dynamic range mass spectrometer
US6393367B1 (en) 2000-02-19 2002-05-21 Proteometrics, Llc Method for evaluating the quality of comparisons between experimental and theoretical mass data
SE530172C2 (sv) 2000-03-31 2008-03-18 Xcounter Ab Spektralt upplöst detektering av joniserande strålning
US6455845B1 (en) 2000-04-20 2002-09-24 Agilent Technologies, Inc. Ion packet generation for mass spectrometer
US6614020B2 (en) 2000-05-12 2003-09-02 The Johns Hopkins University Gridless, focusing ion extraction device for a time-of-flight mass spectrometer
US7091479B2 (en) 2000-05-30 2006-08-15 The Johns Hopkins University Threat identification in time of flight mass spectrometry using maximum likelihood
AU8043901A (en) 2000-05-30 2001-12-11 Univ Johns Hopkins Threat identification for mass spectrometer system
EP1301939A2 (fr) 2000-06-28 2003-04-16 The Johns Hopkins University Reseau de spectrometres de masse a temps de vol
US6647347B1 (en) 2000-07-26 2003-11-11 Agilent Technologies, Inc. Phase-shifted data acquisition system and method
WO2002025708A2 (fr) 2000-09-20 2002-03-28 Kla-Tencor-Inc. Procedes et systemes destines a des processus de fabrication de semi-conducteurs
US6694284B1 (en) 2000-09-20 2004-02-17 Kla-Tencor Technologies Corp. Methods and systems for determining at least four properties of a specimen
DE10116536A1 (de) 2001-04-03 2002-10-17 Wollnik Hermann Flugzeit-Massenspektrometer mit gepulsten Ionen-Spiegeln
US7038197B2 (en) 2001-04-03 2006-05-02 Micromass Limited Mass spectrometer and method of mass spectrometry
SE0101555D0 (sv) 2001-05-04 2001-05-04 Amersham Pharm Biotech Ab Fast variable gain detector system and method of controlling the same
US6683299B2 (en) 2001-05-25 2004-01-27 Ionwerks Time-of-flight mass spectrometer for monitoring of fast processes
GB2381373B (en) 2001-05-29 2005-03-23 Thermo Masslab Ltd Time of flight mass spectrometer and multiple detector therefor
ATE352860T1 (de) 2001-06-08 2007-02-15 Univ Maine Durchlassgitter zur verwendung in gerät zum vermessen von teilchenstrahlen und verfahren zur herstellung des gitters
US6744040B2 (en) 2001-06-13 2004-06-01 Bruker Daltonics, Inc. Means and method for a quadrupole surface induced dissociation quadrupole time-of-flight mass spectrometer
US6717133B2 (en) 2001-06-13 2004-04-06 Agilent Technologies, Inc. Grating pattern and arrangement for mass spectrometers
US6744042B2 (en) 2001-06-18 2004-06-01 Yeda Research And Development Co., Ltd. Ion trapping
JP2003031178A (ja) 2001-07-17 2003-01-31 Anelva Corp 四重極型質量分析計
US6664545B2 (en) 2001-08-29 2003-12-16 The Board Of Trustees Of The Leland Stanford Junior University Gate for modulating beam of charged particles and method for making same
US6787760B2 (en) 2001-10-12 2004-09-07 Battelle Memorial Institute Method for increasing the dynamic range of mass spectrometers
DE10152821B4 (de) 2001-10-25 2006-11-16 Bruker Daltonik Gmbh Massenspektren ohne elektronisches Rauschen
EP1315195B1 (fr) 2001-11-22 2007-04-18 Micromass UK Limited Spectromètre de masse et méthode
US6747271B2 (en) 2001-12-19 2004-06-08 Ionwerks Multi-anode detector with increased dynamic range for time-of-flight mass spectrometers with counting data acquisition
AU2002350343A1 (en) 2001-12-21 2003-07-15 Mds Inc., Doing Business As Mds Sciex Use of notched broadband waveforms in a linear ion trap
US7404929B2 (en) 2002-01-18 2008-07-29 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system based on scattering of polarized light
DE10206173B4 (de) 2002-02-14 2006-08-31 Bruker Daltonik Gmbh Hochauflösende Detektion für Flugzeitmassenspektrometer
US6737642B2 (en) 2002-03-18 2004-05-18 Syagen Technology High dynamic range analog-to-digital converter
US6870157B1 (en) 2002-05-23 2005-03-22 The Board Of Trustees Of The Leland Stanford Junior University Time-of-flight mass spectrometer system
US6794641B2 (en) 2002-05-30 2004-09-21 Micromass Uk Limited Mass spectrometer
US6888130B1 (en) 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
US7034292B1 (en) 2002-05-31 2006-04-25 Analytica Of Branford, Inc. Mass spectrometry with segmented RF multiple ion guides in various pressure regions
US7196324B2 (en) 2002-07-16 2007-03-27 Leco Corporation Tandem time of flight mass spectrometer and method of use
GB2390935A (en) 2002-07-16 2004-01-21 Anatoli Nicolai Verentchikov Time-nested mass analysis using a TOF-TOF tandem mass spectrometer
US7067803B2 (en) 2002-10-11 2006-06-27 The Board Of Trustees Of The Leland Stanford Junior University Gating device and driver for modulation of charged particle beams
DE10247895B4 (de) * 2002-10-14 2004-08-26 Bruker Daltonik Gmbh Hoher Nutzgrad für hochauflösende Flugzeitmassenspektrometer mit orthogonalem Ioneneinschuss
DE10248814B4 (de) 2002-10-19 2008-01-10 Bruker Daltonik Gmbh Höchstauflösendes Flugzeitmassenspektrometer kleiner Bauart
JP2004172070A (ja) 2002-11-22 2004-06-17 Jeol Ltd 垂直加速型飛行時間型質量分析装置
AU2003291176A1 (en) 2002-11-27 2004-06-23 Ionwerks, Inc. A time-of-flight mass spectrometer with improved data acquisition system
US6933497B2 (en) 2002-12-20 2005-08-23 Per Septive Biosystems, Inc. Time-of-flight mass analyzer with multiple flight paths
US6794643B2 (en) 2003-01-23 2004-09-21 Agilent Technologies, Inc. Multi-mode signal offset in time-of-flight mass spectrometry
US7041968B2 (en) 2003-03-20 2006-05-09 Science & Technology Corporation @ Unm Distance of flight spectrometer for MS and simultaneous scanless MS/MS
US6900431B2 (en) * 2003-03-21 2005-05-31 Predicant Biosciences, Inc. Multiplexed orthogonal time-of-flight mass spectrometer
EP1609167A4 (fr) 2003-03-21 2007-07-25 Dana Farber Cancer Inst Inc Systeme de spectroscopie de masse
JP2006522340A (ja) 2003-04-02 2006-09-28 メルク エンド カムパニー インコーポレーテッド 質量分析データの分析法
US6841936B2 (en) 2003-05-19 2005-01-11 Ciphergen Biosystems, Inc. Fast recovery electron multiplier
US7385187B2 (en) 2003-06-21 2008-06-10 Leco Corporation Multi-reflecting time-of-flight mass spectrometer and method of use
JP4182843B2 (ja) 2003-09-02 2008-11-19 株式会社島津製作所 飛行時間型質量分析装置
JP4208674B2 (ja) 2003-09-03 2009-01-14 日本電子株式会社 多重周回型飛行時間型質量分析方法
US7217919B2 (en) 2004-11-02 2007-05-15 Analytica Of Branford, Inc. Method and apparatus for multiplexing plural ion beams to a mass spectrometer
JP4001100B2 (ja) 2003-11-14 2007-10-31 株式会社島津製作所 質量分析装置
US7297960B2 (en) 2003-11-17 2007-11-20 Micromass Uk Limited Mass spectrometer
US20050133712A1 (en) 2003-12-18 2005-06-23 Predicant Biosciences, Inc. Scan pipelining for sensitivity improvement of orthogonal time-of-flight mass spectrometers
GB0403533D0 (en) 2004-02-18 2004-03-24 Hoffman Andrew Mass spectrometer
CA2555985A1 (fr) 2004-03-04 2005-09-15 Mds Inc., Doing Business Through Its Mds Sciex Division Procede et systeme pour l'analyse de masse d'echantillons
US7504621B2 (en) 2004-03-04 2009-03-17 Mds Inc. Method and system for mass analysis of samples
EP1726945A4 (fr) 2004-03-16 2008-07-16 Idx Technologies Kk Spectroscope de masse a ionisation laser
EP1738396B1 (fr) 2004-04-05 2018-10-31 Micromass UK Limited Spectromètre de masse
WO2005106921A1 (fr) 2004-05-05 2005-11-10 Mds Inc. Doing Business Through Its Mds Sciex Division Guide d'ions pour spectrometre de masse
WO2005114705A2 (fr) 2004-05-21 2005-12-01 Whitehouse Craig M Surfaces rf et guides d’ions rf
CN1326191C (zh) 2004-06-04 2007-07-11 复旦大学 用印刷电路板构建的离子阱质量分析仪
WO2006014984A1 (fr) 2004-07-27 2006-02-09 Ionwerks, Inc. Modes d'acquisition de donnees de multiplexage pour une spectrometrie de masse de la mobilite des ions
WO2006049623A2 (fr) 2004-11-02 2006-05-11 Boyle James G Procede et dispositif pour le multiplexage de plusieurs faisceaux ioniques vers un spectrometre de masse
US9168469B2 (en) 2004-12-22 2015-10-27 Chemtor, Lp Method and system for production of a chemical commodity using a fiber conduit reactor
US7399957B2 (en) 2005-01-14 2008-07-15 Duke University Coded mass spectroscopy methods, devices, systems and computer program products
US7351958B2 (en) 2005-01-24 2008-04-01 Applera Corporation Ion optics systems
JP4806214B2 (ja) 2005-01-28 2011-11-02 株式会社日立ハイテクノロジーズ 電子捕獲解離反応装置
US7180078B2 (en) 2005-02-01 2007-02-20 Lucent Technologies Inc. Integrated planar ion traps
WO2006098086A1 (fr) 2005-03-17 2006-09-21 National Institute Of Advanced Industrial Science And Technology Spectromètre de masse à temps de vol
US7221251B2 (en) 2005-03-22 2007-05-22 Acutechnology Semiconductor Air core inductive element on printed circuit board for use in switching power conversion circuitries
JP5357538B2 (ja) 2005-03-22 2013-12-04 レコ コーポレイション 等時性湾曲イオンインタフェースを備えた多重反射型飛行時間質量分析計
CA2601707C (fr) 2005-03-29 2012-05-15 Thermo Finnigan Llc Ameliorations relatives a un spectrometre de masse
EP1896161A2 (fr) 2005-05-27 2008-03-12 Ionwerks, Inc. Spectrometrie de masse a temps de vol a mobilite ionique multifaisceau comprenant un enregistrement de donnees multicanal
GB0511083D0 (en) 2005-05-31 2005-07-06 Thermo Finnigan Llc Multiple ion injection in mass spectrometry
GB0511332D0 (en) 2005-06-03 2005-07-13 Micromass Ltd Mass spectrometer
CA2624926C (fr) * 2005-10-11 2017-05-09 Leco Corporation Spectrometre de masse de temps de vol multireflechissant avec acceleration orthogonale
US7582864B2 (en) 2005-12-22 2009-09-01 Leco Corporation Linear ion trap with an imbalanced radio frequency field
JP5555428B2 (ja) 2006-02-08 2014-07-23 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 無線周波数イオンガイド
JP2007227042A (ja) 2006-02-22 2007-09-06 Jeol Ltd らせん軌道型飛行時間型質量分析装置
GB0605089D0 (en) 2006-03-14 2006-04-26 Micromass Ltd Mass spectrometer
GB0607542D0 (en) 2006-04-13 2006-05-24 Thermo Finnigan Llc Mass spectrometer
US7423259B2 (en) 2006-04-27 2008-09-09 Agilent Technologies, Inc. Mass spectrometer and method for enhancing dynamic range
WO2007136373A1 (fr) 2006-05-22 2007-11-29 Shimadzu Corporation Appareil d'agencement d'électrodes de plaques parallèles et procédé
JP4973659B2 (ja) 2006-05-30 2012-07-11 株式会社島津製作所 質量分析装置
GB0610752D0 (en) 2006-06-01 2006-07-12 Micromass Ltd Mass spectrometer
US7501621B2 (en) 2006-07-12 2009-03-10 Leco Corporation Data acquisition system for a spectrometer using an adaptive threshold
KR100744140B1 (ko) 2006-07-13 2007-08-01 삼성전자주식회사 더미 패턴을 갖는 인쇄회로기판
JP4939138B2 (ja) 2006-07-20 2012-05-23 株式会社島津製作所 質量分析装置用イオン光学系の設計方法
GB0620398D0 (en) 2006-10-13 2006-11-22 Shimadzu Corp Multi-reflecting time-of-flight mass analyser and a time-of-flight mass spectrometer including the time-of-flight mass analyser
US8626449B2 (en) 2006-10-17 2014-01-07 The Regents Of The University Of California Biological cell sorting and characterization using aerosol mass spectrometry
GB0620963D0 (en) 2006-10-20 2006-11-29 Thermo Finnigan Llc Multi-channel detection
GB0622689D0 (en) 2006-11-14 2006-12-27 Thermo Electron Bremen Gmbh Method of operating a multi-reflection ion trap
GB0624677D0 (en) 2006-12-11 2007-01-17 Shimadzu Corp A co-axial time-of-flight mass spectrometer
GB2445169B (en) 2006-12-29 2012-03-14 Thermo Fisher Scient Bremen Parallel mass analysis
GB2484429B (en) 2006-12-29 2012-06-20 Thermo Fisher Scient Bremen Parallel mass analysis
GB2484361B (en) 2006-12-29 2012-05-16 Thermo Fisher Scient Bremen Parallel mass analysis
GB0700735D0 (en) 2007-01-15 2007-02-21 Micromass Ltd Mass spectrometer
US7541576B2 (en) 2007-02-01 2009-06-02 Battelle Memorial Istitute Method of multiplexed analysis using ion mobility spectrometer
US7663100B2 (en) 2007-05-01 2010-02-16 Virgin Instruments Corporation Reversed geometry MALDI TOF
CN101669188B (zh) 2007-05-09 2011-09-07 株式会社岛津制作所 质谱分析装置
GB0709799D0 (en) 2007-05-22 2007-06-27 Micromass Ltd Mass spectrometer
JP5069497B2 (ja) 2007-05-24 2012-11-07 富士フイルム株式会社 質量分析用デバイス及びそれを用いた質量分析装置
GB0712252D0 (en) 2007-06-22 2007-08-01 Shimadzu Corp A multi-reflecting ion optical device
US7608817B2 (en) 2007-07-20 2009-10-27 Agilent Technologies, Inc. Adiabatically-tuned linear ion trap with fourier transform mass spectrometry with reduced packet coalescence
DE102007048618B4 (de) 2007-10-10 2011-12-22 Bruker Daltonik Gmbh Gereinigte Tochterionenspektren aus MALDI-Ionisierung
JP4922900B2 (ja) 2007-11-13 2012-04-25 日本電子株式会社 垂直加速型飛行時間型質量分析装置
GB2455977A (en) 2007-12-21 2009-07-01 Thermo Fisher Scient Multi-reflectron time-of-flight mass spectrometer
WO2009108538A2 (fr) 2008-02-26 2009-09-03 Phoenix S & T, Inc. Procédé et appareil permettant d’accroître la capacité de la chromatographie en phase liquide et de la spectrométrie de masse
US7675031B2 (en) 2008-05-29 2010-03-09 Thermo Finnigan Llc Auxiliary drag field electrodes
US7709789B2 (en) 2008-05-29 2010-05-04 Virgin Instruments Corporation TOF mass spectrometry with correction for trajectory error
CN102131563B (zh) 2008-07-16 2015-01-07 莱克公司 准平面多反射飞行时间质谱仪
GB0817433D0 (en) 2008-09-23 2008-10-29 Thermo Fisher Scient Bremen Ion trap for cooling ions
CN101369510A (zh) 2008-09-27 2009-02-18 复旦大学 环形管状电极离子阱
US8101910B2 (en) 2008-10-01 2012-01-24 Dh Technologies Development Pte. Ltd. Method, system and apparatus for multiplexing ions in MSn mass spectrometry analysis
US9653277B2 (en) 2008-10-09 2017-05-16 Shimadzu Corporation Mass spectrometer
US7932491B2 (en) 2009-02-04 2011-04-26 Virgin Instruments Corporation Quantitative measurement of isotope ratios by time-of-flight mass spectrometry
EP2396805A4 (fr) 2009-02-13 2017-12-06 Dh Technologies Development Pte. Ltd. Appareil et procédé de photo-fragmentation
US8431887B2 (en) 2009-03-31 2013-04-30 Agilent Technologies, Inc. Central lens for cylindrical geometry time-of-flight mass spectrometer
US20100301202A1 (en) 2009-05-29 2010-12-02 Virgin Instruments Corporation Tandem TOF Mass Spectrometer With High Resolution Precursor Selection And Multiplexed MS-MS
GB2470599B (en) 2009-05-29 2014-04-02 Thermo Fisher Scient Bremen Charged particle analysers and methods of separating charged particles
GB2470600B (en) 2009-05-29 2012-06-13 Thermo Fisher Scient Bremen Charged particle analysers and methods of separating charged particles
US8080782B2 (en) 2009-07-29 2011-12-20 Agilent Technologies, Inc. Dithered multi-pulsing time-of-flight mass spectrometer
US8847155B2 (en) 2009-08-27 2014-09-30 Virgin Instruments Corporation Tandem time-of-flight mass spectrometry with simultaneous space and velocity focusing
GB0918629D0 (en) 2009-10-23 2009-12-09 Thermo Fisher Scient Bremen Detection apparatus for detecting charged particles, methods for detecting charged particles and mass spectometer
US20110168880A1 (en) * 2010-01-13 2011-07-14 Agilent Technologies, Inc. Time-of-flight mass spectrometer with curved ion mirrors
GB2476964A (en) 2010-01-15 2011-07-20 Anatoly Verenchikov Electrostatic trap mass spectrometer
JP5781545B2 (ja) 2010-02-02 2015-09-24 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 飛行時間型質量分析検出システムを操作する方法およびシステム
DE102010011974B4 (de) 2010-03-19 2016-09-15 Bruker Daltonik Gmbh Sättigungskorrektur für Ionensignale in Flugzeitmassenspektrometern
US8735818B2 (en) 2010-03-31 2014-05-27 Thermo Finnigan Llc Discrete dynode detector with dynamic gain control
GB201007210D0 (en) 2010-04-30 2010-06-16 Verenchikov Anatoly Time-of-flight mass spectrometer with improved duty cycle
WO2011154731A1 (fr) 2010-06-08 2011-12-15 Micromass Uk Limited Spectromètre de masse avec expanseur de faisceau
GB201012170D0 (en) 2010-07-20 2010-09-01 Isis Innovation Charged particle spectrum analysis apparatus
DE102010032823B4 (de) 2010-07-30 2013-02-07 Ion-Tof Technologies Gmbh Verfahren sowie ein Massenspektrometer zum Nachweis von Ionen oder nachionisierten Neutralteilchen aus Proben
WO2012023031A2 (fr) 2010-08-19 2012-02-23 Dh Technologies Development Pte. Ltd. Procédé et système destinés à augmenter la gamme dynamique de détecteur d'ions
WO2012024468A2 (fr) 2010-08-19 2012-02-23 Leco Corporation Spectromètre de masse à temps de vol à source d'ionisation par impact électronique à accumulation
CN103069538B (zh) 2010-08-19 2016-05-11 莱克公司 具有软电离辉光放电和调节器的质谱仪
JP5555582B2 (ja) 2010-09-22 2014-07-23 日本電子株式会社 タンデム型飛行時間型質量分析法および装置
GB2485826B (en) 2010-11-26 2015-06-17 Thermo Fisher Scient Bremen Method of mass separating ions and mass separator
GB2496991B (en) 2010-11-26 2015-05-20 Thermo Fisher Scient Bremen Method of mass selecting ions and mass selector
US9922812B2 (en) 2010-11-26 2018-03-20 Thermo Fisher Scientific (Bremen) Gmbh Method of mass separating ions and mass separator
WO2012073322A1 (fr) 2010-11-30 2012-06-07 株式会社島津製作所 Dispositif de traitement de données de spectrométrie de masse
CN201946564U (zh) 2010-11-30 2011-08-24 中国科学院大连化学物理研究所 一种基于微通道板的飞行时间质谱仪检测器
GB2486484B (en) 2010-12-17 2013-02-20 Thermo Fisher Scient Bremen Ion detection system and method
JP5629928B2 (ja) 2010-12-20 2014-11-26 株式会社島津製作所 飛行時間型質量分析装置
GB201021840D0 (en) 2010-12-23 2011-02-02 Micromass Ltd Improved space focus time of flight mass spectrometer
GB201022050D0 (en) 2010-12-29 2011-02-02 Verenchikov Anatoly Electrostatic trap mass spectrometer with improved ion injection
DE102011004725A1 (de) 2011-02-25 2012-08-30 Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ Stiftung des Öffentlichen Rechts des Landes Brandenburg Verfahren und Vorrichtung zur Erhöhung des Durchsatzes bei Flugzeitmassenspektrometern
GB201103361D0 (en) 2011-02-28 2011-04-13 Shimadzu Corp Mass analyser and method of mass analysis
JP2011119279A (ja) 2011-03-11 2011-06-16 Hitachi High-Technologies Corp 質量分析装置およびこれを用いる計測システム
GB201104310D0 (en) 2011-03-15 2011-04-27 Micromass Ltd Electrostatic gimbal for correction of errors in time of flight mass spectrometers
US8299443B1 (en) 2011-04-14 2012-10-30 Battelle Memorial Institute Microchip and wedge ion funnels and planar ion beam analyzers using same
WO2012142565A1 (fr) 2011-04-14 2012-10-18 Indiana University Research And Technology Corporation Performances de résolution et de gamme de masse en spectrométrie de masse à distance de vol avec détecteur doté d'une caméra multivoie à plan focal
US8642951B2 (en) 2011-05-04 2014-02-04 Agilent Technologies, Inc. Device, system, and method for reflecting ions
KR101790534B1 (ko) 2011-05-13 2017-10-27 한국표준과학연구원 초고속 멀티 모드 질량 분석을 위한 비행시간 기반 질량 현미경 시스템
US8698075B2 (en) 2011-05-24 2014-04-15 Battelle Memorial Institute Orthogonal ion injection apparatus and process
GB201109416D0 (en) * 2011-06-03 2011-07-20 Micromass Ltd Methods of mass spectrometry
GB201110662D0 (en) 2011-06-23 2011-08-10 Thermo Fisher Scient Bremen Targeted analysis for tandem mass spectrometry
GB2495899B (en) 2011-07-04 2018-05-16 Thermo Fisher Scient Bremen Gmbh Identification of samples using a multi pass or multi reflection time of flight mass spectrometer
GB201111568D0 (en) 2011-07-06 2011-08-24 Micromass Ltd Apparatus and method of mass spectrometry
GB201111560D0 (en) 2011-07-06 2011-08-24 Micromass Ltd Photo-dissociation of proteins and peptides in a mass spectrometer
GB201111569D0 (en) 2011-07-06 2011-08-24 Micromass Ltd Apparatus and method of mass spectrometry
GB201116845D0 (en) 2011-09-30 2011-11-09 Micromass Ltd Multiple channel detection for time of flight mass spectrometer
GB2495127B (en) 2011-09-30 2016-10-19 Thermo Fisher Scient (Bremen) Gmbh Method and apparatus for mass spectrometry
GB201118279D0 (en) 2011-10-21 2011-12-07 Shimadzu Corp Mass analyser, mass spectrometer and associated methods
GB201118579D0 (en) 2011-10-27 2011-12-07 Micromass Ltd Control of ion populations
CN104067116B (zh) 2011-11-02 2017-03-08 莱克公司 离子迁移率谱仪
GB2497948A (en) 2011-12-22 2013-07-03 Thermo Fisher Scient Bremen Collision cell for tandem mass spectrometry
US8633436B2 (en) 2011-12-22 2014-01-21 Agilent Technologies, Inc. Data acquisition modes for ion mobility time-of-flight mass spectrometry
CA2860136A1 (fr) 2011-12-23 2013-06-27 Dh Technologies Development Pte. Ltd. Focalisation du premier et du deuxieme ordre a l'aide de regions libres de champ en temps de vol
GB201122309D0 (en) 2011-12-23 2012-02-01 Micromass Ltd An imaging mass spectrometer and a method of mass spectrometry
US9653273B2 (en) 2011-12-30 2017-05-16 Dh Technologies Development Pte. Ltd. Ion optical elements
US9053915B2 (en) 2012-09-25 2015-06-09 Agilent Technologies, Inc. Radio frequency (RF) ion guide for improved performance in mass spectrometers at high pressure
US8507848B1 (en) 2012-01-24 2013-08-13 Shimadzu Research Laboratory (Shanghai) Co. Ltd. Wire electrode based ion guide device
JP6076729B2 (ja) 2012-01-25 2017-02-08 浜松ホトニクス株式会社 イオン検出装置
GB201201405D0 (en) 2012-01-27 2012-03-14 Thermo Fisher Scient Bremen Multi-reflection mass spectrometer
GB201201403D0 (en) 2012-01-27 2012-03-14 Thermo Fisher Scient Bremen Multi-reflection mass spectrometer
GB2499587B (en) 2012-02-21 2016-06-01 Thermo Fisher Scient (Bremen) Gmbh Apparatus and methods for ion mobility spectrometry
US9472390B2 (en) 2012-06-18 2016-10-18 Leco Corporation Tandem time-of-flight mass spectrometry with non-uniform sampling
US10290480B2 (en) 2012-07-19 2019-05-14 Battelle Memorial Institute Methods of resolving artifacts in Hadamard-transformed data
JP6027239B2 (ja) 2012-07-31 2016-11-16 レコ コーポレイションLeco Corporation 高スループットを有するイオン移動度分光計
CN103684817B (zh) 2012-09-06 2017-11-17 百度在线网络技术(北京)有限公司 数据中心的监控方法及系统
GB2506362B (en) 2012-09-26 2015-09-23 Thermo Fisher Scient Bremen Improved ion guide
US8723108B1 (en) 2012-10-19 2014-05-13 Agilent Technologies, Inc. Transient level data acquisition and peak correction for time-of-flight mass spectrometry
CN104781905B (zh) 2012-11-09 2017-03-15 莱克公司 圆筒型多次反射式飞行时间质谱仪
US8653446B1 (en) 2012-12-31 2014-02-18 Agilent Technologies, Inc. Method and system for increasing useful dynamic range of spectrometry device
CN103065921A (zh) 2013-01-18 2013-04-24 中国科学院大连化学物理研究所 一种多次反射的高分辨飞行时间质谱仪
GB2526449B (en) 2013-03-14 2020-02-19 Leco Corp Method and system for tandem mass spectrometry
US10373815B2 (en) 2013-04-19 2019-08-06 Battelle Memorial Institute Methods of resolving artifacts in Hadamard-transformed data
CN118315258A (zh) 2013-04-23 2024-07-09 莱克公司 具有高吞吐量的多反射质谱仪
WO2015004457A1 (fr) 2013-07-09 2015-01-15 Micromass Uk Limited Amélioration de plage dynamique intelligente
US9543138B2 (en) 2013-08-19 2017-01-10 Virgin Instruments Corporation Ion optical system for MALDI-TOF mass spectrometer
GB201314977D0 (en) 2013-08-21 2013-10-02 Thermo Fisher Scient Bremen Mass spectrometer
US9029763B2 (en) 2013-08-30 2015-05-12 Agilent Technologies, Inc. Ion deflection in time-of-flight mass spectrometry
DE102013018496B4 (de) 2013-11-04 2016-04-28 Bruker Daltonik Gmbh Massenspektrometer mit Laserspotmuster für MALDI
EP3388032B1 (fr) 2014-03-18 2019-06-26 Boston Scientific Scimed, Inc. Conception de stent réduisant la granulation et l'inflammation
JP6287419B2 (ja) 2014-03-24 2018-03-07 株式会社島津製作所 飛行時間型質量分析装置
US10770280B2 (en) 2014-03-31 2020-09-08 Leco Corporation Right angle time-of-flight detector with an extended life time
US9984863B2 (en) 2014-03-31 2018-05-29 Leco Corporation Multi-reflecting time-of-flight mass spectrometer with axial pulsed converter
JP6430531B2 (ja) 2014-03-31 2018-11-28 レコ コーポレイションLeco Corporation 検出限界が改善されたgc−tof ms
CN106461628A (zh) 2014-03-31 2017-02-22 莱克公司 靶向质谱分析的方法
GB201408392D0 (en) 2014-05-12 2014-06-25 Shimadzu Corp Mass Analyser
US9786484B2 (en) 2014-05-16 2017-10-10 Leco Corporation Method and apparatus for decoding multiplexed information in a chromatographic system
US9613788B2 (en) 2014-06-13 2017-04-04 Perkinelmer Health Sciences, Inc. RF ion guide with axial fields
US9576778B2 (en) 2014-06-13 2017-02-21 Agilent Technologies, Inc. Data processing for multiplexed spectrometry
GB2528875A (en) 2014-08-01 2016-02-10 Thermo Fisher Scient Bremen Detection system for time of flight mass spectrometry
JP2017527078A (ja) 2014-09-04 2017-09-14 レコ コーポレイションLeco Corporation 定量分析のための調整式グロー放電法に基づくソフトイオン化
US10037873B2 (en) 2014-12-12 2018-07-31 Agilent Technologies, Inc. Automatic determination of demultiplexing matrix for ion mobility spectrometry and mass spectrometry
US9972480B2 (en) 2015-01-30 2018-05-15 Agilent Technologies, Inc. Pulsed ion guides for mass spectrometers and related methods
US9905410B2 (en) 2015-01-31 2018-02-27 Agilent Technologies, Inc. Time-of-flight mass spectrometry using multi-channel detectors
US9373490B1 (en) 2015-06-19 2016-06-21 Shimadzu Corporation Time-of-flight mass spectrometer
GB2543036A (en) 2015-10-01 2017-04-12 Shimadzu Corp Time of flight mass spectrometer
JP6455605B2 (ja) 2015-10-23 2019-01-23 株式会社島津製作所 飛行時間型質量分析装置
GB201519830D0 (en) 2015-11-10 2015-12-23 Micromass Ltd A method of transmitting ions through an aperture
RU2660655C2 (ru) 2015-11-12 2018-07-09 Общество с ограниченной ответственностью "Альфа" (ООО "Альфа") Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах
GB201520134D0 (en) 2015-11-16 2015-12-30 Micromass Uk Ltd And Leco Corp Imaging mass spectrometer
GB201520130D0 (en) 2015-11-16 2015-12-30 Micromass Uk Ltd And Leco Corp Imaging mass spectrometer
GB201520540D0 (en) 2015-11-23 2016-01-06 Micromass Uk Ltd And Leco Corp Improved ion mirror and ion-optical lens for imaging
WO2017095863A1 (fr) 2015-11-30 2017-06-08 The Board Of Trustees Of The University Of Illinois Prisme à miroir ionique multimode et appareil de filtration d'énergie et système pour spectrométrie de masse (sm) à temps de vol (tof)
US9805526B2 (en) 2015-12-11 2017-10-31 The Boeing Company Fault monitoring for vehicles
DE102015121830A1 (de) 2015-12-15 2017-06-22 Ernst-Moritz-Arndt-Universität Greifswald Breitband-MR-ToF-Massenspektrometer
GB201613988D0 (en) 2016-08-16 2016-09-28 Micromass Uk Ltd And Leco Corp Mass analyser having extended flight path
US9870906B1 (en) 2016-08-19 2018-01-16 Thermo Finnigan Llc Multipole PCB with small robotically installed rod segments
GB201617668D0 (en) 2016-10-19 2016-11-30 Micromass Uk Limited Dual mode mass spectrometer
GB2555609B (en) 2016-11-04 2019-06-12 Thermo Fisher Scient Bremen Gmbh Multi-reflection mass spectrometer with deceleration stage
US9899201B1 (en) 2016-11-09 2018-02-20 Bruker Daltonics, Inc. High dynamic range ion detector for mass spectrometers
WO2018109920A1 (fr) 2016-12-16 2018-06-21 株式会社島津製作所 Dispositif de spectrométrie de masse
WO2018124861A2 (fr) 2016-12-30 2018-07-05 Алдан Асанович САПАРГАЛИЕВ Spectromètre de masse à temps de vol et ses parties constitutives
GB2562990A (en) 2017-01-26 2018-12-05 Micromass Ltd Ion detector assembly
US11158495B2 (en) 2017-03-27 2021-10-26 Leco Corporation Multi-reflecting time-of-flight mass spectrometer
GB2567794B (en) 2017-05-05 2023-03-08 Micromass Ltd Multi-reflecting time-of-flight mass spectrometers
CN206955673U (zh) 2017-05-19 2018-02-02 翼猫科技发展(上海)有限公司 具有远程控制装置的净水机
GB2563571B (en) 2017-05-26 2023-05-24 Micromass Ltd Time of flight mass analyser with spatial focussing
GB2563077A (en) 2017-06-02 2018-12-05 Thermo Fisher Scient Bremen Gmbh Mass error correction due to thermal drift in a time of flight mass spectrometer
GB2563604B (en) 2017-06-20 2021-03-10 Thermo Fisher Scient Bremen Gmbh Mass spectrometer and method for time-of-flight mass spectrometry
WO2019030472A1 (fr) 2017-08-06 2019-02-14 Anatoly Verenchikov Miroir ionique servant à des spectromètres de masse à réflexion multiple
US11211238B2 (en) * 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
WO2019030474A1 (fr) 2017-08-06 2019-02-14 Anatoly Verenchikov Miroir ionique à circuit imprimé avec compensation
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
WO2019030471A1 (fr) 2017-08-06 2019-02-14 Anatoly Verenchikov Guide d'ions à l'intérieur de convertisseurs pulsés
CN111133553B (zh) 2017-09-25 2023-05-05 Dh科技发展私人贸易有限公司 静电线性离子阱质谱仪
GB201802917D0 (en) 2018-02-22 2018-04-11 Micromass Ltd Charge detection mass spectrometry
GB201806507D0 (en) 2018-04-20 2018-06-06 Verenchikov Anatoly Gridless ion mirrors with smooth fields
GB201807605D0 (en) 2018-05-10 2018-06-27 Micromass Ltd Multi-reflecting time of flight mass analyser
GB201807626D0 (en) 2018-05-10 2018-06-27 Micromass Ltd Multi-reflecting time of flight mass analyser
EP3803939B1 (fr) 2018-05-28 2022-08-10 DH Technologies Development Pte. Ltd. Analyse de masse à transformée de fourier bidimensionnelle dans un piège à ions linéaire électrostatique
GB201810573D0 (en) 2018-06-28 2018-08-15 Verenchikov Anatoly Multi-pass mass spectrometer with improved duty cycle
GB201812329D0 (en) 2018-07-27 2018-09-12 Verenchikov Anatoly Improved ion transfer interace for orthogonal TOF MS
US10832897B2 (en) 2018-10-19 2020-11-10 Thermo Finnigan Llc Methods and devices for high-throughput data independent analysis for mass spectrometry using parallel arrays of cells
WO2020121167A1 (fr) 2018-12-13 2020-06-18 Dh Technologies Development Pte. Ltd. Piège à ions linéaire électrostatique à transformée de fourier et spectromètre de masse à temps de vol à réflectron
US11764052B2 (en) 2018-12-13 2023-09-19 Dh Technologies Development Pte. Ltd. Ion injection into an electrostatic linear ion trap using Zeno pulsing
GB2580089B (en) 2018-12-21 2021-03-03 Thermo Fisher Scient Bremen Gmbh Multi-reflection mass spectrometer

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1681340A1 (ru) 1987-02-25 1991-09-30 Филиал Института энергетических проблем химической физики АН СССР Способ масс-спектрометрического анализа по времени пролета непрерывного пучка ионов
SU1725289A1 (ru) 1989-07-20 1992-04-07 Институт Ядерной Физики Ан Казсср Врем пролетный масс-спектрометр с многократным отражением
WO1991003071A1 (fr) 1989-08-25 1991-03-07 Institut Energeticheskikh Problem Khimicheskoi Fiziki Akademii Nauk Sssr Procede et dispositif d'analyse spectrometrique de masse a temps de vol de faisceau d'ions a onde continue
US5763878A (en) 1995-03-28 1998-06-09 Bruker-Franzen Analytik Gmbh Method and device for orthogonal ion injection into a time-of-flight mass spectrometer
US6020586A (en) 1995-08-10 2000-02-01 Analytica Of Branford, Inc. Ion storage time-of-flight mass spectrometer
US6107625A (en) 1997-05-30 2000-08-22 Bruker Daltonics, Inc. Coaxial multiple reflection time-of-flight mass spectrometer
US6717132B2 (en) 2000-02-09 2004-04-06 Bruker Daltonik Gmbh Gridless time-of-flight mass spectrometer for orthogonal ion injection
US6570152B1 (en) 2000-03-03 2003-05-27 Micromass Limited Time of flight mass spectrometer with selectable drift length
US6545268B1 (en) 2000-04-10 2003-04-08 Perseptive Biosystems Preparation of ion pulse for time-of-flight and for tandem time-of-flight mass analysis
US6872938B2 (en) 2001-03-23 2005-03-29 Thermo Finnigan Llc Mass spectrometry method and apparatus
GB2403063A (en) 2003-06-21 2004-12-22 Anatoli Nicolai Verentchikov Time of flight mass spectrometer employing a plurality of lenses focussing an ion beam in shift direction
US7504620B2 (en) 2004-05-21 2009-03-17 Jeol Ltd Method and apparatus for time-of-flight mass spectrometry
JP4649234B2 (ja) * 2004-07-07 2011-03-09 日本電子株式会社 垂直加速型飛行時間型質量分析計
US8017909B2 (en) 2006-12-29 2011-09-13 Thermo Fisher Scientific (Bremen) Gmbh Ion trap
US7755036B2 (en) 2007-01-10 2010-07-13 Jeol Ltd. Instrument and method for tandem time-of-flight mass spectrometry
US8373120B2 (en) 2008-07-28 2013-02-12 Leco Corporation Method and apparatus for ion manipulation using mesh in a radio frequency field
WO2011107836A1 (fr) 2010-03-02 2011-09-09 Anatoly Verenchikov Spectromètre de masse à piège ouvert
WO2013063587A2 (fr) 2011-10-28 2013-05-02 Leco Corporation Miroirs à ions électrostatiques
WO2014142897A1 (fr) 2013-03-14 2014-09-18 Leco Corporation Spectromètre de masse multi-réfléchissant
RU2013149761A (ru) 2013-11-06 2015-05-20 Общество с ограниченной ответственностью "Биотехнологические аналитические приборы" (ООО "БиАП") Устройство ортогонального ввода ионов во времяпролетный масс-спектрометр
WO2016064398A1 (fr) * 2014-10-23 2016-04-28 Leco Corporation Analyseur à temps de vol multiréfléchissant
WO2016174462A1 (fr) 2015-04-30 2016-11-03 Micromass Uk Limited Spectromètre de masse à temps de vol à réflexion multiple
WO2017042665A1 (fr) 2015-09-10 2017-03-16 Q-Tek D.O.O. Séparateur de masse par résonance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G.J. O'HALLORAN: "Report ASD-TDR-62-644, The Bendix Corporation", 1964, RESEARCH LABORATORY DIVISION
M. TOYODA, J. MASS SPECTROM, vol. 38, 2003, pages 1125

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11309175B2 (en) 2017-05-05 2022-04-19 Micromass Uk Limited Multi-reflecting time-of-flight mass spectrometers
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
US11756782B2 (en) 2017-08-06 2023-09-12 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11367608B2 (en) 2018-04-20 2022-06-21 Micromass Uk Limited Gridless ion mirrors with smooth fields
US11342175B2 (en) 2018-05-10 2022-05-24 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11621156B2 (en) 2018-05-10 2023-04-04 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11881387B2 (en) 2018-05-24 2024-01-23 Micromass Uk Limited TOF MS detection system with improved dynamic range
US11587779B2 (en) 2018-06-28 2023-02-21 Micromass Uk Limited Multi-pass mass spectrometer with high duty cycle
WO2020002940A1 (fr) 2018-06-28 2020-01-02 Micromass Uk Limited Spectromètre de masse à plusieurs passages avec cycle de service élevé
US11848185B2 (en) 2019-02-01 2023-12-19 Micromass Uk Limited Electrode assembly for mass spectrometer
US12205813B2 (en) 2019-03-20 2025-01-21 Micromass Uk Limited Multiplexed time of flight mass spectrometer
US12100584B2 (en) 2019-07-12 2024-09-24 Leco Corporation Methods and systems for multi-pass encoded frequency pushing
GB2599580B (en) * 2019-07-12 2025-04-09 Leco Corp Methods and systems for multi-pass encoded frequency pushing
WO2021219621A1 (fr) * 2020-04-30 2021-11-04 Friedrich-Alexander-Universität Erlangen-Nürnberg Structure d'électrode conçue pour guider un faisceau de particules chargées

Also Published As

Publication number Publication date
US11211238B2 (en) 2021-12-28
US20230386818A1 (en) 2023-11-30
US20220093384A1 (en) 2022-03-24
US20200365383A1 (en) 2020-11-19
US11705320B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
US11705320B2 (en) Multi-pass mass spectrometer
US11587779B2 (en) Multi-pass mass spectrometer with high duty cycle
US11081332B2 (en) Ion guide within pulsed converters
US10964520B2 (en) Multi-reflection mass spectrometer
US11205568B2 (en) Ion injection into multi-pass mass spectrometers
US20230170204A1 (en) Accelerator for multi-pass mass spectrometers
US10276361B2 (en) Multi-reflection mass spectrometer
US11621156B2 (en) Multi-reflecting time of flight mass analyser
US10741376B2 (en) Multi-reflecting TOF mass spectrometer
US6903332B2 (en) Pulsers for time-of-flight mass spectrometers with orthogonal ion injection
US9136102B2 (en) Multi-reflection mass spectrometer
US20140264005A1 (en) Orthogonal acceleration tof with ion guide mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18752217

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载